WorldWideScience

Sample records for oximation hydrolysis esterification

  1. Production of alkyl esters from macaw palm oil by a sequential hydrolysis/esterification process using heterogeneous biocatalysts: optimization by response surface methodology.

    Science.gov (United States)

    Bressani, Ana Paula P; Garcia, Karen C A; Hirata, Daniela B; Mendes, Adriano A

    2015-02-01

    The present study deals with the enzymatic synthesis of alkyl esters with emollient properties by a sequential hydrolysis/esterification process (hydroesterification) using unrefined macaw palm oil from pulp seeds (MPPO) as feedstock. Crude enzymatic extract from dormant castor bean seeds was used as biocatalyst in the production of free fatty acids (FFA) by hydrolysis of MPPO. Esterification of purified FFA with several alcohols in heptane medium was catalyzed by immobilized Thermomyces lanuginosus lipase (TLL) on poly-hydroxybutyrate (PHB) particles. Under optimal experimental conditions (mass ratio oil:buffer of 35% m/m, reaction temperature of 35 °C, biocatalyst concentration of 6% m/m, and stirring speed of 1,000 rpm), complete hydrolysis of MPPO was reached after 110 min of reaction. Maximum ester conversion percentage of 92.4 ± 0.4% was reached using hexanol as acyl acceptor at 750 mM of each reactant after 15 min of reaction. The biocatalyst retained full activity after eight successive cycles of esterification reaction. These results show that the proposed process is a promising strategy for the synthesis of alkyl esters of industrial interest from macaw palm oil, an attractive option for the Brazilian oleochemical industry.

  2. The Preparation and Intramolecular Radical Cyclisation Reactions of Chiral Oxime Ethers

    Directory of Open Access Journals (Sweden)

    Booth Susan E.

    1998-01-01

    Full Text Available Chiral oxime ether 2 and Oxime ester 4 have been prepared by alkylation and esterification of the oxime 1. Racemic hydroxylamine 6 and chiral hydroxylamine 10 have been synthesised from N-hydroxysuccinimide and the corresponding alcohol in the presence of diethylazodicarboxylate, the two products were converted into the oxime ethers 7 and 11 respectively. The intramolecular radical cyclisation reactions of these oxime ethers and esters has been studied, successful reaction was observed to produce alkyl hydroxylamines 3, 8 and 12.

  3. Fluoren-9-one oxime

    Directory of Open Access Journals (Sweden)

    Bernhard Bugenhagen

    2014-03-01

    Full Text Available In the title molecule, C13H9NO, the fluorene system and the oxime group non-H atoms are essentially coplanar, with a maximum deviation from the fluorene mean plane of 0.079 (2 Å for the oxime O atom. A short intramolecular C—H...O generates an S(6 ring. In the crystal, molecules related by a twofold screw axis are connected by O—H...N hydrogen bonds, forming [100] chains Within these chains, molecules related by a unit translation along [100] show π–π stacking interactions between their fluorene ring systems with an interplanar distance of 3.347 (2 Å. The dihedral angle between the fluorene units of adjacent molecules along the helix is 88.40 (2°. There is a short C—H...π contact between the fluorene groups belonging to neighbouring chains.

  4. Gamma irradiation of cholestenone oximes

    International Nuclear Information System (INIS)

    Uenseren, Envare.

    1976-01-01

    Irradiation of cholest-4-en-3-one and cholest-5-en-3-one oximes with cobalt-60 gamma-rays in different solvents at different doses gave a mixture of products from which ketones corresponding to the starting oximes, Beckmann type rearrangement products, and some other radiolysis products have been isolated and identified

  5. Efficacious Oxime for Organophosphorus Poisoning: A Minireview

    African Journals Online (AJOL)

    Erah

    Abstract. Oximes are well known as acetylcholinesterase reactivators and are used in ... activity against structurally different kinds of organophosphorus ... serious threat with regard to occupational .... choose an oxime for unknown OPC exposure. Secondly, there is a lack of .... oximes, and hence cannot pass the blood.

  6. Efficacious Oxime for Organophosphorus Poisoning: A Minireview ...

    African Journals Online (AJOL)

    Oximes are well known as acetylcholinesterase reactivators and are used in organophosphorus poisoning to reactivate inhibited acetylcholinesterase. Therapeutically available oximes, namely, pralidoxime (2-PAM), obidoxime, trimedoxime and Hagedorn oxime (HI-6), have no broad-spectrum activity against structurally ...

  7. Simulation of biodiesel production using hydro-esterification process from wet microalgae

    Directory of Open Access Journals (Sweden)

    Pradana Yano Surya

    2018-01-01

    Full Text Available Recently, algae have received a lot of attention as a new biomass source for the production of renewable energy, such as biodiesel. Conventionally, biodiesel is made through esterification or transesterification of oils where the process involves a catalyst and alcohol to be reacted in a reactor. However, this process is energy intensive for drying and extraction step. To overcome this situation, we studied simulation of a new route of hydro-esterification process which is combine hydrolysis and esterification processes for biodiesel production from wet microalgae. Firstly, wet microalgae treated by hydrolyzer to produce fatty acids (FAs, separated with separator, and then mixed with methanol and esterified at subcritical condition to produce fatty acid methyl esters (FAMEs while H2SO4 conducted as the catalyst. Energy and material balance of conventional and hydrolysis-esterification process was evaluated by Aspen Plus. Simulation result indicated that conventional route is energy demanding process, requiring 4.40 MJ/L biodiesel produced. In contrast, the total energy consumption of hydrolysis-esterification method can be reduced significantly into 2.43 MJ/L biodiesel. Based on the energy consumption comparison, hydro-esterification process is less costly than conventional process for biodiesel production.

  8. Butia Yatay coconut oil: Process development for biodiesel production and kinetics of esterification with ethanol

    International Nuclear Information System (INIS)

    Zanuttini, M.S.; Pisarello, M.L.; Querini, C.A.

    2014-01-01

    Highlights: • Coconut oil contains high levels of phosphorous and free fatty acids. • Especial degumming process is needed in order to decrease the phosphorous content. • Kinetic constant for esterification reaction decreases as a function of time. • Two-step esterification is more efficient to reduce acidity than one-step. • Approximately 15% of esters are formed by acid-catalyzed transesterification. - Abstract: The aim of this work is to study biodiesel production using Butia Yatay coconut oil. This oil has acid values between 109 and 140 mg KOH/g, and phosphorus content in the order of 600 ppm. A three-step degumming pre-treatment of the raw material was adjusted in order to decrease the phosphorus content to approximately 200 ppm. Afterwards, a two-step esterification followed by transesterification was required in order to obtain a high-quality product. The esterification kinetics was studied including the simultaneous reactions that take place during the esterification of free fatty acids: autocatalysis, triacylglycerides hydrolysis, transesterification, and the reaction of sulphuric acid with the alcohol, being the most important ones. The kinetic parameters for the esterification and autocatalysis reactions were also obtained, being different compared to sunflower oil, due to the presence of short chain fatty acids. The kinetic constant for the esterification reaction rapidly decreases as a function of time, due to the consumption of the catalyst by the alkyl-sulphate formation reaction

  9. Simple, Efficient and Green Synthesis of Oximes under Ultrasound ...

    African Journals Online (AJOL)

    NICO

    Faculty of Chemistry, Bu-Ali Sina University, Hamadan 65174, Iran. ... The condensation of aldehydes and ketones with hydroxylamine hydrochloride gives oximes in 81–95 ... Oximes are important in organic synthesis not only for protec-.

  10. A Highly Efficient Catalyst for Oxime Ligation and Hydrazone-Oxime Exchange Suitable for Bioconjugation

    OpenAIRE

    Rashidian, Mohammad; Mahmoodi, Mohammad M.; Shah, Rachit; Dozier, Jonathan K.; Wagner, Carston R.; Distefano, Mark D.

    2013-01-01

    Imine-based reactions are useful for a wide range of bioconjugation applications. Although aniline is known to catalyze the oxime ligation reaction under physiological conditions, it suffers from slow reaction kinetics, specifically when a ketone is being used or when hydrazone-oxime exchange is performed. Here, we report on the discovery of a new catalyst that is up to 15 times more efficient than aniline. That catalyst, m-phenylenediamine (mPDA), was initially used to analyze the kinetics o...

  11. Organic Process Technology Valuation: Cyclohexanone Oxime Syntheses

    Science.gov (United States)

    Cannon, Kevin C.; Breen, Maureen P.

    2010-01-01

    Three contemporary processes for cyclohexanone oxime synthesis are evaluated in a case study. The case study introduces organic chemistry students to basic cost accounting to determine the most economical technology. Technical and financial aspects of these processes are evaluated with problem-based exercises that may be completed by students…

  12. Refinement of Structural Leads for Centrally Acting Oxime Reactivators of Phosphylated Cholinesterases*

    Science.gov (United States)

    Radić, Zoran; Sit, Rakesh K.; Kovarik, Zrinka; Berend, Suzana; Garcia, Edzna; Zhang, Limin; Amitai, Gabriel; Green, Carol; Radić, Božica; Fokin, Valery V.; Sharpless, K. Barry; Taylor, Palmer

    2012-01-01

    We present a systematic structural optimization of uncharged but ionizable N-substituted 2-hydroxyiminoacetamido alkylamine reactivators of phosphylated human acetylcholinesterase (hAChE) intended to catalyze the hydrolysis of organophosphate (OP)-inhibited hAChE in the CNS. Starting with the initial lead oxime RS41A identified in our earlier study and extending to the azepine analog RS194B, reactivation rates for OP-hAChE conjugates formed by sarin, cyclosarin, VX, paraoxon, and tabun are enhanced severalfold in vitro. To analyze the mechanism of intrinsic reactivation of the OP-AChE conjugate and penetration of the blood-brain barrier, the pH dependence of the oxime and amine ionizing groups of the compounds and their nucleophilic potential were examined by UV-visible spectroscopy, 1H NMR, and oximolysis rates for acetylthiocholine and phosphoester hydrolysis. Oximolysis rates were compared in solution and on AChE conjugates and analyzed in terms of the ionization states for reactivation of the OP-conjugated AChE. In addition, toxicity and pharmacokinetic studies in mice show significantly improved CNS penetration and retention for RS194B when compared with RS41A. The enhanced intrinsic reactivity against the OP-AChE target combined with favorable pharmacokinetic properties resulted in great improvement of antidotal properties of RS194B compared with RS41A and the standard peripherally active oxime, 2-pyridinealdoxime methiodide. Improvement was particularly noticeable when pretreatment of mice with RS194B before OP exposure was combined with RS194B reactivation therapy after the OP insult. PMID:22343626

  13. Native and tabun-inhibited cholinesterase interactions with oximes

    International Nuclear Information System (INIS)

    Kovarik, Z.; Katalinic, M.; Sinko, G.

    2009-01-01

    The phosphorylation of the serine hydroxyl group in the active site of acetylcholinesterase (AChE) inactivates this essential enzyme in neurotransmission. Its related enzyme butyrylcholinesterase (BChE) also interacts with organophosphorus compounds (OP) scavenging anti-cholinesterase agents and protects synaptic AChE from inhibition. Oximes are reactivators of AChE phosphorylated by OP including insecticides and nerve agents. The effectiveness of oxime-assisted reactivation is primarily attributed to the nucleophilic displacement rate of organophosphate, but efficiency varies with the structure of the bound organophosphate, the structure of the oxime as well as rates of several other cholinesterase's reactions. Besides reactivating cholinesterases, oximes also reversibly inhibit both cholinesterases and protect them from phosphorylation by OP. We tested oximes varying in the type of ring (pyridinium and/or imidazolium), the length and type of the linker between rings, and in the position of the oxime group on the ring to find more effective oximes to reactivate tabun-inhibited human erythrocyte AChE and plasma BChE. Herein we bring an overview of in vitro interactions of native and tabun-inhibited AChE and BChE with oximes together with conformational analysis of the oximes relating molecular properties to their reactivation potency.(author)

  14. Methods and catalysts for making biodiesel from the transesterification and esterification of unrefined oils

    Science.gov (United States)

    Yan, Shuli [Detroit, MI; Salley, Steven O [Grosse Pointe Park, MI; Ng, K Y. Simon [West Bloomfield, MI

    2012-04-24

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system according to one aspect of the present disclosure represents a class of zinc and lanthanum oxide heterogeneous catalysts that include different ratios of zinc oxide to lanthanum oxides (Zn:La ratio) ranging from about 10:0 to 0:10. The Zn:La ratio in the catalyst is believed to have an effect on the number and reactivity of Lewis acid and base sites, as well as the transesterification of glycerides, the esterification of fatty acids, and the hydrolysis of glycerides and biodiesel.

  15. Homogalacturonan methyl-esterification and plant development.

    Science.gov (United States)

    Wolf, Sebastian; Mouille, Grégory; Pelloux, Jérome

    2009-09-01

    The ability of a plant cell to expand is largely defined by the physical constraints imposed by its cell wall. Accordingly, cell wall properties have to be regulated during development. The pectic polysaccharide homogalacturonan is a major component of the plant primary walls. Biosynthesis and in muro modification of homogalacturonan have recently emerged as key determinants of plant development, controlling cell adhesion, organ development, and phyllotactic patterning. This review will focus on recent findings regarding impact of homogalacturonan content and methyl-esterification status of this polymer on plant life. De-methyl-esterification of homogalacturonan occurs through the action of the ubiquitous enzyme 'pectin methyl-esterase'. We here describe various strategies developed by the plant to finely tune the methyl-esterification status of homogalacturonan along key events of the plant lifecycle.

  16. Oxidative esterification via photocatalytic C-H activation

    Data.gov (United States)

    U.S. Environmental Protection Agency — Direct oxidative esterification of alcohol via photocatalytic C–H activation has been developed using VO@g-C3N4 catalyst; an expeditious esterification of alcohols...

  17. 21 CFR 524.1446 - Milbemycin oxime solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Milbemycin oxime solution. 524.1446 Section 524...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1446 Milbemycin oxime solution. (a) Specifications. Each tube contains 0.25 milliliter of a 0.1 percent solution...

  18. Binding of reactive organophosphate by oximes via hydrogen bond

    Indian Academy of Sciences (India)

    In this contribution, the ability of simple oximes to bind a well-known nerve agent simulant (dimethylmethylphosphonate, DMMP) via hydrogen bond is reported. UV/Vis measurements indicate the formation of 1:1 complexes. 1H-, 31P-NMR titrations and T-ROESY experiments confirm that oximes bind the organophosphate ...

  19. Less common patterns of reduction of some oximes

    Czech Academy of Sciences Publication Activity Database

    Celik, H.; Ludvík, Jiří; Zuman, P.

    2007-01-01

    Roč. 52, č. 5 (2007), s. 1990-2000 ISSN 0013-4686 R&D Projects: GA MŠk 1P05ME785 Institutional research plan: CEZ:AV0Z40400503 Keywords : polarography * benzaldehyde oximes * acetophenone oximes * isomeric monoximes Subject RIV: CG - Electrochemistry Impact factor: 2.848, year: 2007

  20. A Structure-Activity Analysis of the Variation in Oxime Efficacy Against Nerve Agents

    Science.gov (United States)

    2008-01-01

    cyclosarin. Analysis of in vivo oxime protection was conducted with oxime protective ratios (PR) from guinea pigs receiving oxime and atropine therapy ...in our study confirmed previous assessments that oxime protection varies drama - tically against different military nerve agents (Aas, 2003; Dawson... therapy ofacutepoisonings inducedbyanti-cholinesterase neuroparalytic substances. In:Monov, A., Dishovsky, C. (Eds.), Medical Aspects of Chemical and

  1. Development of new Czech autoinjector with oxime HI-6 DMS

    International Nuclear Information System (INIS)

    Kuca, K; Jun, D.; Kassa, J.; Marek, J.; Stodulka, P.; Musilek, K.; Dolezal, D.; Povraznik, J.

    2009-01-01

    Oxime HI-6 (1-(2-(hydroxyiminomethyl)pyridinium) -3-(4-carbamoylpyridinium)-2-oxapropane) is considered to be currently the most universal oxime for the potential use as antidote against nerve agents (sarin, cyclosarin, VX, etc.). None of other commercially available oximes (pralidoxime, obidoxime, trimedoxime, MMB4) has broader antidotal effect. Due to this, development of the appropriate salt of this oxime together with its application form (eg. autoinjector) was the main aim of our departments and several private Czech companies (VAKOS XT as., Decomkov Praha sro., ChemProtect as.). In our contribution, we would like to summarize all the steps which were already done. We would like to thank to the Ministry of Industry and Trade of the Czech Republic for the Project No. FIIM2/104.(author)

  2. Deprotection of oximes using urea nitrate under microwave irradiation

    Indian Academy of Sciences (India)

    Abstract. A new mild and efficient method for the cleavage of oximes to carbonyl compounds using readily available urea nitrate in acetonitrile-water (95 : 5), under microwave irradiation within 2 min, in good yields is reported.

  3. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat.

    Science.gov (United States)

    Volpi, Chiara; Janni, Michela; Lionetti, Vincenzo; Bellincampi, Daniela; Favaron, Francesco; D'Ovidio, Renato

    2011-09-01

    Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.

  4. Esterification with ethanol to produce biodiesel from high acidity raw materials. Kinetic studies and analysis of secondary reactions

    Energy Technology Data Exchange (ETDEWEB)

    Pisarello, M.L.; Dalla Costa, B.; Mendow, G.; Querini, C.A. [Instituto de Investigaciones en Catalisis y Petroquimica (INCAPE)-(FIQ-UNL, CONICET), Santiago del Estero 2654-Santa Fe, S3000AOJ (Argentina)

    2010-09-15

    In this work, the esterification reaction of free fatty acids (FFA) in sunflower oil, coconut oil and concentrated FFA, with ethanol, methanol and ethanol 96%, using homogeneous acid catalysts to produce biodiesel is studied. Kinetic parameters are estimated with a simplified model, and then used to predict the reaction behavior. Reactions other than the reversible esterification are considered to explain the behavior that this system displays. Such reactions are the triglycerides conversion by acid catalyzed transesterification and hydrolysis. In addition, we include kinetic studies of the reaction that occur between the sulphuric acid and methanol (or ethanol), forming mono and dialkylsulphates. This reaction produces water and consumes methanol (or ethanol), and consequently has a direct impact in the esterification reaction rate and equilibrium conversion. The concentration of sulphuric acid decreases to less than 50% of the initial value due to the reaction with the alcohol. A minimum in the acidity due to the free fatty acids as a function of time was clearly observed during the reaction, which has not been reported earlier. This behavior is related to the consecutive reactions that take place during the esterification of FFA in the presence of triglycerides. The phase separation due to the presence of water, which is generated during the reaction, is also studied. (author)

  5. A structure-activity analysis of the variation in oxime efficacy against nerve agents

    International Nuclear Information System (INIS)

    Maxwell, Donald M.; Koplovitz, Irwin; Worek, Franz; Sweeney, Richard E.

    2008-01-01

    A structure-activity analysis was used to evaluate the variation in oxime efficacy of 2-PAM, obidoxime, HI-6 and ICD585 against nerve agents. In vivo oxime protection and in vitro oxime reactivation were used as indicators of oxime efficacy against VX, sarin, VR and cyclosarin. Analysis of in vivo oxime protection was conducted with oxime protective ratios (PR) from guinea pigs receiving oxime and atropine therapy after sc administration of nerve agent. Analysis of in vitro reactivation was conducted with second-order rate contants (k r2 ) for oxime reactivation of agent-inhibited acetylcholinesterase (AChE) from guinea pig erythrocytes. In vivo oxime PR and in vitro k r2 decreased as the volume of the alkylmethylphosphonate moiety of nerve agents increased from VX to cyclosarin. This effect was greater with 2-PAM and obidoxime (> 14-fold decrease in PR) than with HI-6 and ICD585 ( r2 as the volume of the agent moiety conjugated to AChE increased was consistent with a steric hindrance mechanism. Linear regression of log (PR-1) against log (k r2 · [oxime dose]) produced two offset parallel regression lines that delineated a significant difference between the coupling of oxime reactivation and oxime protection for HI-6 and ICD585 compared to 2-PAM and obidoxime. HI-6 and ICD585 appeared to be 6.8-fold more effective than 2-PAM and obidoxime at coupling oxime reactivation to oxime protection, which suggested that the isonicotinamide group that is common to both of these oximes, but absent from 2-PAM and obidoxime, is important for oxime efficacy

  6. Studies on the polymerization of acrolein oxime, 6

    International Nuclear Information System (INIS)

    Masuda, Seizo; Tamai, Harumi; Ota, Tadatoshi; Torii, Munetomo; Tanaka, Masami.

    1979-01-01

    Radiation-induced polymerization and copolymerization of acrolein oxime are investigated in different solvents and at a wide range of temperature for obtaining information on the reaction mechanism. Acrolein oxime is polymerized ionically, irrespective of dryness of the sample. Arrhenius plots for the polymerization rate, which do not yield a linear relation, can be adequately approximated by two straight lines. An anionic mechanism is operative above the room temperature, while a cationic mechanism predominates below -23 0 C. The reaction in the intermediate temperature range proceeds by a competitive mechanism, and the rate of the anionic and cationic polymerizations becomes equal at the temperature near -5 0 C. The reaction rate is proportional to the square root of dose rate at room temperature and -23 0 C. On the basis of these data, it is proposed that the polymerization of acrolein oxime by γ-irradiation proceeds by free-ionic mechanisms. (author)

  7. α-Diazo oxime ethers for N-heterocycle synthesis.

    Science.gov (United States)

    Choi, Subin; Ha, Sujin; Park, Cheol-Min

    2017-06-01

    This Feature Article introduces the preparation and synthetic utility of α-diazo oxime ethers. α-Oximino carbenes are useful synthons for N-heterocycles, and can be easily prepared from α-diazo oxime ethers as precursors. We begin with the preparation of α-diazo oxime ethers and their application in [3+2] cycloaddition. It turns out that the nature of metals bound to carbenes plays a crucial role in modulating the reactivity of α-oximino carbenes, in which copper carbenes smoothly react with enamines, whereas the less reactive enol ethers and nitriles require gold carbenes. In Section 3.2, a discussion on N-O and C-H bond activation is presented. Carbenes derived from diazo oxime ethers show unique reactivity towards N-O and C-H bond activation, in which the proximity of the two functionalities, carbene and oxime ether, dictates the preferred reaction pathways toward pyridines, pyrroles, and 2H-azirines. In Section 3.3, the development of tandem reactions based on α-diazo oxime ethers is discussed. The nature of carbenes in which whether free carbenes or metal complexes are involved dissects the pathway and forms different types of 2H-azirines. The 2H-azirine formation turned out to be an excellent platform for the tandem synthesis of N-heterocycles including pyrroles and pyridines. In the last section, we describe the electrophilic activation of 2H-azirines with vinyl carbenes and oximino carbenes. The resulting azirinium species undergo rapid ring expansion rearrangements to form pyridines and pyrazines.

  8. Adsorption equilibrium of uranium from seawater on chelating resin containing amide oxime group

    International Nuclear Information System (INIS)

    Hori, Takahiro; Saito, Kyoichi; Furusaki, Shintaro; Sugo, Takanobu; Okamoto, Jiro.

    1987-01-01

    Chelating resins containing amide oxime group were synthesized by radiation-induced graft polymerization. The amount of the amide oxime groups was controlled below about 0.1 mol per kg of base polymer. The adsorption equilibrium of uranium from seawater on this resin was investigated. It was suggested that two neighboring amide oxime groups on the grafted chain captured one uranyl ion, and that single amide oxime ligand had little capacity for the adsorption of uranium. The adsorption equilibrium was correlated by a Langmuir-type equation. The content of neighboring amide oxime groups was 0.406 x 10 -3 mol per kg of base polymer, which corresponded to 0.39 % of the total amount of amide oxime groups. The apparent stoichiometric stability constant for the complex of uranyl ion with the neighboring amide oxime groups in seawater was calculated to be 10 -21.7 . (author)

  9. Diprotonated hydrazones and oximes as reactive intermediates in electrochemical reductions

    Czech Academy of Sciences Publication Activity Database

    Baymak, M. S.; Celik, H.; Ludvík, Jiří; Lund, H.; Zuman, P.

    2004-01-01

    Roč. 45, č. 26 (2004), s. 5113-5115 ISSN 0040-4039 R&D Projects: GA ČR GA203/01/1093; GA AV ČR IAA4040304 Institutional research plan: CEZ:AV0Z4040901 Keywords : hydrazones * oximes * diprotonation Subject RIV: CG - Electrochemistry Impact factor: 2.484, year: 2004

  10. Synthesis and antimicrobial activities of new oxime carbamates of 3 ...

    Indian Academy of Sciences (India)

    Abstract. S-alkylation of 3-aryl-2-thioquinazolin-4(3H)-one (1) with chloroacetone gave 2-(propanonyl thio)-3-arylquinazol-4(3H)ones (2). Further, the treatment of compound (2) with hydroxylamine hydrochloride gave the corresponding oximes (3) which on reaction with phenyl isocyanate in THF yielded corresponding.

  11. Binding of Reactive Organophosphate by Oximes via Hydrogen Bond

    Indian Academy of Sciences (India)

    Giuseppe Trusso

    Stoichiometries of the complexes were investigated by the Job plot method using spectrophotometric measurements. The samples were prepared by mixing equimolecular stock solutions (3.7 x 10. -3. M) in dry CH3CN of the appropriate oxime and DMMP to cover the whole range of molar fractions keeping constant the total ...

  12. Efficient and simple approaches towards direct oxidative esterification of alcohols.

    Science.gov (United States)

    Ray, Ritwika; Jana, Rahul Dev; Bhadra, Mayukh; Maiti, Debabrata; Lahiri, Goutam Kumar

    2014-11-17

    The present article describes novel oxidative protocols for direct esterification of alcohols. The protocols involve successful demonstrations of both "cross" and "self" esterification of a wide variety of alcohols. The cross-esterification proceeds under a simple transition-metal-free condition, containing catalytic amounts of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)/TBAB (tetra-n-butylammonium bromide) in combination with oxone (potassium peroxo monosulfate) as the oxidant, whereas the self-esterification is achieved through simple induction of Fe(OAc)2 /dipic (dipic=2,6-pyridinedicarboxylic acid) as the active catalyst under an identical oxidizing environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Progress on Zeolite-membrane-aided Organic Acid Esterification

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.

    2017-07-01

    Esterification is a common route to produce carboxylic acid esters as important intermediates in chemical and pharmaceutical industries. However, the reaction is equilibrium limited and needs to be driven forward by selective removal one of the products. There have been some efforts to selectively remove water from reaction mixture via several separation processes (such as pervaporation and reactive distillation). Integrated pervaporation and esterification has gained increasing attention towards. Inorganic zeolite is the most popular material for pervaporation due to its high chemical resistant and separation performance towards water. Zeolite also has proven to be an effective material in removing water from organic compound. Zeolite can act not only as selective layer but also simultaneously act as a catalyst on promoting the reaction. Hence, there are many configurations in integrating zeolite membrane for esterification reaction. As a selective layer to remove water from reaction mixture, high Si/Al zeolite is preferred to enhance its hydrophilicity. However, low Si/Al zeolite is unstable in acid condition due to dealumination thus eliminate its advantages. As a catalyst, acid zeolites (e.g. H-ZSM-5) provide protons for autoprotolysis of the carboxylic acid similar to other catalyst for esterification (e.g. inorganic acid, and ion exchange resins). There are many studies related to zeolite membrane aided esterification. This paper will give brief information related to zeolite membrane role in esterification and also research trend towards it.

  14. A comparison of the neuroprotective efficacy of individual oxime (HI-6) and combinations of oximes (HI-6+trimedoxime, HI-6+K203) in soman-poisoned rats.

    Science.gov (United States)

    Kassa, Jiri; Karasova, Jana Zdarova; Tesarova, Sandra

    2011-07-01

    The ability of two combinations of oximes (HI-6+trimedoxime, HI-6+K203) to reduce soman-induced acute neurotoxic signs and symptoms was compared with the neuroprotective efficacy of the oxime HI-6 alone, using a functional observational battery. Soman-induced neurotoxicity and the neuroprotective effects of HI-6 alone and HI-6 combined with trimedoxime or K203 in rats poisoned with soman at a sublethal dose (90 μg/kg intramuscularly, i.m.; 80% of LD₅₀ value) were monitored by the functional observational battery at 24 hours following soman administration. The results indicate that both tested oxime mixtures combined with atropine were able to allow soman-poisoned rats to survive 24 hours following soman challenge, while 4 nontreated soman-poisoned rats and 1 soman-poisoned rat treated with oxime HI-6 alone combined with atropine died within 24 hours following soman poisoning. While the oxime HI-6 alone combined with atropine treatment was able to eliminate a few soman-induced neurotoxic signs and symptoms, both oxime mixtures showed higher neuroprotective efficacy in soman-poisoned rats. Especially, the combination of HI-6 with trimedoxime was able to eliminate most soman-induced neurotoxic signs and symptoms and markedly reduce acute neurotoxicity of soman in rats. Thus, both tested mixtures of oximes combined with atropine were able to increase the neuroprotective effectiveness of antidotal treatment of acute soman poisonings, compared to the individual oxime.

  15. Reaction of the oximes of aliphatic aldehydes and ketones with alkoxyethenes

    International Nuclear Information System (INIS)

    Voronkov, M.G.; Keiko, N.A.; Shuvashev, Yu.A.; Kalikhman, I.D.; Keiko, V.V.

    1987-01-01

    In the reaction of acetone oxime with alkyl vinyl ethers in the presence of zinc chloride variable amounts of acetone 0,0'-(2-propylidene)dioxime, acetaldehyde dialkyl acetal, acetaldehyde 0-(1-alkoxyethyl)oxide, and acetone 0-(1-alkoxy-1-methylethyl)oxime, depending on the reaction conditions, are formed in addition to acetone 0-(1-alkoxyethyl)oxime (the initial addition product). In the reaction of acetaldehyde oxime with alkyl vinyl ethers in the presence of zinc chloride acetaldehyde oxime with alkyl vinyl ethers in the presence of zinc chloride acetaldehyde dialkyl acetal was isolated in addition to acetaldehyde 0-(1-alkoxyethyl)oxime. A mechanism for the formation of the obtained compounds is proposed

  16. Chromatographic analysis of toxic phosphylated oximes (POX): a brief overview.

    Science.gov (United States)

    Becker, Christian; Worek, Franz; John, Harald

    2010-10-01

    Poisoning with organophosphorus compounds (OP), e.g. pesticides and nerve agents, causes inhibition of acetylcholinesterase (AChE) by phosphylation of the active site serine residue. Consequently, accumulation of stimulating acetylcholine in the synaptic cleft induces cholinergic crisis which ultimately may lead to death. For standard causal therapy, enzyme reactivators are administered representing oxime derivatives of quarternary pyridinium compounds, e.g. pralidoxime (2-PAM), obidoxime and HI 6. The mechanism of action includes removal of the phosphyl moiety by a nucleophilic attack of the oximate molecule substituting the enzyme and forming a phosphylated oxime (POX). POX is produced in stoichiometric amounts of reactivated enzyme and exhibits a significantly enhanced toxicity (inhibition rate constant) when compared to the parent OP. However, stability of POX under physiological conditions appears to be highly limited. Nevertheless, the presence of POX reveals a potential critical issue for both therapeutic efficacy in vivo and pharmacokinetic and pharmacodynamic (PK-PD) modelling based on cholinesterase activity data. Detailed characterization represents an important need for elaboration of the entire oxime pharmacology.Nevertheless, reports on POX toxicity and analysis are quite rare and may therefore be indicative of the challenge of POX analysis. This review provides a concise overview of chromatographic approaches applied to POX separation. Chromatography represents the key technology for POX purification and quantification in kinetic in vitro studies using buffers and biological fluids. Applications based on reversed-phase chromatography (RPC), ion pair chromatography (IPC) and an affinity approach as well as thin layer chromatography (TLC) are discussed and novel applications and data are presented. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Synthesis, spectra and X-ray crystallography of dipyridin-2-ylmethanone oxime and its CuX2(oxime)2 complexes: Thermal, Hirshfeld surface and DFT analysis

    Science.gov (United States)

    Warad, Ismail; Abdoh, Muneer; Al Ali, Anas; Shivalingegowda, Naveen; Kumara, Karthik; Zarrouk, Abdelkader; Lokanath, Neartur Krishnappagowda

    2018-02-01

    Dipyridin-2-ylmethanone oxime (C11H9N3O), was prepared using di-2-pyridyl ketone. The oxime ligand and its neutral CuX2 (oxime)2 (X = Cl or Br) complexes have been identified with the aid of several spectroscopic techniques such as: IR, EI-MS, EA, UV-visible, TG, 1H-NMR and finally the structure of the free oxime ligand was confirmed by X-ray diffraction studies. The oxime crystallizes in the monoclinic space group P21/c, with cell parameters a = 8.8811 (8) Å, b = 10.6362 (8) Å, c = 11.2050 (8) Å, β = 109.085 (4) º, V = 1000.26 (14) Å3 and Z = 4. The molecular conformation is stabilized by a strong intramolecular Osbnd H⋯N hydrogen bonding between the hydroxyl group of the oxime moiety and the nitrogen of the pyridine ring. Since the oxime structure was solved by XRD, the ligand structure parameters like bond length and angles were compared to the DFT computed one, the UV-visible to TD-SCF and Hirshfeld surface to MEP analysis.

  18. Evaluation of oxime efficacy in nerve agent poisoning: Development of a kinetic-based dynamic model

    International Nuclear Information System (INIS)

    Worek, Franz; Szinicz, Ladislaus; Eyer, Peter; Thiermann, Horst

    2005-01-01

    The widespread use of organophosphorus compounds (OP) as pesticides and the repeated misuse of highly toxic OP as chemical warfare agents (nerve agents) emphasize the necessity for the development of effective medical countermeasures. Standard treatment with atropine and the established acetylcholinesterase (AChE) reactivators, obidoxime and pralidoxime, is considered to be ineffective with certain nerve agents due to low oxime effectiveness. From obvious ethical reasons only animal experiments can be used to evaluate new oximes as nerve agent antidotes. However, the extrapolation of data from animal to humans is hampered by marked species differences. Since reactivation of OP-inhibited AChE is considered to be the main mechanism of action of oximes, human erythrocyte AChE can be exploited to test the efficacy of new oximes. By combining enzyme kinetics (inhibition, reactivation, aging) with OP toxicokinetics and oxime pharmacokinetics a dynamic in vitro model was developed which allows the calculation of AChE activities at different scenarios. This model was validated with data from pesticide-poisoned patients and simulations were performed for intravenous and percutaneous nerve agent exposure and intramuscular oxime treatment using published data. The model presented may serve as a tool for defining effective oxime concentrations and for optimizing oxime treatment. In addition, this model can be useful for the development of meaningful therapeutic animal models

  19. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists

    DEFF Research Database (Denmark)

    Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita

    2016-01-01

    of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment...

  20. 76 FR 12563 - Oral Dosage Form New Animal Drugs; Spinosad and Milbemycin Oxime

    Science.gov (United States)

    2011-03-08

    ... spinosad and milbemycin oxime in dogs for the treatment and prevention of flea infestations and for the... and milbemycin oxime) Chewable Tablets in dogs for the treatment and prevention of flea infestations... Friday. Under section 512(c)(2)(F)(ii) of the Federal Food, Drug, and Cosmetic Act (21 U.S.C. 360b(c)(2...

  1. A comprehensive evaluation of novel oximes in creation of butyrylcholinesterase-based nerve agent bioscavengers

    International Nuclear Information System (INIS)

    Katalinić, Maja; Maček Hrvat, Nikolina; Baumann, Krešimir; Morasi Piperčić, Sara; Makarić, Sandro; Tomić, Srđanka; Jović, Ozren; Hrenar, Tomica; Miličević, Ante; Jelić, Dubravko; Žunec, Suzana; Primožič, Ines; Kovarik, Zrinka

    2016-01-01

    A well-considered treatment of acute nerve agents poisoning involves the exogenous administration of butyrylcholinesterase (BChE, EC 3.1.1.8) as a stoichiometric bioscavenger efficient in preventing cholinergic crises caused by acetylcholinesterase (AChE, EC 3.1.1.7) inhibition. An additional improvement in medical countermeasures would be to use oximes that could reactivate BChE as well to upgrade bioscavenging from stoichiometric to oxime-assisted catalytic. Therefore, in this paper we investigated the potency of 39 imidazolium and benzimidazolium oximes (36 compounds synthesized for the first time) to be considered as the reactivators specifically designed for reactivation of phosphylated human BChE. Their efficiency in the reactivation of paraoxon-, VX-, and tabun-inhibited human BChE, as well as human AChE was tested and compared with the efficiencies of HI-6 and obidoxime, used in medical practice today. A comprehensive analysis was performed for the most promising oximes defining kinetic parameters of reactivation as well as interactions with uninhibited BChE. Furthermore, experimental data were compared with computational studies (docking, QSAR analysis) as a starting point in future oxime structure refinement. Considering the strict criteria set for in vivo applications, we determined the cytotoxicity of lead oximes on two cell lines. Among the tested oxime library, one imidazolium compound was selected for preliminary in vivo antidotal study in mice. The obtained protection in VX poisoning outlines its potential in development oxime-assisted OP-bioscavenging with BChE. - Highlights: • 36 new imidazolium and benzimidazolium oximes were designed and synthesized. • In vitro reactivation kinetics of phosphylated butyrylcholinesterase was studded. • The modes of actions were elucidated by QSAR and docking simulations. • Protection in VX poisoning was 6.3 × LD 50 in in vivo antidotal study in mice. • Imidazolium oxime-assisted catalysis is feasible

  2. A comprehensive evaluation of novel oximes in creation of butyrylcholinesterase-based nerve agent bioscavengers

    Energy Technology Data Exchange (ETDEWEB)

    Katalinić, Maja; Maček Hrvat, Nikolina [Institute for Medical Research and Occupational Health, POB 291, HR-10001 Zagreb (Croatia); Baumann, Krešimir; Morasi Piperčić, Sara; Makarić, Sandro; Tomić, Srđanka; Jović, Ozren; Hrenar, Tomica [Department of Chemistry, Faculty of Science, University of Zagreb, HR-10001 Zagreb (Croatia); Miličević, Ante [Institute for Medical Research and Occupational Health, POB 291, HR-10001 Zagreb (Croatia); Jelić, Dubravko [Fidelta Ltd., HR-10001 Zagreb (Croatia); Žunec, Suzana [Institute for Medical Research and Occupational Health, POB 291, HR-10001 Zagreb (Croatia); Primožič, Ines, E-mail: ines.primozic@chem.pmf.hr [Department of Chemistry, Faculty of Science, University of Zagreb, HR-10001 Zagreb (Croatia); Kovarik, Zrinka, E-mail: zkovarik@imi.hr [Institute for Medical Research and Occupational Health, POB 291, HR-10001 Zagreb (Croatia)

    2016-11-01

    A well-considered treatment of acute nerve agents poisoning involves the exogenous administration of butyrylcholinesterase (BChE, EC 3.1.1.8) as a stoichiometric bioscavenger efficient in preventing cholinergic crises caused by acetylcholinesterase (AChE, EC 3.1.1.7) inhibition. An additional improvement in medical countermeasures would be to use oximes that could reactivate BChE as well to upgrade bioscavenging from stoichiometric to oxime-assisted catalytic. Therefore, in this paper we investigated the potency of 39 imidazolium and benzimidazolium oximes (36 compounds synthesized for the first time) to be considered as the reactivators specifically designed for reactivation of phosphylated human BChE. Their efficiency in the reactivation of paraoxon-, VX-, and tabun-inhibited human BChE, as well as human AChE was tested and compared with the efficiencies of HI-6 and obidoxime, used in medical practice today. A comprehensive analysis was performed for the most promising oximes defining kinetic parameters of reactivation as well as interactions with uninhibited BChE. Furthermore, experimental data were compared with computational studies (docking, QSAR analysis) as a starting point in future oxime structure refinement. Considering the strict criteria set for in vivo applications, we determined the cytotoxicity of lead oximes on two cell lines. Among the tested oxime library, one imidazolium compound was selected for preliminary in vivo antidotal study in mice. The obtained protection in VX poisoning outlines its potential in development oxime-assisted OP-bioscavenging with BChE. - Highlights: • 36 new imidazolium and benzimidazolium oximes were designed and synthesized. • In vitro reactivation kinetics of phosphylated butyrylcholinesterase was studded. • The modes of actions were elucidated by QSAR and docking simulations. • Protection in VX poisoning was 6.3 × LD{sub 50} in in vivo antidotal study in mice. • Imidazolium oxime-assisted catalysis is

  3. Progressing batch hydrolysis process

    Science.gov (United States)

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  4. The Design, Synthesis and Screening of Potential Pyridinium Oxime Prodrugs

    Science.gov (United States)

    1984-02-01

    Our intent is to take advantage of this trapping mechanism using nucleophiles (X) such as SCN, SO3H, I, Br and OCN, which we hope will be as labile...pH 3.5-10.5. The advantage of the system stemmed from the fact that each pyridinium oxime regenerator has a discrete -max which is pH dependent. 2-PAM...with matching 3 cm guard columns. Normal phase analysis was performed "on an Alltech 0.5 x 25 cm silica gel 10 p column with 3 cm guard column and

  5. Studies on the polymerization of acrolein oxime, 13

    International Nuclear Information System (INIS)

    Ota, Tadatoshi; Mori, Yoshikazu; Tamai, Harumi; Masuda, Seizo; Tanaka, Masami.

    1980-01-01

    The radiation-induced polymerization of acrolein oxime was carried out at temperatures ranging from room temperature to -78 0 C, and the resulting low molecular products were analyzed by gas chromatography-mass spectrometry. Acetaldoxime, propionaldoxime, propenylhydroxylamines, dioximes etc. were obtained. Initial processes of the polymerization are discussed on the basis of these reaction products. The present work offers further corroborating evidence for the already-described postulation that an anionic mechanism is operative above room temperature, and a cationic mechanism is predominant below -23 0 C. (author)

  6. Design and Biological Evaluation of Antifouling Dihydrostilbene Oxime Hybrids.

    Science.gov (United States)

    Moodie, Lindon W K; Cervin, Gunnar; Trepos, Rozenn; Labriere, Christophe; Hellio, Claire; Pavia, Henrik; Svenson, Johan

    2018-04-01

    By combining the recently reported repelling natural dihydrostilbene scaffold with an oxime moiety found in many marine antifoulants, a library of nine antifouling hybrid compounds was developed and biologically evaluated. The prepared compounds were shown to display a low antifouling effect against marine bacteria but a high potency against the attachment and growth of microalgae down to MIC values of 0.01 μg/mL for the most potent hybrid. The mode of action can be characterized as repelling via a reversible non-toxic biostatic mechanism. Barnacle cyprid larval settlement was also inhibited at low μg/mL concentrations with low levels or no toxicity observed. Several of the prepared compounds performed better than many reported antifouling marine natural products. While several of the prepared compounds are highly active as antifoulants, no apparent synergy is observed by incorporating the oxime functionality into the dihydrostilbene scaffold. This observation is discussed in light of recently reported literature data on related marine natural antifoulants and antifouling hybrids as a potentially general strategy for generation of improved antifoulants.

  7. Functionalised Oximes: Emergent Precursors for Carbon-, Nitrogen- and Oxygen-Centred Radicals

    Directory of Open Access Journals (Sweden)

    John C. Walton

    2016-01-01

    Full Text Available Oxime derivatives are easily made, are non-hazardous and have long shelf lives. They contain weak N–O bonds that undergo homolytic scission, on appropriate thermal or photochemical stimulus, to initially release a pair of N- and O-centred radicals. This article reviews the use of these precursors for studying the structures, reactions and kinetics of the released radicals. Two classes have been exploited for radical generation; one comprises carbonyl oximes, principally oxime esters and amides, and the second comprises oxime ethers. Both classes release an iminyl radical together with an equal amount of a second oxygen-centred radical. The O-centred radicals derived from carbonyl oximes decarboxylate giving access to a variety of carbon-centred and nitrogen-centred species. Methods developed for homolytically dissociating the oxime derivatives include UV irradiation, conventional thermal and microwave heating. Photoredox catalytic methods succeed well with specially functionalised oximes and this aspect is also reviewed. Attention is also drawn to the key contributions made by EPR spectroscopy, aided by DFT computations, in elucidating the structures and dynamics of the transient intermediates.

  8. New Cinchona Oximes Evaluated as Reactivators of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Organophosphorus Compounds

    Directory of Open Access Journals (Sweden)

    Maja Katalinić

    2017-07-01

    Full Text Available For the last six decades, researchers have been focused on finding efficient reactivators of organophosphorus compound (OP-inhibited acetylcholinesterase (AChE and butyrylcholinesterase (BChE. In this study, we have focused our research on a new oxime scaffold based on the Cinchona structure since it was proven to fit the cholinesterases active site and reversibly inhibit their activity. Three Cinchona oximes (C1, C2, and C3, derivatives of the 9-oxocinchonidine, were synthesized and investigated in reactivation of various OP-inhibited AChE and BChE. As the results showed, the tested oximes were more efficient in the reactivation of BChE and they reactivated enzyme activity to up to 70% with reactivation rates similar to known pyridinium oximes used as antidotes in medical practice today. Furthermore, the oximes showed selectivity towards binding to the BChE active site and the determined enzyme-oxime dissociation constants supported work on the future development of inhibitors in other targeted studies (e.g., in treatment of neurodegenerative disease. Also, we monitored the cytotoxic effect of Cinchona oximes on two cell lines Hep G2 and SH-SY5Y to determine the possible limits for in vivo application. The cytotoxicity results support future studies of these compounds as long as their biological activity is targeted in the lower micromolar range.

  9. Recent advances in evaluation of oxime efficacy in nerve agent poisoning by in vitro analysis

    International Nuclear Information System (INIS)

    Worek, F.; Eyer, P.; Aurbek, N.; Szinicz, L.; Thiermann, H.

    2007-01-01

    The availability of highly toxic organophosphorus (OP) warfare agents (nerve agents) underlines the necessity for an effective medical treatment. Acute OP toxicity is primarily caused by inhibition of acetylcholinesterase (AChE). Reactivators (oximes) of inhibited AChE are a mainstay of treatment, however, the commercially available compounds, obidoxime and pralidoxime, are considered to be rather ineffective against various nerve agents, e.g. soman and cyclosarin. This led to the synthesis and investigation of numerous oximes in the past decades. Reactivation of OP-inhibited AChE is considered to be the most important reaction of oximes. Clinical data from studies with pesticide-poisoned patients support the assumption that the various reactions between AChE, OP and oxime, i.e. inhibition, reactivation and aging, can be investigated in vitro with human AChE. In contrast to animal experiments such in vitro studies with human tissue enable the evaluation of oxime efficacy without being affected by species differences. In the past few years numerous in vitro studies were performed by different groups with a large number of oximes and methods were developed for extrapolating in vitro data to different scenarios of human nerve agent poisoning. The present status in the evaluation of new oximes as antidotes against nerve agent poisoning will be discussed

  10. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis.

    Science.gov (United States)

    Korber, Martina; Klein, Isabella; Daum, Günther

    2017-12-01

    Sterols are essential lipids of all eukaryotic cells, appearing either as free sterols or steryl esters. Besides other regulatory mechanisms, esterification of sterols and hydrolysis of steryl esters serve to buffer both an excess and a lack of free sterols. In this review, the esterification process, the storage of steryl esters and their mobilization will be described. Several model organisms are discussed but the focus was set on mammals and the yeast Saccharomyces cerevisiae. The contribution of imbalanced cholesterol homeostasis to several human diseases, namely Wolman disease, cholesteryl ester storage disease, atherosclerosis and Alzheimer's disease, Niemann-Pick type C and Tangier disease is described. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Lipase applications in oil hydrolysis with a case study on castor oil: a review.

    Science.gov (United States)

    Goswami, Debajyoti; Basu, Jayanta Kumar; De, Sirshendu

    2013-03-01

    Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.

  12. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  13. Hydrolysis of uranium monocarbide

    International Nuclear Information System (INIS)

    Hajek, B.; Karen, P.; Brozek, V.

    1984-01-01

    The substoichiometric uranium monocarbide UCsub(0.95) was hydrolyzed in acid medium at 80 degC. The composition of the products of hydrolysis corresponds to published data but it correlates better with the stoichiometric composition of the hydrolyzable carbide. The mechanisms of the hydrolytic reaction are discussed and a modified radical mechanism is suggested based on the concept of initiation of the radical process by Hsup(.) radicals formed owing to the nonstoichiometry of the substance. A relation is proposed for calculating the content of free hydrogen in the hydrolysis products of carbides of metallic nature for which a radical mechanism of their reaction with water can be assumed. Some effects occurring during the hydrolysis of uranium carbide, as described in literature, are explained in terms of the concept suggested. The results obtained by the authors for carbides of manganese (Mn 7 C 3 ) and for rare earth elements are discussed. (author)

  14. Pervaporation applied for dewatering of reaction mixture during esterification

    OpenAIRE

    Krasiński Andrzej; Wierzba Patrycja; Grudzień Agata; Hajmowicz Halina; Zawada Krzysztof; Synoradzki Ludwik

    2016-01-01

    In this work the esterification of diethyl tartrate was studied. The research was focused on the enhancement of reversible reaction yield, which is accomplished by dewatering of the reaction mixture. The removal of water shifts the equilibrium towards the main product. Pervaporation was applied for this purpose, and results were compared to distillation. The advantages and limitations of both processes are discussed. The experimental part consists of dewatering of mixture after the reaction h...

  15. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification.

    Science.gov (United States)

    Lee, Adam F; Bennett, James A; Manayil, Jinesh C; Wilson, Karen

    2014-11-21

    Concern over the economics of accessing fossil fuel reserves, and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting such carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Here we discuss catalytic esterification and transesterification solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands.

  16. Esterification of xanthophylls by human intestinal Caco-2 cells.

    Science.gov (United States)

    Sugawara, Tatsuya; Yamashita, Kyoko; Asai, Akira; Nagao, Akihiko; Shiraishi, Tomotaka; Imai, Ichiro; Hirata, Takashi

    2009-03-15

    We recently found that peridinin, which is uniquely present in dinoflagellates, reduced cell viability by inducing apoptosis in human colon cancer cells. Peridinin is also found in edible clams and oysters because the major food sources of those shellfish are phytoplanktons such as dinoflagellates. Little is known, however, about the fate of dietary peridinin and its biological activities in mammals. The aim of the present study was to investigate the enzymatic esterification of xanthophylls, especially peridinin which is uniquely present in dinoflagellates, using differentiated cultures of Caco-2 human intestinal cells. We found that peridinin is converted to peridininol and its fatty acid esters in differentiated Caco-2 cells treated with 5mumol/L peridinin solubilized with mixed micelles. The cell homogenate was also able to deacetylate peridinin and to esterify peridininol. Other xanthophylls, such as fucoxanthin, astaxanthin and zeaxanthin, were also esterified, but at relatively lower rates than peridinin. In this study, we found the enzymatic esterification of xanthophylls in mammalian intestinal cells for the first time. Our results suggest that the esterification of xanthophylls in intestinal cells is dependent on their polarity.

  17. Quantum Chemical and Physicochemical Studies of Oximes (Prophylactics against and Reactivators of Phosphorylated AChE).

    Science.gov (United States)

    1984-10-25

    crystal structure of nicotinic acid ,. and we used the ether bridge from the crystal structure of dimethyl ether. We are investigating various rotamers...observations were made: - The titration curve (after the subtraction of the blank curve) shows only one titrable group, i.e. the oxime moiety. - The...subtraction of the blank curve, shows two titrable groups, i.e. the two oxime moieties. The results are as follows: Temperature Conditions PKa pK2

  18. Efficacy of the Tertiary Oxime Monoisonitrosoacetone (MINA) Against Lethal Sarin Intoxication in the Guinea Pig

    Science.gov (United States)

    2007-10-01

    Sarin 5a. CONTRACT NUMBER Intoxication in the Guinea Pig 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Koplovitz, I and...efficacy of MINA as a treatment for lethal sarin (GB) intoxication in guinea pigs . Male animals were challenged subcutaneously (s.c.) with 2 LD50s...oximes that are readily able to enter the brain. 15. SUBJECT TERMS oximes, brain, sarin, reactivation, nerve agents, guinea pigs 16. SECURITY

  19. A comparison of the reactivating and therapeutic efficacy of two novel bispyridinium oximes (K727, K733) with the oxime HI-6 and obidoxime in sarin-poisoned rats and mice.

    Science.gov (United States)

    Kassa, Jiri; Sepsova, Vendula; Matouskova, Lenka; Horova, Anna; Musilek, Kamil

    2015-03-01

    The ability of two novel bispyridinium oximes K727 and K733 and currently available oximes (HI-6, obidoxime) to reactivate sarin-inhibited acetylcholinesterase and to reduce acute toxicity of sarin was evaluated. To investigate the reactivating efficacy of the oximes, the rats were administered intramuscularly with atropine and oximes in equitoxic doses corresponding to 5% of their LD50 values at 1 min after the intramuscular administration of sarin at a dose of 24 µg/kg (LD50). The activity of acetylcholinesterase was measured at 60 min after sarin poisoning. The LD50 value of sarin in non-treated and treated mice was assessed using probit-logarithmical analysis of death occurring within 24 h after intramuscular administration of sarin at five different doses. In vivo determined percentage of reactivation of sarin-inhibited rat blood, diaphragm and brain acetylcholinesterase showed that the potency of both novel oximes K727 and K733 to reactivate sarin-inhibited acetylcholinesterase roughly corresponds to the reactivating efficacy of obidoxime. On the other hand, the oxime HI-6 was found to be the most efficient reactivator of sarin-inhibited acetylcholinesterase. While the oxime HI-6 was able to reduce the acute toxicity of sarin >3 times, both novel oximes and obidoxime decreased the acute toxicity of sarin HI-6 and, therefore, they are not suitable for the replacement of the oxime HI-6 for the antidotal treatment of acute sarin poisoning.

  20. Reactive Distillation for Esterification of Bio-based Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  1. ONIOM Studies of Esterification at Oxidized Carbon Nanotube Tips

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Torres, F F; Basiuk, V A [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior C.U., A. Postal 70-543, 04510 Mexico D. F. (Mexico)

    2007-03-15

    Esterification of oxidized carbon nanotubes (CNTs) can open a new route for the separation of zigzag and armchair nanotubes. We studied theoretically (by using hybrid DFT within the ONIOM embedding protocol) the reactions of monocarboxy-substituted oxidized tips of zigzag and armchair single-walled CNTs (SWCNTs) with methanol. According to the calculated values of activation energy, Gibbs free-activation barriers, and enthalpies of formation for the SWCNT-(COOH)H5 models, the zigzag nanotube isomer is more reactive as compared to its armchair counterpart. For other models we obtained variable results.

  2. Comparison of oxime reactivation and aging of nerve agent-inhibited monkey and human acetylcholinesterases.

    Science.gov (United States)

    Luo, Chunyuan; Tong, Min; Maxwell, Donald M; Saxena, Ashima

    2008-09-25

    Non-human primates are valuable animal models that are used for the evaluation of nerve agent toxicity as well as antidotes and results from animal experiments are extrapolated to humans. It has been demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited acetylcholinesterase (AChE). If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the aging and reactivation of human and different monkey (Rhesus, Cynomolgus, and African Green) AChEs inhibited by GF, GD, and VR. The oximes examined include the traditional oxime 2-PAM, two H-oximes HI-6 and HLo-7, and the new candidate oxime MMB4. Results indicate that oxime reactivation of all three monkey AChEs was very similar to human AChE. The maximum difference in the second-order reactivation rate constant between human and three monkey AChEs or between AChEs from different monkey species was 5-fold. Aging rate constants of GF-, GD-, and VR-inhibited monkey AChEs were very similar to human AChE except for GF-inhibited monkey AChEs, which aged 2-3 times faster than the human enzyme. The results of this study suggest that all three monkey species are suitable animal models for nerve agent antidote evaluation since monkey AChEs possess similar biochemical/pharmacological properties to human AChE.

  3. Efficacy of Catalysts in the Batch Esterification of the Fatty Acids of ...

    African Journals Online (AJOL)

    The methyl, ethyl, propyl and butyl esters of the fatty acids of Thevetia peruviana seed oil were successfully prepared by the batch-esterification procedures. Various acid catalyst and various molar ratios of fatty acid to alcohol were investigated. H3PO4 was found to be ineffective to catalyze the esterification of the free fatty ...

  4. Fast and low-temperature sintering of silver complex using oximes as a potential reducing agent for solution-processible, highly conductive electrodes

    International Nuclear Information System (INIS)

    Yoo, Ji Hoon; Park, Su Bin; Kim, Ji Man; Han, Dae Sang; Chae, Jangwoo; Kwak, Jeonghun

    2014-01-01

    Highly conductive, solution-processed silver thin-films were obtained at a low sintering temperature of 100 °C in a short sintering time of 10 min by introducing oximes as a potential reductant for silver complex. The thermal properties and reducibility of three kinds of oximes, acetone oxime, 2-butanone oxime, and one dimethylglyoxime, were investigated as a reducing agent, and we found that the thermal decomposition product of oximes (ketones) accelerated the conversion of silver complex into highly conductive silver at low sintering temperature in a short time. Using the acetone oxime, the silver thin-film exhibited the lowest surface resistance (0.91 Ω sq −1 ) compared to those sing other oximes. The silver thin-film also showed a high reflectance of 97.8%, which is comparable to evaporated silver films. We also demonstrated inkjet printed silver patterns with the oxime-added silver complex inks. (paper)

  5. Relationship between plasma cholesterol levels and cholesterol esterification in isolated human mononuclear cells

    International Nuclear Information System (INIS)

    Dallongeville, J.; Davignon, J.; Lussier-Cacan, S.

    1990-01-01

    The authors studied the relationship between plasma lipoprotein concentrations and cholesterol esterification in freshly isolated human mononuclear cells from 27 normolipidemic and 32 hyperlipidemic individuals. Cells were either incubated for 5 hours with radiolabeled oleate immediately after isolation or were preincubated for 18 hours in the presence of exogenous cholesterol, and then incubated with [ 14 C]sodium-oleate-albumin complex. In the absence of exogenous cholesterol, control and hypercholesterolemic subjects had similarly low values of intracellular cholesterol esterification. In the presence of exogenous cholesterol, both hypertriglyceridemic and hypercholesterolemic subjects had higher cholesterol esterification than controls. There was a significant correlation between the rate of cholesterol esterification and plasma total cholesterol. These results suggest that plasma cholesterol levels may regulate mononuclear cell intra-cellular cholesterol esterification in humans

  6. Catalytic Reactive Distillation for the Esterification Process: Experimental and Simulation

    Directory of Open Access Journals (Sweden)

    M. Mallaiah

    2017-10-01

    Full Text Available In the present study, methyl acetate has been synthesized using esterification of acetic acid with methanol in a continuous packed bed catalytic reactive distillation col- umn in the presence of novel Indion 180 ion exchange resin solid catalyst. The experiments were conducted at various operating conditions like reboiler temperature, reflux ratio, and different feed flow rates of the acetic acid and methanol. The non-ideal pseudo-homogeneous kinetic model has been developed for esterification of acetic acid with methanol in the presence of Indion 180 catalyst. The developed kinetic model was used for the simulation of the reactive distillation column for the synthesis of methyl acetate using equilibrium stage model in Aspen Plus version 7.3. The simulation results were compared with experimental results, and found that there is a good agreement between them. The sensitivity analyses were also carried out for the different parameters of bot- tom flow rate, feed temperatures of acetic acid and methanol, and feed flow rate of acetic acid and methanol.

  7. Catalyst performance in magnetic esterification methyl soy oil

    International Nuclear Information System (INIS)

    Araujo, N.O.; Pereira, K R. de O.; Barros, A.B. de S.; Moura, T.F.B. de; Vilar, E.; Dantas, J.; Costa, A.C.F. de M.

    2016-01-01

    Growing concerns about the environment have encouraged the search for new fuels, including biodiesel, obtained from lipid sources that react with alcohol and catalyst. This aimed of this study to synthesize type catalyst (Ni-Zn)Fe_2O_4 and evaluate it in soy oil esterification. The catalyst was synthesized by combustion reaction and characterized by XRD, FTIR and BET. The esterification was carried out at high pressure reactor at 140°C for 1 hour with molar ratio of oil:alcohol 1:15 to 1 and 3% catalyst. From the XRD it was observed the formation of inverted spinel phase. FTIR revealed the presence of the vibrational bands 586, 1381, 1628, 2352, 2922, 3147 and 3457cm"-"1 and surface area 48m"2g"-"1, 10nm pore diameter and type IV isotherm, suggesting mesoporous material characteristic. The results indicate biodiesel conversion of 31.9% and 27.3% when using 1% and 3% catalyst, respectively. (author)

  8. Esterification of jatropha oil via ultrasonic irradiation with auto-induced temperature-rise effect

    International Nuclear Information System (INIS)

    Andrade-Tacca, Cesar Augusto; Chang, Chia-Chi; Chen, Yi-Hung; Manh, Do-Van; Chang, Ching-Yuan; Ji, Dar-Ren; Tseng, Jyi-Yeong; Shie, Je-Lueng

    2014-01-01

    Auto-induced temperature-rise effects of ultrasonic irradiation (UI) on the esterification performance of jatropha oil (JO) were studied. Comparisons with other methods of mechanical mixing (MM) and hand shaking mixing were made. Major system parameters examined include: esterification time (t E ), settling time (t S ) after esterification and temperature. Properties of acid value (AV), iodine value (IV), kinematic viscosity (KV) and density of JO and ester product were measured. The esterification conversion efficiencies (η) were determined and assessed. Sulfuric acid was used to catalyze the esterification using methyl alcohol. For esterification without temperature control, η at t E  = 10 and 30 min for UI of 56.73 and 83.23% are much higher than those for MM of 36.76 and 42.48%, respectively. At t E  = 10 min, the jatropha oil esters produced via UI and MM respectively possess AV of 15.82 and 23.12 mg KOH/g, IV of 111.49 and 113.22 g I 2 /100 g, KV of 22.41 and 22.51 mm 2 /s and density of 913.8 and 913.58 kg/m 3 , showing that UI is much better than MM in enhancing the reduction of AV. The t E exhibits more vigorous effect on AV for UI than MM. The UI offers auto-induced temperature-rise, improving the mixing and esterification extents. - Highlights: • Esterification of jatropha oil is pronounced under ultrasonic irradiation (UI). • UI can auto-induce temperature rise. • The induced temperature rise assists the mixing of UI in enhancing esterification. • UI offers better esterification than mechanical mixing with external heating. • An 83.23% reduction of FFA in jatropha-ester is achievable via UI in 30 min

  9. Peripheral site ligand conjugation to a non-quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase

    NARCIS (Netherlands)

    Koning, M.C. de; Grol, M. van; Noort, D.

    2011-01-01

    Commonly employed pyridinium-oxime (charged) reactivators of nerve agent inhibited acetylcholinesterase (AChE) do not readily pass the blood brain barrier (BBB) because of the presence of charge(s). Conversely, non-ionic oxime reactivators often suffer from a lack of reactivating potency due to a

  10. Hydrolysis of biomass material

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  11. Centrally Acting Oximes in Reactivation of Tabun-Phosphoramidated AChE

    Science.gov (United States)

    Kovarik, Zrinka; Maček, Nikolina; Sit, Rakesh K.; Radić, Zoran; Fokin, Valery V.; Sharpless, K. Barry; Taylor, Palmer

    2012-01-01

    Organophosphates (OP) inhibit acetylcholinesterase (AChE, E.C.3.1.1.7), both in peripheral tissues and central nervous system (CNS), causing adverse and sometimes fatal effects due to the accumulation of neurotransmitter acetylcholine (ACh). The currently used therapy, focusing on the reactivation of inhibited AChE, is limited to peripheral tissues because commonly used quaternary pyridinium oxime reactivators do not cross the blood brain barrier (BBB) at therapeutically relevant levels. A directed library of thirty uncharged oximes that contain tertiary amine or imidazole protonable functional groups that should cross the BBB as unionized species was tested as tabun-hAChE conjugate reactivators along with three reference oximes: DAM (diacetylmonoxime), MINA (monoisonitrosoacetone), and 2-PAM. The oxime RS150D [N-((1-(3-(2-((hydroxyimino)methyl)-1H-imidazol-1-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide] was highlighted as the most promising reactivator of the tabun-hAChE conjugate. We also observed that oximes RS194B [N-(2-(azepan-1-yl)ethyl)-2-(hydroxyimino)acetamide] and RS41A [2-(hydroxyimino)-N-(2-(pyrrolidin-1-yl)ethyl)acetamide], which emerged as lead uncharged reactivators of phosphylated hAChE with other OPs (sarin, cyclosarin and VX), exhibited only moderate reactivation potency for tabun inhibited hAChE. This implies that geometry of oxime access to the phosphorus atom conjugated to the active serine is an important criterion for efficient reactivation, along with the chemical nature of the conjugated moiety: phosphorate, phosphonate, or phosphoramidate. Moreover, modification of the active center through mutagenesis enhances the rates of reactivation. The phosphoramidated-hAChE choline-binding site mutant Y337A showed three-times enhanced reactivation capacity with non-triazole imidazole containing aldoximes (RS113B, RS113A and RS115A) and acetamide derivative (RS194B) than with 2PAM. PMID:22960624

  12. Dose response toxic effects of different oximes in vivo: pathohystological evaluation

    International Nuclear Information System (INIS)

    Jacevic, V.

    2009-01-01

    The acute toxicity of oximes is crucial for the assessment of a dose applied as a treatment for organophosphorus intoxications. This is why we decided to investigate which morphological lesions could be produced in Wistar rats after treatment with increasing doses of HI-6, Obidoxime, K027, K048, and K075. In the first part of this study, tested oximes were preliminarily tested in order to obtain their LD50 values. Survival rates were monitored 24 hours after application of each oxime. In separate experiment animals were sacrificed 7 days after single im application of 0.1 LD50 and 0.5 LD50 of each oxime, and hearts, diaphragms and musculus popliteus were obtained for pathohistological analysis. Tissue damage score (TDS) was based on an estimation scale from 0 (no damage) to 5 (strong damage, massive necrotic fields). In rats treated with of 0.1 LD50 of HI-6 and K027 microscopic findings were similar to those evaluated in the control groups, only. More intensive alterations, but still mild and reversible degenerative and vascular changes, were established in tissue samples after treatment with 0.1 LD50 of Obidoxime, K048 and K075, but their values were also similar to the control group. Acute lesions were developed in tissue samples within 7 days following treatment with 0.5 LD50 of all oximes. The most severe tissue alterations were found in rats treated with 0.5 LD50 of K048 and K075 (p < 0.001 vs. control and HI-6). These observations of the earliest tissues events are helping to guide of applications of novel development oximes.(author)

  13. Cutaneous exposure to vesicant phosgene oxime: Acute effects on the skin and systemic toxicity

    International Nuclear Information System (INIS)

    Tewari-Singh, Neera; Goswami, Dinesh G; Kant, Rama; Croutch, Claire R; Casillas, Robert P; Orlicky, David J; Agarwal, Rajesh

    2017-01-01

    Phosgene Oxime (CX), an urticant or nettle agent categorized as a vesicant, is a potential chemical warfare and terrorist weapon. Its exposure can result in widespread and devastating effects including high mortality due to its fast penetration and ability to cause immediate severe cutaneous injury. It is one of the least studied chemical warfare agents with no effective therapy available. Thus, our goal was to examine the acute effects of CX following its cutaneous exposure in SKH-1 hairless mice to help establish a relevant injury model. Results from our study show that topical cutaneous exposure to CX vapor causes blanching of exposed skin with an erythematous ring, necrosis, edema, mild urticaria and erythema within minutes after exposure out to 8 h post-exposure. These clinical skin manifestations were accompanied with increases in skin thickness, apoptotic cell death, mast cell degranulation, myeloperoxidase activity indicating neutrophil infiltration, p53 phosphorylation and accumulation, and an increase in COX-2 and TNFα levels. Topical CX-exposure also resulted in the dilatation of the peripheral vessels with a robust increase in RBCs in vessels of the liver, spleen, kidney, lungs and heart tissues. These events could cause a drop in blood pressure leading to shock, hypoxia and death. Together, this is the first report on effects of CX cutaneous exposure, which could help design further comprehensive studies evaluating the acute and chronic skin injuries from CX topical exposure and elucidate the related mechanism of action to aid in the identification of therapeutic targets and mitigation of injury. - Highlights: • Phosgene oxime cutaneous exposure causes skin blanching, edema and urticaria. • Penetration of phosgene oxime causes dilation of vasculature in internal organs. • Mast cells could play an important role in phosgene oxime-induced skin injury. • Phosgene oxime could induce low blood pressure and hypoxia leading to mortality. • Data is

  14. Cutaneous exposure to vesicant phosgene oxime: Acute effects on the skin and systemic toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tewari-Singh, Neera, E-mail: Neera.tewari-singh@ucdenver.edu [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Goswami, Dinesh G; Kant, Rama [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Croutch, Claire R; Casillas, Robert P [MRIGlobal, Kansas City, MO 64110 (United States); Orlicky, David J [Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Agarwal, Rajesh [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States)

    2017-02-15

    Phosgene Oxime (CX), an urticant or nettle agent categorized as a vesicant, is a potential chemical warfare and terrorist weapon. Its exposure can result in widespread and devastating effects including high mortality due to its fast penetration and ability to cause immediate severe cutaneous injury. It is one of the least studied chemical warfare agents with no effective therapy available. Thus, our goal was to examine the acute effects of CX following its cutaneous exposure in SKH-1 hairless mice to help establish a relevant injury model. Results from our study show that topical cutaneous exposure to CX vapor causes blanching of exposed skin with an erythematous ring, necrosis, edema, mild urticaria and erythema within minutes after exposure out to 8 h post-exposure. These clinical skin manifestations were accompanied with increases in skin thickness, apoptotic cell death, mast cell degranulation, myeloperoxidase activity indicating neutrophil infiltration, p53 phosphorylation and accumulation, and an increase in COX-2 and TNFα levels. Topical CX-exposure also resulted in the dilatation of the peripheral vessels with a robust increase in RBCs in vessels of the liver, spleen, kidney, lungs and heart tissues. These events could cause a drop in blood pressure leading to shock, hypoxia and death. Together, this is the first report on effects of CX cutaneous exposure, which could help design further comprehensive studies evaluating the acute and chronic skin injuries from CX topical exposure and elucidate the related mechanism of action to aid in the identification of therapeutic targets and mitigation of injury. - Highlights: • Phosgene oxime cutaneous exposure causes skin blanching, edema and urticaria. • Penetration of phosgene oxime causes dilation of vasculature in internal organs. • Mast cells could play an important role in phosgene oxime-induced skin injury. • Phosgene oxime could induce low blood pressure and hypoxia leading to mortality. • Data is

  15. Polyvinylpolypyrrolidone Supported Brønsted Acidic Catalyst for Esterification

    Directory of Open Access Journals (Sweden)

    Song Wang

    2016-01-01

    Full Text Available A polyvinylpolypyrrolidone (PVPP supported Brønsted acidic catalyst ([PVPP-BS]HSO4 was prepared by coupling SO3H-functionalized polyvinylpolypyrrolidone with H2SO4 in this work. After the characterization through FT-IR, FESEM, TG, BET, and elemental analysis, it was found that 1,4-butane sultone (BS and sulfuric acid reacted with PVPP and were immobilized on PVPP surface. The prepared [PVPP-BS]HSO4 catalyst shows high catalytic activity for a series of esterification reactions and could be separated from the reacted mixture easily. Moreover, this catalyst could be recycled and reused for six times without significant loss of catalytic performance.

  16. Biodiesel Production from Rubber Seed Oil via Esterification Process

    Directory of Open Access Journals (Sweden)

    W Widayat

    2012-07-01

    Full Text Available One promise source of alternative energy is biodiesel from rubber seed oil, because the raw materials available in plentiful quantities and can be renewed. In addition, the rubber seed is still lack of utilization, and Indonesia is one of the largest rubbers producing country in the world. The objective of this research is to studied on biodiesel production by esterification process. Parameters used in this study are the ratio of catalyst and temperature and its influence on the characteristics of the resulting biodiesel product. Characterization of rubber seed include acid content number analysis, saponification numbers, density, viscosity, iodine number, type of free fatty acids and triglyceride oils. The results of analysis showed that rubber seed oil content obtained is 50.5%. The results of the GCMS analysis showed that a free fatty acid level in rubber seed is very high. Conversion into bio-diesel oil is obtained by at most 59.91% and lowest 48.24%.

  17. Theoretical NMR and conformational analysis of solvated oximes for organophosphates-inhibited acetylcholinesterase reactivation

    Science.gov (United States)

    da Silva, Jorge Alberto Valle; Modesto-Costa, Lucas; de Koning, Martijn C.; Borges, Itamar; França, Tanos Celmar Costa

    2018-01-01

    In this work, quaternary and non-quaternary oximes designed to bind at the peripheral site of acetylcholinesterase previously inhibited by organophosphates were investigated theoretically. Some of those oximes have a large number of degrees of freedom, thus requiring an accurate method to obtain molecular geometries. For this reason, the density functional theory (DFT) was employed to refine their molecular geometries after conformational analysis and to compare their 1H and 13C nuclear magnetic resonance (NMR) theoretical signals in gas-phase and in solvent. A good agreement with experimental data was achieved and the same theoretical approach was employed to obtain the geometries in water environment for further studies.

  18. Selective Tandem Synthesis of Oximes from Benzylic Alcohols Catalyzed with 2, 3-Dichloro-5, 6-dicyanobenzoquinone

    Energy Technology Data Exchange (ETDEWEB)

    Aghapour, Ghasem; Mohamadian, Samaneh [Damghan University, Damghan (Iran, Islamic Republic of)

    2012-04-15

    In spite of many reports in the literature concerning with oxidation of benzylic alcohols to carbonyl compounds with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in stoichiometric amounts or even more, we surprisingly found that benzylic alcohols are directly oxidized to oximes using a catalytic amount of DDQ in the presence of hydroxylamine hydrochloride under solvent-free conditions. The present tandem catalytic method can be efficiently used for preparation of oximes in the presence of some other functional groups with excellent chemoselectivity

  19. An intensified esterification process of palm oil fatty acid distillate catalyzed by delipidated rice bran lipase.

    Science.gov (United States)

    Chong, Fui Chin; Tey, Beng Ti; Dom, Zanariah Mohd; Ibrahim, Nordin; Rahman, Russly Abd; Ling, Tau Chuan

    2006-09-07

    An intensified esterification process was operated by circulating 10 l of reaction mixtures, consisting of palm oil fatty acid distillate (PFAD) and glycerol in hexane, through a packed-bed reactor (PBR) filled with 10 kg of delipidated rice bran lipase (RBL). The influence of the process parameters, such as reaction temperature and type of water-removal agent, on the performance of this intensified esterification process were investigated. The highest degree of esterification (61%) was achieved at a reaction temperature of 65 masculineC, using silica gels as the water-removal agent. Thin-layer chromatography (TLC) analysis showed that the major composition of the esterified product was diacylglycerol.

  20. Determination of Free Fatty Acid by FT-NIR Spectroscopy in Esterification Reaction for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Djéssica Tatiana Raspe

    2013-01-01

    Full Text Available This work reports the use of FT-NIR spectroscopy coupled with multivariate calibration to determine the percentage of free fatty acids (FFA in samples obtained by the esterification of FFA in vegetable oils. The analytical method used as calibration matrix samples of the reaction medium of esterification of oleic acid in soybean oil in proportions of 0.3 to 40 wt% (by weight of oleic acid obtained under different experimental conditions and utilized the partial least squares (PLS regression. The efficiency of the method was tested to predict the content of FFA in reactions of esterification of oleic acid in soybean oil catalysed by KSF clay and Amberlyst 15 commercial resin, both in a batch mode. Good Correlations were observed between the FT-NIR/PLS method and the reference method (AOCS. The results confirm that FT-NIR spectroscopy, in combination with multivariate calibration, is a promising technique for monitoring esterification reaction for biodiesel production.

  1. THE BIOCIDE TRIBUTYLTIN ALTERS TESTOSTERONE ESTERIFICATION IN MUD SNAILS (ILYANASSA OBSOLETA)

    Science.gov (United States)

    The Biocide Tributyltin Alters Testosterone Esterification in Mud Snails (Ilyanassa obsoleta)Meredith P. Gooding and Gerald A. LeBlanc Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633Tributyltin (TBT...

  2. Esterification of Free Fatty Acid in Crude Palm Oil Off Grade

    Directory of Open Access Journals (Sweden)

    Muhammad Dani Supardan

    2009-12-01

    Full Text Available The esterification of free fatty acids (FFA found in crude palm oil (CPO off grade with methanol is a promising technique to convert FFA into valuable fatty acid methyl ester (FAME, biodiesel and obtain a FFA-free oil that can be further transesterified using alkali bases. In this work, the effects of the main variables involved in the esterification process i.e. alcohol to oil molar ratio, reaction temperature, agitation speed and the initial amount of FFA of oil, were studied in the presence of sulphuric acid as catalyst at concentration of 1%-w. The experimental results show that the esterification process could lead to a practical and cost effective FFA removal unit in front of typical oil transesterification for biodiesel production. Keywords: CPO off grade, esterification, free fatty acid

  3. Photocatalytic C-H Activation and Oxidative Esterification Using Pd@g-C3N4

    Data.gov (United States)

    U.S. Environmental Protection Agency — Graphitic carbon nitride supported palladium nanoparticles, Pd@g-C3N4, have been synthesized and utilized for the direct oxidative esterification of alcohols using...

  4. Two reduction waves of oximes and imine formation in acidic media

    Czech Academy of Sciences Publication Activity Database

    Celik, H.; Ludvík, Jiří; Zuman, P.

    2006-01-01

    Roč. 51, č. 26 (2006), s. 5845-5852 ISSN 0013-4686 R&D Projects: GA MŠk 1P05ME785 Institutional research plan: CEZ:AV0Z40400503 Keywords : oximes * electroreduction * polarography Subject RIV: CG - Electrochemistry Impact factor: 2.955, year: 2006

  5. Successful oxime therapy one hour after soman intoxication in the rat

    NARCIS (Netherlands)

    Wolthuis, O.L.; Kepner, L.A.

    1978-01-01

    The bisquarternary mono-oxime HI-6, and to a lesser extent HS-6, caused functional recovery of neuromuscular transmission in vivo and in vitro when given 60 min after soman, i.e. when the soman-cholinesterase (AChE) complex is said to be fully 'aged'. Atropinised rats, with the tracheas intubated,

  6. Waste Oils pre-Esterification for Biodiesel Synthesis: Effect of Feed Moisture Contents

    OpenAIRE

    Kalala Jalama

    2012-01-01

    A process flowsheet was developed in ChemCad 6.4 to study the effect of feed moisture contents on the pre-esterification of waste oils. Waste oils were modelled as a mixture of triolein (90%), oleic acid (5%) and water (5%). The process mainly consisted of feed drying, pre-esterification reaction and methanol recovery. The results showed that the process energy requirements would be minimized when higher degrees of feed drying and higher preesterification reaction tempera...

  7. Influence of the esterification method on the quantification of olive oil fatty acids

    Directory of Open Access Journals (Sweden)

    Maria Cristina Milinsk

    2011-09-01

    Full Text Available To analyze fatty acids by gas chromatography, it is necessary to apply esterification procedures to convert fatty acids into more volatile compounds, such as fatty acid methyl esters (FAME. Esterification methods are usually subdivided into two categories: acidic catalysis and basic catalysis. Due to the possibility of obtaining different concentrations of fatty acids for the same sample as a function of the esterification method used, the efficiency of eight different esterification methods that involve acidic and basic catalysis in the quantitative determination of FAME in olive oil was verified. The selected methods were described by Metcalfe, 1966 (MET; Bannon, 1982 (BAN; Joseph and Ackman, 1992 (JAC; Hartman and Lago, 1973 (HLA; Jham, 1982 (JHA; ISO 5509, 1978 (ISO; Bannon, 1982 (BBA and Schuchardt and Lopes, 1988 (SLO. The results showed the efficiency of the esterification methods for the main saturated fatty acids that were present in the olive oil analyzed. The most efficient methods for the esterification of unsaturated fatty acids in the oils analyzed were JAC, ISO, and BBA. Nevertheless, the reagent BF3 in methanol, used in the JAC method, is extremely toxic. Thus, when the oil to be analyzed has low acidity, the basic catalysis methods ISO and BBA can be used instead, since they use inexpensive reagents of low toxicity. The results obtained showed that the choice of a method for the analysis of fatty acids also depends on the composition of the oil to be studied.

  8. Hydrolysis reactor for hydrogen production

    Science.gov (United States)

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  9. Ultrasound Assisted Esterification of Rubber Seed Oil for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    W Widayat

    2012-04-01

    Full Text Available Production of biodiesel is currently shifting from the first to the second generation inwhich the raw materials are mostly from non-edible type oils and fats. Biodiesel production iscommonly conducted under batch operation using mechanical agitation to accelerate masstransfers. The main drawback of oil esterification is the high content of free fatty acids (FFA whichmay reduce the yield of biodiesel and prolong the production time (2-5 hours. Ultrasonificationhas been used in many applications such as component extraction due to its ability to producecavitation under certain frequency. This research is aimed to facilitate ultrasound system forimproving biodiesel production process particularly rubber seed oil. An ultrasound unit was usedunder constant temperature (40oC and frequency of 40 Hz. The result showed that ultrasound canreduces the processing time and increases the biodiesel yield significantly. A model to describecorrelation of yield and its independent variables is yield (Y = 43,4894 – 0,6926 X1 + 1,1807 X2 –7,1042 X3 + 2,6451 X1X2 – 1,6557 X1X3 + 5,7586 X2X3 - 10,5145 X1X2X3, where X1 is mesh sizes, X2ratio oil: methanol and X3 type of catalyst.

  10. Ultrasound Assisted Esterification of Rubber Seed Oil for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Berkah Fajar Tamtomo Kiono

    2012-02-01

    Full Text Available roduction of biodiesel is currently shifting from the first to the second generation in which the raw materials are mostly from non-edible type oils and fats. Biodiesel production is commonly conducted under batch operation using mechanical agitation to accelerate mass transfers. The main drawback of oil esterification is the high content of free fatty acids (FFA which may reduce the yield of biodiesel and prolong the production time (2-5 hours. Ultrasonification has been used in many applications such as component extraction due to its ability to produce cavitation under certain frequency. This research is aimed to facilitate ultrasound system for improving biodiesel production process particularly rubber seed oil. An ultrasound unit was used under constant temperature (40oC and frequency of 40 Hz. The result showed that ultrasound can reduces the processing time and increases the biodiesel yield significantly. A model to describe correlation of yield and its independent variables is yield (Y = 43,4894 – 0,6926 X1 + 1,1807 X2 – 7,1042 X3 + 2,6451 X1X2 – 1,6557 X1X3 + 5,7586 X2X3 - 10,5145 X1X2X3, where X1 is mesh sizes, X2 ratio oil: methanol and X3 type of catalyst.

  11. Pervaporation applied for dewatering of reaction mixture during esterification

    Directory of Open Access Journals (Sweden)

    Krasiński Andrzej

    2016-03-01

    Full Text Available In this work the esterification of diethyl tartrate was studied. The research was focused on the enhancement of reversible reaction yield, which is accomplished by dewatering of the reaction mixture. The removal of water shifts the equilibrium towards the main product. Pervaporation was applied for this purpose, and results were compared to distillation. The advantages and limitations of both processes are discussed. The experimental part consists of dewatering of mixture after the reaction had reached the equilibrium, and was subsequently fed to the test rig equipped with a single zeolite membrane purchased from Pervatech B.V. Results show a significant conversion increase as a result of water removal by pervaporation. Compared to distillation no addition of organics is necessary to efficiently remove water above the azeotrope. Nevertheless, some limitations and issues which call for optimisation are pointed out. A simple numerical model is proposed to support design and sizing of the pervaporation system. Various modes of integrated system operation are also briefly discussed.

  12. The Efficacy Of Milbemycin Oxime In The Treatment Of Naturally Acquired Infestations Of Sarcoptes Scabiei On Dogs

    OpenAIRE

    Xu Q; Guo S; Li J; Wang Y; Shen Z; Yanping Wang; Ying Z; Zhang Z; Fu S; Ma L; Yang L; Wang J; Duanhui Ma

    2013-01-01

    Milbemycin oxime tablets were evaluated for efficacy against sarcoptic mange mites in naturally infested dogs. Sixty-five dogs were allocated to two groups and were housed individually. Fifty of the dogs were treated orally with milbemycin oxime at the proposed dose. The other fifteen were treated orally with vehicle. Study day 0 was defined as the first day of treatment administration. Dogs were treated on days 0, 7 and 14, and efficacy was assessed by counting viable mites recovered from sk...

  13. Inhibition of the voltage-dependent chloride channel of Torpedo electric organ by diisopropylfluorophosphate and its reversal by oximes

    International Nuclear Information System (INIS)

    Abalis, I.M.; Chiang, P.K.; Wirtz, R.A.; Andre, R.G.

    1986-01-01

    Diisopropylfluorophosphate (DFP), a potent organophosphate inhibitor of cholinesterases, was found to inhibit the specific binding of [ 35 S]t-butylbicyclophosphorothionate (TBPS), specific chloride channels ligand, to the electric organ membranes of Torpedo, with a Ki of 21 +/- 3 μM. The binding sites of [ 35 S]TBPS in the Torpedo membranes were found not to be GABA receptors or nicotinic acetylcholine receptors as previously described. Interestingly, a stimulation of the binding of [ 35 S]TBPS was observed in the presence of atropine and three oximes, monopyridinium oxime 2-PAM, bispyridinium bis-oxime TMB-4 and H-oxime HI-6. The maximal stimulation was 300-500% of control, after which, the stimulation was reversed at higher concentrations. The three oximes protected by more than 95% the inhibition by 1 mM DFP of the binding of [ 35 S]TBPS to the voltage-dependent chloride channel. However, atropine protected only 20% of the inhibited channel. These results, thus, suggest that the protection against the toxic effects of DFP or other anticholinesterase agents by the tested oximes may not be solely a result of the reactivation of cholinesterases but also the protection of the voltage-dependent chloride channel

  14. A Development of Rapid, Practical and Selective Process for Preparation of Z-Oximes

    International Nuclear Information System (INIS)

    Kim, Bo Ram; Sung, Gi Hyeon; Yoon, Yongjin; Kim, Jeumjong

    2013-01-01

    Oximes are important functional groups in organic chemistry due to their synthetic utility as protecting groups for carbonyl groups and their ability to form other functionalities, and their biological activity. Oximes are commonly prepared by condensing aldehydes and ketones with hydroxylamines. These reactions do not always go to completion and reaction times can be long, and therefore there has been interest in more convenient and efficient methods. To avoid the typical disadvantage, conversion of aldehydes and ketones to the corresponding oximes was accomplished by using various catalysts such as organic acid/bases, AcONa, alumina, TiO 2 /SO 4 silica gel, Oxone, NaOH, basic ionic liquid 1-butyl-3-methylimidazolium hydroxide, polyoxometalates, Na 2 SO 4 , and CuSO 4 /K 2 CO 3 under the solvent, the solvent-free or the microwave conditions. These are one and more drowbacks such as long reaction time, use of catalysts, inconvenients due to solid-sate reaction, low yields and limitaion of some carbonyl compounds. On the other hand, H. Sharghi, et al.,14 reported the catalysis of the stereoselectivity of CuSO 4 and K 2 CO 3 in the oximation of aldehydes and ketones under solvent-free conditions. Although this method show high selectivity, it is inconvenient for the large scale experiments and the industrial process due to the solvent-free condition. Therefore, we attempted to develop a more convenient and efficient solution method. According to the literatures, treatment of potassium carbonate with methanol generates slightly the potassium methoxide, which may be useful for forming the free NH 2 OH from its salts. We describe the oximation of aldehyde and ketone using NH 2 OH·HCl/K 2 CO 3 in methanol solvent. We selected oximation of acetophenone (1a) with hydroxylamine hydrochloride as a model and its behavior was investigated in seven solvents involving methanol (Table 1). As shown in the Entry 2 in Table 1, compound 1a was treated with hydroxylamine

  15. A Development of Rapid, Practical and Selective Process for Preparation of Z-Oximes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Ram; Sung, Gi Hyeon; Yoon, Yongjin [Gyeongsang National Univ., Jinju (Korea, Republic of); Kim, Jeumjong [Electronic and Telecommunications Research Institute, Daejeon (Korea, Republic of)

    2013-04-15

    Oximes are important functional groups in organic chemistry due to their synthetic utility as protecting groups for carbonyl groups and their ability to form other functionalities, and their biological activity. Oximes are commonly prepared by condensing aldehydes and ketones with hydroxylamines. These reactions do not always go to completion and reaction times can be long, and therefore there has been interest in more convenient and efficient methods. To avoid the typical disadvantage, conversion of aldehydes and ketones to the corresponding oximes was accomplished by using various catalysts such as organic acid/bases, AcONa, alumina, TiO{sub 2}/SO{sub 4} silica gel, Oxone, NaOH, basic ionic liquid 1-butyl-3-methylimidazolium hydroxide, polyoxometalates, Na{sub 2}SO{sub 4}, and CuSO{sub 4}/K{sub 2}CO{sub 3} under the solvent, the solvent-free or the microwave conditions. These are one and more drowbacks such as long reaction time, use of catalysts, inconvenients due to solid-sate reaction, low yields and limitaion of some carbonyl compounds. On the other hand, H. Sharghi, et al.,14 reported the catalysis of the stereoselectivity of CuSO{sub 4} and K{sub 2}CO{sub 3} in the oximation of aldehydes and ketones under solvent-free conditions. Although this method show high selectivity, it is inconvenient for the large scale experiments and the industrial process due to the solvent-free condition. Therefore, we attempted to develop a more convenient and efficient solution method. According to the literatures, treatment of potassium carbonate with methanol generates slightly the potassium methoxide, which may be useful for forming the free NH{sub 2}OH from its salts. We describe the oximation of aldehyde and ketone using NH{sub 2}OH·HCl/K{sub 2}CO{sub 3} in methanol solvent. We selected oximation of acetophenone (1a) with hydroxylamine hydrochloride as a model and its behavior was investigated in seven solvents involving methanol (Table 1). As shown in the Entry 2 in

  16. Microwave assisted esterification of free fatty acid over a heterogeneous catalyst for biodiesel production

    International Nuclear Information System (INIS)

    Liu, Wei; Yin, Ping; Liu, Xiguang; Chen, Wen; Chen, Hou; Liu, Chunping; Qu, Rongjun; Xu, Qiang

    2013-01-01

    Highlights: • Microwave assisted esterification of stearic acid with ethanol was catalyzed by D418. • D418 exhibited remarkable catalytic performance for ethyl stearate formation. • It proved possible to prepare biodiesel rapidly and with good conversions by microwave heating. • The relative catalytic kinetics study has been conducted and modeled. - Abstract: Biodiesel fuel is gaining significant attention in recent years because of its environmental benefits and the growing interest in finding new resources and alternatives for conventional fuels. Biodiesel production from waste cooking oil with high free fatty acids usually requires esterification step to produce fatty acid methyl/ethyl ester. In the present work, the heterogeneous catalyst aminophosphonic acid resin D418 has been successfully utilized in the energy-efficient microwave-assisted esterification reaction of fatty acid ethyl ester (FAEE) from free fatty acid (FFA) stearic acid with short-chain alcohol ethanol. Under the reaction conditions of 9 wt% D418 and 11: 1 M ratio of ethanol to stearic acid at 353 K and atmospheric pressure, more than 90% conversion of the esterification was achieved in 7 h by microwave heating, while it took about 12 h by conventional heating. Moreover, the kinetics of this esterification reaction has been studied, and the relevant values of activation energy and pre-exponential factor were obtained

  17. Effects of water on the esterification of free fatty acids by acid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Yeon; Kim, Deog-Keun; Lee, Jin-Suk [Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Wang, Zhong-Ming [Guangzhou Institute of Energy Conversion, No. 2 Nengyuan Rd, Wushan, Tianhe, Guangzhou 510-640 (China)

    2010-03-15

    To maximize the production of biodiesel from soybean soapstock, the effects of water on the esterification of high-FFA (free fatty acid) oils were investigated. Oleic acid and high acid acid oil (HAAO) were esterified by reaction with methanol in the presence of Amberlyst-15 as a heterogeneous catalyst or sulfuric acid as a homogeneous catalyst. The yield of fatty acid methyl ester (FAME) was studied at oil to methanol molar ratios of 1:3 and 1:6 and reaction temperatures of 60 and 80 C. The rate of esterification of oleic acid significantly decreased as the initial water content increased to 20% of the oil. The activity of Amberlyst-15 decreased more rapidly than that of sulfuric acid, due to the direct poisoning of acid sites by water. Esterification using sulfuric acid was not affected by water until there was a 5% water addition at a 1:6 molar ratio of oil to methanol. FAME content of HAAO prepared from soapstock rapidly increased for the first 30 min of esterification. Following the 30-min mark, the rate of FAME production decreased significantly due to the accumulation of water. When methanol and Amberlyst-15 were removed from the HAAO after 30 min of esterification and fresh methanol and a catalyst were added, the time required to reach 85% FAME content was reduced from 6 h to 1.8 h. (author)

  18. Optimization of enzymatic esterification of dihydrocaffeic acid with hexanol in ionic liquid using response surface methodology.

    Science.gov (United States)

    Gholivand, Somayeh; Lasekan, Ola; Tan, Chin Ping; Abas, Faridah; Wei, Leong Sze

    2017-05-26

    Developing an efficient lipophilization reaction system for phenolic derivatives could enhance their applications in food processing. Low solubility of phenolic acids reduces the efficiency of phenolic derivatives in most benign enzyme solvents. The conversion of phenolic acids through esterification alters their solubility and enhances their use as food antioxidant additives as well as their application in cosmetics. This study has shown that lipase-catalyzed esterification of dihydrocaffeic acid with hexanol in ionic liquid (1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide) was the best approach for esterification reaction. In order to achieve the maximum yield, the process was optimized by response surface methodology (RSM) based on a five-level and four independent variables such as: dosage of enzyme; hexanol/dihydrocaffeic acid mole ratio; temperature and reaction time. The optimum esterification condition (Y = 84.4%) was predicted to be obtained at temperature of 39.4 °C, time of 77.5 h dosage of enzyme at 41.6% and hexanol/dihydrocaffeic acid mole ratio of 2.1. Finally, this study has produced an efficient enzymatic esterification method for the preparation of hexyl dihydrocaffeate in vitro using a lipase in an ionic liquid system. Concentration of hexanol was the most significant (p < 0.05) independent variable that influenced the yield of hexyl dihydrocaffeate. Graphical abstract Synthesis of different Hexyl dihydrocaffeates in ionic liquid.

  19. SYNTHESIS OF OXIMES WITH THE DOPED POTASSIUM FLUORIDE ANIMAL BONE MEAL AS A CATALYST

    Directory of Open Access Journals (Sweden)

    M. AIT TALEB

    2017-12-01

    Full Text Available The potassium fluoride doped Animal Bone Meal (KF/ABM was prepared and characterized using several techniques to identify the structural properties. After, it has been used as a new and eco-friendly catalyst for the preparation of from aldehydes and ketones oximes under solvent-free conditions. It is clearly shown that this reaction (using this catalyst can lead to the corresponding oximes in good yields (80 % to excellent yields (96 %. In the case of dissymmetric aldehydes and ketones, this catalyst can lead to a mixture of Z- and E- isomers (Z/E = 86/14–90/10. The remarkable advantages of this catalyst are high conversion, short reaction times, cleaner reaction profiles, reusability up to 8 times without significant loss of activity, and reduction in catalyst toxicity.

  20. Synthesis and Bioactivities of Novel Pyrazole Oxime Derivatives Containing a 5-Trifluoromethylpyridyl Moiety

    Directory of Open Access Journals (Sweden)

    Hong Dai

    2016-02-01

    Full Text Available In this study, in order to find novel biologically active pyrazole oxime compounds, a series of pyrazole oxime derivatives containing a 5-trifluoromethylpyridyl moiety were synthesized. Preliminary bioassays indicated that most title compounds were found to display good to excellent acaricidal activity against Tetranychus cinnabarinus at a concentration of 200 μg/mL, and some designed compounds still showed excellent acaricidal activity against Tetranychus cinnabarinus at the concentration of 10 μg/mL, especially since the inhibition rates of compounds 8e, 8f, 8l, 8m, 8n, 8p, and 8q were all 100.00%. Interestingly, some target compounds exhibited moderate to good insecticidal activities against Plutella xylostella and Aphis craccivora at a concentration of 200 μg/mL; furthermore, compounds 8e and 8l possessed outstanding insecticidal activities against Plutella xylostella under the concentration of 50 μg/mL.

  1. t-3-Benzyl-r-2,c-6-diphenylpiperidin-4-one oxime

    Directory of Open Access Journals (Sweden)

    R. Arulraj

    2016-12-01

    Full Text Available In the title compound, C24H24N2O [systematic name: (E-3-benzyl-2,6-diphenylpiperidin-4-one oxime], the piperidine ring adopts a slightly distorted chair conformation and the phenyl rings and the benzyl group substituents are attached equatorially. The oxime group makes a dihedral angle of 42.88 (12° with the piperidine ring. The dihedral angle between the phenyl rings is 71.96 (8°. The benzyl ring makes dihedral angles of 63.01 (8 and 59.35 (8° with the two phenyl rings. In the crystal, molecules are linked by O—H...N hydrogen bonds, forming C(7 chains along the c axis. The chains are linked by C—H...π interactions, forming slabs lying parallel to the bc plane.

  2. Differential pulse polarographic determination of molybdenum (VI) in phosphoric medium by benzoin alpha oxime

    International Nuclear Information System (INIS)

    Chergouche, S.

    1992-02-01

    The extraction of Molybdenum (VI) using both 4-Methylpentane-2-one (hexone) and chloroform dissolved Benzoin-alpha-oxime has been investigated in order to develop a simple and sensitive polarographic method allowing the analysis of Molybdenum (VI) contained in industrial phosphoric acid produced in ANNABA (Eastern Algeria). The investigation takes into account various parameters such as: The stirring time, solvent rate, the number of stages ... as well as the organic phase conditioning during the polarographic analysis

  3. Eco-friendly synthesis, physicochemical studies, biological assay and molecular docking of steroidal oxime-ethers

    Science.gov (United States)

    Alam, Mahboob; Lee, Dong-Ung

    2015-01-01

    The aim of this study was to report the synthesis of biologically active compounds; 7-(2′-aminoethoxyimino)-cholest-5-ene (4), a steroidal oxime-ether and its derivatives (5, 6) via a facile microwave assisted solvent free reaction methodology. This new synthetic, eco-friendly, sustainable protocol resulted in a remarkable improvement in the synthetic efficiency (85-93 % yield) and high purity using basic alumina. The synthesized compounds were screened for their antibacterial against six bacterial strains by disc diffusion method and antioxidant potential by DPPH assay. The binding capabilities of a compound 6 exhibiting good antibacterial potential were assessed on the basis of molecular docking studies and four types of three-dimensional molecular field descriptors. Moreover the structure-antimicrobial activity relationships were studied using some physicochemical and quantum-chemical parameters with GAMESS interface as well as WebMO Job Manager by using the basic level of theory. Hence, this synthetic approach is believed to provide a better scope for the synthesis of steroidal oxime-ether analogues and will be a more practical alternative to the presently existing procedures. Moreover, detailed in silico docking studies suggested the plausible mechanism of steroidal oxime-ethers as effective antimicrobial agents. PMID:27330525

  4. Selective and Efficient Solvent Extraction of Copper(II Ions from Chloride Solutions by Oxime Extractants

    Directory of Open Access Journals (Sweden)

    Zahra Kaboli Tanha

    2016-06-01

    Full Text Available Oxime extractants 3-tert-butyl-2-hydroxy-5-methyl benzaldehyde oxime (HL1 and 3-tert-butyl-2-hydroxy-5-methoxy benzaldehyde oxime (HL2 were synthesized and characterized by conventional spectroscopic methods. Suitable lipophilic nature of the prepared extractants allowed examining the ability of these molecules for extraction-separation of copper from its mixture with normally associated metal ions by performing competitive extraction experiments of Cu(II, Co(II, Ni(II, Zn(II, Cd(II and Pb(II ions from chloride solutions. Both ligands transfer selectively the copper ions into dichloromethane by a cation exchange mechanism. Conventional log-log analysis and isotherm curves showed that Cu(II ions are extracted as the complexes with 1:2 metal to ligand ratio by both extractants. Verification of the effect of the organic diluent used in the extraction of copper ions by HL1 and HL2 demonstrated that the extraction efficiency varies as: dichloromethane ~ dichloroethane > toluene > xylene > ethylacetate. Time dependency investigation of the extraction processes revealed that the kinetics of the extraction of copper by HL2 is more rapid than that of HL1. The application of the ligands for extraction-separation of copper ions from leach solutions of cobalt and nickel-cadmium filter-cakes of a zinc production plants was evaluated.

  5. Efficient Conversion of Oximes to the Corresponding Carbonyl Compounds with Tetrabutylammonium Chromate under Aprotic Conditions

    International Nuclear Information System (INIS)

    Pourali, Ali Reza; Goli, Arezou

    2006-01-01

    The solubility in several solvents, mildness, simple work-up and absence of side reactions provide advantages of using TBAC in deoximation reactions. This is an efficient and selective method for homogeneous deoximation of structurally different compounds under the moderately acidic and aprotic conditions in high yields. Regeneration of ketones and aldehydes from their oximes has assumed added importance since the discovery of the Barton reaction in which oximes are produced at non-activated hydrocarbon sites. Also, their synthesis from non-carbonyl compounds, such as by nitrosation of an active methylene group, nitrosation of an α-halo carbonyl compound and condensation of a nitro-alkene with an aldehyde provides a valid alternative pathway to carbonyl compounds. Therefore, there has been a continued interest in the effective regeneration of carbonyl compounds from the corresponding oximes especially under mild conditions. Oxidative and reductive methods have been found to show advantages over the classical hydrolytic methods. Although many oxidizing agents have been used, only a limited number of methods are efficient because of the low solubility of these metallic reagents in most organic solvents

  6. Insights into the mechanism and catalysis of oxime coupling chemistry at physiological pH.

    Science.gov (United States)

    Wang, Shujiang; Gurav, Deepanjali; Oommen, Oommen P; Varghese, Oommen P

    2015-04-07

    The dynamic covalent-coupling reaction involving α-effect nucleophiles has revolutionized bioconjugation approaches, due to its ease and high efficiency. Key to its success is the discovery of aniline as a nucleophilic catalyst, which made this reaction feasible under physiological conditions. Aniline however, is not so effective for keto substrates. Here, we investigate the mechanism of aniline activation in the oxime reaction with aldehyde and keto substrates. We also present carboxylates as activating agents that can promote the oxime reaction with both aldehyde and keto substrates at physiological pH. This rate enhancement circumvents the influence of α-effect by forming H-bonds with the rate-limiting intermediate, which drives the reaction to completion. The combination of aniline and carboxylates had a synergistic effect, resulting in a ∼14-31-fold increase in reaction rate at pD 7.4 with keto substrates. The biocompatibility and efficiency of carboxylate as an activating agent is demonstrated by performing cell-surface oxime labeling at physiological pH using acetate, which showed promising results that were comparable with aniline. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration.

    Science.gov (United States)

    Sehaqui, H; Kulasinski, K; Pfenninger, N; Zimmermann, T; Tingaut, P

    2017-01-09

    We report herein the preparation of 4-6 nm wide carboxyl-functionalized cellulose nanofibers (CNF) via the esterification of wheat fibers with cyclic anhydrides (maleic, phtalic, and succinic) followed by an energy-efficient mechanical disintegration process. Remarkable results were achieved via succinic anhydride esterification that enabled CNF isolation by a single pass through the microfluidizer yielding a transparent and thick gel. These CNF carry the highest content of carboxyl groups ever reported for native cellulose nanofibers (3.8 mmol g -1 ). Compared to conventional carboxylated cellulose nanofibers prepared via Tempo-mediated oxidation of wheat fibers, the present esterified CNF display a higher molar-mass and a better thermal stability. Moreover, highly carboxylated CNF from succinic anhydride esterification were effectively integrated into paper filters for the removal of lead from aqueous solution and are potentially of interest as carrier of active molecules or as transparent films for packaging, biomedical or electronic applications.

  8. High efficiency esterification and transesterification of alternative feedstock for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Boffito, D.C.; Mansi, S.; Pirola, C.; Vitali, S.; Bianchi, C.L. [Milano Univ. (Italy). Dipt. di Chimica Fisica ed Elettrochimica; Leveque, J.M. [Savoie Univ., Le Bourget du Lac (France). LCME/CISM; Carvoli, G. [Khemistar S.r.l.-P, Novara (Italy); Rispoli, A.; Barnabe, D.; Bucchi, R. [Agri2000 Soc. Coop., Castel Maggiore (Italy)

    2012-07-01

    Free Fatty Acids (FFA) esterification and transesterification reactions were studied in presence of traditional and sonochemical assisted techniques, such as microwave (MW) and ultrasound (US). Several non edible oils, both of vegetable origin or waste oil were used. Acid ion exchange resins Amebrlyst {sup registered} 15 (A15) and 46 (A46) and Purolite {sup registered} D5081 were used as catalysts for the FFA esterification. All the oils were successfully deacified over the resins, in particular A46 and D5081 showed a very good performance also after several recycles of use. Sonochemical methods were able to increase the conversion of the reactions. MW resulted to shorten the time to reach the plateau of conversion in FFA esterification, while US-assisted transesterification required lower reagents amount and much shorter times than the traditional one. (orig.)

  9. An Intensified Esterification Process of Palm Oil Fatty Acid Distillate Catalyzed by Delipidated Rice Bran Lipase

    Directory of Open Access Journals (Sweden)

    Fui Chin Chong

    2006-01-01

    Full Text Available An intensified esterification process was operated by circulating 10 l of reaction mixtures, consisting of palm oil fatty acid distillate (PFAD and glycerol in hexane, through a packed-bed reactor (PBR filled with 10 kg of delipidated rice bran lipase (RBL. The influence of the process parameters, such as reaction temperature and type of water-removal agent, on the performance of this intensified esterification process were investigated. The highest degree of esterification (61% was achieved at a reaction temperature of 65°C, using silica gels as the water-removal agent. Thin-layer chromatography (TLC analysis showed that the major composition of the esterified product was diacylglycerol.

  10. Multiple QSAR models, pharmacophore pattern and molecular docking analysis for anticancer activity of α, β-unsaturated carbonyl-based compounds, oxime and oxime ether analogues

    Science.gov (United States)

    Masand, Vijay H.; El-Sayed, Nahed N. E.; Bambole, Mukesh U.; Quazi, Syed A.

    2018-04-01

    Multiple discrete quantitative structure-activity relationships (QSARs) models were constructed for the anticancer activity of α, β-unsaturated carbonyl-based compounds, oxime and oxime ether analogues with a variety of substituents like sbnd Br, sbnd OH, -OMe, etc. at different positions. A big pool of descriptors was considered for QSAR model building. Genetic algorithm (GA), available in QSARINS-Chem, was executed to choose optimum number and set of descriptors to create the multi-linear regression equations for a dataset of sixty-nine compounds. The newly developed five parametric models were subjected to exhaustive internal and external validation along with Y-scrambling using QSARINS-Chem, according to the OECD principles for QSAR model validation. The models were built using easily interpretable descriptors and accepted after confirming statistically robustness with high external predictive ability. The five parametric models were found to have R2 = 0.80 to 0.86, R2ex = 0.75 to 0.84, and CCCex = 0.85 to 0.90. The models indicate that frequency of nitrogen and oxygen atoms separated by five bonds from each other and internal electronic environment of the molecule have correlation with the anticancer activity.

  11. Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.

    Science.gov (United States)

    Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen

    2016-02-04

    A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct.

  12. Impaired cholesterol esterification in primary brain cultures of the lysosomal cholesterol storage disorder (LCSD) mouse mutant

    International Nuclear Information System (INIS)

    Patel, S.C.; Suresh, S.; Weintroub, H.; Brady, R.O.; Pentchev, P.G.

    1987-01-01

    Esterification of cholesterol was investigated in primary neuroglial cultures obtained from newborn lysosomal cholesterol storage disorder (LCSD) mouse mutants. An impairment in 3 H-oleic acid incorporation into cholesteryl esters was demonstrated in cultures of homozygous LCSD brain. Primary cultures derived from other phenotypically normal pups of the carrier breeders esterified cholesterol at normal levels or at levels which were intermediary between normal and deficient indicating a phenotypic expression of the LCSD heterozygote genotype. These observations on LCSD mutant brain cells indicate that the defect in cholesterol esterification is closely related to the primary genetic defect and is expressed in neuroglial cells in culture

  13. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    Science.gov (United States)

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  14. Thermopressure hydrolysis. Paper; Thermodruckhydrolyse. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, R. [Scheuchl GmbH, Ortenburg (Germany); Prechtl, S. [Applikations- und Technikzentrum fuer Energieverfahrens-, Umwelt- und Stroemungstechnik (ATZ-EVUS), Sulzbach-Rosenberg (Germany)

    2000-12-01

    This paper presents a processing method which consists in thermal hydrolysis and subsequent anaerobic fermentation and is especially well suited for wet, low-structure organic wastes. [German] Das vorgestellte Verwertungsverfahren bestehend aus thermischer Hydrolyse und anschliessender anaerober Vergaerung eignet sich besonders fuer nasse, strukturarme organische Abfaelle. (orig.)

  15. Building blocks for the solution phase synthesis of oligonucleotides: regioselective hydrolysis of 3',5'-Di-O-levulinylnucleosides using an enzymatic approach.

    Science.gov (United States)

    García, Javier; Fernández, Susana; Ferrero, Miguel; Sanghvi, Yogesh S; Gotor, Vicente

    2002-06-28

    A short and convenient synthesis of 3'- and 5'-O-levulinyl-2'-deoxynucleosides has been developed from the corresponding 3',5'-di-O-levulinyl derivatives by regioselective enzymatic hydrolysis, avoiding several tedious chemical protection/deprotection steps. Thus, Candida antartica lipase B (CAL-B) was found to selectively hydrolyze the 5'-levulinate esters, furnishing 3'-O-levulinyl-2'-deoxynucleosides 3 in >80% isolated yields. On the other hand, immobilized Pseudomonas cepacia lipase (PSL-C) and Candida antarctica lipase A (CAL-A) exhibit the opposite selectivity toward the hydrolysis at the 3'-position, affording 5'-O-levulinyl derivatives 4 in >70% yields. A similar hydrolysis procedure was successfully extended to the synthesis of 3'- and 5'-O-levulinyl-protected 2'-O-alkylribonucleosides 7 and 8. This work demonstrates for the first time application of commercial CAL-B and PSL-C toward regioselective hydrolysis of levulinyl esters with excellent selectivity and yields. It is noteworthy that protected cytidine and adenosine base derivatives were not adequate substrates for the enzymatic hydrolysis with CAL-B, whereas PSL-C was able to accommodate protected bases during selective hydrolysis. In addition, we report an improved synthesis of dilevulinyl esters using a polymer-bound carbodiimide as a replacement for dicyclohexylcarbodiimide (DCC), thus considerably simplifying the workup for esterification reactions.

  16. Studies concerning the anion ex-change resins catalyzed esterification of epichlorohydrin with organic acids

    Directory of Open Access Journals (Sweden)

    E.I. Muresan

    2009-09-01

    Full Text Available The paper studies the esterification of carboxylic acids with epichlorohydrin over two macroporous strong base anion exchange resins with different polymer matrix. For both resins, the influence of reaction parameters (temperature, catalyst loading, molar ratio on the reaction rate and the yields of the two isomeric esters were investigated.

  17. Enhanced Esterification Conversion in a Room Temperature Ionic Liquid by Integrated Water Removal with Pervaporation

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Mateus, N.M.M.; Afonso, C. A. M.; Crespo, J.G.

    2005-01-01

    Roč. 41, č. 2 (2005), s. 141-145 ISSN 1383-5866 Institutional research plan: CEZ:AV0Z40720504 Keywords : pervaporation * ionic liquids * esterification reaction Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.752, year: 2005

  18. Production of Methyl Ester (Biodiesel from Used Cooking Oils via Trans-esterification process

    Directory of Open Access Journals (Sweden)

    Sameer Mohammed Salman

    2016-06-01

    Full Text Available Used cooking oil was undergoing trans-esterification reaction to produce biodiesel fuel. Method of production consisted of pretreatment steps, trans-esterification, separation, washing and drying. Trans-esterification of treated oils was studied at different operation conditions, the methanol to oil mole ratio were 6:1, 8:1, 10:1, and 12:1, at different temperature 30, 40, 50, and 60 º C, reaction time 40, 60, 80, and 120 minutes, amount of catalyst 0.5, 1, 1.5, and 2 wt.% based on oil and mixing speed 400 rpm. The maximum yield of biodiesel was 91.68 wt.% for treated oils obtained by trans-esterification reaction with 10:1 methanol to oil mole ratio, 60 º C reaction temperature, 80 minute reaction time and 0.5 wt.% of NaOH catalyst. The physical properties such as specific gravity, kinematic viscosity, acid number, flash point, pour point, and water content, were measured and compared them with American Standard Test Methods (ASTM D6751. The results of these properties for biodiesel product at (6:1, 8:1, 10:1, and 12:1 of methanol to oil mole ratio were within the range of American Standard Test Methods (ASTM D6751.

  19. Reactor comparison for the esterification of fatty acids from waste cooking oil

    NARCIS (Netherlands)

    Mazubert, A.; Crockatt, M.; Poux, M.; Aubin, J.; Roelands, C.P.M.

    2015-01-01

    Esterification of the fatty acids contained in waste cooking oil with glycerol, a reaction involving immiscible and viscous reactants, was achieved in two pilot-scale continuous pulsed reactors: the oscillatory baffled reactor and the helix reactor. In both reactors, with or without baffles, the

  20. Facile Synthesis of Highly Hydrophobic Cellulose Nanoparticles through Post-Esterification Microfluidization

    Directory of Open Access Journals (Sweden)

    Chunxiang Lin

    2018-04-01

    Full Text Available A post-esterification with a high degree of substitution (hDS mechanical treatment (Pe(hDSM approach was used for the production of highly hydrophobic cellulose nanoparticles (CNPs. The process has the advantages of substantially reducing the mechanical energy input for the production of CNPs and avoiding CNP aggregation through drying or solvent exchange. A conventional esterification reaction was carried out using a mixture of acetic anhydride, acetic acid, and concentrated sulfuric acid, but at temperatures of 60–85 °C. The successful hDS esterification of bleached eucalyptus kraft pulp fibers was confirmed by a variety of techniques, such as Fourier transform infrared (FTIR, solid state 13C NMR, X-ray photoelectron spectroscopy (XPS, elemental analyses, and X-ray diffraction (XRD. The CNP morphology and size were examined by atomic force microscopy (AFM as well as dynamic light scattering. The hydrophobicity of the PeM-CNP was confirmed by the redispersion of freeze-dried CNPs into organic solvents and water contact-angle measurements. Finally, the partial conversion of cellulose I to cellulose II through esterification improved PeM-CNP thermal stability.

  1. Synthesis and characterization of arabinose-palmitic acid esters by enzymatic esterification

    NARCIS (Netherlands)

    Pappalardo, Valeria M.; Boeriu, Carmen G.; Zaccheria, Federica; Ravasio, Nicoletta

    2017-01-01

    The direct esterification of palmitic acid with L-(+)-arabinose has been carried out. The use of Candida antartica lipase B as the catalyst and the choice of suitable solvent and experimental conditions allowed carrying out the reaction successfully. In particular 10% dimethyl-sulfoxide in

  2. Esterification Reaction Utilizing Sense of Smell and Eyesight for Conversion and Catalyst Recovery Monitoring

    Science.gov (United States)

    Janssens, Nikki; Wee, Lik H.; Martens, Johan A.

    2014-01-01

    The esterification reaction of salicylic acid with ethanol is performed in presence of dissolved 12-tungstophosphoric Brønsted-Lowry acid catalyst, a Keggin-type polyoxometalate (POM). The monitoring of the reaction with smell and the recovery of the catalyst with sight is presented. Formation of the sweet-scented ester is apparent from the smell.…

  3. Tin (II Chloride Catalyzed Esterification of High FFA Jatropha Oil: Experimental and Kinetics Study

    Directory of Open Access Journals (Sweden)

    Ratna Dewi Kusumaningtyas

    2014-05-01

    Full Text Available Biodiesel is one of the promising energy source alternatives to fossil fuel. To produce biodiesel in a more economical way, the employment of the low-cost feed stocks, such as non-edible oils with high free fatty acid (FFA, is necessary. Accordingly, the esterification reaction of FFA in vegetable oils plays an important role in the biodiesel production. In this work, esterification of FFA contained in Crude Jatropha Oil (CJO in the presence of tin (II chloride catalyst in a batch reactor has been carried out. The esterification reaction was conducted using methanol at the temperature of 40-60 °C for 4 hours. The effect of molar ratio of methanol to oil was studied in the range 15:1 to 120:1. The influence of catalyst loading was investigated in the range of 2.5 to 15% w/w oil. The optimum reaction conversion was obtained at 60 °C with the catalyst loading of 10% w/w oil and molar ratio of methanol to oil of 120:1. A pseudo-homogeneous reversible second order kinetic model for describing the esterification of FFA contained in CJO with methanol over tin (II chloride catalyst was developed based on the experimental data. The kinetic model can fit the data very well.

  4. Enhancement of Esterification of Propionic Acid with Isopropyl Alcohol by Pervaporation Reactor

    Directory of Open Access Journals (Sweden)

    Ajit P. Rathod

    2014-01-01

    Full Text Available With increasing cost of raw materials and energy, there is an increasing inclination of chemical process industries toward new processes that result in lesser waste generation, greater efficiency, and substantial yield of the desired products. Esterification is a chemical reaction in which two reactants carboxylic acid and alcohol react to form an ester and water. This reaction is a reversible reaction and the equilibrium conversion can be altered by varying the process parameters. Pervaporation reactor can enhance the conversion by shifting the equilibrium of reversible esterification reactions. Polyvinyl alcohol-polyether sulfone composite hydrophilic membrane was used for pervaporation-assisted esterification of propionic acid with isopropyl alcohol. The experiments were carried out in the presence of sulphuric acid as a catalyst at 50°C to 80°C with various reactants ratios. The esterification was carried out for catalyst loadings of 0.089 kmol/m3 to 0.447 kmol/m3. The molar ratios of isopropyl to propionic acid used for the experiment were 1 to 1.5. Maximum conversion was obtained for the ratio of 1.4. Also effect of other parameters such as process temperature and catalyst concentration was discussed. It was found that the use of pervaporation reactor increased the conversion of the propionic acid considerably.

  5. Cu-catalyzed aerobic oxidative esterification of acetophenones with alcohols to α-ketoesters.

    Science.gov (United States)

    Xu, Xuezhao; Ding, Wen; Lin, Yuanguang; Song, Qiuling

    2015-02-06

    Copper-catalyzed aerobic oxidative esterification of acetophenones with alcohols using molecular oxygen has been developed to form a broad range of α-ketoesters in good yields. In addition to reporting scope and limitations of our new method, mechanism studies are reported that reveal that the carbonyl oxygen in the ester mainly originated from dioxygen.

  6. A comparative guide to controlled hydrophobization of cellulose nanocrystals via surface esterification

    Science.gov (United States)

    Shane X. Peng; Huibin Chang; Satish Kumar; Robert J. Moon; Jeffrey P. Youngblood

    2016-01-01

    Surface esterification methods of cellulose nanocrystals (CNC) using acid anhydrides, acid chlorides, acid catalyzed carboxylic acids, and 101-carbonyldiimidazole (CDI) activated carboxylic acids were evaluated with acetyl-, hexanoyl-, dodecanoyl-, oleoyl-, and methacryloyl-functionalization. Their grafting efficiency was investigated using Fouriertransform infrared...

  7. Enzymic resolution of 2-substituted cyclohexanols through lipase-mediated esterification

    Czech Academy of Sciences Publication Activity Database

    Wimmer, Zdeněk; Skouridou, V.; Zarevúcka, Marie; Šaman, David; Kolisis, F. N.

    2004-01-01

    Roč. 15, - (2004), s. 3911-3917 ISSN 0957-4166 R&D Projects: GA MŠk ME 692 Institutional research plan: CEZ:AV0Z4055905 Keywords : enzymic resolution * 2-substituted cyclohexanols * lipase -mediated esterification Subject RIV: CC - Organic Chemistry Impact factor: 2.386, year: 2004

  8. Microwave-Assisted Esterification: A Discovery-Based Microscale Laboratory Experiment

    Science.gov (United States)

    Reilly, Maureen K.; King, Ryan P.; Wagner, Alexander J.; King, Susan M.

    2014-01-01

    An undergraduate organic chemistry laboratory experiment has been developed that features a discovery-based microscale Fischer esterification utilizing a microwave reactor. Students individually synthesize a unique ester from known sets of alcohols and carboxylic acids. Each student identifies the best reaction conditions given their particular…

  9. Esterification of free fatty acids in biodiesel production with sulphonated pyrolysed carbohydrate catalysts

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Riisager, Anders; Fehrmann, Rasmus

    The pre-treatment of free fatty acids in oils and fats in biodiesel production is of pivotal importance, and esterification in acidic medium must be done prior to basic transesterification of glycerides. The free fatty acids may be converted over an acidic catalyst of sulphonated pyrolysed...

  10. Conversion of Oleum papaveris seminis oil into methyl esters via esterification process optimization and kinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Syam, A.M.; Rashid, U.; Yunus, R.; Hamid, H.A.; Al-Resayes, S.I.; Nehdi, I.A.; Al-Muhtaseb, A.H.

    2016-07-01

    This paper presents an acid pre-treatment process and a kinetic study for the esterification reaction of Oleum papaveris seminis oil with methanol in the presence of amberlite 120 as a solid catalyst to convert the oil into methyl esters. Response surface methodology (RSM) was applied to optimize the reaction parameters, i.e. reaction time, percentage of the catalyst and volume ratio of methanol to oil. The results revealed that 0.87% w/w of catalyst concentration and 44.70% v/v of methanol to oil ratio provided final free fatty acid (FFA) contents of 0.60% w/w at 102.40 min of reaction time. It proved that the contribution of Amberlite 120 in the esterification of FFA was highly significant. The kinetics of the esterification in Oleum papaveris seminis oil with methanol in the presence of the amberlite 120 catalyst were also investigated to establish the reaction rate constant (k), reaction order, and activation energy. The study was performed under the optimized parameters at three reaction temperatures (50, 55, and 60 ºC). The value of k was in the range of 0.013 to 0.027 min-1. The first-order kinetics’ model was suitable for this irreversible FFA esterification with the activation energy of about 60.9 KJ·mol-1. (Author)

  11. Two step esterification-transesterification process of wet greasy sewage sludge for biodiesel production.

    Science.gov (United States)

    Urrutia, C; Sangaletti-Gerhard, N; Cea, M; Suazo, A; Aliberti, A; Navia, R

    2016-01-01

    Sewage sludge generated in municipal wastewater treatment plants was used as a feedstock for biodiesel production via esterification/transesterification in a two-step process. In the first esterification step, greasy and secondary sludge were tested using acid and enzymatic catalysts. The results indicate that both catalysts performed the esterification of free fatty acids (FFA) simultaneously with the transesterification of triacylglycerols (TAG). Acid catalyst demonstrated better performance in FFA esterification compared to TAG transesterification, while enzymatic catalyst showed the ability to first hydrolyze TAG in FFA, which were esterified to methyl esters. In addition, FAME concentration using greasy sludge were higher (63.9% and 58.7%), compared with those of secondary sludge (11% and 16%), using acid and enzymatic catalysts, respectively. Therefore, only greasy sludge was used in the second step of alkaline transesterification. The alkaline transesterification of the previously esterified greasy sludge reached a maximum FAME concentration of 65.4% when using acid catalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Cellulase hydrolysis of unsorted MSW

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner; Felby, Claus; Jørgensen, Henning

    2011-01-01

    A recent development in waste management and engineering has shown that the cellulase can be used for the liquefaction of organic fractions in household waste. The focus of this study was to optimize the enzyme hydrolysis of thermally treated municipal solid waste (MSW) by the addition of surfact......A recent development in waste management and engineering has shown that the cellulase can be used for the liquefaction of organic fractions in household waste. The focus of this study was to optimize the enzyme hydrolysis of thermally treated municipal solid waste (MSW) by the addition...... of calcium, potassium, sodium, chloride and others that may affect cellulolytic enzymes. Cellulase performance showed no effect of adding the metal ion-chelating agent EDTA to the solution. The cellulases were stable, tolerated and functioned in the presence of several contaminants....

  13. Conversion of Natural Aldehydes from Eucalyptus citriodora, Cymbopogon citratus, and Lippia multiflora into Oximes: GC-MS and FT-IR Analysis †

    Directory of Open Access Journals (Sweden)

    Igor W. Ouédraogo

    2009-08-01

    Full Text Available Three carbonyl-containing extracts of essential oils from Eucalyptus citriodora (Myrtaceae, Cymbopogon citratus (Gramineae and Lippia multiflora (Verbenaceae were used for the preparation of oximes. The reaction mixtures were analyzed by GC-MS and different compounds were identified on the basis of their retention times and mass spectra. We observed quantitative conversion of aldehydes to their corresponding oximes with a purity of 95 to 99%. E and Z stereoisomers of the oximes were obtained and separated by GC-MS. During GC analysis, the high temperature in the injector was shown to cause partial dehydratation of oximes and the resulting nitriles were readily identified. Based on FT-IR spectroscopy, that revealed the high stability and low volatility of these compounds, the so-obtained oximes could be useful for future biological studies.

  14. Biodiesel production from esterification of free fatty acid over PA/NaY solid catalyst

    International Nuclear Information System (INIS)

    Liu, Wei; Yin, Ping; Zhang, Jiang; Tang, Qinghua; Qu, Rongjun

    2014-01-01

    Highlights: • Biodiesel production from esterification of oleic acid was catalyzed by PA/NaY. • The influences of the process operating parameters were studied. • RSM was employed to optimize the experimental conditions. • The kinetic equation of the esterification reaction was investigated. - Abstract: Because of the incitements from increasing petroleum prices, diminishing petroleum reserves and the environmental consequences of exhaust gases from petroleum fueled engines, biodiesel has been used as a substitute of the regular diesel in recent years. In this paper, biodiesel production from the esterification of the free fatty oil oleic acid with ethanol catalyzed by PA/NaY (PA = organic phosphonic acid) was investigated, and the effect of reaction conditions such as PA loading, catalyst amount, molar ratio of alcohol to acid, reaction temperature and reaction time on the esterification reaction was examined. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated. The optimum values for maximum conversion ratio of oleic acid could be obtained by using a Box–Behnken center-united design with a minimum of experimental work. The oleic acid conversion reached 79.51 ± 0.68% with the molar ratio of alcohol to oleic acid being 7:1 and 1.7 g PA/NaY catalyst (20 ml of PA loading) at 105 °C for 7 h. Moreover, a kinetic model for the esterification catalyzed by PA/NaY catalyst was established. By fitting the kinetic model with the experimental results, the reaction order n = 2, activation energy of the positive reaction Ea + = 43.41 kJ/mol and that of the reverse reaction Ea − = 59.74 kJ/mol were obtained

  15. Synthesis and Antifungal Activity of Novel 3-Caren-5-One Oxime Esters

    Directory of Open Access Journals (Sweden)

    Min Huang

    2017-09-01

    Full Text Available A series of novel 3-caren-5-one oxime esters were designed and synthesized by multi-step reactions in an attempt to develop potent antifungal agents. Two E-Z stereoisomers of the intermediate 3-caren-5-one oxime were separated by column chromatography for the first time. The structures of all the intermediates and target compounds were confirmed by UV-Vis, FTIR, NMR, ESI-MS, and elemental analysis. The antifungal activity of the target compounds was preliminarily evaluated by the in vitro method against Fusarium oxysporum f. sp. cucumerinum, Physalospora piricola, Alternaria solani, Cercospora arachidicola, Gibberella zeae, Rhizoeotnia solani, Bipolaris maydis, and Colleterichum orbicalare at 50 µg/mL. The target compounds exhibited best antifungal activity against P. piricola, in which compounds (Z-4r (R = β-pyridyl, (Z-4q (R = α-thienyl, (E-4f′ (R = p-F Ph, (Z-4i (R = m-Me Ph, (Z-4j (R = p-Me Ph, and (Z-4p (R = α-furyl had inhibition rates of 97.1%, 87.4%, 87.4%, 85.0%, 81.9%, and 77.7%, respectively, showing better antifungal activity than that of the commercial fungicide chlorothanil. Also, compound (Z-4r (R = β-pyridyl displayed remarkable antifungal activity against all the tested fungi, with inhibition rates of 76.7%, 82.7%, 97.1%, 66.3%, 74.7%, 93.9%, 76.7% and 93.3%, respectively, showing better or comparable antifungal activity than that of the commercial fungicide chlorothanil. Besides, the E-Z isomers of the target oxime esters were found to show obvious differences in antifungal activity. These results provide an encouraging framework that could lead to the development of potent novel antifungal agents.

  16. Synthesis and Antifungal Activity of Novel 3-Caren-5-One Oxime Esters.

    Science.gov (United States)

    Huang, Min; Duan, Wen-Gui; Lin, Gui-Shan; Li, Kun; Hu, Qiong

    2017-09-12

    A series of novel 3-caren-5-one oxime esters were designed and synthesized by multi-step reactions in an attempt to develop potent antifungal agents. Two E - Z stereoisomers of the intermediate 3-caren-5-one oxime were separated by column chromatography for the first time. The structures of all the intermediates and target compounds were confirmed by UV-Vis, FTIR, NMR, ESI-MS, and elemental analysis. The antifungal activity of the target compounds was preliminarily evaluated by the in vitro method against Fusarium oxysporum f. sp. cucumerinum , Physalospora piricola , Alternaria solani , Cercospora arachidicola , Gibberella zeae, Rhizoeotnia solani , Bipolaris maydis , and Colleterichum orbicalare at 50 µg/mL. The target compounds exhibited best antifungal activity against P. piricola , in which compounds ( Z )- 4r (R = β -pyridyl), ( Z )- 4q (R = α -thienyl), ( E )- 4f' (R = p -F Ph), ( Z )- 4i (R = m -Me Ph), ( Z )- 4j (R = p -Me Ph), and ( Z )- 4p (R = α -furyl) had inhibition rates of 97.1%, 87.4%, 87.4%, 85.0%, 81.9%, and 77.7%, respectively, showing better antifungal activity than that of the commercial fungicide chlorothanil. Also, compound ( Z )- 4r (R = β -pyridyl) displayed remarkable antifungal activity against all the tested fungi, with inhibition rates of 76.7%, 82.7%, 97.1%, 66.3%, 74.7%, 93.9%, 76.7% and 93.3%, respectively, showing better or comparable antifungal activity than that of the commercial fungicide chlorothanil. Besides, the E-Z isomers of the target oxime esters were found to show obvious differences in antifungal activity. These results provide an encouraging framework that could lead to the development of potent novel antifungal agents.

  17. Steric control of reactivity: formation of oximes, benzodiazepinone N-oxides and isoxazoloquinolinones

    OpenAIRE

    Heaney, Frances; Bourke, Sharon; Cunningham, Desmond; McArdle, Patrick

    1998-01-01

    Reaction of the alkenyl carbonyl compounds 1 with hydroxylamine can lead to the formation of the oximes 2, the benzodiazepinone N-oxides 3 or the isoxazoloquinolinones 5. The product(s) of reaction are shown to depend on the electronic nature of the terminal olefinic substituent R3 and the space filling capacity of the substituents R1, R2 and R4. When the olefinic centre is electron poor (R3 = CO2Et) ketocarbonyls convert exclusively to bicyclic nitrones 3 whereas aldehydes are more sensitive...

  18. Enzymatic hydrolysis of plant extracts containing inulin

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, J.P.; Galzy, P.

    1981-10-01

    Inulin-rich extracts of chicory and Jerusalem artichoke are a good potential source of fructose. Total enzymatic hydrolysis of these extracts can be effected by yeast inulinases (EC 3.2.1.7). Chemical prehydrolysis is unfavourable. Enzymatic hydrolysis has advantages over chemical hydrolysis: it does not produce a dark-coloured fraction or secondary substances. It is possible to envisage the preparation of high fructose syrups using this process. (Refs. 42).

  19. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    OpenAIRE

    Neeharika, T. S.V.R.; Lokesh, P.; Prasanna Rani, K. N.; Prathap Kumar, T.; Prasad, R. B.N.

    2015-01-01

    Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candi...

  20. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst

    OpenAIRE

    Heeyoel Baek; Maki Minakawa; Yoichi M. A. Yamada; Jin Wook Han; Yasuhiro Uozumi

    2016-01-01

    A porous phenolsulphonic acid?formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catal...

  1. Preparation of phenacylchloride, morpholinophenacyl and N-Piperidinophenacyl oximes and study of their complexation with Copper (II) and Cobalt (II) ions

    International Nuclear Information System (INIS)

    Ali, Kamal Eldin Ahmed

    1999-01-01

    The aim of the present work is to prepare phenacyl chloride oxime and phenacyl of N-Piperidine and morpholine derivatives, and mainly to study their complexes with Cu(II) and Co(II) ions with objective ascertaining that one of these ligands can be used in quantitative extraction of these metal ions from the aqueous solution. Copper (II) salts form 1:1 complexes with the phenyacyl oximes of N-piperidine and morpholine and 1:2 complex with phenacyl chloride oxime. However, cobalt(II) salts form 1:2 complexes with phenacyl oxime of N-piperidine and morpholine but does not complex with phenacyl chloride oxime. The stoichiometry of these complexes were determined by UV/VIS spectrophotometry using the mole ratio, continuous variation and slope ratio methods.The stability constants of the five complexes were calculated from aberrances using Job's method. They showed that the copper (II) and cobalt (II) complexes with N-piperidinophenacy oxime are more stable than those with morpholinophenacyl oxime. Copper (II) complexes with any of these two ligands are more stable than those of cobalt (II). IR spectra of the complexes of copper (II) and cobalt (II) with phenacyl oxime of N-piperidine and morpholine show diminished peaks of hydrogen bonds between N and O atoms of the ligand. Specific extractabilities using amylalcohol of copper (II) complexes with the three ligands increase from PH4 to reach its maximum at PH8. The high value for N-piperidinophenacyl oxime ligand (96%-97%) indicates that, this ligand can be used as analytical reagent for the quantitative spectrophotometric determination of copper (II) salts in aqueous media. Cobalt (II) complexes were formed and extracted from solution only at PH6 (specific PH). The extractabilities ranging from 81.6-87.2% warrants the use of these ligands in quantitative spectrophotometric determination of cobalt (II).(Author)

  2. Efficacy of two anthelmintic treatments, spinosad/milbemycin oxime and ivermectin/praziquantel in dogs with natural Toxocara spp. infection.

    Science.gov (United States)

    Heredia Cardenas, Rafael; Romero Núñez, Camilo; Miranda Contreras, Laura

    2017-11-30

    Toxocara canis is one of the most important zoonotic parasites of dogs. The aim of the present study was to compare the efficacy of spinosad/milbemycin oxime and ivermectin/praziquantel in dogs naturally infected with Toxocara spp. We studied 200 dogs with a positive diagnosis of Toxocara spp. Through coproparasitoscopic analysis, two study groups of 100 dogs each were assigned: spinosad/milbemycin oxime at a dose of 30-60mg/kg and 0.75-1.0mg/kg, respectively, or ivermectin/praziquantel administered at a dose of 0.2mg/kg and 5mg/kg, respectively. Both groups received a single dose. Three stool samples, one at day 0 before treatment, and at 14 and 28days post-treatment were examined using concentration-flotation techniques. In both treatments, the number of Toxocara spp. eggs decreased; with spinosad/milbemycin oxime treatment, eggs decreased by 87% at 14days (P=0.008) and 94% at 28days after treatment, compared with 71% at day 14 and 88% at day 28 in dogs medicated with ivermectin/praziquantel. The spinosad/milbemycin oxime treated group showed a greater decrease in the number of Toxocara spp. positive dogs compared to the group receiving ivermectin/praziquantel. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Synthesis of 2-hydroxy-3-(2-methyl-propenyl-1,4-naphthoquinone and related oxime derivatives

    Directory of Open Access Journals (Sweden)

    Patricia S. Oliveira

    2012-06-01

    Full Text Available The condensation reaction of commercial 2-hydroxy-1 ,4-naphthoquinone 1 (lawsone with isobutyraldehyde 2 furnishs norlapachol 3 (2-hydroxy-3-(2-methyl-propenyl -1,4-naphthoquinone with yields ranging from 66 to 93% depending on the different conditions tested, and a reaction temperature factor determinant for the formation of the desired product. It was treated with hydroxylamine hydrochloride in alkaline (NaOH to provide the oxime 4 from regioselective modification of the carbonyl C-1 with 91% yield. The regioselectivity of the reaction can be explained by analyzing the different resonance structures which can be seen that the carbonyl C-4 is less electrophilic than C-1. In this work was also obtained the oxime 5, 6 and 7 from lapachol, αlpha and β-lapachone, respectively, in yields of 64-85%. The oximes of αlpha and β-norlapachone, 8 and 9 are in obtention. All the products were analyzed by IR and NMR, and were observed that oximes of lapachol and norlapachol are isolated as E/Z mixtures. Two-dimensional NOE-type experiments of the corresponding acylated derivative will be made to help identify the proportion of the mixture.

  4. Reaction of Non-Symmetric Schiff Base Metallo-Ligand Complexes Possessing an Oxime Function with Ln Ions

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Costes

    2018-03-01

    Full Text Available The preparation of non-symmetric Schiff base ligands possessing one oxime function that is associated to a second function such as pyrrole or phenol function is first described. These ligands, which possess inner N4 or N3O coordination sites, allow formation of cationic or neutral non-symmetric CuII or NiII metallo-ligand complexes under their mono- or di-deprotonated forms. In presence of Lanthanide ions the neutral complexes do not coordinate to the LnIII ions, the oxygen atom of the oxime function being only hydrogen-bonded to a water molecule that is linked to the LnIII ion. This surprising behavior allows for the isolation of LnIII ions by non-interacting metal complexes. Reaction of cationic NiII complexes possessing a protonated oxime function with LnIII ions leads to the formation of original and dianionic (Gd(NO352− entities that are well separated from each other. This work highlights the preparation of well isolated mononuclear LnIII entities into a matrix of diamagnetic metal complexes. These new complexes complete our previous work dealing with the complexing ability of the oxime function toward Lanthanide ions. It could open the way to the synthesis of new entities with interesting properties, such as single-ion magnets for example.

  5. Docking and molecular dynamics studies of peripheral site ligand–oximes as reactivators of sarin-inhibited human acetylcholinesterase

    NARCIS (Netherlands)

    Almeida, J.S.F.D. de; Cuya Guizado, T.R.; Guimarães, A.P.; Ramalho, T.C.; Gonçalves, A.S.; Koning, M.C. de; França, T.C.C.

    2016-01-01

    In the present work, we performed docking and molecular dynamics simulations studies on two groups of long-tailored oximes designed as peripheral site binders of acetylcholinesterase (AChE) and potential penetrators on the blood brain barrier. Our studies permitted to determine how the tails anchor

  6. The effect of the conditions of amidoximation on the adsorptive characteristics of amide oxime resin for uranium recovery from seawater

    International Nuclear Information System (INIS)

    Hori, Takahiro; Furusaki, Shintaro; Sugo, Takanobu; Okamoto, Jiro.

    1987-01-01

    A hollow-fiber type chelating resin containing the amide oxime group for the recovery of uranium from seawater was synthesized by radiation-induced graft polymerization. The effect of the conditions of amidoximation on the amount and/or distribution of the functional groups and on the durability to the recycle adsorption was investigated. The amount of adsorbed copper on the resin increased with the reaction time of the amidoximation, but that of adsorbed hydrochloric acid gradually decreased after reaching the maximum. From the results of elemental analysis, infrared adsorption spectra, visible light and ultraviolet adsorption spectra and the observation of coloration of the resin by alkaline treatment, the amidoximation was found to be a consecutive reaction. The results also suggested that, after the introduction of the amide oxime group, the acidic amide, hydroxamic acid and/or cyclic functional groups were formed. From the measurement of the distribution of adsorbed copper by X-ray microanalyzer, it was confirmed that the amidoximation occured uniformly across the resin. An experiment was carried out on the recycle adsorption of the amide oxime resin using natural seawater, and the sufficient durability was recognized for the case that the resin was taken out from the hydroxylamine solution at the time when the amount of adsorbed hydrochloric acid reached the maximum. In this case the resin contained the largest amount of the amide oxime group and least amount of the by-products formed from the secondary reactions. (author)

  7. Oxidative Esterification of Aldehydes with Urea Hydrogen Peroxide Catalyzed by Aluminum Chloride Hexahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sin-Ae; Kim, Yoon Mi; Lee, Jong Chan [Chung-Ang University, Seoul (Korea, Republic of)

    2016-08-15

    We have developed a new, environmentally benign and highly efficient oxidative preparation of methyl esters by the reaction of various aldehydes with UHP in methanol catalyzed by readily accessible aluminum(III) chloride hexahydrate. This new greener and cost effective direct esterification method can serve as a useful alternative to existing protocols. Esters are some of the most important functional groups in organic chemistry and have been found in the sub-structure of a variety of natural products, industrial chemicals, and pharmaceuticals. Numerous methods have been reported for the preparation of various esters. In particular, this method gives low yields for both aldehydes containing electron donating substituents in aromatic rings and heterocyclic aldehydes. Therefore, development of a more general, efficient, and greener protocol for the esterification of aldehydes with readily available catalyst is still desirable.

  8. Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic inter esterification

    Energy Technology Data Exchange (ETDEWEB)

    Feltes, M. M. C.; Oliveira de Pilot, L.; Gomes Correira, F.; Grimaldi, R.; Mara Block, J.; Ninow, J. L.

    2009-07-01

    Structured triglycerides (STs) containing both medium chain fatty acids (MCFA) and polyunsaturated fatty acids (PUFA) in the same molecule offer nutritional and therapeutic benefits. The aim of this work was to establish the incorporation of MCFA into fish oil triglycerides (TAGs), while maintaining substantial levels of docosahexaenoic and eicosapentaenoic acids. The effects of different acyl donors (capric acid methyl ester/MeC10 or medium chain triglyceride/TCM) and of the catalyst (chemical or enzymatic) on the fatty acid composition of the reaction product were studied. The fatty acid composition of the fish oil TAG was modified after inter esterification to contain MCFA, and it depended on the catalyst and on the substrates. Thermo grams obtained by Differential Scanning Calorimetry (DSC) showed that inter esterification promoted noteworthy changes in the melting profile of the samples. STs of clinical nutrition interest containing both EPA and DHA obtained from fish oil along with MCFA were successfully produced. (Author) 70 refs.

  9. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch.

    Science.gov (United States)

    Mei, Ji-Qiang; Zhou, Da-Nian; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2015-11-15

    In this study, citric acid was used to react with cassava starch in order to compare the digestibility, structural and physicochemical properties of citrate starch samples. The results indicated that citric acid esterification treatment significantly increased the content of resistant starch (RS) in starch samples. The swelling power and solubility of citrate starch samples were lower than those of native starch. Compared with native starch, a new peak at 1724 cm(-1) was appeared in all citrate starch samples, and crystalline peaks of all starch citrates became much smaller or even disappeared. Differential scanning calorimetry results indicated that the endothermic peak of citrate starches gradually shrank or even disappeared. Moreover, the citrate starch gels exhibited better freeze-thaw stability. These results suggested that citric acid esterification induced structural changes in cassava starch significantly affected its digestibility and it could be a potential method for the preparation of RS with thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Preparation of a Sulfonated Carbonaceous Material from Lignosulfonate and Its Usefulness as an Esterification Catalyst

    Directory of Open Access Journals (Sweden)

    Duckhee Lee

    2013-07-01

    Full Text Available Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%–29% after it was exposed to hot water (95 °C for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  11. Cold labelled substrate and estimation of cholesterol esterification rate in lecithin cholesterol acyltransferase radioassay

    International Nuclear Information System (INIS)

    Dobiasova, M.; Schuetzova, M.

    1986-01-01

    A new method is described of cold labelling of blood serum, plasma and body fluids containing lecithin cholesterol acyltransferase (LCAT) and/or lipoproteins for radioassay to assess the cholesterol esterification rate. The method uses the principle of transfer, in refrigeration conditions, of 14 C-cholesterol from filter paper discs to the fluids. The preparation of the disc guarantees homogeneous labelling and high stability. The use of the labelling disc was shown to be reliable, easy and fast and suitable for accurate assessment of LCAT reaction, applicable in the widest possible enzyme concentration range. It was also, found suited for the measurement of the esterification rate of rabbit intraocular fluid which is a medium with the lowest contents of the substrate and LCAT. (L.O.)

  12. Esterification of phenyl acetic acid with p-cresol using metal cation exchanged montmorillonite nanoclay catalysts.

    Science.gov (United States)

    Bhaskar, M; Surekha, M; Suma, N

    2018-02-01

    The liquid phase esterification of phenyl acetic acid with p -cresol over different metal cation exchanged montmorillonite nanoclays yields p -cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (M n +  = Al 3+ , Zn 2+ , Mn 2+ , Fe 3+ , Cu 2+ ) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants, reaction time and catalyst amount on the yield of the ester. Among the different metal cation exchanged catalysts used, Al 3+ -montmorillonite nanoclay was found to be more active. The characterization of the material used was studied under different techniques, namely X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The product obtained, p -cresyl phenyl acetate, was identified by thin-layer chromotography and confirmed by Fourier transform infrared, 1 H NMR and 13 C NMR. The regeneration activity of used catalyst was also investigated up to fourth generation.

  13. Esterification kinetics of free fatty acids with supercritical methanol for biodiesel production

    International Nuclear Information System (INIS)

    Alenezi, R.; Leeke, G.A.; Winterbottom, J.M.; Santos, R.C.D.; Khan, A.R.

    2010-01-01

    Non-catalytic esterification of Free Fatty Acids (FFA) with supercritical methanol was studied under reaction conditions of (250-320 deg. C) at 10 MPa. A detailed experimental programme was implemented to investigate the influence of temperature, stirring rate and the molar ratio of methanol to FFA in the feed in a batch-type reaction vessel. The esterification products of FFA with supercritical methanol are Fatty Acids Methyl Esters (FAME; biodiesel) and water. The yield of FAME was found to increase with an increase in temperature, and with an increase in the molar ratio of methanol to FFA. At >850 rpm the yield of FAME was not affected by stirring rate. The rate constants and energy of activation have been numerically evaluated by solving an ordinary differential equation that describes the reaction kinetics. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  14. Evaluation as a catalyst in ferrispinel NiFe_2O_4 esterification and transesterification

    International Nuclear Information System (INIS)

    Pereira, Kleberson Ricardo de Oliveira; Dantas, Joelda; Costa, Ana Cristina Figueiredo de Melo; Silva, Adriano Sant'Ana; Kiminami, Ruth Herta Goldschmidt Aliaga

    2014-01-01

    The advancement of nanoscience and nanotechnology, magnetic nanoparticles ferrispinels type, have found numerous applications in biochemistry, molecular biology, biomedicine, diagnosis and heterogeneous catalysis for biodiesel production. Therefore, we propose to synthesize ferrispinel NiFe_2O_4 and evaluate its performance as a catalyst for esterification and transesterification of the methyl soybean oil. The sample was obtained through combustion reaction with production of 10 g / batch and characterized by XRD, SEM and BET. The catalytic reaction was conducted in high-pressure reactor at 180 °C for 1 hour, with a molar ratio of oil:ethanol 1:12 with 2% catalyst. The results showed the formation of ferrispinel phase, morphology composed of aggregates in the form of irregular blocks formed by pre sintered particles and low interparticle porosity. As a catalyst, the conversion values presented ferrispinel 52% and 4% in the esterification and transesterification, respectively, indicating that promising material for use in biodiesel production. (author)

  15. Esterification of fatty acids using sulfated zirconia and composites activated carbon/sulfated zirconia catalysts

    International Nuclear Information System (INIS)

    Brum, Sarah S.; Santos, Valeria C. dos; Destro, Priscila; Guerreiro, Mario Cesar

    2011-01-01

    In this work sulfated zirconia (SZr) and activated carbon/SZr composites produced by impregnation method with or without heating treatment step (CABC/SZr-I and CABC/SZr-I SC) and by the method of synthesis of SZr on the carbon (CABC/SZr-S) was used as catalysts in the esterification reactions of fatty acids. The SZr presented very active, conversions higher than 90% were obtained after 2 h of reaction. The activity of the composite CABC/SZr-I20%SC was up to 92%, however, this was directly related to time and temperature reactions. CABC/SZr-I and CABC/SZr-S were less active in esterification reactions, what could be attributed to its low acidity. (author)

  16. ESTERIFICATION OF FATTY ACID FROM PALM OIL WASTE (SLUDGE OIL BY USING ALUM CATALYST

    Directory of Open Access Journals (Sweden)

    Thamrin Usman

    2010-06-01

    Full Text Available Esterification of fatty acids from palm oil waste (sludge oil as biodiesel liquid base has been done by using alum [Al2(SO43.14H2O] catalyst. Some reaction variables like reaction time, catalyst quantity, and molar ratio of sample-reactant was applied for optimal reaction. Yield of 94.66% was obtained at reaction condition 65 °C, 5 h, sample-reactant ratio 1:20, and catalyst quantity 3% (w/w. GC-MS analysis request showed that composition of methyl esters biodiesel are methyl caproic (0.67%, methyl lauric (0.21%, methyl miristic (1.96%, methyl palmitic (49.52%, methyl oleic (41.51%, and methyl stearic (6.13%. Physical properties of synthesized product (viscosity, refraction index and density are similar with those of commercial product.   Keywords: alum, biodiesel, esterification, sludge oil

  17. Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition

    Energy Technology Data Exchange (ETDEWEB)

    Hanh, Hoang Duc; Okitsu, Kenji; Nishimura, Rokuro; Maeda, Yasuaki [Department of Applied Material Science, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan); Dong, Nguyen The [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2009-03-15

    Production of fatty acid ethyl ester (FAEE) from oleic acid (FFA) with short-chain alcohols (ethanol, propanol, and butanol) under ultrasonic irradiation was investigated in this work. Batch esterification of oleic acid was carried out to study the effect of: test temperatures of 10-60 C, molar ratios of alcohol to oleic acid of 1:1-10:1, quantity of catalysts of 0.5-10% (wt of sulfuric acid/wt of oleic acid) and irradiation times of 10 h. The optimum condition for the esterification process was molar ratio of alcohol to oleic acid at 3:1 with 5 wt% of H{sub 2}SO{sub 4} at 60 C with an irradiation time of 2 h. (author)

  18. An alkali catalyzed trans-esterification of rice bran, cottonseed and waste cooking oil

    Directory of Open Access Journals (Sweden)

    Akhtar Faheem H.

    2014-01-01

    Full Text Available In this research work, biodiesel production by trans-esterification of three raw materials including virgin and used edible oil and non edible oil has been presented. A two step method following acidic and alkali catalyst was used for non edible oil due to the unsuitability of using the straight alkaline-catalyzed trans-esterification of high FFA present in rice bran oil. The acid value after processing for rice bran, cottonseed and waste cooking oil was found to be 0.95, 0.12 and 0.87 respectively. The influence of three variables on percentage yield i.e., methanol to oil molar ratio, reaction temperature and reaction time were studied at this stage. Cottonseed oil, waste cooking oil and rice bran oil showed a maximum yield of 91.7%, 84.1% and 87.1% under optimum conditions. Fuel properties of the three biodiesel satisfied standard biodiesel fuel results.

  19. Synthesis of Ricinoleic Acid Estolides by the Esterification of Ricinoleic Acids Using Functional Acid Ionic Liquids as Catalysts.

    Science.gov (United States)

    Wang, Gaoshang; Sun, Shangde

    2017-07-01

    Estolides of ricinoleic acid (RA) have been used as lubricants and pigment dispersant in many industries. In this paper, functional acid ionic liquids (ILs) were firstly used as catalysts to prepare RA estolides by the esterification of RAs in solvent-free system. Different ILs were used as catalysts for the esterification. Effect of reaction variables (IL amount, reaction temperature and reaction time) on the esterification were also investigated and optimized using response surface methodology (RSM). Among all tested ILs, [BSO 3 HMIM]TS showed the best performance for the esterification. Arrhenius equation for the esterification was lnV 0 =14.897-7558.7/T, and the activation energy (Ea) was 62.84 kJ/mol. A high degree of polymerization with an acid value of 48.0±2.5 mg KOH/g was achieved at the optimized conditions (IL load 12%, reaction temperature 140°C, and reaction time 12 h). The effect of reaction variables on the esterification decreased in the order of catalyst loading of IL > reaction temperature > reaction time.

  20. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level

    OpenAIRE

    Derbyshire, Paul; McCann, Maureen C; Roberts, Keith

    2007-01-01

    Abstract Background Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing) cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility. Results We present evidence that the degree of pectin methyl-esterification (DE%) limits cell growth, and that a minimum level of about 60% DE is required for normal cell elongatio...

  1. Production of bio diesel from sludge palm oil by esterification using p-toluenesulfonic acid

    International Nuclear Information System (INIS)

    Adeeb Hayyan; Mohd Zahangir Alam; Mirghani, M.E.S.; Kabbashi, N.A.

    2009-01-01

    Full text: Sludge palm oil (SPO) is an attractive feedstock and a significant raw material for bio diesel production. The use of SPO as feedstock for bio diesel production requires additional pretreatment step to transesterification process, which is an esterification process. The most commonly preferred catalysts used in this process are sulfuric, sulphonic, hydrochloric and P-toluenesulfonic acid (PTSA). In this study bio diesel fuel was produced from SPO using PTSA as acid catalyst in different dosages in presence of alcohol to convert free fatty acid (FFA) to fatty acid methyl ester (FAME). Batch esterification process of SPO was carried out to study the influence of PTSA dosage (0.25-10 % wt/wt), molar ratio of methanol to SPO (6:1-20:1), temperature (40-80 degree Celsius), reaction time (30-120 min). The effects of those parameters on FFA content, yield of treated SPO and conversion of FFA to FAME were monitored. The study showed that the FFA content of SPO reduced from 22 % to less than 0.15 % using ratio of 0.5, 0.75, 1, 1.5, and 2 % wt/wt PTSA to SPO. After esterification process dosage of PTSA at 0.75 % wt/wt shows the highest conversion of FFA to FAME as well as yield of treated SPO. The optimum condition for batch esterification process was 10:1 molar ratio, temperature 60 degree Celsius and 60 minutes reaction time. The highest yield of bio diesel after transesterification process was 76.62 % with 0.06 % FFA and 93 % ester content. (author)

  2. Esterification Optimization of Crude African Palm Olein Using Response Surface Methodology and Heterogeneous Acid Catalysis

    Directory of Open Access Journals (Sweden)

    Francisco Anguebes-Franseschi

    2018-01-01

    Full Text Available In this work, the effect of zeolite montmorillonite KSF in the esterification of free fatty acids (FFAs of crude African palm olein (Eleaias guinnesis Jacq was studied. To optimize the esterification of FFAs of the crude African palm olein (CAPO, the response surface methodology (RSM that was based on a central composite rotatable design (CCRD was used. The effects of three parameters were investigated: (a catalyst loading (2.6–9.4 wt %, (b reaction temperature (133.2–166.2 °C, and (c reaction time (0.32–3.68 h. The Analysis of variance (ANOVA indicated that linear terms of catalyst loading (X1, reaction temperature (X2, the quadratic term of catalyst loading ( X 1 2 , temperature reaction ( X 2 2 , reaction time ( X 3 2 , the interaction catalyst loading with reaction time ( X 1 * X3, and the interaction reaction temperature with reaction time ( X 2 * X3 have a significant effect (p < 0.05 with a 95% confidence level on Fatty Methyl Ester (FAME yield. The result indicated that the optimum reaction conditions to esterification of FFAs were: catalyst loading 9.4 wt %, reaction temperature 155.5 °C, and 3.3 h for reaction time, respectively. Under these conditions, the numerical estimation of FAME yield was 91.81 wt %. This result was experimentally validated obtaining a difference of 1.7% FAME yield, with respect to simulated values.

  3. Statistical modeling/optimization and process intensification of microwave-assisted acidified oil esterification

    International Nuclear Information System (INIS)

    Ma, Lingling; Lv, Enmin; Du, Lixiong; Lu, Jie; Ding, Jincheng

    2016-01-01

    Highlights: • Microwave irradiation was employed for the esterification of acidified oil. • Optimization and modeling of the process was performed by RSM and ANN. • Both models have reliable prediction abilities but the ANN was superior over the RSM. • Membrane vapor permeation and in-situ dehydration were used to shift the equilibrium. • Two dehydration approaches improved the FFAs conversion rate by 20.0% approximately. - Abstract: The esterification of acidified oil with ethanol under microwave radiation was modeled and optimized using response surface methodology (RSM) and artificial neural network (ANN). The impacts of mass ratio of ethanol to acidified oil, catalyst loading, microwave power and reaction time are evaluated by Box-Behnken design (BBD) of RSM and multi-layer perceptron (MLP) of ANN. RSM combined with BBD shows the optimal conditions as catalyst loading of 5.85 g, mass ratio of ethanol to acidified oil of 0.35 (20.0 g acidified oil), microwave power of 328 W and reaction time of 98.0 min with the free fatty acids (FFAs) conversion of 78.57%. Both of the models are fitted well with the experimental data, however, ANN exhibits better prediction accuracy than RSM based on the statistical analyses. Furthermore, membrane vapor permeation and in-situ molecular sieve dehydration were investigated to enhance the esterification under the optimized conditions.

  4. Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins.

    Science.gov (United States)

    Peaucelle, Alexis; Louvet, Romain; Johansen, Jorunn N; Höfte, Herman; Laufs, Patrick; Pelloux, Jérome; Mouille, Grégory

    2008-12-23

    Plant organs are produced from meristems in a characteristic pattern. This pattern, referred to as phyllotaxis, is thought to be generated by local gradients of an information molecule, auxin. Some studies propose a key role for the mechanical properties of the cell walls in the control of organ outgrowth. A major cell-wall component is the linear alpha-1-4-linked D-GalAp pectic polysaccharide homogalacturonan (HG), which plays a key role in cell-to-cell cohesion. HG is deposited in the cell wall in a highly (70%-80%) methyl-esterified form and is subsequently de-methyl-esterified by pectin methyl-esterases (PME, EC 3.1.1.11). PME activity is itself regulated by endogenous PME inhibitor (PMEI) proteins. PME action modulates cell-wall-matrix properties and plays a role in the control of cell growth. Here, we show that the formation of flower primordia in the Arabidopsis shoot apical meristem is accompanied by the de-methyl-esterification of pectic polysaccharides in the cell walls. In addition, experimental perturbation of the methyl-esterification status of pectins within the meristem dramatically alters the phyllotactic pattern. These results demonstrate that regulated de-methyl-esterification of pectins is a key event in the outgrowth of primordia and possibly also in phyllotactic patterning.

  5. Continuous esterification for biodiesel production from palm fatty acid distillate using economical process

    Energy Technology Data Exchange (ETDEWEB)

    Chongkhong, S.; Tongurai, C.; Chetpattananondh, P. [Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Hat-Yai, Songkhla 90112 (Thailand)

    2009-04-15

    An overflow system for continuous esterification of palm fatty acid distillate (PFAD) using an economical process was developed using a continuous stirred tank reactor (CSTR). Continuous production compared to batch production at the same condition had higher product purity. The optimum condition for the esterification process was a 8.8:1:0.05 molar ratio of methanol to PFAD to sulfuric acid catalyst, 60 min of residence time at 75 C under its own pressure. The free fatty acid (FFA) content in the PFAD was reduced from 93 to less than 1.5%wt by optimum esterification. The esterified product had to be neutralized with 10.24%wt of 3 M sodium hydroxide in water solution at a reaction temperature of 80 C for 20 min to reduce the residual FFA and glycerides. The components and properties of fatty acid methyl ester (FAME) could meet the standard requirements for biodiesel fuel. Eventually the production costs were calculated to disclose its commercialization. (author)

  6. Synthesis of L-Ascorbyl Flurbiprofenate by Lipase-Catalyzed Esterification and Transesterification Reactions

    Directory of Open Access Journals (Sweden)

    Jia-ying Xin

    2017-01-01

    Full Text Available The synthesis of L-ascorbyl flurbiprofenate was achieved by esterification and transesterification in nonaqueous organic medium with Novozym 435 lipase as biocatalyst. The conversion was greatly influenced by the kinds of organic solvents, speed of agitation, catalyst loading amount, reaction time, and molar ratio of acyl donor to L-ascorbic acid. A series of solvents were investigated, and tert-butanol was found to be the most suitable from the standpoint of the substrate solubility and the conversion for both the esterification and transesterification. When flurbiprofen was used as acyl donor, 61.0% of L-ascorbic acid was converted against 46.4% in the presence of flurbiprofen methyl ester. The optimal conversion of L-ascorbic acid was obtained when the initial molar ratio of acyl donor to ascorbic acid was 5 : 1. kinetics parameters were solved by Lineweaver-Burk equation under nonsubstrate inhibition condition. Since transesterification has lower conversion, from the standpoint of productivity and the amount of steps required, esterification is a better method compared to transesterification.

  7. Application of hydrothermally produced TiO{sub 2} nanotubes in photocatalytic esterification of oleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Manique, Márcia Cardoso, E-mail: marciamanique@yahoo.com.br; Silva, Aline Posteral; Alves, Annelise Kopp; Bergmann, Carlos Pérez

    2016-04-15

    Highlights: • A hydrothermal method was employed to synthesize TiO{sub 2} nanotubes. • TiO{sub 2} nanotubes were studied for photocatalytic esterification of oleic acid. • Optimum conditions were obtained at a concentration of 15% (w/w) and a molar ratio 3:1 (methanol:oleic acid). • The greater number of hydroxyl groups may have contributed to a low yield of ester versus P25. - Abstract: This study investigated the use of TiO{sub 2} nanotubes (TNTs) as photocatalysts in the esterification of fatty acids for biodiesel production. The TNTs were synthesized via a hydrothermal route and evaluated for their crystallinity, morphology, surface area and photocatalytic activity compared with a TiO{sub 2} P25 standard. Optimum photocatalytic conditions were obtained using a 15% concentration of catalyst (w/w) and a 3:1 molar ratio of methanol to oleic acid. The highest yield of methyl oleate obtained was 86.0% when P25 was used as a photocatalyst. The lowest band gap energy was obtained with the TNT sample synthesized at 110 °C for 48 h (E{sub g} = 3.08 eV), which also exhibited the highest rate of oleic acid esterification (59.3%) among all the investigated TNTs. We also observed that, in addition to the band gap, other factors such as the crystalline phase of the TNTs and their surface area were important in photocatalytic performance.

  8. Magnetic Vinylphenyl Boronic Acid Microparticles for Surface Catalytic Performance in Esterification of Propionic Acid with Methanol

    Directory of Open Access Journals (Sweden)

    Ali Kara

    2016-12-01

    Full Text Available Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate-vinylphenyl boronic acid [m-poly(EGDMA-VPBA], produced by suspension polymerization, was found to be efficient solid acid catalyst for the esterification of methanol and propionic acid. Characterization techniques such as FT-IR, Elemental analyses, ICP-AES, ESR, SEM and N2 sorption showed that both of Fe3O4 and H2SO4 are bonded to the polymer successfully. Esterification was studied for different molar percentages of H2SO4 at temperature range of 50-70 oC. The apparent activation energy was found to be 27.7 kj.mol-1 for 10% H2SO4 doped m-poly(EGDMA-VPBA. Combining of strong acid H2SO4 with m-poly(EGDMA-VPBA, leads to materials with different functional properties. In addition, H2SO4 species could be introduced into the structure as acid centers, therefore this micro-dimensional catalyst has potential candidate for applications in the catalytic esterifications such as propionic acid with methanol.

  9. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  10. Hydrolysis of solid ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Demirci, Umit B.; Miele, Philippe [Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2010-07-01

    Ammonia borane NH{sub 3}BH{sub 3} is a promising hydrogen storage material by virtue of a theoretical gravimetric hydrogen storage capacity (GHSC) of 19.5 wt%. However, stored hydrogen has to be effectively released, one way of recovering this hydrogen being the metal-catalyzed hydrolysis. The present study focuses on CoCl{sub 2}-catalyzed hydrolysis of NH{sub 3}BH{sub 3} with the concern of improving the effective GHSC of the system NH{sub 3}BH{sub 3}-H{sub 2}O. For that, NH{sub 3}BH{sub 3} is stored as a solid and H{sub 2}O is provided in stoichiometric amount. By this way, an effective GHSC of 7.8 wt% has been reached at 25 C. To our knowledge, it is the highest value ever reported. Besides, one of the highest hydrogen generation rates (HGRs, 21 ml(H{sub 2}) min{sup -1}) has been found. In parallel, the increases of the water amount and temperature have been studied and the reaction kinetics has been determined. Finally, it has been observed that some NH{sub 3} release, what is detrimental for a fuel cell. To summarize, high performances in terms of GHSCs and HGRs can be reached with NH{sub 3}BH{sub 3} and since research devoted to this boron hydride is at the beginning we may be confident in making it viable in a near future. (author)

  11. tert-Butyl 4-carbamoyl-3-methoxyimino-4-methylpiperidine-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Yucheng Wang

    2008-12-01

    Full Text Available The title compound, C13H23N3O4, was prepared starting from ethyl N-benzyl-3-oxopiperidine-4-carboxylate through a nine-step reaction, including hydrogenation, Boc (tert-butoxycarbonyl protection, methylation, oximation, hydrolysis, esterification and ammonolysis. In the crystal structure, molecules are linked by intermolecular N—H...O hydrogen bonds to form a porous three-dimensional network with solvent-free hydrophobic channels extending along the c axis.

  12. 2-Hydro-4-n-But oxypropiophenone Oxime as a spectrophotometric reagent for Fe (III)

    International Nuclear Information System (INIS)

    Purohit, K.; Desai, K.K.

    2006-01-01

    2-Hydro-4-n-But oxypropiophenone Oxime [Hipbone] has been synthesized and used for the spectrophotometric determination of Fe (III). The reagent gives purple coloured complex with Fe (III) in 50% alcoholic medium in pH range of 2.5-4.5. Beer's law is obeyed up to 23.1 ppm of Fe (III). Molar absorptivity and sandell's sensitivity at 500 nm of complex were found to be 7.062x 10 power2 lit.mol.cm and 0.079 ug of Fe (III)/cm respectively. Composition and stability constant have been determined. The reagent is successfully used for determination of Fe (III) in dolomite and in pharmaceutical sample. It is also used for the indirect determination of fluoride in tap water sample. (author)

  13. A neutral lipophilic complex of sup(99m)Tc with a multidentate amine oxime

    International Nuclear Information System (INIS)

    Troutner, D.E.; Volkert, W.A.; Hoffman, T.J.; Holmes, R.A.

    1984-01-01

    Propylene amine oxime, 3,3'-(1,3-propanediyldiimino)bis(3-methyl-2-butanone)dioxime, (PnAO) forms a neutral lipophilic complex with sup(99m)Tc in >95% yield at room temperature at pH 5-10. The complex can be prepared with generator produced sup(99m)Tc using 10 -5 M SnC 4 H 4 O 6 as the reducing agent at ligand concentrations as low as 3 x 10 -5 M. It is stable in saline solutions for as long as 24 h. [Sup(99m)Tc]PnAO may be useful as an imaging agent which passively diffuses across the blood brain barrier. (author)

  14. Surface Modification of Zinc with an Oxime for Corrosion Protection in Chloride Medium

    Directory of Open Access Journals (Sweden)

    Ganesha Achary

    2013-01-01

    Full Text Available The surface treatment of zinc was done with different concentrations of an oxime (2E-2-(hydroxylamino-1,2-diphenylethanol molecule by the immersion method. The electrochemical corrosion studies of surface-treated zinc specimens were performed in aqueous sodium chloride solution (1 M, pH 5.0 at different temperatures in order to study the corrosion mechanism. The recorded electrochemical data indicated a basic modification of the cathodic corrosion behavior of the treated zinc resulting in a decrease of the electron transfer rate. The zinc samples treated by immersion in the inhibiting organic solution presented good corrosion resistance. Using scanning electron microscopy (SEM, it was found that a protective film was formed on the surface of zinc.

  15. Efficacy of fenbendazole and milbemycin oxime for treating baboons (Papio cynocephalus anubis) infected with Trichuris trichiura.

    Science.gov (United States)

    Reichard, Mason V; Wolf, Roman F; Carey, David W; Garrett, Jennifer Jane; Briscoe, Heather A

    2007-03-01

    We evaluated the efficacy of fenbendazole (FBZ) and milbemycin oxime (MO) in the treatment of baboons (Papio cynocephalus anubis) with naturally acquired Trichuris trichiura infection by comparing fecal egg count reduction (FECR) tests. We assigned 7 baboons, each singly housed and confirmed infected with T. trichiura, to treatment groups of FBZ (n=3) or MO (n=3), or as a control (n=1). All (100%) baboons that received FBZ stopped shedding T. trichiura eggs within 6 d of treatment, and fecal egg counts remained negative at 65 d after treatment. Although the number of T. trichiura eggs shed per gram of feces from 2 (67%) baboons decreased significantly after the second treatment with MO, this regimen never totally eliminated eggs of T. trichiura. The results of our study indicate that FBZ was more effective for treating baboons with T. trichiura than was MO.

  16. Separation of fission 99Mo by alpha-benzoin oxime precipitation in nitric medium

    International Nuclear Information System (INIS)

    Yamaura, Mitiko; Freitas, Antonio A.; Egute, Nayara dos S.; Camilo, Ruth L.; Araujo, Izilda C.; Forbicini, Christina A.L.G. de O.

    2011-01-01

    Since 2009, the production of generators 99 Mo/ 99 mTc suffers a crisis of global supply due to technical problems of the two reactors which account for 64% of world production of fission 99 Mo. By the project of Brazilian Multipurpose Reactor (RMB), the Brazilian government invests in the construction of the first multipurpose reactor suitable for the domestic production of 99 Mo from LEU targets in order to supply of fission 99 Mo in the coming decades. The IPEN started the research of the technology and production of fission 99 Mo from acid and alkaline dissolutions of Low Enriched Uranium (LEU) targets as well as other used radioisotopes in nuclear medicine. This work is part of the research of the technology of the fission 99 Mo from acid dissolution of the LEU targets that is being developed at the IPEN. In this study the separation of the Mo by precipitation with alpha-benzoin oxime in nitric medium and the recovery by dissolution were investigated. The precipitation studies were performed by batch assays with nitric solution of Mo(VI), containing 99 Mo tracer, and uranyl ions. Influence of concentration of permanganate from 0.03 to 2.5%, dissolution temperature at 30 deg C and 150 deg C and the uranium concentration from 74 g.L -1 to 115 g.L -1 was studied. Results indicated that the precipitation of Mo with alpha-benzoin oxime from nitric medium is highly efficient, and its recovery by dissolution with basic solution of H 2 O 2 gave a high yield. (author)

  17. Synthesis of Imidazopyridines via Copper-Catalyzed, Formal Aza-[3 + 2] Cycloaddition Reaction of Pyridine Derivatives with α-Diazo Oxime Ethers.

    Science.gov (United States)

    Park, Sangjune; Kim, Hyunseok; Son, Jeong-Yu; Um, Kyusik; Lee, Sooho; Baek, Yonghyeon; Seo, Boram; Lee, Phil Ho

    2017-10-06

    The Cu-catalyzed, formal aza-[3 + 2] cycloaddition reaction of pyridine derivatives with α-diazo oxime ethers in trifluoroethanol was used to synthesize imidazopyridines via the release of molecular nitrogen and elimination of alcohol. These methods enabled modular synthesis of a wide range of N-heterobicyclic compounds such as imidazopyridazines, imidazopyrimidines, and imidazopyrazines with an α-imino Cu-carbenoid generated from the α-diazo oxime ethers and copper.

  18. Catalytic activity of some oxime-based Pd(II-complexes in Suzuki coupling of aryl and heteroaryl bromides in water

    Directory of Open Access Journals (Sweden)

    Kamal M. Dawood

    2017-05-01

    Full Text Available The catalytic activity of four Pd(II-complexes of benzoazole-oximes was extensively studied in Suzuki–Miyaura C–C cross coupling reactions in water, as an eco-friendly green solvent, under both thermal heating as well as microwave irradiation conditions. The cross-coupling reactions included different activated and deactivated aryl- or heteroaryl-bromides with several arylboronic acids. The protected oxime-complexes were found to be more efficient than the free ones.

  19. Glycoconjugate Oxime Formation Catalyzed at Neutral pH: Mechanistic Insights and Applications of 1,4-Diaminobenzene as a Superior Catalyst for Complex Carbohydrates.

    Science.gov (United States)

    Østergaard, Mads; Christensen, Niels Johan; Hjuler, Christian T; Jensen, Knud J; Thygesen, Mikkel B

    2018-04-18

    The reaction of unprotected carbohydrates with aminooxy reagents to provide oximes is a key method for the construction of glycoconjugates. Aniline and derivatives serve as organocatalysts for the formation of oximes from simple aldehydes, and we have previously reported that aniline also catalyzes the formation of oximes from the more complex aldehydes, carbohydrates. Here, we present a comprehensive study of the effect of aniline analogues on the formation of carbohydrate oximes and related glycoconjugates depending on organocatalyst structure, pH, nucleophile, and carbohydrate, covering more than 150 different reaction conditions. The observed superiority of the 1,4-diaminobenzene (PDA) catalyst at neutral pH is rationalized by NMR analyses and DFT studies of reaction intermediates. Carbohydrate oxime formation at pH 7 is demonstrated by the formation of a bioactive glycoconjugate from a labile, decorated octasaccharide originating from exopolysaccharides of the soil bacterium Mesorhizobium loti. This study of glycoconjugate formation includes the first direct comparison of aniline-catalyzed reaction rates and equilibrium constants for different classes of nucleophiles, including primary oxyamines, secondary N-alkyl oxyamines, as well as aryl and arylsulfonyl hydrazides. We identified 1,4-diaminobenzene as a superior catalyst for the construction of oxime-linked glycoconjugates under mild conditions.

  20. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    Science.gov (United States)

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Science.gov (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  2. Preparation of a Composite of Sulfated Zirconia/Metal Organic Framework and its Application in Esterification Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun Young; Hasan, Zubair; Ahmed, Imteaz; Jhung, Sung Hwa [Kyungpook National Univ., Daegu (Korea, Republic of)

    2014-06-15

    A porous metal-organic framework (MOF), MIL-101, was synthesized in the presence of sulfated zirconia (SZ) to produce acidic SZ/MIL-101 composites for the first time. The composites were characterized with XRD, nitrogen adsorption, FT-IR, scanning electron microscope, chemical analysis and so on. The composites (SZ/MIL-101s) were successfully applied in a liquid-phase esterification for a high yield of ester. This catalytic result of SZ/MIL-101, compared with that of pure SZ or MIL-101 (showing a negligible yield of ester), suggests that the SZ in the composite is highly active in the acid catalysis probably because of the well-dispersed active species of SZ. Moreover, the esterification is catalyzed in heterogeneous mode as confirmed by negligible esterification after filtration of the catalyst. Finally, microwaves can be efficiently applied both in the synthesis of the composites and the esterification reaction to accelerate the two processes of synthesis and esterification by about 5 times.

  3. Preparation of a Composite of Sulfated Zirconia/Metal Organic Framework and its Application in Esterification Reaction

    International Nuclear Information System (INIS)

    Park, Eun Young; Hasan, Zubair; Ahmed, Imteaz; Jhung, Sung Hwa

    2014-01-01

    A porous metal-organic framework (MOF), MIL-101, was synthesized in the presence of sulfated zirconia (SZ) to produce acidic SZ/MIL-101 composites for the first time. The composites were characterized with XRD, nitrogen adsorption, FT-IR, scanning electron microscope, chemical analysis and so on. The composites (SZ/MIL-101s) were successfully applied in a liquid-phase esterification for a high yield of ester. This catalytic result of SZ/MIL-101, compared with that of pure SZ or MIL-101 (showing a negligible yield of ester), suggests that the SZ in the composite is highly active in the acid catalysis probably because of the well-dispersed active species of SZ. Moreover, the esterification is catalyzed in heterogeneous mode as confirmed by negligible esterification after filtration of the catalyst. Finally, microwaves can be efficiently applied both in the synthesis of the composites and the esterification reaction to accelerate the two processes of synthesis and esterification by about 5 times

  4. Hydrolysis of lactose with -D-galactosidase

    Directory of Open Access Journals (Sweden)

    Vesna Stehlik-Tomas

    2001-06-01

    Full Text Available The conditions of lactose hydrolysis with enzyme preparation of D-galactosidase were investigated. The aim of this work was to considered the use of whey in fermentative processes with yeast Saccharomyces cerevisiae. Enzymatic hydrolysis was conducted at different temperatures, with different lactose concentrations in medium and different concentrations of added enzyme. The results show that optimal temperature for hydrolysis was 40°C. The optimal amount of enzyme preparation was 2 gL-1 in lactose medium with 5-10 % lactose.

  5. Hydrolysis of corn oil using subcritical water

    Directory of Open Access Journals (Sweden)

    Pinto Jair Sebastião S.

    2006-01-01

    Full Text Available This work presents the results of a study on the use of subcritical water as both solvent and reactant for the hydrolysis of corn oil without the use of acids or alkalis at temperatures of 150-280 degreesC. Corn oil hydrolysis leads to the formation of its respective fatty acids with the same efficiency of conventional methods. Fatty acids form an important group of products, which are used in a range of applications. The confirmation and identification of the hydrolysis products was done by HT-HRGC-FID and HRGC/MS.

  6. Synthesis, characterization of spinels NiFe_2O_4 e CoFe_2O_4 and evaluation of performance in the trans esterification and esterification of cottonseed oil

    International Nuclear Information System (INIS)

    Dantas, J.; Silva, A.S.A.; Costa, A.C.F.M.; Freitas, N.L.

    2012-01-01

    The present study aimed synthesizes by combustion reaction and characterization of the spinel CoFe_2O_4 and NiFe_2O_4, and evaluation in the esterification and transesterification reaction of cottonseed oil for biodiesel. The samples were characterized by XRD, nitrogen adsorption/desorption (BET), SEM and transesterification e esterification reaction of the cottonseed oil for biodiesel. The results show that the synthesis was effective in achievement the CoFe_2O_4 and NiFe_2O_4 with surface area 23.75 and 18.18 m"2g"1. The results for esterification indicated that CoFe_2O_4 conversion 16.8 and 38.6%, however for transesterification reaction was observed that NiFe_2O_4 conversion 8.6 and 16.8% for ethanol and methanol, respectively. (author)

  7. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-11-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  8. Upgrading the lubricity of bio-oil via homogeneous catalytic esterification under vacuum distillation conditions

    International Nuclear Information System (INIS)

    Xu, Yufu; Zheng, Xiaojing; Peng, Yubin; Li, Bao; Hu, Xianguo; Yin, Yanguo

    2015-01-01

    In order to accelerate the application of bio-oil in the internal combustion engines, homogeneous catalytic esterification technology under vacuum distillation conditions was used to upgrade the crude bio-oil. The lubricities of the crude bio-oil (BO) and refined bio-oil with homogeneous catalytic esterification (RBO hce ) or refined bio-oil without catalyst but with distillation operation (RBO wc ) were evaluated by a high frequency reciprocating test rig according to the ASTM D 6079 standard. The basic physiochemical properties and components of the bio-oils were analyzed. The surface morphology, contents and chemical valence of active elements on the worn surfaces were investigated by scanning electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy, respectively. The results show that RBO hce has better lubricities than those of BO, but RBO wc has worse lubricities than those of BO. The tribological mechanisms of the bio-oils are attributed to the combined actions of lubricating films and factors that will break the film. Compared with BO, plenty of phenols in RBO wc results in corrosion of the substrate and destroys the integrity of the lubricating films, which is responsible for its corrosive wear. However, more esters and alkanes in RBO hce contribute to forming a complete boundary lubricating film on the rubbed surfaces which result in its excellent antifriction and antiwear properties. - Highlights: • Refined bio-oil was prepared through homogeneous catalytic esterification technology. • Properties of the bio-oils before and after refining were assessed by HFRR. • Refined bio-oil showed better lubricities than crude bio-oil. • More esters and alkanes in refined bio-oil contributed to forming superior boundary lubrication

  9. Production of Biodiesel by Esterification of Free Fatty Acid over Solid Catalyst from Biomass Waste

    Science.gov (United States)

    Mukti, N. I. F.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Recently, low cost feedstocks have been utilized to replace vegetable oils in order to improve the economic feasibility of biodiesel. The esterification of free fatty acid (FFA) on Palm Fatty Acid Distillate (PFAD) with methanol using solid catalyst generated from bagasse fly ash is a promising method to convert FFA into biodiesel. In this research, the esterification of FFA on PFAD using the sulfonated bagasse fly ash catalyst was studied. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, and the catalyst loading. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimum conditions were methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%wt. of PFAD, and reaction temperature of 6°C. The reusability of the solid acid carbon catalysts was also studied in this work. The catalytic activity decreased up to 38% after third cycle. The significant decline in catalyst esterification activity was due to acid site leaching. The physico-characteristics and acid site densities were analyzed by Nitrogen gas adsorption, surface functional groups by Fourier transform infrared spectroscopy (FT-IR), elemental analysis using X-ray fluorescent (XRF), and acid-base back titration methods for determination of acid density.

  10. Electrochemical determination of 5-dodecylsalicylaldoxime and 2′-hydroxy-5′-nonylacetophenone oxime in commercial extractants

    Directory of Open Access Journals (Sweden)

    Elizalde María P.

    2017-01-01

    Full Text Available A differential pulse voltammetric method using a hanging mercury drop electrode (HMDE was optimized for the determination of 5-dodecylsalicylaldoxime in hydro-alcoholic solutions using factorial and central composite designs. The Taguchi design methodology was used to extend the formerly optimized method to the determination of 2′-hydroxy-5′-nonylacetophenone oxime. The method was successfully applied to quantify 5-dodecylsalicylaldoxime and 2′-hydroxy-5′-nonylacetophenone oxime in samples of commercial extractants over the concentration range 0.05–2.45 and 0.07–0.82 mg L-1, respectively, with detection limits of 0.034 and 0.019 mg L-1, respectively.

  11. Energetics of Ortho-7 (oxime drug translocation through the active-site gorge of tabun conjugated acetylcholinesterase.

    Directory of Open Access Journals (Sweden)

    Vivek Sinha

    Full Text Available Oxime drugs translocate through the 20 Å active-site gorge of acetylcholinesterase in order to liberate the enzyme from organophosphorus compounds' (such as tabun conjugation. Here we report bidirectional steered molecular dynamics simulations of oxime drug (Ortho-7 translocation through the gorge of tabun intoxicated enzyme, in which time dependent external forces accelerate the translocation event. The simulations reveal the participation of drug-enzyme hydrogen bonding, hydrophobic interactions and water bridges between them. Employing nonequilibrium theorems that recovers the free energy from irreversible work done, we reconstruct potential of mean force along the translocation pathway such that the desired quantity represents an unperturbed system. The potential locates the binding sites and barriers for the drug to translocate inside the gorge. Configurational entropic contribution of the protein-drug binding entity and the role of solvent translational mobility in the binding energetics is further assessed.

  12. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jane E.S.; Jesus, Paulo C. [Universidade Regional de Blumenau, SC (Brazil). Dept. de Quimica]. E-mail: pcj@furb.rct-sc.br

    2003-06-01

    In the present work, the ester synthesis in organic media catalyzed by lipases immobilized on chrysotile was studied. Lipases of different sources (Mucor javanicus, Pseudomonas cepacia, Rhizopus oryzae, Aspergillus niger and Candida rugosa) were immobilized on chrysotile, an inexpensive magnesium silicate, and used for esterification of hexanoic, octanoic and lauric acid with methanol, ethanol, 1-butanol and 1-octanol at 25 deg C in hexane as solvent. The best results were obtained with Mucor javanicus lipase and lauric acid giving yields of 62-97% of ester. (author)

  13. Catalytic esterification via silica immobilized p-phenylenediamine and dithiooxamide solid catalysts

    Directory of Open Access Journals (Sweden)

    Thana Jaafar Al-Hasani

    2017-02-01

    Full Text Available The p-phenylenediamine (PDA and dithiooxamide (DTO were immobilized onto silica from rice husk ash (RHA using 3-chloropropyltriethoxyilane (CPTES to form a solid catalyst denoted as RHAPDA and RHADTO, respectively. BET measurements of the catalysts showed the surface area to be 145 and 9.7 m2 g−1 with an average pore diameter of 9.8 and 10.9 nm, respectively. The catalytic performance of RHAPDA and RHADTO was tested in the esterification of ethyl alcohol with acetic acid. A conversion of 48% and 69% was achieved, respectively with 100% selectivity toward ethyl acetate.

  14. Decontamination abilities of some foodstuffs enriched with low-esterificated pectin

    International Nuclear Information System (INIS)

    Shtereva, V.; Kiradzhiev, G.; Paskalev, Z.; Genchev, E.

    1993-01-01

    Radioprotective foodstuffs prepared from mousses of beet, apricot and hip, containing low-esterificated pectin, have been prepared. Their abilities to reduce the resorption of radionuclides in the digestive tract have been investigated. These are evaluated with respect to cesium-137 and cerium-144. The changes in nuclide accumulation have been controlled by measuring the whole-body activity and radiometry of the critical organs. Among the studied mousses the hip mousse proved to be the most effective towards radioactive cesium. Efficacy towards cerium has not been found. (author)

  15. Alkaline earth layered benzoates as reusable heterogeneous catalysts for the methyl esterification of benzoic acid

    Directory of Open Access Journals (Sweden)

    Swamy Arêa Maruyama

    2012-01-01

    Full Text Available This paper describes the synthesis and characterization of layered barium, calcium and strontium benzoates and evaluates the potential of these materials as catalysts in the synthesis of methyl benzoate. The methyl esterification of benzoic acid was investigated, where the effects of temperature, alcohol:acid molar ratio and amount of catalyst were evaluated. Ester conversions of 65 to 70% were achieved for all the catalysts under the best reaction conditions. The possibility of recycling these metallic benzoates was also demonstrated, evidenced by unaltered catalytic activity for three consecutive reaction cycles.

  16. Cholesterol esterification and atherogenic index of plasma correlate with lipoprotein size and findings on coronary angiography

    Czech Academy of Sciences Publication Activity Database

    Dobiášová, Milada; Frohlich, J.; Šedová, Michaela; Cheung, M. C.; Brown, B.G.

    2011-01-01

    Roč. 52, č. 3 (2011), s. 566-571 ISSN 0022-2275 R&D Projects: GA MZd(CZ) NR8328; GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z10300504 Keywords : fractional esterification rate (FERHDL). * log(TG/HDL-Cholesterol) * AIP * biomarkers of cardiovascular risk * lipoprotein particle size * HDL- Atherosclerosis Treatment Study (HATS) Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 5.559, year: 2011

  17. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    Science.gov (United States)

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  18. Subtilisin-catalyzed esterification of di- and oligosaccharides containing a d-fructose moiety

    International Nuclear Information System (INIS)

    Riva, S.; Nonini, M.; Ottolina, G.; Danieli, B.

    1998-01-01

    Several di- and oligosaccharides containing a d-fructose moiety have been acylated by protease subtilisin in anhydrous dimethylformamide in the presence of the activated ester trifluoroethyl butanoate. Under the reaction conditions used, all the substrates were converted into the corresponding monobutanoates in ca. 50% isolated yields. Structural determination of the products by 13 C NMR indicated a strong preference of subtilisin towards the regioselective esterification of the primary hydroxyls of the fructose moiety and, specifically, of the C-1 OH, as already observed with sucrose. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification

    Directory of Open Access Journals (Sweden)

    Silva Jane E. S.

    2003-01-01

    Full Text Available In the present work, the ester synthesis in organic media catalyzed by lipases immobilized on chrysotile was studied. Lipases of different sources (Mucor javanicus, Pseudomonas cepacia, Rhizopus oryzae, Aspergillus niger and Candida rugosa were immobilized on chrysotile, an inexpensive magnesium silicate, and used for esterification of hexanoic, octanoic and lauric acid with methanol, ethanol, 1-butanol and 1-octanol at 25ºC in hexane as solvent. The best results were obtained with Mucor javanicus lipase and lauric acid giving yields of 62-97% of ester.

  20. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification

    International Nuclear Information System (INIS)

    Silva, Jane E.S.; Jesus, Paulo C.

    2003-01-01

    In the present work, the ester synthesis in organic media catalyzed by lipases immobilized on chrysotile was studied. Lipases of different sources (Mucor javanicus, Pseudomonas cepacia, Rhizopus oryzae, Aspergillus niger and Candida rugosa) were immobilized on chrysotile, an inexpensive magnesium silicate, and used for esterification of hexanoic, octanoic and lauric acid with methanol, ethanol, 1-butanol and 1-octanol at 25 deg C in hexane as solvent. The best results were obtained with Mucor javanicus lipase and lauric acid giving yields of 62-97% of ester. (author)

  1. Water activity control: a way to improve the efficiency of continuous lipase esterification.

    Science.gov (United States)

    Colombié, S; Tweddell, R J; Condoret, J S; Marty, A

    1998-11-05

    During continuous lipase-catalyzed oleic acid esterification by ethanol in n-hexane, the oleic acid conversion, initially at 95%, decreases to 20% after 2 h. This decrease is caused by the accumulation of the water produced in the course of the reaction in the packed-bed reactor (PBR). In order to improve the PBR efficiency, it is necessary to evacuate the water produced. In this study, different approaches have been tested to control the water content in the PBR during continuous esterification. The first approach consisted in improving the water solubility by increasing the reaction medium polarity. The addition of polar additives to n-hexane, the use of more polar solvents, and the use of solvent-free reaction medium were tested as a means to favor the water evacuation from the PBR. First of all, the use ofn-hexane supplemented with acetone (3 M) or 2-methyl-2-propanol (1 M) enabled the conversion to be maintained at higher values than those obtained in pure n-hexane. The replacement of n-hexane by a more polar solvent, like the 5-methyl-2-hexanone, resulted in the same effect. In all cases, conversions at steady-state were always less than 95%, as obtained in pure n-hexane. This is explained by a decrease in the enzyme activity due to the increase in the medium polarity. Nevertheless, an increase in enzyme quantity allowed 90% conversion to be maintained during 1 week using 3 M acetone amended n-hexane. Good results (a steady-state conversion of about 80%) were obtained when esterification was carried out in a solvent-free reaction medium containing 2 M 2-methyl-2-propanol as a polar additive. The second approach consisted in the evaporation of the accumulated water by use of an intermittent airflow. Although this process did not enable constant esterification rate to be maintained, it did enable the initial conversion (95%) to be restored intermittently. Copyright 1998 John Wiley & Sons, Inc.

  2. Kinetics of the esterification of active pharmaceutical ingredients containing carboxylic Acid functionality in polyethylene glycol

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie V; Hansen, Steen Honoré; Moesgaard, Birthe

    2014-01-01

    Polyethylene glycols (PEGs) are attractive as excipients in the manufacture of drug products because they are water soluble and poorly immunogenic. They are used in various pharmaceutical preparations. However, because of their terminal hydroxyl groups, PEGs can participate in esterification reac......, it is important to be aware of this drug-excipient interaction, as it can reduce the shelf-life of a low-average molecular weight PEG formulation considerably. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:2424-2433, 2014....

  3. Modification of Turen Bentonite with AlCl3 for Esterification of Palmitic Acid

    Directory of Open Access Journals (Sweden)

    Abdulloh Abdulloh

    2014-03-01

    Full Text Available Natural Turen bentonite has been modified and applied as catalyst for palmitic acid esterification. Modification of natural Turen bentonite was conducted by cation exchange method using AlCl3 solution. Catalyst characterization was performed on X-ray Fluoroscence, X-ray Diffraction, nitrogen adsorption-desorption and infrared spectroscopy techniques. The catalytic activity test in the esterification reaction of palmitic acid with methanol was conducted by bath at 65 °C with a variation of reaction time of 1, 2, 3, 4 and 5 h. Catalytic activity has been observed qualitatively using GC-MS and quantitatively by changes in acid number. The analysis showed the formation of Al3+-bentonite. Observation on the elements has shown that the presence of calcium decreased from 10.2% to 4.17%, with an increase of aluminium content from 9.9% to 13%. Diffraction line at 2θ 5.7379º became 5.6489º, along with changes in d-spacing of 15.3895 Å to 15.6319 Å. The surface area increased from 83.78 m2/g to 91.26 m2/g, while Brönsted acid sites increased from 10.2 µmol/g to 67.5 µmol/g and Lewis acid sites increased from 94.9 µmol/g to 132 µmol/g. Furthermore, Al3+-bentonite has showed as active catalyst in the esterification reaction of palmitic acid with palmitic acid with conversion of 78.78% for 5 h. © 2014 BCREC UNDIP. All rights reservedReceived: 24th September 2013; Revised: 31st December 2013; Accepted: 26th January 2014[How to Cite: Abdulloh, A., Maryam, S., Aminah, N.S., Triyono, T., Trisunaryanti, W., Mudasir, M., Prasetyoko, D. (2014. Modification of Turen’s Bentonite with AlCl3 for Esterification of Palmitic Acid. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 66-73. (doi:10.9767/bcrec.9.1.5513.66-73][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5513.66-73

  4. Hemicellulose hydrolysis catalysed by solid acids

    NARCIS (Netherlands)

    Carà, P.D.; Pagliaro, M.; Elmekawy, A.; Brown, D.R.; Verschuren, P.; Shiju, N.R.; Rothenberg, G.

    2013-01-01

    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running

  5. Process for teating whey by enzymic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nocquet, J L

    1980-01-01

    In the process lactose is converted into glucose and galactose, with demineralization to a level of at least 50%, before the hydrolysis. A bacteriologically stable hydrolysed whey is obtained and may be used in foods for human consumption.

  6. Hydrolysis of alkaline pretreated banana peel

    Science.gov (United States)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  7. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    OpenAIRE

    Ramirez, Miguel; Obrzydowski, Jennifer; Ayers, Mary; Virparia, Sonia; Wang, Meijing; Stefan, Kurtis; Linchangco, Richard; Castignetti, Domenic

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH)–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a g...

  8. In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase

    OpenAIRE

    Kamil Musilek; Kamil Kuca; Daniel Jun; Lucie Musilova

    2011-01-01

    We have in vitro tested the ability of common, commercially available, cholinesterase reactivators (pralidoxime, obidoxime, methoxime, trimedoxime and HI-6) to reactivate human acetylcholinesterase (AChE), inhibited by five structurally different organophosphate pesticides and inhibitors (paraoxon, dichlorvos, DFP, leptophos-oxon and methamidophos). We also tested reactivation of human butyrylcholinesterase (BChE) with the aim of finding a potent oxime, suitable to serve as a “pseudocatalytic...

  9. Cerebral uptake and retention of 99Tcsup(m)-hexamethylpropyleneamine oxime (99Tcsup(m)-HM-PAO)

    International Nuclear Information System (INIS)

    Holmes, R.A.; Chaplin, S.B.; Royston, K.G.; Missouri Univ., Columbia

    1985-01-01

    A new radiopharmaceutical, 99 Tcsup(m)-hexamethylpropyleneamine oxime ( 99 Tcsup(m)-HM-PAO) is described. This agent displays considerable promise for imaging cerebral blood flow. In studies in rats and one human volunteer, 99 Tcsup(m)-HM-PAO demonstrates good brain uptake, prolonged retention of activity in the brain, and slow regional redistribution. These properties suggest that this new radiopharmaceutical is ideal for single photon emission tomographic (SPECT) imaging of cerebral blood flow. (author)

  10. Construction of New Potential Reactivators of Phosphonylated Acetylcholinesterase. Substitution of F for H in the Nucleus of Pyridinecarboxaldehyde Oximes.

    Science.gov (United States)

    1983-11-01

    essential to the content of the re- port and in all cases NMR data subjected to interpretation in this report have been entered in typography to...compared. In the Second Quarter reactions in the synthetic pathway to 3-F-2-PAM were scaled-up. Low yields were encountered for the specific nitration...oxime was synthetically achieved by way of the Markovac-Stevens-Ash-Hackley reaction , and the compound was characterized by its mass spectrum, NMR

  11. Effects of Chemical Inter esterification on the Physicochemical Properties of Palm Stearin, Palm Kernel Oil and Soybean Oil Blends

    International Nuclear Information System (INIS)

    Siti, M. F.H.; Norizzah, A. R.; Zaliha, O.

    2012-01-01

    Palm stearin (PS), palm kernel oil (PKO) and soybean oil (SBO) blends were formulated according to Design Expert 8.0.4 (2010). All the sixteen oil blends were subjected to chemical inter esterification (CIE) using sodium methoxide as the catalyst. The effects of chemical inter esterification on the slip melting point (SMP), solid fat content (SFC), triacylglycerol (TAG) composition and polymorphism were investigated. Palm based trans-free table margarine containing PS/PKO/SBO [49/20/31, (w/w)], was optimally formulated through analysis of multiple ternary phase diagrams and was found to have quite similar SMP and SFC profiles as compared with commercial table margarine. This study has shown that blending and chemical inter esterification are effective in modifying the physicochemical properties of palm stearin, palm kernel oil, soybean oil and their blends. (author)

  12. Esterification of Fatty Acids with Short-Chain Alcohols over Commercial Acid Clays in a Semi-Continuous Reactor

    Directory of Open Access Journals (Sweden)

    Mohamed H. Frikha

    2009-11-01

    Full Text Available Production of fatty acid esters from stearic, oleic, and palmitic acids and short-chain alcohols (methanol, ethanol, propanol, and butanol for the production of biodiesel was investigated in this work. A series of montmorillonite-based clays catalysts (KSF, KSF/0, KP10, and K10 were used as acidic catalysts. The influence of the specific surface area and the acidity of the catalysts on the esterification rate were investigated. The best catalytic activities were obtained with KSF/0 catalyst. The esterification reaction has been carried out efficiently in a semi-continuous reactor at 150°C temperature higher than the boiling points of water and alcohol. The reactor used enabled the continuous removal of water and esterification with hydrated alcohol (ethanol 95% without affecting the original activity of the clay.

  13. Application of magnetic nanoparticle MnFe_2O_4 type as a catalyst in esterification reaction

    International Nuclear Information System (INIS)

    Pereira, K.R. de O.; Barros, A.B. de S.; Moura, T.F.B. de; Vilar, E.; Dantas, J.; Costa, A. C. F. de M.

    2016-01-01

    The interest in obtaining renewable energy arouses the interest of researchers in the development of biofuels to replace conventional fuels. This work aimed to obtain magnetic nanoparticle MnFe_2O_4 and evaluate their performance as a catalyst in esterification reaction to obtain biodiesel. The sample was synthesized through the combustion reaction and characterized by XRD, SEM and BET. The esterification reaction, the methyl ethyl route was conducted in a high pressure reactor at 180 ° C for 1 hour with oil molar ratio 1:12 alcohol with 2% catalyst. The results indicate the formation of the phase MnFe_2O_4 and agglomerate in the form of irregular plate, with particles bound strongly to the surface of the agglomerates. The catalytic tests showed that sample was active for the reaction of esterification methyl ethyl route, with conversions of 52% and 48%, respectively. (author)

  14. Hydrolysis of isocyanic acid on SCR catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, M; Kleemann, M; Koebel, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Standard SCR catalysts possess high activity for the hydrolysis of HNCO and thus explain the suitability of urea as a selective reducing agent for NO{sub x}. At high space velocities HNCO-slip can get perceptible over the entire temperature range. This can be attributed to the fact that the temperature dependence is strong for the SCR reaction, but weak for the hydrolysis reaction. (author) 3 figs., 5 refs.

  15. In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Kamil Musilek

    2011-03-01

    Full Text Available We have in vitro tested the ability of common, commercially available, cholinesterase reactivators (pralidoxime, obidoxime, methoxime, trimedoxime and HI-6 to reactivate human acetylcholinesterase (AChE, inhibited by five structurally different organophosphate pesticides and inhibitors (paraoxon, dichlorvos, DFP, leptophos-oxon and methamidophos. We also tested reactivation of human butyrylcholinesterase (BChE with the aim of finding a potent oxime, suitable to serve as a “pseudocatalytic” bioscavenger in combination with this enzyme. Such a combination could allow an increase of prophylactic and therapeutic efficacy of the administered enzyme. According to our results, the best broad-spectrum AChE reactivators were trimedoxime and obidoxime in the case of paraoxon, leptophos-oxon, and methamidophos-inhibited AChE. Methamidophos and leptophos-oxon were quite easily reactivatable by all tested reactivators. In the case of methamidophos-inhibited AChE, the lower oxime concentration (10−5 M had higher reactivation ability than the 10−4 M concentration. Therefore, we evaluated the reactivation ability of obidoxime in a concentration range of 10−3–10−7 M. The reactivation of methamidophos-inhibited AChE with different obidoxime concentrations resulted in a bell shaped curve with maximum reactivation at 10−5 M. In the case of BChE, no reactivator exceeded 15% reactivation ability and therefore none of the oximes can be recommended as a candidate for “pseudocatalytic” bioscavengers with BChE.

  16. Inhibition, recovery and oxime-induced reactivation of muscle esterases following chlorpyrifos exposure in the earthworm Lumbricus terrestris

    International Nuclear Information System (INIS)

    Collange, B.; Wheelock, C.E.; Rault, M.; Mazzia, C.; Capowiez, Y.; Sanchez-Hernandez, J.C.

    2010-01-01

    Assessment of wildlife exposure to organophosphorus (OP) pesticides generally involves the measurement of cholinesterase (ChE) inhibition, and complementary biomarkers (or related endpoints) are rarely included. Herein, we investigated the time course inhibition and recovery of ChE and carboxylesterase (CE) activities in the earthworm Lumbricus terrestris exposed to chlorpyrifos, and the ability of oximes to reactivate the phosphorylated ChE activity. Results indicated that these esterase activities are a suitable multibiomarker scheme for monitoring OP exposure due to their high sensitivity to OP inhibition and slow recovery to full activity levels following pesticide exposure. Moreover, oximes reactivated the inhibited ChE activity of the earthworms exposed to 12 and 48 mg kg -1 chlorpyrifos during the first week following pesticide exposure. This methodology is useful for providing evidence for OP-mediated ChE inhibition in individuals with a short history of OP exposure (≤1 week); resulting a valuable approach for assessing multiple OP exposure episodes in the field. - Esterase inhibition combined with oxime reactivation methods is a suitable approach for monitoring organophosphate contamination

  17. Inhibition, recovery and oxime-induced reactivation of muscle esterases following chlorpyrifos exposure in the earthworm Lumbricus terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Collange, B. [Universite d' Avignon et des Pays de Vaucluse, UMR 406 Abeilles et Environnement, Site AGROPARC, F-84914, Avignon Cede 09 (France); Wheelock, C.E. [Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77, Stockholm (Sweden); Rault, M.; Mazzia, C. [Universite d' Avignon et des Pays de Vaucluse, UMR 406 Abeilles et Environnement, Site AGROPARC, F-84914, Avignon Cede 09 (France); Capowiez, Y. [INRA, Unite PSH, Site AGROPARC, F-84914 Avignon Cedex 09 (France); Sanchez-Hernandez, J.C., E-mail: juancarlos.sanchez@uclm.e [Laboratory of Ecotoxicology, Faculty of Environmental Science, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo (Spain)

    2010-06-15

    Assessment of wildlife exposure to organophosphorus (OP) pesticides generally involves the measurement of cholinesterase (ChE) inhibition, and complementary biomarkers (or related endpoints) are rarely included. Herein, we investigated the time course inhibition and recovery of ChE and carboxylesterase (CE) activities in the earthworm Lumbricus terrestris exposed to chlorpyrifos, and the ability of oximes to reactivate the phosphorylated ChE activity. Results indicated that these esterase activities are a suitable multibiomarker scheme for monitoring OP exposure due to their high sensitivity to OP inhibition and slow recovery to full activity levels following pesticide exposure. Moreover, oximes reactivated the inhibited ChE activity of the earthworms exposed to 12 and 48 mg kg{sup -1} chlorpyrifos during the first week following pesticide exposure. This methodology is useful for providing evidence for OP-mediated ChE inhibition in individuals with a short history of OP exposure (<=1 week); resulting a valuable approach for assessing multiple OP exposure episodes in the field. - Esterase inhibition combined with oxime reactivation methods is a suitable approach for monitoring organophosphate contamination

  18. Kinetic analysis of interactions of paraoxon and oximes with human, Rhesus monkey, swine, rabbit, rat and guinea pig acetylcholinesterase.

    Science.gov (United States)

    Worek, Franz; Aurbek, Nadine; Wille, Timo; Eyer, Peter; Thiermann, Horst

    2011-01-15

    Previous in vitro studies showed marked species differences in the reactivating efficiency of oximes between human and animal acetylcholinesterase (AChE) inhibited by organophosphorus (OP) nerve agents. These findings provoked the present in vitro study which was designed to determine the inhibition, aging, spontaneous and oxime-induced reactivation kinetics of the pesticide paraoxon, serving as a model compound for diethyl-OP, and the oximes obidoxime, pralidoxime, HI 6 and MMB-4 with human, Rhesus monkey, swine, rabbit, rat and guinea pig erythrocyte AChE. Comparable results were obtained with human and monkey AChE. Differences between human, swine, rabbit, rat and guinea pig AChE were determined for the inhibition and reactivation kinetics. A six-fold difference of the inhibitory potency of paraoxon with human and guinea pig AChE was recorded while only moderate differences of the reactivation constants between human and animal AChE were determined. Obidoxime was by far the most effective reactivator with all tested species. Only minor species differences were found for the aging and spontaneous reactivation kinetics. The results of the present study underline the necessity to determine the inhibition, aging and reactivation kinetics in vitro as a basis for the development of meaningful therapeutic animal models, for the proper assessment of in vivo animal data and for the extrapolation of animal data to humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Spectrophotometric determination of pKa's of 1-hydroxybenzotriazole and oxime derivatives in 95% acetonitrile-water

    International Nuclear Information System (INIS)

    Fathallah, M.F.; Khattab, S.N.

    2011-01-01

    1-hydroxybenzotriazole derivatives are used with carbodiimide as additives to generate active esters during peptide bond formation. They are also used as additives during the peptide bond formation. Dissociation constants of the 1-hydroxybenzotriazole (HOBt) and its derivatives, 1-hydroxy-6-chloro benzotriazole, 1-hydroxy-6-trifluoro methylbenzotriazole, 1-hydroxy-6-nitrobenzo-triazole were determined spectrophotometrically in 95% acetonitrile-water. In addition, 7-aza-1-hydroxybenzotriazole (7-HOAt) and 4-aza-1-hydroxybenzotriazole (4-HOAt) were also studied. Recently, oxyma was reported as a good replacement for the benzotriazole derivatives. As alcoholic components of active esters, the oximes seem to be good leaving groups. Therefore it was expected, that the strongly acidic and nucleophilic oximes, which possess electron-withdrawing groups in the molecule, are suitable as additives during the peptide bond formation. The dissociation constant of some oximes, such as diethyl 2-(hydroxyimino)malonate, ethyl 2-cyano-2-(hydroxyimino)acetate (oxyma), hydroxycarbonimidoyl dicyanide and N-hydroxypicolinimidoyl cyanide in 95% acetonitrile-water are reported. (author)

  20. Hydrolytic gain during hydrolysis reactions : implications and correction procedures

    NARCIS (Netherlands)

    Marchal, L.M.; Tramper, J.

    1999-01-01

    Some of the structural parameters of starch (e.g. % beta- or gluco-hydrolysis) were influenced by the increase in mass during the hydrolysis reactions (hydrolytic gain). Procedures were derived to correct this apparent % of hydrolysis to actual % of hydrolysis. These analytically derived equations

  1. Biodiesel production from waste coconut oil by esterification with ethanol: The effect of water removal by adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Joao Felipe G.; Lucena, Izabelly Larissa; Saboya, Rosana M. Alves; Rodrigues, Marcelo L.; Torres, Antonio Eurico B.; Fernandes, Fabiano A. Narciso; Cavalcante, Celio L. Jr. [Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus do Pici, Bl. 709, 60455-760, Fortaleza, CE (Brazil); Parente, Expedito Jose S. Jr. [Tecnologias Bioenergeticas (TECBIO), PARTEC, Rua Prof. Romulo Proenca, s/n, CEP 60455-700, Fortaleza, CE (Brazil)

    2010-11-15

    The production of biodiesel by esterification with ethanol using waste oil generated in the refining of coconut oil was investigated in this study. The reaction was performed with and without adsorption of water in order to verify the effect of removing water on the reaction conversion. Methanol was also evaluated as an esterification agent. For both ethanol and methanol, conversions over 99% mol were observed. Simultaneous water adsorption allowed the use of lower alcohol/oil molar ratios thus enabling better economics to a possible industrial process. (author)

  2. Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation.

    Science.gov (United States)

    Kelkar, Mandar A; Gogate, Parag R; Pandit, Aniruddha B

    2008-03-01

    Cavitation results in conditions of turbulence and liquid circulation in the reactor which can aid in eliminating mass transfer resistances. The present work illustrates the use of cavitation for intensification of biodiesel synthesis (esterification) reaction, which is mass transfer limited reaction considering the immiscible nature of the reactants, i.e., fatty acids and alcohol. Esterification of fatty acid (FA) odour cut (C(8)-C(10)) with methanol in the presence of concentrated H(2)SO(4) as a catalyst has been studied in hydrodynamic cavitation reactor as well as in the sonochemical reactor. The different reaction operating parameters such as molar ratio of acid to alcohol, catalyst quantity have been optimized under acoustic as well as hydrodynamic cavitating conditions in addition to the optimization of the geometry of the orifice plate in the case of hydrodynamic cavitation reactors. Few experiments have also been carried out with other acid (lower and higher)/methanol combination viz. caprylic acid and capric acids with methanol with an aim of investigating the efficacy of cavitation for giving the desired yields and also to quantify the degree of process intensification that can be achieved using the same. It has been observed that ambient operating conditions of temperature and pressure and reaction times of 90% conversion (mol%). This clearly establishes the efficacy of cavitation as an excellent way to achieve process intensification of the biodiesel synthesis process.

  3. Testosterone-Fatty Acid esterification: a unique target for the endocrine toxicity of tributyltin to gastropods.

    Science.gov (United States)

    Leblanc, Gerald A; Gooding, Meredith P; Sternberg, Robin M

    2005-01-01

    Over the past thirty years, a global occurrence of sexual aberration has occurred whereby females among populations of prosobranch snails exhibit male sex characteristics. This condition, called imposex, has been causally associated with exposure to the biocide tributyltin. Tributyltin-exposed, imposex snails typically have elevated levels of testosterone which have led to the postulate that this endocrine dysfunction is responsible for imposex. This overview describes recent evidence that supports this postulate. Gastropods maintain circulating testosterone levels and administration of testosterone to females or castrates stimulates male sex differentiation in several snail species. Studies in the mud snail (Ilyanassa obsoleta) have shown that gastropods utilize a unique strategy for regulating free testosterone levels. Excess testosterone is converted to fatty acid esters by the action of a testosterone-inducible, high capacity/low affinity enzyme, acyl-CoA:testosterone acyl transferase, and stored within the organisms. Free testosterone levels are regulated during the reproductive cycle apparently due to changes in esterification/desterification suggesting that testosterone functions in the reproductive cycle of the organisms. Testosterone esterification provides a unique target in the testosterone regulatory machinery of snails that is altered by tributyltin. Indeed, imposex and free testosterone levels were elevated in field collected snails containing high tin levels, while testosterone-fatty acid ester pools were reduced in these organisms. These observations indicate that tributyltin elevates free testosterone by reducing the retention of testosterone as fatty acid-esters. This endocrine effect of tributyltin may be responsible for imposex.

  4. Lecithin-cholesterol acyltransferase in brain: Does oxidative stress influence the 24-hydroxycholesterol esterification?

    Science.gov (United States)

    La Marca, Valeria; Maresca, Bernardetta; Spagnuolo, Maria Stefania; Cigliano, Luisa; Dal Piaz, Fabrizio; Di Iorio, Giuseppe; Abrescia, Paolo

    2016-04-01

    24-Hydroxycholesterol (24OH-C) is esterified by the enzyme lecithin-cholesterol acyltransferase (LCAT) in the cerebrospinal fluid (CSF). We report here that the level of 24OH-C esters was lower in CSF of patients with amyotrophic lateral sclerosis than in healthy subjects (54% vs 68% of total 24OH-C, p=0.0005; n=8). Similarly, the level of 24OH-C esters in plasma was lower in patients than in controls (62% vs 77% of total 24OH-C; p=0.0076). The enzyme amount in CSF, as measured by densitometry of the protein band revealed by immunoblotting, was about 4-fold higher in patients than in controls (p=0.0085). As differences in the concentration of the LCAT stimulator Apolipoprotein E were not found, we hypothesized that the reduced 24OH-C esterification in CSF of patients might depend on oxidative stress. We actually found that oxidative stress reduced LCAT activity in vitro, and 24OH-C effectively stimulated the enzyme secretion from astrocytoma cells in culture. Enhanced LCAT secretion from astrocytes might represent an adaptive response to the increase of non-esterified 24OH-C percentage, aimed to avoid the accumulation of this neurotoxic compound. The low degree of 24OH-C esterification in CSF or plasma might reflect reduced activity of LCAT during neurodegeneration. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  5. The utilization of leftover as acid catalyst to catalyse the transesterification and esterification reactions

    Science.gov (United States)

    Leung, K. K.; Yau, Y. H.

    2017-08-01

    Biodiesel (Fatty Acid Methyl Ester, FAME) is a green and renewable energy. It is carbon neutral and produces less air pollutants in combustion. In my project, the selected feedstock of biodiesel production is grease trap oil (GTO). It is extracted from restaurants, and needs pre-treatment. The triglycerides and free fatty acid (FFA) are the main components of GTO. Both triglycerides and free fatty acid can be converted to biodiesel (Fatty Acid Methyl Ester) by transesterification and esterification, through reaction with alcohol (methanol) and catalyst. In the processes, acidic catalyst is chosen to speed up the reactions. The catalyst used In the study, a heterogeneous solid acid is applied. It is waste cooked rice (WCR) collected from leftover. The WCR powder is pyrolysed in 400°C furnace 15 hours and blown with nitrogen gas (incomplete carbonization). The WCR black powder is then mixed with concentrated sulphuric acid and heat in 160°C furnace 15 hours and continuous blown with nitrogen gas (sulphonation). This heterogeneous solid acid is used in the both transesterification and esterification to produce FAME. Moreover, in the optimal reaction conditions, this catalyst offers a stable catalytic effect. After 20 times usage in optimal reaction condition, the catalytic activity remains unchanged.

  6. Esterification of Palmitic Acid with Methanol in the Presence of Macroporous Ion Exchange Resin as Catalyst

    Directory of Open Access Journals (Sweden)

    Amelia Qarina Yaakob and Subhash Bhatia

    2012-10-01

    Full Text Available The esterification of palmitic acid with methanol was studied in a batch reactor using macro porous ion exchange resin Amberlyst 15 as a catalyst. Methyl palmitate was produced from the reaction between palmitic acid and methanol in the presence of catalyst. The effects of processing parameters, molar ratio of alcohol to acid M, (4-10, catalyst loading (0-10 g cat/liter, water inhibition (0-2 mol/liter, agitator speed (200-800 rpm and reaction temperature (343-373K were studied. The experimental kinetic data were correlated using homogenous as well as heterogeneous models (based on single as well as dual site mechanisms. The activation energy of the reaction was 11.552 kJ/mol for forward reaction whilst 5.464 kJ/mol for backward reaction. The experimental data fitted well with the simulated data obtained from the kinetic models. Keywords: Palmitic Acid, Methanol, Esterification, Ion Exchange Resin, Kinetics.

  7. Lutein Esterification in Wheat Flour Increases the Carotenoid Retention and Is Induced by Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Elena Mellado-Ortega

    2017-12-01

    Full Text Available The present study aimed to evaluate the effects of long-term storage on the carotenoid pigments present in whole-grain flours prepared from durum wheat and tritordeum. As expected, higher storage temperatures showed a catabolic effect, which was very marked for free carotenoid pigments. Surprisingly, for both cereal genotypes, the thermal conditions favoured the synthesis of lutein esters, leading to an enhanced stability, slower degradation, and, subsequently, a greater carotenoid retention. The putative involvement of lipase enzymes in lutein esterification in flours is discussed, particularly regarding the preferential esterification of the hydroxyl group with linoleic acid at the 3′ in the ε-ring of the lutein molecule. The negative effects of processing on carotenoid retention were less pronounced in durum wheat flours, which could be due to an increased esterifying activity (the de novo formation of diesterified xanthophylls was observed. Moreover, clear differences were observed for tritordeum depending on whether the lutein was in a free or esterified state. For instance, lutein-3′-O-monolinoleate showed a three-fold lower degradation rate than free lutein at 37 °C. In view of our results, we advise that the biofortification research aimed at increasing the carotenoid contents in cereals should be based on the selection of varieties with an enhanced content of esterified xanthophylls.

  8. New Methods of Esterification of Nanodiamonds in Fighting Breast Cancer—A Density Functional Theory Approach

    Directory of Open Access Journals (Sweden)

    Linda-Lucila Landeros-Martinez

    2017-10-01

    Full Text Available The use of nanodiamonds as anticancer drug delivery vehicles has received much attention in recent years. In this theoretical paper, we propose using different esterification methods for nanodiamonds. The monomers proposed are 2-hydroxypropanal, polyethylene glycol, and polyglicolic acid. Specifically, the hydrogen bonds, infrared (IR spectra, molecular polar surface area, and reactivity parameters are analyzed. The monomers proposed for use in esterification follow Lipinski’s rule of five, meaning permeability is good, they have good permeation, and their bioactivity is high. The results show that the complex formed between tamoxifen and nanodiamond esterified with polyglicolic acid presents the greatest number of hydrogen bonds and a good amount of molecular polar surface area. Calculations concerning the esterified nanodiamond and reactivity parameters were performed using Density Functional Theory with the M06 functional and the basis set 6–31G (d; for the esterified nanodiamond–Tamoxifen complexes, the semi-empirical method PM6 was used. The solvent effect has been taken into account by using implicit modelling and the conductor-like polarizable continuum model.

  9. Efficient production of biodiesel from waste grease: one-pot esterification and transesterification with tandem lipases.

    Science.gov (United States)

    Yan, Jinyong; Li, Aitao; Xu, Yi; Ngo, Thao P N; Phua, Szechao; Li, Zhi

    2012-11-01

    A novel concept and efficient method for producing biodiesel (FAME) from grease (15-40wt% free fatty acid, FFA) were developed by using tandem lipases for one-pot esterification of FFA and transesterification of triglyceride with methanol in a solvent-free system. Combining immobilized Candida antarctica lipase B (CALB) (Novozyme 435) favoring the esterification and immobilized Thermomyces lanuginosus lipase (TLL) (Lipozyme TLIM) preferring the transesterification at 2:8 (wt/wt) gave FAME in 80% yield, being better than that with Novozyme 435 or Lipozyme TLIM. Recombinant Escherichia coli (Calb/Tll) co-expressing CALB and TLL was engineered as a more efficient tandem-lipases system. Using wet or dry cells (4wt%) gave FAME in 87% or 95% yield, which is much better than that with E. coli cells expressing either CALB or TLL alone. Cells of E. coli (Calb/Tll) were recycled for five times and retained 75% productivity, thus being practical for producing biodiesel from grease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Acidity-Reactivity Relationships in Catalytic Esterification over Ammonium Sulfate-Derived Sulfated Zirconia

    Directory of Open Access Journals (Sweden)

    Abdallah I. M. Rabee

    2017-07-01

    Full Text Available New insight was gained into the acidity-reactivity relationships of sulfated zirconia (SZ catalysts prepared via (NH42SO4 impregnation of Zr(OH4 for propanoic acid esterification with methanol. A family of systematically related SZs was characterized by bulk and surface analyses including XRD, XPS, TGA-MS, N2 porosimetry, temperature-programmed propylamine decomposition, and FTIR of adsorbed pyridine, as well as methylbutynol (MBOH as a reactive probe molecule. Increasing surface sulfation induces a transition from amphoteric character for the parent zirconia and low S loadings <1.7 wt %, evidenced by MBOH conversion to 3-hydroxy-3-methyl-2-butanone, methylbutyne and acetone, with higher S loadings resulting in strong Brønsted-Lewis acid pairs upon completion of the sulfate monolayer, which favored MBOH conversion to prenal. Catalytic activity for propanoic acid esterification directly correlated with acid strength determined from propylamine decomposition, coincident with the formation of Brønsted-Lewis acid pairs identified by MBOH reactive titration. Monodispersed bisulfate species are likely responsible for superacidity at intermediate sulfur loadings.

  11. Esterification and hydrolysis of vitamin A in the liver of brook trout (Salvelinus fontinalis) and the influence of a coplanar polychlorinated biphenyl

    International Nuclear Information System (INIS)

    Ndayibagira, A.; Spear, P.A.

    1999-01-01

    Recent reports of extremely low retinoid stores in fish living in contaminated river systems prompted an initial investigation of the mechanisms of hepatic storage and mobilization in brook trout. Enzyme characterization in microsomes revealed a lecithin:retinol acyltransferase activity (LRAT) optimum in the alkaline range (pH 9.0; V max =0.6 nmol per mg prot. h -1 ; K m =10.2 μM) which is not known to occur in mammals, in addition to a secondary optimum at pH 6.5 typical of mammals. Acyl CoA:retinol acyltransferase (ARAT) kinetic parameters were quite different to those of mammals. The substrate affinity of trout ARAT (K m =1.6 μM) was approximately 22-fold greater than that of the rat while maximal velocity (V max =0.2 nmol per mg prot. h -1 ) was 18-fold less. Retinyl ester hydrolase activity (REH) was optimal under acid conditions (pH 4.2; V max =6.6 nmol per mg prot. h -1 ; K m =0.6 mM), was inhibited by a bile salt analogue and was greater in males than females. This REH was tentatively categorized as a bile salt-independent, acid retinyl ester hydrolase (BSI-AREH). REH was inhibited in a dose-dependent manner following in vivo exposure to a representative environmental contaminant the coplanar polychlorinated biphenyl (PCB), 3,3minutes or feet,4,4minutes or feet-tetrachlorobiphenyl (TCBP). Inhibition may be an indirect effect because enzyme activity was not affected by in vitro exposure of control microsomes. REH inhibition in the brook trout may affect the uptake of retinyl esters (REs) from chylomicron remnants as well as the mobilization of stored REs. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Christina M., E-mail: wilhelmc@battelle.org [Battelle, 505 King Avenue, JM-7, Columbus, OH 43201-2693 (United States); Snider, Thomas H., E-mail: snidert@battelle.org [Battelle, 505 King Avenue, JM-7, Columbus, OH 43201-2693 (United States); Babin, Michael C., E-mail: babinm@battelle.org [Battelle, 505 King Avenue, JM-7, Columbus, OH 43201-2693 (United States); Jett, David A., E-mail: jettd@ninds.nih.gov [National Institutes of Health/National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892 (United States); Platoff, Gennady E., E-mail: platoffg@niaid.nih.gov [National Institutes of Health/National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892 (United States); Yeung, David T., E-mail: dy70v@nih.gov [National Institutes of Health/National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892 (United States)

    2014-12-15

    The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U.S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. Unfortunately, 2-PAM Cl does not offer sufficient protection across the range of OP threat agents, and there is some question as to whether it is the most effective oxime compound available. The objective of the present study is to identify an oxime antidote, under standardized and comparable conditions, that offers protection at the FDA approved human equivalent dose (HED) of 2-PAM Cl against tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), and VX, and the pesticides paraoxon, chlorpyrifos oxon, and phorate oxon. Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl{sub 2}, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 h post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman's method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes. - Highlights: • First comprehensive evaluation of leading AChE oxime reactivators • All oximes are compared against current U.S. therapy 2-PAM Cl. • Relative therapeutic oxime efficacies against OP CWNA and pesticides • Contribution to more effective

  13. Scintigraphic evaluation of brain death with 99mTc-d,l-hexamethyl-propyleneamine oxime (HMPAO)

    International Nuclear Information System (INIS)

    Takehara, Yasuo; Isoda, Haruo; Sakai, Tsuneo; Tanaka, Tokutaro; Sato, Haruhiko; Yamamoto, Takamichi; Takahashi, Motoichiro; Kaneko, Masao.

    1989-01-01

    Lately, the criteria of brain death is being discussed. Cerebral scintigram, especially scintigraphic evaluation of brain death by dynamic study, has been previously reported. Cerebral imaging using radiolabeled amines such as 123 I-IMP N-isopropyl-p-iodoamphetamin (IMP) or 99m Tc d, l-hexamethyl-propyleneamine oxime (HMPAO) offers a significant information of brain death by the finding of 'non visualized brain'. However, the dynamic scintigram acquired during the bolus injection of 99m Tc-HMPAO provides an additional information of brain death by classical 'hot nose sign'. 99m Tc-HMPAO is able to be administered relatively in a large amount of dose. This cerebral perfusion tracer is lipophilic and remains in the central nervous system, which characterize its role as a reliable indicator of cerebral blood flow. As a result, this compound became suitable for the non-invasive study of brain circulation when the diagnosis of brain death is uncertain. We report a case of brain death in which diagnosis was made by the classical 'hot nose sign' in dynamic scintigraphy performed when 99 mTc-HMPAO was injected as well as the SPECT which showed a lack of cerebral visualization at the equilibrium state. As far as we are informed, this additional procedure used in the diagnosis of brain death has not reported before. The importance of performing a dynamic scintigram at the administration of 99m Tc-HMPAO is also discussed in this report. (author)

  14. A comparative technetium 99m hexamethylpropylene amine oxime SPET study in different types of dementia

    Energy Technology Data Exchange (ETDEWEB)

    Habert, M O; Piketty, M L; Askienazy, S [Centre Hospitalier Sainte-Anne, 75 - Paris (France). Dept. de Medecine Nucleaire; Spampinato, U; Mas, J L; Recondo, J de; Rondot, P [Centre Hospitalier Sainte-Anne, 75 - Paris (France). Dept. de Neurologie; Bourdel, M C [Centre Hospitalier Sainte-Anne, 75 - Paris (France). Dept. de Psychiatrie

    1991-01-01

    Regional cerebral perfusion was evaluated by single photon emission tomography (SPET) using technetium 99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) as a tracer, in 13 control subjects and 44 age-matched patients suffering from dementia of the Alzheimer's type (DAT, n=19) presumed Pick's disease (n=5), idiopathic Parkinson's disease with dementia (DPD, n=15) and progressive supranuclear palsy (PSP, n=5), HMPAO uptake was measured in the superior frontal, inferior frontal, parietal, temporal and occipital cortices, and the perfusion values were expressed as cortical/cerebellar activity ratios. As compared with controls, tracer uptake ratios in the DAT group were signficantly reduced over all cortical regions, with the largest defects in the parieto-temporal and superior frontal cortices. A marked hypoperfusion affecting the superior and inferior frontal cortices was found in Pick's diesease, whereas a mild but significant hypoperfusion was observed only in the superior frontal cortex of patients with PSP. In the DPD group, HMPAO uptake was significantly reduced in the parietal, temporal and occipital cortices, but not in the frontal cortex. These results show that DAT and DPD share the opposite anteroposterior HMPAO uptake defect as compared with the Pick's and PSP groups. (orig.).

  15. A comparative technetium 99m hexamethylpropylene amine oxime SPET study in different types of dementia

    Energy Technology Data Exchange (ETDEWEB)

    Habert, M.O.; Piketty, M.L.; Askienazy, S. (Centre Hospitalier Sainte-Anne, 75 - Paris (France). Dept. de Medecine Nucleaire); Spampinato, U.; Mas, J.L.; Recondo, J. de; Rondot, P. (Centre Hospitalier Sainte-Anne, 75 - Paris (France). Dept. de Neurologie); Bourdel, M.C. (Centre Hospitalier Sainte-Anne, 75 - Paris (France). Dept. de Psychiatrie)

    1991-01-01

    Regional cerebral perfusion was evaluated by single photon emission tomography (SPET) using technetium 99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) as a tracer, in 13 control subjects and 44 age-matched patients suffering from dementia of the Alzheimer's type (DAT, n=19) presumed Pick's disease (n=5), idiopathic Parkinson's disease with dementia (DPD, n=15) and progressive supranuclear palsy (PSP, n=5), HMPAO uptake was measured in the superior frontal, inferior frontal, parietal, temporal and occipital cortices, and the perfusion values were expressed as cortical/cerebellar activity ratios. As compared with controls, tracer uptake ratios in the DAT group were signficantly reduced over all cortical regions, with the largest defects in the parieto-temporal and superior frontal cortices. A marked hypoperfusion affecting the superior and inferior frontal cortices was found in Pick's diesease, whereas a mild but significant hypoperfusion was observed only in the superior frontal cortex of patients with PSP. In the DPD group, HMPAO uptake was significantly reduced in the parietal, temporal and occipital cortices, but not in the frontal cortex. These results show that DAT and DPD share the opposite anteroposterior HMPAO uptake defect as compared with the Pick's and PSP groups. (orig.).

  16. Enzymatic hydrolysis of pretreated soybean straw

    International Nuclear Information System (INIS)

    Xu Zhong; Wang Qunhui; Jiang Zhaohua; Yang Xuexin; Ji Yongzhen

    2007-01-01

    In order to produce lactic acid, from agricultural residues such as soybean straw, which is a raw material for biodegradable plastic production, it is necessary to decompose the soybean straw into soluble sugars. Enzymatic hydrolysis is one of the methods in common use, while pretreatment is the effective way to increase the hydrolysis rate. The optimal conditions of pretreatment using ammonia and enzymatic hydrolysis of soybean straw were determined. Compared with the untreated straw, cellulose in straw pretreated by ammonia liquor (10%) soaking for 24 h at room temperature increased 70.27%, whereas hemicellulose and lignin in pretreated straw decreased to 41.45% and 30.16%, respectively. The results of infrared spectra (IR), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis also showed that the structure and the surface of the straw were changed through pretreatment that is in favor of the following enzymatic hydrolysis. maximum enzymatic hydrolysis rate of 51.22% was achieved at a substrate concentration of 5% (w/v) at 50 deg. C and pH 4.8 using cellulase (50 fpu/g of substrate) for 36 h

  17. Indirubin-3-Oxime Prevents H2O2-Induced Neuronal Apoptosis via Concurrently Inhibiting GSK3β and the ERK Pathway.

    Science.gov (United States)

    Yu, Jie; Zheng, Jiacheng; Lin, Jiajia; Jin, Linlu; Yu, Rui; Mak, Shinghung; Hu, Shengquan; Sun, Hongya; Wu, Xiang; Zhang, Zaijun; Lee, Mingyuen; Tsim, Wahkeung; Su, Wei; Zhou, Wenhua; Cui, Wei; Han, Yifan; Wang, Qinwen

    2017-05-01

    Oxidative stress-induced neuronal apoptosis plays an important role in many neurodegenerative disorders. In this study, we have shown that indirubin-3-oxime, a derivative of indirubin originally designed for leukemia therapy, could prevent hydrogen peroxide (H 2 O 2 )-induced apoptosis in both SH-SY5Y cells and primary cerebellar granule neurons. H 2 O 2 exposure led to the increased activities of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) in SH-SY5Y cells. Indirubin-3-oxime treatment significantly reversed the altered activity of both the PI3-K/Akt/GSK3β cascade and the ERK pathway induced by H 2 O 2 . In addition, both GSK3β and mitogen-activated protein kinase inhibitors significantly prevented H 2 O 2 -induced neuronal apoptosis. Moreover, specific inhibitors of the phosphoinositide 3-kinase (PI3-K) abolished the neuroprotective effects of indirubin-3-oxime against H 2 O 2 -induced neuronal apoptosis. These results strongly suggest that indirubin-3-oxime prevents H 2 O 2 -induced apoptosis via concurrent inhibiting GSK3β and the ERK pathway in SH-SY5Y cells, providing support for the use of indirubin-3-oxime to treat neurodegenerative disorders caused or exacerbated by oxidative stress.

  18. Coupling membrane pervaporation with a fixed-bed reactor for enhanced esterification of oleic acid with ethanol

    International Nuclear Information System (INIS)

    Han, Ying; Lv, Enmin; Ma, Lingling; Lu, Jie; Chen, Kexun; Ding, Jincheng

    2015-01-01

    Highlights: • The reactor coupling membrane pervaporation with a fixed-bed reactor was studied. • The factors effecting the esterification of oleic acid were investigated. • NaA zeolite membrane was used for dehydration in the coupled reactor. - Abstract: Process intensification through membrane pervaporation (PV) integrated with a fixed-bed reactor could be successfully applied to the esterification of oleic acid and ethanol, which is a crucial step in the biodiesel synthesis using waste oil and grease as resource. The properties of the NaA zeolite membrane such as structure, formulation and separation were investigated by scanning electronic microscopy–energy dispersive spectrometry (SEM–EDS), X-ray diffractometry (XRD) and PV dehydration. Results showed that the NaA zeolite membrane had good separating property for removing water from the organics mixture. The operating conditions were optimized as the ethanol to oleic acid molar ratio of 15:1, feedstock flow rate of 1.0 ml/min, reaction temperature of 80.0 °C and catalyst bed height of 132 mm. The final conversion of oleic acid increased from 84.23% to 87.18% by PV using the NaA zeolite membrane at 24.0 h of operation. The membrane showed good PV performance after used for eight successive runs in the PV-assisted esterification. The resin exhibited a much high catalytic activity and operation stability after used for 100 h in the consecutive single pass fixed-bed esterification.

  19. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  20. Magnetic gold nanocatalyst (nanocat-Fe–Au): catalytic applications for the oxidative esterification and hydrogen transfer reactions

    Science.gov (United States)

    An efficient and sustainable protocol is described for the oxidative esterification of aldehydes and the reduction of aromatic nitro compounds that uses magnetically separable and reusable maghemite-supported gold nanocatalyst (nanocat-Fe-Au) under mild conditions. The complex ch...

  1. Increased hepatic cholesterol esterification with essential fatty acid deficiency (EFAD): relationship to plasma lipoprotein (LP) cholesterol content

    International Nuclear Information System (INIS)

    Ney, D.M.; Ziboh, V.A.; Schneeman, B.O.

    1986-01-01

    EFAD in the rat is associated with hepatic accumulation of esterified cholesterol and altered distribution of cholesterol between plasma and hepatic tissue. Little is known regarding the impact of EFAD on LP composition. To determine the relationship between hepatic cholesterol esterification and plasma lP composition in control (C) and EFAD male Wistar rats, the authors induced EFAD with continuous intragastric (IG) infusion of EFA-free solutions containing 3.5% of calories as triolein for 7 and 14 days. C animals received IG infusion of solutions containing 3.5% of calories as linoleic acid. Data in the EFAD groups reveal: (i) marked decreases in hepatic EFAs and increases in monoenoic acids; (ii) progressive increases in hepatic content of triglyceride and esterified cholesterol with 7 and 14 days of feeding; (iii) assay of acyl CoA:cholesterol acyltransferase activity in hepatic tissue using 14 C-cholesterol demonstrates an increase in hepatic cholesterol esterification when compared to C animals. Increased hepatic cholesterol esterification correlates with elevated levels of esterified cholesterol in plasma VLDL and HDL particles. These data indicate that the elevated levels of cholesterol esters in LP particles is due, at least in part, to increased hepatic cholesterol esterification with EFAD

  2. Application of metal triflate catalysts for the trans-esterification of Jatropha curcas L. oil with methanol and higher alcohols

    NARCIS (Netherlands)

    Daniel, Louis; Rasrendra, Carolus B.; Kloekhorst, Arjan; Broekhuis, Antonius A.; Manurung, Robert; Heeres, Hero J.

    This paper describes an experimental study on the application of metal triflate salts for the (trans-) esterification of fatty esters (triolein, methyl oleate, methyl linoleate), fatty acid (oleic acid), as well as Jatropha curcas L. oil with methanol and higher alcohols (ethanol, n-propanol,

  3. Esterification of Oleic Acid for Biodiesel Production Catalyzed by SnCl2: A Kinetic Investigation

    Directory of Open Access Journals (Sweden)

    Marcio J. da Silva

    2008-09-01

    Full Text Available The production of biodiesel from low-cost raw materials which generally contain high amounts of free fatty acids (FFAs is a valuable alternative that would make their production costs more competitive than petroleum-derived fuel. Currently, the production of biodiesel from this kind of raw materials comprises a two-stage process, which requires an initial acid-catalyzed esterification of the FFA, followed by a basecatalyzed transesterification of the triglycerides. Commonly, the acid H2SO4 is the catalyst on the first step of this process. It must be said, however, that major drawbacks such as substantial reactor corrosion and the great generation of wastes, including the salts formed due to neutralization of the mineral acid, are negative and virtually unsurmountable aspects of this protocol. In this paper, tin(II chloride dihydrate (SnCl2·2H2O, an inexpensive Lewis acid, was evaluated as catalyst on the ethanolysis of oleic acid, which is the major component of several fat and vegetable oils feedstocks. Tin chloride efficiently promoted the conversion of oleic acid into ethyl oleate in ethanol solution and in soybean oil samples, under mild reaction conditions. The SnCl2 catalyst was shown to be as active as the mineral acid H2SO4. Its use has relevant advantages in comparison to mineral acids catalysts, such as less corrosion of the reactors and as well as avoiding the unnecessary neutralization of products. Herein, the effect of the principal parameters of reaction on the yield and rate of ethyl oleate production has been investigated. Kinetic measurements revealed that the esterification of oleic acid catalyzed by SnCl2·2H2O is first-order in relation to both FFAs and catalyst concentration. Experimentally, it was verified that the energy of activation of the esterification reaction of oleic acid catalyzed by SnCl2 was very close those reported for H2SO4.

  4. Hydrolysis of lactose: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Gekas, V; Lopez-Leiva, M

    1985-02-01

    Lactose is the sugar found in milk and whey. Its hydrolysis to glucose and galactose in milk would solve the problem of milk-intolerant people and in whey it would avoid environmental pollution and offer an interesting possibility of by-product utilization. The prepared sweet syrup has many potential applications in the food industry. Hydrolysis of lactose can be carried out by heating at low pH (acid hydrolysis) or by enzymatic catalysis with the enzyme (lactase or ..beta..-D-galactosidase) either free in solution or immobilized by one of the several enzyme immobilization methods which are abundant in the literature. Selection of the proper method depends on many factors: the nature of substrate, use of the final product, need for sanitary conditions, and, of course, capital and processing costs. 157 references.

  5. Gelation of high-methoxy pectin by enzymic de-esterification in the presence of calcium ions: a preliminary evaluation.

    Science.gov (United States)

    O'Brien, Aileen B; Philp, Kevin; Morris, Edwin R

    2009-09-28

    Cohesive gels have been obtained by de-esterification of 1.0wt% high-methoxy citrus pectin (degree of esterification approximately 68%) in the presence of Ca(2+) cations, using a commercial preparation (NovoShape) of fungal methyl esterase cloned from Aspergillus aculeatus. A convenient rate of network formation (gelation within approximately 30min) was achieved at an enzyme concentration of 0.2 PEU/g pectin. At a Ca(2+)-concentration of 40mM and incubation temperature of 20 degrees C, severe syneresis (>7% of sample mass) was observed, but release of fluid decreased with decreasing concentration of Ca(2+) and increasing temperature of incubation, becoming undetectable for 10mM Ca(2+) at 30 degrees C. Under these conditions, progressive development of solid-like character (storage modulus, G') was observed during 160min of enzymic de-esterification, and the mechanical spectrum recorded at the end of the incubation period had the form typical of a biopolymer gel. On subsequent heating to 70 degrees C, dissociation of the gel network (sigmoidal reduction in G' and G'') was observed. At or above the midpoint temperature of this melting process ( approximately 50 degrees C), there was no indication of gel formation on enzymic de-esterification (at 50 or 60 degrees C). At lower temperatures (20, 30 and 40 degrees C), the rate of gelation (assessed visually) showed no systematic increase as the incubation temperature was increased towards the temperature-optimum of the enzyme ( approximately 50 degrees C). This unexpected behaviour is attributed to competition between faster de-esterification and slower formation of Ca(2+)-induced 'egg-box' junctions.

  6. Modeling the mechanisms of biological GTP hydrolysis

    DEFF Research Database (Denmark)

    Carvalho, Alexandra T.P.; Szeler, Klaudia; Vavitsas, Konstantinos

    2015-01-01

    Enzymes that hydrolyze GTP are currently in the spotlight, due to their molecular switch mechanism that controls many cellular processes. One of the best-known classes of these enzymes are small GTPases such as members of the Ras superfamily, which catalyze the hydrolysis of the γ-phosphate bond...... in GTP. In addition, the availability of an increasing number of crystal structures of translational GTPases such as EF-Tu and EF-G have made it possible to probe the molecular details of GTP hydrolysis on the ribosome. However, despite a wealth of biochemical, structural and computational data, the way...

  7. Ultrasound-Assisted Esterification of Valeric Acid to Alkyl Valerates Promoted by Biosilicified Lipases

    Directory of Open Access Journals (Sweden)

    Soledad Cebrián-García

    2018-06-01

    Full Text Available A novel, environmentally friendly, and sustainable ultrasound-assisted methodology in the valorization of valeric acid to alkyl valerate using a biosilicified lipase from Candida antarctica is reported. This one-pot room temperature methodology of enzyme biosilicification leads to biosilicified lipases with improved activity and reaction efficiency as compared to free enzymes. Yields in the ultrasound-promoted esterification of valeric acid was ca. 90% in 2 h with 15% m/v of biosilicified lipase (Bio-lipase; 616 U/g biocatalyst enzymatic activity and a molar ratio 1:2 (valeric acid:ethanol, slightly superior to that observed by the free enzyme (75% conversion, 583U/g biocatalyst enzymatic activity. The reuse of enzymes in these conditions was tested and the results show a relatively good reusability of these biosilicified enzymes under the investigated conditions, particularly preserving fairly stable specific activities (616 vs. 430 U/g biocatalyst after four reuses.

  8. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level.

    Science.gov (United States)

    Derbyshire, Paul; McCann, Maureen C; Roberts, Keith

    2007-06-17

    Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing) cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility. We present evidence that the degree of pectin methyl-esterification (DE%) limits cell growth, and that a minimum level of about 60% DE is required for normal cell elongation in Arabidopsis hypocotyls. When the average DE% falls below this level, as in two gibberellic acid (GA) mutants ga1-3 and gai, and plants expressing pectin methyl-esterase (PME1) from Aspergillus aculeatus, then hypocotyl elongation is reduced. Low average levels of pectin DE% are associated with reduced cell elongation, implicating PMEs, the enzymes that regulate DE%, in the cell elongation process and in responses to GA. At high average DE% other components of the cell wall limit GA-induced growth.

  9. Ultrasound-Assisted Enantioselective Esterification of Ibuprofen Catalyzed by a Flower-Like Nanobioreactor

    Directory of Open Access Journals (Sweden)

    Baiyi An

    2016-04-01

    Full Text Available A flower-like nanobioreactor was prepared for resolution of ibuprofen in organic solvents. Ultrasound irradiation has been used to improve the enzyme performance of APE1547 (a thermophilic esterase from the archaeon Aeropyrum pernix K1 in the enantioselective esterification. Under optimum reaction conditions (ultrasound power, 225 W; temperature, 45 °C; water activity, 0.21, the immobilized APE1547 showed an excellent catalytic performance (enzyme activity, 13.26 μmol/h/mg; E value, 147.1. After ten repeated reaction batches, the nanobioreactor retained almost 100% of its initial enzyme activity and enantioselectivity. These results indicated that the combination of the immobilization method and ultrasound irradiation can enhance the enzyme performance dramatically.

  10. Conversion of Oleum papaveris seminis oil into methyl esters via esterification process: Optimization and kinetic study

    Directory of Open Access Journals (Sweden)

    Syam, A. M.

    2016-03-01

    Full Text Available This paper presents an acid pre-treatment process and a kinetic study for the esterification reaction of Oleum papaveris seminis oil with methanol in the presence of amberlite 120 as a solid catalyst to convert the oil into methyl esters. Response surface methodology (RSM was applied to optimize the reaction parameters, i.e. reaction time, percentage of the catalyst and volume ratio of methanol to oil. The results revealed that 0.87% w/w of catalyst concentration and 44.70% v/v of methanol to oil ratio provided final free fatty acid (FFA contents of 0.60% w/w at 102.40 min of reaction time. It proved that the contribution of Amberlite 120 in the esterification of FFA was highly significant. The kinetics of the esterification in Oleum papaveris seminis oil with methanol in the presence of the amberlite 120 catalyst were also investigated to establish the reaction rate constant (k, reaction order, and activation energy. The study was performed under the optimized parameters at three reaction temperatures (50, 55, and 60 ºC. The value of k was in the range of 0.013 to 0.027 min-1. The first-order kinetics’ model was suitable for this irreversible FFA esterification with the activation energy of about 60.9 KJ·mol-1.En este artículo se presenta un proceso de pre-tratamiento con ácido, y un estudio cinético de la reacción de esterificación. Se utiliza Oleum papaveris seminis con metanol en presencia de Amberlite 120 como catalizador sólido para la formación de los ésteres metílicos. Se aplicó una metodología de superficie de respuesta (RSM para optimizar los parámetros de la reacción; es decir, tiempo de reacción, porcentaje de la relación de catalizador y volumen de metanol - aceite. Los resultados mostraron que el 0,87% w/w de la concentración de catalizador y 44,70% v/v de metanol en relación al aceite dan lugar a un contenido final de ácidos grasos libres (FFA de 0,60% w/w en 102,40 min de tiempo de reacción. Se demostr

  11. Thermodynamic analysis of fatty acid esterification for fatty acid alkyl esters production

    International Nuclear Information System (INIS)

    Voll, Fernando A.P.; Silva, Camila da; Rossi, Carla C.R.S.; Guirardello, Reginaldo; Castilhos, Fernanda de; Oliveira, J. Vladimir; Cardozo-Filho, Lucio

    2011-01-01

    The development of renewable energy source alternatives has become a planet need because of the unavoidable fossil fuel scarcity and for that reason biodiesel production has attracted growing interest over the last decade. The reaction yield for obtaining fatty acid alkyl esters varies significantly according to the operating conditions such as temperature and the feed reactants ratio and thus investigation of the thermodynamics involved in such reactional systems may afford important knowledge on the effects of process variables on biodiesel production. The present work reports a thermodynamic analysis of fatty acid esterification reaction at low pressure. For this purpose, Gibbs free energy minimization was employed with UNIFAC and modified Wilson thermodynamic models through a nonlinear programming model implementation. The methodology employed is shown to reproduce the most relevant investigations involving experimental studies and thermodynamic analysis.

  12. Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Nalan Ozbay; Nuray Oktar; N. Alper Tapan [Gazi University, Ankara (Turkey). Faculty of Engineering and Architecture, Department of Chemical Engineering

    2008-08-15

    Although WCO plays a crucial role for the economical production of biodiesel, free fatty acid (FFA) level in the nature of WCO cause saponification problems during transesterification. Acidic ion-exchange resins can be used to decrease WCO free fatty acid level. In this study, activities of resins (Amberlyst-15 (A-15), Amberlyst-35 (A-35), Amberlyst-16 (A-16) and Dowex HCR-W2) in direct FFA esterification were examined in the temperature range of 50-60{sup o}C and the effect of catalyst amount (1-2 wt%) on FFA conversion was also analyzed. FFA conversion increased with increasing reaction temperature and catalyst amount. Order of catalytic activities was found as A-15 > A-35 > A-16 > Dowex HCR-W2. This was related to the size of average pore diameters and magnitude of BET surface area. 44 refs., 11 figs., 2 tabs.

  13. Biomass Derived Chemicals: Furfural Oxidative Esterification to Methyl-2-furoate over Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Maela Manzoli

    2016-07-01

    Full Text Available The use of heterogeneous catalysis to upgrade biomass wastes coming from lignocellulose into higher value-added chemicals is one of the most explored subjects in the prospective vision of bio-refinery. In this frame, a lot of interest has been driven towards biomass-derived building block molecules, such as furfural. Gold supported catalysts have been successfully proven to be highly active and selective in the furfural oxidative esterification to methyl-2-furoate under mild conditions by employing oxygen as benign oxidant. Particular attention has been given to the studies in which the reaction occurs even without base as co-catalyst, which would lead to a more green and economically advantageous process. The Au catalysts are also stable and quite easily recovered and represent a feasible and promising route to efficiently convert furfural to methyl-2-furoate to be scaled up at industrial level.

  14. Direct esterification of olive-pomace oil using mesoporous silica supported sulfonic acids

    Directory of Open Access Journals (Sweden)

    F. Alrouh

    2017-02-01

    Full Text Available Mesoporous silica MCM-41 and SBA-15 containing propyl sulfonic acid groups were synthesized according to the literature and were characterized by X-ray diffraction, N2 adsorption and the H+ exchange capacities of the sulfonic acid groups were titrated. The esterification reaction of glycerol with olive-pomace oil has been carried out by using prepared functionalized mesoporous silica (MCM-41 and SBA-15 as catalysts. It has been monitored by GC two fatty acids (palmitic and oleic acids as reactants in olive-pomace oil and their related monoacylglycerols (Glycerol monopalmitate GMP and monooleate GMO as reaction product. The catalytic activities of the functionalized mesoporous silica were compared with commercial catalysts, these included homogeneous catalysts (p-toluenesulfonic acid and heterogeneous catalysts (Amberlyst-15. The total yield of monoacylglycerols (GMO + GMP was nearly 40%. Remarkably, we found that MCM-41-SO3H was recycled at least 3 times without any loss of activity.

  15. Kinetic Study on the Esterification of Palm Fatty Acid Distillate (PFAD) Using Heterogeneous Catalyst

    Science.gov (United States)

    Rofiqah, U.; Djalal, R. A.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Esterification with heterogeneous catalysts is believed to have advantages compared to homogeneous catalysts. Palm Fatty Acid Distillate (PFAD) was esterified by ZrO2 -SO4 2-/natural zeolite at temperature variation of 55°C, 60°C, and 65°C to produce biodiesel. Determination of reaction kinetics was done by experiment and modeling. Kinetic study was approached using pseudo-homogeneous model of first order. For experiment, reaction kinetics were 0.0031 s-1, 0.0054 s-1, and 0.00937 s-1 for a temperature of 55 °C, 60 °C and 65 °C, respectively. For modelling, reaction kinetics were 0.0030 s-1, 0.0055 s-1, and 0.0090 s-1 for a temperature of 55°C, 60°C and 65°C, respectively. Rate and conversion of reaction are getting increased by increasing temperature.

  16. Kinetics of enzymatic trans-esterification of glycerides for biodiesel production.

    Science.gov (United States)

    Calabrò, Vincenza; Ricca, Emanuele; De Paola, Maria Gabriela; Curcio, Stefano; Iorio, Gabriele

    2010-08-01

    In this paper, the reaction of enzymatic trans-esterification of glycerides with ethanol in a reaction medium containing hexane at a temperature of 37 degrees C has been studied. The enzyme was Lipase from Mucor miehei, immobilized on ionic exchange resin, aimed at achieving high catalytic specific surface and recovering, regenerating and reusing the biocatalyst. A kinetic analysis has been carried out to identify the reaction path; the rate equation and kinetic parameters have been also calculated. The kinetic model has been validated by comparison between predicted and experimental results. Mass transport resistances estimation was undertaken in order to verify that the kinetics found was intrinsic. Model potentialities in terms of reactors design and optimization are also shown.

  17. Development and validation of a FIA/UV-vis method for pK(a) determination of oxime based acetylcholinesterase reactivators.

    Science.gov (United States)

    Musil, Karel; Florianova, Veronika; Bucek, Pavel; Dohnal, Vlastimil; Kuca, Kamil; Musilek, Kamil

    2016-01-05

    Acetylcholinesterase reactivators (oximes) are compounds used for antidotal treatment in case of organophosphorus poisoning. The dissociation constants (pK(a1)) of ten standard or promising acetylcholinesterase reactivators were determined by ultraviolet absorption spectrometry. Two methods of spectra measurement (UV-vis spectrometry, FIA/UV-vis) were applied and compared. The soft and hard models for calculation of pK(a1) values were performed. The pK(a1) values were recommended in the range 7.00-8.35, where at least 10% of oximate anion is available for organophosphate reactivation. All tested oximes were found to have pK(a1) in this range. The FIA/UV-vis method provided rapid sample throughput, low sample consumption, high sensitivity and precision compared to standard UV-vis method. The hard calculation model was proposed as more accurate for pK(a1) calculation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ion-exchange Resin Catalyzed Esterification of Lactic Acid with Isopropanol: a Kinetic Study

    Directory of Open Access Journals (Sweden)

    Amrit P. Toor

    2011-05-01

    Full Text Available The kinetic behavior of esterification of lactic acid with isopropanol over an acidic cation exchange resin, Amberlyst 15, was studied under isothermal condition. Isopropyl lactate synthesized in this reaction is an important pharmaceutical intermediate. The experiments were carried out in a stirred batch reactor in the temperature range of 323.15 to 353.15 K. The effect of various parameters such as temperature, molar ratio and catalyst loading was studied. Variation in parameters on rate of reaction demonstrated that the reaction was intrinsically controlled. Kinetic modeling was performed using Eley-Rideal model which acceptably fits the experimental data. The activation energy was found to be 22.007 kJ/mol and frequency factor was 0.036809 l2 g-1 mol-1 min-1 for forward reaction. The value of entropy for the forward reaction was found to be 182.317 J K-1 mol-1 . © 2011 BCREC UNDIP. All rights reserved(Received: 19th January 2011, Revised: 16th March 2011; Accepted: 16th March 2011[How to Cite: A.P. Toor, M. Sharma, S. Thakur, and R. K. Wanchoo. (2011. Ion-exchange Resin Catalyzed Esterification of Lactic Acid with Isopropanol: a Kinetic Study. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 39-45. doi:10.9767/bcrec.6.1.791.39-45][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.791.39-45 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/791 ] | View in  

  19. Phytosterol Esterification is Markedly Decreased in Preterm Infants Receiving Routine Parenteral Nutrition.

    Science.gov (United States)

    Savini, Sara; Correani, Alessio; Pupillo, Daniele; D'Ascenzo, Rita; Biagetti, Chiara; Pompilio, Adriana; Simonato, Manuela; Verlato, Giovanna; Cogo, Paola; Taus, Marina; Nicolai, Albano; Carnielli, Virgilio Paolo

    2016-12-01

    Several studies reported the association between total plasma phytosterol concentrations and the parenteral nutrition-associated cholestasis (PNAC). To date, no data are available on phytosterol esterification in animals and in humans during parenteral nutrition (PN). We measured free and esterified sterols (cholesterol, campesterol, stigmasterol, and sitosterol) plasma concentrations during PN in 16 preterm infants (500-1249 g of birth weight; Preterm-PN), in 11 term infants (Term-PN) and in 12 adults (Adult-PN). Gas chromatography-mass spectrometry was used for measurements. Plasma concentrations of free cholesterol (Free-CHO), free phytosterols (Free-PHY) and esterified phytosterols (Ester-PHY) were not different among the three PN groups. Esterified cholesterol (Ester-CHO) was statistically lower in Preterm-PN than Adult-PN. Preterm-PN had significantly higher Free-CHO/Ester-CHO and Free-PHY/Ester-PHY ratios than Adult-PN (Free-CHO/Ester-CHO: 1.1 ± 0.7 vs. 0.6 ± 0.2; Free-PHY/Ester-PHY: 4.1 ± 2.6 vs. 1.3 ± 0.8; *P phytosterol intake in Preterm-PN. Free-PHY/Ester-PHY of Preterm-PN was positively correlated with the Free-CHO/Ester-CHO and negatively correlated with gestational age and birth weight. In conclusion, PHY were esterified to a lesser extent than CHO in all study groups; the esterification was markedly decreased in Preterm-PN compared to Adult-PN. The clinical consequences of these findings warrant further investigations.

  20. Adsorption of Used Cooking Oil (UCO) by using Raw and Modified Kapok Fibre through Esterification

    Science.gov (United States)

    Alias, N. H.; Hasan, S. I. Z.

    2018-05-01

    UCO is one of the domestic wastes in our daily life. Normally, UCO are produced by hawkers, restaurants and household in a large quantity. The UCO usually exist in water mixture and eventually can cause water drainage problem which can lead to the environmental problem. Therefore, in order to overcome this problem, a study was conducted to test the adsorption of RKF and MKF towards the UCO. As for the MKF, the adsorption was tested by using different concentrations of Calcium Oxide (CaO) in percentage during the esterification. The oil removal percentages were calculated for RKF and MKF. Based on the results, it was found that the RKF has adsorbed 25.32g of UCO with a 50.64% of adsorption. As compared to MKF, it was able to increase the hydrophobic properties which resulted more UCO adsorption by 26.78g of UCO with the increment in the adsorption of 53.56% by using CaO of 5 wt% of RKF mass. However, when the percentage of CaO was increased, the UCO adsorption was also increased. The results showed that by using CaO of 10 wt% and 15 wt% of RKF mass, the UCO adsorption was increased to 28.50g (56.84%) and 31.73g (63.46%), respectively. Thus, MKF has higher adsorption of UCO compared to RKF. The highest amount of UCO adsorption has been achieved by using CaO of 15 wt% in the esterification, which was 31.73g corresponded to 63.46%.

  1. Intensification of esterification of non edible oil as sustainable feedstock using cavitational reactors.

    Science.gov (United States)

    Mohod, Ashish V; Subudhi, Abhijeet S; Gogate, Parag R

    2017-05-01

    Using sustainable feed stock such as non-edible oil for the biodiesel production can be one of the cost effective approaches considering the ever growing interest towards renewable energy and problems in existing approaches for production. However, due to the high free fatty acid content, non-edible oils require considerable preprocessing before the actual transesterification reaction for biodiesel production. The present work focuses on intensification of the esterification reaction used as preprocessing step based on acoustic and hydrodynamic cavitation also presenting the comparison with the conventional approach. Karanja oil with initial acid value as 14.15mg of KOH/g of oil has been used as a sustainable feedstock. Effect of operating parameters such as molar ratio, catalyst loading, temperature and type of catalyst (sulfuric acid and Amberlyst-15) on the acid value reduction has been investigated. The maximum reduction in the acid value (final acid value as 2.7mg of KOH/g of oil) was obtained using acoustic cavitation at optimum molar ratio of oil to methanol as 1:5 and 2% sulfuric acid loading at ambient temperature. In the case of hydrodynamic cavitation, acid value reduced upto 4.2mg of KOH under optimized conditions of first stage processing. In the second stage esterification using hydrodynamic cavitation and conventional approach, the final acid value was 3.6 and 3.8mg of KOH/g of oil respectively. Energy requirement analysis for ultrasound and conventional approaches clearly established the superiority of the ultrasound based approach. The present study clearly demonstrated that significant intensification benefits can be obtained in terms of the reduction in the molar ratio and operating temperature for the case of acoustic cavitation as compared to the conventional approach with somewhat lower effects for the hydrodynamic cavitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Synthesis of phosphate monomers and bonding to dentin: esterification methods and use of phosphorus pentoxide.

    Science.gov (United States)

    Ogliari, Fabrício Aulo; da Silva, Eduardo de Oliveira; Lima, Giana da Silveira; Madruga, Francine Cardozo; Henn, Sandrina; Bueno, Márcia; Ceschi, Marco Antônio; Petzhold, Cesar Liberato; Piva, Evandro

    2008-03-01

    The aim of this study was to synthesize an acidic monomer using an alternative synthetic pathway and to evaluate the influence of the acidic monomer concentration on the microtensile bond strength to dentin. The intermediary 5-hydroxypentyl methacrylate (HPMA) was synthesized through methacrylic acid esterification with 1,5-pentanediol, catalyzed by p-toluenesulfonic acid. To displace the reaction balance, the water generated by esterification was removed by three different methods: anhydrous sodium sulfate; molecular sieves or azeotropic distillation. In the next step, a phosphorus pentoxide (4.82 mmol) slurry was formed in cold acetone and 29 mmol of HPMA was slowly added by funnel addition. After the reaction ended, solvent was evaporated and the product was characterized by 1HNMR and FTIR. The phosphate monomer was introduced in a self-etch primer at concentrations of 0, 15, 30, 50, 70 and 100 wt%. Clearfil SE Bond was used as commercial reference. Microtensile bond strength to dentin was evaluated 24h after the bonding procedures, followed by fracture analysis (n=20). Data was submitted to ANOVA and Tukey's post hoc test. The highest yield was obtained (62%) when azeotropic distillation was used, while the reaction with molecular sieves was not feasible. The phosphoric moiety attachment to the monomer was successfully performed with a quantitative yield that reached around 100%. The acidic monomer concentration significantly affected the bond strength and the highest mean (55.1+/-12.8 MPa) was obtained when 50% of acidic monomer was used. The synthesis pathways described in the present study appear to be a viable alternative for developing phosphate monomers.

  3. Impacts of Different Functional Groups on the Kinetic Rates of α-Amine Ketoximesilanes Hydrolysis in the Preparation of Room Temperature Vulcanized Silicone Rubber.

    Science.gov (United States)

    Xu, Huihui; Liu, Zihou; Liu, Qingyang; Bei, Yiling; Zhu, Qingzeng

    2018-05-13

    α-Amine ketoximesilanes are proven to be effective crosslinkers in the preparation of ketone-oxime one-component room temperature vulcanized (RTV) silicone rubber without the use of toxic metal catalyst. This work aimed to investigate the hydrolysis kinetic of α-amine ketoximesilanes, which is vitally important for the preparation of RTV silicone rubber. Five kinds of α-amine ketoximesilanes, namely α-(N,N-diethyl)aminomethyltri(methylethylketoxime)silane (DEMOS), α-(N,N-di-n-butyl)aminomethyltri(methylethylketoxime)silane (DBMOS), α-(N-n-butyl)aminomethyltri(methylethylketoxime)silane (n-BMOS), α-(N-cyclohexyl)aminomethyltri(methylethylketoxime)silane (CMOS) and α-(β-aminomethyl)aminomethyltri(methylethylketoxime)silane (AEMOS), were successfully obtained and confirmed using Fourier transform infrared spectrometer (FT-IR) and hydrogen-1 nuclear magnetic resonance ( ¹H NMR). Kinetics of hydrolysis reactions were measured by FT-IR and conductivity. Our results illustrated that the kinetic constant rates ranged from 12.2 × 10 −4 s −1 to 7.6 × 10 −4 s −1 , with the decreasing order of DEMOS > n-BMOS > DBMOS > CMOS > AEMOS at the given temperature and humidity. Better performances of thermal stability could be achieved when using the α-amine ketoximesilanes as crosslinkers in the preparation of RTV silicon rubber than that of RTV silicone rubber with the use of methyltri(methylethylketoxime)silane (MOS) as a crosslinker and organic tin as a catalyst.

  4. Increased rCBF in gray matter heterotopias detected by SPECT using 99mTc hexamethyl-propylenamine oxime

    International Nuclear Information System (INIS)

    Henkes, H.; Klinikum Rudolf Virchow, Berlin; Hosten, N.; Cordes, M.; Neumann, K.; Hansen, M.L.

    1991-01-01

    Imaging findings of morphology and regional cerebral blood flow in two patients suffering from epileptic seizures are presented. CT and MRI revealed heterotopic gray matter as a probable structural correlate, causing the seizure disorder. 99m Tc hexamethyl-propylenamine oxime (HM-PAO) SPECT demonstrated focally increased regional cerebral blood flow in both patients in the areas of their heterotopic lesions. Heterotopic and orthotopic gray matter seem to have similar features in terms of regional perfusion. A focally increased brain perfusion in interictal epileptic patients may indicate an underlying migration anomaly. (orig.)

  5. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  6. HYDROLYSIS OF CHEESEWHEY PROTEINSWITH TRYPSIN, CHYMOTRYPSINAND CARBOXYPEPTIDASEA

    Directory of Open Access Journals (Sweden)

    M. F. CUSTÓDIO

    2009-01-01

    Full Text Available

    This work presents a method for adding value to cheese whey residues by whey proteins hydrolysis, using trypsin, chymotrypsin and carboxypeptidase A as catalysts. Sweet cheese whey was dialyzed and filtered in kaolin. Lactose and protein contents were analyzed after each step. The activities of bovine pancreas trypsin and chymotrypsin were measured at different pHs and temperatures. The optimal pH for the hydrolysis of whey proteins was 9.0 for both enzymes. Optima temperatures were 60ºC for trypsin, and 50ºC for chymotrypsin. Trypsin exhibited typical Michaelis-Menten behavior, but chymotrypsin did not. Electrophoretic analysis showed that neither trypsin nor chymotrypsin alone hydrolyzed whey proteins in less than three hours. Hydrolysis rates of -lactalbumin by trypsin, and of bovine serum albumin by chymotrypsin were low. When these enzymes were combined, however, all protein fractions were attacked and rates of hydrolysis were enhanced by one order of magnitude. The addition of carboxypeptidase A to the others enzymes did not improve the process yield.

  7. Hydrocarbon formation mechanism during uranium monocarbide hydrolysis

    International Nuclear Information System (INIS)

    Ermolaev, M.I.; Tishchenko, G.V.

    1979-01-01

    The hydrolysis of uranium monocarbide in oxidative media and in the presence of excessive hydrogen in statu nascendi has been investigated. It was found that oxydants promote the formation of elementary carbon, while in the presence of hydrogen the yield of light C-C hydrocarbons increases. EPR data confirm the radical mechanism of hydrocarbons formation during the decomposition of uranium monocarbide

  8. Lithium hydride hydrolysis: experimental and kinetic study

    International Nuclear Information System (INIS)

    Charton, S.; Maupoix, C.; Brevet, A.; Delaunay, F.; Heintz, O.; Saviot, L.

    2006-01-01

    In this work has been studied the contribution of various analyses techniques in the framework, on the one hand of revealing the mechanisms implied in lithium hydride hydrolysis, and on the other hand of studying the kinetics of hydrogen production. Among the methods recently investigated, Raman spectroscopy, XPS and SIMS seem to be particularly attractive. (O.M.)

  9. Optimization of dilute acid hydrolysis of Enteromorpha

    Science.gov (United States)

    Feng, Dawei; Liu, Haiyan; Li, Fuchao; Jiang, Peng; Qin, Song

    2011-11-01

    Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HCl, H3PO4 and C4H4O4 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121°C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.

  10. In vitro and in vivo genotoxicity assessment of HI-6 dimethanesulfonate/oxime.

    Science.gov (United States)

    Nakab, Lauren; Bardot, Isabelle; Bardot, Sébastien; Simar, Sophie; Marzin, Daniel; Nesslany, Fabrice

    2014-03-01

    Organophosphate compounds, which induce organophosphate poisoning, were originally used as pesticides. But this type of product has also been used as warfare nerve agent like sarin, soman, Russian VX, or tabun. HI-6-dimethanesulfonate is a salt of the oxime HI-6 used in the treatment of nerve-agent poisoning. It is known to be the best re-activator component of inactivated acetyl cholinesterase. HI-6-dimethanesulfonate has shown a higher level of solubility with similar potency to reactivate acetyl cholinesterase and a similar pharmacokinetics profile compared with HI-6 dichloride. HI-6 dimethanesulfonate was tested for its mutagenic and genotoxic potential by use of the standard ICH S2R (1) battery for the evaluation of pharmaceuticals. HI-6-dimethanesulfonate was mutagenic in the Ames test only in the presence of metabolic activation. In the mutation assay at the Tk locus in L5178Y mouse-lymphoma cells, HI-6-dimethanesulfonate showed mutagenic activity both with and without metabolic activation, with a significant increase in small colonies. The effects were in favour of a clastogenic activity. It was concluded that the compound was mutagenic and possibly clastogenic in vitro. In contrast, the in vivo micronucleus test in rat bone-marrow did not demonstrate any genotoxic activity and the Comet assay performed in rat liver did not show any statistically or biologically significant increases in DNA strand-breaks. The results of both in vivo studies performed on two different organs with two endpoints are sufficient to conclude the absence of a genotoxic hazard in vivo and to consider that there is no genotoxic concern in humans for HI-6-dimethanesulfonate. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. An LC-MS method for determination of milbemycin oxime in dog plasma.

    Science.gov (United States)

    Xu, Qianqian; Li, Jichang; Shen, Zhiqiang; Guo, Shijin; Wang, Yubo; Li, Feng

    2014-10-01

    An HPLC-MS method has been developed and validated for the quantitative determination of milbemycin oxime (MBO) in dog plasma. The developed method has been then applied in in vivo clinical studies to obtain pharmacokinetics of MBO in blood after its oral administration. Samples were extracted using solid-phase extraction (SPE). Sample proteins were precipitated with acetonitrile (ACN) and sodium chloride (NaCl) and then diluted with methanol and water. Calibration standards were prepared by using plasma matrix and following the same SPE procedure. Chromatographic separation was performed on a Waters C18 packed column (3.5 μm particles diameter; 3 × 100 mm) with a C18 guard column (3.5 μm particles diameter; 3 × 20 mm). The mobile phase was an 85:15 (v/v) mixed solution of ACN and 5 mM ammonium acetate. The calibration curve was linear over a concentration range of 2.0-500 ng/mL with a limit of quantitation of 2.0 ng/mL. The oral administration of a pellet of 2.5 mg MBO produced blood concentrations ranging from 6.10 ± 0.92 to 78.81 ± 4.38 ng/mL within 6 h, with a terminal half-time of 11.66 ± 0.93 h. This study determined the suitability of the herein proposed method to investigate the pharmacokinetics of MBO after oral administration. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.

    Science.gov (United States)

    Neurock, Matthew; Tao, Zhiyuan; Chemburkar, Ashwin; Hibbitts, David D; Iglesia, Enrique

    2017-04-28

    Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO 2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H 2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic C α -H of propanal to produce the CH 3 CH (-) CH 2 O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a β-alkoxide alkanal intermediate. The β-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C 2n intermediates to form C 2n-1 3-pentanone as the major product with very small yields of C 2n products. This is likely due to the absence of Brønsted acid sites

  13. Direct injection of superheated steam for continuous hydrolysis reaction

    KAUST Repository

    Wang, Weicheng; Turner, Timothy L.; Roberts, William L.; Stikeleather, Larry F.

    2012-01-01

    The primary intent for previous continuous hydrolysis studies was to minimize the reaction temperature and reaction time. In this work, hydrolysis is the first step of a proprietary chemical process to convert lipids to sustainable, drop

  14. Microwave-assisted Weak Acid Hydrolysis of Proteins

    Directory of Open Access Journals (Sweden)

    Miyeong Seo

    2012-06-01

    Full Text Available Myoglobin was hydrolyzed by microwave-assisted weak acid hydrolysis with 2% formic acid at 37 oC, 50 oC, and100 oC for 1 h. The most effective hydrolysis was observed at 100 oC. Hydrolysis products were investigated using matrixassistedlaser desorption/ionization time-of-flight mass spectrometry. Most cleavages predominantly occurred at the C-termini ofaspartyl residues. For comparison, weak acid hydrolysis was also performed in boiling water for 20, 40, 60, and 120 min. A 60-min weak acid hydrolysis in boiling water yielded similar results as a 60-min microwave-assisted weak acid hydrolysis at100 oC. These results strongly suggest that microwave irradiation has no notable enhancement effect on acid hydrolysis of proteinsand that temperature is the major factor that determines the effectiveness of weak acid hydrolysis.

  15. Short-time ultrasonication treatment in enzymatic hydrolysis of biomass

    Science.gov (United States)

    Zengqian Shi; Zhiyong Cai; Siqun Wang; Qixin Zhong; Joseph J. Bozell

    2013-01-01

    To improve the conversion of enzymatic hydrolysis of biomass in an energy-efficient manner, two shorttime ultrasonication strategies were applied on six types of biomass with different structures and components. The strategies include pre-sonication before the hydrolysis and intermittent sonication during the ongoing hydrolysis. The microstructures of each type of...

  16. Research into esterification of mixture of lower dicarboxylic acids by 2-ethylhexan-1-ol in the presence of p-toluensulfonic acid

    OpenAIRE

    Melnyk, Stepan; Melnyk, Yuriy; Nykulyshyn, Irena; Shevchuk, Liliya

    2017-01-01

    Regularities of esterification of the mixture of lower dicarboxylic acids (succinic, glutaric, adipic) by 2-ethylhexan-1-ol in the presence of catalysts – p-toluensulfonic and sulfuric acids under non-stationary conditions were studied. It was found that in the presence of mineral acid, the reaction flows at a lower rate. Application of benzene as a substance that facilitates separation of water, formed in the esterification reaction, makes it possible, due to a lower reaction temperature, to...

  17. Purity of antidotal oxime HI-6 DMS as an active pharmaceutical ingredient for auto-injectors and infusions.

    Science.gov (United States)

    Bogan, Reinhard; Koller, Marianne; Klaubert, Bernd

    2012-01-01

    As reactivators of inhibited acetylcholinesterase, oximes are essential antidotes in poisoning by organophosphorus compounds. Due to its superior efficacy in cases of soman, cyclosarin, and sarin poisoning, the oxime HI-6 represents a promising option for an active pharmaceutical ingredient (API) in the further development of antidote therapy for nerve agent poisoning. Developmental lots of HI-6 DMS (dimethanesulfonate) provided by different manufacturers were examined with respect to their content and purity with a view to their future use as an API. There are distinct differences in the HI-6 content from three manufacturers. With respect to purity, gradual differences arise with the known synthetic by-products as well as with unknown accompanying compounds. It became apparent that in the case of a modified synthesis using protective groups, the proportion of some synthesis by-products decreases considerably. With one exception, they are thus below the reporting threshold for API in accordance with pertinent regulatory guidelines. In HI-6, an unknown impurity always occurs, whose percentage necessitates identification due to regulations. This unknown impurity, which has not been described so far, could be identified as an isomer. These findings supply data required for the description of pharmaceutical quality in accordance with module 3 of a Common Technical Document (CTD). They thus contribute to the marketing authorization of this substance as an API for auto-injectors and infusions. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Innovative approach for the electrochemical detection of non-electroactive organophosphorus pesticides using oxime as electroactive probe

    International Nuclear Information System (INIS)

    Dong, Jing; Hou, Juying; Jiang, Jianxia; Ai, Shiyun

    2015-01-01

    Highlights: • Novel approach for electrochemical detection of non-electroactive OPs was proposed. • PAM was used as electroactive probe for the first time. • The detection system displayed high sensitivity and promptness. • The developed sensor was used in real samples with satisfactory results. - Abstract: An innovative approach for sensitive and simple electrochemical detection of non-electroactive organophosphorus pesticides (OPs) was described in this report. The novel strategy emphasized the fabrication of an oxime-based sensor via attaching pralidoxime (PAM) on graphene quantum dots (GQDs) modified glassy carbon electrode. The introduction of GQDs significantly increased the effective electrode area, and then enlarged the immobilization quantity of PAM. Thus, the oxidation current of PAM was obviously increased. Relying on the nucleophilic substitution reaction between oxime and OPs, fenthion was detected using PAM as the electroactive probe. Under optimum conditions, the difference of oxidation current of PAM was proportional to fenthion concentration over the range from 1.0 × 10 −11 M to 5.0 × 10 −7 M with a detection limit of 6.8 × 10 −12 M (S/N = 3). Moreover, the favorable detection performance in water and soil samples heralded the promising applications in on-site OPs detection

  19. Contribution of direct actions of the oxime HI-6 in reversing soman-induced muscle weakness in the rat diaphragm

    Energy Technology Data Exchange (ETDEWEB)

    Alder, M.; Maxwell, D.M.; Filbert, M.G.; Deshpande, S.S.

    1994-12-31

    The actions of the bispyridinium oxime HI-6 ((4-AMINOCARBONYL) PYRIDINO-methoxymethyl- 2-(HYDROXYIMINO)METHYL- pyridinium dichloride) were investigated in vitro on rat phrenic nerve-hemidiaphragm preparations. Isometric twitch and tetanic tensions were elicited at 37 deg C with supramaximal nerve stimulation at frequencies of 20 and 50 Hz. To approximate normal respiration patterns, trials consisting of 30 successive 0.55 5 trains were alternated with 1.25 5 rest periods. Under control conditions, the above stimulation pattern generated tensions that were well maintained at both frequencies. In contrast, a marked depression of muscle tension was observed in diaphragms removed from rats administered 339 ug/kg soman (3 LD50) and tested in vitro. Addition of HI-6, 4 h after soman exposure, led to a nearly complete recovery of muscle tension at 20 Hz. At 50 Hz, muscle tensions still declined especially when trains were elicited at 1.25 and 3 5 intervals. The recovery by HI-6 observed in this study appears to be mediated by mechanisms unrelated to acetylcholinesterase reactivation since no increase of enzymatic activity was detected and the effect was reversed by a brief washout in oxime-free physiological solution. The results suggest that the direct action of HI-6 may play a role in restoring soman-induced diaphragmatic failure but this effect would be significant primarily under low use conditions.

  20. Efficient Construction of Energetic Materials via Nonmetallic Catalytic Carbon-Carbon Cleavage/Oxime-Release-Coupling Reactions.

    Science.gov (United States)

    Zhao, Gang; He, Chunlin; Yin, Ping; Imler, Gregory H; Parrish, Damon A; Shreeve, Jean'ne M

    2018-03-14

    The exploitation of C-C activation to facilitate chemical reactions is well-known in organic chemistry. Traditional strategies in homogeneous media rely upon catalyst-activated or metal-mediated C-C bonds leading to the design of new processes for applications in organic chemistry. However, activation of a C-C bond, compared with C-H bond activation, is a more challenging process and an underdeveloped area because thermodynamics does not favor insertion into a C-C bond in solution. Carbon-carbon bond cleavage through loss of an oxime moiety has not been reported. In this paper, a new observation of self-coupling via C-C bond cleavage with concomitant loss of oxime in the absence of metals (either metal-complex mediation or catalysis) results in dihydroxylammonium 5,5-bistetrazole-1,10-diolate (TKX-50) as well as N, N'-([3,3'-bi(1,2,4-oxadiazole)]-5,5'-diyl)dinitramine, a potential candidate for a new generation of energetic materials.

  1. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    Science.gov (United States)

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  2. Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases.

    Science.gov (United States)

    Lionetti, Vincenzo; Cervone, Felice; Bellincampi, Daniela

    2012-11-01

    The cell wall is a complex structure mainly composed by a cellulose-hemicellulose network embedded in a cohesive pectin matrix. Pectin is synthesized in a highly methyl esterified form and is de-esterified in muro by pectin methyl esterases (PMEs). The degree and pattern of methyl esterification affect the cell wall structure and properties with consequences on both the physiological processes of the plants and their resistance to pathogens. PME activity displays a crucial role in the outcome of the plant-pathogen interactions by making pectin more susceptible to the action of the enzymes produced by the pathogens. This review focuses on the impact of pectin methyl esterification in plant-pathogen interactions and on the dynamic role of its alteration during pathogenesis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Sustainable production of a new generation biofuel by lipase-catalyzed esterification of fatty acids from liquid industrial waste biomass.

    Science.gov (United States)

    Foukis, Athanasios; Gkini, Olga A; Stergiou, Panagiota-Yiolanda; Sakkas, Vasilios A; Dima, Agapi; Boura, Konstantina; Koutinas, Athanasios; Papamichael, Emmanuel M

    2017-08-01

    In this work we suggest a methodology comprising the design and use of cost-effective, sustainable, and environmentally friendly process for biofuel production compatible with the market demands. A new generation biofuel is produced using fatty acids, which were generated from acidogenesis of industrial wastes of bioethanol distilleries, and esterified with selected alcohols by immobilized Candida antarctica Lipase-B. Suitable reactors with significant parameters and conditions were studied through experimental design, and novel esterification processes were suggested; among others, the continuous removal of the produced water was provided. Finally, economically sustainable biofuel production was achieved providing high ester yield (<97%) along with augmented concentration (3.35M) in the reaction mixtures at relatively short esterification times, whereas the immobilized lipase maintained over 90% of its initial esterifying ability after reused for ten cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Preparation of Copper (II) Containing Phosphomolybdic Acid Salt as Catalyst for the Synthesis of Biodiesel by Esterification.

    Science.gov (United States)

    Cai, Jie; Zhang, Qiu-Yun; Wei, Fang-Fang; Huang, Jin-Shu; Feng, Yun-Mei; Ma, Hai-Tao; Zhang, Yutao-

    2018-04-01

    Copper (II) containing phosphomolybdic acid (PMA) catalysts were synthesized by ion exchange method and characterization using various physico-chemical techniques such as X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) and scanning electron microscopy (SEM). The characterization results showed that the Keggin ions were retained in the catalysts and possessed well thermal stability. The catalytic esterification of lauric acid with methanol could be easily achieved about 78.7% conversion under optimum condition, the catalyst also contributed to the stability of the catalyst in which it can be reused for a certain time. This study demonstrated an alternative approach to biodiesel production with high efficiency by Cu (II) ion exchanged phosphomolybdic acid catalyst in the esterification catalytic.

  5. Esterification of fatty acids using nylon-immobilized lipase in n-hexane: kinetic parameters and chain-length effects.

    Science.gov (United States)

    Zaidi, A; Gainer, J L; Carta, G; Mrani, A; Kadiri, T; Belarbi, Y; Mir, A

    2002-02-28

    The esterification of long-chain fatty acids in n-hexane catalyzed by nylon-immobilized lipase from Candida rugosa has been investigated. Butyl oleate (22 carbon atoms), oleyl butyrate (22 carbon atoms) and oleyl oleate (36 carbon atoms) were produced at maximum reaction rates of approximately equal to 60 mmol h(-1) g(-1) immobilized enzyme when the substrates were present in equimolar proportions at an initial concentration of 0.6 mol l(-1). The observed kinetic behavior of all the esterification reactions is found to follow a ping-pong bi-bi mechanism with competitive inhibition by both substrates. The effect of the chain-length of the fatty acids and the alcohols could be correlated to some mechanistic models, in accordance with the calculated kinetic parameters.

  6. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis

    NARCIS (Netherlands)

    Baks, T.; Bruins, M.E.; Matser, A.M.; Janssen, A.E.M.; Boom, R.M.

    2008-01-01

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with ¿-amylase from

  7. Electrospray ionization mass spectrometry for the hydrolysis complexes of cisplatin : Implications for the hydrolysis process of platinum complexes

    NARCIS (Netherlands)

    Xie, Feifan; Colin, Pieter; Van Bocxlaer, Jan

    Non-enzyme-dependent hydrolysis of the drug cisplatin is important for its mode of action and toxicity. However, up until today, the hydrolysis process of cisplatin is still not completely understood. In the present study, the hydrolysis of cisplatin in an aqueous solution was systematically

  8. Reaction rate of hydrolysis of iodine

    International Nuclear Information System (INIS)

    Miyake, Yoshikazu; Eguchi, Wataru; Adachi, Motonari

    1979-01-01

    Absorption rates of dilute iodine vapor contained in air by aqueous mixtures of sodium hydroxide and boric acid were measured using a laminar liquid jet column absorber at 298 K. Absorption rates in this system are controlled by a series of complex reactions taking place in the liquid phase. The reaction rate constant of iodine hydrolysis in the aqueous phase was determined from the absorption rates observed under the conditions that the base-catalytic hydrolysis reaction of iodine can be considered to be irreversible and that other reactions can be neglected. The absorption rates calculated theoretically with the rate constant value obtained above were in good accordance with the whole experimental data observed for a wide range of experimental conditions. (author)

  9. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    Science.gov (United States)

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Activation of human IK and SK Ca2+ -activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime)

    DEFF Research Database (Denmark)

    Strøbaek, Dorte; Teuber, Lene; Jørgensen, Tino D

    2004-01-01

    We have identified and characterized the compound NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) as a potent activator of human Ca2+ -activated K+ channels of SK and IK types, whereas it is devoid of effect on BK type channels. IK- and SK-channels have previously been reported to be activated...

  11. Oxidation of primary amines to oximes with molecular oxygen using 1,1-diphenyl-2-picrylhydrazyl and WO3/Al2O3 as catalysts.

    Science.gov (United States)

    Suzuki, Ken; Watanabe, Tomonari; Murahashi, Shun-Ichi

    2013-03-15

    The oxidative transformation of primary amines to their corresponding oximes proceeds with high efficiency under molecular oxygen diluted with molecular nitrogen (O2/N2 = 7/93 v/v, 5 MPa) in the presence of the catalysts 1,1-diphenyl-2-picrylhydrazyl (DPPH) and tungusten oxide/alumina (WO3/Al2O3). The method is environmentally benign, because the reaction requires only molecular oxygen as the terminal oxidant and gives water as a side product. Various alicyclic amines and aliphatic amines can be converted to their corresponding oximes in excellent yields. It is noteworthy that the oxidative transformation of primary amines proceeds chemoselectively in the presence of other functional groups. The key step of the present oxidation is a fast electron transfer from the primary amine to DPPH followed by proton transfer to give the α-aminoalkyl radical intermediate, which undergoes reaction with molecular oxygen and hydrogen abstraction to give α-aminoalkyl hydroperoxide. Subsequent reaction of the peroxide with WO3/Al2O3 gives oximes. The aerobic oxidation of secondary amines gives the corresponding nitrones. Aerobic oxidative transformation of cyclohexylamines to cyclohexanone oximes is important as a method for industrial production of ε-caprolactam, a raw material for Nylon 6.

  12. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of alkanepolyol and poly-alkyl... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked... substance identified generically as a polymer of alkane-polyol and polyalkylpolyisocyanatocarbomonocy- cle...

  13. Experimental investigation on lithium hydride hydrolysis

    International Nuclear Information System (INIS)

    S Charton; F Delaunay; L Saviot; F Bernard; C Maupoix

    2006-01-01

    In order to have a better understanding of LiH reaction with water, several experimental techniques were investigated and tested to determine whether they were suitable or not in a kinetic purpose. Among them, Raman spectroscopy and X-Ray photoelectrons spectroscopy (XPS) gave particularly interesting results and are extensively used in the field of our kinetic and phenomenological study of H 2 production by LiH hydrolysis. (authors)

  14. Enzyme hydrolysis of waste cellulose. [Aspergillus awamori

    Energy Technology Data Exchange (ETDEWEB)

    Mustranta, A; Nybergh, P; Hatakka, A

    1976-01-01

    Hydrolysis of brewers' spent grain and of wastes from the furfural process was investigated with culture filtrates from Trichoderma viride and Aspergillus awamori. The furfural process is evidently a good pretreatment for cellulose, and no further pretreatment is needed. Syrups containing 5% reducing sugars and 3-4% glucose were obtained from furfural process wastes and hydrolyzates containing 1.5% reducing sugars and 0.7% glucose were obtained from brewers' spent grains.

  15. Rapid hydrolysis of celluloses in homogeneous solution

    Energy Technology Data Exchange (ETDEWEB)

    Garves, K

    1979-01-01

    Dissolution of cellulose (I), cotton, and cotton linters in a mixture of Ac0H, Ac/sub 2/O, H/sub 2/SO/sub 4/, and DMF at 120 to 160 degrees resulted in rapid and complete hydrolysis of I with decomposition of the cellulose acetatesulfate formed by gradual addition of aqueous acid. Highly crystalline I is quickly decomposed to glucose with minimum byproduct formation. Carbohydrate products containing sugar units other than glucose are hydrolyzed with destruction of monosaccharides.

  16. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir

    Directory of Open Access Journals (Sweden)

    Akbarningrum Fatmawati

    2013-06-01

    Full Text Available The purpose of this research is to study the effect of concentration and temperature on the cellulose and lignin content, and the reducing sugars produced in the enzymatic hydrolysis of coconut coir. In this research, the coconut coir is pretreated using 3%, 7%, and 11% NaOH solution at 60oC, 80oC, and 100oC. The pretreated coir were assayed by measuring the amount of cellulose and lignin and then hydrolysed using Celluclast and Novozyme 188 under various temperature (30oC, 40oC, 50oC and pH (3, 4, 5. The hydrolysis results were assayed for the reducing sugar content. The results showed that the alkaline delignification was effective to reduce lignin and to increase the cellulose content of the coir. The best delignification condition was observed at 11% NaOH solution and 100oC which removed 14,53% of lignin and increased the cellulose content up to 50,23%. The best condition of the enzymatic hydrolysis was obtained at 50oC and pH 4 which produced 7,57 gr/L reducing sugar. © 2013 BCREC UNDIP. All rights reservedReceived: 2nd October 2012; Revised: 31st January 2013; Accepted: 6th February 2013[How to Cite: Fatmawati, A., Agustriyanto, R., Liasari, Y. (2013. Enzymatic Hydrolysis of Alkaline Pre-treated Coconut Coir. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 34-39 (doi:10.9767/bcrec.8.1.4048.34-39[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4048.34-39] | View in  |

  17. PLA recycling by hydrolysis at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari, E-mail: sara.frattari@uniroma1.it; Fausto, Gironi [Department of Chemical Engineering Materials Environment, University of Rome “La Sapienza”, Via Eudossiana 18– 00184 Roma (Italy)

    2016-05-18

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  18. Biodiesel Production from Residual Palm Oil Contained in Spent Bleaching Earth by In Situ Trans-Esterification

    Directory of Open Access Journals (Sweden)

    A S Fahmil QRM

    2014-06-01

    Full Text Available Spent Bleaching Earth (SBE is an industrial solid waste of vegetable oil industry that has a high residual oil to be potentialy converted to biodiesel. This study aims at developing a biodiesel production process technology by utilizing residual palm oil contained in SBE and to test the use of hexane in the trans-esterification process. Optimization process was done by using the Response Surface Method (RSM. The variables studied included catalyst concentration and reaction time. On the other hand, the deoiled SBE resulted from biodiesel production was tested as an adsorbent on biodiesel purification after being reactivated. The method used in the biodiesel production included an in situ acid catalysed esterification followed by in situ base catalysed trans-esterification. The results of RSM showed that the optimum process was obtained at NaOH concentration of 1.8% and reaction time of 104.73 minutes, with a predicted response rate of 97.18% and 95.63% for validation results. The use of hexane could also increase the yield of biodiesel which was obtained on the ratio of hexane to methanol of 0.4:1 (volume of hexane: volume of methanol. On the other hand, the reactivated bleaching earth was effective as an adsorbent in biodiesel production, which was still conform with the Indonesian National Standard.

  19. Esterification and Deacidification of a Waste Cooking Oil (TAN 68.81 mg KOH/g for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Zheng Xia

    2012-07-01

    Full Text Available Oils with high content of free fatty acid (FFA can be treated by acid esterification where an alcohol reacts with the given oil in the presence of acid catalyst. The investigated parameters include methanol to oil ratio, temperature and amount of catalyst. The optimum conditions for acid esterification which could reduce FFA content in the feedstock to less than 1.88% (acid value 3.76 mg KOH/g waste cooking oil were 50 °C, 20% methanol to oil ratio (by volume and 0.4 vol.% H2SO4 after 5 h. However, oil with an acid value of more than 1 mg KOH/g oil cannot meet the alkaline catalyzed transesterification conditions. Under the conditions of NaOH concentration 0.5 N, excess alkali 15%, 60 °C, 40 min, the FFA removal rate for deacidification reached 77.11% (acid value 0.86 mg KOH/g esterified oil. The acid value of deacidification product was reduced below 0.86 mg KOH/g esterified oil, thus meeting the base-catalyzed trans-esterification conditions.

  20. Economic feasibility study of biodiesel production by direct esterification of fatty acids from the oil and soap industrial sector

    Directory of Open Access Journals (Sweden)

    M.I. El-Galad

    2015-12-01

    Full Text Available Industrial production of biodiesel fuel in Egypt by the transesterification of vegetable oils is being faced with the problem of feedstock shortage. Egypt imports annually about 90% of its needs as edible oils for human consumption. The production of biodiesel by direct esterification of fatty acids that can be obtained from the oil and soap industrial sector in huge quantities each year (around 16 thousand tons may be a proper solution to this problem. According to results of a previous study [1], the biodiesel produced following this approach and using methyl alcohol was quite efficient as an alternative fuel for diesel engines. However, the process should be economically feasible for application on an industrial scale. The present study assessed the economic feasibility of biodiesel production by direct fatty acid esterification. Complete process simulation was first carried out using the process simulation software, Aspen HYSYS V7.0. The process was then designed comprising four main steps being esterification, solvent recovery, catalyst removal and water removal. The main processing units include the reactor, distillation column, heat exchangers, pumps and separators. Assuming that the rate of fatty acids esterified was 2 ton/h, all process units required have been sized. Total capital investment, total manufacturing cost and return on investment were all estimated. The latter was found to be 117.1% which means that the production process is quite economically feasible.

  1. Esterification for butyl butyrate formation using Candida cylindracea lipase produced from palm oil mill effluent supplemented medium

    Directory of Open Access Journals (Sweden)

    Aliyu Salihu

    2014-12-01

    Full Text Available The ability of Candida cylindracea lipase produced using palm oil mill effluent (POME as a basal medium to catalyze the esterification reaction for butyl butyrate formation was investigated. Butyric acid and n-butanol were used as substrates at different molar ratios. Different conversion yields were observed according to the affinity of the produced lipase toward the substrates. The n-butanol to butyric acid molar ratio of 8 and lipase concentration of 75 U/mg gave the highest butyl butyrate formation of 63.33% based on the statistical optimization using face centered central composite design (FCCCD after 12 h reaction. The esterification potential of the POME based lipase when compared with the commercial lipase from the same strain using the optimum levels was found to show a similar pattern. It can be concluded therefore that the produced lipase possesses appropriate characteristics to be used as a biocatalyst in the esterification reactions for butyl butyrate formation.

  2. Kinetic Study of Esterification of Acetic Acid with n-butanol and isobutanol Catalyzed by Ion Exchange Resin

    Directory of Open Access Journals (Sweden)

    Amrit Pal Toor

    2011-05-01

    Full Text Available Esters are an important pharmaceutical intermediates and very useful perfumery agents. In this study the esterification of acetic acid with n-butanol and iso-butanol over an acidic cation exchange resin, Amberlyst 15 were carried out. The effects of certain parameters such as temperature, catalyst loading, initial molar ratio between reactants on the rate of reaction were studied. The experiments were conducted in a stirred batch reactor in the temperature range of 351.15 K to 366.15K.Variation of parameters on rate of reaction demonstrated that the reaction was intrinsically controlled.The activation energy for the esterification of acetic acid with n-butanol and iso butanol is found to be 28.45 k J/mol and 23.29 kJ/mol respectively. ©2011 BCREC UNDIP. All rights reserved.(Received: 16th December 2010, Revised: 19th March 2011; Accepted: 7th April 2011[How to Cite: A.P. Toor, M. Sharma, G. Kumar, and R. K. Wanchoo. (2011. Kinetic Study of Esterification of Acetic Acid with n-butanol and isobutanol Catalyzed by Ion Exchange Resin. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 23-30. doi:10.9767/bcrec.6.1.665.23-30][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.665.23-30 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/665 ] | View in 

  3. Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst.

    Science.gov (United States)

    Son, Sung Mo; Kimura, Hiroko; Kusakabe, Katsuki

    2011-01-01

    Esterification of oleic acid was performed in a three-phase fixed-bed reactor with a cation exchange resin catalyst (Amberlyst-15) at high temperature, which was varied from 80 to 120 °C. The fatty acid methyl ester (FAME) yields in the fixed-bed reactor were increased with increases in the reaction temperature, methanol flow rate and bed height. Moreover, the FAME yields were higher than those obtained using a batch reactor due to an equilibrium shift toward the product that resulted from continuous evaporation of the produced water. In addition, there was no catalyst deactivation during the esterification of oleic acid. However, addition of sunflower oil to the oleic acid reduced the FAME yield obtained from simultaneous esterification and transesterification. The FAME yield was 97.5% at a reaction temperature of 100 °C in the fixed-bed with a height of 5 cm when the methanol and oleic acid feed rates were 8.6 and 9.0 mL/h, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Hydrolysis of ferric chloride in solution

    International Nuclear Information System (INIS)

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox trademark process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200 degrees C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl 3 liquid + H 2 O → FeOCl solid + 2 HCl gas During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl solid + H 2 O → Fe 2 O 3 solid + 2 HCl gas . The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way

  5. Hydrolysis of diacylglycerols by lipoprotein lipase.

    Science.gov (United States)

    Morley, N H; Kuksis, A; Buchnea, D; Myher, J J

    1975-05-10

    Enantiomeric diacylglycerols were emulsified, mole for mole, with lyso(1-acyl) lecithin and were hydrolyzed with lipoprotein lipase in NH4Cl-beef serum albumin buffer at pH 8.6 after a brief incubation with delipidated rat serum. The enzyme was prepared from lyophilized and dialyzed bovine skim milk in a 4 percent solution. The course of hydrolysis for each set of enantiomers was determined by gas-liquid chromatography of the masses of the diacylglycerols remaining or monoacylglycerols released in the medium between 0 and 15 min. The majority of sets of sn-1,2- and 2,3-diacylglycerols, including an isotope-labeled true enantiomeric set which was assessed by mass spectrometry, demonstrated preference by the enzyme for lipolysis at position 1 but with less specificity than previously was shown in sn-triacylglycerol hydrolysis. The results preclude the possibility that the predominance of sn-2,3-diacylglycerol intermediates during triacylglycerol hydrolysis is due solely to a preferential breakdown of the 1,2-isomers and reinforce the conclusion that lipoprotein lipase is specific for position 1.

  6. Substantially Stabilized Superacid Incorporated SBA-15 with Calcium Bridging for Selective Esterification of Glycerol

    Science.gov (United States)

    Hoo, P. Y.; Abdullah, A. Z.; Shuit, S. H.; Teoh, Y. P.; Ng, Q. H.; Kunasundari, B.

    2018-03-01

    The exploitation of the super acidity of heteropolyacids incorporated heterogeneous catalysts was only feasible if the heterogeneity of these catalysts was assured. To maintain the catalyst heterogeneity in polar medium, a novel two-step modification method was proposed to synthesize the highly active, yet stable heterogeneous catalyst, catered for selective esterification of monoglyceride. The surficial, structural and acidity properties of the modified catalysts were investigated via crucial characterization methods (N2 BET, HRTEM, and FTIR). The collective evidences verified the predicted formation of calcium oxides (CaO) on the mesopores surfaces of the SBA-15 support after the first modification, and the successful subsequent 12-tungstophosphoric acid (HPW) functionalization. The superior stability of the synthesized catalysts (10wt%-HPW/CaSBA-15) was demonstrated (negligible change in both conversion – 75% and yield – 70%), without the need for catalyst regeneration. Such result was attributed to the strong interaction between HPW and SBA-15 via calcium bridging. Being alkaline in nature, calcium oxides in the inner pores readily reacted with highly acidic HPW introduced in the subsequent wetness incipient step, forming insoluble HPW acid sites on inner pore walls of SBA-15 via the calcium bridging. This modification deemed promising and other alkaline metals should be explored in the future.

  7. Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)

    Energy Technology Data Exchange (ETDEWEB)

    Mahmud, Hamizah Ammarah; Salimon, Jumat [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2014-09-03

    Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of β-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showed oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150°C (ester TMP), 180°C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR)

  8. Changes on the Solid Fat Content of Palm Oil/ Sunflower Oil Blends via Inter esterification

    International Nuclear Information System (INIS)

    Suria Ramli; Azwani Mohd Lazim; Siti Aishah Hasbullah

    2013-01-01

    Physicochemical characteristics of binary blends containing refined-deodorized-bleached palm oil (RBDPO) and sunflower oil (SFO) were studied before and after chemical inter esterification at different temperature (110 degree Celsius (CIE1) and 80 degree Celsius (CIE2)) using sodium methoxide as catalyst. Thirty-three samples with different ratios were analyzed for triacylglycerol (TAG) composition, fatty acid composition (FAC) and solid fat content (SFC) profile. Upon CIE, extensive rearrangements of fatty acids among triacylglycerol (TAG) were seen. Generally, CIE not induced enormous changes in the TAG compositions of ratio 8:2 and 5:5 of RBDPO:SFO blends. However, CIE induced enormous changes in the TAG compositions of the 9:1, 7:3, 6:4, 4:6, 3:7, 2:8 and 1:9 blends, which some of the TAGs were increasing while the other decreasing. These changes in TAG profiles resulted in some changes in the physical properties (especially SFC) of the blends. Generally, the SFC of inter esterified blend were decreased after CIE1 and increased after CIE2, except for sample 10:0, 8:2, 7:3, 5:5 and 9:1 which were decreased after CIE1 and CIE2. As a conclusion, CIE1 and CIE2 successfully changed the physicochemical characteristics of the binary blends. (author)

  9. Formation of Polyelectrolyte Complex Colloid Particles between Chitosan and Pectin with Different Degree of Esterification

    Science.gov (United States)

    Wang, Hui; Sun, Hongyuan; He, Jieyu

    2017-12-01

    The effects of degree of esterification, pectin/chitosan ratio and pH on the formation of polyelectrolyte complex colloid particles between chitosan (CS) and pectin (PE) were investigated. Low methoxyl pectin (LPE) was achieved by de-esterifying high methoxyl pectin (HPE) with pectin methyl esterase. Turbidity titration and colorimetric method was used to determine the stability of complex colloid particles. The structure and morphology of complex particles were characterized by FTIR and TEM. When pectin solution was dropped into chitosan solution, complex colloidal dispersion was stable as PE/CS mass ratio was no more than 3:2. Colloidal particles of HPE-CS complex coagulated at larger ratio of PE/CS than LPE-CS. The maximum complex occurred at pH 6.1 for HPE-CS and pH 5.7 for LPE-CS, and decreasing pH leaded to the dissociation of complex particles. Electrostatic interactions between carboxyl groups on pectin and amino groups on chitosan were confirmed by FTIR. Colloidal particle sizes ranged from about 100 nm to 400 nm with spherical shape.

  10. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level

    Directory of Open Access Journals (Sweden)

    Derbyshire Paul

    2007-06-01

    Full Text Available Abstract Background Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility. Results We present evidence that the degree of pectin methyl-esterification (DE% limits cell growth, and that a minimum level of about 60% DE is required for normal cell elongation in Arabidopsis hypocotyls. When the average DE% falls below this level, as in two gibberellic acid (GA mutants ga1-3 and gai, and plants expressing pectin methyl-esterase (PME1 from Aspergillus aculeatus, then hypocotyl elongation is reduced. Conclusion Low average levels of pectin DE% are associated with reduced cell elongation, implicating PMEs, the enzymes that regulate DE%, in the cell elongation process and in responses to GA. At high average DE% other components of the cell wall limit GA-induced growth.

  11. A novel hybrid catalyst for the esterification of high FFA in Jatropha oil for biodiesel production

    International Nuclear Information System (INIS)

    Mushtaq, M.; Tan, I.M.; Sagir, M.; Suleman Tahir, M.; Pervaiz, M.

    2016-01-01

    The synthesis and application of a hybrid catalyst for the esterification of free fatty acids (FFA) in Jatropha oil is reported. Three catalysts, namely silica sulfuric acid, silica supported boron trifluoride and a combination of the two in the weight ratio of 1:1, the hybrid catalyst, were investigated. Jatropha oil samples with a wide range of FFA values i.e. 6.64 to 45.64% were prepared and utilized for the experimental work. This study revealed that silica sulfuric acid and silica supported boron trifluoride were not very effective when used independently. However, a strong synergistic effect was noted in the catalytic activity of the hybrid catalyst which reduced the FFA value from 45.64 to 0.903% with a conversion efficiency of 98%. Reusability of the catalyst was also tested and the results were promising in up to three cycles of use when used with lower amounts of FFA (6.64%) in the oil. Under the influence of the catalyst, the reaction was found to follow first order kinetics. Activation energy was calculated to be 45.42 KJ·mol−1 for 2 wt.% of hybrid catalyst. The products were analyzed by FT-IR and NMR spectroscopic techniques and the results are reported. [es

  12. Synthesis of ZnO particles using water molecules generated in esterification reaction

    Science.gov (United States)

    Šarić, Ankica; Gotić, Marijan; Štefanić, Goran; Dražić, Goran

    2017-07-01

    Zinc oxide particles were synthesized without the addition of water by autoclaving (anhydrous) zinc acetate/alcohol and zinc acetate/acetic acid/alcohol solutions at 160 °C. The solvothermal synthesis was performed in ethanol or octanol. The structural, optical and morphological characteristics of ZnO particles were investigated by X-ray diffraction (XRD), UV-Vis spectroscopy, FE-SEM and TEM/STEM microscopy. 13C NMR spectroscopy revealed the presence of ester (ethyl- or octyl-acetate) in the supernatants which directly indicate the reaction mechanism. The formation of ester in this esterification reaction generated water molecule in situ, which hydrolyzed anhydrous zinc acetate and initiated nucleation and formation of ZnO. It was found that the size and shape of ZnO particles depend on the type of alcohol used as a solvent and on the presence of acetic acid in solution. The presence of ethanol in the ;pure; system without acetic acid favoured the formation of fine and uniform spherical ZnO nanoparticles (∼20 nm). With the addition of small amount of acetic acid the size of these small nanoparticles increased significantly up to a few hundred nanometers. The addition of small amount of acetic acid in the presence of octanol caused even more radical changes in the shape of ZnO particles, favouring the growth of huge rod-like particles (∼3 μm).

  13. The effect of BAY o 2752 on bile acid absorption and cholesterol esterification

    International Nuclear Information System (INIS)

    Harnett, K.M.

    1988-01-01

    BAY o 2752 [N,N-(1,11-undecandiyl)bis(2,3-dihydro-2-methyl-1H-indole-1-carboxamide)] has been demonstrated to inhibit intestinal cholesterol absorption in rats. Studies were carried out on male Wistar rats to determine if this drug alters intestinal bile acid absorption or cholesterol esterification by acyl CoA: cholesterol acyltransferase (ACAT) or cholesterol ester hydrolase (CEH). BAY o 2752 did not affect intestinal absorption of taurocholic acid (TC) from ileal segments perfused in vivo with a tragacanth suspension in phosphate buffer containing NaCl, TC, and 24- 14 C-TC as determined by the excretory rate of radioactivity in bile. BAY o 2752 also did not affect the uptake of TC into ileal everted sacs incubated in stirred, gassed Krebs-Ringer bicarbonate buffer with 1 mM TC, 24- 14 C-TC and 3 H-inulin. BAY o 2752 also did not bind TC; TG, in a filtrate of the above solutions remained at 92-98% of control

  14. The effect of BAY o 2752 on bile acid absorption and cholesterol esterification

    Energy Technology Data Exchange (ETDEWEB)

    Harnett, K.M.

    1988-01-01

    BAY o 2752 (N,N-(1,11-undecandiyl)bis(2,3-dihydro-2-methyl-1H-indole-1-carboxamide)) has been demonstrated to inhibit intestinal cholesterol absorption in rats. Studies were carried out on male Wistar rats to determine if this drug alters intestinal bile acid absorption or cholesterol esterification by acyl CoA: cholesterol acyltransferase (ACAT) or cholesterol ester hydrolase (CEH). BAY o 2752 did not affect intestinal absorption of taurocholic acid (TC) from ileal segments perfused in vivo with a tragacanth suspension in phosphate buffer containing NaCl, TC, and 24-{sup 14}C-TC as determined by the excretory rate of radioactivity in bile. BAY o 2752 also did not affect the uptake of TC into ileal everted sacs incubated in stirred, gassed Krebs-Ringer bicarbonate buffer with 1 mM TC, 24-{sup 14}C-TC and {sup 3}H-inulin. BAY o 2752 also did not bind TC; TG, in a filtrate of the above solutions remained at 92-98% of control.

  15. Lipase-catalyzed esterification of lactic acid with straight-chain alcohols

    DEFF Research Database (Denmark)

    Rønne, Torben Harald; Xu, Xuebing; Tan, Tianwei

    2005-01-01

    Enzymatic synthesis of esters of lactic acid and straight-chain alcohols with different chain lengths (C6–C18) were investigated in batch reactions with hexadecanol (C16) as the model alcohol. Cyclohexane was the best solvent for higher ester yields, and the best biocatalyst was the immobilized...... Candida antarctica lipase B (Novozym 435) as well as the textile-immobilized Candida sp. lipase. A method was established to obtain ester yields in the range of 71 to 82% for the different alcohols, and the most favorable conditions for the esterification reaction using Novozym 435 were an equimolar ratio...... of lactic acid to alcohol, each at a concentration of 120 mM each; a 50°C reaction temperature; 190 rpm shaking speed; and the addition of 100 mg molecular sieves (4 Å) for drying. The ester yield increased with increasing lipase load, and a yield of 79.2% could be obtained after 24 h of reaction at 20 wt...

  16. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Energy Technology Data Exchange (ETDEWEB)

    Hain, D.; Valenzuela, A.; Branes, M. C.; Fuenzalida, M.; Videla, L. A.

    2012-07-01

    Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP), in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg1 of butyric acid esterified policosanol (BAEP), or 164 mg kg1 of oleic acid esterified policosanol (OAEP). Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red) phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05) in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis. (Author) 49 refs.

  17. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  18. Efficient water removal in lipase-catalyzed esterifications using a low-boiling-point azeotrope.

    Science.gov (United States)

    Yan, Youchun; Bornscheuer, Uwe T; Schmid, Rolf D

    2002-04-05

    High conversions in lipase-catalyzed syntheses of esters from free acyl donors and an alcohol requires efficient removal of water preferentially at temperatures compatible to enzyme activity. Using a lipase B from Candida antarctica (CAL-B)-mediated synthesis of sugar fatty-acid esters, we show that a mixture of ethyl methylketone (EMK) and hexane (best ratio: 4:1, vo/vo) allows efficient removal of water generated during esterification. Azeotropic distillation of the solvent mixture (composition: 26% EMK, 55% hexane, 19% water) takes place at 59 degrees C, which closely matches the optimum temperature reported for CAL-B. Water is then removed from the azeotrope by membrane vapor permeation. In case of glucose stearate, 93% yield was achieved after 48 h using an equimolar ratio of glucose and stearic acid. CAL-B could be reused for seven reaction cycles, with 86% residual activity after 14 d total reaction time at 59 degrees C. A decrease in fatty-acid chain length as well as increasing temperatures (75 degrees C) resulted in lower conversions. In addition, immobilization of CAL-B on a magnetic polypropylene carrier (EP 100) facilitated separation of the biocatalyst. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 31--34, 2002; DOI 10.1002/bit.10084

  19. Reaction of Nα-acetyl-L-histidine with diazomethane: A model esterification reaction of carboxylic groups in the presence of imidazole rings

    Directory of Open Access Journals (Sweden)

    Zamora, R.

    1996-10-01

    Full Text Available The reaction of Nα-acetyl-L-histidine with diazomethane was studied in order to analyze the esterification reaction of a carboxylic group in the presence of an imidazole ring. The reaction produced the expected Nα-acetyl-L-histidine methyl ester (1 as a major product. However, important amounts of [S]-acetyl-1-methylimidazole-4-alanine methyl ester (2 and [S]-acetyl-1-methylimidazole-5-alanine methyl ester (3 were also produced. These compounds, which could be detected by capillary electrophoresis (HPCE and thin layer chromatography, were fractionated by column chromatography and identified by gas chromatography coupled with mass spectrometry (GC-MS, and 1H and 13C nuclear magnetic resonance spectroscopy. Structures for compounds 1-3 were confirmed by HPCE after acid hydrolysis. These results indicated that the use of diazomethane produces the methyl derivative of the heterocyclic ring in addition to the methyl ester. This reaction should be considered when preparing derivatives for GC-MS analysis.

    La reacción de la Nα-acetil-L-histidina con diazometano fue estudiada con objeto de conocer el comportamiento de la reacción de esterificación de un grupo carboxílico en presencia de un anillo de imidazol. La reacción produjo el esperado éster metílico de la Nα-acetil-L-histidina (1 como producto mayoritario. Sin embargo, también se observó la formación de cantidades importantes de los esteres metílicos de la [S]-acetil-1-metilimidazol- 4-alanina (2 y la [S]-acetil-1-metilimidazol-5-alanina (3. Estos compuestos que pudieron ser detectados por electroforesis capilar y cromatografía en capa fina, fueron separados por cromatografía en columna e identificados por cromatografía de gases acoplada a espectrometría de masas, y por espectroscopia de resonancia magnética nuclear de 1H y 13C. Las estructuras de los compuestos

  20. High performance supercapacitor using N-doped graphene prepared via supercritical fluid processing with an oxime nitrogen source

    International Nuclear Information System (INIS)

    Balaji, S. Suresh; Elavarasan, A.; Sathish, M.

    2016-01-01

    Graphical abstract: N-doped graphene prepared via supercritical fluid processing with oxime nitrogen source (DMG) showed enhanced performance in electrochemical supercapacitor application. A maximum specific capacitance of 286 F g"−"1 at a current density of 0.5 A/g was achieved with a high specific capacity retention of 98% after 1000 cycles at 5 A/g. - Highlights: • N-functionalised graphene synthesized via supercritical fluid processing. • DMG, an oxime based nitrogen precursor. • Maximum specific capacitance of 286 F/g at 0.5 A/g in aqueous solution. • Pyridinic as well as quarternary nitrogen for enhanced capacitance. - Abstract: Heteroatom doped graphene has been proved for its promising applications in electrochemical energy storage systems. Here, nitrogen (N) doped graphene was prepared via two different techniques namely supercritical fluid assisted processing and hydrothermal heat treatment using dimethylglyoxime (DMG) as an oxime nitrogen precursor. The FT-IR and Raman spectra showed the N-containing functional group in the graphene. The XRD analysis revealed the complete reduction of graphene oxide during the supercritical fluid processing. The elemental analysis and X-ray photoelectron spectroscopy revealed the amount and nature of N-doping in the graphene, respectively. The surface morphology and physical nature of the samples were analyzed using scanning and transmission electron microscopic analysis. The electrochemical performance of prepared electrode materials was evaluated using cyclic voltammetry, galvanostatic charge-discharge analysis and electrochemical impedance spectroscopy. The N-doped graphene prepared via supercritical fluid assisted processing exhibit enhanced capacitive behaviour with a maximum specific capacitance of 286 F g"−"1 at a current density of 0.5 A/g. The cycling studies showed 98% specific capacity retention with 100% coulombic efficiency over 1000 cycles at 5 A/g. The enhanced specific capacitance of N

  1. Novel function of lecithin-cholesterol acyltransferase. Hydrolysis of oxidized polar phospholipids generated during lipoprotein oxidation.

    Science.gov (United States)

    Goyal, J; Wang, K; Liu, M; Subbaiah, P V

    1997-06-27

    Although the major function of lecithin-cholesterol acyltransferase (LCAT) is cholesterol esterification, our previous studies showed that it can also hydrolyze platelet-activating factor (PAF). Because of the structural similarities between PAF and the truncated phosphatidylcholines (polar PCs) generated during lipoprotein oxidation, we investigated the possibility that LCAT may also hydrolyze polar PCs to lyso-PC during the oxidation of plasma. PAF acetylhydrolase (PAF-AH), which is known to hydrolyze polar PCs in human plasma, was completely inhibited by 0.2 mM p-aminoethyl benzenesulfonyl fluoride (Pefabloc), a new serine esterase inhibitor, which had no effect on LCAT at this concentration. On the other hand, 1 mM diisopropylfluorophosphate (DFP) completely inhibited LCAT but had no effect on PAF-AH. Polar PC accumulation during the oxidation of plasma increased by 44% in the presence of 0.2 mM Pefabloc and by 30% in the presence of 1 mM DFP. The formation of lyso-PC was concomitantly inhibited by both of the inhibitors. The combination of the two inhibitors resulted in the maximum accumulation of polar PCs, suggesting that both PAF-AH and LCAT are involved in their breakdown. Oxidation of chicken plasma, which has no PAF-AH activity, also resulted in the formation of lyso-PC from the hydrolysis of polar PC, which was inhibited by DFP. Polar PCs, either isolated from oxidized plasma or by oxidation of labeled synthetic PCs, were hydrolyzed by purified LCAT, which had no detectable PAF-AH activity. These results demonstrate a novel function for LCAT in the detoxification of polar PCs generated during lipoprotein oxidation, especially when the PAF-AH is absent or inactivated.

  2. Effects of microtubule mechanics on hydrolysis and catastrophes

    International Nuclear Information System (INIS)

    Müller, N; Kierfeld, J

    2014-01-01

    We introduce a model for microtubule (MT) mechanics containing lateral bonds between dimers in neighboring protofilaments, bending rigidity of dimers, and repulsive interactions between protofilaments modeling steric constraints to investigate the influence of mechanical forces on hydrolysis and catastrophes. We use the allosteric dimer model, where tubulin dimers are characterized by an equilibrium bending angle, which changes from 0 ∘ to 22 ∘ by hydrolysis of a dimer. This also affects the lateral interaction and bending energies and, thus, the mechanical equilibrium state of the MT. As hydrolysis gives rise to conformational changes in dimers, mechanical forces also influence the hydrolysis rates by mechanical energy changes modulating the hydrolysis rate. The interaction via the MT mechanics then gives rise to correlation effects in the hydrolysis dynamics, which have not been taken into account before. Assuming a dominant influence of mechanical energies on hydrolysis rates, we investigate the most probable hydrolysis pathways both for vectorial and random hydrolysis. Investigating the stability with respect to lateral bond rupture, we identify initiation configurations for catastrophes along the hydrolysis pathways and values for a lateral bond rupture force. If we allow for rupturing of lateral bonds between dimers in neighboring protofilaments above this threshold force, our model exhibits avalanche-like catastrophe events. (papers)

  3. 1H, 13C and 13N chemical shifts and 1H-15N and 13C-15N heteronuclear spin-spin coupling constants n the NMR spectra of 5-substituted furfural oximes

    International Nuclear Information System (INIS)

    Popelis, Yu.Yu.; Liepin'sh, E.E.; Lukevits, E.Ya.

    1986-01-01

    The 1 H, 13 C, and 15 N NMR spectra of 15 N-enriched 5-substituted furfural oximes were investigated. It was shown that the chemical shifts of the ring atoms and the oxime group correlate satisfactorily with the F and R substituent constants, whereas their sensitivity to the effect of the substituents is lower than in monosubstituted furan derivatives. The constants of spin-spin coupling between the ring protons and the oxime group were determined. An analysis of the 1 H- 1 H spin-spin coupling constants (SSCC) on the basis of their stereospecificity indicates that the E isomers have primarily an s-trans conformation in polar dimethyl sulfoxide, whereas the Z isomers, on the other hand, have an s-cis conformation. The signs of the direct and geminal 13 C- 15 N SSCC were determined for 5-trimethylsilylfurfural oxime

  4. The role of the oximes HI-6 and HS-6 inside human acetylcholinesterase inhibited with nerve agents: a computational study.

    Science.gov (United States)

    Cuya, Teobaldo; Gonçalves, Arlan da Silva; da Silva, Jorge Alberto Valle; Ramalho, Teodorico C; Kuca, Kamil; C C França, Tanos

    2017-10-27

    The oximes 4-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HI-6) and 3-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HS-6) are isomers differing from each other only by the position of the carbamoyl group on the pyridine ring. However, this slight difference was verified to be responsible for big differences in the percentual of reactivation of acetylcholinesterase (AChE) inhibited by the nerve agents tabun, sarin, cyclosarin, and VX. In order to try to find out the reason for this, a computational study involving molecular docking, molecular dynamics, and binding energies calculations, was performed on the binding modes of HI-6 and HS-6 on human AChE (HssAChE) inhibited by those nerve agents.

  5. Reactions of Cp2MCl2 (M=Ti or Zr with Imine-Oxime Ligands. Formation of Metallacycles

    Directory of Open Access Journals (Sweden)

    C. Tripathi

    2005-07-01

    Full Text Available The reactions of bis(cyclopentadienyltitanium(IV/zirconium(IV dichloridewith a series of imine-oxime ligands (LH2, derived by condensing benzil-α-monoxime and2-phenylenediamine, 4-phenylenediamine, 4-methyl-2-phenylenediamine, 2,6-diamino-pyridine, have been studied in anhydrous tetrahydrofuran in the presence of base andmetallocycles of the [Cp2M(L] (M=Ti or Zr type have been isolated. Tentative structureshave been proposed for the products based on elemental analysis, electrical conductance andspectral (electronic, IR and 1H-NMR data. Proton NMR spectra indicate that on the NMRtime scale there is rapid rotation of the cyclopentadienyl ring around the metal-ring axis at25oC. Studies were conducted to assess the growth inhibiting potential of the complexessynthesized and the ligands against various bacterial strains.

  6. Extractive and spectrophotometric determination of U (VI) using 5-(3-phenolyl azo)-2-hydroxy-4-ethoxy propiophenone oxime (PHEPO)

    International Nuclear Information System (INIS)

    Subrahmanyam, P.; Krishnapriya, B.; Rekha, D.; Reddy Prasad, P.; Chiranjeevi, P.

    2007-01-01

    A simple spectrophotometric method for the determination of U (VI) using 5-(3-phenolyl azo)-2-hydroxy-4-ethoxy propiophenone oxime (PHEPO) is developed. The reagent PHEPO was synthesized and used for extraction of uranium. At pH 8.5-10.0 uranium forms a purple colored complex with PHEPO which was then quantitatively extracted in chloroform showing maximum absorbance at wavelength of 380nm. The proposed method obeys Beer's law in the range of 1.2-19.0ppm. molar absorptivity and Sandelson's sensitivity of extracted species were calculated to be 1.750 x 104 lmol-1 cm-1 and 8.5 x 10-5 mg cm-2 respectively. The method was applied for the determination of uranium in synthetic and plant samples. It was found that the newly developed method is competent to those of standard methods. (author)

  7. Extraction of uranium(VI) by emulsion liquid membrane containing 5,8-diethyl-7-hydroxy-6-dodecanone oxime

    International Nuclear Information System (INIS)

    Akiba, Kenichi; Takahashi, Toshihiko; Kanno, Takuji

    1984-01-01

    Extraction of uranium(VI) by a liquid surfactant membrane has been studied. The stability of water-in-oil (w/o) emulsion dispersed in the continuous aqueous phase increased with an increase in surfactant concentrations and in the fraction of the organic phase in emulsion globules. Uranium(VI) in dilute acid solutions was extracted into (w/o) emulsions containing 5,8-diethyl-7-hydroxy-6-dodecanone oxime (LIX 63) as a mobile carrier and its concentration decreased according to [U]sub(t)=[U]sub(o)exp(-ksub(obsd)t). The apparent rate constants (ksub(obsd)) increased with an increase in carrier concentrations and in external pH values, while they were slightly dependent on the stripping acid concentrations. Uranium was transported and concentrated into the internal aqueous droplets. The final concentration of uranium in the external aqueous phase dropped to about 10 -3 of its initial value. (author)

  8. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    Science.gov (United States)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  9. Hydrolysis of Acetic Anhydride in a CSTR

    Directory of Open Access Journals (Sweden)

    Veronica N. Coraci

    2016-05-01

    Full Text Available To find the optimal reactor volume and temperature for the hydrolysis of acetic anhydride at the lowest possible cost with a 90% conversion of acetic anhydride, a formula for the total cost of the reaction was created. Then, the first derivative was taken to find a value for the temperature. This value was then inputted into the second derivative of the equation to find the sign of the value which would indicate whether that point was a minima or maxima value. The minima value would then be the lowest total cost for the optimum reaction to take place.

  10. Kinetics and mechanism of hydrolysis of benzimidazolylcarbamates

    OpenAIRE

    Norberto, F. P.; Santos, S. P.; Iley, J.; Silva, D. B.; Corte Real, M.

    2007-01-01

    Synthesis of new 2-aminobenzimidazole-1-carbamates was accomplished by carbamoylation of 2-aminobenzimidazole using different substituted phenyl chloroformates. The aqueous hydrolysis of the new compounds was examined in the pH range 1-13 at 25 ºC. The evaluated kinetic parameters led to the conclusion that up to pH 4 reaction proceeds by a bimolecular attack of water to the N-protonated substrate. This is the first time this behavior is described for carbamates, and can be ascribed to the hi...

  11. Indirubin Derivative 7-Bromoindirubin-3-Oxime (7Bio Attenuates Aβ Oligomer-Induced Cognitive Impairments in Mice

    Directory of Open Access Journals (Sweden)

    Liping Chen

    2017-11-01

    Full Text Available Indirubins are natural occurring alkaloids extracted from indigo dye-containing plants. Indirubins could inhibit various kinases, and might be used to treat chronic myelocytic leukemia, cancer and neurodegenerative disorders. 7-bromoindirubin-3-oxime (7Bio, an indirubin derivative derived from indirubin-3-oxime, possesses inhibitory effects against cyclin-dependent kinase-5 (CDK5 and glycogen synthase kinase-3β (GSK3β, two pharmacological targets of Alzheimer's disease (AD. In this study, we have discovered that 2.3–23.3 μg/kg 7Bio effectively prevented β-amyloid (Aβ oligomer-induced impairments of spatial cognition and recognition without affecting bodyweight and motor functions in mice. Moreover, 7Bio potently inhibited Aβ oligomer-induced expression of interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α. Furthermore, 7Bio significantly prevented the decreased expression of synapsin-1 and PSD-95, biomarkers of pre-synaptic and post-synaptic proteins in Aβ oligomer-treated mice. The mean optical density (OD with hyper-phosphorylated tau (pTau, glial fibrillary acidic protein (GFAP and CD45 positive staining in the hippocampus of 7Bio-treated mice were significantly decreased compared to those of Aβ oligomer-treated mice. In addition, Western blotting analysis showed that 7Bio attenuated Aβ oligomer-decreased expression of pSer9-GSK3β. Those results suggested that 7Bio could potently inhibit Aβ oligomer-induced neuroinflammation, synaptic impairments, tau hyper-phosphorylation, and activation of astrocytes and microglia, which may contribute to the neuroprotective effects of 7Bio. Based on these findings, we expected that 7Bio might be developed as a novel anti-AD lead compound.

  12. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. KINETIC STUDY OF PALMITIC ACID ESTERIFICATION CATALYZED BY Rhizopus oryzae RESTING CELLS

    Directory of Open Access Journals (Sweden)

    JONH J MÉNDEZ

    2009-01-01

    Full Text Available ABSTRACT In the present study, a kinetic model for the biocatalytic synthesis of esters using Rhizopus oryzae resting cells is proposed. The kinetic study has been made in a range of 30-50 °C and atmospheric pressure. The Influence of operating variables, water content, pH, amount of mycelium was studied. Different values of temperature, initial mycelium concentration and acid/alcohol molar ratio were tested. Initial rates were estimated from the slope of the concentration of palmitic acid, or their corresponding ester at conversions of less than 10%, versus time and reported as mmol l-1 min -1. The values of kinetic constants were computed using the freeware program SIMFIT (http:\\\\www.simfit.man.ac.uk. Key words: bound lipase, esterification, fungal resting cells, Rhizopus oryzae, palmitic acid, propanol. RESUMEN En el presente estudio, un modelo cinético para la síntesis de esteres usando Rhizopus oryzae resting cells es propuesto. El estudio cinético fue realizado en un rango de temperatura de 30-50 ºC a presión atmosférica reducida. La influencia de las variables de operación tales como temperatura, pH y contenido de agua fueron estudiadas. Diferentes valores de concentración de micelio y relación molar de ácido/alcohol son ensayadas, Las velocidades iníciales se estimaron de la curva de concentración de acido palmítico, y su correspondiente conversión a ester en menos del 10%, frente a tiempo y reportadas en mmol I-1 min -1. Los valores de las constantes cinéticas fueron calculados usando el programa freeware SIMFIT (http:\\\\www.simfit.man.ac.uk. Palabras clave: Lipasas, esterificación, resting cells, Rhizopus oryzae, acido palmítico, propanol.

  14. Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology

    International Nuclear Information System (INIS)

    Ma, Lingling; Han, Ying; Sun, Kaian; Lu, Jie; Ding, Jincheng

    2015-01-01

    Highlights: • As lipid source, acidified oil are from industrial wastes for renewable energy. • The predicted conversion rate of FFAs was 75.24% under the RSM optimized conditions. • The adsorption system was employed to remove the water produced to shift the equilibrium toward ethyl ester production. • Maximum conversion rate of 98.32% was obtained using adsorption system at optimum process parameters. • Compared with tradition methods, molecular sieve dehydration method improved the conversion rate by 23.08%. - Abstract: The esterification of acidified oil with ethanol catalyzed by sulfonated cation exchange resins (SCER) was optimized using the response surface methodology (RSM). The effects of the molar ratio of ethanol to acidified oil, reaction time and catalyst loading on the conversion rate of free fatty acids (FFAs) were investigated at the temperature of the boiling point of ethanol. Results showed that the highest conversion rate of 75.24% was obtained at the molar ratio of ethanol to acidified oil of 23.2, reaction time of 8.0 h and catalyst loading of 35.0 wt.%. Moreover, the conversion rate of FFAs was increased to 98.32% by using a water adsorption apparatus under the RSM optimized conditions. Scanning electronic microscopic–energy dispersive spectrometric (SEM–EDS), X-ray diffractometric (XRD) and thermogravimetric–derivative thermogravimetric (TG–DTG) analyses confirmed that the morphology of catalysts did not change much and the mechanical and thermal stabilities were still good after the reaction. Furthermore, SCER exhibited a high catalytic activity and stability after being reused for five successive times. The fuel properties of the biodiesel were comparable to that of ASTM, EN and GB biodiesel standard

  15. Formulation of SrO-MBCUS Agglomerates for Esterification and Transesterification of High FFA Vegetable Oil

    Directory of Open Access Journals (Sweden)

    Prashant Kumar

    2016-08-01

    Full Text Available Musa Balbisiana Colla Underground Stem (MBCUS catalyst was treated thermally mixing with 5:1 w/w of Strontium Oxide (SrO and the dynamic sites were reformed. The MBCUS-SrO showed sharper crystalline phases as evidence from XRD and TEM analysis. The composition and morphology were characterized from BET, SEM, EDX thermo-gravimetric analysis (TGA and XRF analysis. The optimization process for biodiesel production from Jatropha curcas L oil (JCO having high percentage of free fatty acids was carried out using orthogonal arrays adopting the Taguchi method. The linear equation was obtained from the analysis and subsequent biodiesel production (96% FAME was taken away from the JCO under optimal reaction conditions. The biodiesel so prepared had identical characteristics to that with MBCUS alone, but at a lower temperature (200˚C and internal vapour pressure. Metal leaching was much lower while reusability of the catalyst was enhanced. It was also confirmed that the particle size has little impact upon the conversion efficacy, but the basic active sites are more important. Copyright © 2016 BCREC GROUP. All rights reserved Received: 19th August 2015; Revised: 8th December 2015; Accepted: 1st January 2016 How to Cite: Kumar, P., Sarma, A.K., Bansal, A., Jha, M.K. (2016. Formulation of SrO-MBCUS Agglomerates for Esterification and Transesterification of High FFA Vegetable Oil. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 140-150 (doi:10.9767/bcrec.11.2.540.140-150 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.540.140-150

  16. Biodiesel production by direct esterification of fatty acids with propyl and butyl alcohols

    Directory of Open Access Journals (Sweden)

    Ferial A. Zaher

    2015-12-01

    Full Text Available The expected depletion of natural petroleum resources in the near future and pollution of the environment due to excessive carbon dioxide emissions by fossil fuel and its adverse effect on global warming constitute two major problems facing the whole world. In view of these problems, much research work is now directed worldwide to find fuels alternative to those derived from petroleum which should be renewable and more environmentally friendly fuels. Biodiesel fuel which is a blend of fatty acid esters with alcohols is considered the most suitable alternative fuel for diesel engines. In this scope of research work, a previous study (Soliman et al., 2013 has been made to explore the opportunity of utilizing the fatty acids that can be obtained from the waste of edible oil industry in Egypt to produce biodiesel fuel by direct esterification with methanol as well as ethanol in the presence of sulfuric acid as a catalyst. This paper is a continuation of that work where two other alcohols of a chain length longer than ethanol have been used being propanol and butanol. The performance of a diesel engine running using a 50% blend of regular diesel fuel and each of the two biodiesels prepared was compared to that using regular diesel fuel. The results have shown that the brake specific fuel consumption (BSFC and the brake thermal efficiency at full engine loading were almost the same in all cases. This indicates that the produced fuel could be used as an efficient fuel substitute for diesel engines. By comparing the results of the present work to those reported in our previous work, it appeared that methanol which has the shortest carbon chain length is the most recommended in view of the brake thermal efficiency of a diesel engine at full loading.

  17. Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall.

    Science.gov (United States)

    Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat; Baillie, Alice; Lundgren, Marjorie; Verhertbruggen, Yves; Scheller, Henrik V; Knox, J Paul; Fleming, Andrew J; Gray, Julie E

    2016-11-07

    Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2 , substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Adsorptive control of water in esterification with immobilized enzymes: II. fixed-bed reactor behavior.

    Science.gov (United States)

    Mensah, P; Gainer, J L; Carta, G

    1998-11-20

    Experimental and theoretical studies are conducted to understand the dynamic behavior of a continuous-flow fixed-bed reactor in which an esterification is catalyzed by an immobilized enzyme in an organic solvent medium. The experimental system consists of a commercial immobilized lipase preparation known as Lipozyme as the biocatalyst, with propionic acid and isoamyl alcohol (dissolved in hexane) as the reaction substrates. A complex dynamic behavior is observed experimentally as a result of the simultaneous occurrence of reaction and adsorption phenomena. Both propionic acid and water are adsorbed by the biocatalyst resulting in lower reaction rates. In addition, an excessive accumulation of water in the reactor leads to a rapid irreversible inactivation of the enzyme. A model based on previously-obtained adsorption isotherms and kinetic expressions, as well as on adsorption rate measurements obtained in this work, is used to predict the concentration and thermodynamic activity of water along the reactor length. The model successfully predicts the dynamic behavior of the reactor and shows that a maximum thermodynamic activity of water occurs at a point at some distance from the reactor entrance. A cation exchange resin in sodium form, packed in the reactor as a selective water adsorbent together with the catalyst particles, is shown to be an effective means for preventing an excessive accumulation of water formed in the reaction. Its use results in longer cycle times and greater productivity. As predicted by the model, the experimental results show that the water adsorbed on the catalyst and on the ion exchange resin can be removed with isoamyl alcohol with no apparent loss in enzyme activity. Copyright 1998 John Wiley & Sons, Inc.

  19. Research and determination of process parameters of milk lactose hydrolysis

    OpenAIRE

    Калинина, Елена Дмитриевна; Коваленко, Александр Владимирович

    2014-01-01

    The researches of enzymatic milk lactose hydrolysis by using the β - galactosidase enzyme are given in the paper. For carrying out a lactose hydrolysis, two β-galactosidase enzyme preparations GODO-YNL2 and Neolactase are offered. For setting lactose hydrolysis parameters, the influence of a pH medium, temperature, enzyme preparation doses, the duration of hydrolyzing the milk lactose affected by the β- galactosidase enzyme preparations, was studied. In terms of effectiveness, adaptability an...

  20. Hydrolysis-extraction of apple proto pectins in dynamic mode

    International Nuclear Information System (INIS)

    Bobodzhonova, G.N.; Gorshkova, R.M.; Makhkamov, Kh.K.

    2013-01-01

    The article describes a hydrolysis process of apple husks by using dynamics regime of hydrolysis. It's shown that application of dynamics method positively influences on the pectin yields and its main parameters. It was defined that by dynamics regime of hydrolysis-extraction of apple husks it is possible to obtain qualitative products with high yield at a mild ph value of medium of hydrolysing agent.

  1. Enzymatic hydrolysis of lactose of whey permeate

    Directory of Open Access Journals (Sweden)

    Karina Nascimento de Almeida

    2015-09-01

    Full Text Available The whey permeate is the residual of the concentration process of the whey proteins by ultrafiltration method. It contains important nutrients such as lactose, minerals and some proteins and lipids. It is without an ending industrial waste that causes serious damage to the environment. For its full use the lactose must be hydrolyzed to enable its consumption by intolerant people. The enzymatic hydrolysis by lactase (β-galactosidase of Kluyveromyces lactis yeast is a safe method that does not compromise the integrity of other nutrients, enabling further use of the permeate as a raw material. This study aimed to perform tests of enzymatic hydrolysis of lactose in whey permeate formulations in a concentration of 0.2%, 0.7% and 1% at 30, 60 and 90 minutes with pH 6.3 medium and 37 °C. The reactions were monitored by high performance liquid chromatography which showed that the enzyme concentration of 0.7% at time 30 minutes formulations became safe for consumption by lactose intolerant people, according to minimum levels established by law.

  2. Lactose hydrolysis in an enzymatic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, B; Huyghebaert, A

    1987-10-01

    The enzymatic hydrolysis of lactose in whey permeate with subsequent recuperation of Saccharomyces lactis lactase by means of ultrafiltration was investigated. In whey permeate, S. lactis lactase shows maximal activity at pH 6.5; the optimal temperature was found to be 45/sup 0/C and is limited by strong thermal inactivation beyond this temperature. High activity combined with acceptable thermal inactivation (< 10% after 5 h incubation) was established at 30/sup 0/C. S. lactis lactase also displays considerable activity at low temperature (5/sup 0/C). Enzyme stability is reduced drastically by demineralisation: addition of low concentrations of manganese ions (10/sup -3/ M) considerably enhances stability. Using a DDS Lab-Unit 35 fitted with GR61PP polysulphon membranes (cut-off: 20.000), pilot scale experiments were carried out (pH 6.5; 30/sup 0/C) in which whey permeate was hydrolyzed to a degree of hydrolysis of 82% minimum. Enzyme recuperation amounted to 96.5% per batch, all enzyme activity loss being due to thermal inactivation. Microbiological examination of the enzymatic membrane reactor showed that growth of mcicroorganisms can largely be suppressed by working at lower temperature (5/sup 0/C). Eventually, 50 ppm H/sub 2/O/sub 2/ or sterile filtration will adequately solve microbiological problems without affecting enzyme activity.

  3. Influence of relativistic effects on hydrolysis of Ra2+

    International Nuclear Information System (INIS)

    Zielinska, B.; Bilewicz, A.

    2005-01-01

    Using 224 Ra radiotracer the first hydrolysis constant (pK 1h ) of Ra 2+ cations has been determined. The pK 1h value of Ra 2+ was compared with the pK 1h values of other Group 2 cations. It has been shown that the electrostatic hydrolysis model based on assumption that pK 1h is a linear function of reciprocal ionic radii (1/r i ) does not describe well the hydrolysis of Group 2 metal cations. The reason of higher Ra 2+ hydrolysis as expected is the influence of relativistic effects on bonding 7s and 7p 1/2 orbitals. (author)

  4. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis.

    Science.gov (United States)

    Baks, Tim; Bruins, Marieke E; Matser, Ariette M; Janssen, Anja E M; Boom, Remko M

    2008-01-23

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with alpha-amylase from Bacillus licheniformis were compared. Suspensions of native starch or starch gelatinized at different conditions either with or without enzyme were hydrolyzed. During hydrolysis, the oligosaccharide concentration, the dextrose equivalent, and the enzyme activity were determined. We found that the hydrolyzate composition was affected by the type of starch pretreatment and the enzyme addition point but that it was just minimally affected by the pressure applied during hydrolysis, as long as gelatinization was complete. The differences between hydrolysis of thermally gelatinized, high-pressure gelatinized, and native starch were explained by considering the granule structure and the specific surface area of the granules. These results show that the hydrolyzate composition can be influenced by choosing different process sequences and conditions.

  5. Pseudomonas sp. BUP6 produces a thermotolerant alkaline lipase with trans-esterification efficiency in producing biodiesel.

    Science.gov (United States)

    Priji, Prakasan; Sajith, Sreedharan; Faisal, Panichikkal Abdul; Benjamin, Sailas

    2017-12-01

    The present study describes the characteristics of a thermotolerant and alkaline lipase secreted by Pseudomonas sp. BUP6, a novel rumen bacterium isolated from Malabari goat, and its trans -esterification efficiency in producing biodiesel from used cooking oil (UCO). The extracellular lipase was purified to homogeneity (35.8 times purified with 14.8% yield) employing (NH 4 ) 2 SO 4 salt precipitation and Sephadex G-100 chromatography. The apparent molecular weight of this lipase on SDS-PAGE was 35 kDa, the identity of which was further confirmed by MALDI-TOF/MS. The purified lipase was found stable at a pH range of 7-9 with the maximum activity (707 U/ml) at pH 8.2; and was active at the temperature ranging from 35 to 50 °C with the optimum at 45 °C (891 U/ml). Triton X-100 and EDTA had no effect on the activity of lipase; whereas SDS, Tween-80 and β-mercaptoethanol inhibited its activity significantly. Moreover, Ca 2+ (1.0 mM) enhanced the activity of lipase (1428 U/ml) by 206% vis-à-vis initial activity; while Zn 2+ , Fe 2+ and Cu 2+ decreased the activity significantly. Using para -nitrophenyl palmitate as substrate, the K m (11.6 mM) and V max [668.9 μmol/(min/mg)] of the purified lipase were also determined. Crude lipase was used for analyzing its trans -esterification efficiency with used cooking oil and methanol which resulted in the worthy yield of fatty acid methyl esters, FAME (45%) at 37 °C, indicating its prospects in biodiesel industry. Thus, the lipase secreted by the rumen bacterium, Pseudomonas sp. BUP6, offers great potentials to be used in various industries including the production of biodiesel by trans -esterification.

  6. Upgrading of bio-oil to boiler fuel by catalytic hydrotreatment and esterification in an efficient process

    International Nuclear Information System (INIS)

    Zhang, Xinghua; Chen, Lungang; Kong, Wei; Wang, Tiejun; Zhang, Qi; Long, Jinxing; Xu, Ying; Ma, Longlong

    2015-01-01

    Bio-oil can't be directly used as fuel due to its deteriorate properties. Here, an efficient catalytic upgrading process for the bio-oil, including esterification, hydrogenation, hydrodeoxygenation and depolymerization, is proposed with multifunctional catalyst Ni/SiO 2 –ZrO 2 and biomass-derived solvent ethanol. Results showed that esters, alcohols, phenolics, and cyclo-ketones were the main components in the upgraded bio-oil while aldehydes were removed completely via catalytic hydrogenation and acids were removed by catalytic esterification with supercritical ethanol. The pH value of upgraded bio-oil rose drastically from 2.38 to 5.24, and the high heating value increased to 24.4 MJ kg −1 . Comparison characterization on the upgraded and crude bio-oil using FT-IR, GPC (Gel permeation chromatography) and 13 C NMR (Nuclear Magnetic Resonance) demonstrated that lignin-derived oligomers contained in crude bio-oil were further depolymerized over Ni/SiO 2 –ZrO 2 catalyst. The improved properties suggest that the upgraded bio-oil is more suitable to be used as boiler fuel. Furthermore, the loss of carbon is negligible because formation of coke is suppressed during the upgrading process. - Highlights: • Acid can be converted via catalytic esterification in supercritical ethanol. • Aldehydes can be removed completely during the upgrading process. • Lignin-derived oligomers were further depolymerized during the upgrading process. • Formation of coke is effectively inhibited during the upgrading process

  7. Kinetics study of Jatropha oil esterification with ethanol in the presence of tin (II) chloride catalyst for biodiesel production

    Science.gov (United States)

    Kusumaningtyas, Ratna Dewi; Ratrianti, Naomi; Purnamasari, Indah; Budiman, Arief

    2017-01-01

    Jatropha oil is one of the promising feedstocks for biodiesel production. Jatropha oil is non-edible oil hence utilization of this oil would not compete with the needs of food. However, crude jatropha oil usually has high free fatty acid (FFA) content. Due to this fact, direct alkaline-catalyzed transesterification of crude jatropha oil for biodiesel production cannot be performed. FFA in crude jatropha oil will react with a base catalyst, resulting in soap as by product and hindering methyl ester (biodiesel) production. Therefore, prior to a transesterification reaction, it is crucial to run a pretreatment step of jatropha oil which can lower the FFA content in the oil. In this work, the pretreatment process was conducted through the esterification reaction of FFA contained in crude jatropha oil with ethanol over tin (II) chloride catalyst to reduce the acid value of the feedstock. The feedstock was Indonesia crude jatropha oil containing 12.03% of FFA. The esterification reaction was carried out in a batch reactor with a molar ratio of FFA to ethanol was 1:60 and total reaction time was 180 minutes. Tin (II) chloride catalyst was varied at 2.5, 5, 7.5, and 10% wt, whereas the effect of the reaction temperature was studied at 35, 34, 55, and 65 °C. The best reaction conversion was 71.55%, achieved at the following condition: a reaction temperature of 65 °C, catalyst concentration of 10% wt, the reaction time of 180 min, and the molar ratio of FFA to ethanol was 1:60. Kinetics study was also conducted in this work. It was found that esterification reaction of jatropha oil FFA with ethanol catalyzed by tin(II) chloride fitted the first-order pseudo-homogeneous kinetics model. It was also revealed that the frequency factor (A) and the activation energy (Ea) were 4.3864 × 106 min-1 and 56.2513 kJ/mole, respectively.

  8. PRODUCTION OF MEDIUM-CHAIN ACYLGLYCEROLS BY LIPASE ESTERIFICATION IN PACKED BED REACTOR: PROCESS OPTIMIZATION BY RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    ZANARIAH MOHD DOM

    2014-06-01

    Full Text Available Medium-chain acylglycerols (or glycerides are formed of mono-, di- and triacylglycerol classes. In this study, an alternative method to produce MCA from esterifying palm oil fatty acid distillate (PFAD with the presence of oil palm mesocarp lipase (OPML which is a plant-sourced lipase and PFAD is also cheap by-product is developed in a packed bed reactor. The production of medium-chain acylglycerols (MCA by lipase-catalysed esterification of palm oil fatty acid distillate with glycerol are optimize in order to determine the factors that have significant effects on the reaction condition and high yield of MCA. Response surface methodology (RSM was applied to optimize the reaction conditions. The reaction conditions, namely, the reaction time (30-240 min, enzyme load (0.5-1.5 kg, silica gel load (0.2-1.0 kg, and solvent amount (200-600 vol/wt. Reaction time, enzyme loading and solvent amount strongly effect MCA synthesis (p0.05 influence on MCA yield. Best-fitting models were successfully established for MCA yield (R 2 =0.9133. The optimum MCA yield were 75% from the predicted value and 75.4% from the experimental data for 6 kg enzyme loading, a reaction time of 135min and a solvent amount of 350 vol/wt at 65ºC reaction temperature. Verification of experimental results under optimized reaction conditions were conducted, and the results agreed well with the predicted range. Esterification products (mono-, di- and triacylglycerol from the PBR were identified using Thin Layer Chromatography method. The chromatograms showed the successful fractionation of esterified products in this alternative method of process esterification.

  9. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

    Directory of Open Access Journals (Sweden)

    Raimondo Maggi

    2016-10-01

    Full Text Available Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

  10. Esterification of Glycerol with Acetic Acid over Highly Active and Stable Alumina-based Catalysts: A Reaction Kinetics Study

    OpenAIRE

    Rane, S. A.; Pudi, S. M.; Biswas, P.

    2016-01-01

    The catalytic activity of Cu- or Ni monometallic and Cu-Ni bimetallic (Cu/Ni ratio = 3, 1, 0.33) catalysts supported on γ-Al2O3 and SO42–/γ-Al2O3 catalysts were evaluated for esterification of glycerol. The reactions were performed in a batch reactor under reflux at standard reaction conditions: temperature 110 °C, atmospheric pressure, glycerol to acetic acid molar ratio 1:9, and catalyst loading 0.25 g. The best catalytic activity was observed over 2 M SO42–/γ-Al2O3 catalyst, which showed t...

  11. Cu-catalyzed esterification reaction via aerobic oxygenation and C-C bond cleavage: an approach to α-ketoesters.

    Science.gov (United States)

    Zhang, Chun; Feng, Peng; Jiao, Ning

    2013-10-09

    The Cu-catalyzed novel aerobic oxidative esterification reaction of 1,3-diones for the synthesis of α-ketoesters has been developed. This method combines C-C σ-bond cleavage, dioxygen activation and oxidative C-H bond functionalization, as well as provides a practical, neutral, and mild synthetic approach to α-ketoesters which are important units in many biologically active compounds and useful precursors in a variety of functional group transformations. A plausible radical process is proposed on the basis of mechanistic studies.

  12. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    OpenAIRE

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3−4...

  13. Aternative synthesis of poly(hydroxymethylsiloxane) for lipase immobilization and use of the adsorbates as esterification biocatalysts

    Czech Academy of Sciences Publication Activity Database

    Hetflejš, Jiří; Kuncová, Gabriela; Šabata, Stanislav; Blechta, Vratislav; Brus, Jiří

    2006-01-01

    Roč. 38, č. 2, (2006), s. 121-131 ISSN 0928-0707 R&D Projects: GA ČR(CZ) GA104/01/0461; GA ČR(CZ) GA104/05/2637; GA ČR(CZ) GA203/03/1566 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40500505 Keywords : lipase * esterification biocatalyst * poly(hydroxymethylsiloxane) encapsulates Subject RIV: CC - Organic Chemistry Impact factor: 1.009, year: 2006

  14. One step hydrogenation–esterification of model compounds and bio-oil to alcohols and esters over Raney Ni catalysts

    International Nuclear Information System (INIS)

    Xu, Ying; Zhang, Limin; Chang, Jiamin; Zhang, Xinghua; Ma, Longlong; Wang, Tiejun; Zhang, Qi

    2016-01-01

    Highlights: • Fe–RN and Mo–RN showed excellent inhibition of alkylation and hydrogenation activity of phenol respectively. • The esterification activity of alcohols with acetic acid was followed as methanol > THFA > ethanediol. • After OHE of bio-oil, the total content of alcohols and esters reached to 87.27% in the product. - Abstract: Acids, aldehydes, ketones and phenols, which are the main components of bio-oil, have negative effects on the properties. In this paper, the mixture of acetic acid, furfural, hydroxyacetone, ethanediol, phenol and water were chosen as hybrid model compounds of bio-oil (MCB). To convert these compounds into stable and combustible oxygenated organics (alcohols and esters), one step hydrogenation–esterification (OHE) was carried out over Raney Ni catalyst (RN) and Mo, Sn, Fe, Cu modified Raney Ni catalysts (RNs) in the presence of methanol. 100% conversions of furfural and hydroxyacetone were achieved over RNs with high selectivity to desired products. The acetic acid conversion was only 35.1% with no methanol addition, while within 6 g/8 g methanol/MCB addition, the conversion of acetic acid increased to 81.1%. The esterification activity of alcohols was followed by methanol > tetrahydrofurfuryl alcohol (THFA), the hydrogenation product of furfural > ethanediol. Among the RNs, the addition of Fe catalyst restrained the aqueous-phase reforming of methanol and promoted the esterification of methanol and acetic acid. The Mo–RN showed the most favorable performance in the hydrogenation of phenol among the RNs. But the RN modified by both Fe and Mo did not give a good performance. After the OHE of light fraction of raw bio-oil over Mo–RN, there was no ketone & aldehyde detected and the contents of acids and phenols decreased from 49.04% and 7.35% to 8.21% and 3.84%. The conversion of acids could reach to 85.01% which was nearly to the conversion of acetic acid in MCB. The contents of alcohols and esters increased from 5

  15. Theoretical study of the nucleophilic addition of oximes to the nitrile complexes trans-/cis-[ReCl4(NCCH3)2

    International Nuclear Information System (INIS)

    Klestova-Nadeeva, E. A.; Kuznetsov, M. L.; Dement'ev, A. I.

    2005-01-01

    The reaction of nucleophilic addition of oximes (HON=CRR 1 ) to organic nitriles coordinated in the rhenium complexes trans-/cis-[ReCl 4 (NCCH 3 ) 2 ] was theoretically studied by the Hartree-Fock and density functional theory (B3LYP) methods. The reaction mechanism involves (I) the initial change of the oxime conformation; (II) the formation of the orientation complex with the coordinated nitrile molecule, which transforms into a four-membered transition state; (III) the formation of the addition product in a less stable conformation; and (IV) the formation of the ultimate addition product. The calculations make it possible to interpret the activation of nitriles in terms of the activated complex theory as a result of stabilization of the transition state in going from the free to the coordinated nitrile [ru

  16. Analysis of different de-esterification mechanisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from A. niger

    DEFF Research Database (Denmark)

    Limberg, G; Körner, R; Buchholt, H C

    2000-01-01

    with either endopectin lyase (PL) or endopolygalacturonase II (PG II) from Aspergillus niger were analysed using matrix assisted laser desorption ionisation mass spectrometry (MALDIMS) and high-performance anion-exchange chromatography with pulsed amperometric or UV detection (HPAEC-PAD/UV). Time course......A series of pectins with different distribution patterns of methyl ester groups was produced by treatment with either plant (p-PME) or fungal pectin methyl esterases (f-PME) and compared with those obtained by base catalysed de-esterification. The products generated by digestion of these pectins...... analysis using MALDIMS was used to identify the most preferred substrate for each enzyme. For PL, this was shown to be fully methyl esterified HG whereas for PG II, long regions of HG without any methyl esterification, as produced by p-PME was the optimal substrate. The blockwise de-esterification caused...

  17. Acid-functionalized nanoparticles for biomass hydrolysis

    Science.gov (United States)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  18. Detection of homing-in of stem cells labeled with technetium-99m hexamethylpropyleneamine oxime in infarcted myocardium after intracoronary injection

    International Nuclear Information System (INIS)

    Patel, Chetan D; Agarwal, Snehlata; Seth, Sandeep; Mohanty, Sujata; Aggarwal, Himesh; Gupta, Namit

    2014-01-01

    Bone marrow stem cells having myogenic potential are promising candidates for various cell-based therapies for myocardial disease. We present here images showing homing of technetium-99m (Tc-99m) hexamethylpropyleneamine oxime (HMPAO) labeled stem cells in the infarcted myocardium from a pilot study conducted to radio-label part of the stem cells in patients enrolled in a stem cell clinical trial for recent myocardial infarction

  19. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. I. New method of determining the configuration of oximes and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Kalabin, G.A.

    1986-07-10

    It was shown that the direct /sup 13/C-/sup 13/C spin-spin coupling constants can be used for the unambiguous identification of the configurational isomers of oximes and their derivatives. The stereospecificity of the constants is explained by the additional contribution from the unshared electron pair of the nitrogen atom to the spin-spin coupling constant between the adjacent carbon nuclei in the cis position.

  20. Application of oxime-diversification to optimize ligand interactions within a cryptic pocket of the polo-like kinase 1 polo-box domain | Center for Cancer Research

    Science.gov (United States)

    By a process involving initial screening of a set of 87 aldehydes using an oxime ligation-based strategy, we were able to achieve a several-fold affinity enhancement over one of the most potent previously known polo-like kinase 1 (Plk1) polo-box domain (PBD) binding inhibitors. This improved binding may result by accessing a newly identified auxiliary region proximal to a key

  1. Defense waste processing facility precipitate hydrolysis process

    International Nuclear Information System (INIS)

    Doherty, J.P.; Eibling, R.E.; Marek, J.C.

    1986-03-01

    Sodium tetraphenylborate and sodium titanate are used to assist in the concentration of soluble radionuclide in the Savannah River Plant's high-level waste. In the Defense Waste Processing Facility, concentrated tetraphenylborate/sodium titanate slurry containing cesium-137, strontium-90 and traces of plutonium from the waste tank farm is hydrolyzed in the Salt Processing Cell forming organic and aqueous phases. The two phases are then separated and the organic phase is decontaminated for incineration outside the DWPF building. The aqueous phase, containing the radionuclides and less than 10% of the original organic, is blended with the insoluble radionuclides in the high-level waste sludge and is fed to the glass melter for vitrification into borosilicate glass. During the Savannah River Laboratory's development of this process, copper (II) was found to act as a catalyst during the hydrolysis reactions, which improved the organic removal and simplified the design of the reactor

  2. PRETREATMENT OF LIGNOCELLULOSIC BIOMASS FOR ENZYMATIC HYDROLYSIS

    Directory of Open Access Journals (Sweden)

    Doan Thai Hoa

    2017-11-01

    Full Text Available The cost of raw materials continues to be a limiting factor in the production of bio-ethanol from traditional raw materials, such as sugar and starch. At the same time, there are large amount of agricultural residues as well as industrial wastes that are of low or negative value (due to costs of current effluent disposal methods. Dilute sulfuric acid pretreatment of elephant grass and wood residues for the enzymatic hydrolysis of cellulose has been investigated in this study.    Elephant grass (agricultural residue and sawdust (Pulp and Paper Industry waste with a small particulate size were treated using different dilute sulfuric acid concentrations at a temperature  of 140-170°C within 0.5-3 hours. The appropriate pretreatment conditions give the highest yield of soluble saccharides and total reducing sugars.

  3. Hydrolysis and formation constants at 250C

    International Nuclear Information System (INIS)

    Phillips, S.L.

    1982-05-01

    A database consisting of hydrolysis and formation constants for about 20 metals associated with the disposal of nuclear waste is given. Complexing ligands for the various ionic species of these metals include OH, F, Cl, SO 4 , PO 4 and CO 3 . Table 1 consists of tabulated calculated and experimental values of log K/sub xy/, mainly at 25 0 C and various ionic strengths together with references to the origin of the data. Table 2 consists of a column of recommended stability constants at 25 0 C and zero ionic strength tabulated in the column headed log K/sub xy/(0); other columns contain coefficients for an extended Debye-Huckel equation to permit calculations of stability constants up to 3 ionic strength, and up to 0.7 ionic strength using the Davies equation. Selected stability constants calculated with these coefficients for various ionic strengths agree to an average of +- 2% when compared with published experimental and calculated values

  4. [Anaerobic hydrolysis of terramycin crystallizing mother solution].

    Science.gov (United States)

    Ma, W; Wang, J; Liang, C; Qi, R; Yang, M

    2001-09-01

    The terramycin crystallizing mother solution contained high organics and high nitrogen. There were many kinds of bioinhibition in it but not enough electronic donor. Anaerobic hydrolysis of terramycin crystallizing mother solution was completed with up anarobic sludge bed in order to improve the biodegradability of wastewater and electronic donor in it. The variations of pH, COD, NH4+, and SO4(2-) were monitored. The COD removal was in a narrow range between 10% and 16.4% even when the HRT of the reactor was changed from 1.5 h to 6 h. pH increased because of formation of NH3 and reduction of SO4(2-). Most of SO4(2-) was reduced to S2- when the HRT was longer than 2 h. Batch experiments on hydrolyzed wastewater demonstrated that reaction rates of nitrification and denitrification increased by 90.9% and 45.2%, respectively.

  5. Hydrolysis rates of domestic wastewater sludge using biochemical ...

    African Journals Online (AJOL)

    Domestic wastewater treatment can be improved by reducing energy consumption and increasing carbon recovery, which can be achieved using anaerobic digestion of sludge with methane recovery at ambient temperature. Hydrolysis can be a limiting step in anaerobic digestion, and characterisation of hydrolysis rates ...

  6. Enhanced functional properties of tannic acid after thermal hydrolysis

    Science.gov (United States)

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  7. Chemical analysis and base-promoted hydrolysis of locally ...

    African Journals Online (AJOL)

    Abstract. The study was on the chemical analysis and base- promoted hydrolysis of extracted shea nut fat. The local method of extraction of the shea nut oil was employed in comparison with literature report. A simple cold-process alkali hydrolysis of the shea nut oil was used in producing the soap. The chemical analysis of ...

  8. The kinetics of hydrolysis of acetylsalicylic acid (Aspirin) in different ...

    African Journals Online (AJOL)

    The kinetics of hydrolysis of Acetylsalicylic acid (Aspirin) to salicylic acid was followed by the direct spectrophotometric measurement of the amount of salicylic acid produced with time. Salicylic acid was complexed with ferric ion giving a characteristic purple colour (λlm 523nm). The kinetics of hydrolysis was found to follow ...

  9. Radiation degradation and the subsequent enzymatic hydrolysis of waste paper

    International Nuclear Information System (INIS)

    Kamakura, M.; Kaetsu, I.

    1982-01-01

    Various studies have been carried out to find methods for the pretreatment of waste cellulosic materials to make them more susceptible to enzymatic hydrolysis. In the work reported here, the effects of preirradiating waste papers on subsequent enzymatic hydrolysis have been studied

  10. Multivariate data analysis of enzyme production for hydrolysis purposes

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Suhr, K.I.

    1999-01-01

    of the structure in the data - possibly combined with analysis of variance (ANOVA). Partial least squares regression (PLSR) showed a clear connection between the two differentdata matrices (the fermentation variables and the hydrolysis variables). Hence, PLSR was suitable for prediction purposes. The hydrolysis...

  11. Kinetic study of sphingomyelin hydrolysis for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    2008-01-01

    in cosmetic and pharmaceutical industries such as in hair and skin care products. The enzymatic hydrolysis of sphingomyelin has been proved to be a feasible method to produce ceramide. The kinetic performance of sphingomyelin hydrolysis in the optimal two-phase (water:organic solvent) reaction system...

  12. Cp*Co(III) Catalyzed Site-Selective C-H Activation of Unsymmetrical O-Acyl Oximes: Synthesis of Multisubstituted Isoquinolines from Terminal and Internal Alkynes.

    Science.gov (United States)

    Sun, Bo; Yoshino, Tatsuhiko; Kanai, Motomu; Matsunaga, Shigeki

    2015-10-26

    The synthesis of isoquinolines by site-selective C-H activation of O-acyl oximes with a Cp*Co(III) catalyst is described. In the presence of this catalyst, the C-H activation of various unsymmetrically substituted O-acyl oximes selectively occurred at the sterically less hindered site, and reactions with terminal as well as internal alkynes afforded the corresponding products in up to 98 % yield. Whereas the reactions catalyzed by the Cp*Co(III) system proceeded with high site selectivity (15:1 to 20:1), use of the corresponding Cp*Rh(III) catalysts led to low selectivities and/or yields when unsymmetrical O-acyl oximes and terminal alkynes were used. Deuterium labeling studies indicate a clear difference in the site selectivity of the C-H activation step under Cp*Co(III) and Cp*Rh(III) catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    Science.gov (United States)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  14. Mode of de-esterification of alkaline and acidic pectin methyl esterases at different pH conditions.

    Science.gov (United States)

    Duvetter, Thomas; Fraeye, Ilse; Sila, Daniel N; Verlent, Isabel; Smout, Chantal; Hendrickx, Marc; Van Loey, Ann

    2006-10-04

    Highly esterified citrus pectin was de-esterified at pH 4.5 and 8.0 by a fungal pectin methyl esterase (PME) that was shown to have an acidic isoelectric pH (pI) and an acidic pH optimum and by a plant PME that was characterized by an alkaline pI and an alkaline pH optimum. Interchain and intrachain de-esterification patterns were studied by digestion of the pectin products with endo-polygalacturonase and subsequent analysis using size exclusion and anion-exchange chromatography. No effect of pH was observed on the de-esterification mode of either of the two enzymes. Acidic, fungal PME converted pectin according to a multiple-chain mechanism, with a limited degree of multiple attack at the intrachain level, both at pH 4.5 and at pH 8.0. A multiple-attack mechanism, with a high degree of multiple attack, was more appropriate to describe the action mode of alkaline, plant PME, both at pH 4.5 and at pH 8.0.

  15. High enantioselective Novozym 435-catalyzed esterification of (R,S)-flurbiprofen monitored with a chiral stationary phase.

    Science.gov (United States)

    Siódmiak, Tomasz; Mangelings, Debby; Vander Heyden, Yvan; Ziegler-Borowska, Marta; Marszałł, Michał Piotr

    2015-03-01

    Lipases form Candida rugosa and Candida antarctica were tested for their application in the enzymatic kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification. Successful chromatographic separation with well-resolved peaks of (R)- and (S)-flurbiprofen and their esters was achieved in one run on chiral stationary phases by high-performance liquid chromatography (HPLC). In this study screening of enzymes was performed, and Novozym 435 was selected as an optimal catalyst for obtaining products with high enantiopurity. Additionally, the influence of organic solvents (dichloromethane, dichloroethane, dichloropropane, and methyl tert-butyl ether), primary alcohols (methanol, ethanol, n-propanol, and n-butanol), reaction time, and temperature on the enantiomeric ratio and conversion was tested. The high values of enantiomeric ratio (E in the range of 51.3-90.5) of the esterification of (R,S)-flurbiprofen were obtained for all tested alcohols using Novozym 435, which have a great significance in the field of biotechnological synthesis of drugs. The optimal temperature range for the performed reactions was from 37 to 45 °C. As a result of the optimization, (R)-flurbiprofen methyl ester was obtained with a high optical purity, eep = 96.3 %, after 96 h of incubation. The enantiomeric ratio of the reaction was E = 90.5 and conversion was C = 35.7 %.

  16. Esterification free fatty acid in sludge palm oil using ZrO2/SO42- - rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-05-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as sludge palm oil (SPO) from palm oil industries. The use of SPO can lower the cost of biodiesel production significantly, which makes SPO a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid on sludge palm oil was studied using rice husk ash as heterogeneous solid catalysts. Heterogeneous solid catalysts offer significant advantages of eliminating separation, corrosion, toxicity and environmental problems. In this paper the esterification of SPO, a by-product from palm oil industry, in the presence of modified rice husk ash catalysts was studied. The rice husk ash catalysts were synthesized by impregnating of Zirconia (Zr) on rice husk ash followed by sulfonation. The rice husk ash catalysts were characterized by using different techniques, such as FT-IR, XRD, and porous analysis. The effects of the mass ratio of catalyst to oil (1 - 10%), the molar ratio of methanol to oil (4:1 - 10:1), and the reaction temperature (40 - 60°C) were studied for the conversion of free fatty acids (FFAs) to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to oil molar ratio of 10:1, the amount of catalyst of 10%w, and reaction temperature of 60°C.

  17. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions.

    Science.gov (United States)

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-16

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = Ti(IV), Cu(II), Al(III), Sn(IV), Fe(III), Cr(III), Zr(IV) and Zn(II); for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with Ti(x)H(3-4x)PW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (Ti(x)H(3-4x)PW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  18. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan, E-mail: xdy0156@sina.com; Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  19. Catalyst performance in magnetic esterification methyl soy oil; Desempenho de catalisador magnetico em esterificacao metalica do oleo de soja

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, N.O.; Pereira, K R. de O.; Barros, A.B. de S.; Moura, T.F.B. de; Vilar, E.; Dantas, J.; Costa, A.C.F. de M., E-mail: klebersonric@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Laboratorio de Sintese de Materiais Ceramicos

    2016-07-01

    Growing concerns about the environment have encouraged the search for new fuels, including biodiesel, obtained from lipid sources that react with alcohol and catalyst. This aimed of this study to synthesize type catalyst (Ni-Zn)Fe{sub 2}O{sub 4} and evaluate it in soy oil esterification. The catalyst was synthesized by combustion reaction and characterized by XRD, FTIR and BET. The esterification was carried out at high pressure reactor at 140°C for 1 hour with molar ratio of oil:alcohol 1:15 to 1 and 3% catalyst. From the XRD it was observed the formation of inverted spinel phase. FTIR revealed the presence of the vibrational bands 586, 1381, 1628, 2352, 2922, 3147 and 3457cm{sup -1} and surface area 48m{sup 2}g{sup -1}, 10nm pore diameter and type IV isotherm, suggesting mesoporous material characteristic. The results indicate biodiesel conversion of 31.9% and 27.3% when using 1% and 3% catalyst, respectively. (author)

  20. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    International Nuclear Information System (INIS)

    Xu, Dongyan; Ma, Hong; Cheng, Fei

    2014-01-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity

  1. The Human ABCG1 Transporter Mobilizes Plasma Membrane and Late Endosomal Non-Sphingomyelin-Associated-Cholesterol for Efflux and Esterification

    Directory of Open Access Journals (Sweden)

    Edward B. Neufeld

    2014-12-01

    Full Text Available We have previously shown that GFP-tagged human ABCG1 on the plasma membrane (PM and in late endosomes (LE mobilizes sterol on both sides of the membrane lipid bilayer, thereby increasing cellular cholesterol efflux to lipid surfaces. In the present study, we examined ABCG1-induced changes in membrane cholesterol distribution, organization, and mobility. ABCG1-GFP expression increased the amount of mobile, non-sphingomyelin(SM-associated cholesterol at the PM and LE, but not the amount of SM-associated-cholesterol or SM. ABCG1-mobilized non-SM-associated-cholesterol rapidly cycled between the PM and LE and effluxed from the PM to extracellular acceptors, or, relocated to intracellular sites of esterification. ABCG1 increased detergent-soluble pools of PM and LE cholesterol, generated detergent-resistant, non-SM-associated PM cholesterol, and increased resistance to both amphotericin B-induced (cholesterol-mediated and lysenin-induced (SM-mediated cytolysis, consistent with altered organization of both PM cholesterol and SM. ABCG1 itself resided in detergent-soluble membrane domains. We propose that PM and LE ABCG1 residing at the phase boundary between ordered (Lo and disordered (Ld membrane lipid domains alters SM and cholesterol organization thereby increasing cholesterol flux between Lo and Ld, and hence, the amount of cholesterol available for removal by acceptors on either side of the membrane bilayer for either efflux or esterification.

  2. Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production.

    Science.gov (United States)

    Mazubert, Alex; Taylor, Cameron; Aubin, Joelle; Poux, Martine

    2014-06-01

    Microwave effects have been quantified, comparing activation energies and pre-exponential factors to those obtained in a conventionally-heated reactor for biodiesel production from waste cooking oils via transesterification and esterification reactions. Several publications report an enhancement of biodiesel production using microwaves, however recent reviews highlight poor temperature measurements in microwave reactors give misleading reaction performances. Operating conditions have therefore been carefully chosen to investigate non-thermal microwave effects alone. Temperature is monitored by an optical fiber sensor, which is more accurate than infrared sensors. For the transesterification reaction, the activation energy is 37.1kJ/mol (20.1-54.2kJ/mol) in the microwave-heated reactor compared with 31.6kJ/mol (14.6-48.7kJ/mol) in the conventionally-heated reactor. For the esterification reaction, the activation energy is 45.4kJ/mol (31.8-58.9kJ/mol) for the microwave-heated reactor compared with 56.1kJ/mol (55.7-56.4kJ/mol) for conventionally-heated reactor. The results confirm the absence of non-thermal microwave effects for homogenous-catalyzed reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Esterification of industrial-grade palm fatty acid distillate over modified ZrO{sub 2} (with WO{sub 3}-, SO{sub 4} -and TiO{sub 2}-): Effects of co-solvent adding and water removal

    Energy Technology Data Exchange (ETDEWEB)

    Mongkolbovornkij, P.; Laosiripojana, N. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi (Thailand); Champreda, V. [National Center for Genetic Enginnering and Biotechnology (BIOTEC), Pathumthani (Thailand); Sutthisripok, W. [Department of Mining and Materials Engineering, Prince of Songkla University, Songkhla (Thailand)

    2010-11-15

    The esterification of palm fatty acid distillate (PFAD), a by-product from palm oil industry, in the presence of three modified zirconia-based catalysts i.e. SO{sub 4}-ZrO{sub 2}, WO{sub 3}-ZrO{sub 2} and TiO{sub 2}-ZrO{sub 2} (with several sulfur- and tungsten-loading contents, Ti/Zr molar ratios, and calcination temperatures) was studied. It was found that, among all synthesized catalysts, the reaction in the presence of SO{sub 4}-ZrO{sub 2} and WO{sub 3}-ZrO{sub 2} (with 1.8%SO{sub 4} calcined at 500 C and/or 20%WO{sub 3} calcined at 800 C) enhances relatively high fatty acid methyl ester (FAME) yield (84.9-93.7%), which was proven to relate with the high acid site density and specific surface area as well as the formation of tetragonal phase over these catalysts. The greater benefit of WO{sub 3}-ZrO{sub 2} over SO{sub 4}-ZrO{sub 2} was its high stability after several reaction cycles, whereas significant deactivation was detected over SO{sub 4}-ZrO{sub 2} due to the leaching of sulfur from catalyst. For further improvement, the addition of toluene as co-solvent was found to increase the FAME yield along with reduce the requirement of methanol to PFAD molar ratio (while maintains the FAME yield above 90%). Furthermore, it was observed that the presence of water in the feed considerably lower the FAME yield due to the catalyst surface interfering by water and the further hydrolysis of FAME back to fatty acids. We proposed here that the negative effect can be considerably minimized by adding molecular sieve to remove water from the feed and/or during the reaction. (author)

  4. Evaluation of technetium 99m cyclobutylpropylene amine oxime as a potential brain perfusion imaging agent for SPET

    International Nuclear Information System (INIS)

    Bacciottini, L.; Pupi, A.; Formiconi, A.R.; De Cristofaro, M.T.R.; Petti, A.R.M.; Meldolesi, U.

    1990-01-01

    99m Tc-labelled d,l-cyclobutylpropylene amine oxime ( 99m Tc-CBPAO) has been developed as a brain imaging agent for single photon emission tomography (SPET). 99m Tc-CBPAO can be prepared using a simple labelling procedure suitable for routine clinical use. It has a high in vitro stability, as has been demonstrated by high-pressure liquid chromatography (HPCL) analysis. This shows that 3 h after labelling, less than 5% of the primary lipophilic complex which is capable of crossing the blood-brain barrier (BBB) converts to a secondary hydrophilic complex. Brain uptake (% dose/g wet tissue) of 99m Tc-CBPAO, determined at 5 and 30 min after injection in two groups of six adult male Sprague-Dawley rats, was found to be 0.74±0.06 and 0.73±0.13 (mean±SD), respectively. These values are not significantly different from those obtained repeating the experiment with 99m Tc-labelled hexamethylpropylene amine oxime ( 99m Tc-HMPAO) (0.72±0.15 at 5 min and 0.88±0.24 at 30 min after injection). Since the rat brain uptake of 99m Tc-CBPAO remained unchanged for a period of time suitable for tomographic study, the comparison of the two tracers was extended to two groups of ten patients. The latter were affected by neurological and psychiatric disorders and were studied with SPET. Human brain uptake (% dose/cc cortical grey matter) of 99m Tc-CBPAO and 99m Tc-HMPAO were 3.04±0.57 and 4.22±0.46 (mean x 10 -3 ±SD x 10 -3 ), respectively, with a 32% significant difference. In two other groups of five patients, the first transit time-activity curves of the two tracers were compared. From the analysis of these curves we suggest that 99m Tc-CBPAO has a higher binding effect on blood components and/or a higher degradation rate in blood than that of 99m Tc-HMPAO. This may account for the reduced human brain uptake. In conclusion, SPET images of 99m Tc-CBPAO reflect blood perfusion, and they have a good diagnostic quality. The main advantage of 99m Tc-CBPAO is its in vitro stability

  5. Synthesis of a hollow fiber type porous chelating resin containing the amide oxime group by radiation induced graft polymerization for the uranium recovery

    International Nuclear Information System (INIS)

    Hori, Takahiro; Saito, Kyoichi; Furusaki, Shintaro; Sugo, Takanobu; Okamoto, Jiro.

    1986-01-01

    A hollow fiber type porous chelating resin containing amide oxime as a functional group was synthesized and used as an adsorbent for the recovery of uranium. Hollow fiber type porous polyethylene was used as a base polymer. Acrylonitrile was grafted onto it by the radiation-induced graft polymerization. By changing the reaction time, four kinds of graft polymer were obtained. The degree of grafting ranged from 79 % to 127 %. Each resin was soaked in hydroxylamine solution, and the cyano group was converted to amide oxime group. By elemental analysis, the amount of nitrogen introduced on the graft polymer resin in amidoximation was determined to range from 4.3 mmol to 8.5 mmol per 1 g of base polymer. Most of the nitrogen is considered to belong to the amide oxime group. The pore radius, which was initially distributed broadly from about 500 A to 10000 A for the base polymer, was changed to about 1000 A with narrow distribution by the grafting. The pore volume was 1.2 ∼ 1.4 cm 3 per 1 gram of the amide oxime resin, which was about half of that of the initial base polymer. But the pore volume per 1 g base polymer of the amide oxime resin increased with an increase in the grafting degree, e.g. 4.5 cm 3 /g base polymer at 127 % of grafting degree. Specific surface area, which was 30 m 2 /g in base polymer, decreased with an increase in the grafting degree, e.g. 15 m 2 /g at 127 % of grafting degree. Both the amounts of the adsorbed hydrochloric acid and the adsorbed copper were about 1.5 times of the amount of nitrogen introduced in the amidoximation. The reason is considered to be caused by the formation of hydroxamic acid and amide from the measurements of the IR spectra. The amount of uranium adsorbed on the resin was 64 % of the amount of nitrogen introduced in the amidoximation. (author)

  6. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    Directory of Open Access Journals (Sweden)

    Neeharika, T. S.V.R.

    2015-12-01

    Full Text Available Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candida antarctica Lipase B was carried out in this study by varying reaction temperature (40–60 °C and enzyme concentration (2–5%. The optimal conditions were found to be 6 h reaction time, temperature 60°C, buffer to methyl ricinoleate ratio 2:1(v/w and 4% enzyme concentration to achieve a maximum conversion of 98.5%. A first order reversible reaction kinetic model was proposed to describe this reaction and a good agreement was observed between the experimental data and the model values. The effect of temperature on the forward reaction rate constant was determined by fitting data to the Arrhenius equation. The activation energy for forward reaction was found to be 14.69 KJ·mol−1.El ácido ricinoleico es un hidroxiácido insaturado que se produce naturalmente en el aceite de ricino en proporciones de hasta el 85–90%. El ácido ricinoleico es una materia prima con gran potencial y tiene aplicaciones en revestimientos, formulaciones lubricantes y en áreas farmacéuticas. Para la preparación del ácido ricinoleico se prefiere la hidrólisis enzimática del aceite de ricino a la hidrólisis convencional, para evitar la formación de estólidos. En este estudio se llevó a cabo la cinética de la hidrólisis enzimática del ricinoleato de metilo en presencia de lipasa de Candida antarctica B mediante la variación de la temperatura de reacción (40–60 °C y la concentración de la enzima (2–5%. Las condiciones óptimas de la reacción para

  7. Inhibition of nuclear T3 binding by fatty acids: dependence on chain length, unsaturated bonds, cis-trans configuration and esterification

    NARCIS (Netherlands)

    Wiersinga, W. M.; Platvoet-ter Schiphorst, M.

    1990-01-01

    1. Fatty acids have the capacity for inhibition of nuclear T3 binding (INB). The present studies were undertaken to describe the INB-activity of fatty acids as a function of chain length, unsaturated bonds, cis-trans configuration, and esterification. 2. Isolated rat liver nuclei were incubated with

  8. Kinetic study on the enzymatic esterification of octanoic acid and hexanol by immobilized Candida antarctica lipase B

    DEFF Research Database (Denmark)

    Lopresto, Catia Giovanna; Calabro, Vincenza; Woodley, John M.

    2014-01-01

    a Ping-Pong bi-bi mechanism with dead-end inhibition by both substrates and, based on the proposed model, the kinetic constants of the esterification reaction are estimated. These parameters are verified to be intrinsic – neither external nor internal mass transfer resistances are significant...

  9. Biodegradable polymers by reactive blending trans-esterification of thermoplastic starch with poly (vinyl acetate) and poly (vinyl acetate-co-butyl acrylate)

    CSIR Research Space (South Africa)

    Vargha, V

    2005-04-01

    Full Text Available . Partial trans-esterification took place between wheat starch and the polymers. The blends appeared as homogenous, translucent films with one glass transition temperature range, between that of starch and of the polymer. The presence of wheat starch...

  10. Fractional esterification rate of cholesterol and ratio of triglycerides to HDL-cholesterol are powerful predictors of positive findings on coronary angiography

    Czech Academy of Sciences Publication Activity Database

    Frohlich, J.; Dobiášová, Milada

    2003-01-01

    Roč. 49, č. 11 (2003), s. 1873-1880 ISSN 0009-9147 R&D Projects: GA MZd NA6590 Institutional research plan: CEZ:AV0Z5011922 Keywords : fractional esterification rate of cholesterol (FERHDL) * coronary angiography * markers of atherosclerotic lesions Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.538, year: 2003

  11. Metaloxide--ZrO2 catalysts for the esterification and transesterification of free fatty acids and triglycerides to obtain bio-diesel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Manhoe; Salley, Steven O.; Ng, K. Y. Simon

    2016-09-06

    Mixed metal oxide catalysts (ZnO, CeO, La2O3, NiO, Al203, SiO2, TiO2, Nd2O3, Yb2O3, or any combination of these) supported on zirconia (ZrO2) or hydrous zirconia are provided. These mixed metal oxide catalysts can be prepared via coprecipitation, impregnation, or sol-gel methods from metal salt precursors with/without a Zirconium salt precursor. Metal oxides/ZrO2 catalyzes both esterification and transesterification of oil containing free fatty acids in one batch or in single stage. In particular, these mixed metal oxides supported or added on zirconium oxide exhibit good activity and selectivity for esterification and transesterification. The low acid strength of this catalyst can avoid undesirable side reaction such as alcohol dehydration or cracking of fatty acids. Metal oxides/ZrO2 catalysts are not sensitive to any water generated from esterification. Thus, esterification does not require a water free condition or the presence of excess methanol to occur when using the mixed metal oxide catalyst. The FAME yield obtained with metal oxides/ZrO2 is higher than that obtained with homogeneous sulfuric acid catalyst. Metal oxides/ZrO2 catalasts can be prepared as strong pellets and in various shapes for use directly in a flow reactor. Furthermore, the pellet has a strong resistance toward dissolution to aqueous or oil phases.

  12. Pyruvic oxime nitrification and copper and nickel resistance by a Cupriavidus pauculus, an active heterotrophic nitrifier-denitrifier.

    Science.gov (United States)

    Ramirez, Miguel; Obrzydowski, Jennifer; Ayers, Mary; Virparia, Sonia; Wang, Meijing; Stefan, Kurtis; Linchangco, Richard; Castignetti, Domenic

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3-C(NOH)-COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus) known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1) was examined for its ability to perform heterotrophic nitrification in the presence of Cu(2+) and Ni(2+) and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu(2+) or 0.5 mM Ni(2+) was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu(2+) or 0.5 mM Ni(2+). The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed.

  13. Brain single-photon emission tomography with technetium-99m hexamethylpropylene amine oxime in adolscents with intial-stage schizophrenia

    International Nuclear Information System (INIS)

    Batista, J.F.; Galiano, M.C.; Torres, L.A.; Hernandez, M.C.; Sosa, F.; Perera, A.; Perez, M.

    1995-01-01

    The objective of this study was to search for regional cerebral blood flow (rCBF) abnormalities in adolescents with initial-stage schizophrenia by means of brain single-photon emission tomography (SPET) using technetium-99m hexamethylpropylene amine oxime (HMPAO). SPET studies were performed on a homogeneous sample of 15 carefully selected adolescents with a recent diagnosis of schizophrenia, and without previous electroconvulsive or antipsychotic drug treatment. Computed tomography (CT) and electro-encephalographic (EEG) studies were performed in all patients. Qualitative and semiquantitative analysis of 99m Tc-HMPAO SPET studies showed an impaired rCBF in 12 patients (80%). The most common pattern was a decreased uptake of 99m Tc-HMPAO in the frontal lobes, usually in the left hemisphere. Conventional and quantitative EEG was positive in 12 (80%) and 15 (100%) patients, respectively. CT findings were positive in two patients (13%). There was a high level of concordance between SPET and EEG results and between SPET and clinical features (P > 0.05). This study suggests that previously untreated patients in the first stages of schizophrenia present functional abnormalities that are revealed by brain SPET. (orig.)

  14. Evaluation of dysthymic disorder with technetium-99 m hexamethylpropylene amine oxime brain single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, A.; Cermik, T.F. [Department of Nuclear Medicine, Trakya University, Faculty of Medicine, Edirne (Turkey); Karasin, E.; Abay, E. [Department of Psychiatry, Trakya University, Faculty of Medicine, Edirne (Turkey); Berkarda, S.

    1999-03-01

    Dysthymic disorder is a chronic disorder characterised by the presence of a depressed mood and is classified as a distinct category in DSM-IV, separately from major depression. Although brain imaging studies have been performed in major depressive disease, there have to date been no reports of such studies in dysthymic disorder. In this study 36 patients with dysthymic disorder were compared with 16 normal subjects using technetium-99m hexamethylpropylene amine oxime brain single-photon emission tomography. A relative blood flow ratio was calculated for each region of interest using the average tissue activity in the region divided by activity in the cerebellum. There were significant differences in the bilateral inferior frontal, bilateral parietal, right superior frontal and left posterior temporal regions in the patients with dysthymic disorder compared with the healthy controls. These findings support the hypothesis that the biological bases for dysthymic disorder and major depression are similar. Recognition of these regional abnormalities may have clinical utility in both the diagnosis and the treatment of dysthymic disorder. Further studies are needed to confirm our results and to assess the influence of treatment in patients with dysthymic disorder. (orig.) With 1 fig., 1 tab., 26 refs.

  15. Preparation and surface active properties of oxypropylated diol monoesters of fatty acids with an amide oxime terminal group

    Directory of Open Access Journals (Sweden)

    Eissa, A. M.F.

    1994-10-01

    Full Text Available Locally produced non-edible oil, namely, rice bran oil (R.B.O. was utilized as starting materials for preparing new nonionic surfactant. Oxypropylated diol monoesters of linoleic and rice bran oil fatty acids were prepared. Also amide oxime derivatives were obtained. Surface active properties of these compounds were measured. Under neutral condition amide eximes served as nonionic surfactants and their properties were similar to other oxypropylated monoesters.

    Se ha utilizado un aceite no comestible de producción local, denominado, aceite de salvado de arroz (R.B.O. como materia prima para la preparación de nuevos tensioactivos no iónicos. Se prepararon diol monoésteres oxipropilados de ácido linoleico y ácidos grasos de aceite de salvado de arroz. También se obtuvieron los derivados de amido oxima. Se midieron las propiedades de tensión superficial de estos compuestos. Bajo condiciones neutras las amido eximas sirvieron como tensioactivos no iónicos y sus propiedades fueron similares a los de otros monoésteres oxipropilados.

  16. Evaluation of dysthymic disorder with technetium-99 m hexamethylpropylene amine oxime brain single-photon emission tomography

    International Nuclear Information System (INIS)

    Sarikaya, A.; Cermik, T.F.; Karasin, E.; Abay, E.; Berkarda, S.

    1999-01-01

    Dysthymic disorder is a chronic disorder characterised by the presence of a depressed mood and is classified as a distinct category in DSM-IV, separately from major depression. Although brain imaging studies have been performed in major depressive disease, there have to date been no reports of such studies in dysthymic disorder. In this study 36 patients with dysthymic disorder were compared with 16 normal subjects using technetium-99m hexamethylpropylene amine oxime brain single-photon emission tomography. A relative blood flow ratio was calculated for each region of interest using the average tissue activity in the region divided by activity in the cerebellum. There were significant differences in the bilateral inferior frontal, bilateral parietal, right superior frontal and left posterior temporal regions in the patients with dysthymic disorder compared with the healthy controls. These findings support the hypothesis that the biological bases for dysthymic disorder and major depression are similar. Recognition of these regional abnormalities may have clinical utility in both the diagnosis and the treatment of dysthymic disorder. Further studies are needed to confirm our results and to assess the influence of treatment in patients with dysthymic disorder. (orig.)

  17. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    Directory of Open Access Journals (Sweden)

    Miguel Ramirez

    2014-01-01

    Full Text Available Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2 and nitrous oxide (N2O while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1 was examined for its ability to perform heterotrophic nitrification in the presence of Cu2+ and Ni2+ and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu2+ or 0.5 mM Ni2+ was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu2+ or 0.5 mM Ni2+. The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed.

  18. A novel hybrid catalyst for the esterification of high FFA in Jatropha oil for biodiesel production

    Directory of Open Access Journals (Sweden)

    Mushtaq, M.

    2016-09-01

    Full Text Available The synthesis and application of a hybrid catalyst for the esterification of free fatty acids (FFA in Jatropha oil is reported. Three catalysts, namely silica sulfuric acid, silica supported boron trifluoride and a combination of the two in the weight ratio of 1:1, the hybrid catalyst, were investigated. Jatropha oil samples with a wide range of FFA values i.e. 6.64 to 45.64% were prepared and utilized for the experimental work. This study revealed that silica sulfuric acid and silica supported boron trifluoride were not very effective when used independently. However, a strong synergistic effect was noted in the catalytic activity of the hybrid catalyst which reduced the FFA value from 45.64 to 0.903% with a conversion efficiency of 98%. Reusability of the catalyst was also tested and the results were promising in up to three cycles of use when used with lower amounts of FFA (6.64% in the oil. Under the influence of the catalyst, the reaction was found to follow first order kinetics. Activation energy was calculated to be 45.42 KJ·mol-1 for 2 wt.% of hybrid catalyst. The products were analyzed by FT-IR and NMR spectroscopic techniques and the results are reported.Se aborda la síntesis mediante el uso de un catalizador híbrido en la esterificación de ácidos grasos libres (AGL de aceites de Jatrofa. Se investigaron tres catalizadores: ácido sulfúrico sobre sílica, trifluoruro de boro sobre sílice y un catalizador híbrido, combinación de los dos anteriores en una relación 1:1en peso. Muestras de aceites de Jatrofa con una amplia gama de valores de FFA: desde 6,64 a 45,64% se prepararon y se utilizaron en la parte experimental de este trabajo. Este estudio mostró que los soportes de ácido sulfúrico sobre sílica y el de trifluoruro de boro sobre sílice no eran muy eficaces cuando se utilizan de forma independiente. Sin embargo, un fuerte efecto sinérgico se observó en la actividad catalítica del catalizador híbrido que reduce el

  19. Radiation degration and the subsequent enzymatic hydrolysis of waste papers

    International Nuclear Information System (INIS)

    Kamakura, M.; Kaetsu, I.

    1982-01-01

    In recent years, many methods have been proposed for the hydrolysis of waste cellulose to utilize it as a new source of alcohol. Because it is difficult to hydrolyze waste cellulosic materials effectivley with an enzyme, the effects of preirradiating waste papers on subsequent enzymatic hydrolysis was studied. Preirradiation (x rays from 60 Co) accelerated the hydrolysis rate of newspaper by cellulase and the reducing-sugar yield increased with increasing irradiation dose. It is thought that preirradiation probably contributes to loosening and releasing the compactly entangled structure of cellulose and lignin in the materials by radiation degradation

  20. Furfural production from fruit shells by acid-catalyzed hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk Univ., Konya (Turkey). Dept. of Chemical Engineering

    2006-01-21

    Pentosans are hydrolyzed to pentoses by dilute mineral acid hydrolysis. The main source of pentosans is hemicelluloses. Furfural can be produced by the acid hydrolysis of pentosan from fruit shells such as hazelnut, sunflower, walnut, and almond of agricultural wastes. Further dehydration reactions of the pentoses yield furfural. The hydrolysis of each shell sample was carried out in dilute sulfuric acid (0.05 to 0.200 mol/l), at high temperature (450-525 K), and short reaction times (from 30 to 600 s). (author)

  1. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  2. Hydrolysis of metal ions. Vol. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Paul L. [Geochem Australia, Kiama, NSW (Australia); Ekberg, Christian [Chalmers Univ. of Technology, Goeteborg (Sweden). Nuclear Chemistry/Industrial Materials Recycling

    2016-07-01

    Filling the need for a comprehensive treatment that covers the theory, methods and the different types of metal ion complexes with water (hydrolysis), this handbook and ready reference is authored by a nuclear chemist from academia and an industrial geochemist. The book includes both cation and anion complexes, and approaches the topic of metal ion hydrolysis by first covering the background, before proceeding with an overview of the dissociation of water and then all different metal-water hydrolysis complexes and compounds. A must-have for scientists in academia and industry working on this interdisciplinary topic.

  3. Electrospray ionization mass spectrometry for the hydrolysis complexes of cisplatin: implications for the hydrolysis process of platinum complexes.

    Science.gov (United States)

    Feifan, Xie; Pieter, Colin; Jan, Van Bocxlaer

    2017-07-01

    Non-enzyme-dependent hydrolysis of the drug cisplatin is important for its mode of action and toxicity. However, up until today, the hydrolysis process of cisplatin is still not completely understood. In the present study, the hydrolysis of cisplatin in an aqueous solution was systematically investigated by using electrospray ionization mass spectrometry coupled to liquid chromatography. A variety of previously unreported hydrolysis complexes corresponding to monomeric, dimeric and trimeric species were detected and identified. The characteristics of the Pt-containing complexes were investigated by using collision-induced dissociation (CID). The hydrolysis complexes demonstrate distinctive and correlative CID characteristics, which provides tools for an informative identification. The most frequently observed dissociation mechanism was sequential loss of NH 3 , H 2 O and HCl. Loss of the Pt atom was observed as the final step during the CID process. The formation mechanisms of the observed complexes were explored and experimentally examined. The strongly bound dimeric species, which existed in solution, are assumed to be formed from the clustering of the parent compound and its monohydrated or dihydrated complexes. The role of the electrospray process in the formation of some of the observed ions was also evaluated, and the electrospray ionization-related cold clusters were identified. The previously reported hydrolysis equilibria were tested and subsequently refined via a hydrolysis study resulting in a renewed mechanistic equilibrium system of cisplatin as proposed from our results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. A complete degradation of organophosphates by microwave-assisted hydrolysis

    Czech Academy of Sciences Publication Activity Database

    Jansa, Petr; Čechová, Lucie; Janeba, Zlatko

    2016-01-01

    Roč. 3, č. 3 (2016), s. 219-226 ISSN 2213-3356 R&D Projects: GA MV VG20102015046 Institutional support: RVO:61388963 Keywords : organophosphates * microwave irradiation * hydrolysis Subject RIV: CC - Organic Chemistry

  5. Effects of processing conditions on hydrolysis of cassava starch ...

    African Journals Online (AJOL)

    amyloglucosidase using 30% initial cassava starch concentration, which produced 152 g/l reducing sugar concentration and DE of 50.9. The total effective operating time was 60 h. Keywords:Cassava starch, hydrolysis, enzyme, dextrose equivalent.

  6. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis.

    Science.gov (United States)

    Guilherme, Ederson Paulo Xavier; de Oliveira, Jocilane Pereira; de Carvalho, Lorendane Millena; Brandi, Igor Viana; Santos, Sérgio Henrique Sousa; de Carvalho, Gleidson Giordano Pinto; Cota, Junio; Mara Aparecida de Carvalho, Bruna

    2017-11-01

    A bioreactor was built by means of immobilizing alpha-amylase from Aspergillus oryzae by encapsulation, through cryopolymerization of acrylamide monomers for the continuous starch hydrolysis. The starch hydrolysis was evaluated regarding pH, the concentration of immobilized amylase on cryogel, the concentration of starch solution and temperature. The maximum value for starch hydrolysis was achieved at pH 5.0, concentration of immobilized enzyme 111.44 mg amylase /g cryogel , concentration of starch solution 45 g/L and temperature of 35°C. The immobilized enzyme showed a conversion ratio ranging from 68.2 to 97.37%, depending on the pH and temperature employed. Thus, our results suggest that the alpha-amylase from A. oryzae immobilized on cryogel monoliths represents a potential process for industrial production of maltose from starch hydrolysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process...... on a demonstration scale reactor. The following novel features are included: the application of the Convection–Diffusion–Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis......; a comprehensive pH model; and viscosity estimations during the course of reaction. The model is evaluated against real data extracted from a demonstration scale biorefinery throughout several days of operation. All measurements are within predictions uncertainty and, therefore, the model constitutes a valuable...

  8. Hydrolysis of the amorphous cellulose in cotton-based paper.

    Science.gov (United States)

    Stephens, Catherine H; Whitmore, Paul M; Morris, Hannah R; Bier, Mark E

    2008-04-01

    Hydrolysis of cellulose in Whatman no. 42 cotton-based paper was studied using gel permeation chromatography (GPC), electrospray ionization-mass spectrometry (ESI-MS), and uniaxial tensile testing to understand the course and kinetics of the reaction. GPC results suggested that scission reactions passed through three stages. Additionally, the evolution of soluble oligomers in the ESI-MS data and the steady course of strength loss showed that the hydrolysis reaction occurred at a constant rate. These findings are explained with a more detailed description of the cellulose hydrolysis, which includes multiple chain scissions on amorphous segments. The breaks occur with increasing frequency near the ends of amorphous segments, where chains protrude from crystalline domains. Oligomers unattached to crystalline domains are eventually created. Late-stage reactions near the ends of amorphous segments produce a kinetic behavior that falsely suggests that hydrolysis had ceased. Monte Carlo simulations of cellulose degradation corroborated the experimental findings.

  9. Enhanced hydrolysis of cellulose hydrogels by morphological modification.

    Science.gov (United States)

    Alfassi, Gilad; Rein, Dmitry M; Cohen, Yachin

    2017-11-01

    Cellulose is one of the most abundant bio-renewable materials on earth, yet the potential of cellulosic bio-fuels is not fully exploited, primarily due to the high costs of conversion. Hydrogel particles of regenerated cellulose constitute a useful substrate for enzymatic hydrolysis, due to their porous and amorphous structure. This article describes the influence of several structural aspects of the cellulose hydrogel on its hydrolysis. The hydrogel density was shown to be directly proportional to the cellulose concentration in the initial solution, thus affecting its hydrolysis rate. Using high-resolution scanning electron microscopy, we show that the hydrogel particles in aqueous suspension exhibit a dense external surface layer and a more porous internal network. Elimination of the external surface layer accelerated the hydrolysis rate by up to sixfold and rendered the process nearly independent of cellulose concentration. These findings may be of practical relevance to saccharification processing costs, by reducing required solvent quantities and enzyme load.

  10. Limited hydrolysis of soybean protein concentrate and isolate with ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... world, since its proteins have high biological value while its cost is ... literatures that limited proteolysis of soybean protein pro- ducts offered a ..... hydrolysis of soluble protein present in waste liquors from soy processing.

  11. Analytical control of an esterification batch reaction between glycerine and fatty acids by near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Blanco, Marcelo; Beneyto, Rafael; Castillo, Miguel; Porcel, Marta

    2004-01-01

    Near-infrared spectroscopy was used to control an esterification reaction between glycerine and middle- or long-chain fatty acids performed in a laboratory-scale reactor. The process involves the initial formation of monoglycerides, which is followed by that of di- and triglycerides as well as transesterification. Establishing the end point of the process is critical with a view to ensuring that the end product will have the composition required for its intended use. PLS calibration was applied to industrial and laboratory-scale batch samples, and laboratory samples were additionally used to extend calibration ranges and avoid correlation between the concentration of the batch samples. In this way, PLS calibration models for glycerine, fatty acids, water, and mono-, di- and triglycerides, were constructed. The proposed method allows the reaction to be monitored in real time, thereby avoiding long analysis times, excessive reagent consumption and the obtainment of out-of-specification products

  12. Mineral absorption by albino rats as affected by some types of dietary pectins with different degrees of esterification.

    Science.gov (United States)

    el-Zoghbi, M; Sitohy, M Z

    2001-04-01

    Male albino rats were fed diets contained 6.85% mineral salts for 2 weeks (adaptation condition). Then they were fed the dietary pectin administered diet for 6 weeks to evaluate the effect of administration of pectin on the absorption of some monovalent, bivalent and heavy metals in the serum of rats. The experimental parameters included, monovalent minerals (K, Na), bivalent minerals (Zn, Cu, Ca, Fe), heavy metals (Pb, Cd), serum uric acid and serum creatinine. The obtained results indicated that the serum contents of monovalent minerals were negatively affected by pectin administration. The low degree of esterification of pectin was more effective on the absorption of bivalent minerals. Also, the rat serum levels of lead and cadmium were reduced by pectin administration. Serum total proteins were reduced by pectin administration. The level of rat serum of uric acid and creatinine fed different sources of pectin were within normal levels and were insignificantly lower than that recorded for control samples.

  13. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    Science.gov (United States)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  14. The human digestive tract has proteases capable of gluten hydrolysis

    Directory of Open Access Journals (Sweden)

    Sergio Gutiérrez

    2017-07-01

    Conclusion: The digestive tracts of patients with CD and healthy subjects have enzymatic machinery needed for gluten degradation. Patients with CD showed more gluten hydrolysis than did healthy individuals, although, in both cases, a fraction of 33-mer peptide remained intact. Gliadin peptides derived from gastrointestinal digestion, especially the 33-mer, can potentially be used by commensal microbiota from both CD-positive and CD-negative individuals, and differences in bacterial hydrolysis can modify its immunogenic capacity.

  15. Optimization of Enzymatic Hydrolysis of Waste Bread before Fermentation

    OpenAIRE

    Hudečková, Helena; Šupinová, Petra; Ing. Mgr. Libor Babák, Ph.D., MBA

    2017-01-01

    Finding of optimal hydrolysis conditions is important for increasing the yield of saccharides. The higher yield of saccharides is usable for increase of the following fermentation effectivity. In this study optimal conditions (pH and temperature) for amylolytic enzymes were searched. As raw material was used waste bread. Two analytical methods for analysis were used. Efficiency and process of hydrolysis was analysed spectrophotometrically by Somogyi-Nelson method. Final yields of glucose were...

  16. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jae Hyung [Regenerative Medicine Research Center, Dalim Tissen Co., LTD., 383-93, Yonnam-Dong, Mapo-gu, Seoul (Korea, Republic of); Kim, Yang Hee [Regenerative Medicine Research Center, Dalim Tissen Co., LTD., 383-93, Yonnam-Dong, Mapo-gu, Seoul (Korea, Republic of); Asan Institute for Life Science, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul (Korea, Republic of); Jeong, Seong Hee; Lee, Song [Asan Institute for Life Science, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul (Korea, Republic of); Park, Si-Nae [Regenerative Medicine Research Center, Dalim Tissen Co., LTD., 383-93, Yonnam-Dong, Mapo-gu, Seoul (Korea, Republic of); Shim, In Kyong, E-mail: shimiink@gmail.com [Asan Institute for Life Science, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul (Korea, Republic of); Kim, Song Cheol, E-mail: drksc@amc.seoul.kr [Asan Institute for Life Science, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul (Korea, Republic of); Department of Surgery, University of Ulsan College of Medicine & Asan Medical Center, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul (Korea, Republic of)

    2015-08-07

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.

  17. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems

    International Nuclear Information System (INIS)

    Ko, Jae Hyung; Kim, Yang Hee; Jeong, Seong Hee; Lee, Song; Park, Si-Nae; Shim, In Kyong; Kim, Song Cheol

    2015-01-01

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release

  18. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  19. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis

    Science.gov (United States)

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K.; Dean, Dennis R.; Hoffman, Brian M.; Antony, Edwin; Seefeldt, Lance C.

    2013-01-01

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s−1, 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s−1, 25 °C), (ii) ATP hydrolysis (kATP = 70 s−1, 25 °C), (iii) Phosphate release (kPi = 16 s−1, 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s−1, 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein–protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Feox(ADP)2 protein and the reduced MoFe protein. PMID:24062462

  20. Direct injection of superheated steam for continuous hydrolysis reaction

    KAUST Repository

    Wang, Weicheng

    2012-09-01

    The primary intent for previous continuous hydrolysis studies was to minimize the reaction temperature and reaction time. In this work, hydrolysis is the first step of a proprietary chemical process to convert lipids to sustainable, drop-in replacements for petroleum based fuels. To improve the economics of the process, attention is now focused on optimizing the energy efficiency of the process, maximizing the reaction rate, and improving the recovery of the glycerol by-product. A laboratory-scale reactor system has been designed and built with this goal in mind.Sweet water (water with glycerol from the hydrolysis reaction) is routed to a distillation column and heated above the boiling point of water at the reaction pressure. The steam pressure allows the steam to return to the reactor without pumping. Direct injection of steam into the hydrolysis reactor is shown to provide favorable equilibrium conditions resulting in a high quality of FFA product and rapid reaction rate, even without preheating the inlet water and oil and with lower reactor temperatures and lower fresh water demand. The high enthalpy of the steam provides energy for the hydrolysis reaction. Steam injection offers enhanced conditions for continuous hydrolysis of triglycerides to high-purity streams of FFA and glycerol. © 2012 Elsevier B.V.

  1. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis.

    Science.gov (United States)

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K; Dean, Dennis R; Hoffman, Brian M; Antony, Edwin; Seefeldt, Lance C

    2013-10-08

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s(-1), 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s(-1), 25 °C), (ii) ATP hydrolysis (kATP = 70 s(-1), 25 °C), (iii) Phosphate release (kPi = 16 s(-1), 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s(-1), 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein-protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Fe(ox)(ADP)2 protein and the reduced MoFe protein.

  2. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Directory of Open Access Journals (Sweden)

    Haim, D.

    2012-10-01

    Full Text Available Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP, in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg–1 of butyric acid esterified policosanol (BAEP, or 164 mg kg–1 of oleic acid esterified policosanol (OAEP. Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05 in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis.

    Los Policosanoles están formados por una mezcla de alcoholes alifáticos de cadena larga y se obtienen de las ceras de la caña de azúcar. Más de cincuenta estudios indican que los policosanoles reducen el colesterol sérico, mientras que otros no logran reproducir este efecto. El objetivo de esta investigación fue evaluar la biodisponibilidad de policosanoles esterificados y no esterificados

  3. Application of oxime-diversification to optimize ligand interactions within a cryptic pocket of the polo-like kinase 1 polo-box domain.

    Science.gov (United States)

    Zhao, Xue Zhi; Hymel, David; Burke, Terrence R

    2016-10-15

    By a process involving initial screening of a set of 87 aldehydes using an oxime ligation-based strategy, we were able to achieve a several-fold affinity enhancement over one of the most potent previously known polo-like kinase 1 (Plk1) polo-box domain (PBD) binding inhibitors. This improved binding may result by accessing a newly identified auxiliary region proximal to a key hydrophobic cryptic pocket on the surface of the protein. Our findings could have general applicability to the design of PBD-binding antagonists. Published by Elsevier Ltd.

  4. Evaluation and Computational Characterization of the Faciliated Transport of Glc Carbon C-1 Oxime Reactivators Across a Blood Brain Barrier Model

    Science.gov (United States)

    2013-01-01

    blood brain barrier (BBB) to reactivate inhibited brain acetylcholinesterase (AChE). We selected glucose (Glc) transporters (GLUT) for this purpose as...Eur. J. Pharm. 332 (1997) 43–52. [4] N.J. Abbott , L. Ronnback, E. Hansson, Astrocyte-endothelial interactions at the blood –brain barrier, Nat. Rev...5a. CONTRACT NUMBER oxime reactivators across a blood brain barrier model 5b. GRANT NUMBER 1.E005.08.WR 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  5. Contribution of technetium-99m hexamethylpropylene amine oxime labelled leucocyte scintigraphy to the diagnosis of diabetic foot infection

    International Nuclear Information System (INIS)

    Devillers, A.; Moisan, A.; Garin, E.; Bourguet, P.; Hennion, F.; Poirier, J.Y.

    1998-01-01

    We conducted a prospective study in order to evaluate the contribution of technetium-99m hexamethylpropylene amine oxime (HMPAO) labelled leucocyte scintigraphy to the diagnosis and follow-up of osteomyelitis in the diabetic foot. The study was conducted between October 1992 and November 1996 and included 42 patients (30 men and 12 women; mean age 63 years) with diabetes mellitus (type 1, n = 22, type 2, n = 20) who had a total of 56 diabetic foot ulcers. The initial exploration included standard radiography, three-phase bone scintigraphy and 99m Tc-HMPAO labelled leucocyte scintigraphy (HMPAO-LS), performed within a 3-day interval. For the 56 ulceration sites, 26 cases of osteomyelitis were diagnosed: ten on the basis of radiographic and histological/bacteriological criteria after bone biopsy, 11 after radiographic follow-up and five on the basis of biopsy results alone. No osteomyelitis was present at 30 sites, there were seven cases of cellulitis. The sensitivity and specificity of 99m Tc-HMPAO-LS were 88.4% and 96.6% respectively (23 true-positives, 29 true-negatives, one false-positive, three false-negatives). The accuracy of radiography, 99m Tc-methylene diphosphonate and HMPAO-LS was 69.6%, 62.5%, and 92.9%, respectively. Follow-up scintigraphy (n = 14) 4 months after initial diagnosis and 1 month after antibiotic withdrawal confirmed cure of osteomyelitis despite the absence of complete clinical regression of the ulcers. In conclusion, 99m Tc-HMPAO labelled leucocyte scintigraphy was found to be an excellent method for the diagnosis of osteomyelitis in the diabetic foot. It can contribute to follow-up, particularly when clinical regression of perforating ulcers is incomplete and cure of osteomyelitis must be confirmed in order that antibiotic treatment may be discontinued. (orig.)

  6. Contribution of technetium-99m hexamethylpropylene amine oxime labelled leucocyte scintigraphy to the diagnosis of diabetic foot infection

    Energy Technology Data Exchange (ETDEWEB)

    Devillers, A.; Moisan, A.; Garin, E.; Bourguet, P. [CRLCC Eugene Marquis, Service de Medecine Nucleaire, Rennes (France); Hennion, F.; Poirier, J.Y. [CHRU Pontchaillou, Service d`Endocrinologie, Rennes (France)

    1998-02-01

    We conducted a prospective study in order to evaluate the contribution of technetium-99m hexamethylpropylene amine oxime (HMPAO) labelled leucocyte scintigraphy to the diagnosis and follow-up of osteomyelitis in the diabetic foot. The study was conducted between October 1992 and November 1996 and included 42 patients (30 men and 12 women; mean age 63 years) with diabetes mellitus (type 1, n = 22, type 2, n = 20) who had a total of 56 diabetic foot ulcers. The initial exploration included standard radiography, three-phase bone scintigraphy and {sup 99m}Tc-HMPAO labelled leucocyte scintigraphy (HMPAO-LS), performed within a 3-day interval. For the 56 ulceration sites, 26 cases of osteomyelitis were diagnosed: ten on the basis of radiographic and histological/bacteriological criteria after bone biopsy, 11 after radiographic follow-up and five on the basis of biopsy results alone. No osteomyelitis was present at 30 sites, there were seven cases of cellulitis. The sensitivity and specificity of {sup 99m}Tc-HMPAO-LS were 88.4% and 96.6% respectively (23 true-positives, 29 true-negatives, one false-positive, three false-negatives). The accuracy of radiography, {sup 99m}Tc-methylene diphosphonate and HMPAO-LS was 69.6%, 62.5%, and 92.9%, respectively. Follow-up scintigraphy (n = 14) 4 months after initial diagnosis and 1 month after antibiotic withdrawal confirmed cure of osteomyelitis despite the absence of complete clinical regression of the ulcers. In conclusion, {sup 99m}Tc-HMPAO labelled leucocyte scintigraphy was found to be an excellent method for the diagnosis of osteomyelitis in the diabetic foot. It can contribute to follow-up, particularly when clinical regression of perforating ulcers is incomplete and cure of osteomyelitis must be confirmed in order that antibiotic treatment may be discontinued. (orig.) With 5 figs., 3 tabs., 28 refs.

  7. Reduction of FFA in jatropha curcas oil via sequential direct-ultrasonic irradiation and dosage of methanol/sulfuric acid catalyst mixture on esterification process

    International Nuclear Information System (INIS)

    Andrade-Tacca, Cesar Augusto; Chang, Chia-Chi; Chen, Yi-Hung; Ji, Dar-Ren; Wang, Yi-Yu; Yen, Yue-Quen; Chang, Ching-Yuan

    2014-01-01

    Highlights: • Ultrasonic irradiation (UI) can auto-induce temperature rise. • Esterification at higher temperature (T) by UI offers greater reduction of acid value. • Sequential UI and catalyst dosing enhance esterification conversion efficiency (η). • UR of jatropha oil at higher T results in less water content on ester as product. • A 99.35% of η is achievable via sequential UI and dosing of 5 mL per dose. - Abstract: Production of jatropha-ester (JO-ester) from jatropha oil (JO) under sequential direct-ultrasonic irradiation (UI) with auto-induced temperature rise followed by adding a mixture of methanol/sulfuric-acid catalyst (M/C) dose between high temperature intervals was studied. Comparisons with various doses of 5, 10, 16.6 and 25 mL at different temperature intervals of 108.9–120 °C, 100–120 °C, 85–120 °C and 75–120 °C respectively were performed. System parameters examined include: esterification times (t E ) for UI, settling time (t S ) after esterification and temperature (T). Properties of acid value (AV), iodine value (IV), kinematic viscosity (kV), density (ρ LO ) and water content (m w ) of JO and JO-ester product were measured. The esterification conversion efficiencies (η) were determined and assessed. An η of 99.35% was obtained at temperature interval of 108.9–120 °C with 5 mL per dose for 20 doses and t E of 167.39 min (denoted as Process U 120-5 ), which is slightly higher than η of 98.87% at temperature interval of 75–120 °C with 25 mL per dose for 4 doses and t E of 108.79 min (noted as Process U 120-25 ). The JO-ester obtained via sequential UI with adding doses of 5 mL possess AV of 0.24 mg KOH/g, IV of 124.77 g I 2 /100 g, kV of 9.89 mm 2 /s, ρ LO of 901.73 kg/m 3 and m w of 0.3 wt.% showing that sequential UI and dose at higher temperature interval can give higher reduction of AV compared with 36.56 mg KOH/g of original oil. The effects of t S and t E on AV are of minor and moderate importance

  8. Kinetics of catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent

    Science.gov (United States)

    Al-Kady, Ahmed S.; Ahmed, El-Sadat I.; Gaber, M.; Hussein, Mohamed M.; Ebeid, El-Zeiny M.

    2011-09-01

    The kinetics of chemical hydrolysis including neutral, acid- and base-catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent were studied at different temperatures. The rate constants and activation parameters were determined by following the build-up of fluorescence peak of the hydrolysis product 4-methylumbelliferone (4-MU). The time scale of esterase enzyme hydrolysis caused by salmonella was compared with chemical hydrolysis as a background process.

  9. Hydrolysis of aluminum dross material to achieve zero hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2012-01-01

    Highlights: ► The hydrolysis of aluminum dross in tap water generates pure hydrogen. ► Aluminum particles from dross are activated by mechanically milling technique. ► The process is completely greenhouse gases free and is cleanly to environment. ► Hydrolysis process leads to recycling of waste aluminum by hydrogen production. - Abstract: A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 μm. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation.

  10. Starch hydrolysis modeling: application to fuel ethanol production.

    Science.gov (United States)

    Murthy, Ganti S; Johnston, David B; Rausch, Kent D; Tumbleson, M E; Singh, Vijay

    2011-09-01

    Efficiency of the starch hydrolysis in the dry grind corn process is a determining factor for overall conversion of starch to ethanol. A model, based on a molecular approach, was developed to simulate structure and hydrolysis of starch. Starch structure was modeled based on a cluster model of amylopectin. Enzymatic hydrolysis of amylose and amylopectin was modeled using a Monte Carlo simulation method. The model included the effects of process variables such as temperature, pH, enzyme activity and enzyme dose. Pure starches from wet milled waxy and high-amylose corn hybrids and ground yellow dent corn were hydrolyzed to validate the model. Standard deviations in the model predictions for glucose concentration and DE values after saccharification were less than ± 0.15% (w/v) and ± 0.35%, respectively. Correlation coefficients for model predictions and experimental values were 0.60 and 0.91 for liquefaction and 0.84 and 0.71 for saccharification of amylose and amylopectin, respectively. Model predictions for glucose (R2 = 0.69-0.79) and DP4+ (R2 = 0.8-0.68) were more accurate than the maltotriose and maltose for hydrolysis of high-amylose and waxy corn starch. For yellow dent corn, simulation predictions for glucose were accurate (R2 > 0.73) indicating that the model can be used to predict the glucose concentrations during starch hydrolysis.

  11. Secondary deuterium isotope effects in the hydrolysis of some acetals

    International Nuclear Information System (INIS)

    Paterson, R.V.

    Secondary α-deuterium kinetic isotope effects have been determined in the hydrolyses of some acetals. Benzaldehyde dimethyl acetal and 2-phenyl-1,3-dioxolan show isotope effects in agreement with an A1 mechanism. 2-Phenyl-4,4,5,5-tetramethyl-1,3-dioxolan, which has been shown to undergo hydrolysis by an A2 type mechanism, has an isotope effect in agreement with participation by water in the transition state. Hydrolysis of benzylidene norbornanediols, although complicated by isomerisation, has an isotope effect in agreement with an A2 mechanism. Kinetic isotope effects in acetals which have a neighbouring carboxyl group have also been determined. Hydrolysis of 2-carboxybenzaldehyde dimethyl acetal in aqueous and 82% w/w dioxan-water buffers has isotope effects in agreement with a large degree of carbonium ion character in the transition state. Anderson and Capon proposed nucleophilic participation in the hydrolysis of this acetal in 82% dioxan-water. The isotope effect determined in this study is not in agreement with this finding. Hydrolysis of 2-(2'-carboxyphenyl)-4,4,5,5-tetramethyl-1,3-dioxolan shows an isotope effect larger than the corresponding dioxolan without the carboxyl group in agreement with some carbonium ion character in the transition state. A new synthesis of a deuterated aldehyde is described which might be general for aldehydes which will not form benzoins readily. (author)

  12. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    addition were evaluated in the dry grind process using GSHE (GSH process). Addition of proteases resulted in higher ethanol concentrations (15.2 to 18.0% v/v) and lower (DDGS) yields (32.9 to 45.8% db) compared to the control (no protease addition). As level of proteases and GSHE increased, ethanol concentrations increased and DDGS yields decreased. Proteases addition reduced required GSHE dose. Ethanol concentrations with protease addition alone were higher than with urea or with addition of both protease and urea. Corn endosperm consists of soft and hard endosperm. More exposed starch granules and rough surfaces produced from soft endosperm compared to hard endosperm will create more surface area which will benefit the solid phase hydrolysis as used in GSH process. In this study, the effects of protease, urea, endosperm hardness and GSHE levels on the GSH process were evaluated. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from dry milling pilot plant. Soft endosperm resulted in higher ethanol concentrations (at 72 hr) compared to ground corn or hard endosperm. Addition of urea increased ethanol concentrations (at 72 hr) for soft and hard endosperm. The effect of protease addition on increasing ethanol concentrations and fermentation rates was more predominant for soft endosperm, less for hard endosperm and least for ground corn. The GSH process with protease resulted in higher ethanol concentration than that with urea. For fermentation of soft endosperm, GSHE dose can be reduced. Ground corn fermented faster at the beginning than hard and soft endosperm due to the presence of inherent nutrients which enhanced yeast growth.

  13. Synthesis and characterization of Ni0.7Zn0.3Fe2O4 ferrospinel: performance evaluation for methyl and ethyl esterification

    International Nuclear Information System (INIS)

    Mapossa, A.B.; Dantas, J.; Diniz, V.C.S.; Costa, A.C.F.M.; Silva, M.R.; Kiminami, R.H.G.A.

    2017-01-01

    Ni 0.7 Zn 0.3 Fe 2 O 4 ferrospinel was synthesized by combustion and its catalytic performance in methyl and ethyl esterification of the soybean oil was investigated. The samples were characterized by X-ray diffraction, Rietveld refinement analysis, energy dispersive X-ray fluorescence spectroscopy, Fourier transform infrared spectroscopy, textural analysis, scanning electron microscopy, density by picnometry, particle size analysis, thermogravimetric analysis, magnetic measurements, and catalytic tests. The synthesis was efficient resulting in a ferrospinel with single phase Ni 0.7 Zn 0.3 Fe 2 O 4 with crystallite size of 20 nm, high surface area (86 m 2 /g) and saturation magnetization of 18 emu/g. The ferrospinel had promising catalytic activity in both reaction conditions studied, being more active in the conversion of soybean oil to biodiesel in methyl esterification with an average conversion of 93.9±2.8%. (author)

  14. Synthesis of imine bond containing insoluble polymeric ligand and its transition metal complexes, structural characterization and catalytic activity on esterification reaction.

    Science.gov (United States)

    Gönül, İlyas; Ay, Burak; Karaca, Serkan; Saribiyik, Oguz Yunus; Yildiz, Emel; Serin, Selahattin

    2017-01-01

    In this study, synthesis of insoluble polymeric ligand (L) and its transition metal complexes [Cu(L)Cl 2 ]·2H 2 O (1) , [Co(L)Cl 2 (H 2 O) 2 ] (2) and [Ni(L)Cl 2 (H 2 O) 2 ] (3) , having the azomethine groups, were synthesized by the condensation reactions of the diamines and dialdehydes. The structural properties were characterized by the analytical and spectroscopic methods using by elemental analysis, Fourier Transform Infrared, Thermo Gravimetric Analysis, Powder X-ray Diffraction, magnetic susceptibility and Inductively Coupled Plasma. The solubilities of the synthesized polymeric materials were also investigated and found as insoluble some organic and inorganic solvents. Additionally, their catalytic performance was carried out for the esterification reaction of acetic acid and butyl acetate. The highest conversion rate is 75.75% by using catalyst 1 . The esterification of butanol gave butyl acetate with 100% selectivity.

  15. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review

    International Nuclear Information System (INIS)

    Soltani, Soroush; Rashid, Umer; Al-Resayes, Saud Ibrahim; Nehdi, Imededdine Arbi

    2017-01-01

    Highlights: • Mesoporous catalysts have potential to esterify the wastes feedstocks. • Surface area of mesoporous catalysts depends on materials synthesis methods. • Hydrophobic surface of sulfonated catalyst causes adsorption on FFA particles. • Mesoporous catalysts have large active sites to trap free fatty acids particles. • Recyclability of mesoporous catalyst is a key feature for biodiesel production. - Abstract: Biodiesel is considered as a sulfur free, non-toxic and biodegradable source of energy and its burning provide less pollution than petroleum based fuels. In case of using fried waste oils, animal’s fats and waste cultivated oil which contain high free fatty acid (FFA), esterification is taking place. Through esterification reaction, catalyst is an integral part which accelerates the FFA conversion to the methyl ester (ME) in shorter reaction time. Although, most of the current catalysts have some defect such as poor recyclability, less surface area and poor porosity. Mesoporous materials have been recently attracted remarkable interests because of its desirable properties, such as large and harmonized surface area, tuneable mesoporous channels with flexible pore size, excellent thermal stability, and post-functionalization surface characteristics. The combination of remarkable physico-chemical and textural properties as well as high activity has proposed them as advanced materials. In this review, it has been attempted to present the details of fundamental properties of mesoporous catalysts, various synthetic methods and formation mechanisms, and surface functionalization methodologies. The effects of various factors (such as surface area, porosity, acidity, post-calcination temperature, and reaction parameters) on esterification of different feedstocks are discussed in detail. Furthermore, the kinetic study of esterification reaction in the presence of mesoporous catalysts is also elaborated. At the end, remarkable challenges and outlooks

  16. Association of metabolic and genetic factors with cholesterol esterification rate in HDL plasma and atherogenic index of plasma in a 40 years old Slovak population

    Czech Academy of Sciences Publication Activity Database

    Rašlová, K.; Dobiášová, Milada; Hubáček, J. A.; Bencová, D.; Siváková, D.; Danková, Z.; Franeková, J.; Jabor, A.; Gašparovič, J.; Vohnout, B.

    2011-01-01

    Roč. 60, č. 5 (2011), s. 758-795 ISSN 0862-8408 R&D Projects: GA MZd(CZ) NR8328; GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : fractional esterification rate of cholesterol (FERHDL) * atherogenic index of plasma (AIP) * biomarkers of CVD * CILP2 * FTO * MLXIPL Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.555, year: 2011

  17. Esterification of oily-FFA and transesterification of high FFA waste oils using novel palm trunk and bagasse-derived catalysts

    International Nuclear Information System (INIS)

    Ezebor, Francis; Khairuddean, Melati; Abdullah, Ahmad Zuhairi; Boey, Peng Lim

    2014-01-01

    Highlights: • Novel palm trunk and bagasse derived catalysts have been prepared. • Reduction of FFAs from 42 to <1 wt.% in 15 min under pseudo-infinite methanol. • Transesterification of waste oil results in FAME yield of 80.6–83.2% in 4 h. • Pseudo-infinite methanol affords two-folds FAME yield of conventional methods. - Abstract: Waste cooking oil is increasingly becoming a significant component of biodiesel feedstock and its conversion to FAME requires coupling of esterification and transesterification processes. In this study, new environmentally benign catalysts were prepared from oil palm trunk and sugarcane bagasse, which are sustainable because of the superfluity of oil palm trunk and abundant supply of bagasse. Effect of preparation variable, surface acidity and textural properties, pre-esterification of FFA in oil matrices and transesterification of waste oil under pseudo-infinite methanol and conventional methods were investigated. The preparation variable, H 2 SO 4 impregnation time showed marginal effect on sulfonic acid density after 6 h, and the corresponding values for 6–10 h impregnations were 1.33 ± 0.01–1.41 ± 0.01mmol g −1 for OPT and 1.44 ± 0.01–1.48 ± 0.01mmol g −1 for SCB catalysts. In esterification of palmitic acid, activity of catalysts with different H 2 SO 4 impregnation time correlates with their sulfonic acid density. The catalysts demonstrated rapid esterification of FFA in oil matrices under pseudo infinite methanol, reducing its content from 42 wt.% to <1 wt.% in just 15 min. Similarly, the conversions of waste oil by OPT and SCB derived catalysts were 80.6% and 83.2%, respectively after 4 h under pseudo-infinite methanol, and 43.7% and 45%, respectively after 6 h under conventional method. These catalysts have shown remarkable properties that are suitable for biodiesel production from waste oil

  18. Atherogenic Impact of Lecithin-Cholesterol Acyltransferase and Its Relation to Cholesterol Esterification Rate in HDL (FERHDL) and AIP [log(TG/HDL-C)] Biomarkers: The Butterfly Effect?

    Czech Academy of Sciences Publication Activity Database

    Dobiášová, Milada

    2017-01-01

    Roč. 66, č. 2 (2017), s. 193-203 ISSN 0862-8408 Institutional support: RVO:67985823 Keywords : lecithin-cholesterol acyltransferase (LCAT) * atherosclerosis * FERHDL (fractional esterification rate in HDL) * AIP (atherogenic index of plasma, log(TG/HDL-C) * biomarkers of cardiometabolic risk * lipoprotein particle size Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Endocrinology and metabolism (including diabetes, hormones) Impact factor: 1.461, year: 2016

  19. Clays as green catalysts in the cholesterol esterification: spectroscopic characterization and polymorphs identification by thermal analysis methods. An interdisciplinary laboratorial proposal for the undergraduate level

    International Nuclear Information System (INIS)

    Maria, Teresa M R.; Nunes, Rui M. D.; Pereira, Mariette M.; Eusebio, M. Ermelinda S.

    2009-01-01

    A laboratory experiment that enables the professor to introduce the problematic of sustainable development in pharmaceutical chemistry to undergraduate students is proposed, using a simple synthetic procedure. Cholesteryl acetate is prepared by the esterification of cholesterol using Montmorillonite K10 as heterogeneous catalyst. Cholesterol and cholesteryl acetate are characterized by spectroscopic ( 1 H RMN, 13 C RMN, FTIR) and thermal analysis techniques. The thermal methods are used to introduce the concepts of polymorphism and the nature of mesophases. (author)

  20. Feasibility study of various sulphonation methods for transforming carbon nanotubes into catalysts for the esterification of palm fatty acid distillate

    International Nuclear Information System (INIS)

    Shuit, Siew Hoong; Tan, Soon Huat

    2014-01-01

    Highlights: • First report on the production of biodiesel from low-value industrial by-product using sulphonated MWCNTs as catalyst. • Various sulphonation methods were used to transform MWCNTs into catalysts. • SO 3 H were successfully grafted on the surface of MWCNTs, which resulted in a high biodiesel yield and reuse capacity. • The maximum FAME yield by sulphonated MWCNTs was higher than for other popular solid acid catalysts. - Abstract: Sulphonated multi-walled carbon nanotubes were synthesised and utilised as catalysts to transform palm fatty acid distillate, the low-value by-product of palm oil refineries, into the more valuable product of biodiesel. The most common method to prepare carbon-based solid acid catalysts is thermal treatment with concentrated sulphuric acid, which is a time-consuming and energy-intensive process. Therefore, the feasibility of other sulphonation methods, such as the in situ polymerisation of acetic anhydride and sulphuric acid, the thermal decomposition of ammonium sulphate and the in situ polymerisation of poly(sodium4-styrenesulphonate), were examined in this study. The esterification reaction was performed at 170 °C for 3 h at a methanol to palm fatty acid distillate ratio of 20 and catalyst loading of 2 wt% in a pressurised reactor. The fatty acid methyl esters yields achieved by the sulphonated multi-walled carbon nanotubes prepared via thermal treatment with concentrated sulphuric acid, the in situ polymerisation of acetic anhydride and sulphuric acid, the thermal decomposition of ammonium sulphate and the in situ polymerisation of poly(sodium4-styrenesulphonate) were 78.1%, 85.8%, 88.0% and 93.4%, respectively. All catalysts could maintain a high catalytic activity even during the fifth cycle. Among the sulphonation methods, the in situ polymerisation of poly(sodium4-styrenesulphonate) produced the catalyst with the highest acid group density. In addition, the resonance structures of the benzenesulphonic acid

  1. Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride-rich lipoproteins by the liver.

    Science.gov (United States)

    Fukuda, N; Ontko, J A

    1984-08-01

    In a series of experiments with male rat livers perfused with or without 5-tetradecyloxy-2-furoic acid (TOFA) in the presence and absence of oleate, the relationships between fatty acid synthesis, oxidation, and esterification from newly synthesized and exogenous fatty acid substrates have been examined. When livers from fed rats were perfused without exogenous fatty acid substrate, 20% of the triglyceride secreted was derived from de novo fatty acid synthesis. Addition of TOFA caused immediate and nearly complete inhibition of fatty acid synthesis, measured by incorporation of 3H2O into fatty acids. Concurrently, ketone body production increased 140% and triglyceride secretion decreased 84%. These marked reciprocal alterations in fatty acid synthesis and oxidation in the liver almost completely abolished the production of very low density lipoproteins (VLDL). Cholesterol synthesis was also depressed by TOFA, suggesting that this drug also inhibited lipid synthesis at a site other than acetyl-CoA carboxylase. When livers from fed rats were supplied with a continuous infusion of [1-14C]oleate as exogenous substrate, similar proportions, about 45-47%, of both ketone bodies and triglyceride in the perfusate were derived from the infused [1-14C]oleate. The production of ketone bodies was markedly increased by TOFA; the secretion of triglyceride and cholesterol were decreased. Altered conversion of [1-14C]oleate into these products occurred in parallel. While TOFA decreased esterification of oleate into triglyceride, incorporation of [1-14C]oleate into liver phospholipid was increased, indicating that TOFA also affected glycerolipid synthesis at the stage of diglyceride processing. The decreased secretion of triglyceride and cholesterol following TOFA treatment was localized almost exclusively in VLDL. The specific activities of 3H and of 14C fatty acids in triglyceride of the perfusate were greater than those of liver triglyceride, indicating preferential secretion of

  2. Base hydrolysis and hydrothermal processing of PBX-9404

    International Nuclear Information System (INIS)

    Flesner, R.L.; Spontarelli, T.; Dell'Orco, P.C.; Sanchez, J.A.

    1994-01-01

    Base hydrolysis in combination with hydrothermal processing has been proposed as an environmentally acceptable alternative to open burning/open detonation for degradation and destruction of high explosives. In this report, the authors examine gaseous and aqueous products of base hydrolysis of the HMX-based plastic bonded explosive, PBX-9404. They also examined products from the subsequent hydrothermal treatment of the base hydrolysate. The gases produced from hydrolysis of PBX-9404 are ammonia, nitrous oxide, and nitrogen. Major aqueous products are sodium formate, acetate, nitrate, and nitrite, but not all carbon products have been identified. Hydrothermal processing of base hydrolysate destroyed up to 98% of the organic carbon in solution, and higher destruction efficiencies are possible. Major gas products detected from hydrothermal processing were nitrogen and nitrous oxide

  3. Kinetic study of hydrolysis of coconut fiber into glucose

    Science.gov (United States)

    Muhaimin, Sudiono, Sri

    2017-03-01

    Kinetic study of hydrolysis of coconut fiber into glucose has been done. The aim of this research was to study of the effect of time and temperature to the glucose as the result of the conversion of coconut fiber. The various temperature of the hydrolysis process were 30 °C, 48 °C, 72 °C and 95 °C and the various time of the hydrolysis process were 0, 15, 30, 60, 120, 180, 240, 300 minutes. A quantitative analysis was done by measured the concentration of the glucose as the result of the conversion of coconut fiber. The result showed that the rate constant from the various temperature were 3.10-4 minute-1; 8.10-4 minutees-1; 84.10-4 minute-1, and 205.10-4 minute-1, and the energy activation was 7,69. 103 kJ/mol.

  4. Determining the hydrolysis of cations: A short overview

    International Nuclear Information System (INIS)

    Ekberg, Christian; Brown, Paul L.

    2006-01-01

    Full text: The hydrolysis of metal ions is the most fundamental aqueous chemistry. As soon as the metal is introduced to water, dissolution may take place and if the water is pure only hydrolysis reactions will take place. There are several methods used in the literature to determine the stability constants of these reactions, e.g. solvent extraction, potentiometric titrations, ion exchange and solubility measurements. Which one to select is not straight forward. All of them have pros and cons and different regions of applicability with respect to whether they are good for determining the initial hydrolysis or the later stages. Once the constants are determined it is important to assess the uncertainty in the determination. We point out tools to make this straight forward and traceable which is most important in scientific studies. (authors)

  5. DEXTRINIZED SYRUPS OBTAINING THROUGH THE ENZYMATIC HYDROLYSIS OF SORGHUM STARCH

    Directory of Open Access Journals (Sweden)

    Leyanis Rodríguez Rodríguez

    2015-10-01

    Full Text Available The main objective of this work was the production of syrups dextrinized by enzymatic hydrolysis of starch red sorghum CIAPR-132 using α-amylase on solutions at different concentrations, with different concentrations of enzyme and enzyme hydrolysis time. The response variable was the dextrose equivalent in each obtained syrup (ED using the modified Lane-Eynon method. In some of the experiments, we used a full factorial design 23 and in others we worked with intermediate concentration and higher hydrolysis time with different levels of enzyme. The obtained products were syrups dextrinized ED between 10,25 and 33,97% (values we can find within the established ones for these types of syrups, which can be used for their functional properties as intermediates syrups or as raw material for different processes of the food industry. This allows you to set a pattern for the use of sorghum feedstock in unconventional obtaining products from its starch.

  6. EFFECT OF LIGNIN CONTENT ON ENZYMATIC HYDROLYSIS OF FURFURAL RESIDUES

    Directory of Open Access Journals (Sweden)

    Jianxin Jiang

    2011-02-01

    Full Text Available The enzymatic saccharification of pretreated furfural residues with different lignin content was studied to verify the effect of lignin removal in the hydrolysis process. The results showed that the glucose yield was improved by increasing the lignin removal. A maximum glucose yield of 96.8% was obtained when the residue with a lignin removal of 51.4% was hydrolyzed for 108 h at an enzyme loading of 25 FPU/g cellulose. However, further lignin removal did not increase the hydrolysis. The effect of enzyme loading on the enzymatic hydrolysis was also explored in this work. It was concluded that a high glucose yield of 90% was achieved when the enzyme dosage was reduced from 25 to 15 FPU/g cellulose, which was cost-effective for the sugar and ethanol production. The structures of raw material and delignified samples were further characterized by XRD and scanning electron microscopy (SEM.

  7. Acid hydrolysis of Biomass lignocellulose Onopordum nervosum Boiss

    International Nuclear Information System (INIS)

    Suarez Contreras, C.; Diaz Palma, A.; Paz, M. D.

    1985-01-01

    Hydrolysis of resistant cellulose of Onopordum nervosum Boiss (thistle) to reducing sugars in dilute sulfuric acid in glass ampoules and long residence times has been studied and kinetic parameters determined. The rate of hydrolysis is similar to that of the cellulose of Douglas fir, but comparatively the effect of the acid is more pronounced than temperature. From kinetic data it can be pre ducted the yield and since it can be obtained at least 45% of the potential glucose (48% as reducing sugars) at 190 degree centigree, 1,6% acid and 6,1 min. residence time, it indicates that the continuous acid hydrolysis of thistle may be a process of commercial interest. (Author) 18 refs

  8. Improving Aspergillus carbonarius crude enzymes for lignocellulose hydrolysis

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich

    and single enzyme supplementation. Fungal strains were screened in order to determine crude enzyme extracts that could be supplemented as boosters of A. carbonarius own crude enzyme extract, when applied in lignocellulose hydrolysis. The fungi originated from different environmental niches, which all had...... for their potential in hydrolysis of wheat straw both by application of monocultures and by supplementing to crude enzymes of A. carbonarius. For the crude enzymes from solid cultivations there were eight isolates that showed synergistic interaction resulting in doubling and tripling of the glucose release in wheat...... straw hydrolysis. A completely different profile of synergy was observed for crude enzymes from liquid cultivations, as there were only three isolates that enhanced glucose release. Only one of these three isolates had shown synergistic effects when cultivated in a solid medium. The screening...

  9. Enzymatic hydrolysis of pretreated barley and wheat straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa

    2007-01-01

    . The work involved evaluation of 1) possible ways to increase the glucose release from the commercial cellulase product Celluclast by boosting with other enzyme activities to increase the enzymatic hydrolysis, 2) comparing differently pretreated feedstock substrates and 3) evaluating a fed-batch substrate...... mixture resulted in a glucose release corresponding to ~84 % of the glucose release from Celluclast. It was therefore suggested that other enzyme activities than the 4 four main cellulase activities in Celluclast are necessary for optimal hydrolysis of lignocellulose. Even though Celluclast...... is a multicomponent cellulase mixture, there are still possibilities for further improvement in terms of providing the most efficient cellulase mixture for lignocellulose hydrolysis. It was shown that substrates evaluated all had some residual hemicellulose in the solid cellulose fraction after pretreatment...

  10. Water Availability as a Measure of Cellulose Hydrolysis Efficiency

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen

    of sugars, salts, and surfactants impact the water relaxation time. Systems with high concentrations of sugars and salts tend to have low water availability, as these form strong interactions with water to keep their solubility, leaving less water available for hydrolysis. Thus, cellulase performance...... decreases. However, the addition of surfactants such as polyethylene glycol (PEG) increases the water mobility, leading to higher water availability, and ultimately higher glucose production. More specifically, the higher water availability boosts the activity of processive cellulases. Thus, water...... availability is vital for efficient hydrolysis, especially at high dry matter content where water availability is low. At high dry matter content, cellulase activity changes water interactions with biomass, affecting the water mobility. While swelling and fiber loosening also take place during hydrolysis...

  11. The optimization of soybean oil hydrolysis reaction research

    International Nuclear Information System (INIS)

    Hasnisa Hashim; Jumat Salimon

    2008-01-01

    The hydrolysis reaction of soybean oil was optimized. The concentration effect of ethanolic alkaline solution (KOH and NaOH) to the oil acidity was studied. The alkaline concentrations, reaction time and temperature factors was investigated during the optimization of the hydrolysis or saponification reaction. KOH solution of 1 M showed a good saponification activity which resulted oil acid value of 226.8 mg/ g compared to NaOH solution with acid value of 225.4 mg/ g for the same reaction. The optimum saponification reaction of soybean oil occurred at 60 degree Celsius in 30 minutes by using ethanolic KOH 1 M with acid value of 229.6 mg/ g. Composition of free fatty acid before and after hydrolysis were determined by using gas chromatography. (author)

  12. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review.

    Science.gov (United States)

    Jeoh, Tina; Cardona, Maria J; Karuna, Nardrapee; Mudinoor, Akshata R; Nill, Jennifer

    2017-07-01

    Bioconversion of lignocellulose forms the basis for renewable, advanced biofuels, and bioproducts. Mechanisms of hydrolysis of cellulose by cellulases have been actively studied for nearly 70 years with significant gains in understanding of the cellulolytic enzymes. Yet, a full mechanistic understanding of the hydrolysis reaction has been elusive. We present a review to highlight new insights gained since the most recent comprehensive review of cellulose hydrolysis kinetic models by Bansal et al. (2009) Biotechnol Adv 27:833-848. Recent models have taken a two-pronged approach to tackle the challenge of modeling the complex heterogeneous reaction-an enzyme-centric modeling approach centered on the molecularity of the cellulase-cellulose interactions to examine rate limiting elementary steps and a substrate-centric modeling approach aimed at capturing the limiting property of the insoluble cellulose substrate. Collectively, modeling results suggest that at the molecular-scale, how rapidly cellulases can bind productively (complexation) and release from cellulose (decomplexation) is limiting, while the overall hydrolysis rate is largely insensitive to the catalytic rate constant. The surface area of the insoluble substrate and the degrees of polymerization of the cellulose molecules in the reaction both limit initial hydrolysis rates only. Neither enzyme-centric models nor substrate-centric models can consistently capture hydrolysis time course at extended reaction times. Thus, questions of the true reaction limiting factors at extended reaction times and the role of complexation and decomplexation in rate limitation remain unresolved. Biotechnol. Bioeng. 2017;114: 1369-1385. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Noble Metal Decoration and Presulfation on TiO2: Increased Photocatalytic Activity and Efficient Esterification of n-Butanol with Citric Acid

    Directory of Open Access Journals (Sweden)

    Yu Niu

    2016-01-01

    Full Text Available TiO2 has been widely used as a key catalyst in photocatalytic reactions; it also shows good catalytic activity for esterification reactions. Different sulfated M-TiO2 nanoparticles (M = Ag, Au, Rh, and Pt were prepared by photodeposition and ultrasonic methods. The results show that the noble metal nanoparticles, which were loaded onto a TiO2 surface, slightly affected the crystal phase and particle size of TiO2. Among all the catalysts, SO42-/Au-TiO2 exhibited the best catalytic activity in the esterification reaction for the synthesis of citric acid n-butyl acetate and in the decomposition of methyl orange, as confirmed by a high conversion rate of up to 98.2% and 100% degradation rate, respectively. This can be attributed to an increase in the Lewis acidity of the catalyst and increased separation efficiency of electron-hole pairs. This superior catalyst has great potential applications in esterification reactions and wastewater treatments.

  15. Characterization and optimization of carboxylesterase-catalyzed esterification between capric acid and glycerol for the production of 1-monocaprin in reversed micellar system.

    Science.gov (United States)

    Park, Kyung Min; Kwon, Oh Taek; Ahn, Seon Min; Lee, JaeHwan; Chang, Pahn-Shick

    2010-02-28

    Calotropis procera R. Br. carboxylesterase (EC 3.1.1.1) solubilized in reversed micellar glycerol droplets containing a very small amount of water (less than 5ppm) and stabilized by a surfactant effectively catalyzed the esterification between glycerol and capric acid to produce 1-monocaprin. Reaction variables including surfactant types, organic solvent media, reaction time, G-value ([glycerol]/[capric acid]), R-value ([water]/[surfactant]), pH, temperature, and types of metal ion inhibitors on the carboxylesterase-catalyzed esterification were characterized and optimized to efficiently produce 1-monocaprin. Bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and isooctane were the most effective surfactant and organic solvent medium, respectively, for 1-monocaprin formation in reversed micelles. The optimum G- and R-values were 3.0 and 0.05, respectively, and the optimum pH and temperature were determined to be 10.0 and 60 degrees C, respectively. K(m,app.) and V(max,app.) were calculated from a Hanes-Woolf plot, and the values were 9.64 mM and 2.45 microM/min mg protein, respectively. Among various metal ions, Cu(2+) and Fe(2+) severely inhibited carboxylesterase-catalyzed esterification activity (less than 6.0% of relative activity). Copyright 2009 Elsevier B.V. All rights reserved.

  16. Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: experimental and kinetic studies.

    Science.gov (United States)

    Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin

    2013-02-01

    A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Study of the Effect of Grafting Method on Surface Polarity of Tempo-Oxidized Nanocellulose Using Polycaprolactone as the Modifying Compound: Esterification versus Click-Chemistry

    Directory of Open Access Journals (Sweden)

    Abdelhaq Benkaddour

    2013-12-01

    Full Text Available Esterification and click-chemistry were evaluated as surface modification treatments for TEMPO-oxidized nanocelluloses (TONC using Polycaprolactone-diol (PCL as modifying compound in order to improve the dispersion of nanofibers in organic media. These two grafting strategies were analyzed and compared. The first consists of grafting directly the PCL onto TONC, and was carried out by esterification between hydroxyl groups of PCL and carboxyl groups of TONC. The second strategy known as click-chemistry is based on the 1,3-dipolar cycloaddition reaction between azides and alkyne terminated moieties to form the triazole ring between PCL and TONC. The grafted samples were characterized by transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and Thermogravimetry analysis (TGA. Further, the effects of the two treatments on the surface hydrophobization of TONC were investigated by contact angle measurements. The results show that both methods confirm the success of such a modification and the click reaction was significantly more effective than esterification.

  18. Synthesis and 5α-Reductase Inhibitory Activity of C21 Steroids Having 1,4-diene or 4,6-diene 20-ones and 4-Azasteroid 20-Oximes

    Directory of Open Access Journals (Sweden)

    Eunsook Ma

    2011-12-01

    Full Text Available The synthesis and evaluation of 5α-reductase inhibitory activity of some 4-azasteroid-20-ones and 20-oximes and 3β-hydroxy-, 3β-acetoxy-, or epoxy-substituted C21 steroidal 20-ones and 20-oximes having double bonds in the A and/or B ring are described. Inhibitory activity of synthesized compounds was assessed using 5α-reductase enzyme and [1,2,6,7-3H]testosterone as substrate. All synthesized compounds were less active than finasteride (IC50: 1.2 nM. Three 4-azasteroid-2-oximes (compounds 4, 6 and 8 showed good inhibitory activity (IC50: 26, 10 and 11 nM and were more active than corresponding 4-azasteroid 20-ones (compounds 3, 5 and 7. 3β-Hydroxy-, 3β-acetoxy- and 1α,2α-, 5α,6α- or 6α,7α-epoxysteroid-20-one and -20-oxime derivatives having double bonds in the A and/or B ring showed no inhibition of 5α-reductase enzyme.

  19. Kinetics and mechanism of hydrolysis of scandium sulfate

    International Nuclear Information System (INIS)

    Koshchej, E.V.; Stryapkov, A.V.; Podosenov, D.E.; Makarov, G.V.; Razdobreev, D.A.

    1998-01-01

    The Sc 2 (SO 4 ) 3 -H 2 SO 4 -H 2 O system is studied through the methods of pH-potentiometry, conductometry and turbidimetry at 298 and 318 K and ion force 0.01, 0.1 and 1.0. The hydrolysis mechanism including the processes in the system homogenous and heterogeneous constituents. The hydrolysis rates of scandium salts and their dependences on OH-ions concentration, solution ions force and temperature are found; the constants of the processes rate with participation of OH - and SO 4 2- ions and constants of the solid phase formation rate are calculated [ru

  20. Combined wet oxidation and alkaline hydrolysis of polyvinylchloride

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    In view of the widespread aversion to burning polyvinylchloride (PVC) together with municipal waste, we have attempted an alternative approach to its decomposition. This paper describes a combined wet oxidation/alkaline hydrolysis yielding water soluble, biodegradable products. Experiments were...... carried out at temperatures from 180-260 degree C and reaction times of 8-24 min. The chloride liberated provides information on the rate constants. Considering the measured Cl- and Chemical Oxygen Demand (COD) values, we find hydrolysis and oxidation processes to be interdependent. The main products...

  1. Kinetics of the methylparathion hydrolysis in aqueous medium

    International Nuclear Information System (INIS)

    Manzanilla, J.; Barcelo, M.; Reyes, O.

    1997-01-01

    The kinetics of alkaline hydrolysis of methylparathion was studied at different temperatures (0-50 Centigrade) in the p H range of 8-12 by ultraviolet-visible absorption spectroscopy. Optimum p H and wavelength conditions were defined to carry out the simultaneous determination of methylparathion and one of its hydrolysis product, paranitrophenol, in buffered aqueous medium. Based on the experimental data and the mathematical equation of the kinetics, a rate constant (k) of first-order and an activation energy (Ea) of 9.2 Kcal/mol, were estimated. (Author) activation energy (Ea) of 9.2 Kcal/mol, were estimated. (Author)

  2. Pretreatment of sawdust and its hydrolysis with immobilised enzymes

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1988-01-01

    The pretreatment of sawdust by radiation and its hydrolysis with immobilised cellulase were studied. The sawdust was irradiated with a number of different irradiation doses and crushed with two kinds of crusher; pulveriser and ball mill. In ball-mill crushing, the crushing time to get a fine powder was reduced by radiation treatment and the conversion yield of cellulose to glucose in the enzyme hydrolysis was increased. It was found that sawdust pretreated by radiation and subsequent crushing was efficiently hydrolysed by immobilised cellulase which itself was obtained by a radiation polymerisation technique. (author)

  3. Vanadium(IV)-stimulated hydrolysis of 2,3-diphosphoglycerate.

    Science.gov (United States)

    Stankiewicz, P J

    1989-05-01

    Vanadium(IV) stimulates the hydrolysis of 2,3-diphosphoglycerate at 23 degrees C. The pH optimum is 5.0. Reactions were analyzed by enzymatic and phosphate release assays. The products of 2,3-diphosphoglycerate hydrolysis are inorganic phosphate and 3-phosphoglycerate. The reaction is inhibited by high concentrations of 2,3-diphosphoglycerate and an equation has been formulated that describes the kinetic constants for this reaction at pH 7. The possible relevance of the reaction to the therapeutic lowering by vanadium(IV) of red cell 2,3-diphosphoglycerate in sickle-cell disease is discussed.

  4. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.

    2004-01-01

    The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied......, and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature...

  5. Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase

    DEFF Research Database (Denmark)

    Kerovuo, J.; Rouvinen, J.; Hatzack, Frank-Andreas

    2000-01-01

    Phytic acid (myo-inositol hexakisphosphate, InsP(6)) hydrolysis by Bacillus phytase (PhyC) was studied. The enzyme hydrolyses only three phosphates from phytic acid. Moreover, the enzyme seems to prefer the hydrolysis of every second phosphate over that of adjacent ones. Furthermore, it is very...... a reaction mechanism different from that of other phytases. By combining the data presented in this study with (1) structural information obtained from the crystal structure of Bacillus amyloliquefaciens phytase [Ha, Oh, Shin, Kim, Oh, Kim, Choi and Oh (2000) Nat. Struct. Biol. 7, 147-153], and (2) computer...

  6. Recovery of slaughterhouse Animal Fatty Wastewater Sludge by conversion into Fatty Acid Butyl Esters by acid-catalyzed esterification.

    Science.gov (United States)

    Wallis, Christopher; Cerny, Muriel; Lacroux, Eric; Mouloungui, Zéphirin

    2017-02-01

    Two types of Animal Fatty Wastewater Sludges (AFWS 1 and 2) were analyzed and fully characterized to determine their suitability for conversion into biofuel. AFWS 1 was determined to be unsuitable as it contains 68.8wt.% water and only 32.3wt.% dry material, of which only around 80% is lipids to be converted. AFWS 2 has only 15.7wt.% water and 84.3wt.% dry material of which is assumed to 100% lipids as the protein and ash contents were determined to be negligible. The 4-dodecylbenzenesulfonic acid (DBSA) catalyzed esterification of AFWS with 1-butanol was performed in a novel batch reactor fitted with a drying chimney for the "in situ" removal of water and optimized using a non-conventional Doehlert surface response methodology. The optimized condition was found to be 1.66mol equivalent of 1-butanol (with respect to total fatty acid chains), 10wt.% of DBSA catalyst (with respect to AFWS) at 105°C for 3h. Fatty Acid Butyl Esters (FABEs) were isolated in good yields (95%+) as well as a blend of FABEs with 1-butanol (16%). The two potential biofuels were analyzed in comparison with current and analogous biofuels (FAME based biodiesel, and FABE products made from vegetable oils) and were found to exhibit high cetane numbers and flash point values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Optimization and modeling for the synthesis of sterol esters from deodorizer distillate by lipase-catalyzed esterification.

    Science.gov (United States)

    Zhang, Xinyu; Yu, Jiang; Zeng, Aiwu

    2017-03-01

    In this paper, cotton seed oil deodorizer distillate (CSODD), was recovered to obtain fatty acid sterol ester (FASE), which is one of the biological activated substances added as human therapeutic to lower cholesterol. Esterification reactions were carried out using Candida rugosa lipase as a catalyst, and the conversion of phytosterol was optimized using response surface methodology. The highest conversion (90.8 ± 0.4%) was reached at 0.84 wt% enzyme load, 1:25 solvent/CSODD mass ratio, and 44.2 °C after 12 H reaction. A kinetic model based on the reaction rate equation was developed to describe the reaction process. The activation energy of the reaction was calculated to be 56.9 kJ/mol and the derived kinetic parameters provided indispensable basics for further study. The optimization and kinetic research of synthesizing FASE from deodorizer distillate provided necessary information for the industrial applications in the near future. Experimental results showed that the proposed process is a promising alternative to recycle sterol esters from vegetable oil deodorizer distillates in a mild, efficient, and environmental friendly method. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  8. Optimisation on pretreatment of rubber seed (Hevea brasiliensis) oil via esterification reaction in a hydrodynamic cavitation reactor.

    Science.gov (United States)

    Bokhari, Awais; Chuah, Lai Fatt; Yusup, Suzana; Klemeš, Jiří Jaromír; Kamil, Ruzaimah Nik M

    2016-01-01

    Pretreatment of the high free fatty acid rubber seed oil (RSO) via esterification reaction has been investigated by using a pilot scale hydrodynamic cavitation (HC) reactor. Four newly designed orifice plate geometries are studied. Cavities are induced by assisted double diaphragm pump in the range of 1-3.5 bar inlet pressure. An optimised plate with 21 holes of 1mm diameter and inlet pressure of 3 bar resulted in RSO acid value reduction from 72.36 to 2.64 mg KOH/g within 30 min of reaction time. Reaction parameters have been optimised by using response surface methodology and found as methanol to oil ratio of 6:1, catalyst concentration of 8 wt%, reaction time of 30 min and reaction temperature of 55°C. The reaction time and esterified efficiency of HC was three fold shorter and four fold higher than mechanical stirring. This makes the HC process more environmental friendly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    Science.gov (United States)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  10. Yield, Esterification Degree and Molecular Weight Evaluation of Pectins Isolated from Orange and Grapefruit Peels under Different Conditions

    Science.gov (United States)

    Sayah, Mohamed Yassine; Chabir, Rachida; Benyahia, Hamid; Rodi Kandri, Youssef; Ouazzani Chahdi, Fouad; Touzani, Hanan; Errachidi, Faouzi

    2016-01-01

    Orange (Citrus sinensis) and grapefruit (Citrus paradise) peels were used as a source of pectin, which was extracted under different conditions. The peels are used under two states: fresh and residual (after essential oil extraction). Organic acid (citric acid) and mineral acid (sulfuric acid) were used in the pectin extraction. The aim of this study is the evaluation the effect of extraction conditions on pectin yield, degree of esterification “DE” and on molecular weight “Mw”. Results showed that the pectin yield was higher using the residual peels. Moreover, both peels allow the obtainment of a high methoxyl pectin with DE >50%. The molecular weight was calculated using Mark-Houwink-Sakurada equation which describes its relationship with intrinsic viscosity. This later was determined using four equations; Huggins equation, kramer, Schulz-Blaschke and Martin equation. The molecular weight varied from 1.538 x1005 to 2.47x1005 g/mol for grapefruit pectin and from 1.639 x1005 to 2.471 x1005 g/mol for orange pectin. PMID:27644093

  11. A kinetic study on the Novozyme 435-catalyzed esterification of free fatty acids with octanol to produce octyl esters.

    Science.gov (United States)

    Chowdhury, Avisha; Mitra, Debarati

    2015-01-01

    Octyl esters can serve as an important class of biolubricant components replacing their mineral oil counterparts. The purpose of the current work was to investigate the enzymatic esterification reaction of free fatty acids (FFA, from waste cooking oil) with octanol in a solvent-free system using a commercial lipase Novozyme 435. It was found that the esterificaton reaction followed the Ping-pong bi-bi kinetics with no inhibition by substrates or products within the studied concentration range. The maximum reaction rate was estimated to be 0.041 mol L(-1) g(-1) h(-1) . Additionally, the stability of Novozyme 435 in the current reaction system was studied by determining its activity and final conversion of FFA to esters after 12 successive utilizations. Novozyme 435 exhibited almost 100% enzyme activity up to 7 cycles of reaction and gradually decreased (by 5%) thereafter. The kinetic parameters evaluated from the study shall assist in the design of reactors for large-scale production of octyl esters from a cheap biomass source. The enzyme reusability data can further facilitate mass production by curtailing the cost of expensive enzyme consumption. © 2015 American Institute of Chemical Engineers.

  12. Synthesis and Characterization of Silicotungstic Acid Nanoparticles Via Sol Gel Technique as a Catalyst in Esterification Reaction

    International Nuclear Information System (INIS)

    Wan Nor Roslam Wan Ishak; Manal Ismail

    2011-01-01

    The purpose of this work is to study the synthesis, characterization and catalytic performance of silicotungstic acid-silica sol gel (STA-SG) as acid catalyst in esterification reaction. The activity and selectivity of STA-SG have been investigated and compared to the STA bulk (STAB) and sulphuric acid (H 2 SO 4 ). The synthesized catalysts were characterized by various techniques shown that the STA-SG catalyst is relatively high in surface area compared to STAB of 460.11 m 2 /g and 0.98 m 2 /g, respectively. From the XPS analyses, there was a significant formation of W-O-Si, W-O-W and Si-O-Si bonding in STA-SG compared to that in STAB. Both the H 2 SO 4 and the STAB gave high conversion of 100 % and 98 %, while lower selectivity of glycerol monooleate (GMO) with 81.6 % and 89.9 %, respectively. On the contrary, the STA-SG enabled a conversion of 94 %, while significantly higher GMO selectivity of 95 % rendering it the more efficient acid catalyst. (author)

  13. Modification of oligo-Ricinoleic Acid and Its Derivatives with 10-Undecenoic Acid via Lipase-Catalyzed Esterification

    Directory of Open Access Journals (Sweden)

    M. Claudia Montiel

    2012-04-01

    Full Text Available Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL at a 30% yield. Thirty percent conversion also occurred for CAL-catalyzed esterification between undecenoic acid and biocatalytically-prepared polyglycerol polyricinoleate (PGPR, with attachment of undecenoic acid occurring primarily at free hydroxyls of the polyglycerol moiety. The synthesis of oligo-ricinoleyl-, undecenoyl- structured triacylglycerols comprised two steps. The first step, the 1,3-selective lipase-catalyzed interesterification of castor oil with undecenoic acid, occurred successfully. The second step, the CAL-catalyzed reaction between ricinoleyl-, undecenoyl structured TAG and ricinoleic acid, yielded approximately 10% of the desired structured triacylglycerols (TAG; however, a significant portion of the ricinoleic acid underwent self-polymerization as a side-reaction. The employment of gel permeation chromatography, normal phase HPLC, NMR, and acid value measurements was effective for characterizing the reaction pathways and products that formed.

  14. Studies on performance evaluation of a green plasticizer made by enzymatic esterification of furfuryl alcohol and castor oil fatty acid.

    Science.gov (United States)

    Mukherjee, Sohini; Ghosh, Mahua

    2017-02-10

    The esterification of furfuryl alcohol (FA) and castor oil fatty acid (COFA) at 3:1 molar ratio, by immobilized Candida antarctica Lipase B (NS 435 from Novozyme) in a solvent free system gave a maximum yield of 88.64% (%w/w) at 5h. Performance of the FA-COFA ester plasticized Ethyl Cellulose (EC) films were evaluated by surface morphologies, XRD analysis, mechanical properties,thermal properties, water vapor permeability and migration stability test. It was an effective plasticizer with better mechanical properties and thermal stability at the increasing concentration of FA-COFA ester (15-25%) containing EC film, than the traditional plasticizer, i.e; dibutyl phthalate (DBP) in producing good quality films. Chemical structure and the intermolecular interactions between FA-COFA ester and ethyl cellulose chains were the causative agents of these outstanding performances. Therefore, this FA-COFA ester, with significant plasticizing property, at a certain concentration, can be a substitute of DBP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Biodiesel production with continuous supercritical process: non-catalytic transesterification and esterification with or without carbon dioxide.

    Science.gov (United States)

    Tsai, Yu-Ting; Lin, Ho-mu; Lee, Ming-Jer

    2013-10-01

    The non-catalytic transesterification of refined sunflower oil with supercritical methanol, in the presence of carbon dioxide, was conducted in a tubular reactor at temperatures from 553.2 to 593.2K and pressures up to 25.0 MPa. The FAME yield can be achieved up to about 0.70 at 593.2 K and 10.0 MPa in 23 min with methanol:oil of 25:1 in molar ratio. The effect of adding CO2 on the FAME yield is insignificant. The kinetic behavior of the non-catalytic esterification and transesterification of oleic acid or waste cooking oil (WCO) with supercritical methanol was also investigated. By using the supercritical process, the presence of free fatty acid (FFA) in WCO gives positive contribution to FAME production. The FAME yield of 0.90 from WCO can be achieved in 13 min at 573.2K. The kinetic data of supercritical transesterification and esterifaication were correlated well with a power-law model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Original Article. Protection studies of new bis quaternary 2-(hydroxyimino-N-(pyridin-3yl acetamide derivatives (HNK-series oximes against acute poisoning by dichlorvos (DDVP in Swiss albino mice

    Directory of Open Access Journals (Sweden)

    Kumar Pravin

    2016-12-01

    Full Text Available The available antidotal therapy against acute poisoning by organophosphates involves the use of atropine alone or in combination with one of the oximes, e.g. 2-PAM, Obidoxime, TMB-4 or HI-6. Each of these oximes has some limitation, raising the question of the universal antidotal efficacy against poisoning by all OPs/nerve agents. In the present study, newly synthesized bis quaternary 2-(hydroxyimino-N-(pyridin-3yl acetamide derivatives (HNK-series oximes were evaluated for their antidotal efficacy against DDVP intoxicated Swiss mice, in terms of the Protection Index (PI and AChE reactivation in brain and serum. The inhibition concentration (IC50 was determined in brain and serum after optimizing the time point for maximum inhibition (60 min post DDVP exposure. AChE reactivation efficacy of the HNK series was evaluated at IC50 and compared with 2-PAM. HNK-102 showed a ~2 times better Protection Index (PI as compared to 2-PAM against DDVP toxicity. IC50 at 60 min DDVP post exposure was found to be approximately one fifth and one half of the LD50 dose for brain and serum AChE, respectively. Out of three HNK oximes, HNK-102 & 106 at 0.20 LD50 dose significantly reactivated DDVP intoxicated brain AChE (p<0.05 as compared to 2-PAM at double IC50 dose of DDVP. In light of double PI and higher AChE reactivation, HNK 102 was found to be a better oxime than 2-PAM in the treatment of acute poisoning by DDVP.

  17. Effect of Acid Hydrolysis on Tableting Properties of Chitin Obtained ...

    African Journals Online (AJOL)

    Department of Pharmacy, School of Pharmaceutical Chemistry, The University of Antioquia, Medellin, Columbia, Cll 67 # 53-. 108, off. ... Methods: The effect of acid hydrolysis conditions such as reaction temperature (46, 60, 80, 100, ... preparation of compacts with good tensile strength and moderate disintegration time.

  18. hydrolysis rates of domestic wastewater sludge using biochemical

    African Journals Online (AJOL)

    eobe

    Model predictions were close to observed values, and therefore, the model should ... and adoption process models based on the kinetics of anaerobic ... comparison of hydrolysis kinetic models, Vavilin et al. ... The aim of this paper is to evaluate the efficiency of the .... average of the three measurements was adopted as the.

  19. Modelling and Simulation of the Batch Hydrolysis of Acetic ...

    African Journals Online (AJOL)

    The kinetic modelling of the batch synthesis of acetic acid from acetic anhydride was investigated. The kinetic data of the reaction was obtained by conducting the hydrolysis reaction in a batch reactor. A dynamic model was formulated for this process and simulation was carried out using gPROMS® an advanced process ...

  20. The trypsin-catalyzed hydrolysis of monomolecular films of lysylphosphatidylglycerol

    NARCIS (Netherlands)

    Gould, R.M.; Dawson, R.M.C.

    1972-01-01

    The hydrolysis by trypsin of the bacterial phospholipid, lysylphosphatidyl-glycerol has been studied at the air-water interface. High specific activity [14C]-lysylphosphatidylglycerol was prepared biosynthetically and the trypsin action followed by measuring the loss of surface radioactivity from a

  1. Visualizing phosphodiester-bond hydrolysis by an endonuclease

    DEFF Research Database (Denmark)

    Molina, Rafael; Stella, Stefano; Redondo, Pilar

    2015-01-01

    The enzymatic hydrolysis of DNA phosphodiester bonds has been widely studied, but the chemical reaction has not yet been observed. Here we follow the generation of a DNA double-strand break (DSB) by the Desulfurococcus mobilis homing endonuclease I-DmoI, trapping sequential stages of a two-metal-...

  2. Starch hydrolysis under low water conditions: a conceptual process design

    NARCIS (Netherlands)

    Veen, van der M.E.; Veelaert, S.; Goot, van der A.J.; Boom, R.M.

    2006-01-01

    A process concept is presented for the hydrolysis of starch to glucose in highly concentrated systems. Depending on the moisture content, the process consists of two or three stages. The two-stage process comprises combined thermal and enzymatic liquefaction, followed by enzymatic saccharification.

  3. Radioactive demonstration of the ''late wash'' Precipitate Hydrolysis Process

    International Nuclear Information System (INIS)

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-01-01

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the ''late wash'' flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests

  4. Validation of lignocellulosic biomass carbohydrates determination via acid hydrolysis.

    Science.gov (United States)

    Zhou, Shengfei; Runge, Troy M

    2014-11-04

    This work studied the two-step acid hydrolysis for determining carbohydrates in lignocellulosic biomass. Estimation of sugar loss based on acid hydrolyzed sugar standards or analysis of sugar derivatives was investigated. Four model substrates (starch, holocellulose, filter paper and cotton) and three levels of acid/material ratios (7.8, 10.3 and 15.4, v/w) were studied to demonstrate the range of test artifacts. The method for carbohydrates estimation based on acid hydrolyzed sugar standards having the most satisfactory carbohydrate recovery and relative standard deviation. Raw material and the acid/material ratio both had significant effect on carbohydrate hydrolysis, suggesting the acid to have impacts beyond a catalyst in the hydrolysis. Following optimal procedures, we were able to reach a carbohydrate recovery of 96% with a relative standard deviation less than 3%. The carbohydrates recovery lower than 100% was likely due to the incomplete hydrolysis of substrates, which was supported by scanning electron microscope (SEM) images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Plant dried powders as biocatalysts: Hydrolysis of 1- phenylpropanol ...

    African Journals Online (AJOL)

    The hydrolytic ability of plant dried powders, lyophilized or acetone dried, was tested on the hydrolysis of racemic 1-phenylpropanol acetate. Most of the twenty powders tested showed hydrolytic activity, however the best values of conversion and enantioselectivity were reached with the lyophilized powder of nopal (27% ...

  6. The investigation of wood hydrolysis lignin ability for uranium sorption

    International Nuclear Information System (INIS)

    Rachkova, N.G.; Shuktomova, I.I.; Taskaev, A.I.

    2001-01-01

    The uranium are sorbed in wood hydrolysis lignin efficacious and very strong both in uranyl nitrate solutions and in podsolic soil. It may well be that formation of complexes are possible mechanism of irreversible sorption. The static capacity of lignin are 2.7 mg/g. (author)

  7. Lactam hydrolysis catalyzed by mononuclear metallo-ß-bactamases

    DEFF Research Database (Denmark)

    Olsen, Lars; Antony, J; Ryde, U

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  8. Hydrolysis of maize starch using amylolytic enzymes extracted from ...

    African Journals Online (AJOL)

    Amylases, a-amylase (EC 3.2.1.1, α-1, 4-glucan-4-glucanohydrolase) and glucoamylase (EC 3.2.1.3, α-1, 4; α-1, 6-glucan glucohydrolase; amyloglucosidase), extracted and partially purified from sorghum malt were used to hydrolyze maize starch. The process and products of the enzymatic hydrolysis were also compared ...

  9. Penicillin Hydrolysis: A Kinetic Study of a Multistep, Multiproduct Reaction.

    Science.gov (United States)

    McCarrick, Thomas A.; McLafferty, Fred W.

    1984-01-01

    Background, procedures used, and typical results are provided for an experiment in which students carry out the necessary measurements on the acid-catalysis of penicillin in two hours. By applying kinetic theory to the data obtained, the reaction pathways for the hydrolysis of potassium benzyl penicillin are elucidated. (JN)

  10. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; E. Thybring, Emil; Johansen, Katja Salomon

    2014-01-01

    . Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry...

  11. Catalytic hydrolysis of ammonia borane: Intrinsic parameter estimation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S.; Gore, J.P. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States); School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100 (United States); Energy Center in Discovery Park, Purdue University, West Lafayette, IN 47907-2022 (United States); Zheng, Y. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States); Energy Center in Discovery Park, Purdue University, West Lafayette, IN 47907-2022 (United States); Varma, A.; Delgass, W.N. [School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100 (United States); Energy Center in Discovery Park, Purdue University, West Lafayette, IN 47907-2022 (United States)

    2010-04-02

    Ammonia borane (AB) hydrolysis is a potential process for on-board hydrogen generation. This paper presents isothermal hydrogen release rate measurements of dilute AB (1 wt%) hydrolysis in the presence of carbon supported ruthenium catalyst (Ru/C). The ranges of investigated catalyst particle sizes and temperature were 20-181 {mu}m and 26-56 C, respectively. The obtained rate data included both kinetic and diffusion-controlled regimes, where the latter was evaluated using the catalyst effectiveness approach. A Langmuir-Hinshelwood kinetic model was adopted to interpret the data, with intrinsic kinetic and diffusion parameters determined by a nonlinear fitting algorithm. The AB hydrolysis was found to have an activation energy 60.4 kJ mol{sup -1}, pre-exponential factor 1.36 x 10{sup 10} mol (kg-cat){sup -1} s{sup -1}, adsorption energy -32.5 kJ mol{sup -1}, and effective mass diffusion coefficient 2 x 10{sup -10} m{sup 2} s{sup -1}. These parameters, obtained under dilute AB conditions, were validated by comparing measurements with simulations of AB consumption rates during the hydrolysis of concentrated AB solutions (5-20 wt%), and also with the axial temperature distribution in a 0.5 kW continuous-flow packed-bed reactor. (author)

  12. Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2014-01-01

    .7% of the theoretical maximum value. Pretreatment at 200 C with oxygen exhibited enhanced enzymatic efficiency but lower xylose recovery and formation of the degradation products such as acetate, furfural and HMF of 7.6, 3.3 and 1.0 g/L, respectively. In the hydrolysis, the total sugars (glucose + xylose) yielded...

  13. Theoretical Aspects of Hydrolysis of Peptide Bonds by Zinc Metalloenzymes

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Václav; Klusák, Vojtěch; Rulíšek, Lubomír

    2013-01-01

    Roč. 19, č. 49 (2013), s. 16634-16645 ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : ab initio calculations * hydrolysis * metalloenzymes * peptides * transition states Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.696, year: 2013

  14. Sulfated zirconia modified SBA-15 catalysts for cellobiose hydrolysis

    NARCIS (Netherlands)

    Degirmenci, V.; Uner, D.; Cinlar, B.; Shanks, B.H.; Yilmaz, A.; Santen, van R.A.; Hensen, E.J.M.

    2011-01-01

    Zirconia modified SBA-15 becomes a very active catalyst for the selective hydrolysis of cellobiose to glucose after sulfation. Spectroscopic investigations indicate the presence of Brønsted acid sites with similar properties to those present in conventional sulfated zirconia. Indications are found

  15. Production of value added materials by subcritical water hydrolysis ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... from raw and de-oiled krill was examined over the temperature range of 200 to 280°C, ratio of material to water for hydrolysis was 1:50 .... stirring. The raw material and SC-CO2 (run 1, 2 and 3) extracted residues were prepared ... amino acid auto analyzer (Hitachi L-8900, Tokyo, Japan). RESULTS AND ...

  16. Hydrolysis of cisplatin—a first-principles metadynamics study

    NARCIS (Netherlands)

    Lau, J.K.C.; Ensing, B.

    2010-01-01

    Cisplatin, or cis-[Pt(NH3)2Cl2], was the first member of a new revolutionary class of anticancer drugs that is still used today for the treatment of a wide variety of cancers. The mode of action of cisplatin starts inside the cell with the hydrolysis of Pt-Cl bonds to form a Pt-aqua complex. The

  17. Hydrolysis and biotic transformation in water in the pesticide model

    NARCIS (Netherlands)

    Horst, ter M.M.S.; Beltman, W.H.J.; Adriaanse, P.I.; Mulder, H.M.

    2017-01-01

    The TOXSWA model has been extended with the functionality to simulate hydrolysis and biotic transformation in water. TOXSWA simulates the fate of pesticides in water bodies to calculate exposure calculations for aquatic organisms or sediment-dwelling organisms as part of the aquatic risk assessment

  18. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.

    Science.gov (United States)

    Sun, Daohua; Mazumder, Vismadeb; Metin, Önder; Sun, Shouheng

    2011-08-23

    Monodisperse 8 nm CoPd nanoparticles (NPs) with controlled compositions were synthesized by the reduction of cobalt acetylacetonate and palladium bromide in the presence of oleylamine and trioctylphosphine. These NPs were active catalysts for hydrogen generation from the hydrolysis of ammonia borane (AB), and their activities were composition dependent. Among the 8 nm CoPd catalysts tested for the hydrolysis of AB, the Co(35)Pd(65) NPs exhibited the highest catalytic activity and durability. Their hydrolysis completion time and activation energy were 5.5 min and 27.5 kJ mol(-1), respectively, which were comparable to the best Pt-based catalyst reported. The catalytic performance of the CoPd/C could be further enhanced by a preannealing treatment at 300 °C under air for 15 h with the hydrolysis completion time reduced to 3.5 min. This high catalytic performance of Co(35)Pd(65) NP catalyst makes it an exciting alternative in pursuit of practical implementation of AB as a hydrogen storage material for fuel cell applications. © 2011 American Chemical Society

  19. Chemical and enzymatic hydrolysis of anthraquinone glycosides from Madder roots

    NARCIS (Netherlands)

    Derksen, G.C.H.; Naayer, M.; Beek, T.A. van; Capelle, A.; Haaksman, I.K.; Doren, H.A. van; Groot, Æ. de

    2003-01-01

    For the production of a commercially useful dye extract from madder, the glycoside ruberythric acid has to be hydrolysed to the aglycone alizarin which is the main dye component. An intrinsic problem is the simultaneous hydrolysis of the glycoside lucidin pritneveroside to the unwanted mutagenic

  20. Eggshells – assisted hydrolysis of banana pulp for biogas production

    African Journals Online (AJOL)

    KARAKANA

    In this study, pretreatment of banana pulp using eggshells in both calcined and un-calcined forms to examine the ... Key words: Anaerobic digestion, banana pulp hydrolysis biogas, eggshells. .... obtain fine powder. ..... using pig waste and cassava peels. ... from bioethanol waste: the effect of pH and urea addition to biogas.