WorldWideScience

Sample records for oxidizes aryl alcohols

  1. Conversion of Aryl Iodides into Aryliodine(III Dichlorides by an Oxidative Halogenation Strategy Using 30% Aqueous Hydrogen Peroxide in Fluorinated Alcohol

    Ajda Podgoršek

    2010-04-01

    Full Text Available Oxidative chlorination with HCl/H2O2 in 1,1,1-trifluoroethanol was used to transform aryl iodides into aryliodine(III dihalides. In this instance 1,1,1-trifluoroethanol is not only the reaction medium, but is also an activator of hydrogen peroxide for the oxidation of hydrochloric acid to molecular chlorine. Aryliodine(III dichlorides were formed in 72–91% isolated yields in the reaction of aryl iodides with 30% aqueous hydrogen peroxide and hydrochloric acid at ambient temperature. A study of the effect that substituents on the aromatic ring have on the formation and stability of aryliodine(III dichlorides shows that the transformation is easier to achieve in the presence of the electron-donating groups (i.e. methoxy, but in this case the products rapidly decompose under the reported reaction conditions to form chlorinated arenes. The results suggest that oxidation of hydrogen chloride with hydrogen peroxide is the initial reaction step, while direct oxidation of aryl iodide with hydrogen peroxide is less likely to occur.

  2. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  3. Oxidative electrochemical aryl C-C coupling of spiropyrans

    Ivashenko, Oleksii; van Herpt, Jochem T.; Rudolf, Petra; Feringa, Ben L.; Browne, Wesley R.

    2013-01-01

    The isolation and definitive assignment of the species formed upon electrochemical oxidation of nitro-spiropyran (SP) is reported. The oxidative aryl C-C coupling at the indoline moiety of the SP radical cation to form covalent dimers of the ring-closed SP form is demonstrated. The coupling is

  4. Enantioselective epoxidation with chiral MN(III)(salen) catalysts: kinetic resolution of aryl-substituted allylic alcohols.

    Adam, W; Humpf, H U; Roschmann, K J; Saha-Möller, C R

    2001-08-24

    A set of aryl-substituted allylic alcohols rac-2 has been epoxidized by chiral Mn(salen*) complexes 1 as the catalyst and iodosyl benzene (PhIO) as the oxygen source. Whereas one enantiomer of the allylic alcohol 2 is preferentially epoxidized to give the threo- or cis-epoxy alcohol 3 (up to 80% ee) as the main product (dr up to >95:5), the other enantiomer of 2 is enriched (up to 53% ee). In the case of 1,1-dimethyl-1,2-dihydronaphthalen-2-ol (2c), the CH oxidation to the enone 4c proceeds enantioselectively and competes with the epoxidation. The absolute configurations of the allylic alcohols 2 and their epoxides 3 have been determined by chemical correlation or CD spectroscopy. The observed diastereo- and enantioselectivities in the epoxidation reactions are rationalized in terms of a beneficial interplay between the hydroxy-directing effect and the attack along the Katsuki trajectory.

  5. Oxidative addition of aryl chlorides to monoligated palladium(0): A DFT-SCRF study

    Ahlquist, Mårten Sten Gösta; Norrby, Per-Ola

    2007-01-01

    Oxidative addition of aryl chlorides to palladium has been investigated by hybrid density functional theory methods (B3LYP), including a continuum model describing the solvent implicitly. A series of para-substituted aryl chlorides were studied to see the influence of electronic effects...

  6. (E)-Specific direct Julia-olefination of aryl alcohols without extra reducing agents promoted by bases.

    Yao, Chuan-Zhi; Li, Qiang-Qiang; Wang, Mei-Mei; Ning, Xiao-Shan; Kang, Yan-Biao

    2015-05-04

    An unprecedented base-promoted direct olefination of aryl alcohols with sulfones via a Julia-type reaction has been described. No extra reductants are needed for Julia reaction since alcohols work as double sources of aldehydes and the hydride. Generally high yields were given for both terminal and highly (E)-selective internal olefins.

  7. The synthesis of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides by the microwave-assisted Pudovik reaction

    Erika Bálint

    2017-01-01

    Full Text Available A family of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides was synthesized by the microwave-assisted solvent-free addition of dialkyl phosphites and diphenylphosphine oxide, respectively, to imines formed from benzaldehyde derivatives and primary amines. After optimization, the reactivity was mapped, and the fine mechanism was evaluated by DFT calculations. Two α-aminophosphonates were subjected to an X-ray study revealing a racemic dimer formation made through a N–H···O=P intermolecular hydrogen bridges pair.

  8. Deciphering the Origin, Evolution, and Physiological Function of the Subtelomeric Aryl-Alcohol Dehydrogenase Gene Family in the Yeast Saccharomyces cerevisiae.

    Yang, Dong-Dong; de Billerbeck, Gustavo M; Zhang, Jin-Jing; Rosenzweig, Frank; Francois, Jean-Marie

    2018-01-01

    Homology searches indicate that Saccharomyces cerevisiae strain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). Yeast AAD genes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes, AAD4 and AAD14 , encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeast AAD genes are undergoing pseudogenization. The 5' sequence of AAD15 has been deleted from the genome. Repair of an AAD3 missense mutation at the catalytically essential Tyr 73 residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates that AAD genes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeast AAD genes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeast AAD gene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role for AAD genes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications. IMPORTANCE Functional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the first Saccharomyces cerevisiae genome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-member AAD family. Here, we demonstrate that proteins encoded by two

  9. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air

    Hanson, Susan Kloek; Silks, Louis A; Wu, Ruilian

    2013-08-27

    The invention concerns processes for oxidizing an alcohol to produce a carbonyl compound. The processes comprise contacting the alcohol with (i) a gaseous mixture comprising oxygen; and (ii) an amine compound in the presence of a catalyst, having the formula: ##STR00001## where each of R.sup.1-R.sup.12 are independently H, alkyl, aryl, CF.sub.3, halogen, OR.sup.13, SO.sub.3R.sup.14, C(O)R.sup.15, CONR.sup.16R.sup.17 or CO.sub.2R.sup.18; each of R.sup.13-R.sup.18 is independently alkyl or aryl; and Z is alkl or aryl.

  10. Palladium-Catalyzed Tandem Oxidative Arylation/Olefination of Aromatic Tethered Alkenes/Alkynes.

    Gao, Yang; Gao, Yinglan; Wu, Wanqing; Jiang, Huanfeng; Yang, Xiaobo; Liu, Wenbo; Li, Chao-Jun

    2017-01-18

    We describe herein a palladium-catalyzed tandem oxidative arylation/olefination reaction of aromatic tethered alkenes/alkynes for the synthesis of dihydrobenzofurans and 2 H-chromene derivatives. This reaction features a 1,2-difunctionalization of C-C π-bond with two C-H bonds using O 2 as terminal oxidant at room temperature. The products obtained are valuable synthons and important scaffolds in biological agents and natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Continuous aryl alcohol oxidase production under growth-limited conditions using a trickle bed reactor.

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Prade, Rolf A; Müller, Michael; Wilkins, Mark R

    2018-05-01

    An A. nidulans strain with a pyridoxine marker was used for continuous production of aryl alcohol oxidase (AAO) in a trickle bed reactor (TBR). Modified medium with reduced zinc, no copper, and 5 g/L ascorbic acid that reduced melanin production and increased AAO productivity under growth limited conditions was used. Two air flow rates, 0.11 L/min (0.1 vvm) and 1.1 L/min (1.0 vvm) were tested. More melanin formation and reduced protein productivity were observed with air flow rate of 1.1 L/min. Three random packings were used as support for the fungus inside the TBR column, two of which were hydrophobic and one which was hydrophilic, and three different dilution rates were tested. The use of GEA BCN 030 hydrophobic packing resulted in greater AAO yield and productivity than the other packings. Increasing dilution rates favored melanin formation and citric, lactic and succinic acid accumulation, which decreased AAO yield and productivity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct α-Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis.

    Twilton, Jack; Christensen, Melodie; DiRocco, Daniel A; Ruck, Rebecca T; Davies, Ian W; MacMillan, David W C

    2018-05-04

    The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α-hydroxy C-H bonds. This approach employs zinc-mediated alcohol deprotonation to activate α-hydroxy C-H bonds while simultaneously suppressing C-O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn-based Lewis acids also deactivates other hydridic bonds such as α-amino and α-oxy C-H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3-step synthesis of the drug Prozac exemplifies the utility of this new method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dual C-H functionalization of N-aryl amines: synthesis of polycyclic amines via an oxidative Povarov approach.

    Min, Chang; Sanchawala, Abbas; Seidel, Daniel

    2014-05-16

    Iminium ions generated in situ via copper(I) bromide catalyzed oxidation of N-aryl amines readily undergo [4 + 2] cycloadditions with a range of dienophiles. This method involves the functionalization of both a C(sp(3))-H and a C(sp(2))-H bond and enables the rapid construction of polycyclic amines under relatively mild conditions.

  14. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    Wang, Meng [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Gutiérrez, Oliver Y. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 85748 Garching Germany

    2018-03-06

    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  15. Prevention of melanin formation during aryl alcohol oxidase production under growth-limited conditions using an Aspergillus nidulans cell factory.

    Pardo-Planas, Oscar; Prade, Rolf A; Müller, Michael; Atiyeh, Hasan K; Wilkins, Mark R

    2017-11-01

    An Aspergillus nidulans cell factory was genetically engineered to produce an aryl alcohol oxidase (AAO). The cell factory initiated production of melanin when growth-limited conditions were established using stationary plates and shaken flasks. This phenomenon was more pronounced when the strain was cultured in a trickle bed reactor (TBR). This study investigated different approaches to reduce melanin formation in fungal mycelia and liquid medium in order to increase the enzyme production yield. Removal of copper from the medium recipe reduced melanin formation in agar cultures and increased enzyme activities by 48% in agitated liquid cultures. Copper has been reported as a key element for tyrosinase, an enzyme responsible for melanin production. Ascorbic acid (0.44g/L) stopped melanin accumulation, did not affect growth parameters and resulted in AAO activity that was more than two-fold greater than a control treatment with no ascorbic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Synthesis of extended polycyclic aromatic hydrocarbons by oxidative tandem spirocyclization and 1,2-aryl migration

    Zhang, Xuan; Xu, Zhanqiang; Si, Weili; Oniwa, Kazuaki; Bao, Ming; Yamamoto, Yoshinori; Jin, Tienan

    2017-04-01

    The extended polycyclic aromatic hydrocarbons (PAHs) have received significant interdisciplinary attention due to their semiconducting applications in diverse organic electronics as well as intriguing structural interests of well-defined graphene segments. Herein, a highly efficient oxidative spirocyclization and 1,2-aryl migration tandem synthetic method for the construction of extended polyaromatic hydrocarbons (PAHs) has been developed. The CuCl-catalyst/PhCO3 tBu or DDQ oxidation system in the presence of trifluoroacetic acid enables the selective single-electron oxidation to take place preferentially at the more electron-rich alkene moiety of o-biphenylyl-substituted methylenefluorenes, giving rise to the subsequent tandem process. A variety of structurally diverse extended PAHs including functionalized dibenzo[g,p]chrysenes, benzo[f]naphtho[1,2-s]picene, hexabenzo[a,c,fg,j,l,op]tetracene, tetrabenzo[a,c,f,m]phenanthro[9,10-k]tetraphene, tetrabenzo[a,c,f,k]phenanthro[9,10-m]tetraphene, tetrabenzo[a,c,f,o]phenanthro[9,10-m]picene and S-type helicene have been readily synthesized.

  17. Thermal properties of polyfurfuryl alcohol absorbed/adsorbed on arylated soy protein films

    Kumar, R

    2012-02-01

    Full Text Available In this study, polyfurfuryl alcohol was absorbed/adsorbed on soy protein isolate films by immersing the SPI films in acid-catalysed furfuryl alcohol solution for 60 h followed by complete curing at 145–150 -C for 2 h. PFA absorbed/adsorbed soy...

  18. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-01-01

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  19. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    Cheng, Ya-Hsin [Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Li, Lih-Ann, E-mail: lihann@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China)

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  20. H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase.

    Hammel, K E; Mozuch, M D; Jensen, K A; Kersten, P J

    1994-11-15

    Oxidative C alpha-C beta cleavage of the arylglycerol beta-aryl ether lignin model 1-(3,4-dimethoxy-phenyl)-2-phenoxypropane-1,3-diol (I) by Phanerochaete chrysosporium lignin peroxidase in the presence of limiting H2O2 was enhanced 4-5-fold by glyoxal oxidase from the same fungus. Further investigation showed that each C alpha-C beta cleavage reaction released 0.8-0.9 equiv of glycolaldehyde, a glyoxal oxidase substrate. The identification of glycolaldehyde was based on 13C NMR spectrometry of reaction product obtained from beta-, gamma-, and beta,gamma-13C-substituted I, and quantitation was based on an enzymatic NADH-linked assay. The oxidation of glycolaldehyde by glyoxal oxidase yielded 0.9 oxalate and 2.8 H2O2 per reaction, as shown by quantitation of oxalate as 2,3-dihydroxyquinoxaline after derivatization with 1,2-diaminobenzene and by quantitation of H2O2 in coupled spectrophotometric assays with veratryl alcohol and lignin peroxidase. These results suggest that the C alpha-C beta cleavage of I by lignin peroxidase in the presence of glyoxal oxidase should regenerate as many as 3 H2O2. Calculations based on the observed enhancement of LiP-catalyzed C alpha-C beta cleavage by glyoxal oxidase showed that approximately 2 H2O2 were actually regenerated per cleavage of I when both enzymes were present. The cleavage of arylglycerol beta-aryl ether structures by ligninolytic enzymes thus recycles H2O2 to support subsequent cleavage reactions.

  1. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    McDougal, Nolan T.

    2010-10-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  2. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    McDougal, Nolan T.; Streuff, Jan; Mukherjee, Herschel; Virgil, Scott C.; Stoltz, Brian M.

    2010-01-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  3. Studies toward the oxidative and reductive activation of C-S bonds in 2'-S-aryl-2'-thiouridine derivatives.

    Rayala, Ramanjaneyulu; Giuglio-Tonolo, Alain; Broggi, Julie; Terme, Thierry; Vanelle, Patrice; Theard, Patricia; Médebielle, Maurice; Wnuk, Stanislaw F

    2016-04-21

    Studies directed toward the oxidative and reductive desulfurization of readily available 2'- S -aryl-2'-thiouridine derivatives were investigated with the prospect to functionalize the C2'-position of nucleosides. The oxidative desulfurization-difluorination strategy was successful on 2-(arylthio)alkanoate surrogates, while extension of the combination of oxidants and fluoride sources was not an efficient fluorination protocol when applied to 2'- S -aryl-2'-thiouridine derivatives, resulting mainly in C5-halogenation of the pyrimidine ring and C2'-monofluorination without desulfurization. Cyclic voltammetry of 2'-arylsulfonyl-2'-deoxyuridines and their 2'-fluorinated analogues showed that cleavage of the arylsulfone moiety could occur, although at relatively high cathodic potentials. While reductive-desulfonylation of 2'-arylsulfonyl-2'-deoxyuridines with organic electron donors (OEDs) gave predominantly base-induced furan type products, chemical (OED) and electrochemical reductive-desulfonylation of the α-fluorosulfone derivatives yielded the 2'-deoxy-2'-fluorouridine and 2',3'-didehydro-2',3'-dideoxy-2'-fluorouridine derivatives. These results provided good evidence of the generation of a C2'-anion through carbon-sulfur bond cleavage, opening new horizons for the reductive-functionalization approaches in nucleosides.

  4. Studies toward the oxidative and reductive activation of C-S bonds in 2'-S-aryl-2'-thiouridine derivatives

    Rayala, Ramanjaneyulu; Giuglio-Tonolo, Alain; Broggi, Julie; Terme, Thierry; Vanelle, Patrice; Theard, Patricia; Médebielle, Maurice; Wnuk, Stanislaw F.

    2016-01-01

    Studies directed toward the oxidative and reductive desulfurization of readily available 2'-S-aryl-2'-thiouridine derivatives were investigated with the prospect to functionalize the C2'-position of nucleosides. The oxidative desulfurization-difluorination strategy was successful on 2-(arylthio)alkanoate surrogates, while extension of the combination of oxidants and fluoride sources was not an efficient fluorination protocol when applied to 2'-S-aryl-2'-thiouridine derivatives, resulting mainly in C5-halogenation of the pyrimidine ring and C2'-monofluorination without desulfurization. Cyclic voltammetry of 2'-arylsulfonyl-2'-deoxyuridines and their 2'-fluorinated analogues showed that cleavage of the arylsulfone moiety could occur, although at relatively high cathodic potentials. While reductive-desulfonylation of 2'-arylsulfonyl-2'-deoxyuridines with organic electron donors (OEDs) gave predominantly base-induced furan type products, chemical (OED) and electrochemical reductive-desulfonylation of the α-fluorosulfone derivatives yielded the 2'-deoxy-2'-fluorouridine and 2',3'-didehydro-2',3'-dideoxy-2'-fluorouridine derivatives. These results provided good evidence of the generation of a C2'-anion through carbon-sulfur bond cleavage, opening new horizons for the reductive-functionalization approaches in nucleosides. PMID:27019535

  5. Evaluating Metabolite-Related DNA Oxidation and Adduct Damage from Aryl Amines Using a Microfluidic ECL Array.

    Bist, Itti; Bhakta, Snehasis; Jiang, Di; Keyes, Tia E; Martin, Aaron; Forster, Robert J; Rusling, James F

    2017-11-21

    Damage to DNA from the metabolites of drugs and pollutants constitutes a major human toxicity pathway known as genotoxicity. Metabolites can react with metal ions and NADPH to oxidize DNA or participate in S N 2 reactions to form covalently linked adducts with DNA bases. Guanines are the main DNA oxidation sites, and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is the initial product. Here we describe a novel electrochemiluminescent (ECL) microwell array that produces metabolites from test compounds and measures relative rates of DNA oxidation and DNA adduct damage. In this new array, films of DNA, metabolic enzymes, and an ECL metallopolymer or complex assembled in microwells on a pyrolytic graphite wafer are housed in dual microfluidic chambers. As reactant solution passes over the wells, metabolites form and can react with DNA in the films to form DNA adducts. These adducts are detected by ECL from a RuPVP polymer that uses DNA as a coreactant. Aryl amines also combine with Cu 2+ and NADPH to form reactive oxygen species (ROS) that oxidize DNA. The resulting 8-oxodG was detected selectively by ECL-generating bis(2,2'-bipyridine)-(4-(1,10-phenanthrolin-6-yl)-benzoic acid)Os(II). DNA/enzyme films on magnetic beads were oxidized similarly, and 8-oxodG determined by LC/MS/MS enabled array standardization. The array limit of detection for oxidation was 720 8-oxodG per 10 6 nucleobases. For a series of aryl amines, metabolite-generated DNA oxidation and adduct formation turnover rates from the array correlated very well with rodent 1/TD 50 and Comet assay results.

  6. Iron-catalyzed oxidative biaryl cross-couplings via mixed diaryl titanates: significant influence of the order of combining aryl Grignard reagents with titanate.

    Liu, Kun Ming; Wei, Juan; Duan, Xin Fang

    2015-03-18

    The mixed diaryl titanates were used for the first time to modify the reactivity of two aryl Grignard reagents. Two titanate intermediates, Ar[Ar'Ti(OR)3]MgX and Ar'[ArTi(OR)3]MgX, formed via alternating the sequence of combining Grignard reagents with ClTi(OR)3 showed a significant reactivity difference. Taking advantage of such different reactivity, two highly structurally similar aryl groups could be facilely assembled through iron-catalyzed oxidative cross-couplings using oxygen as the oxidant.

  7. Oxidation of the Primary Alcoholic Moiety Selectively in the Presence of the Secondary Alcoholic Moieties

    Tin Myint Htwe

    2011-12-01

    Both primary and secondary alcoholic moieties are very sensitive to oxidation reactions. But sometimes it is necessary to oxidized only the primary alcoholic moiety. Such cases are usually found in Food Industries. In this situation, TEMPO (1, 1, 6, 6-Tetramethyl-1-Piperidine Oxoammonium) was used as an oxidizing agent. In this paper, Alpha starch was successfully oxidized using TEMPO as the oxidizing agent in combination with sodium hypochlorite with and without sodium bromide. The oxidation of primary alcoholic moiety only and the remaining untouched secondary alcoholic moiety were proved by infrared spectroscopy method.

  8. Tailoring the Electrochemical Properties of Carbon Nanotube Modified Indium Tin Oxide via in Situ Grafting of Aryl Diazonium.

    Hicks, Jacqueline M; Wong, Zhi Yi; Scurr, David J; Silman, Nigel; Jackson, Simon K; Mendes, Paula M; Aylott, Jonathan W; Rawson, Frankie J

    2017-05-23

    Our ability to tailor the electronic properties of surfaces by nanomodification is paramount for various applications, including development of sensing, fuel cell, and solar technologies. Moreover, in order to improve the rational design of conducting surfaces, an improved understanding of structure/function relationships of nanomodifications and effect they have on the underlying electronic properties is required. Herein, we report on the tuning and optimization of the electrochemical properties of indium tin oxide (ITO) functionalized with single-walled carbon nanotubes (SWCNTs). This was achieved by controlling in situ grafting of aryl amine diazonium films on the nanoscale which were used to covalently tether SWCNTs. The structure/function relationship of these nanomodifications on the electronic properties of ITO was elucidated via time-of-flight secondary ion mass spectrometry and electrochemical and physical characterization techniques which has led to new mechanistic insights into the in situ grafting of diazonium. We discovered that the connecting bond is a nitro group which is covalently linked to a carbon on the aryl amine. The increased understanding of the surface chemistry gained through these studies enabled us to fabricate surfaces with optimized electron transfer kinetics. The knowledge gained from these studies allows for the rational design and tuning of the electronic properties of ITO-based conducting surfaces important for development of various electronic applications.

  9. Atmospheric oxidation of selected alcohols and esters

    Becker, K H; Cavalli, F

    2001-03-01

    The decision whether it is appropriate and beneficial for the environment to deploy specific oxygenated organic compounds as replacements for traditional solvent types requires a quantitative assessment of their potential atmospheric impacts including tropospheric ozone and other photooxidant formation. This involves developing chemical mechanisms for the gasphase atmospheric oxidation of the compounds which can be reliably used in models to predict their atmospheric reactivity under a variety of environmental conditions. Until this study, there was very little information available concerning the atmospheric fate of alcohols and esters. The objectives of this study were to measure the atmospheric reaction rates and to define atmospheric reaction mechanisms for the following selected oxygenated volatile organic compounds: the alcohols, 1-butanol and 1-pentanol, and the esters, methyl propionate and dimethyl succinate. The study has successfully addressed these objectives. (orig.)

  10. Nitroxide-catalyzed selective oxidation of alcohols and polysaccharides

    Ponedel'kina, I Yu; Khaibrakhmanova, E A; Odinokov, Viktor N

    2010-01-01

    The use of nitroxide radicals in the selective oxidation of alcohols is considered. Attention is focused on the oxidation of polysaccharides as a method of preparation of polyuronic acids, aldehydes and hemiacetals.

  11. Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols

    Ahmed, Maaz S.

    alcohol solvent and the surface of the catalyst: (listed in order of strength) lone pair-surface (heterocyclic primary alcohols) > pi-surface (aryl primary alcohols) > van der Waals-surface (alkyl primary alcohols). These interactions were previously underappreciated in condensed phase heterogeneously catalyzed aerobic oxidations. Bi and Te serve as synergistic promoters that enhance both the rate and yield of the reactions relative to reactions employing Pd alone or Pd in combination with Bi or with Te as the sole promoter. We report X-ray absorption spectroscopic studies of the heterogenous catalyst. These methods show that the promoters undergo oxidation in preference to Pd, maintaining the Pd surface in the active metallic state and preventing inhibition by surface Pd-oxide formation. The data also suggest formation of a Pd-Te alloy phase that modifies the electronic properties of the Pd catalyst. Collectively, these results provide valuable insights into the synergistic benefits of multiple promoters in heterogeneous catalytic oxidation reactions.

  12. Eosin Y-catalyzed, visible-light-promoted carbophosphinylation of allylic alcohols via a radical neophyl rearrangement.

    Yin, Yao; Weng, Wei-Zhi; Sun, Jian-Guo; Zhang, Bo

    2018-03-28

    A visible-light-promoted phosphinylation of allylic alcohols with concomitant 1,2-aryl migration is described. This transformation proceeds smoothly under metal-free and mild conditions by using an inexpensive organic dye, eosin Y, as the photocatalyst, affording various β-aryl-γ-ketophosphine oxides in moderate to good yields. Mechanistic studies suggested that the 1,2-aryl migration proceeded through a radical (neophyl) rearrangement.

  13. Kinetics of Oxidation of Aliphatic Alcohols by Potassium Dichromate ...

    The kinetics of oxidation of four aliphatic alcohols in acidic aqueous and micellar media were investigated. The reaction was found to be first-order with respect to both alcohol and oxidant. Pseudo-first-order kinetics were found to be perfectly applicable with ethanol, 1-propanol and 2-propanol while deviation was observed ...

  14. Enzymatic oxidations of alcohols in biosynthesis of bumblebee pheromones

    Bártová, Adéla

    2016-01-01

    Secretion of cephalic labial gland of Buff-tailed bumblebee males (Bombus terrestris) contains a mixture of terpene alcohols, aliphatic alcohols, esters and alkanes with small amount of aldehydes potentially biosynthetized of (S)-2,3-dihydrofarnesol and geranylcitronellol (major alcoholic compounds). This secretion acts as a marking and luring pheromone during patrolling. This study is focused on oxidation of terpene alcohols using enzymes of cephalic labial gland of a bumblebee. In vitro inc...

  15. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  16. Catalytic Oxidation of Allylic Alcohols to Methyl Esters

    Gallas-Hulin, Agata; Kotni, Rama Krishna; Nielsen, Martin

    2017-01-01

    Aerobic oxidation of allylic alcohols to methyl esters using gold nanoparticles supported on different metal oxide carriers has been performed successfully under mild conditions (room temperature, 0.1 MPa O2) without significant loss of catalytic activity. The effects of different reaction...... parameters are studied to find the suitable reaction conditions. All catalysts are characterised by XRD, XRF and TEM. Among these catalysts, Au/TiO2 showed the most efficient catalytic activity towards the selective oxidation of allylic alcohols to the corresponding esters. Moreover, the same Au/TiO2...... to synthesize methyl esters from allylic alcohols....

  17. catalysed selective oxidation of benzyl alcohols using TEMPO and ...

    A general scheme for the oxidation of benzyl alcohols catalyzed by silica functionalized copper (II) has been designed. TEMPO, a free radical, assists this oxidation that was initiated by molecular oxygen which converts it to a primary oxidant. This catalytic combination i.e. SiO2 -Cu(II) in presence of TEMPO and oxygen ...

  18. Kinetics of Oxidation of Aliphatic Alcohols by Potassium Dichromate ...

    NICO

    2011-10-10

    Oct 10, 2011 ... 1Department of Chemistry, Faculty of Science, Ibb University, Ibb 7027, Yemen. 2Department of Chemistry ... The presence of TX-100 enhanced the rate of the ... oxidation of alcohols, namely, methanol, ethanol, 1-propanol.

  19. SELECTIVE OXIDATION OF ALCOHOLS - COMPARING DIFFERENT CATALYTIC PROCESSES

    Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alc...

  20. Aerobic Oxidation of Alcohols to Carbonyl Compounds Catalyzed by ...

    Hydrotalcite-like compounds; cobalt porphyrin; alcohol oxidation; ... cient catalytic method for the low temperature oxy- ... nitrate,8 acetaldehyde,9 ammonium salts10 and NO2,11 ..... N, Sakurai H and Tsukuda T 2009 Effect of electronic.

  1. Interstellar Ices and Radiation-induced Oxidations of Alcohols

    Hudson, R. L.; Moore, M. H.

    2018-04-01

    Infrared spectra of ices containing alcohols that are known or potential interstellar molecules are examined before and after irradiation with 1 MeV protons at ∼20 K. The low-temperature oxidation (hydrogen loss) of six alcohols is followed, and conclusions are drawn based on the results. The formation of reaction products is discussed in terms of the literature on the radiation chemistry of alcohols and a systematic variation in their structures. The results from these new laboratory measurements are then applied to a recent study of propargyl alcohol. Connections are drawn between known interstellar molecules, and several new reaction products in interstellar ices are predicted.

  2. Hepatocyte oxidant stress and alcoholic liver disease

    Conde de la Rosa, L.; Moshage, H.; Nieto, N.

    Acute and chronic alcohol consumption increases the production of reactive oxygen species (ROS), and enhances lipid peroxidation of lipids, proteins, and DNA. The mechanism by which alcohol causes cell injury is still not clear but a major role for ROS and lipid peroxidation-end products is

  3. General and efficient one-pot synthesis of novel sugar/heterocyclic(aryl) 1,2-diketones from sugar terminal alkynes by Sonogashira/tetra-n- butylammonium permanganate oxidation.

    Zhang, Fuyi; Wu, Xiaopei; Wang, Liming; Liu, Hong; Zhao, Yufen

    2015-11-19

    A new approach for one-pot synthesis of novel sugar/heterocyclic(aryl) 1,2-diketones has been achieved by the reaction of various sugar terminal alkynes with heterocyclic(aryl) iodides at room temperature. This one-pot protocol includes Sonogashira coupling and mild n-Bu4NMnO4 oxidation reaction. This method is mild, general and efficient. Fifty-six examples have been given and the sugar/heterocyclic(aryl) 1,2-diketones were obtained in 71-94% yields. The sugar terminal alkynes include 9 structurally different sugars in pyranose, furanose, and acyclic form which have various protecting groups, sensitive groups, and sterically bulky substituents. The heterocyclic(aryl) iodides include sterically bulky heterocyclic compounds and iodobenzenes with electron-donating, electron-neutral, and electron-withdrawing substituents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Synthesis of Some New 2-(3-Aryl-1-phenyl-4-pyrazolyl-benzoxazoles Using Hypervalent Iodine Mediated Oxidative Cyclization of Schiff’s Bases

    Ajay Kumar

    2006-01-01

    Full Text Available Ten new 2-(3-aryl-1-phenyl-4-pyrazolylbenzoxazoles have been synthesized by oxidative intramolecular cyclization of the corresponding Schiff’s bases using iodobenzene diacetate in methanol as an oxidant.

  5. Palladium(II-Catalyzed othro-C–H-Benzoxylation of 2-Arylpyridines by Oxidative Coupling with Aryl Acylperoxides

    Wing-Yiu Yu

    2013-04-01

    Full Text Available A palladium(II-catalyzed ortho-benzoxylation of 2-arylpyridines with aryl acylperoxides was developed. With pyridyl as directing group, the benzoxylation reaction exhibits remarkable regioselectivity and excellent functional group tolerance, providing the products in up to 87% yield.

  6. Photobiocatalytic alcohol oxidation using LED light sources

    Rauch, M.C.R.; Schmidt, S.; Arends, I.W.C.E.; oppelt, K.; Kara, S; Hollmann, F.

    2016-01-01

    The photocatalytic oxidation of NADH using a flavin photocatalyst and a simple blue LED light source is reported. This in situ NAD+ regeneration system can be used to promote biocatalytic, enantioselective oxidation reactions. Compared to the traditional use of white light bulbs this method enables

  7. Aerobic, catalytic oxidation of alcohols in ionic liquids

    Souza Roberto F. de

    2006-01-01

    Full Text Available An efficient and simple catalytic system based on RuCl3 dissolved in ionic liquids has been developed for the oxidation of alcohols into aldehydes and ketones under mild conditions. A new fluorinated ionic liquid, 1-n-butyl-3-methylimidazolium pentadecafluorooctanoate, was synthesized and demonstrated better performance that the other ionic liquids employed. Moreover this catalytic system utilizes molecular oxygen as an oxidizing agent, producing water as the only by-product.

  8. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    Iwasita Teresa

    2002-01-01

    Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH). In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishi...

  9. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Brymora, Katarzyna; Fouineau, Jonathan; Eddarir, Asma; Chau, François; Yaacoub, Nader; Grenèche, Jean-Marc; Pinson, Jean; Ammar, Souad; Calvayrac, Florent

    2015-01-01

    Combining ab initio modeling and 57 Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces

  10. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Brymora, Katarzyna; Fouineau, Jonathan; Eddarir, Asma; Chau, François; Yaacoub, Nader; Grenèche, Jean-Marc; Pinson, Jean; Ammar, Souad; Calvayrac, Florent

    2015-11-01

    Combining ab initio modeling and 57Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal-oxygen-carbon bonding and not a metal-carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  11. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Brymora, Katarzyna [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Fouineau, Jonathan; Eddarir, Asma; Chau, François [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Yaacoub, Nader; Grenèche, Jean-Marc [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Pinson, Jean; Ammar, Souad [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Calvayrac, Florent, E-mail: florent.calvayrac@univ-lemans.fr [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France)

    2015-11-15

    Combining ab initio modeling and {sup 57}Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  12. Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress

    He Peiyuan

    2017-01-01

    Full Text Available The aim of this study was to investigate the hepatoprotective effects of resveratrol in alcoholic liver disease (ALD. Alcohol was administered to healthy female rats starting from 6% (v/v and gradually increased to 20% (v/v by the fifth week. After 16 weeks of intervention, liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT] were analyzed using a chemistry analyzer, while hepatic antioxidant enzymes, oxidative stress markers, and caspase 3 activity were assessed using ELISA kits. Furthermore, hepatic CYP2E1 protein levels and mRNA levels of antioxidant and inflammation-related genes were determined using western blotting and RT-PCR, respectively. The results showed that resveratrol significantly attenuated alcohol-induced elevation of liver enzymes and improved hepatic antioxidant enzymes. Resveratrol also attenuated alcohol-induced CYP2E1 increase, oxidative stress, and apoptosis (caspase 3 activity. Moreover, genes associated with oxidative stress and inflammation were regulated by resveratrol supplementation. Taken together, the results suggested that resveratrol alleviated ALD through regulation of oxidative stress, apoptosis, and inflammation, which was mediated at the transcriptional level. The data suggests that resveratrol is a promising natural therapeutic agent against chronic ALD.

  13. Kinetics and mechanism of oxidation of aliphatic primary alcohols by ...

    Unknown

    Kinetics and mechanism of oxidation of aliphatic primary alcohols by quinolinium bromochromate. SONU SARASWAT, VINITA SHARMA and K K BANERJI*. Department of Chemistry, JNV University, Jodhpur 342 005, India e-mail: banerjikk@rediffmail.com. MS received 4 December 2001; revised 2 November 2002.

  14. SOLVENT FREE OXIDATION OF ALCOHOLS USING IRON (III) NITRATE NONAHYDRATE

    Oxidation of alcohols have been conducted with metal nitrate reagents on various mineral supports such as clay, silica and zeolite etc. To circumvent the limitations of these supported reagents namely their preparation using solvents and short shelf-life, we explored the use of i...

  15. Sugar alcohols-induced oxidative metabolism in cotton callus culture

    Sugar alcohols (mannitol and sorbitol) may cause oxidative damage in plants if used in higher concentration. Our present experiment was undertaken to study physiological and metabolic responses in cotton (Gossypium hirsutum L.) callus against mannitol and sorbitol higher doses. Both markedly declined mean values of ...

  16. Iron Oxide-Cobalt Nanocatalyst for O-tert-Boc Protection and O-Arylation of Phenols

    Vilas B. Gade

    2018-04-01

    Full Text Available Efficient and general protocols for the O-tert-boc protection and O-arylation of phenols were developed in this paper using a recyclable magnetic Fe3O4-Co3O4 nanocatalyst (Nano-Fe-Co, which is easily accessible via simple wet impregnation techniques in aqueous mediums from inexpensive precursors. The results showed the catalysts were well characterized by XRD (X-ray Diffraction, ICP-AES (Inductive Coupled Plasma Atomic Emission Spectroscopy, TEM (Transmission Electron Microscopy, TOF-SIMS (Time-Of-Flight Secondary Ion Mass Spectrometry and XPS (X-ray Photoelectron Spectroscopy. The O-tert-boc protection and O-arylation of phenols was accomplished in good to excellent yields (85–95% and the catalyst was reusable and recyclable with no loss of catalytic activity for at least six repetitions.

  17. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators

    Badalyan, Artavazd; Stahl, Shannon S.

    2016-07-01

    The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1-2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2‧-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2‧-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how

  18. Efficient and simple approaches towards direct oxidative esterification of alcohols.

    Ray, Ritwika; Jana, Rahul Dev; Bhadra, Mayukh; Maiti, Debabrata; Lahiri, Goutam Kumar

    2014-11-17

    The present article describes novel oxidative protocols for direct esterification of alcohols. The protocols involve successful demonstrations of both "cross" and "self" esterification of a wide variety of alcohols. The cross-esterification proceeds under a simple transition-metal-free condition, containing catalytic amounts of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)/TBAB (tetra-n-butylammonium bromide) in combination with oxone (potassium peroxo monosulfate) as the oxidant, whereas the self-esterification is achieved through simple induction of Fe(OAc)2 /dipic (dipic=2,6-pyridinedicarboxylic acid) as the active catalyst under an identical oxidizing environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air

    Poreddy, Raju; Engelbrekt, Christian; Riisager, Anders

    2015-01-01

    The oxidative dehydrogenation of alcohols to carbonyl compounds was studied using CuO nanoparticle catalysts prepared by solution synthesis in buffered media. CuO nanoparticles synthesized in N-cyclohexyl- 3-aminopropanesulfonic acid buffer showed high catalytic activity for the oxidation...... of benzylic, alicyclic and unsaturated alcohols to their corresponding carbonyl compounds with excellent selectivities. The observed trend in activity for conversion of substituted alcohols suggested a β-H elimination step to be involved, thus enabling a possible reaction mechanism for oxidative...... dehydrogenation of benzyl alcohols to be proposed. The use of CuO as an inexpensive and efficient heterogeneous catalyst under aerobic conditions provides a new noble metal-free and green reaction protocol for carbonyl compound synthesis....

  20. Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols.

    Li, Meng; Liu, Ping; Adzic, Radoslav R

    2012-12-06

    The slow, incomplete oxidation of methanol and ethanol on platinum-based anodes as well as the high price and limited reserves of Pt has hampered the practical application of direct alcohol fuel cells. We describe the electrocatalysts consisting of one Pt monolayer (one atom thick layer) placed on extended or nanoparticle surfaces having the activity and selectivity for the oxidation of alcohol molecules that can be controlled with platinum-support interaction. The suitably expanded Pt monolayer (i.e., Pt/Au(111)) exhibits a factor of 7 activity increase in catalyzing methanol electrooxidation relative to Pt(111). Sizable enhancement is also observed for ethanol electrooxidation. Furthermore, a correlation between substrate-induced lateral strain in a Pt monolayer and its activity/selectivity is established and rationalized by experimental and theoretical studies. The knowledge we gained with single-crystal model catalysts was successfully applied in designing real nanocatalysts. These findings for alcohols are likely to be applicable for the oxidation of other classes of organic molecules.

  1. Ytterbia doped nickel–manganese mixed oxide catalysts for liquid phase oxidation of benzyl alcohol

    S.S.P. Sultana

    2017-11-01

    Full Text Available Nickel–manganese mixed oxides doped with 1, 3, 5 mol% ytterbia have been prepared by co-precipitation method and used in the catalytic oxidation of benzyl alcohol. Catalytic activity of these oxides calcined at 400 °C and 500 °C was studied for selective oxidation of benzyl alcohol to the corresponding aldehyde using molecular oxygen as an oxidizing agent. The results showed that thermally stable 5 mol% ytterbia doped nickel–manganese oxide [Yb2O3-(5%-Ni6MnO8] exhibited highest catalytic performance when it was calcined at 400 °C. A 100% conversion of the benzyl alcohol was achieved with >99% selectivity to benzaldehyde within a reaction period of 5 h at 100 °C. The mixed oxide prepared has been characterized by scanning election microscopy (SEM and energy dispersive X-ray analysis (EDXA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, thermogravimetric analysis (TGA, Brunauer–Emmett–Teller (BET and temperature programed reduction (H2-TPR.

  2. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    Iwasita Teresa

    2002-01-01

    Full Text Available Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH. In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishing the reaction intermediates and products and the dependence of the amount of species on the applied potential. FTIR and scanning tunneling microscopy contribute to understand the effects of the surface structure on the rate of reaction. Examples are presented for methanol and ethanol oxidation at pure and modified Pt catalysts.

  3. [Alcohol].

    Zima, T

    1996-07-14

    Alcohol is one of the most widely used addictive substances. It can be assumed that everybody encounters alcohol--ethanol in various forms and concentrations in the course of their lives. A global and social problem of our civilization is alcohol consumption which has a rising trend. Since 1989 the consumption of alcoholic beverages is rising and the mean annual consumption of concentrated ethanol per head is cea 10 litres. In ethanol abuse the organism is damaged not only by ethanol alone but in particular by substances formed during its metabolism. Its detailed knowledge is essential for the knowledge and investigations of the metabolic and toxic effect of ethanol on the organism. Ingested alcohol is in 90-98% eliminated from the organism by three known metabolic pathways: 1-alcohol dehydrogenase, 2-the microsomal ethanol oxidizing system and 3-catalase. Alcohol is a frequent important risk factor of serious "diseases of civilization" such as IHD, hypertension, osteoporosis, neoplastic diseases. Cirrhosis of the liver and chronic pancreatitis are the well known diseases associated with alcohol ingestion and also their most frequent cause. It is impossible to list all organs and diseases which develop as a result of alcohol consumption. It is important to realize that regular and "relatively" small amounts in the long run damage the organism and may be even fatal.

  4. Simple and Efficient Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and Aryl Iodides at Room Temperature.

    Liu, Wenbo; Yang, Xiaobo; Gao, Yang; Li, Chao-Jun

    2017-06-28

    Despite the wide use of aryl radicals in organic synthesis, current methods to prepare them from aryl halides, carboxylic acids, boronic acids, and diazonium salts suffer from limitations. Aryl triflates, easily obtained from phenols, are promising aryl radical progenitors but remain elusive in this regard. Inspired by the single electron transfer process for aryl halides to access aryl radicals, we developed a simple and efficient protocol to convert aryl triflates to aryl radicals. Our success lies in exploiting sodium iodide as the soft electron donor assisted by light. This strategy enables the scalable synthesis of two types of important organic molecules, i.e., aryl boronates and aryl iodides, in good to high yields, with broad functional group compatibility in a transition-metal-free manner at room temperature. This protocol is anticipated to find potential applications in other aryl-radical-involved reactions by using aryl triflates as aryl radical precursors.

  5. Gold nanoparticle catalyzed oxidation of alcohols - From biomass to commodity chemicals

    Taarning, Esben; Christensen, Claus H.

    2007-01-01

    and glycerol are rich in alcohol functionalities. Thus, a key step in utilizing these resources lies in the conversion of this functional group. Benign oxidations involving oxygen as the stoichiometric oxidant are important from both an environmental and economical perspective. Recently, it has become clear...... that supported gold nanoparticles are highly active catalysts for oxidizing alcohols and aldehydes using oxygen as the oxidant. This perspective will focus on the use of gold nanoparticles in the oxidation of renewables....

  6. Hypervalent iodine/TEMPO-mediated oxidation in flow systems: a fast and efficient protocol for alcohol oxidation

    Nida Ambreen

    2013-07-01

    Full Text Available Hypervalent iodine(III/TEMPO-mediated oxidation of various aliphatic, aromatic and allylic alcohols to their corresponding carbonyl compounds was successfully achieved by using microreactor technology. This method can be used as an alternative for the oxidation of various alcohols achieving excellent yields and selectivities in significantly shortened reaction times.

  7. Development of an azanoradamantane-type nitroxyl radical catalyst for class-selective oxidation of alcohols.

    Doi, Ryusuke; Shibuya, Masatoshi; Murayama, Tsukasa; Yamamoto, Yoshihiko; Iwabuchi, Yoshiharu

    2015-01-02

    The development of 1,5-dimethyl-9-azanoradamantane N-oxyl (DMN-AZADO; 1,5-dimethyl-Nor-AZADO, 2) as an efficient catalyst for the selective oxidation of primary alcohols in the presence of secondary alcohols is described. The compact and rigid structure of the azanoradamantane nucleus confers potent catalytic ability to DMN-AZADO (2). A variety of hindered primary alcohols such as neopentyl primary alcohols were efficiently oxidized by DMN-AZADO (2) to the corresponding aldehydes, whereas secondary alcohols remained intact. DMN-AZADO (2) also has high catalytic efficiency for one-pot oxidation from primary alcohols to the corresponding carboxylic acids in the presence of secondary alcohols and for oxidative lactonization from diols.

  8. Solvent-free Oxidation of Alcohols and Mild Catalytic Deprotection of ...

    tetrabromobenzene- 1,3-disulphonamide (TBBDA) can be used for solvent-free oxidation of primary and secondary alcohols to the corresponding carbonyl compounds without over-oxidation, and efficient catalytic deprotection of various silyl ...

  9. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-01-01

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA

  10. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  11. Influence of bidentate structure of an aryl phosphine oxide ligand on photophysical properties of its Eu~Ⅲ complex

    许辉; 魏莹; 赵保敏; 黄维

    2010-01-01

    The bidentate phosphine oxide ligand 1,8-bis(diphenylphosphino) naphthalene oxide (NAPO) and its EuⅢ complex 1 Eu(TTA)3(NAPO) (TTA=2-thenoyltrifluoroacetonate) were chosen to study the effect of bidentate phosphine oxide ligand on the photophysical properties of the corresponding complex. The intramolecular energy transfer processes of 1 were studied. The investigation showed that with bidentate structure NAPO could suppress solvent-induced quenching by enforcing the ligand-ligand interaction and the rigidi...

  12. Ag1 Pd1 Nanoparticles-Reduced Graphene Oxide as a Highly Efficient and Recyclable Catalyst for Direct Aryl C-H Olefination.

    Hu, Qiyan; Liu, Xiaowang; Wang, Guoliang; Wang, Feifan; Li, Qian; Zhang, Wu

    2017-12-14

    The efficient and selective palladium-catalyzed activation of C-H bonds is of great importance for the construction of diverse bioactive molecules. Despite significant progress, the inability to recycle palladium catalysts and the need for additives impedes the practical applications of these reactions. Ag 1 Pd 1 nanoparticles-reduced graphene oxide (Ag 1 Pd 1 -rGO) was used as highly efficient and recyclable catalyst for the chelation-assisted ortho C-H bond olefination of amides with acrylates in good yields with a broad substrate scope. The catalyst can be recovered and reused at least 5 times without losing activity. A synergistic effect between the Ag and Pd atoms on the catalytic activity was found, and a plausible mechanism for the AgPd-rGO catalyzed C-H olefination is proposed. These findings suggest that the search for such Pd-based bimetallic alloy nanoparticles is a new method towards the development of superior recyclable catalysts for direct aryl C-H functionalization under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Oxidation of tertiary homoallylic alcohols by thallium trinitrate: fragmentation versus ring contraction

    Silva Junior, Luiz F.; Quintiliano, Samir A.P.; Ferraz, Helena M.C.; Santos, Leonardo S.; Eberlin, Marcos N.

    2006-01-01

    The oxidation of tertiary homoallylic alcohols with thallium trinitrate (TTN) was investigated. The alcohols bearing an allylic methyl group lose a molecule of acetone via a fragmentation reaction that leads to isomeric secondary allylic alcohols as major products, together with their corresponding acetylated derivatives. On the other hand, treating analogous tertiary alcohols without the allylic methyl group with TTN gives indans, through a ring contraction reaction. (author)

  14. Stereoselective synthesis of 1,3-disubstituted isoindolines via Rh(III)-catalyzed tandem oxidative olefination-cyclization of 4-aryl cyclic sulfamidates.

    Son, Se-Mi; Seo, Yeon Ji; Lee, Hyeon-Kyu

    2016-03-21

    Rh(III)-catalyzed tandem ortho C-H olefination of cyclic 4-aryl sulfamidates (1) and subsequent intramolecular cyclization are described. This reaction serves as a method for the direct and stereoselective synthesis of 1,3-disubstituted isoindolines (3) starting with enantiomerically enriched 4-aryl cyclic sulfamidates. In this process, the configurational integrity of the stereogenic center in the starting cyclic sulfamidate is completely retained. In addition, the process generates trans-1,3-disubstituted isoindolines exclusively.

  15. [The relationship between neuroendocrine dysfunction and free-radical oxidation in old age alcoholism].

    Vinogradov, D B; Mingazov, A Kh; Izarovskaya, I V; Babin, K A; Sinitsky, A I

    2015-01-01

    to study the relationship between dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis and free-radical oxidation in old age alcoholism. Authors examined 46 men and women, aged 60-80 years, with alcoholism. Contents of cortisol, lipid peroxidation products and the level of an oxidatively modified protein were measured. A decrease in blood cortisol content and correlations between its level and activity of free-radical oxidation were identified. The severity of neuroendocrine dysfunction in old patients was sex-related. It has been suggested that the impairment of HPA system activity may be a cause of oxidative stress and development of alcoholism.

  16. Hydrogen Production via Steam Reforming of Ethyl Alcohol over Palladium/Indium Oxide Catalyst

    Tetsuo Umegaki

    2009-01-01

    Full Text Available We report the synergetic effect between palladium and indium oxide on hydrogen production in the steam reforming reaction of ethyl alcohol. The palladium/indium oxide catalyst shows higher hydrogen production rate than indium oxide and palladium. Palladium/indium oxide affords ketonization of ethyl alcohol with negligible by-product carbon monoxide, while indium oxide mainly affords dehydration of ethyl alcohol, and palladium affords decomposition of ethyl alcohol with large amount of by-product carbon monoxide. The catalytic feature of palladium/indium oxide can be ascribed to the formation of palladium-indium intermetallic component during the reaction as confirmed by X-ray diffraction and X-ray photoelectron spectroscopic measurements.

  17. Primary Alcohols from Terminal Olefins: Formal Anti-Markovnikov Hydration via Triple Relay Catalysis

    Dong, G.

    2011-09-15

    Alcohol synthesis is critical to the chemical and pharmaceutical industries. The addition of water across olefins to form primary alcohols (anti-Markovnikov olefin hydration) would be a broadly useful reaction but has largely proven elusive; an indirect hydroboration/oxidation sequence requiring stoichiometric borane and oxidant is currently the most practical methodology. Here, we report a more direct approach with the use of a triple relay catalysis system that couples palladium-catalyzed oxidation, acid-catalyzed hydrolysis, and ruthenium-catalyzed reduction cycles. Aryl-substituted terminal olefins are converted to primary alcohols by net reaction with water in good yield and excellent regioselectivity.

  18. Oxidation of N-alkyl and N-aryl azaheterocycles by free and immobilized rabbit liver aldehyde oxidase

    Angelino, S.A.G.F.

    1984-01-01

    Aldehyde oxidase isolated from rabbit liver is studied in this thesis with regard to its application in organic synthesis. The enzyme has a broad substrate specificity towards azaheterocycles and therefore offers great potential for profitable use.

    The oxidation of

  19. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  20. A TEMPO-free copper-catalyzed aerobic oxidation of alcohols.

    Xu, Boran; Lumb, Jean-Philip; Arndtsen, Bruce A

    2015-03-27

    The copper-catalyzed aerobic oxidation of primary and secondary alcohols without an external N-oxide co-oxidant is described. The catalyst system is composed of a Cu/diamine complex inspired by the enzyme tyrosinase, along with dimethylaminopyridine (DMAP) or N-methylimidazole (NMI). The Cu catalyst system works without 2,2,6,6-tetramethyl-l-piperidinoxyl (TEMPO) at ambient pressure and temperature, and displays activity for un-activated secondary alcohols, which remain a challenging substrate for catalytic aerobic systems. Our work underscores the importance of finding alternative mechanistic pathways for alcohol oxidation, which complement Cu/TEMPO systems, and demonstrate, in this case, a preference for the oxidation of activated secondary over primary alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparative effects of curcumin and an analog of curcumin on alcohol and PUFA induced oxidative stress.

    Rukkumani, Rajagopalan; Aruna, Kode; Varma, Penumathsa Suresh; Rajasekaran, Kallikat Narayanan; Menon, Venugopal Padmanabhan

    2004-08-20

    Alcoholic liver disease is a major medical complication of alcohol abuse and a common liver disease in western countries. Increasing evidence demonstrates that oxidative stress plays an important etiologic role in the development of alcoholic liver disease. Alcohol alone or in combination with high fat is known to cause oxidative injury. The present study therefore aims at evaluating the protective role of curcumin, an active principle of turmeric and a synthetic analog of curcumin (CA) on alcohol and thermally oxidised sunflower oil (DeltaPUFA) induced oxidative stress. Male albino Wistar rats were used for the experimental study. The liver marker enzymes: gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), the lipid peroxidative indices: thiobarbituric acid reactive substances (TBARS) and hydroperoxides (HP) and antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) were used as biomarkers for testing the antioxidant potential of the drugs. The liver marker enzymes and lipid peroxidative indices were increased significantly in alcohol, DeltaPUFA and alcohol + DeltaPUFA groups. Administration of curcumin and CA abrograted this effect. The antioxidant status which was decreased in alcohol, DeltaPUFA and alcohol + DeltaPUFA groups was effectively modulated by both curcumin and CA treatment. However, the reduction in oxidative stress was more pronounced in CA treatment groups compared to curcumin. In conclusion, these observations show that CA exerts its protective effect by decreasing the lipid peroxidation and improving antioxidant status, thus proving itself as an effective antioxidant.

  2. Synthesis, Characterization and Catalytic Performance in the Selective Oxidation of Alcohols by Metallophthalocyanines Supported on Zinc Oxide Nanoparticles

    Amin Ebadi

    2017-01-01

    Full Text Available Unsubstituted phthalocyanines of Co, Fe and Mn supported on zinc oxide nanoparticles were prepared and were well characterized with X-ray diffraction and scanning electron microscopy. The oxidation of alcohols with tert-butylhydroperoxide, in the presence of metallophthalocyanines supported on zinc oxide nanoparticles was investigated. These MPc/ZnO nanocomposites were effective catalysts for the oxidation of alcohols such as cyclohexanol (83.4% conversion; 100% selectivity, benzyl alcohol (70.5% conversion; 100% selectivity and hexanol (62.3% conversion; 100% selectivity. The influences of reaction time, various metals and type of substrates and oxidants on the oxidation of alcohols were also studied, and optimized conditions were investigated. Under these reaction conditions, the activity of the catalysts decreases in the following order:  CoPc/nano-ZnO > FePc/nano-ZnO > MnPc/nano-ZnO. It shows that TBHP is more efficient oxidant due to weaker O-O bond with respect to H2O2 and the following order has been observed for the percentage of conversions of alcohols: 2º > benzylic > 1º.

  3. Sorptive Uptake Studies of an Aryl-Arsenical with Iron Oxide Composites on an Activated Carbon Support

    Jae H. Kwon

    2014-03-01

    Full Text Available Sorption uptake kinetics and equilibrium studies for 4-hydroxy-3-nitrobenzene arsonic acid (roxarsone was evaluated with synthetic magnetite (Mag-P, commercial magnetite (Mag-C, magnetite 10%, 19%, and 32% composite material (CM-10, -19, -32 that contains granular activated carbon (GAC, and synthetic goethite at pH 7.00 in water at 21 °C for 24 h. GAC showed the highest sorptive removal of roxarsone and the relative uptake for each sorbent material with roxarsone are listed in descending order as follows: GAC (471 mg/g > goethite (418 mg/g > CM-10 (377 mg/g CM-19 (254 mg/g > CM-32 (227 mg/g > Mag-P (132 mg/g > Mag-C (29.5 mg/g. The As (V moiety of roxarsone is adsorbed onto the surface of the iron oxide/oxyhydrate and is inferred as inner-sphere surface complexes; monodentate-mononuclear, bidentate-mononuclear, and bidentate-binuclear depending on the protolytic speciation of roxarsone. The phenyl ring of roxarsone provides the primary driving force for the sorptive interaction with the graphene surface of GAC and its composites. Thus, magnetite composites are proposed as multi-purpose adsorbents for the co-removal of inorganic and organic arsenicals due to the presence of graphenic and iron oxide active adsorption sites.

  4. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates

    Ackerman, Laura K. G.; Lovell, Matthew M.; Weix, Daniel J.

    2015-08-01

    The advent of transition-metal catalysed strategies for forming new carbon-carbon bonds has revolutionized the field of organic chemistry, enabling the efficient synthesis of ligands, materials, and biologically active molecules. In cases where a single metal fails to promote a selective or efficient transformation, the synergistic cooperation of two distinct catalysts--multimetallic catalysis--can be used instead. Many important reactions rely on multimetallic catalysis, such as the Wacker oxidation of olefins and the Sonogashira coupling of alkynes with aryl halides, but this approach has largely been limited to the use of metals with distinct reactivities, with only one metal catalyst undergoing oxidative addition. Here, we demonstrate that cooperativity between two group 10 metal catalysts--(bipyridine)nickel and (1,3-bis(diphenylphosphino)propane)palladium--enables a general cross-Ullmann reaction (the cross-coupling of two different aryl electrophiles). Our method couples aryl bromides with aryl triflates directly, eliminating the use of arylmetal reagents and avoiding the challenge of differentiating between multiple carbon-hydrogen bonds that is required for direct arylation methods. Selectivity can be achieved without an excess of either substrate and originates from the orthogonal reactivity of the two catalysts and the relative stability of the two arylmetal intermediates. While (1,3-bis(diphenylphosphino)propane)palladium reacts preferentially with aryl triflates to afford a persistent intermediate, (bipyridine)nickel reacts preferentially with aryl bromides to form a transient, reactive intermediate. Although each catalyst forms less than 5 per cent cross-coupled product in isolation, together they are able to achieve a yield of up to 94 per cent. Our results reveal a new method for the synthesis of biaryls, heteroaryls, and dienes, as well as a general mechanism for the selective transfer of ligands between two metal catalysts. We anticipate that this

  5. Oxidation of aromatic alcohols by purified methanol dehydrogenase from Methylosinus trichosporium.

    Mountfort, D O

    1990-01-01

    Methanol dehydrogenase was found to be present in subcellular preparations of methanol-grown Methylosinus trichosporium and occurred almost wholly in the soluble fraction of the cell. The enzyme, purified by DEAE-Sephadex and Sephadex G-100 chromatography, showed broad specificity toward different substrates and oxidized the aromatic alcohols benzyl, vanillyl, and veratryl alcohols in addition to a range of aliphatic primary alcohols. No enzyme activity was found toward the corresponding alde...

  6. Aerobic oxidation of alcohols in visible light on Pd-grafted Ti cluster

    The titanium cluster with the reduced band gap has been synthesized having the palladium nanoparticles over the surface, which not only binds to the atmospheric oxygen but also catalyzes the oxidation of alcohols under visible light.

  7. Selective Oxidation of Alcohols Using Photoactive VO@g‑C3N4

    U.S. Environmental Protection Agency — A photoactive VO@g-C3N4 catalyst has been developed for the selective oxidation of alcohols to the corresponding aldehydes and ketones. The visible light mediated...

  8. A gold-immobilized microchannel flow reactor for oxidation of alcohols with molecular oxygen.

    Wang, Naiwei; Matsumoto, Tsutomu; Ueno, Masaharu; Miyamura, Hiroyuki; Kobayashi, Shū

    2009-01-01

    Golden capillaries: A gold-immobilized capillary column reactor allows oxidation of alcohols to carbonyl compounds using molecular oxygen. These capillary columns (see picture) can be used for at least four days without loss of activity.

  9. Mechanistic investigation of the gold-catalyzed aerobic oxidation of alcohols

    Fristrup, Peter; Johansen, Louise Bahn; Christensen, Claus Hviid

    2008-01-01

    The mechanism for the gold-catalyzed aerobic oxidation of alcohols was studied using a series of para-substituted benzyl alcohols (Hammett methodology). The competition experiments clearly show that the rate-determining step of the reaction involves the generation of a partial positive charge in ...

  10. Covalent Surface Modification of Silicon Oxides with Alcohols in Polar Aprotic Solvents.

    Lee, Austin W H; Gates, Byron D

    2017-09-05

    Alcohol-based monolayers were successfully formed on the surfaces of silicon oxides through reactions performed in polar aprotic solvents. Monolayers prepared from alcohol-based reagents have been previously introduced as an alternative approach to covalently modify the surfaces of silicon oxides. These reagents are readily available, widely distributed, and are minimally susceptible to side reactions with ambient moisture. A limitation of using alcohol-based compounds is that previous reactions required relatively high temperatures in neat solutions, which can degrade some alcohol compounds or could lead to other unwanted side reactions during the formation of the monolayers. To overcome these challenges, we investigate the condensation reaction of alcohols on silicon oxides carried out in polar aprotic solvents. In particular, propylene carbonate has been identified as a polar aprotic solvent that is relatively nontoxic, readily accessible, and can facilitate the formation of alcohol-based monolayers. We have successfully demonstrated this approach for tuning the surface chemistry of silicon oxide surfaces with a variety of alcohol containing compounds. The strategy introduced in this research can be utilized to create silicon oxide surfaces with hydrophobic, oleophobic, or charged functionalities.

  11. Structure and Reactivity of Zeolite- and Carbon-Supported Catalysts for the Oxidative Carbonylation of Alcohols

    Briggs, Daniel Neal

    2010-01-01

    AbstractStructure and Reactivity of Zeolite- and Carbon-Supported Catalysts for the Oxidative Carbonylation of AlcoholsbyDaniel Neal BriggsDoctor of Philosophy in Chemical EngineeringUniversity of California, BerkeleyProfessor Alexis T. Bell, Chair The oxidative carbonylation of alcohols to produce dialkyl carbonates is a process that takes place commercially in a slurry of cuprous chloride in the appropriate alcohol. While this process is chemically efficient, it incurs costs in terms of ene...

  12. Synthesis of geminal difluorides by oxidative desulfurization-difluorination of alkyl aryl thioethers with halonium electrophiles in the presence of fluorinating reagents and its application for 18F-radiolabeling.

    Hugenberg, Verena; Wagner, Stefan; Kopka, Klaus; Schober, Otmar; Schäfers, Michael; Haufe, Günter

    2010-09-17

    Various ω-substituted 1,1-difluoroalkanes are synthesized in good yields from alkyl aryl thioethers by a new oxidative desulfurization-difluorination protocol with the reagents combination of 1,3-dibromo-5,5-dimethylhydantoin (DBH) as an oxidizer and pyridine·9HF (Py·9HF) as a fluoride source. The reaction proceeds via a fluoro-Pummerer-type rearrangement followed by an oxidative desulfurization-fluorination step. Starting from α-fluorinated thioethers, this reaction is promising for (18)F-labeling (τ(1/2) = 110 min) of ligands applicable for positron emission tomography (PET). Using the combination of DBH and carrier-added Py·9H[(18)F]F, an (18)F-labeled difluoride was synthesized from the corresponding α-fluoro thioether with a radiochemical yield of 9%.

  13. Complexing properties of some carbamoylmethylphosphine oxides and methylenediphosphine dioxides with respect to alkali metal cations and the effect of abnormal aryl strengthening

    Evreinov, V.I.; Safronova, Z.V.; Yarkevich, A.N.; Kharitonov, A.V.; Bondarenko, N.A.; Tsvetkov, E.N.

    1999-01-01

    By the method of conductometry in anhydrous tetrahydrofuran at 25 Deg C stability constants of alkali metal (M = Li, Na, K) cation complexes with certain phosphinoxides have been determined. Abnormal aryl strengthening is first of all pronounced in the cation complexes with tetraphenyldiphosphine dioxide [ru

  14. JS-K, an arylating nitric oxide (NO) donor, has synergistic anti-leukemic activity with cytarabine (ARA-C).

    Shami, Paul J; Maciag, Anna E; Eddington, Jordan K; Udupi, Vidya; Kosak, Ken M; Saavedra, Joseph E; Keefer, Larry K

    2009-11-01

    We have designed prodrugs that release nitric oxide (NO) on metabolism by glutathione S-transferases (GST). This design exploits the upregulation of GST in acute myeloid leukemia (AML) cells. O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent anti-leukemic activity. HL-60 myeloid leukemia cells were used for in vitro studies of the combination of JS-K with daunorubicin (DAUNO), cytarabine (ARA-C) or etoposide (ETOP) using the median effect method to determine synergistic, antagonistic, or additive effects. Combinations of JS-K added simultaneously, 2h before or 2h after the other compounds were used. JS-K and DAUNO were antagonistic in all three drug sequences. JS-K and ETOP were also antagonistic but to a lesser degree. JS-K and ARA-C showed strong synergy. The combination index at the 50% fraction affected was 0.37+/-0.23, 0.24+/-0.27, and 0.15+/-0.11 for simultaneous, JS-K first and ARA-C first additions, respectively. JS-K by itself induced DNA strand breaks at relatively high concentrations. However, at submicromolar concentrations, it significantly augmented ARA-C-induced DNA strand breaks. NMR spectroscopy revealed no evidence of chemical interaction between JS-K and the other chemotherapeutic agents. We conclude that ARA-C and JS-K have synergistic anti-leukemic activity and warrant further exploration in combination.

  15. The oxidation of alcohols and aldehydes by potassium chlorate in te presence of a ruthenium heteropolycomplex

    Kuznetsova, L.I.; Likholobov, V.A.; Detusheva, L.G.

    1993-01-01

    At interaction of K 2 RuOHCl 5 with Na 2 PW 11 O 39 catalyst for oxidation of primary alcohols and adlehydes up to proper carboxylic acid (yield ∼ 100%) was formed in aqueous solution, pH 2; 25-75 deg C. Acroleinwas demonstrated to be oxidized in acrylic acid with high selectivity

  16. Selective aerobic alcohol oxidation method for conversion of lignin into simple aromatic compounds

    Stahl, Shannon S; Rahimi, Alireza

    2015-03-03

    Described is a method to oxidize lignin or lignin sub-units. The method includes oxidation of secondary benzylic alcohol in the lignin or lignin sub-unit to a corresponding ketone in the presence of unprotected primarily aliphatic alcohol in the lignin or lignin sub-unit. The optimal catalyst system consists of HNO.sub.3 in combination with another Bronsted acid, in the absence of a metal-containing catalyst, thereby yielding a selectively oxidized lignin or lignin sub-unit. The method may be carried out in the presence or absence of additional reagents including TEMPO and TEMPO derivatives.

  17. A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor

    Andrew Bogdan

    2009-04-01

    Full Text Available We demonstrate the preparation and characterization of a simplified packed-bed microreactor using an immobilized TEMPO catalyst shown to oxidize primary and secondary alcohols via the biphasic Anelli-Montanari protocol. Oxidations occurred in high yields with great stability over time. We observed that plugs of aqueous oxidant and organic alcohol entered the reactor as plugs but merged into an emulsion on the packed-bed. The emulsion coalesced into larger plugs upon exiting the reactor, leaving the organic product separate from the aqueous by-products. Furthermore, the microreactor oxidized a wide range of alcohols and remained active in excess of 100 trials without showing any loss of catalytic activity.

  18. Stereoselective Synthesis of Functionalized 1,3-Disubstituted Isoindolines via Rh(III)-Catalyzed Tandem Oxidative Olefination-Cyclization of 4-Aryl-cyclic Sulfamidate-5-Carboxylates.

    Achary, Raghavendra; Jung, In-A; Son, Se-Mi; Lee, Hyeon-Kyu

    2017-07-21

    A new method for the direct, stereoselective synthesis of highly functionalized 1,3-disubstituted isoindolines 6 from enantiomerically enriched cyclic 4-aryl-sulfamidate-5-carboxylates (5) is described. The process involves sulfamidate directed, Rh(III)-catalyzed tandem ortho C-H olefination of the 4-aryl-sulfamidate-5-carboxylates and subsequent cyclization by aza-Michael addition. In the reaction, which generates trans-1,3-disubstituted isoindolines exclusively, the configurational integrity of the stereogenic center in the starting cyclic sulfamidate is completely retained in the product. Examples are provided which show that the cyclic sulfamidate moiety not only serves as a chiral directing group but also as a versatile handle for further functionalization of the generated isoindoline ring system.

  19. Formation and dissolution of the anodic oxide film on zirconium in alcoholic aqueous solutions

    Mogoda, A.S.

    1995-01-01

    The dissolution behavior of the anodic oxide film formed in alcoholic aqueous solutions was studied. Results indicated the dissolution mechanism of the duplex oxide film followed a zero-order rate equation. The increase in methanol concentration in the formation medium (phosphoric acid [H 3 PO 4 ]) resulted in formation of an oxide film that incorporated little phosphate ion and that dissolved at a low rate. The dissolution rate of the oxide film decreased with increasing methanol concentration in the dissolution medium. This was attributed to the increase in the viscosity of the medium, which led to a decrease in the diffusion coefficient of the dissolution product of the zirconium oxide film. Dissolution of the anodic oxide film also was investigated as a function of the chain length of alcohols

  20. Alcohol

    ... because that's how many accidents occur. What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  1. Alcohol

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  2. Alcohol

    Navarro Junior, L.

    1988-01-01

    The alcohol production as a secondary energy source, the participation of the alcohol in Brazilian national economic and social aspects are presented. Statistical data of alcohol demand compared with petroleum by-products and electricity are also included. (author)

  3. Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.

    Al-Hunaiti, Afnan; Niemi, Teemu; Sibaouih, Ahlam; Pihko, Petri; Leskelä, Markku; Repo, Timo

    2010-12-28

    In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.

  4. Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines.

    Zultanski, Susan L; Zhao, Jingyi; Stahl, Shannon S

    2016-05-25

    A modular Cu/ABNO catalyst system has been identified that enables efficient aerobic oxidative coupling of alcohols and amines to amides. All four permutations of benzylic/aliphatic alcohols and primary/secondary amines are viable in this reaction, enabling broad access to secondary and tertiary amides. The reactions exhibit excellent functional group compatibility and are complete within 30 min-3 h at rt. All components of the catalyst system are commercially available.

  5. A Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols

    Hoover, Jessica M.; Stahl, Shannon S.

    2011-01-01

    Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O2 as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)CuI/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups. PMID:21861488

  6. Copper(I)/TEMPO Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes with Ambient Air

    Hoover, Jessica M.; Steves, Janelle E.; Stahl, Shannon S.

    2012-01-01

    This protocol describes a practical laboratory-scale method for aerobic oxidation of primary alcohols to aldehydes, using a chemoselective CuI/TEMPO catalyst system. The catalyst is prepared in situ from commercially available reagents, and the reactions are performed in a common organic solvent (acetonitrile) with ambient air as the oxidant. Three different reaction conditions and three procedures for the isolation and purification of the aldehyde product are presented. The oxidations of eight different alcohols, described here, include representative examples of each reaction condition and purification method. Reaction times vary from 20 min to 24 h, depending on the alcohol, while the purification methods each take about 2 h. The total time necessary for the complete protocol ranges from 3 – 26 h. PMID:22635108

  7. Direct N9-arylation of purines with aryl halides

    Larsen, Anders Foller; Ulven, Trond

    2014-01-01

    An efficient method for N-arylation of purines is reported. The N-arylation is catalysed by Cu(i) and 4,7-bis(2-hydroxyethylamino)-1,10-phenanthroline (BHPhen) in aqueous DMF or ethanol. The reaction generally proceeds with high selectivity for the N(9)-position.......An efficient method for N-arylation of purines is reported. The N-arylation is catalysed by Cu(i) and 4,7-bis(2-hydroxyethylamino)-1,10-phenanthroline (BHPhen) in aqueous DMF or ethanol. The reaction generally proceeds with high selectivity for the N(9)-position....

  8. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    Ye Han

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer and analyzed by high performance liquid chromatography (HPLC and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days drastically prevented the elevated activities of aspartate transaminase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP and triglyceride (TG in serum and the levels of malondialdehyde (MDA, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β in liver tissue (p < 0.05. Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT, superoxide dismutase (SOD, glutathione peroxidase (GSH-Px were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05. Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  9. Kinetics and mechanism of the selective oxidation of primary aliphatic alcohols under phase transfer catalysis

    K. Bijudas

    2014-03-01

    Full Text Available Kinetics of the oxidation of primary aliphatic alcohols has been carried out using phase transferred monochromate in benzene. Tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB are used as phase transfer catalysts (PT catalyst. The reaction shows first order dependence on both [alcohol] and [monochromate ion]. The oxidation leads to the formation of corresponding aldehyde and no traces of carboxylic acid has been detected. The reaction mixture failed to induce the polymerization of added acrylonitrile which rules out the presence radical intermediates in the reaction. Various thermodynamic parameters have been evaluated and a suitable mechanism has been proposed.

  10. Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate

    J. Dharmaraja

    2008-01-01

    Full Text Available The kinetics of oxidation of benzyl alcohol (BzOH by benzimidazolium fluorochromate (BIFC has been studied in 50% aqueous acetic acid medium at 308 K. The reaction is first order with respect to [oxidant] and [benzyl alcohol]. The reaction is catalysed by hydrogen ions. The decrease in dielectric constant of the medium increases the rate of the reaction. Addition of sodium perchlorate increases the rate of the reaction appreciably. No polymerization with acrylonitrile. The reaction has been conducted at four different temperature and the activation parameters were calculated. From the observed kinetic results a suitable mechanism was proposed.

  11. Selective oxidation of benzyl alcohol with tert-butylhydroperoxide ...

    the solvent and in this case, acetonitrile gives the best conversion results. The kinetic of ... Experimental. 2.1 Materials ... Subsequently, the products were filtered, washed thoroughly ..... mesh; benzyl alcohol 30 mmol; TBHP 30 mmol; 15 ml ace- tonitrile ... vent was changed for each run while the other condi- tions, (0.2 g of ...

  12. Kinetics and mechanism of oxidation of aliphatic alcohols by ...

    TBATB) in aqueous acetic acid leads to the formation of the corresponding aldehydes. The reaction is first order with respect to TBATB. Michaelis-Menten type kinetics is observed with respect to alcohols. The reaction failed to induce the ...

  13. A transition-metal-free synthesis of arylcarboxyamides from aryl diazonium salts and isocyanides.

    Xia, Zhonghua; Zhu, Qiang

    2013-08-16

    A transition-metal-free carboxyamidation process, using aryl diazonium tetrafluoroborates and isocyanides under mild conditions, has been developed. This novel conversion was initiated by a base and solvent induced aryl radical, followed by radical addition to isocyanide and single electron transfer (SET) oxidation, affording the corresponding arylcarboxyamide upon hydration of the nitrilium intermediate.

  14. Practical Aerobic Oxidations of Alcohols and Amines with Homogeneous Cu/TEMPO and Related Catalyst Systems

    Ryland, Bradford L.; Stahl, Shannon S.

    2014-01-01

    Alcohol and amine oxidations are common reactions in laboratory and industrial synthesis of organic molecules. Aerobic oxidation methods have long been sought for these transformations, but few practical methods exist that offer advantages over traditional oxidation methods. Recently developed homogeneous Cu/TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidinyl-N-oxyl) and related catalyst systems appear to fill this void. The reactions exhibit high levels of chemoselectivity and broad functional-group tolerance, and they often operate efficiently at room temperature with ambient air as the oxidant. These advances, together with their historical context and recent applications, are highlighted in this minireview. PMID:25044821

  15. Ex situ generation of stoichiometric HCN and its application in the Pd-catalysed cyanation of aryl bromides: evidence for a transmetallation step between two oxidative addition Pd-complexes.

    Kristensen, Steffan K; Eikeland, Espen Z; Taarning, Esben; Lindhardt, Anders T; Skrydstrup, Troels

    2017-12-01

    A protocol for the Pd-catalysed cyanation of aryl bromides using near stoichiometric and gaseous hydrogen cyanide is reported for the first time. A two-chamber reactor was adopted for the safe liberation of ex situ generated HCN in a closed environment, which proved highly efficient in the Ni-catalysed hydrocyanation as the test reaction. Subsequently, this setup was exploited for converting a range of aryl and heteroaryl bromides (28 examples) directly into the corresponding benzonitriles in high yields, without the need for cyanide salts. Cyanation was achieved employing the Pd(0) precatalyst, P( t Bu) 3 -Pd-G3 and a weak base, potassium acetate, in a dioxane-water solvent mixture. The methodology was also suitable for the synthesis of 13 C-labelled benzonitriles with ex situ generated 13 C-hydrogen cyanide. Stoichiometric studies with the metal complexes were undertaken to delineate the mechanism for this catalytic transformation. Treatment of Pd(P( t Bu) 3 ) 2 with H 13 CN in THF provided two Pd-hydride complexes, (P( t Bu) 3 ) 2 Pd(H)( 13 CN), and [(P( t Bu) 3 )Pd(H)] 2 Pd( 13 CN) 4 , both of which were isolated and characterised by NMR spectroscopy and X-ray crystal structure analysis. When the same reaction was performed in a THF : water mixture in the presence of KOAc, only (P( t Bu) 3 ) 2 Pd(H)( 13 CN) was formed. Subjection of this cyano hydride metal complex with the oxidative addition complex (P( t Bu) 3 )Pd(Ph)(Br) in a 1 : 1 ratio in THF led to a transmetallation step with the formation of (P( t Bu) 3 ) 2 Pd(H)(Br) and 13 C-benzonitrile from a reductive elimination step. These experiments suggest the possibility of a catalytic cycle involving initially the formation of two Pd(ii)-species from the oxidative addition of L n Pd(0) into HCN and an aryl bromide followed by a transmetallation step to L n Pd(Ar)(CN) and L n Pd(H)(Br), which both reductively eliminate, the latter in the presence of KOAc, to generate the benzonitrile and L n Pd(0).

  16. The role of oxidative stress in the development of alcoholic liver disease.

    Galicia-Moreno, M; Gutiérrez-Reyes, G

    2014-01-01

    Alcohol is the most accepted addictive substance worldwide and its consumption is related to multiple health, economic, and social problems. The liver is the organ in charge of ethanol metabolism and it is susceptible to alcohol's toxic effects. To provide a detailed review of the role of oxidative stress in alcoholic liver disease and the mechanisms of damage involved, along with current information on the hepatoprotective effectiveness of the molecules that have been studied. A search of the PubMed database was conducted using the following keywords oxidative stress, alcoholic liver damage, alcoholic cirrhosis, and antioxidants. There was no time limit for gathering all available information on the subject at hand. According to the literature reviewed, oxidative stress plays an important role in the pathogenesis of alcoholic liver damage. Molecules such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), formed during ethanol metabolism, structurally and functionally modify organic molecules. Consequently, biologic processes are altered and hepatocytes are sensitized to the action of cytokines like tumor necrosis factor-α, as well as to the action of endotoxins, activating signaling pathways such as those controlled by nuclear factor kappa B, extracellular signal regulated kinases, and mitogen activated protein kinase. Oxidative stress plays an important role in the development of liver damage resulting from alcohol consumption. The molecules that have currently displayed a hepatoprotective effect in preclinical and clinical trials must be studied further so that their effectiveness can be confirmed and they can possibly be used as adjuvant treatments for this disease. Copyright © 2014 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  17. Induction of hepatic carbonyl reductase/20β-hydroxysteroid dehydrogenase mRNA in rainbow trout downstream from sewage treatment works-Possible roles of aryl hydrocarbon receptor agonists and oxidative stress

    Albertsson, E.; Larsson, D.G.J.; Foerlin, L.

    2010-01-01

    Carbonyl reductase/20β-hydroxysteroid dehydrogenase (CR/20β-HSD) serves both as a key enzyme in the gonadal synthesis of maturing-inducing hormone in salmonids, and as an enzyme protecting against certain reactive oxygen species. We have previously shown that mRNA of the hepatic CR/20β-HSD B isoform is increased in rainbow trout caged downstream from a Swedish sewage treatment plant. Here, we report an increase of both the A as well as B form in fish kept downstream from a second sewage treatment plant. The two mRNAs were also induced in fish hepatoma cells in vitro after exposure to effluent extract. This indicates that the effects observed in vivo could be a direct effect on the liver, i.e. the mRNA induction does not require a signal from any other organ. When fish were exposed in vivo to several effluents treated with more advanced methods (ozone, moving bed biofilm reactor or membrane bioreactor) the expression of hepatic mRNA CR/20β-HSD A and B was significantly reduced. Their abundance did not parallel the reduction of estrogen-responsive transcripts, in agreement with our previous observations that ethinylestradiol is not a potent inducer. Treatment with norethisterone, methyltestosterone or hydrocortisone in vivo did not induce the hepatic CR/20β-HSD A and B mRNA expression. In contrast, both isoforms were markedly induced by the aryl hydrocarbon receptor agonist β-naphthoflavone as well as by the pro-oxidant herbicide paraquat. We hypothesize that the induction of CR/20β-HSD A and B by sewage effluents could be due to anthropogenic contaminants stimulating the aryl hydrocarbon receptor and/or causing oxidative stress.

  18. Magnetically recoverable magnetite/gold catalyst stabilized by poly(N-vinyl-2-pyrrolidone) for aerobic oxidation of alcohols.

    Chen, Hsiao Wei; Murugadoss, Arumugam; Hor, T S Andy; Sakurai, Hidehiro

    2010-12-29

    Fe(3)O(4):PVP/Au nanocomposite synthesized via a two-step procedure was tested as a quasi-homogenous alcohol oxidation catalyst. It was found that the nanocomposite was able to carry out aerobic oxidation of alcohols in water at room temperature. Studies show rapid magnetic recoverability and reusability characteristics.

  19. Preparation of polyvinyl alcohol graphene oxide phosphonate film and research of thermal stability and mechanical properties.

    Li, Jihui; Song, Yunna; Ma, Zheng; Li, Ning; Niu, Shuai; Li, Yongshen

    2018-05-01

    In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Serum Levels of Oxidative Stress Markers in Patients with Type 2 Diabetes Mellitus and Non-alcoholic Steatohepatitis

    Casoinic F.

    2016-12-01

    Full Text Available Introduction. Oxidative stress is one of the key mechanisms responsible for disease progression in non-alcoholic fatty liver disease. The aim of this study was to evaluate the serum levels of oxidative stress markers in patients with type 2 diabetes mellitus (DMT2 and non-alcoholic steatohepatitis (NASH and test their relationships with clinical and biochemical patient characteristics, compared to patients with DMT2 without non-alcoholic fatty liver disease (NAFLD, and controls.

  1. Kinetic Studies on the Selective Oxidation of Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis

    K. Bijudas

    2014-07-01

    Full Text Available Kinetic studies on the oxidation of benzyl alcohol and substituted benzyl alcohols in benzene as the reaction medium have been studied by using potassium dichromate under phase transfer catalysis (PTC. The phase transfer catalysts (PT catalysts used were tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB.  Benzyl alcohols were selectively oxidised to corresponding benzaldehydes in good yield (above 90%.  The order of reactivity among the studied benzyl alcohols is p - OCH3 > p - CH3 > - H > p - Cl.  Plots of log k2 versus Hammett's substituent constant (s has been found to be curve shaped and this suggests that there should be a continuous change in transition state with changes in substituent present in the substrate from electron donating to electron withdrawing. A suitable mechanism has been suggested in which the rate determining step involves both C - H bond cleavage and C - O bond formations in concerted manner. © 2014 BCREC UNDIP. All rights reserved.Received: 16th March 2014; Revised: 18th May 2014; Accepted: 18th May 2014[How to Cite: Bijudas, K., Bashpa, P., Nair, T.D.R. (2014. Kinetic Studies on the Selective Oxidation of Benzyl Alcohol and Substituted Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 142-147. (doi:10.9767/bcrec.9.2.6476.142-147][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6476.142-147] 

  2. Oxidative kinetic resolution of racemic alcohols catalyzed by chiral ferrocenyloxazolinylphosphine-ruthenium complexes.

    Nishibayashi, Yoshiaki; Yamauchi, Akiyoshi; Onodera, Gen; Uemura, Sakae

    2003-07-25

    Oxidative kinetic resolution of racemic secondary alcohols by using acetone as a hydrogen acceptor in the presence of a catalytic amount of [RuCl(2)(PPh(3))(ferrocenyloxazolinylphosphine)] (2) proceeds effectively to recover the corresponding alcohols in high yields with an excellent enantioselectivity. When 1-indanol is employed as a racemic alcohol, the oxidation proceeds quite smoothly even in the presence of 0.0025 mol % of the catalyst 2 to give an optically active 1-indanol in good yield with high enantioselectivity (up to 94% ee), where turnover frequency (TOF) exceeds 80,000 h(-1). From a practical viewpoint, the kinetic resolution is investigated in a large scale, optically pure (S)-1-indanol (75 g, 56% yield, >99% ee) being obtained from racemic 1-indanol (134 g) by employing this kinetic resolution method twice.

  3. Aerobic Oxidation of Veratryl Alcohol to Veratraldehyde with Heterogeneous Ruthenium Catalysts

    Melián Rodriguez, Mayra; Shunmugavel, Saravanamurugan; Kegnæs, Søren

    2015-01-01

    Lignin is a complex polymeric molecule constituting various linkages between aromatic moieties. Typically, the β-O-4 linkage accounts for more than half of the linkage structures present in lignin. The current study focuses on the oxidative transformation of veratryl alcohol (VA)—a compound that ...

  4. Acute and chronic effects of dinner with alcoholic beverages on nitric oxide metabolites in healthy men

    Sierksma, A.; Gaag, M.S. van der; Grobbee, D.E.; Hendriks, H.F.J.

    2003-01-01

    1. The present study investigated the acute and chronic effect of dinner with alcoholic beverages on serum nitric oxide (NO) metabolites, namely nitrate and nitrite (NOx), in 11 healthy, non-smoking middle-aged men. 2. In a randomized, diet-controlled, cross-over trial, subjects consumed dinner with

  5. Aerobic Oxidation of Alcohols over Gold Catalysts: Role of Acid and Base

    Klitgaard, Søren Kegnæs; DeLa Riva, Andrew T.; Helveg, Stig

    2008-01-01

    Gold nanoparticles are deposited on potassium titanate nanowires and used as heterogeneous catalysts in the aerobic oxidation of benzyl alcohol in methanol to methyl benzoate at ambient conditions. The presence of a catalytic amount of base promotes the reaction and the formation of free benzoic...

  6. Cu-catalyzed aerobic oxidative esterification of acetophenones with alcohols to α-ketoesters.

    Xu, Xuezhao; Ding, Wen; Lin, Yuanguang; Song, Qiuling

    2015-02-06

    Copper-catalyzed aerobic oxidative esterification of acetophenones with alcohols using molecular oxygen has been developed to form a broad range of α-ketoesters in good yields. In addition to reporting scope and limitations of our new method, mechanism studies are reported that reveal that the carbonyl oxygen in the ester mainly originated from dioxygen.

  7. Aerobic oxidation of alcohols in visible light on Pd-grafted Ti ...

    The titanium cluster with the reduced band gap has been synthesized having the palladium nanoparticles over the surface, which not only binds to the atmospheric oxygen but also catalyzes the oxidation of alcohols under visible light. Prepared as an invited article for submission to the Elsevier journal, Tetrahedron.

  8. The role of oxidative stress in the development of alcoholic liver disease

    M. Galicia-Moreno

    2014-04-01

    Conclusions: Oxidative stress plays an important role in the development of liver damage resulting from alcohol consumption. The molecules that have currently displayed a hepatoprotective effect in preclinical and clinical trials must be studied further so that their effectiveness can be confirmed and they can possibly be used as adjuvant treatments for this disease.

  9. Oxidative Mineralization and Characterization of Polyvinyl Alcohol Solutions for Wastewater Treatment

    Oji, L.N.

    1999-08-31

    The principal objectives of this study are to identify an appropriate polyvinyl alcohol (PVA) oxidative mineralization technique, perform compatibility and evaporation fate tests for neat and mineralized PVA, and determine potential for PVA chemical interferences which may affect ion exchange utilization for radioactive wastewater processing in the nuclear industry.

  10. Selective oxidation of alcohols using photoactive VO@g-C3N4.

    A photoactive VO@g-C3N4 catalyst has been developed for the selective oxidation of alcohols to the corresponding aldehydes and ketones. The visible light mediated activity of the catalyst could be attributed to photoactive graphitic carbon nitrides surface.

  11. Basic metal carbonate supported gold nanoparticles: enhanced performance in aerobic alcohol oxidation

    Yang, J.; Guan, Y.; Verhoeven, M.W.G.M.; Santen, van R.A.; Li, Can; Hensen, E.J.M.

    2009-01-01

    Gold nanoparticles supported by basic hydrozincite or bismuth carbonate are excellent catalysts for liquid-phase aerobic alcohol oxidation: the performance of a series of metal (Zn, Bi, Ce, La, Zr) carbonate supported gold catalysts depends strongly on the basicity of the support material.

  12. Star block-copolymers: Enzyme-inspired catalysts for oxidation of alcohols in water

    Mugemana, Clement

    2014-01-01

    A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. This journal is © the Partner Organisations 2014.

  13. Anaerobic Nitroxide-Catalyzed Oxidation of Alcohols Using the NO+/NO center dot Redox Pair

    Holan, Martin; Jahn, Ullrich

    2014-01-01

    Roč. 16, č. 1 (2014), s. 58-61 ISSN 1523-7060 R&D Projects: GA ČR GA13-40188S Institutional support: RVO:61388963 Keywords : oxidation * nitroxides * aldehydes * alcohols * ketones * alkyl nitrites Subject RIV: CC - Organic Chemistry Impact factor: 6.364, year: 2014

  14. Benzyl Alcohol-Mediated Versatile Method to Fabricate Nonstoichiometric Metal Oxide Nanostructures.

    Qamar, Mohammad; Adam, Alaaldin; Azad, Abdul-Majeed; Kim, Yong-Wah

    2017-11-22

    Nanostructured metal oxides with cationic or anionic deficiency find applications in a wide range of technological areas including the energy sector and environment. However, a facile route to prepare such materials in bulk with acceptable reproducibility is still lacking; many synthesis techniques are still only bench-top and cannot be easily scaled-up. Here, we report that the benzyl alcohol (BA)-mediated method is capable of producing a host of nanostructured metal oxides (MO x , where M = Ti, Zn, Ce, Sn, In, Ga, or Fe) with inherent nonstoichiometry. It employs multifunctional BA as a solvent, a reducing agent, and a structure-directing agent. Depending on the oxidation states of metal, elemental or nonstoichiometric oxide forms are obtained. Augmented photoelectrochemical oxidation of water under visible light by some of these nonstoichiometric oxides highlights the versatility of the BA-mediated synthesis protocol.

  15. Carbon nanotube/platinum nanoparticle nanocomposites: preparation, characterization and application in electro oxidation of alcohols

    Kalinke, Adir H.; Zarbin, Aldo J. G.

    2014-01-01

    The synthesis and characterization of different platinum nanoparticle/ carbon nanotube nanocomposite samples are described along with the application of these nanocomposites as electrocatalysts for alcohol oxidation. Samples were prepared by a biphasic system in which platinum nanoparticles (Pt-NPs) are synthesized in situ in contact with a carbon nanotube (CNT) dispersion. Variables including platinum precursor/CNT ratio, previous chemical treatment of carbon nanotubes, and presence or absence of a capping agent were evaluated and correlated with the characteristic of the synthesized materials. Samples were characterized by Raman spectroscopy, X-ray diffraction, thermogravimetric analysis and transmission electron microscopy. Glassy carbon electrodes were modified by the nanocomposite samples and evaluated as electrocatalysts for alcohol oxidation. Current densities of 56.1 and 79.8/104.7 mA cm -2 were determined for the oxidation of methanol and ethanol, respectively. (author)

  16. catalysed selective oxidation of benzyl alcohols using TEMPO

    oxygen provides excellent results in terms of yields and reaction time. SiO2-Cu(II) was very ... lytic systems using transition metal complexes and ter- minal oxidants are well ... dry toluene, TEMPO (0.5 mmol), potassium carbonate. (1.5 mmol) and ... The conditioning of the catalyst was done in water, ethanol and toluene to.

  17. Unusual selectivity-determining factors in the phosphine-free Heck arylation of allyl ethers

    Ambrogio, I.; Fabrizi, G.; Cacchi, S.

    2008-01-01

    The Heck reaction of aryl iodides and bromides with allyl ethers has been investigated. Using phosphinefree Pd(OAc)(2) in DNIF at 90 degrees C in the presence of Bu4NOAc, the reaction gave cinnamyl derivatives, usually in good to high yields, with a wide range of aryl halides. The reaction...... tolerates a variety of functional groups, including ether, amide, alcohol, aldehyde, ketone, ester, cyano, carboxylic acid, and nitro groups. Ortho-substituted arylating agents afforded moderate yields in some cases, though good to high yields were obtained with o-iodotoluene, iodovanillin, and 1...

  18. Polydatin administration improves serum biochemical parameters and oxidative stress markers during chronic alcoholism: a pilot study.

    Pace, Maria Caterina; Passavanti, Maria Beatrice; Aurilio, Caterina; Sansone, Pasquale; Aurilio, Rossella; DE Maria, Salvatore; Lama, Stefania; Federico, Alessandro; Ravagnan, Gianpietro; Caraglia, Michele; Stiuso, Paola

    2015-01-01

    Polydatin, a hydroxystilbene derived from the rhizome of Polygonum cuspidatum, elicits hepatoprotective and neuroprotective effects through its anti-oxidant properties. The present study aimed to determine the effects of oral administration of polydatin in alcoholic patients in order to improve liver biochemical parameters, serum oxidative stress and mental state. We enrolled 20 chronic alcoholic patients hospitalized for rehabilitative therapy. The patients were divided into two groups receiving the following treatment regimes for two weeks: administration of an anti-oxidant nutritional supplement containing glutathione and vitamin C (group 1), or glutathione, vitamin C and polydatin (group 2). The results of the present study show that elevated plasma aspartate aminotransferase and alanine aminotransferase levels in patients after two weeks of alcohol withdrawal were significantly reduced by polydatin (group 2), when compared to group 1. Polydatin also significantly reduced lipid peroxidation levels. Finally, our preliminary data resulting from the analysis of the Mini-Mental Status suggest that polydatin improves cognitive performance. Daily dietary administration of polydatin should be considered for prevention and treatment of liver disease and cognitive impairment in alcoholic patients. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Hantzsch Reaction Starting Directly from Alcohols through a Tandem Oxidation Process

    Xiaobing Liu

    2017-01-01

    Full Text Available A Brønsted acidic ionic liquid, 3-(N,N-dimethyldodecylammonium propanesulfonic acid hydrogen sulphate ([DDPA][HSO4], has been successfully applied to catalyze sequential oxidation of aromatic alcohols with NaNO3 followed by their condensation with dicarbonyl compound and ammonium acetate. The corresponding pyridine analogues of Hantzsch 1,4-dihydropyridines could be obtained as a major product with high yields by the multicomponent reaction. The present work utilizing alcohols instead of aldehyde in Hantzsch reaction is a valid and green alternative to the classical synthesis of the corresponding pyridine analogues of Hantzsch 1,4-dihydropyridines.

  20. Matching Diabetes and Alcoholism: Oxidative Stress, Inflammation, and Neurogenesis Are Commonly Involved

    Jorge M. Barcia

    2015-01-01

    Full Text Available Diabetes and alcohol misuse are two of the major challenges in health systems worldwide. These two diseases finally affect several organs and systems including the central nervous system. Hippocampus is one of the most relevant structures due to neurogenesis and memory-related processing among other functions. The present review focuses on the common profile of diabetes and ethanol exposure in terms of oxidative stress and proinflammatory and prosurvival recruiting transcription factors affecting hippocampal neurogenesis. Some aspects around antioxidant strategies are also included. As a global conclusion, the present review points out some common hits on both diseases giving support to the relations between alcohol intake and diabetes.

  1. Oxidation of ethoxylated fatty alcohols to alkylpolyglycol carboxylic acids using noble metals as catalysts

    Sagredos, Angelos

    2009-09-01

    Full Text Available The conversion of ethoxylated fatty alcohols to the corresponding carboxylic acids through dehydrogenation/ oxidation using noble-metal catalysts has been studied. Ethoxylated primary aliphatic alcohols, ethoxylated random secondary aliphatic alcohols and ethoxylated alkylphenols have been converted to the corresponding acids in the presence of a base. The noble metal catalysts Palladium and Platinum were used without significant degradation of the ethoxyl chain in yields that exceeded 90%. On the other hand, the catalysts Rhodium and Ruthenium gave yields of about 80% and 60% respectively.La conversión de alcoholes grasos etoxilados a los correspondientes ácidos carboxílicos por deshidrogenación/ oxidación con metales nobles como catalizador ha sido estudiada. Alcoholes primarios alifáticos etoxilados, alcoholes alifáticos secundarios etoxilados al azar y alquilfenoles etoxilados han sido convertidos a los correspondientes ácidos en presencia de base. Los catalizadores paladio y platino fueron usados sin degradación significativa de las cadenas etoxiladas con un rendimiento que excedió del 90%. Por otra parte catalizadores de rodio y rutenio produjeron rendimientos del 80 y 60%, respectivamente.

  2. Process requirements of galactose oxidase catalyzed oxidation of alcohols

    Pedersen, Asbjørn Toftgaard; R. Birmingham, William; Rehn, Gustav

    2015-01-01

    -electron oxidants to reactivate the enzyme upon loss of the amino acid radical in its active site. In this work, the addition of catalase, single-electron oxidants, and copper ions was investigated systematically in order to find the minimum concentrations required to obtain a fully active GOase. Furthermore....... GOase was shown to be completely stable for 120 h in buffer with stirring at 25 °C, and the activity even increased 30% if the enzyme solution was also aerated in a similar experiment. The high Km for oxygen of GOase (>5 mM) relative to the solubility of oxygen in water reveals a trade-off between...... supplying oxygen at a sufficiently high rate and ensuring a high degree of enzyme utilization (i.e., ensuring the highest possible specific rate of reaction). Nevertheless, the good stability and high activity of GOase bode well for its future application as an industrial biocatalyst....

  3. Mild and Efficient Oxidation of Aromatic Alcohols and Other Substrates Using NiO2/CH3COOH System

    Mohammad Kooti

    2008-01-01

    Full Text Available A variety of aromatic alcohols were efficiently oxidized to their corresponding aldehydes and ketones in good to excellent yields using nickel peroxide activated by acetic acid. Some thiols and amines were also readily oxidized by this oxidant under mild conditions.

  4. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  5. CATALYTIC OXIDATION OF ALCOHOLS AND EPOXIDATION OF OLEFINS WITH HYDROGEN PEROXIDE AS OXIDANT

    Hydrogen peroxide (H2O2) is an ideal oxidant of choice for these oxidations due to economic and environmental reasons by giving water as a by-product. Two catalysts used are vanadium phosphorus oxide (VPO) and Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a...

  6. Enzyme-inspired functional surfactant for aerobic oxidation of activated alcohols to aldehydes in water

    Chen, Batian

    2015-02-06

    We describe an enzyme-inspired catalytic system based on a rationally designed multifunctional amphiphile. The resulting micelles feature metal-binding sites and stable free radical moieties as well as fluorous pockets that attract and preconcentrate molecular oxygen. In the presence of copper ions, the micelles effect chemoselective aerobic alcohol oxidation under ambient conditions in water, a transformation that is challenging to achieve nonenzymatically.

  7. Enzyme-inspired functional surfactant for aerobic oxidation of activated alcohols to aldehydes in water

    Chen, Batian; Bukhriakov, Konstantin; Sougrat, Rachid; Rodionov, Valentin

    2015-01-01

    We describe an enzyme-inspired catalytic system based on a rationally designed multifunctional amphiphile. The resulting micelles feature metal-binding sites and stable free radical moieties as well as fluorous pockets that attract and preconcentrate molecular oxygen. In the presence of copper ions, the micelles effect chemoselective aerobic alcohol oxidation under ambient conditions in water, a transformation that is challenging to achieve nonenzymatically.

  8. Solvent-free, visible-light photocatalytic alcohol oxidations applying an organic photocatalyst

    Martin Obst

    2016-11-01

    Full Text Available A method for the solvent-free photocatalytic conversion of solid and liquid substrates was developed, using a novel rod mill apparatus. In this setup, thin liquid films are realized which is crucial for an effective photocatalytic conversion due to the low penetration depth of light in heterogeneous systems. Several benzylic alcohols were oxidized with riboflavin tetraacetate as photocatalyst under blue light irradiation of the reaction mixture. The corresponding carbonyl compounds were obtained in moderate to good yields.

  9. Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems.

    Ryland, Bradford L; Stahl, Shannon S

    2014-08-18

    Oxidations of alcohols and amines are common reactions in the synthesis of organic molecules in the laboratory and industry. Aerobic oxidation methods have long been sought for these transformations, but few practical methods exist that offer advantages over traditional oxidation methods. Recently developed homogeneous Cu/TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidinyl-N-oxyl) and related catalyst systems appear to fill this void. The reactions exhibit high levels of chemoselectivity and broad functional-group tolerance, and they often operate efficiently at room temperature with ambient air as the oxidant. These advances, together with their historical context and recent applications, are highlighted in this Minireview. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. In vitro cytotoxicity of iron oxide nanoparticles: effects of chitosan and polyvinyl alcohol as stabilizing agents

    Tran, Phong A.; Nguyen, Hiep T.; Fox, Kate; Tran, Nhiem

    2018-03-01

    Iron oxide magnetic nanoparticles have significant potential in biomedical applications such as in diagnosis, imaging and therapeutic agent delivery. The choice of stabilizers and surface functionalization is important as it is known to strongly influence the cytotoxicity of the nanoparticles. The present study aimed at investigating the effects of surface charges on the cytotoxicity of iron oxide nanoparticles. We used a co-precipitation method to synthesize iron oxide nanoparticles which were then stabilized with either chitosan (CS) or polyvinyl alcohol (PVA) which have net positive charge and zero charge at physiological pH, respectively. The nanoparticles were characterized in terms of size, charges and chemical oxidation state. Cytotoxicity of the nanoparticles was assessed using mouse fibroblast cells and was correlated with surface charges of the nanoparticles and their aggregation.

  11. Electrooxidation of aliphatic alcohols on palladium oxide catalyst prepared by pulsed electrodeposition technique

    Casella, Innocenzo G.

    2009-01-01

    Palladium film can be deposited on gold polycrystalline electrodes, from a deoxygenated alkaline solution containing 50 mM NaOH plus 0.5 mM K 2 Pd(CN) 4 . A multipulse sequence of potentials of equal amplitude and duration was used for the palladium deposition process. In particular, an optimized waveform of potentials of E 1 = 1.0 V vs. SCE and E 2 = -1.0 V vs. SCE for the relevant pulse duration of t 1 = 0.05 s and t 2 = 0.05 s, for 30 s, was used. Cyclic voltammetry and scanning electron microscopy (SEM) were employed to characterize the gold-palladium modified electrode (Au-Pd) towards the electrooxidation of aliphatic alcohols in alkaline solutions. The voltammetric study suggests that the kinetics involved in the alcohol electrooxidation at the Pd-Au electrode are sensibly higher than those observed on the bare Pd and Au electrodes. In addition, the most interesting aspect of the electrooxidation of aliphatic alcohols at the Au-Pd electrode was that as the number of methylene groups on the homologous series of aliphatic alcohols increased, the molar response also increased. Under pulsed chronoamerometric conditions (PCC), using an optimized triple pulse waveform of potentials the modified electrode exhibits interesting catalytic currents without any apparent poisoning effects during the oxidation of aliphatic alcohols.

  12. Aryl substitution of pentacenes

    Andreas R. Waterloo

    2014-07-01

    Full Text Available A series of 11 new pentacene derivatives has been synthesized, with unsymmetrical substitution based on a trialkylsilylethynyl group at the 6-position and various aryl groups appended to the 13-position. The electronic and physical properties of the new pentacene chromophores have been analyzed by UV–vis spectroscopy (solution and thin films, thermoanalytical methods (DSC and TGA, cyclic voltammetry, as well as X-ray crystallography (for 8 derivatives. X-ray crystallography has been specifically used to study the influence of unsymmetrical substitution on the solid-state packing of the pentacene derivatives. The obtained results add to our ability to better predict substitution patterns that might be helpful for designing new semiconductors for use in solid-state devices.

  13. Aryl substitution of pentacenes

    Waterloo, Andreas R; Sale, Anna-Chiara; Lehnherr, Dan; Hampel, Frank

    2014-01-01

    Summary A series of 11 new pentacene derivatives has been synthesized, with unsymmetrical substitution based on a trialkylsilylethynyl group at the 6-position and various aryl groups appended to the 13-position. The electronic and physical properties of the new pentacene chromophores have been analyzed by UV–vis spectroscopy (solution and thin films), thermoanalytical methods (DSC and TGA), cyclic voltammetry, as well as X-ray crystallography (for 8 derivatives). X-ray crystallography has been specifically used to study the influence of unsymmetrical substitution on the solid-state packing of the pentacene derivatives. The obtained results add to our ability to better predict substitution patterns that might be helpful for designing new semiconductors for use in solid-state devices. PMID:25161729

  14. Impact of alcohol on male reproductive hormones, oxidative stress and semen parameters in Sprague–Dawley rats

    A.A. Oremosu

    2015-06-01

    Conclusion: Acute and chronic administration of alcohol depletes testosterone levels, increases oxidative stress and decreases semen parameters. This impact of alcohol on testosterone levels is mediated by direct testicular toxicity and by altering the hormone feedback system in the pituitary gland and the hypothalamus.

  15. Mechanistic investigation of the one-pot formation of amides by oxidative coupling of alcohols with amines in methanol

    Mielby, Jerrik Jørgen; Riisager, Anders; Fristrup, Peter

    2013-01-01

    The one-pot formation of amides by oxidative coupling of alcohols and amines via intermediate formation of methyl ester using supported gold and base as catalysts was studied using the Hammett methodology. Determining the relative reactivity of four different para-substituted benzyl alcohol deriv...... a theoretical Hammett plot that was in good agreement with the one obtained experimentally....

  16. Efficient and Highly Selective Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond.

    Lin, Yangming; Wu, Kuang-Hsu Tim; Yu, Linhui; Heumann, Saskia; Su, Dang Sheng

    2017-09-11

    Selective oxidation of alcohols to aldehydes is widely applicable to the synthesis of various green chemicals. The poor chemoselectivity for complicated primary aldehydes over state-of-the-art metal-free or metal-based catalysts represents a major obstacle for industrial application. Bucky nanodiamond is a potential green catalyst that exhibits excellent chemoselectivity and cycling stability for the selective oxidation of primary alcohols in diverse structures (22 examples, including aromatic, substituted aromatic, unsaturated, heterocyclic, and linear chain alcohols) to their corresponding aldehydes. The results are comparable to reported transition-metal catalysts including conventional Pt/C and Ru/C catalysts for certain substrates under solvent-free conditions. The possible activation process of the oxidant and substrates by the surface oxygen groups and defect species are revealed with model catalysts, ex situ electrochemical measurements, and ex situ attenuated total reflectance. The zigzag edges of sp 2 carbon planes are shown to play a key role in these reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Alcohol

    ... created when grains, fruits, or vegetables are fermented . Fermentation is a process that uses yeast or bacteria to change the sugars in the food into alcohol. Fermentation is used to produce many necessary items — everything ...

  18. Perturbation effect of reduced graphene oxide quantum dots (rGOQDs) on aryl hydrocarbon receptor (AhR) pathway in zebrafish.

    Zhang, Jing-Hui; Sun, Tai; Niu, Aping; Tang, Yu-Mei; Deng, Shun; Luo, Wei; Xu, Qun; Wei, Dapeng; Pei, De-Sheng

    2017-07-01

    Graphene quantum dots (GQDs) has been widely used in enormous fields, however, the inherent molecular mechanism of GQDs for potential risks in biological system is still elusive to date. In this study, the outstanding reduced graphene quantum dots (rGOQDs) with the QY as high as 24.62% were successfully synthesized by the improved Hummers method and DMF hydrothermal treatment approach. The rGOQDs were N-doped photoluminescent nanomaterials with functional groups on the surface. The fluorescent bio-imaging was performed by exposing zebrafish in different concentrations of the as-prepared rGOQDs, and the distribution of rGOQDs was successfully observed. Moreover, the developmental toxicity and genotoxicity were evaluated to further investigate the potential hazard of rGOQDs. The result indicated that rGOQDs were responsible for the dose-dependent abnormalities on the development of zebrafish. Since the real-time polymerase chain reaction (RT-PCR) results showed that the expression of cyp1a was the highest expression in the selected genes and significantly up-regulated 8.49 fold in zebrafish, the perturbation of rGOQDs on aryl hydrocarbon receptor (AhR) pathway was investigated by using the Tg(cyp1a:gfp) zebrafish for the first time. The results demonstrated that rGOQDs significantly increased the green fluorescent protein (GFP) expression promoted by cyp1a in a dose-dependent manner, which was also further confirmed by the western blotting. This study offered an opportunity to reveal the potential hazards of in vivo bio-probes, which provided a valuable reference for investigating the graphene-based materials on the disturbance of AhR pathway in biological organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Novel synthesis of manganese and vanadium mixed oxide (V2O5/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    Mahdavi, Vahid; Soleimani, Shima

    2014-01-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V 2 O 5 /OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V 2 O 5 /OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V 2 O 5 /K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V 2 O 5 /K-OMS-2 catalyst. • V 2 O 5 /K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidation using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V 2 O 5 /K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V 2 O 5 species. Oxidation of various alcohols was studied in the liquid phase over the V 2 O 5 /K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H 2 O 2 as the oxidant. Activity of the V 2 O 5 /K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V 2 O 5 . The kinetic of benzyl alcohol oxidation using excess TBHP over V 2 O 5 /K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and leaching were investigated

  20. Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate.

    Dong, Yuwei; Zhang, Yanqiu; Tu, Baojun

    Ammonia-oxidizing bacteria were immobilized by polyvinyl alcohol (PVA) and sodium alginate. The immobilization conditions and ammonia oxidation ability of the immobilized bacteria were investigated. The following immobilization conditions were observed to be optimal: PVA, 12%; sodium alginate, 1.1%; calcium chloride, 1.0%; inoculum concentration, 1.3 immobilized balls/mL of immobilized medium; pH, 10; and temperature, 30°C. The immobilized ammonia-oxidizing bacteria exhibited strong ammonia oxidation ability even after being recycled four times. The ammonia nitrogen removal rate of the immobilized ammonia-oxidizing bacteria reached 90.30% under the optimal immobilization conditions. When compared with ammonia-oxidizing bacteria immobilized by sodium alginate alone, the bacteria immobilized by PVA and sodium alginate were superior with respect to pH resistance, the number of reuses, material cost, heat resistance, and ammonia oxidation ability. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory

    Hill, Nicholas J.; Hoover, Jessica M.; Stahl, Shannon S.

    2013-01-01

    Modern undergraduate organic chemistry textbooks provide detailed discussion of stoichiometric Cr- and Mn-based reagents for the oxidation of alcohols, yet the use of such oxidants in instructional and research laboratories, as well as industrial chemistry, is increasingly avoided. This work describes a laboratory exercise that uses ambient air as…

  2. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.

  3. Bioelectrochemistry of non-covalent immobilized alcohol dehydrogenase on oxidized diamond nanoparticles.

    Nicolau, Eduardo; Méndez, Jessica; Fonseca, José J; Griebenow, Kai; Cabrera, Carlos R

    2012-06-01

    Diamond nanoparticles are considered a biocompatible material mainly due to their non-cytotoxicity and remarkable cellular uptake. Model proteins such as cytochrome c and lysozyme have been physically adsorbed onto diamond nanoparticles, proving it to be a suitable surface for high protein loading. Herein, we explore the non-covalent immobilization of the redox enzyme alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae (E.C.1.1.1.1) onto oxidized diamond nanoparticles for bioelectrochemical applications. Diamond nanoparticles were first oxidized and physically characterized by X-ray diffraction (XRD), FT-IR and TEM. Langmuir isotherms were constructed to investigate the ADH adsorption onto the diamond nanoparticles as a function of pH. It was found that a higher packing density is achieved at the isoelectric point of the enzyme. Moreover, the relative activity of the immobilized enzyme on diamond nanoparticles was addressed under optimum pH conditions able to retain up to 70% of its initial activity. Thereafter, an ethanol bioelectrochemical cell was constructed by employing the immobilized alcohol dehydrogenase onto diamond nanoparticles, this being able to provide a current increment of 72% when compared to the blank solution. The results of this investigation suggest that this technology may be useful for the construction of alcohol biosensors or biofuel cells in the near future. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Amphiphilic hollow porous shell encapsulated Au@Pd bimetal nanoparticles for aerobic oxidation of alcohols in water

    Zou, Houbing

    2015-01-01

    © The Royal Society of Chemistry 2015. This work describes the design, synthesis and analysis of an amphiphilic hollow mesoporous shell encapsulating catalytically active Au@Pd bimetal nanoparticles. The particles exhibited excellent catalytic activity and stability in the aerobic oxidation of primary and secondary alcohols to their corresponding aldehydes or ketones in water when using air as an oxidizing agent under atmospheric pressure.

  5. Highly Active PdNi/RGO/Polyoxometalate Nanocomposite Electrocatalyst for Alcohol Oxidation.

    Hu, Jing; Wu, Xiaofeng; Zhang, Qingfan; Gao, Mingyan; Qiu, Haifang; Huang, Keke; Feng, Shouhua; Wang, Tingting; Yang, Ying; Liu, Zhelin; Zhao, Bo

    2018-02-27

    A PdNi/RGO/polyoxometalate nanocomposite has been successfully synthesized by a simple wet-chemical method. Characterizations such as transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy are employed to verify the morphology, structure, and elemental composition of the as-prepared nanocomposite. Inspired by the fast-developing fuel cells, the electrochemical catalytic performance of the nanocomposite toward methanol and ethanol oxidation in alkaline media is further tested. Notably, the nanocomposite exhibits excellent catalytic activity and long-term stability toward alcohol electrooxidation compared with the PdNi/RGO and commercial Pd/C catalyst. Furthermore, the electrochemical results reveal that the prepared nanocomposite is attractive as a promising electrocatalyst for direct alcohol fuel cells, in which the phosphotungstic acid plays a crucial role in enhancing the electrocatalytic activities of the catalyst.

  6. Effects of Various Drugs on Alcohol-induced Oxidative Stress in the Liver

    Svetlana Trivic

    2008-09-01

    Full Text Available The major aim of this work was to investigate how alcohol-induced oxidative stress in combined chemotherapy changes the metabolic function of the liver in experimental animals. This research was conducted to establish how bromocriptine, haloperidol and azithromycin, applied to the experimental model, affected the antioxidative status of the liver. The following parameters were determined: reduced glutathione, activities of glutathione peroxidase, glutathione reductase, peroxidase, catalase, xanthine oxidase and lipid peroxidation intensity. Alanine transaminase was measured in serum. Alcohol stress (AO group reduced glutathione and the activity of xanthine oxidase and glutathione peroxidase, but increased catalase and alanine transaminase activity. The best protective effect was achieved with the bromocriptine (AB1 group, while other groups had similar effects on the studied parameters.

  7. The Manipulation of Hydrophobicity in Catalyst Design for Applications of Aerobic Alcohols Oxidation and Electrocatalytic Water Oxidation

    Chen, Batian

    2016-05-17

    Hydrophobicity is the generalized characteristic of non-polar substances that brings about their exclusion from aqueous phases. This property, entropic in its nature, drives key self-assembly and phase separation processes in water. Protein folding, the formation of DNA double helix, the existence of lipid bilayers and the wetting properties of leaf surfaces are all due to hydrophobic interactions. Inspired by Nature, we aimed to use hydrophobicity for creating novel and improved catalytic systems. (I) A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. (II) An enzyme-inspired catalytic system based on a rationally designed multifunctional surfactant was developed. The resulting micelles feature metal-binding sites and stable free radical moieties as well as fluorous pockets that attract and preconcentrate molecular oxygen. In the presence of copper ions, the micelles effect chemoselective aerobic alcohol oxidation under ambient conditions in water, a transformation that is challenging to achieve nonenzymatically. (III) Development of a facile means of photo/electrocatalytic water splitting is one of the main barriers to establishing of a solar hydrogen economy. Of the two half-reactions involved in splitting water into O2 and H2, water oxidation presents the most challenge due to its mechanistic complexity. A practical water oxidation catalyst must be highly active, yet inexpensive and indefinitely stable under harsh oxidative conditions. Here, I shall describe the synthesis of a library of molecular water oxidation catalysts based on the Co complex of tris(2-benzimidazolylmethyl)amine, (BimH)3. A wide range of catalysts differing in their electronic properties

  8. Activity and selectivity of manganese oxides in alcohols Conversion as influenced by gamma-irradiation

    Doheim, M.M.; Ahmed, A.S.; El-Shobaky, G.A.

    2002-01-01

    Manganese oxide samples obtained from thermal decomposition of manganese carbonate at 400 and 600 deg C were subjected to different doses of g-irradiation within the range 0.2 to 1.6 MGy. The surface and catalytic properties of the above samples were studied using nitrogen adsorption isotherms measured at -196 deg C and catalytic conversion of ethanol and isopropanol at 300-400 deg C using micropulse technique. The results obtained revealed that manganese oxides obtained at 400 deg C consisted of a mixture of Mn 2 O 3 and MnO 2 while the samples calcined at 600 deg C composed entirely of Mn 2 O 3 . Gamma-irradiation resulted in a decrease in the particle size of manganese oxide phases with subsequent increase in their specific surface areas. Gamma-irradiation with 0.2 and 0.8 MGy effected a measurable progressive decrease in the catalytic activity in dehydration and dehydrogenation of both alcohols. However, the treated catalyst retained their initial activity upon exposure to a dose of 1.6 MGy. Also, g-irradiation increased the selectivities of the investigated solids towards dehydrogenation of both alcohols. The catalyst samples precalcined at 600 deg C exhibited higher catalytic activities than those precalcined at 400 deg C. (author)

  9. Alcohol

    ... to do. Wondering if adding a glass of wine or beer might help lower your blood glucose if it is high? The effects of alcohol can be unpredictable and it is not recommended as a treatment for high blood glucose. The risks likely outweigh any benefit that may be seen in blood glucose alone. ...

  10. Efficient oxidation of alcohols to carbonyl compounds with molecular oxygen catalyzed by N-hydroxyphthalimide combined with a Co species

    Iwahama; Yoshino; Keitoku; Sakaguchi; Ishii

    2000-10-06

    Highly efficient catalytic oxidation of alcohols with molecular oxygen by N-hydroxyphthalimide (NHPI) combined with a Co species was developed. The oxidation of 2-octanol in the presence of catalytic amounts of NHPI and Co(OAc)2 under atmospheric dioxygen in AcOEt at 70 degrees C gave 2-octanone in 93% yield. The oxidation was significantly enhanced by adding a small amount of benzoic acid to proceed smoothly even at room temperature. Primary alcohols were oxidized by NHPI in the absence of any metal catalyst to form the corresponding carboxylic acids in good yields. In the oxidation of terminal vic-diols such as 1,2-butanediol, carbon-carbon bond cleavage was induced to give one carbon less carboxylic acids such as propionic acid, while internal vic-diols were selectively oxidized to 1,2-diketones.

  11. Impaired oxidation of carbon-labeled galactose by alcoholic or diabetic liver in vivo

    Shreeve, W.W.

    1987-01-01

    Because of the organ and enzyme specificity of the metabolism of galactose, evaluation of various kinds of liver disease can be done by measuring the formation of labeled breath CO 2 from carbon-labeld galactose in vivo. As shown earlier with uniformly 14 C- or 13 C-labeld galactose, a further study of alcoholic cirrhotic patients and controls with cheaper 1- 14 C-galactose indicates a superior discriminatory value of this test compared with common liver functions tests. The oxidation test is easier to perform and more acceptable to patients than the standard galactose tolerance blood test. Output of 14 CO 2 showed slight correlations with serum albumin and 99m Tc-sulfur colloid scan grade, but not with other function tests (SGOT, alkaline phosphatase, bilirubin). Comparison with five-year clinical outcome (two groups: with or without known liver-related death) in 29 of 43 total cirrhotic patients (U- 14 C or 1- 14 C-galactose) showed a low (75% probability) significance of prognosis for the galactose oxidation test, but none for any of the other tests. A two-part test of oxidation of 14 C-galactose (with and without an acute dose of ethanol) in 19 possibly or likely alcoholic (but non-cirrhotic) persons indicated, by correlation with other liver function tests and drinking history, some possibly enhanced sensitivity of the two-part versus the single test for recognizing early liver damage. A preliminary study of the single galactose oxidation test in 7 patients with Type II diabetes suggests moderate impairment of oxidation, which might be applied to evaluate the hepatic disorder in diabetes. (orig.) [de

  12. Synthesis and preliminary evaluation of antinociceptive activity of novel isoxazolyl-aryl-hydrazones

    Reis, Silvio Leandro Goncalves Bomfim; Almeida, Valderes Moraes de; Almeida, Gleybson Correia de; Boaviagem, Karinna Moura; Mendes, Charles Christophe du Barriere; Faria, Antonio Rodolfo de; Goes, Alexandre Jose da Silva; Magalhaes, Laudelina Rodrigues; Silva, Teresinha Goncalves da

    2011-01-01

    New 2-isoxazoline aldehydes were synthesized, in good yields, from cycloadduct of the 1,3-dipolar cycloaddition reaction between endocyclic enecarbamate and carboethoxyformonitrile oxide (CEFNO). Condensation of these 2-isoxazoline aldehydes with several phenyl-hydrazines produced new isoxazolyl-aryl-hydrazones, which showed low toxicity and excellent antinociceptive activity, when compared to dipyrone. The antinociceptive activity of isoxazolyl-aryl-hydrazones was performed using the acetic acid-induced mice abdominal constrictions test. (author)

  13. Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products

    Achyuthan, Komandoor; Adams, Paul; Simmons, Blake; Singh, Anup

    2011-07-13

    Lignin composition (monolignol types of coniferyl, sinapyl or p-coumaryl alcohol) is causally related to biomass recalcitrance. We describe multiwavelength (220, 228, 240, 250, 260, 290, 295, 300, 310 or 320 nm) absorption spectroscopy of coniferyl alcohol and its laccase- or peroxidase-catalyzed products during real time kinetic, pseudo-kinetic and endpoint analyses, in optical turn on or turn off modes, under acidic or basic conditions. Reactions in microwell plates and 100 mu L volumes demonstrated assay miniaturization and high throughput screening capabilities. Bathochromic and hypsochromic shifts along with hyperchromicity or hypochromicity accompanied enzymatic oxidations by laccase or peroxidase. The limits of detection and quantitation of coniferyl alcohol averaged 2.4 and 7.1 mu M respectively, with linear trend lines over 3 to 4 orders of magnitude. Coniferyl alcohol oxidation was evident within 10 minutes or with 0.01 mu g/mL laccase and 2 minutes or 0.001 mu g/mL peroxidase. Detection limit improved to 1.0 mu M coniferyl alcohol with Km of 978.7 +/- 150.7 mu M when examined at 260 nm following 30 minutes oxidation with 1.0 mu g/mL laccase. Our assays utilized the intrinsic spectroscopic properties of coniferyl alcohol or its oxidation products for enabling detection, without requiring chemical synthesis or modification of the substrate or product(s). These studies facilitate lignin compositional analyses and augment pretreatment strategies for reducing biomass recalcitrance.

  14. Zeolite Encapsulated Nanocrystalline CuO: A Redox Catalyst for the Oxidation of Secondary Alcohols

    Sakthivel Vijaikumar

    2008-01-01

    Full Text Available Zeolite encapsulated nanocrystalline CuO is synthesized and characterized by powder XRD and HRTEM analyses which clearly show that the particles are less than 15 nm and the nanoparticles are highly dispersed. This nano CuO encapsulated CuY zeolite is used as catalyst in the oxidation of aromatic secondary alcohols. CuY zeolite acts as an efficient support for nano CuO, by stabilizing it and preventing its aggregation. Plausible mechanisms for the formation of the various products are also given.

  15. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    Cornelia Dietrich

    2016-01-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.

  16. Application of graphene oxide-poly (vinyl alcohol) polymer nanocomposite for memory devices

    Kaushal, Jyoti; Kaur, Ravneet; Sharma, Jadab; Tripathi, S. K.

    2018-05-01

    Significant attention has been gained by polymer nanocomposites because of their possible demands in future electronic memory devices. In the present work, device based on Graphene Oxide (GO) and polyvinyl alcohol (PVA) has been made and examined for the memory device application. The prepared Graphene oxide (GO) and GO-PVA nanocomposite (NC) has been characterized by X-ray Diffraction (XRD). GO nanosheets show the diffraction peak at 2θ = 11.60° and the interlayer spacing of 0.761 nm. The XRD of GO-PVA NC shows the diffraction peak at 2θ =18.56°. The fabricated device shows bipolar switching behavior having ON/OFF current ratio ˜102. The Write-Read-Erase-Read (WRER) cycles test shows that the Al/GO-PVA/Ag device has good stability and repeatability.

  17. Investigation of Electrical and Optical Characteristics of Nanohybride Composite (Polyvinyl Alcohol / Nickel Oxide

    A. Hayati

    2014-01-01

    Full Text Available Some issues; leakage, tunneling currents, boron diffusion are threatening SiO2 to be used as a good gate dielectric for the future of the CMOS (complementary metal- oxide- semiconductor transistors. For finding an alternative and novel gate dielectric, the NiO (Nickel oxide and PVA (polyvinyl alcohol nano powders were synthesized with the sol-gel method and their nano structural properties were studied using the X-ray diffraction (XRD, Atomic force microscopy (AFM, Scanning electron microscopy (SEM, UV-Vis spectrophotometer and GPS 132 techniques. The obtained results indicated that the sample (5 g NiO and 0.02g PVA prepared at 30˚C, annealed in an oven at a temperature of 80˚C can fill this gap due to its higher dielectric constant, better morphology, less rough surface and less leakage current.

  18. A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect

    Zahed, Bahareh; Hosseini-Monfared, Hassan, E-mail: monfared@znu.ac.ir

    2015-02-15

    Graphical abstract: - Highlights: • Characteristics of three different graphene oxide (GO) are studied as a support for Ag nanoparticles. • The required conditions for a best support are determined. • For the first time the silver nanoparticles decorated GO as catalyst for aerobic oxidation of benzyl alcohol and the effects of the degree of reduction of GO on AgNPs on GO are reported. - Abstract: Three different nanocomposites of silver and graphene oxide, namely silver nanoparticles (AgNPs) immobilized on reduced graphene oxide (AgNPs/rGO), partially reduced graphene oxide (AgNPs/GO) and thiolated partially reduced graphene oxide (AgNPs/GOSH), were synthesized in order to compare their properties. Characterizations were carried out by infrared and UV–Vis and Raman spectroscopy, ICP, X-ray diffraction, SEM and TEM, confirming both the targeted chemical modification and the composite formation. The nanocomposites were successfully employed in the aerobic oxidation of benzyl alcohol at atmospheric pressure. AgNPs/GOSH is stable and recyclable catalyst which showed the highest activity in the aerobic oxidation of benzyl alcohol in the presence of N-hydroxyphthalimide (NHPI) to give benzaldehyde with 58% selectivity in 24 h at 61% conversion. The favorite properties of AgNPs/GOSH are reasonably attributed to the stable and well distributed AgNPs over GOSH due to strong adhesion between AgNPs and GOSH.

  19. Profile of Class I Histone Deacetylases (HDAC) by Human Dendritic Cells after Alcohol Consumption and In Vitro Alcohol Treatment and Their Implication in Oxidative Stress: Role of HDAC Inhibitors Trichostatin A and Mocetinostat.

    Agudelo, Marisela; Figueroa, Gloria; Parira, Tiyash; Yndart, Adriana; Muñoz, Karla; Atluri, Venkata; Samikkannu, Thangavel; Nair, Madhavan P

    2016-01-01

    Epigenetic mechanisms have been shown to play a role in alcohol use disorders (AUDs) and may prove to be valuable therapeutic targets. However, the involvement of histone deacetylases (HDACs) on alcohol-induced oxidative stress of human primary monocyte-derived dendritic cells (MDDCs) has not been elucidated. In the current study, we took a novel approach combining ex vivo, in vitro and in silico analyses to elucidate the mechanisms of alcohol-induced oxidative stress and role of HDACs in the periphery. ex vivo and in vitro analyses of alcohol-modulation of class I HDACs and activity by MDDCs from self-reported alcohol users and non-alcohol users was performed. Additionally, MDDCs treated with alcohol were assessed using qRT-PCR, western blot, and fluorometric assay. The functional effects of alcohol-induce oxidative stress were measured in vitro using PCR array and in silico using gene expression network analysis. Our findings show, for the first time, that MDDCs from self-reported alcohol users have higher levels of class I HDACs compare to controls and alcohol treatment in vitro differentially modulates HDACs expression. Further, HDAC inhibitors (HDACi) blocked alcohol-induction of class I HDACs and modulated alcohol-induced oxidative stress related genes expressed by MDDCs. In silico analysis revealed new target genes and pathways on the mode of action of alcohol and HDACi. Findings elucidating the ability of alcohol to modulate class I HDACs may be useful for the treatment of alcohol-induced oxidative damage and may delineate new potential immune-modulatory mechanisms.

  20. A unified approach for the synthesis of symmetrical and unsymmetrical dibenzyl ethers from aryl aldehydes through reductive etherification

    J. Sembian Ruso

    2016-05-01

    Full Text Available In this paper, we describe a simple and convenient conversion of aryl aldehydes to symmetrical dibenzyl ethers through reductive etherification. Similarly, unsymmetrical dibenzyl ether was obtained from aryl aldehyde and TES-protected benzyl alcohol. Triethyl silane with catalytic amount of InCl3 was found to be an efficient condition for the reductive etherification. Moreover, it exhibits remarkable functional group compatibility with yield ranging from good to excellent.

  1. Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts.

    Siddiki, S M A Hakim; Touchy, Abeda Sultana; Kon, Kenichi; Shimizu, Ken-Ichi

    2016-04-18

    Carbon-supported Pt nanoparticles (Pt/C) were found to be effective heterogeneous catalysts for the direct Julia olefination of alcohols in the presence of sulfones and KOtBu under oxidant-free conditions. Primary alcohols, including aryl, aliphatic, allyl, and heterocyclic alcohols, underwent olefination with dimethyl sulfone and aryl alkyl sulfones to give terminal and internal olefins, respectively. Secondary alcohols underwent methylenation with dimethyl sulfone. Under 2.5 bar H2, the same reaction system was effective for the transformation of alcohol OH groups to alkyl groups. Structural and mechanistic studies of the terminal olefination system suggested that Pt(0) sites on the Pt metal particles are responsible for the rate-limiting dehydrogenation of alcohols and that KOtBu may deprotonate the sulfone reagent. The Pt/C catalyst was reusable after the olefination, and this method showed a higher turnover number (TON) and a wider substrate scope than previously reported methods, which demonstrates the high catalytic efficiency of the present method. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Oxidation and Destruction of Polyvinyl Alcohol under the Combined Action of Ozone-Oxygen Mixture and Hydrogen Peroxide

    Zimin, Yu. S.; Kutlugil'dina, G. G.; Mustafin, A. G.

    2018-03-01

    The oxidative transformations of a polyvinyl alcohol in aqueous solutions are studied under the simultaneous action of the two oxidizing agents, an ozone-oxygen mixture and a hydrogen peroxide. Effective parameters a and b, which characterize the first and second channels of carboxyl group accumulation, respectively, grow linearly upon an increase in the initial concentration of H2O2. After the temperature dependence of a and b parameters (331-363 K) in a PVA + O3 + O2 + H2O2 + H2O reaction system is studied, the parameters of the activation of COOH group accumulation are found (where PVA is a polyvinyl alcohol). New data on the effect process conditions (length of oxidation, temperature, and hydrogen peroxide concentration) have on the degree of destructive transformations of polyvinyl alcohol in the investigated reaction system are obtained.

  3. Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.

    Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke

    2013-10-21

    Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.

  4. Electrocatalytic oxidation of alcohols on single gold particles in highly ordered SiO2 cavities

    Li, Na; Zhou, Qun; Tian, Shu; Zhao, Hong; Li, Xiaowei; Adkins, Jason; Gu, Zhuomin; Zhao, Lili; Zheng, Junwei

    2013-01-01

    In the present work, we report a new and simple approach for preparing a highly ordered Au (1 1 1) nanoparticle (NP) array in SiO 2 cavities on indium-doped tin oxide (ITO) electrodes. We fabricated a SiO 2 cavity array on the surface of an ITO electrode using highly ordered self-assembly of polystyrene spheres as a template. Gold NPs were electrodeposited at the bottom of the SiO 2 cavities, and single gold NPs dominated with (1 1 1) facets were generated in each cavity by annealing the electrode at a high temperature. Such (1 1 1) facets were the predominate trait of the single gold particle which exhibited considerable electrocatalytic activity toward oxidation of methanol, ethanol, and glycerol. This has been attributed to the formation of incipient hydrous oxides at unusually low potential on the specific (1 1 1) facet of the gold particles. Moreover, each cavity of the SiO 2 possibly behaves as an independent electrochemical cell in which the methanol molecules are trapped; this produces an environment advantageous to catalyzing electrooxidation. The oxidation of methanol on the electrodes is a mixed control mechanism (both by diffusion and electrode kinetics). This strategy both provided an approach to study electrochemical reactions on a single particle in a microenvironment and may supply a way to construct alcohols sensors

  5. Influence of alcohol consumption on oxidative stress and antioxidant status in cancer patients--case-control study from Western Nepal.

    Nagamma, T; Bhutia, Rinchen Doma; Pokharel, Daya Ram; Yadav, Saraswati; Baxi, J

    2012-01-01

    The present study assess the effect of consumption of alcohol on oxidative stress and antioxidant status in patients suffering from different types of cancer. This hospital based case control study conducted in the Western part of Nepal covered a total of 93 cancer patients with or without alcohol intake and smoking habits, along with 94 age, sex and habit-matched individuals serving as controls. Plasma thiobarbituric acid reacting substances (TBARS), total antioxidant activity (TAA), vitamin C, α-tocopherol and erythrocyte reduced glutathione (GSH) were estimated and compared. The TBARS level was found to be significantly higher (p≤0.001) in all types of cancer patients when compared to controls, being aggravated in alcoholics with a smoking habit. No statistical significance (p≥0.05) was observed in the level of vitamin C and α-tocopherol. GSH and TAA level were significantly decreased (p≤0.001) in all the groups except those who consumed both branded as well as homemade alcohol and non-alcoholics without smoking habit. Alcohol, irrespective of its commercial brand, increases oxidative stress in all types of cancer patients. This is even higher when alcohol intake is combined with a smoking habit. Decreased TAA and GSH are major risk factors for cancer development.

  6. Molecular Characterization of the Fatty Alcohol Oxidation Pathway for Wax-Ester Mobilization in Germinated Jojoba Seeds1[W

    Rajangam, Alex S.; Gidda, Satinder K.; Craddock, Christian; Mullen, Robert T.; Dyer, John M.; Eastmond, Peter J.

    2013-01-01

    Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WEs) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very-long-chain fatty alcohols, which must be oxidized to fatty acids by the sequential action of a fatty alcohol oxidase (FAO) and a fatty aldehyde dehydrogenase (FADH) before they can be β-oxidized. Here, we describe the cloning and characterization of genes for each of these two activities. Jojoba FAO and FADH are 52% and 68% identical to Arabidopsis (Arabidopsis thaliana) FAO3 and ALDH3H1, respectively. The genes are expressed most strongly in the cotyledons of jojoba seedlings following germination, but transcripts can also be detected in vegetative tissues. Proteomic analysis indicated that the FAO and FADH proteins can be detected on wax bodies, but they localized to the endoplasmic reticulum when they were expressed as amino-terminal green fluorescent protein fusions in tobacco (Nicotiana tabacum) leaves. Recombinant jojoba FAO and FADH proteins are active on very-long-chain fatty alcohol and fatty aldehyde substrates, respectively, and have biochemical properties consistent with those previously reported in jojoba cotyledons. Coexpression of jojoba FAO and FADH in Arabidopsis enhanced the in vivo rate of fatty alcohol oxidation more than 4-fold. Taken together, our data suggest that jojoba FAO and FADH constitute the very-long-chain fatty alcohol oxidation pathway that is likely to be necessary for efficient WE mobilization following seed germination. PMID:23166353

  7. Molecular characterization of the fatty alcohol oxidation pathway for wax-ester mobilization in germinated jojoba seeds.

    Rajangam, Alex S; Gidda, Satinder K; Craddock, Christian; Mullen, Robert T; Dyer, John M; Eastmond, Peter J

    2013-01-01

    Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WEs) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very-long-chain fatty alcohols, which must be oxidized to fatty acids by the sequential action of a fatty alcohol oxidase (FAO) and a fatty aldehyde dehydrogenase (FADH) before they can be β-oxidized. Here, we describe the cloning and characterization of genes for each of these two activities. Jojoba FAO and FADH are 52% and 68% identical to Arabidopsis (Arabidopsis thaliana) FAO3 and ALDH3H1, respectively. The genes are expressed most strongly in the cotyledons of jojoba seedlings following germination, but transcripts can also be detected in vegetative tissues. Proteomic analysis indicated that the FAO and FADH proteins can be detected on wax bodies, but they localized to the endoplasmic reticulum when they were expressed as amino-terminal green fluorescent protein fusions in tobacco (Nicotiana tabacum) leaves. Recombinant jojoba FAO and FADH proteins are active on very-long-chain fatty alcohol and fatty aldehyde substrates, respectively, and have biochemical properties consistent with those previously reported in jojoba cotyledons. Coexpression of jojoba FAO and FADH in Arabidopsis enhanced the in vivo rate of fatty alcohol oxidation more than 4-fold. Taken together, our data suggest that jojoba FAO and FADH constitute the very-long-chain fatty alcohol oxidation pathway that is likely to be necessary for efficient WE mobilization following seed germination.

  8. Development and Comparison of the Substrate Scope of Pd-Catalysts for the Aerobic Oxidation of Alcohols

    Schultz, Mitchell J.; Hamilton, Steven S.; Jensen, David R.; Sigman, Matthew S.

    2009-01-01

    Three catalysts for aerobic oxidation of alcohols are discussed and the effectiveness of each is evaluated for allylic, benzylic, aliphatic, and functionalized alcohols. Additionally, chiral nonracemic substrates as well as chemoselective and diastereoselective oxidations are investigated. In this study, the most convenient system for the Pd-catalyzed aerobic oxidation of alcohols is Pd(OAc)2 in combination with triethylamine. This system functions effectively for the majority of alcohols tested and uses mild conditions (3 to 5 mol % of catalyst, room temperature). Pd(IiPr)(OAc)2(H2O) (1) also successfully oxidizes the majority of alcohols evaluated. This system has the advantage of significantly lowering catalyst loadings but requires higher temperatures (0.1 to 1 mol % of catalyst, 60 °C). A new catalyst is also disclosed, Pd(IiPr)(OPiv)2 (2). This catalyst operates under very mild conditions (1 mol %, room temperature, and air as the O2 source) but with a more limited substrate scope. PMID:15844968

  9. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    Yue, Huifeng

    2017-03-13

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  10. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    Yue, Huifeng; Guo, Lin; Liu, Xiangqian; Rueping, Magnus

    2017-01-01

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  11. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.

    Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu

    2015-04-01

    The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Efficiency of bimetallic PtPd on polydopamine modified on various carbon supports for alcohol oxidations

    Pinithchaisakula, A.; Ounnunkad, K.; Themsirimongkon, S.; Promsawan, N.; Waenkaew, P.; Saipanya, S.

    2017-02-01

    In this work, the preparation, characterization, and electrocatalytic analysis of the catalysts on various carbon substrates for direct alcohol fuel cells were studied. Selected carbons were modified with/without polydopamine (labelled as PDA-C and C) and further metal electrodeposited incorporated onto the glassy carbon (labelled as 5Pt1Pd/PDA-C and 5Pt1Pd/C). Four various carbon materials were used e.g. graphite (G), carbon nanotube (CNT), graphene (GP) and graphene oxide (GO) and the carbons were modified with PDA denoted as PDA-G, PDA-CNT, PDA-GP and PDA-GO, respectively. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) experimental observation showed narrow size distribution of metal anchored on the PDA-C and C materials. Chemical compositions and oxidation states of the catalysts were determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). The catalytic performances for small organic electro-oxidation (e.g. methanol and ethanol) were measured by cyclic voltammetry (CV). Among different PDA-C and C catalysts, monometallic Pt showed less activity than the bimetallic catalysts. Among catalysts with PDA, the 5Pt1Pd/PDA-GO catalyst facilitated methanol and ethanol oxidations with high oxidation currents and If/Ib value and stability with low potentials while among catalysts without PDA, the 5Pt1Pd/CNT provides highest activity and stability. It was found that the catalysts with PDA provided high activity and stability than the catalysts without PDA. The improved catalytic performance of the prepared catalysts could be related to the higher active surface area from polymer modification and bimetallic catalyst system in the catalyst composites.

  13. TEMPO functionalized C60 fullerene deposited on gold surface for catalytic oxidation of selected alcohols

    Piotrowski, Piotr; Pawłowska, Joanna; Sadło, Jarosław Grzegorz; Bilewicz, Renata; Kaim, Andrzej

    2017-01-01

    C 60 TEMPO 10 catalytic system linked to a microspherical gold support through a covalent S-Au bond was developed. The C 60 TEMPO 10 @Au composite catalyst had a particle size of 0.5–0.8 μm and was covered with the fullerenes derivative of 2.3 nm diameter bearing ten nitroxyl groups; the organic film showed up to 50 nm thickness. The catalytic composite allowed for the oxidation under mild conditions of various primary and secondary alcohols to the corresponding aldehyde and ketone analogues with efficiencies as high as 79–98%, thus giving values typical for homogeneous catalysis, while retaining at the same time all the advantages of heterogeneous catalysis, e.g., easy separation by filtration from the reaction mixture. The catalytic activity of the resulting system was studied by means of high pressure liquid chromatography. A redox mechanism was proposed for the process. In the catalytic cycle of the oxidation process, the TEMPO moiety was continuously regenerated in situ with an applied primary oxidant, for example, O 2 /Fe 3+ system. The new intermediate composite components and the final catalyst were characterized by various spectroscopic methods and thermogravimetry.

  14. Nano-Pt/C electrocatalysts: synthesis and activity for alcohol oxidation

    Huong Nguyen, Thi Giang; Anh Pham, Thi Van; Phuong, Thi Xuan; Binh Lam, Thi Xuan; Tran, Van Man; Thoa Nguyen, Thi Phuong

    2013-01-01

    Nano-sized platinum electrocatalysts on a carbon support (Pt/C) have been synthesized by the polyol reduction method under microwave irradiation using ethylene glycol (EG) as the reductant and carbon vulcan XC-72R as the support material. The physical characteristics of the Pt/C materials were analyzed using transmission electron microscopy and Brunauer–Emmet–Teller nitrogen adsorption theory. The glycerol and EG electro-oxidation in alkaline media on the Pt/C catalysts was investigated with cyclic voltammetry and chronoamperometry. The particle size of Pt on carbon was about 3.0 nm. The catalytic activity for the alcohol electro-oxidation of Pt/C materials synthesized in various pH values (7.9–9.5) was found to be significantly higher than that of commercial Pt/C (Aldrich Sigma, 10 wt% Pt/activated carbon). The Pt/C catalyst synthesized in pH 9.5 showed the best electrochemical behavior. At all the synthesized Pt/C electrodes, compared with glycerol, the oxidation rate of EG was about ten times higher. (paper)

  15. Synthesis of quaternary aryl phosphonium salts: photoredox-mediated phosphine arylation.

    Fearnley, A F; An, J; Jackson, M; Lindovska, P; Denton, R M

    2016-04-11

    We report a synthesis method for the construction of quaternary aryl phoshonium salts at ambient temperature. The regiospecific reaction involves the coupling of phosphines with aryl radicals derived from diaryliodonium salts under photoredox conditions.

  16. Study of catalysts prepared on the basis of synthetic zeolite of A-type in the reaction of oxidation of isopropyl alcohol

    Aliev, A.M; Matiev, K.I; Mirgashimov, F.M; Kuliev, F.D; Mejidov, N.J

    2011-01-01

    Full text: Partial oxidation of isopropyl alcohol into acetone at the zeolite of A-type modified by ions copper and palladium at the temperature interval 150-230 degree C, of volume velocity 2400 H - 1 under different ratio alcohol-oxygen-helium at atmoshpheric pressure has been studied. It has been established that the conversion of isopropyl alcohol on zeolites CuPdNaA and CuPdCaA is noticable however selective by acetone alcohol, modofoed zeolites, acetone

  17. Mn-Catalyzed Highly Efficient Aerobic Oxidative Hydroxyazidation of Olefins: A Direct Approach to β-Azido Alcohols.

    Sun, Xiang; Li, Xinyao; Song, Song; Zhu, Yuchao; Liang, Yu-Feng; Jiao, Ning

    2015-05-13

    An efficient Mn-catalyzed aerobic oxidative hydroxyazidation of olefins for synthesis of β-azido alcohols has been developed. The aerobic oxidative generation of azido radical employing air as the terminal oxidant is disclosed as the key process for this transformation. The reaction is appreciated by its broad substrate scope, inexpensive Mn-catalyst, high efficiency, easy operation under air, and mild conditions at room temperature. This chemistry provides a novel approach to high value-added β-azido alcohols, which are useful precursors of aziridines, β-amino alcohols, and other important N- and O-containing heterocyclic compounds. This chemistry also provides an unexpected approach to azido substituted cyclic peroxy alcohol esters. A DFT calculation indicates that Mn catalyst plays key dual roles as an efficient catalyst for the generation of azido radical and a stabilizer for peroxyl radical intermediate. Further calculation reasonably explains the proposed mechanism for the control of C-C bond cleavage or for the formation of β-azido alcohols.

  18. Risky alcohol use in young persons with emerging bipolar disorder is associated with increased oxidative stress.

    Chitty, Kate M; Lagopoulos, Jim; Hickie, Ian B; Hermens, Daniel F

    2013-09-25

    Alcohol misuse is highly prevalent in bipolar disorder (BD) and has been associated with increased formation of reactive oxygen species in the CNS. Proton magnetic resonance spectroscopy ((1)H-MRS) is an in vivo tissue-based imaging modality that allows the investigation of changes in the brains primary antioxidant, glutathione (GSH), as a result of alcohol use in this population. Thirty-three patients with BD and 17 controls aged 18-30 years were recruited. Participants completed the Alcohol Use Disorders Identification Test (AUDIT) and underwent (1)H-MRS. Levels of GSH in the anterior cingulate cortex (ACC) were determined. ANOVA was conducted to determine differences between high and low risk drinking bipolar participants and controls. ANOVA with all groups revealed a significant difference in GSH between bipolar high and low risk drinkers, with those in the high-risk group displaying reduced GSH levels. A significant negative correlation was found between total AUDIT score and GSH in bipolar (R=-0.478, p=0.005) which remained significant when controlling for age and medication status. Our participant sample consisted of a heterogeneous group of patients, most of whom were medicated at time of testing. Young people with emerging BD who drink at risky levels display reduced levels of ACC-GSH. Increased oxidative stress and its resulting neurotoxic effects may be especially detrimental in an emerging bipolar sample where the illness trajectory is unclear and the brain is still undergoing significant development. © 2013 Elsevier B.V. All rights reserved.

  19. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    Karthikeyan, B., E-mail: bkarthik@nitt.edu; Hariharan, S. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Udayabhaskar, R. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, University of Concepcion, Concepcion 4070386 (Chile)

    2016-07-11

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  20. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    Karthikeyan, B.; Hariharan, S.; Udayabhaskar, R.

    2016-01-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  1. Catalytic Oxidation of Vanillyl Alcohol Using FeMCM-41 Nanoporous Tubular Reactor

    Elamathi, P.; Kolli, Murali Krishna; Chandrasekar, G.

    Iron containing nanoporous MCM-41 (FeMCM-41) with different Si/Fe ratios of 50, 100 and 150 was synthesized by hydrothermal synthesis process. The materials obtained from hydrothermal synthesis were characterized by various physico chemical techniques such as XRD, N2 adsorption, DR UV-vis, EPR and FTIR spectroscopy. XRD analyses of FeMCM-41 materials confirmed the presence of well-ordered crystalline structure. N2 isotherm of FeMCM-41 materials showed type IV adsorption isotherm. EPR and DR UV-vis analysis of FeMCM-41 samples indicates the presence of high tetrahedral coordination at the Si/Fe ratios of 100 and 150. The catalytic performance of FeMCM-41 nano tubular reactor was tested in the liquid phase oxidation of vanillyl alcohol into vanillin using H2O2 (50wt% in water). The reaction products were analyzed by gas chromatography in DB-5 capillary column with flame ionization detector. The products were confirmed by 1H NMR, 13C NMR and LC-Mass spectroscopy. The maximum conversion of vanillyl alcohol (85%) and selectivity towards vanillin (82%) were observed using the catalyst FeMCM-41(100) in 30min at 60∘C. The influence of reaction temperature, reaction time, reactants molar ratio, Si/Fe ratio and amount of catalyst were investigated.

  2. Biomimetic Catalysts for Oxidation of Veratryl Alcohol, a Lignin Model Compound

    Marcelino Maneiro

    2013-03-01

    Full Text Available Kraft pulp has to be bleached to eliminate the chromophoric structures, which cause a darkening of the pulp. In Nature, an equivalent role is assumed by ligninolytic enzymes such as lignin peroxidases, manganese peroxidases and laccases. The development of low molecular weight manganese peroxidase mimics may achieve environmentally-safe bleaching catalysts for the industry. Herein we report the synthesis and characterization of six manganese(III complexes 1–6, incorporating dianionic hexadentate Schiff base ligands (H2L1-H2L4 and different anions. Complex 4, Mn2L22(H2O2(DCA2 was crystallographically characterized. Complexes 1–4 behave as more efficient mimics of peroxidase in contrast to 5–6. We have studied the use of these complexes as catalysts for the degradation of the lignin model compound veratryl alcohol. The biomimetic catalysts were used in conjunction with chlorine-free inexpensive co-oxidants as dioxygen or hydrogen peroxide. Yields up to 30% of veratryl alcohol conversion to veratraldehyde have been achieved at room temperature in presence of air flow using 0.5% of catalyst.

  3. Experimental Determination and Modeling of the Phase Behavior for the Selective Oxidation of Benzyl Alcohol in Supercritical CO2

    Tsivintzelis, Ioannis; Beier, Matthias Josef; Grunwaldt, Jan-Dierk

    2011-01-01

    In this study the phase behavior of mixtures relevant to the selective catalytic oxidation of benzyl alcohol to benzaldehyde by molecular oxygen in supercritical CO2 is investigated. Initially, the solubility of N2 in benzaldehyde as well as the dew points of CO2–benzyl alcohol–O2 and CO2...

  4. The effect of moderate alcohol consumption on adiponectin oligomers and muscle oxidative capacity: A human intervention study

    Beulens, J.W.J.; Loon, L.J.C. van; Kok, F.J.; Pelsers, M.; Bobbert, T.; Spranger, J.; Helander, A.; Hendriks, H.F.J.

    2007-01-01

    Aims/hypothesis: The aim of this study was to investigate whether moderate alcohol consumption increases plasma high molecular weight (HMW) adiponectin and/or muscle oxidative capacity. Materials and methods: Eleven lean (BMI 18-25 kg/m2) and eight overweight (BMI ≥27 kg/m2) men consumed 100 ml

  5. Cobalt hydroxide film on Pt as co-catalyst for oxidation of polyhydric alcohols in alkaline medium

    Das, Debasmita; Das, Kaushik

    2010-01-01

    Electrochemical behavior of chemically prepared Co(OH) 2 film on Pt has been studied in alkaline medium using cyclic voltammetry and chronoamperometry. Amount of Co(OH) 2 deposited increases linearly with the number of times of deposition. The deposit is of fibrous structure, as shown by scanning electron microphotograph. There is evidence of Co II /Co III and Co III /Co IV redox transitions during the cyclic potential scan. The former oxidation proceeds under diffusion control. The Co(OH) 2 deposit acts as an efficient co-catalyst for anodic oxidation of ethanediol, propanediol and glycerol on Pt in alkaline medium. This is demonstrated by appreciable enhancement of the alcohol oxidation currents upon deposition of Co(OH) 2 on Pt. Among the alcohols studied, the highest oxidation currents are obtained for ethanediol, both on Co(OH) 2 /Pt and bare Pt. Co(OH) 2 alone also acts as a redox mediator for alcohol oxidation at more positive potentials.

  6. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst

    2015-01-01

    Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869

  7. Aerobic Oxidation of Benzyl Alcohol on a Strontium-Based Gold Material: Remarkable Intrinsic Basicity and Reusable Catalyst

    Karla Patrícia R. Castro

    2018-02-01

    Full Text Available The development of stable and active gold catalysts has arisen as a significant strategy for oxidation of alcohols. Nano-size PVA-stabilized gold nanoparticles immobilized on Sr(OH2 by colloidal deposition presented high catalytic activity for benzyl alcohol oxidation. In 2.5 h, 2 bar of O2 and without extra-base addition, the calcined support reached 54.6% (100 °C and 67.4% (140 °C of conversion, presenting the remarkable and unexplored intrinsic basicity that strontium-based materials retain. With sub-stoichiometric K2CO3 adding, under the same catalytic conditions, the catalyst conducted the reaction with similar activity, but with excellent reusability in the process, without any gold leaching. We investigated the influence that the support synthesis method and the solvent used for the NPs stabilization have on the oxidation activity. The produced materials were fully characterized by XPS, Rietveld refinement, and TEM.

  8. Cobalt nanoparticles as recyclable catalyst for aerobic oxidation of alcohols in liquid phase

    Mondal, Arijit; Mukherjee, Debkumar, E-mail: debkumarmukherjee@rediffmail.com [Ramsaday College, Department of Chemistry (India); Adhikary, Bibhutosh, E-mail: adhikarybibhu@yahoo.com [Indian Institute of Engineering, Sciences and Technology, Shibpur, Department of Chemistry (India); Ahmed, Md Azharuddin [University of Calcutta, Department of Physics (India)

    2016-05-15

    Cobalt nanoparticles prepared at room temperature from cobalt sulphate and tetrabutyl ammonium bromide as surfactant have been found to be effective oxidation catalysts. Palladium and platinum nanoparticles (average size 4–6 nm) can also be prepared from PdCl{sub 2} and K{sub 2}PtCl{sub 4}, respectively, using the same surfactant but require high temperature (~120 °C) and much longer preparation time. Agglomeration of nanoparticles prepared from metals like palladium and platinum in common solvents, however, restricts their use as catalysts. It is therefore our endeavour to find the right combination of catalyst and solvent that will be beneficial from industrial point of view. Magnetic property measurement of cobalt nanoclusters was made using SQUID to identify their reusability nature. Herein, we report the use of cobalt nanoparticles (average size 90–95 nm) in dichloromethane solvent as effective reusable catalysts for aerobic oxidation of a variety of alcohols.Graphical Abstract.

  9. Fragrance material review on benzyl alcohol.

    Scognamiglio, J; Jones, L; Vitale, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of benzyl alcohol when used as a fragrance ingredient is presented. Benzyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for benzyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, genotoxicity, and carcinogenicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. CORONA-INDUCED PHOTOXIDATION OF ALCOHOLS AND HYDROCARBONS OVER TIO2 IN THE ABSENCE OF A UV LIGHT SOURCE - A NOVEL AND ENVIRONMENTALLY FRIENDLY METHOD FOR OXIDATION

    Corona-induced photooxidation is a novel oxidation methodology for the efficient oxidation of alcohols and hydrocarbons utilizing the advantage of both the high oxidizing power of ozone formed in the reactor as well as the photooxidation capability of the UV light generated durin...

  11. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst

    Nielsen, Inger Staunstrup; Taarning, Esben; Egeblad, Kresten

    2007-01-01

    Methyl esters can be produced in high yield by oxidising methanolic solutions of primary alcohols with dioxygen over a heterogeneous gold catalyst. The versatility of this new methodology is demonstrated by the fact that alkylic, benzylic and allylic alcohols, as well as alcohols containing...

  12. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lee, Kuo-Tong; Chien, Wen-Chen; Lin, Che-Tseng; Huang, Ching-An

    The novel poly(vinyl alcohol)/titanium oxide (PVA/TiO 2) composite polymer membrane was prepared using a solution casting method. The characteristic properties of the PVA/TiO 2 composite polymer membrane were investigated by thermal gravimetric analysis (TGA), a scanning electron microscopy (SEM), a micro-Raman spectroscopy, a methanol permeability measurement and the AC impedance method. An alkaline direct alcohol (methanol, ethanol and isopropanol) fuel cell (DAFC), consisting of an air cathode based on MnO 2/C inks, an anode based on PtRu (1:1) black and a PVA/TiO 2 composite polymer membrane, was assembled and examined for the first time. The results indicate that the alkaline DAFC comprised of a cheap, non-perfluorinated PVA/TiO 2 composite polymer membrane shows an improved electrochemical performances. The maximum power densities of alkaline DAFCs with 4 M KOH + 2 M CH 3OH, 2 M C 2H 5OH and 2 M isopropanol (IPA) solutions at room temperature and ambient air are 9.25, 8.00, and 5.45 mW cm -2, respectively. As a result, methanol shows the highest maximum power density among three alcohols. The PVA/TiO 2 composite polymer membrane with the permeability values in the order of 10 -7 to 10 -8 cm 2 s -1 is a potential candidate for use on alkaline DAFCs.

  13. Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria

    Beier, Matthias Josef; Hansen, Thomas Willum; Grunwaldt, Jan-Dierk

    2009-01-01

    simultaneously. When a high catalytic conversion (>30% over 2 h) was found the number of catalyst components was reduced in the following tests. Thereby, a collaborative effect between a physical mixture of ceria nanoparticles and silver-impregnated silica (10 wt.% Ag–SiO2) was found. The catalytic activity...... by in situ XAS experiments. Oxygen species incorporated in the silver lattice appear to be important for the catalytic oxidation of the alcohol for which a preliminary mechanism is presented. The application of the catalyst was extended to the oxidation of a wide range of primary and secondary alcohols....... Compared to palladium and gold catalysts, the new silver catalyst performed similarly or even superior in the presence of CeO2. In addition, the presence of ceria increased the catalytic activity of all investigated catalysts....

  14. Molecular origin of the selectivity differences between palladium and gold-palladium in benzyl alcohol oxidation: Different oxygen adsorption properties

    Savara, Aditya Ashi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chan-Thaw, Carine E. [Univ. degli Studi di Milano, Milano (Italy); Sutton, Jonathan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Di [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Prati, Laura [Univ. degli Studi di Milano, Milano (Italy); Villa, Alberto [Univ. degli Studi di Milano, Milano (Italy)

    2016-12-22

    The same mechanism and microkinetic model used for benzyl alcohol oxidation over Pd/C was shown to apply to benzyl alcohol oxidation over AuPd/C. Almost all of the selectivity differences could be explained by a decrease in oxygen adsorption on AuPd. After isolating oxygen adsorption as being the origin of the selectivity differences, density functional theory was used to investigate the oxygen adsorption properties of a pure Pd surface, a pure Au surface, and an alloyed AuPd surface. Finally, the calculations showed that Au–Pd alloying decreased the oxygen adsorption properties relative to pure Pd, which explained the selectivity differences, consistent with the microkinetic modeling.

  15. Ameliorative effects of 5-hydroxymethyl-2-furfural (5-HMF) from Schisandra chinensis on alcoholic liver oxidative injury in mice.

    Li, Wei; Qu, Xin-Nan; Han, Ye; Zheng, Si-Wen; Wang, Jia; Wang, Ying-Ping

    2015-01-22

    The aim of this paper is to evaluate the protective effect of 5-hydroxymethyl-2-furfural (5-HMF) on acute alcohol-induced liver oxidative injury in mice. 5-HMF, a maillard reaction product, was isolated from the fruits of Schisandra chinensis for animal experiments. Experimental ICR mice were pretreated with different doses of 5-HMF (7.5, 15, and 30 mg/kg) for seven days by gavage feeding. Biochemical markers and enzymatic antioxidants from serum and liver tissue were examined. Our results showed that the activities of ALT (alanine aminotransferase), AST (aspartate transaminase), TC (total cholesterol), TG (triglyceride), L-DLC (low density lipoprotein) in serum and the levels of MDA (malondialdehyde) in liver tissue, decreased significantly (p < 0.05) in the 5-HMF-treated group compared with the alcohol group. On the contrary, enzymatic antioxidants CAT (catalase), GSH-Px (glutathione peroxidase), and GSH SOD (superoxide dismutase) were markedly elevated in liver tissue treated with 5-HMF (p < 0.05). Furthermore, the hepatic levels of pro-inflammatory response marker tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were significantly suppressed (p < 0.05). Histopathological examination revealed that 5-HMF (30 mg/kg) pretreatment noticeably prevented alcohol-induced hepatocyte apoptosis and fatty degeneration. It is suggested that the hepatoprotective effects exhibited by 5-HMF on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  16. Ameliorative Effects of 5-Hydroxymethyl-2-furfural (5-HMF from Schisandra chinensis on Alcoholic Liver Oxidative Injury in Mice

    Wei Li

    2015-01-01

    Full Text Available The aim of this paper is to evaluate the protective effect of 5-hydroxymethyl-2-furfural (5-HMF on acute alcohol-induced liver oxidative injury in mice. 5-HMF, a maillard reaction product, was isolated from the fruits of Schisandra chinensis for animal experiments. Experimental ICR mice were pretreated with different doses of 5-HMF (7.5, 15, and 30 mg/kg for seven days by gavage feeding. Biochemical markers and enzymatic antioxidants from serum and liver tissue were examined. Our results showed that the activities of ALT (alanine aminotransferase, AST (aspartate transaminase, TC (total cholesterol, TG (triglyceride, L-DLC (low density lipoprotein in serum and the levels of MDA (malondialdehyde in liver tissue, decreased significantly (p < 0.05 in the 5-HMF-treated group compared with the alcohol group. On the contrary, enzymatic antioxidants CAT (catalase, GSH-Px (glutathione peroxidase, and GSH SOD (superoxide dismutase were markedly elevated in liver tissue treated with 5-HMF (p < 0.05. Furthermore, the hepatic levels of pro-inflammatory response marker tumor necrosis factor-alpha (TNF-α and interleukin-1β (IL-1β were significantly suppressed (p < 0.05. Histopathological examination revealed that 5-HMF (30 mg/kg pretreatment noticeably prevented alcohol-induced hepatocyte apoptosis and fatty degeneration. It is suggested that the hepatoprotective effects exhibited by 5-HMF on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  17. Thermal, mechanical and dielectric properties of poly(vinyl alcohol)/graphene oxide composites

    Rathod, Sunil G.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Sheela, T.; Naik, Jagadish

    2014-04-01

    In this work the composite films of poly(vinyl alcohol) (PVA) doped with functionalized Graphene Oxide (GO) were prepared by solution casting method. The films were characterized using FT-IR, DSC, XRD, mechanical properties and dielectric studies at room temperature. FTIR spectra shows the formation of hydrogen bonds between hydroxyl groups of PVA and the hydroxy groups of GO. The DSC thermograms shows the addition of GO to PVA greatly improves the thermal stability of the composites. XRD patterns shows that the GO exfoliated and uniformly dispersed in PVA matrix. Mechanical properties are significantly improved in PVA/GO composites. The tensile strength increased from 8.2 to 13.7 MPa and the Young's modulus increased from 7.5 to 24.8 MPa for 5 wt% GO doped sample. Dielectric spectroscopy showed a highest dielectric constant for the 5 wt% GO doped PVA films. This work provides a potential design strategy on PVA/GO composite, which would lead to higher-performance, flexible dielectric materials, high charge-storage devices.

  18. Preparation and Characterization of Promoted Fe-V/SiO2 Nanocatalysts for Oxidation of Alcohols

    Hamid Reza Rafiee

    2013-01-01

    Full Text Available A series of SiO2 supported iron-vanadium catalysts were prepared using sol-gel and wetness impregnation methods. This research investigates the effects of V and Cu on the structure and morphology of Fe/SiO2 catalysts. The SiO2 supported catalyst with the highest specific surface area and pore volume was obtained when it is containing 40 wt.% Fe, 15 wt.% V, and 2 wt.% Cu. Characterization of prepared catalysts was carried out by powder X-ray diffraction (XRD, scanning electron microcopy (SEM, vibrating sample magnetometry (VSM, Fourier transform infrared (FT-IR spectrometry, temperature program reduction (TPR, N2 physisorption, and thermal analysis methods such as thermal gravimetric analysis (TGA and differential scanning calorimetry (DSC. The Fe-V/SiO2 catalyst promoted with 2 wt.% of Cu exhibited typical ferromagnetic behavior at room temperature with a saturation magnetization value of 11.44 emu/g. This character of catalyst indicated great potential for application in magnetic separation technologies. The prepared catalyst was found to act as an efficient recoverable nanocatalyst for oxidation reaction of alcohols to aldehydes and ketones in aqueous media under mild condition. Moreover, the catalyst was reused five times without significant degradation in catalytic activity and performance.

  19. Fabrication of multicolor fluorescent polyvinyl alcohol through surface modification with conjugated polymers by oxidative polymerization

    Hai, Thien An Phung; Sugimoto, Ryuichi

    2018-06-01

    A simple method for the preparation of multicolor polyvinyl alcohol (PVA) by chemical oxidative polymerization is introduced. The PVA surface was successfully modified with conjugated polymers composed of 3-hexylthiophene (3HT) and fluorene (F). The incorporation of the 3HT/F copolymer onto the PVA surface was confirmed by Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-vis), and fluorescence spectroscopies, X-ray diffraction (XRD), as well as thermogravimetric analysis (TGA), contact angle, and field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis. Different 3HT/F ratios on the PVA surface result in optical properties that include multicolor-emission and absorption behavior. The color of the resultant (3HT/F)-g-PVA shifted from red to blue, and the quantum yield increased with increasing F content. The surface hydrophobicity of the modified PVA increased significantly through grafting with the conjugated polymers, with the water contact angle increasing by 30° compared to pristine PVA. The PVA XRD peaks were less intense following surface modification. Thermogravimetric analyses reveal that the thermal stability of the PVA decreases as a result of grafting with the 3HT/F copolymers.

  20. Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts.

    Hari, Durga Prasad; Schroll, Peter; König, Burkhard

    2012-02-15

    Visible light along with 1 mol % eosin Y catalyzes the direct C-H bond arylation of heteroarenes with aryl diazonium salts by a photoredox process. We have investigated the scope of the reaction for several aryl diazonium salts and heteroarenes. The general and easy procedure provides a transition-metal-free alternative for the formation of aryl-heteroaryl bonds.

  1. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1

    Moyer, Benjamin J. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Rojas, Itzel Y. [Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Department of Pharmacology & Toxicology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Kerley-Hamilton, Joanna S. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Hazlett, Haley F. [Department of Pharmacology & Toxicology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Department of Immunology & Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Nemani, Krishnamurthy V. [Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Trask, Heidi W.; West, Rachel J. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Lupien, Leslie E. [Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Collins, Alan J. [Department of Immunology & Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); and others

    2016-06-01

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding

  2. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1

    Moyer, Benjamin J.; Rojas, Itzel Y.; Kerley-Hamilton, Joanna S.; Hazlett, Haley F.; Nemani, Krishnamurthy V.; Trask, Heidi W.; West, Rachel J.; Lupien, Leslie E.; Collins, Alan J.

    2016-01-01

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding

  3. Effects of alcohol consumption on biomarkers of oxidative damage to DNA and lipids in ethanol-fed pigs.

    Petitpas, F; Sichel, F; Hébert, B; Lagadu, S; Beljean, M; Pottier, D; Laurentie, M; Prevost, V

    2013-03-01

    Chronic alcohol consumption is known to result in tissue injury, particularly in the liver, and is considered a major risk factor for cancers of the upper respiratory tract. Here we assessed the oxidative effects of subchronic ethanol consumption on DNA and lipids by measuring biomarkers 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and malondialdehyde (MDA), respectively. Physiological responses of pigs (n = 4) administered ethanol in drinking water for 39 days were compared with those of water-fed pigs (n = 4). Alcoholisation resulted in serum ethanol concentration of 1.90 g L(-1) and in a moderate but significant increase in alanine aminotransferase activity, an index of liver injury. However, between the alcoholised and control groups there were no significant differences in the levels of 8-oxodG (8-oxodG per 10(6) 2'deoxyguanosine) from leucocytes (2.52 ± 0.42 Vs 2.39 ± 0.34) or from target organs, liver, cardia and oesophagus. Serum MDA levels were also similar in ethanol-fed pigs (0.33 ± 0.04 μM) and controls (0.28 ± 0.03 μM). Interestingly, levels of 8-oxodG in cardia were positively correlated with those in oesophagus (Spearman correlation coefficient R = 1, P alcohol consumption may not cause oxidative damage to DNA and lipids as measured by 8-oxodG and MDA, respectively. The duration of alcoholisation and the potential alcohol-induced nutritional deficiency may be critical determinants of ethanol toxicity. Relevant biomarkers, such as factors involved in sensitization to ethanol-induced oxidative stress are required to better elucidate the relationship between alcohol consumption, oxidative stress and carcinogenesis. Copyright © 2011 Elsevier GmbH. All rights reserved.

  4. Thiol dioxygenase turnover yields benzothiazole products from 2-mercaptoaniline and O2-dependent oxidation of primary alcohols.

    Morrow, William P; Sardar, Sinjinee; Thapa, Pawan; Hossain, Mohammad S; Foss, Frank W; Pierce, Brad S

    2017-10-01

    Thiol dioxygenases are non-heme mononuclear iron enzymes that catalyze the O 2 -dependent oxidation of free thiols (-SH) to produce the corresponding sulfinic acid (-SO 2 - ). Previous chemical rescue studies identified a putative Fe III -O 2 - intermediate that precedes substrate oxidation in Mus musculus cysteine dioxygenase (Mm CDO). Given that a similar reactive intermediate has been identified in the extradiol dioxygenase 2, 3-HCPD, it is conceivable that these enzymes share other mechanistic features with regard to substrate oxidation. To explore this possibility, enzymatic reactions with Mm CDO (as well as the bacterial 3-mercaptopropionic acid dioxygenase, Av MDO) were performed using a substrate analogue (2-mercaptoaniline, 2ma). This aromatic thiol closely approximates the catecholic substrate of homoprotocatechuate of 2, 3-HPCD while maintaining the 2-carbon thiol-amine separation preferred by Mm CDO. Remarkably, both enzymes exhibit 2ma-gated O 2 -consumption; however, none of the expected products for thiol dioxygenase or intra/extradiol dioxygenase reactions were observed. Instead, benzothiazoles are produced by the condensation of 2ma with aldehydes formed by an off-pathway oxidation of primary alcohols added to aqueous reactions to solubilize the substrate. The observed oxidation of 1º-alcohols in 2ma-reactions is consistent with the formation of a high-valent intermediate similar to what has been reported for cytochrome P450 and mononuclear iron model complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.

    Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping

    2015-09-07

    Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Trace Level Determination of Mesityl Oxide and Diacetone Alcohol in Atazanavir Sulfate Drug Substance by a Gas Chromatography Method.

    Raju, K V S N; Pavan Kumar, K S R; Siva Krishna, N; Madhava Reddy, P; Sreenivas, N; Kumar Sharma, Hemant; Himabindu, G; Annapurna, N

    2016-01-01

    A capillary gas chromatography method with a short run time, using a flame ionization detector, has been developed for the quantitative determination of trace level analysis of mesityl oxide and diacetone alcohol in the atazanavir sulfate drug substance. The chromatographic method was achieved on a fused silica capillary column coated with 5% diphenyl and 95% dimethyl polysiloxane stationary phase (Rtx-5, 30 m x 0.53 mm x 5.0 µm). The run time was 20 min employing programmed temperature with a split mode (1:5) and was validated for specificity, sensitivity, precision, linearity, and accuracy. The detection and quantitation limits obtained for mesityl oxide and diacetone alcohol were 5 µg/g and 10 µg/g, respectively, for both of the analytes. The method was found to be linear in the range between 10 µg/g and 150 µg/g with a correlation coefficient greater than 0.999, and the average recoveries obtained in atazanavir sulfate were between 102.0% and 103.7%, respectively, for mesityl oxide and diacetone alcohol. The developed method was found to be robust and rugged. The detailed experimental results are discussed in this research paper.

  7. Synthesis of 1,3,5-triazines via Cu(OAc)2-catalyzed aerobic oxidative coupling of alcohols and amidine hydrochlorides.

    You, Qing; Wang, Fei; Wu, Chaoting; Shi, Tianchao; Min, Dewen; Chen, Huajun; Zhang, Wu

    2015-06-28

    Cu(OAc)2 was found to be an efficient catalyst for dehydrogenative synthesis of 1,3,5-triazine derivatives via oxidative coupling reaction of amidine hydrochlorides and alcohols in air. Both aromatic and aliphatic alcohols can be involved in the reaction and thirty-three products were obtained with good to excellent yields. Moreover, the use of a ligand, strong base and organic oxidant is unnecessary.

  8. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie

    2012-01-01

    Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol.......Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol....

  9. Nrf2-mediated antioxidant response by ethanolic extract of Sida cordifolia provides protection against alcohol-induced oxidative stress in liver by upregulation of glutathione metabolism.

    Rejitha, S; Prathibha, P; Indira, M

    2015-03-01

    Objective The study aimed to evaluate the antioxidant property of ethanolic extract of Sida cordifolia (SAE) on alcohol-induced oxidative stress and to elucidate its mechanism of action. Methods Male albino rats of the Sprague-Dawley strain were grouped into four: (1) control, (2) alcohol (4 g/kg body weight), (3) SAE (50 mg/100 g body weight), and (4) alcohol (4 g/kg body weight) + SAE (50 mg/100 g body weight). Alcohol and SAE were given orally each day by gastric intubation. The duration of treatment was 90 days. Results The activities of toxicity markers in liver and serum increased significantly in alcohol-treated rats and to a lesser extent in the group administered SAE + alcohol. The activity of alcohol dehydrogenase and the reactive oxygen species level were increased significantly in alcohol-treated rats but attenuated in the SAE co-administered group. Oxidative stress was increased in alcohol-treated rats as evidenced by the lowered activities of antioxidant enzymes, decreased level of reduced glutathione (GSH), increased lipid peroxidation products, and decreased expression of γ-glutamyl cysteine synthase in liver. The co-administration of SAE with alcohol almost reversed these changes. The activity of glutathione-S-transferase and translocation of Nrf2 from cytosol to nucleus in the liver was increased in both the alcohol and alcohol + SAE groups, but the maximum changes were observed in the latter group. Discussion The SAE most likely elicits its antioxidant potential by reducing oxidative stress, enhancing the translocation of Nrf2 to nucleus and thereby regulating glutathione metabolism, leading to enhanced GSH content.

  10. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.

    Lopes Ferreira, Nicolas; Mathis, Hugues; Labbé, Diane; Monot, Frédéric; Greer, Charles W; Fayolle-Guichard, Françoise

    2007-06-01

    Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.

  11. Graphene decorated with Pd nanoparticles via electrostatic self-assembly: A highly active alcohol oxidation electrocatalyst

    Guo, Shujing; Li, Shuwen; Hu, Tengyue; Gou, Galian; Ren, Ren; Huang, Jingwei; Xie, Miao; Jin, Jun; Ma, Jiantai

    2013-01-01

    Graphical abstract: Novel perylene-connected ionic liquids (PTCDI-ILs) have been successfully synthesized in a convenient approach and used as linkers for three-component Pd/PTCDI-ILs/GS heterostructure when non-covalently attached on graphene. The obtained nano-hybrids represented high electrochemical surface area and enhanced electrocatalytic activity for DAFCs in alkaline media. -- Highlights: • A novel preparation of three-component Pd/ionic liquids/graphene heterostructure has been constructed. • The Pd-based nano-catalysts have relatively low price and higher resistance to CO poisoning when compared with Pt-based catalysts. • The nano-catalysts represent high electrochemical surface area and enhanced electrocatalytic activity for DAFCs in alkaline media. -- Abstract: Graphene nanosheets (GS) are non-covalently functionalized with novel N,N-bis-(n-butylimidazolium bromide salt)-3,4,9,10-perylene tetracarboxylic acid diimide (PTCDI-ILs) via the π–π stacking, and then employed as the support of Pd nanoparticles. The negatively charged Pd precursors are adsorbed on positively charged imidazolium ring moiety of PTCDI-ILs wrapping GS surface via electrostatic self-assembly and then in situ reduced by NaBH 4 . X-ray diffraction and transmission electron microscope images reveal that Pd nanoparticles with an average size of 2.7 nm are uniformly dispersed on GS surface. The Pd/PTCDI-ILs/GS exhibits unexpectedly high activity toward alcohol oxidation reaction, which can be attributed to the large electrochemical surface area of Pd nanoparticles. It also shows enhanced electrochemical stability due to the structural integrity of PTCDI-ILs/GS. This provides a facile approach to synthesize GS-based nanoelectrocatalysts

  12. Electrochemical and Electron Paramagnetic Resonance Study of the Mechanism of Oxidation of Phenazine-di-N-oxide in the Presence of Isopropyl alcohol at Glassy Carbon and Single-Walled Carbon Nanotube Electrodes

    Kulakovskaya, S.I.; Kulikov, A.V.; Sviridova, L.N.; Stenina, E.V.

    2014-01-01

    Graphical abstract: - Highlights: • The mechanism of oxidation of phenazine-di-N-oxide in the presence of isopropyl alcohol was studied. • The results are explained in terms of the E 1 C 1 E 2 C 2 mechanism of the two-stage electrode process. • The total two-electron catalytic oxidation of i-PrOH in the complex with the phenazine-di-N-oxide radical cation was assumed to occur. - Abstract: The mechanism of oxidation of phenazine-di-N-oxide in the presence of isopropyl alcohol was studied by cyclic voltammetry at glassy carbon (GC) and single-walled carbon nanotubes (SWCNT) electrodes in 0.1 M LiClO 4 solutions in acetonitrile. The adsorption of phenazine-di-N-oxide at SWCNT electrode in 0.1 M LiClO 4 solution in acetonitrile was investigated by measurement of the dependence of the differential double layer capacitance of the electrode C on potential E. The effect of isopropyl alcohol on the shape of cyclic voltammograms (CVs) of phenazine-di-N-oxide and the intensity of Electron Paramagnetic Resonance (EPR) signal of its radical cation was investigated. The catalytic currents were recorded at the oxidation of phenazine-di-N-oxide at SWCNT and GC electrodes in the presence of isopropyl alcohol. The results were explained in terms of the E 1 C 1 E 2 C 2 mechanism of two-stage electrode process characterized by catalytic current recorded at the second electrode stage. The overall two-electron catalytic oxidation of isopropyl alcohol in complex with the phenazine-di-N-oxide radical cation was assumed to occur. It was shown that SWCNT electrodes can be used in the electrocatalytic oxidation of organic compounds in the presence of electrochemically generated phenazine-di-N-oxide radical cation

  13. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    Alfonso Díaz

    2016-01-01

    Full Text Available Energy drinks (EDs are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx and hippocampus (Hp of adult rats (90 days old. Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats.

  14. Serum Levels of Oxidative Stress Markers in Patients with Type 2 Diabetes Mellitus and Non-alcoholic Steatohepatitis.

    Casoinic, F; Sampelean, D; Buzoianu, Anca D; Hancu, N; Baston, Dorina

    2016-12-01

    Oxidative stress is one of the key mechanisms responsible for disease progression in non-alcoholic fatty liver disease. The aim of this study was to evaluate the serum levels of oxidative stress markers in patients with type 2 diabetes mellitus (DMT2) and non-alcoholic steatohepatitis (NASH) and test their relationships with clinical and biochemical patient characteristics, compared to patients with DMT2 without non-alcoholic fatty liver disease (NAFLD), and controls. In all, 60 consecutive patients with DMT2 and NASH, 55 with DMT2 without NAFLD, and 50 age-and-gender-matched healthy subjects participated in the study. The serum levels of protein carbonyls and 8-isoprostane were determined by ELISA methods, while the serum levels of malondialdehyde (MDA) were detected by means of the spectrophotometric method. Clinical, demographic, and laboratory parameters were examined for all the subjects included in the study. Multivariate logistic regression was used to test the independent predictive factors in the relationships investigated here. Patients with DMT2 and NASH displayed significantly higher serum levels of protein carbonyls (1.112 ± 0.42 nmol/dL), MDA (6.181 ± 1.81 ng/mL), and 8-isoprostane (338.6 ± 98.5 pg/mL) compared to patients with DMT2 without NAFLD, and controls. Results of multivariate logistic regression analyses indicate that in patients with DMT2 and NASH, the serum levels of oxidative stress markers were independently and positively associated with: HbA1c, duration of diabetes, the UKPDS cardiovascular risk score (for protein carbonyls); age, LDL-cholesterol (for 8-isoprostane); and triglycerides serum levels (for MDA). Our findings indicate that the process of oxidative stress tends to increase in patients with DMT2 and NASH, compared to patients with DMT2 without NAFLD, and controls. This evidence suggests that an antioxidant therapy might prove useful in the treatment of patients with DMT2 and NASH.

  15. Preparation and characterization of electrocatalysts based on palladium for electro-oxidation of alcohols in alkaline medium

    Brandalise, Michele

    2012-01-01

    In this study Pd/C, Au/C, PdAu/C, PdAuPt/C, PdAuBi/C and PdAuIr/C electrocatalysts were prepared by the sodium borohydride reduction method for the electrochemical oxidation of methanol, ethanol and ethylene glycol. This methodology consists in mix an alkaline solution of sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. The electrocatalysts were characterized by energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry. The electrochemical oxidation of the alcohols was studied by chronoamperometry using a thin porous coating technique. The mechanism of ethanol electro-oxidation was studied by Fourier Transformed Infrared (FTIR) in situ. The most effective electrocatalysts were tested in alkaline single cells directly fed with methanol, ethanol or ethylene glycol. Preliminary studies showed that the most suitable atomic composition for preparing the ternary catalysts is 50:45:05. Electrochemical data in alkaline medium show that the electrocatalysts PdAuPt/C (50:45:05) showed the better activity for methanol electro oxidation, while PdAuIr/C was the most active for ethanol oxidation and PdAuBi/C (50:45:05) was the most effective for ethylene glycol oxidation in alkaline medium. These results show that the addition of gold in the composition of electrocatalysts increases their catalytic activities. The spectroelectrochemical FTIR in situ data permitted to conclude that C-C bond is not broken and the acetate is formed. (author)

  16. Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO3, –MnO2, and –Mn2O3 Nanocomposites for Aerial Oxidation of Alcohols

    Mohamed E. Assal

    2017-01-01

    Full Text Available Zinc oxide nanoparticles doped manganese carbonate catalysts [X% ZnOx–MnCO3] (where X = 0–7 were prepared via a facile and straightforward coprecipitation procedure, which upon different calcination treatments yields different manganese oxides, that is, [X% ZnOx–MnO2] and [X% ZnOx–Mn2O3]. A comparative catalytic study was conducted to evaluate the catalytic efficiency between carbonates and oxides for the selective oxidation of secondary alcohols to corresponding ketones using molecular oxygen as a green oxidizing agent without using any additives or bases. The prepared catalysts were characterized by different techniques such as SEM, EDX, XRD, TEM, TGA, BET, and FTIR spectroscopy. The 1% ZnOx–MnCO3 calcined at 300°C exhibited the best catalytic performance and possessed highest surface area, suggesting that the calcination temperature and surface area play a significant role in the alcohol oxidation. The 1% ZnOx–MnCO3 catalyst exhibited superior catalytic performance and selectivity in the aerial oxidation of 1-phenylethanol, where 100% alcohol conversion and more than 99% product selectivity were obtained in only 5 min with superior specific activity (48 mmol·g−1·h−1 and 390.6 turnover frequency (TOF. The specific activity obtained is the highest so far (to the best of our knowledge compared to the catalysts already reported in the literatures used for the oxidation of 1-phenylethanol. It was found that ZnOx nanoparticles play an essential role in enhancing the catalytic efficiency for the selective oxidation of alcohols. The scope of the oxidation process is extended to different types of alcohols. A variety of primary, benzylic, aliphatic, allylic, and heteroaromatic alcohols were selectively oxidized into their corresponding carbonyls with 100% convertibility without overoxidation to the carboxylic acids under base-free conditions.

  17. Catalytic activity of bimetallic AuPd alloys supported MgO and MnO2 nanostructures and their role in selective aerobic oxidation of alcohols

    Hamed Alshammari

    2017-10-01

    Full Text Available The use of metal oxides as supports for gold and palladium (Au-Pd nano alloys constitutes new horizons to improve catalysts materials for very important reactions. From the literatures, Pd-based bimetallic nanostructures have great properties and active catalytic performance. In this study, nanostructures of magnesium oxide (MgO and manganese dioxide (MnO₂ were synthesised and utilized as supports for Au-Pd nanoparticle catalysts. Gold and palladium were deposited on these supports using sol-immobilisation method. The MgO and MnO2 supported Au-Pd catalysts were evaluated for the oxidation of benzyl alcohol and 1-octanol, respectively. These catalysts were found to be more selective, active and reusable than the corresponding monometallic Au and Pd catalysts. The effect of base supports on the disproportionation reaction during the oxidation process was investigated. The results show that MgO stopped the disproportionation reaction for both aromatic and aliphatic alcohols while MnO₂ stopped it in the case of benzyl alcohol only. The outcomes of this work shed light on the selective aerobic oxidation of alcohols using bimetallic Au-Pd nanoalloys and pave the way to a complete investigation of more basic metal oxides for various aliphatic alcohols.

  18. In-situ reduced graphene oxide-polyvinyl alcohol composite coatings as protective layers on magnesium substrates

    Xingkai Zhang

    2017-06-01

    Full Text Available A simple and feasible method was developed to fabricate in-situ reduced graphene oxide-polyvinyl alcohol composite (GO-PVA coatings as protective layers on magnesium substrates. Polyvinyl alcohol was used as an in-situ reductant to transform GO into reduced GO. Contiguous and uniform GO-PVA coatings were prepared on magnesium substrates by dip-coating method, and were further thermally treated at 120 °C under ambient condition to obtain in-situ reduced GO-PVA coatings. Owing to the reducing effect of PVA, thermal treatment at low temperature led to effective in-situ reduction of GO as confirmed by XRD, Raman, FTIR and XPS tests. The corrosion current density of magnesium substrates in 3.5 wt% NaCl solution could be lowered to its 1/25 when using in-situ reduced GO-PVA coatings as protective layers.

  19. Tandem trifluoromethylthiolation/aryl migration of aryl alkynoates to trifluoromethylthiolated alkenes.

    Li, Huan; Liu, Shuai; Huang, Yangen; Xu, Xiu-Hua; Qing, Feng-Ling

    2017-09-12

    A trifluoromethylthiolation initiated aryl migration of aryl alkynoates was disclosed. This protocol employs AgSCF 3 as the SCF 3 source and MeCN as both the solvent and the hydrogen source. This provides a new access to trifluoromethylthiolated alkenes from readily available substrates and reagents.

  20. Solvent-free oxidation of secondary alcohols to carbonyl compounds by 1, 3-Dibromo-5, 5-Dimethylhydantoin (DBDMH) and 1, 3-Dichloro-5, 5-Dimethylhydantoin (DCDMH)

    Khazaei, Ardeshir; Abbasi, Fatemeh, E-mail: Khazaei_1326@yahoo.com, E-mail: fatemehabbasi807@gmail.com [Faculty of Chemistry, Department of Organic Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Kianiborazjani, Maryam [Faculty of Science, Department of Chemistry, Bushehr Payame Noor University (PNU), Bushehr (Iran, Islamic Republic of); Saednia, Shahnaz [Young Researchers Club, Toyserkan Branch, Islamic Azad University, Toyserkan (Iran, Islamic Republic of)

    2014-02-15

    Aldehydes and ketones are important intermediates, especially for the construction of carbon-skeletons. The oxidation of alcohols is so important that a large number of methods and reagents have been reported for this purpose. N-halo reagents are widely used in organic synthesis and as a continuation of our interest in the application of N-halo compounds in organic synthesis, dibromo dimethylhydantoin (DBDMH) and dichloro dimethylhydantoin (DCDMH) were used for the oxidation of alcohols and our ongoing work on development of highly efficient oxidation protocols. We observed the oxidation of secondary alcohols with stoichiometric amounts of DBDMH and DCDMH under solvent-free conditions in the range of temperature 70-80 deg C. (author)

  1. The photocatalyzed Meerwein arylation: classic reaction of aryl diazonium salts in a new light.

    Hari, Durga Prasad; König, Burkhard

    2013-04-26

    The use of diazonium salts for aryl radical generation and C-H arylation processes has been known since 1896 when Pschorr first used the reaction for intramolecular cyclizations. Meerwein developed it further in the early 1900s into a general arylation method. However, this reaction could not compete with the transition-metal-mediated formation of C(sp(2))-C(sp(2)) bonds. The replacement of the copper catalyst with iron and titanium compounds improved the situation, but the use of photocatalysis to induce the one-electron reduction and activation of the diazonium salts is even more advantageous. The first photocatalyzed Pschorr cyclization was published in 1984, and just last year a series of papers described applications of photocatalytic Meerwein arylations leading to aryl-alkene coupling products. In this Minireview we summarize the origins of this reaction and its scope and applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina

    Gómez-Villarraga, Fernando, E-mail: ferchogomezv@gmail.com; Radnik, Jörg; Martin, Andreas; Köckritz, Angela [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (Germany)

    2016-06-15

    Bimetallic nanoparticles (NPs) containing gold and various second metals (M = Pd, Pt, Cu, and Ag) supported on alumina (AuM/Alumina) were prepared using sodium citrate as stabilizer. In addition, supported monometallic Au/Alumina and Pd/Alumina were synthesized and tested to reveal synergistic effects in the catalytic evaluation of the bimetallic catalysts. The monometallic and bimetallic NPs revealed average sizes below 10 nm. The oxidation of benzyl alcohol with molecular oxygen as oxidant at mild conditions in liquid phase in the absence and presence (toluene or NaOH aqueous solution, 0.2 M) of a solvent was selected as test reaction to evaluate the catalytic properties of the above-mentioned solids. AuPd/Alumina exhibited the best catalytic activity among all bimetallic catalysts using toluene as solvent and under solvent-free conditions, respectively. In comparison to the monometallic catalysts, a synergistic effect with AuPd/Alumina was only evident in the solvent-free reaction. The AuPd/Alumina catalyst was able to oxidize benzyl alcohol selectively depending on the reaction medium into benzaldehyde (toluene or solvent-free) or benzoic acid (NaOH aqueous solution, 0.2 M). However, the catalyst deactivated due to particle growth of the bimetallic AuPd NPs by Ostwald ripening and leaching was not observed in the oxidation using toluene as solvent. The size of the catalytically active NPs, the metal composition of the particles, and the reaction conditions greatly influenced the catalytic oxidation results.Graphical Abstract.

  3. Mesoporous Silica Supported Au Nanoparticles with Controlled Size as Efficient Heterogeneous Catalyst for Aerobic Oxidation of Alcohols

    Xuefeng Chu

    2015-01-01

    Full Text Available A series of Au catalysts with different sizes were synthesized and employed on amine group functionalized ordered mesoporous silica solid supports as catalyst for the aerobic oxidation of various alcohols. The mesoporous silica of MCM-41 supported Au nanoparticles (Au-1 exhibited the smallest particle size at ~1.8 nm with superior catalytic activities owing to the confinement effect of the mesoporous channels. Au-1 catalyst is also very stable and reusable under aerobic condition. Therefore, this presented work would obviously provide us a platform for synthesizing more size-controlled metal catalysts to improve the catalytic performances.

  4. Combining Solvent Isotope Effects with Substrate Isotope Effects in Mechanistic Studies of Alcohol and Amine Oxidation by Enzymes*

    Fitzpatrick, Paul F.

    2014-01-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin-and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. PMID:25448013

  5. Anchoring Tri(8-QuinolinolatoIron Onto Sba-15 for Partial Oxidation of Benzyl Alcohol Using Water as the Solvent

    Yang Xiaoyuan

    2014-09-01

    Full Text Available Tri(8-quinolinolatoiron complex immobilized onto SBA-15 catalyst has been synthesized through a stepwise procedure. The characterization results indicated that the BET surface area, total pore volume and average pore width decrease after stepwise modification of SBA-15, while the structure keeps intact. Catalytic tests showed that FeQ3-SBA-15 catalyzes the oxidation reaction well with 34.8% conversion of benzyl alcohol and 74.7% selectivity to benzaldehyde when water is used as the solvent after 1 h reaction. In addition, homogeneous catalyst tri(8-quinolinolatoiron exhibits very bad catalytic behavior using water as the solvent.

  6. Association Between Insulin Resistance and Oxidative Stress Parameters in Obese Adolescents with Non-Alcoholic Fatty Liver Disease

    Pirgon, ?zg?r; Bilgin, H?seyin; ?ekmez, Ferhat; Kurku, H?seyin; D?ndar, Bumin Nuri

    2013-01-01

    Objective: Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in children. The aim of this study was to investigate the associations of oxidative stress with insulin resistance and metabolic risk factors in obese adolescents with NAFLD. Methods: Forty-six obese adolescents (23 girls and 23 boys, mean age: 12.8?2.2 years) and 29 control subjects (15 girls and 14 boys, mean age: 12.7?2.7 years) were enrolled in the study. The obese subjects were d...

  7. Physicochemical properties of manganese oxides obtained via the sol-gel method: The reduction of potassium permanganate by polyvinyl alcohol

    Ivanets, A. I.; Prozorovich, V. G.; Krivoshapkina, E. F.; Kuznetsova, T. F.; Krivoshapkin, P. V.; Katsoshvili, L. L.

    2017-08-01

    Experimental data on the sol-gel synthesis of manganese oxides formed during the reduction of potassium permanganate by polyvinyl alcohol in an aqueous medium are presented. The physicochemical properties of the obtained manganese oxide systems that depend on the conditions of the synthesis are studied by means of DTA, XRD, SEM, and the low temperature adsorption-desorption of nitrogen. It is found that the obtained samples have a mesoporous structure and predominantly consist of double potassium-manganese oxide K2Mn4O8 with a tunnel structure and impurities of oxides such as α-MnO2, MnO, α-Mn2O3, and Mn5O8. It is shown that the proposed method of synthesis allows us to regulate the size and volume of mesopores and, to a lesser extent, the texture of the obtained oxides, which can be considered promising sorbents for the selective extraction of strontium and cesium ions from multicomponent aqueous solutions.

  8. Photocatalytic Arylation of Alkenes, Alkynes and Enones with Diazonium Salts

    Schroll, Peter; Hari, Durga Prasad; König, Burkhard

    2012-01-01

    Teaching old dogs new tricks: Visible light photoredox catalysis improves the classic Meerwein arylation protocol significantly and allows the light-controlled arylation of alkenes, alkynes and enones by diazonium salts.

  9. Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants

    Moon, Young-E; Jung, Gowun; Yun, Jumi; Kim, Hyung-Il

    2013-01-01

    Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO 2 and graphene oxide. -- Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO 2 /graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO 2 was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. -- Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 nanocomposite hydrogels. Both TiO 2 and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO 2 and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water

  10. Fragrance material review on p-isopropylbenzyl alcohol.

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of p-isopropylbenzyl alcohol when used as a fragrance ingredient is presented. p-Isopropylbenzyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for p-isopropylbenzyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, skin sensitization, toxicokinetics, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Fragrance material review on α-methylbenzyl alcohol.

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of α-methylbenzyl alcohol when used as a fragrance ingredient is presented. α-Methylbenzyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a secondary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for α-methylbenzyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, toxicokinetics, repeated dose, genotoxicity, and carcinogenicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Fragrance material review on α-isobutylphenethyl alcohol.

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of α-isobutylphenethyl alcohol when used as a fragrance ingredient is presented. α-Isobutylphenethyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a secondary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for α-isobutylphenethyl alcohol were evaluated then summarized and includes physical properties, skin sensitization, and repeated dose data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Fragrance material review on α-propylphenethyl alcohol.

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of α-propylphenethyl alcohol when used as a fragrance ingredient is presented. α-Propylphenethyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a secondary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for α-propylphenethyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Fragrance material review on α,α,4-trimethylphenethyl alcohol.

    Scognamiglio, J; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of α,α,4-trimethylphenethyl alcohol when used as a fragrance ingredient is presented. α,α,4-Trimethylphenethyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a tertiary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for α,α,4-trimethylphenethyl alcohol were evaluated then summarized and includes physical properties, skin irritation, mucous membrane (eye) irritation, and skin sensitization data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Fragrance material review on p-tolyl alcohol.

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of p-tolyl alcohol when used as a fragrance ingredient is presented. p-Tolyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for p-tolyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Fragrance material review on p-α,α-trimethylbenzyl alcohol.

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of p-α,α-trimethylbenzyl alcohol when used as a fragrance ingredient is presented. p-α,α-Trimethylbenzyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a tertiary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for p-α,α-trimethylbenzyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitisation, toxicokinetics, and genotoxicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Transition metal-free oxidation of benzylic alcohols to carbonyl compounds by hydrogen peroxide in the presence of acidic silica gel

    Hossein Ghafuri

    2015-01-01

    Full Text Available Oxidation of alcohols to carbonyl compounds has become an important issue in the process industry as well as many other applications. In this method, various benzylic alcohols were successfully converted to corresponding aldehydes and ketones under transition metal-free condition using hydrogen peroxide in the presence of some amount of catalytic acidic silica gel. Silica gel is inexpensive and available. One of the most important features of this method is its short reaction time.

  18. Biological processes for the production of aryl sulfates

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  19. Facile fabrication of graphene/nickel oxide composite with superior supercapacitance performance by using alcohols-reduced graphene as substrate

    Deng, Peng; Zhang, Haiyan; Chen, Yiming; Li, Zhenghui; Huang, Zhikun; Xu, Xingfa; Li, Yunyong; Shi, Zhicong

    2015-01-01

    Highlights: • G/NiO was synthesized by using alcohols-reduced graphene as substrate. • G/NiO presents a globule-on-sheet structure and reveals a synergistic effect. • G/NiO displays high specific capacitance and superior cycling stability. - Abstract: Graphene/nickel oxide composite (G/NiO) was synthesized through a facile hydrothermal method and subsequently microwave thermal treatment by using alcohols-reduced graphene as substrate. The as-prepared G/NiO was characterized by X-ray diffraction, Raman spectra, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The results indicate that the graphene oxide has been successfully reduced to graphene, and NiO nanoparticles are homogeneous anchored on the surface of graphene, forming a globule-on-sheet structure. The loading content of NiO nanoparticles anchoring on the surface of graphene nanosheets can be controlled by adjusting the hydrothermal temperature. The G/NiO displays superior electrochemical performance with a specific capacitance of 530 F g −1 at 1 A g −1 in 2 M of NaOH. After 5000 cycles, the supercapacitor still maintains a specific capacitance of 490 F g −1 (92% retention of the initial capacity), exhibiting excellent cycling stability

  20. SBA-15-functionalized 3-oxo-ABNO as recyclable catalyst for aerobic oxidation of alcohols under metal-free conditions.

    Karimi, Babak; Farhangi, Elham; Vali, Hojatollah; Vahdati, Saleh

    2014-09-01

    The nitroxyl radical 3-oxo-9-azabicyclo [3.3.1]nonane-N-oxyl (3-oxo-ABNO) has been prepared using a simple protocol. This organocatalyst is found to be an efficient catalyst for the aerobic oxidation of a wide variety of alcohols under metal-free conditions. In addition, the preparation and characterization of a supported version of 3-oxo-ABNO on ordered mesoporous silica SBA-15 (SABNO) is described for the first time. The catalyst has been characterized using several techniques including simultaneous thermal analysis (STA), transmission electron microscopy (TEM), and nitrogen sorption analysis. This catalyst exhibits catalytic performance comparable to its homogeneous analogue and much superior catalytic activity in comparison with (2,2,6,6-tetramethylpiperidin-1-yl)oxy (TEMPO) for the aerobic oxidation of almost the same range of alcohols under identical reaction conditions. It is also found that SABNO can be conveniently recovered and reused at least 12 times without significant effect on its catalytic efficiency. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis and preliminary evaluation of antinociceptive activity of novel isoxazolyl-aryl-hydrazones; Sintese e avaliacao preliminar de atividade antinociceptiva de novas isoxazolil-aril-hidrazonas

    Reis, Silvio Leandro Goncalves Bomfim; Almeida, Valderes Moraes de; Almeida, Gleybson Correia de; Boaviagem, Karinna Moura; Mendes, Charles Christophe du Barriere; Faria, Antonio Rodolfo de, E-mail: rodolfo@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Ciencias Farmaceuticas; Goes, Alexandre Jose da Silva; Magalhaes, Laudelina Rodrigues; Silva, Teresinha Goncalves da [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Antibioticos

    2011-07-01

    New 2-isoxazoline aldehydes were synthesized, in good yields, from cycloadduct of the 1,3-dipolar cycloaddition reaction between endocyclic enecarbamate and carboethoxyformonitrile oxide (CEFNO). Condensation of these 2-isoxazoline aldehydes with several phenyl-hydrazines produced new isoxazolyl-aryl-hydrazones, which showed low toxicity and excellent antinociceptive activity, when compared to dipyrone. The antinociceptive activity of isoxazolyl-aryl-hydrazones was performed using the acetic acid-induced mice abdominal constrictions test. (author)

  2. Physicochemical properties of manganese dioxide synthesized using C2–C5 alcohols as reducing agents and their catalytic activities for CO oxidation

    Lee, Young-Ho

    2015-09-26

    MnO2 catalysts were synthesized in an aqueous solution of KMnO4 and C2–C5 alcohols using a simple redox method at room temperature. The crystalline structure of all samples was δ-MnO2 after being calcined at 300 °C. However, other physicochemical properties of the samples varied depending on the symmetry of the alcohols used. For the catalytic oxidation of CO, MnO2 catalysts prepared with 1° alcohols performed better than the samples prepared in 2° alcohols. Catalytic activities were correlated to the quantity of labile oxygen species of the catalysts. In CO-TPD analysis, the relative area of desorbed radical dotCO2, which is the product of the reaction between adsorbed CO and lattice oxygen species, becomes larger for MnO2 prepared with 1° alcohols than with 2° alcohols. These results were primarily resulted from the innate hydrogen dissociation behavior of alcohol in solution. The pKa was found to be an important factor in determining the physicochemical properties and catalytic activity toward CO oxidation of MnO2.

  3. Physicochemical properties of manganese dioxide synthesized using C2–C5 alcohols as reducing agents and their catalytic activities for CO oxidation

    Lee, Young-Ho; Park, Jung-Hyun; Shin, Chae-Ho

    2015-01-01

    MnO2 catalysts were synthesized in an aqueous solution of KMnO4 and C2–C5 alcohols using a simple redox method at room temperature. The crystalline structure of all samples was δ-MnO2 after being calcined at 300 °C. However, other physicochemical properties of the samples varied depending on the symmetry of the alcohols used. For the catalytic oxidation of CO, MnO2 catalysts prepared with 1° alcohols performed better than the samples prepared in 2° alcohols. Catalytic activities were correlated to the quantity of labile oxygen species of the catalysts. In CO-TPD analysis, the relative area of desorbed radical dotCO2, which is the product of the reaction between adsorbed CO and lattice oxygen species, becomes larger for MnO2 prepared with 1° alcohols than with 2° alcohols. These results were primarily resulted from the innate hydrogen dissociation behavior of alcohol in solution. The pKa was found to be an important factor in determining the physicochemical properties and catalytic activity toward CO oxidation of MnO2.

  4. Protective effect of pineapple (Ananas cosmosus peel extract on alcohol-induced oxidative stress in brain tissues of male albino rats

    Ochuko L Erukainure

    2011-03-01

    Full Text Available Objective: To investigate the ability of pineapple peels to protect against alcohol-induced oxidative stress in brain tissues using male albino rat models. Methods: Response surface methodology (RSM was used to design a series of experiments to optimize treatment conditions with the aim of investigating the protective effect of pineapple peel extract on alcohol-induced oxidative stress in brain tissues. Oxidative stress was induced by oral administration of ethanol (20% w/v at a dosage of 5 mL/kg bw. The treatment lasted for 28 days. At the end of the treatment, the rats were fasted overnight and sacrificed by cervical dislocation. Tissue homogenates were used for the assessment of protein concentration, reduced glutathione (GSH content, catalase, and SOD. Results: Alcohol administration caused a significant decrease (P>0.05 in GSH level in the group which was only fed alcohol. Treatment with pineapple peel extracts caused increase in GSH level in alcohol fed groups. No significant difference (P<0.05 was observed in SOD levels of the negative control and group fed on only pineapple peel extract. Elevated level of catalase was observed in the negative control but pineapple peel extract significantly reduced the levels. Conclusions: This study indicates the protective effect of pineapple peel against alcoholinduced oxidative stress in brain tissues.

  5. Electronic structure and tautomerism of aryl ketones

    Novak, Igor; Klasinc, Leo; Šket, Boris; McGlynn, S.P.

    2015-01-01

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed

  6. Electronic structure and tautomerism of aryl ketones

    Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Klasinc, Leo, E-mail: klasinc@irb.hr [Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb (Croatia); Šket, Boris, E-mail: Boris.Sket@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 (Slovenia); McGlynn, S.P., E-mail: sean.mcglynn@chemgate.chem.lsu.edu [Louisiana State University, Baton Rouge, LA 70803 (United States)

    2015-07-15

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed.

  7. Oxidative mineralization and characterization of polyvinyl alcohol for compatibility with tank farm processing chemistry

    Oji, L.N.

    2000-01-04

    Polyvinyl alcohol (PVA) material has been evaluated for use as a cost-effective substitute for conventional cellulose-based disposal materials (decontamination mops and wipes), plastic bags, and disposable personal protection clothing, that are currently used at Savannah River Site. This study also provides process design criteria for ultraviolet/ultrasonic/hydrogen peroxide PVA reactor system.

  8. Enzymatic halogenation and oxidation using an alcohol oxidase-vanadium chloroperoxidase cascade

    But, Andrada; Noord, Van Aster; Poletto, Francesca; Sanders, Johan P.M.; Franssen, Maurice C.R.; Scott, Elinor L.

    2017-01-01

    The chemo-enzymatic cascade which combines alcohol oxidase from Hansenula polymorpha (AOXHp) with vanadium chloroperoxidase (VCPO), for the production of biobased nitriles from amino acids was investigated. In the first reaction H2O2 (and acetaldehyde) are generated from ethanol and oxygen by AOXHp.

  9. Oxidative mineralization and characterization of polyvinyl alcohol for compatibility with tank farm processing chemistry

    Oji, L.N.

    2000-01-01

    Polyvinyl alcohol (PVA) material has been evaluated for use as a cost-effective substitute for conventional cellulose-based disposal materials (decontamination mops and wipes), plastic bags, and disposable personal protection clothing, that are currently used at Savannah River Site. This study also provides process design criteria for ultraviolet/ultrasonic/hydrogen peroxide PVA reactor system

  10. Alcoholism and Alcohol Abuse

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... the liver, brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the ...

  11. Ligand-Controlled Chemoselective C(acyl)–O Bond vs C(aryl)–C Bond Activation of Aromatic Esters in Nickel Catalyzed C(sp2)–C(sp3) Cross-Couplings

    Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Srimontree, Watchara; Guo, Lin; Minenkov, Yury; Poater, Albert; Cavallo, Luigi; Rueping, Magnus

    2018-01-01

    step helped rationalizing this intriguing reaction chemoselectivity: whereas nickel complexes with bidentate ligands favor the C(aryl)-C bond cleavage in the oxidative addition step leading to the alkylated product via a decarbonylative process, nickel

  12. Effect of patchouli alcohol on the regulation of heat shock-induced oxidative stress in IEC-6 cells.

    Liu, Xiaoxi; Jiang, Linshu; Liu, Fenghua; Chen, Yuping; Xu, Lei; Li, Deyin; Ma, Yunfei; Li, Huanrong; Xu, Jianqin

    2016-08-01

    Purpose Patchouli alcohol (PA) is used to treat gastrointestinal dysfunction. The purpose of this study was to ascertain the function of PA in the regulated process of oxidative stress in rat intestinal epithelial cells (IEC-6). Materials and methods Oxidative stress was stimulated by exposing IEC-6 cells to heat shock (42 °C for 3 h). IEC-6 cells in treatment groups were pretreated with various concentrations of PA (10, 40, and 80 ng/mL) for 3 h before heat shock. Results Heat shock caused damage to the morphology of IEC-6 cells, and increased reactive oxygen species (ROS) level and malondialdehyde (MDA) content. Moreover, mRNA and protein expression by target genes related to oxidative stress in heat shock were also altered. Specifically, the mRNA expression by HSP70, HSP90, GSH-px, NRF2 nd HO-1were all increased, and Nrf2 and Keap1 protein expression were increased after heat shock. However, pretreatment with PA weakened the level of damage to the cellular morphology, and decreased the MDA content caused by heat shock, indicating PA had cytoprotective activities. Pretreatment with PA at high dose significantly increased generation of intracellular ROS. Compared with the heat shock group alone, PA pretreatment significantly decreased the mRNA expression by HSP70, HSP90, SOD, CAT, GSH-px, KEAP1 and HO-1. Furthermore, the high dose of PA significantly increased Nrf2 protein expression, while both the intermediate and high dose of PA significantly increased HO-1 protein expression. Conclusion Heat-shock-induced oxidative stress in IEC-6 cells, and PA could alleviate the Nrf2-Keap1 cellular oxidative stress responses.

  13. The effect of hydro alcoholic nettle (Urtica dioica) extract on oxidative stress in patients with type 2 diabetes: a randomized double-blind clinical trial.

    Namazi, N; Tarighat, A; Bahrami, A

    2012-01-15

    Diabetes type 2 is a metabolic disorder that characterized by hyperglycemia and insulin resistance. Hyperglycemia and impairment of oxidant/antioxidant balance, can increase oxidative stress and increase risk of cardiovascular disease. In the present study, Effects of hydro alcoholic extract of Nettle on oxidative stress in type 2 diabetes were evaluated. Fifty patients (27 men, 23 women) with type 2 diabetes patients were studied. They received 100 mg kg(-1) of nettle extract of body weight hydro alcoholic for 8 weeks. At the baseline and end of 8th weeks of intervention blood levels of oxidative stress markers were measured. Data was analyzed by SPSS version 18, p nettle has increasing effects on TAC and SOD in patients with type 2 diabetes without no changes in Malondialdehyde (MDA) and Glutathione Peroxides (GPX) after eight weeks intervention.

  14. TEMPO functionalized C{sub 60} fullerene deposited on gold surface for catalytic oxidation of selected alcohols

    Piotrowski, Piotr; Pawłowska, Joanna [University of Warsaw, Department of Chemistry (Poland); Sadło, Jarosław Grzegorz [Institute of Nuclear Chemistry and Technology (Poland); Bilewicz, Renata; Kaim, Andrzej, E-mail: akaim@chem.uw.edu.pl [University of Warsaw, Department of Chemistry (Poland)

    2017-05-15

    C{sub 60}TEMPO{sub 10} catalytic system linked to a microspherical gold support through a covalent S-Au bond was developed. The C{sub 60}TEMPO{sub 10}@Au composite catalyst had a particle size of 0.5–0.8 μm and was covered with the fullerenes derivative of 2.3 nm diameter bearing ten nitroxyl groups; the organic film showed up to 50 nm thickness. The catalytic composite allowed for the oxidation under mild conditions of various primary and secondary alcohols to the corresponding aldehyde and ketone analogues with efficiencies as high as 79–98%, thus giving values typical for homogeneous catalysis, while retaining at the same time all the advantages of heterogeneous catalysis, e.g., easy separation by filtration from the reaction mixture. The catalytic activity of the resulting system was studied by means of high pressure liquid chromatography. A redox mechanism was proposed for the process. In the catalytic cycle of the oxidation process, the TEMPO moiety was continuously regenerated in situ with an applied primary oxidant, for example, O{sub 2}/Fe{sup 3+} system. The new intermediate composite components and the final catalyst were characterized by various spectroscopic methods and thermogravimetry.

  15. Catalytic Asymmetric Alkylation of Aryl Heteroaryl Ketones

    Ortiz, Pablo; Harutyunyan, Syuzanna; del Hoyo, Ana

    Tertiary diarylmethanols are highly bioactive structural motifs. A new strategy to access chiral tertiary diarylmethanols through copper-catalyzed direct alkylation of (di)(hetero)aryl ketones by using Grignard reagents was developed. The low reactivity and the similarity of the enantiotopic faces

  16. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol with Recyclable Al-Zr@Fe Mixed Oxides

    He, Jian; Li, Hu; Riisager, Anders

    2017-01-01

    A series of magnetic, acid/base bifunctional Al–Zr@Fe3O4 catalysts were successfully prepared by a facile coprecipitation method and utilized in the catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as hydrogen source. The physicochemical properties and morpho......A series of magnetic, acid/base bifunctional Al–Zr@Fe3O4 catalysts were successfully prepared by a facile coprecipitation method and utilized in the catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as hydrogen source. The physicochemical properties...... with a Al3+/Zr4+/Fe3O4 molar ratio of 21:9:3 was found to exhibit a high furfuryl alcohol yield of 90.5 % in the CTH from furfural at 180 °C after 4 h with a comparatively low activation energy of 45.3 kJ mol−1, as calculated from the Arrhenius equation. Moreover, leaching and recyclability tests confirmed...

  17. Dehydration of alcohols over oxide catalysts: γ-eliminations -- stereospecificity and selectivity

    Siddhan, S.; Narayanan, K.

    1979-01-01

    The effect of alkali impregnation on alumina catalysts has been investigated by a physicochemical study of pure and modified alumina catalyst samples. The stereospecificity and selectivity of dehyration reactions, as well as the incidence of γ-elimination, have been studied by passing suitable substrates over catalyst samples. There was a change in the acidity-basicity balance in the sodium-impregnated alumina samples vis a vis pure alumina, while the surface area virtually remained constant. A higher propensity for γ-elimination was noticed with increases in basicity of the catalyst. 1-Olefin formation was found to be larger in more basic alumina- and thoria-catalyzed dehydration reactions. Thoria was strikingly unique in its capacity to dehydrate only alcohols, which have at least one β-hydrogen atom. Neopentyl alcohol could not be dehydrated even under drastic conditions. The modes of elimination in the case of alumina and thoria have been shown to be anti and syn, respectively, from the results of the dehydration studies with threo-3-methyl-2-pentanol. Studies of alcohols with proper β-substituents revealed that the cis preference is not universal in all catalytic eliminations but, in fact, depends on the mode of elimination. While cis-preference was noticed in alumina-catalyzed anti eliminations, trans-olefin was formed to a major amount in thoria-catalyzed syn-elimination processes. 9 figures, 13 tables

  18. Direct amination of secondary alcohols using Ammonia

    Pingen, D.L.L.; Müller, C.; Vogt, D.

    2010-01-01

    Hydrogen shuttle: For the first time secondary alcohols and ammonia can be directly converted into primary amines with a selectivity of up to 99¿% by using a simple ruthenium/phosphine catalyst (see scheme; R1, R2= alkyl, aryl, alkenyl; M=[Ru3(CO)12]; and L=phosphine ligand).

  19. Blood thiamine, zinc, selenium, lead and oxidative stress in a population of male and female alcoholics: clinical evidence and gender differences

    Rosanna Mancinelli

    2013-03-01

    Full Text Available INTRODUCTION. Long term alcohol abuse is associated with deficiencies in essential nutrients and minerals that can cause a variety of medical consequences including accumulation of toxic metals. Aim. The aim of this research is to get evidence-based data to evaluate alcohol damage and to optimize treatment. Thiamine and thiamine diphosphate (T/TDP, zinc (Zn, selenium (Se, lead (Pb and oxidative stress in terms of reactive oxygen metabolites (ROMs were examined in blood samples from 58 alcohol dependent patients (17 females and 41 males. RESULTS. T/TDP concentration in alcoholics resulted significantly lower than controls (p < 0.005 for both sexes. Serum Zn and Se did not significantly differ from reference values. Levels of blood Pb in alcoholics resulted significantly higher (p < 0.0001 than Italian reference values and were higher in females than in males. ROMs concentration was significantly higher than healthy population only in female abusers (p = 0.005. CONCLUSION. Alcoholics show a significant increase in blood oxidative stress and Pb and decrease in thiamine. Impairment occurs mainly in female abusers confirming a gender specific vulnerability.

  20. Determining the thickness of aliphatic alcohol monolayers covalently attached to silicon oxide surfaces using angle-resolved X-ray photoelectron spectroscopy

    Lee, Austin W. H.; Kim, Dongho; Gates, Byron D.

    2018-04-01

    The thickness of alcohol based monolayers on silicon oxide surfaces were investigated using angle-resolved X-ray photoelectron spectroscopy (ARXPS). Advantages of using alcohols as building blocks for the formation of monolayers include their widespread availability, ease of handling, and stability against side reactions. Recent progress in microwave assisted reactions demonstrated the ease of forming uniform monolayers with alcohol based reagents. The studies shown herein provide a detailed investigation of the thickness of monolayers prepared from a series of aliphatic alcohols of different chain lengths. Monolayers of 1-butanol, 1-hexanol, 1-octanol, 1-decanol, and 1-dodecanol were each successfully formed through microwave assisted reactions and characterized by ARXPS techniques. The thickness of these monolayers consistently increased by ∼1.0 Å for every additional methylene (CH2) within the hydrocarbon chain of the reagents. Tilt angles of the molecules covalently attached to silicon oxide surfaces were estimated to be ∼35° for each type of reagent. These results were consistent with the observations reported for thiol based or silane based monolayers on either gold or silicon oxide surfaces, respectively. The results of this study also suggest that the alcohol based monolayers are uniform at a molecular level.

  1. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H2O2

    Dong, Xinbo; Wang, Danjun; Li, Kebin; Zhen, Yanzhong; Hu, Huaiming; Xue, Ganglin

    2014-01-01

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H 2 O 2 , featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalyst is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH 2 ) are prepared and characterized by FT-IR, XRD, N 2 adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H 2 O 2 as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H 5 [PV 2 W 10 O 40 ] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H 2 O 2

  2. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H{sub 2}O{sub 2}

    Dong, Xinbo [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Wang, Danjun [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Li, Kebin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Zhen, Yanzhong [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Hu, Huaiming [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Xue, Ganglin, E-mail: xglin707@163.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China)

    2014-09-15

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H{sub 2}O{sub 2}, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalyst is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH{sub 2}) are prepared and characterized by FT-IR, XRD, N{sub 2} adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H{sub 2}O{sub 2} as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H{sub 5}[PV{sub 2}W{sub 10}O{sub 40}] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H{sub 2}O{sub 2}.

  3. Alkynes as Allylmetal Equivalents in Redox-Triggered C–C Couplings to Primary Alcohols: (Z)-Homoallylic Alcohols via Ruthenium-Catalyzed Propargyl C–H Oxidative Addition

    2015-01-01

    The cationic ruthenium catalyst generated upon the acid–base reaction of H2Ru(CO)(PPh3)3 and 2,4,6-(2-Pr)3PhSO3H promotes the redox-triggered C–C coupling of 2-alkynes and primary alcohols to form (Z)-homoallylic alcohols with good to complete control of olefin geometry. Deuterium labeling studies, which reveal roughly equal isotopic compositions at the allylic and distal vinylic positions, along with other data, corroborate a catalytic mechanism involving ruthenium(0)-mediated allene–aldehyde oxidative coupling to form a transient oxaruthenacycle, an event that ultimately defines (Z)-olefin stereochemistry. PMID:25075434

  4. The sonochemical arylation of malonic esters mediated by manganese triacetate.

    Meciarova, M; Toma, S; Luche, J L

    2001-04-01

    The intermolecular arylation of malonate esters in acetic acid solution in the presence of manganese(III) triacetate is known to proceed via an Electron Transfer mechanism. Under sonication, this reaction undergoes only minor changes. In contrast, the intramolecular reaction of dimethyl alpha-(3-phenylpropyl)malonate provides a new case of sonochemical switching, with the formation of compounds 7-9, while conventional thermal conditions generate only the bicyclic compound 6. Reactions using the more powerful oxidant, cerium ammonium nitrate are governed by the formation of the nitrate ester 11. Compounds 7-9 are isolated in yields lower than with MnTA, and in proportions depending on the conditions, thermal or sonochemical.

  5. Oxidation of Alcohols by Ferric Nitrate in the Presence of Barium ...

    NJD

    Oxidation, ferric nitrate, barium chloride, silica sulphuric acid, heterogeneous or solvent-free conditions. 1. Introduction ... economic advantage and environment protection. ... by TLC. After completion, structure of the product was charac-.

  6. Preparation and characterization of antibacterial electrospun chitosan/poly (vinyl alcohol)/graphene oxide composite nanofibrous membrane

    Yang, Shuai; Lei, Peng; Shan, Yujuan; Zhang, Dawei

    2018-03-01

    In this paper, chitosan (CS)/poly (vinyl alcohol) (PVA)/graphene oxide (GO) composite nanofibrous membranes were prepared via electrospinning. Such nanofibrous membranes have been characterized and investigated for their morphological, structural, thermal stability, hydrophilic and antibacterial properties. SEM images showed that the uniform and defect-free nanofibers were obtained and GO sheets, shaping spindle and spherical, were partially embedded into nanofibers. FTIR, XRD, DSC and TGA indicated the good compatibility between CS and PVA. There were strong intermolecular hydrogen bonds between the chitosan and PVA molecules. Contact angle measurement indicated that while increasing the content of GO, the distance between fibers increased and water drop showed wetting state on the surface of nanofibrous membranes. As a result, the contact angle decreased significantly. Meanwhile, good antibacterial activity of the prepared nanofibrous membranes were exhibited against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus.

  7. Preparation of AuNPs/GQDs/SiO2 Composite and Its Catalytic Performance in Oxidation of Veratryl Alcohol

    Yaoyao Yang

    2017-01-01

    Full Text Available Composites of gold nanoparticles and graphene quantum dots (AuNPs/GQDs exhibit excellent dispersibility in aqueous solutions. Thus, it is difficult to separate them from wet reaction systems when they are used as catalysts. To resolve this issue, in this study, an AuNPs/GQDs composite was immobilized on silicon dioxide through the hydrothermal method, which involved the formation of an amide bond between the surface GQDs of the AuNPs/GQDs composite and the amino group of the silane. The as-synthesized AuNPs/GQDs/SiO2 composite was found to be suitable for use as a heterogeneous catalyst for the oxidation of veratryl alcohol in water and exhibited catalytic activity comparable to that of bare AuNPs/GQDs as well as better recyclability.

  8. Combination of maghemite and titanium oxide nanoparticles in polyvinyl alcohol-alginate encapsulated beads for cadmium ions removal

    Majidnia, Zohreh; Idris, Ani [Universiti Teknologi Malaysia, johor bahru (Malaysia)

    2015-06-15

    Both maghemite (γ-Fe{sub 2}O{sub 3}) and titanium oxide (TiO{sub 2}) nanoparticles were mixed at various ratios and embedded in polyvinyl alcohol (PVA)-alginate beads. These beads were tested for photocatalytic behavior in eliminating toxic Cd(Ⅱ) from the aqueous solution. The photocatalytic experiments were performed under sunlight irradiation at various pH, initial feed concentrations and γ-Fe{sub 2}O{sub 3}: TiO{sub 2} ratios. The recycling attribute of these beads was also investigated. The results revealed that 100% of the Cd(Ⅱ) was eliminated in 150 minutes at pH 7 under sunlight. It shows that maghemite and titania PVA-alginate beads can be readily isolated from the aqueous solution after the photocatalyst process and reused for at least six times without losing their initial properties.

  9. Therapeutic effect of aqueous extracts of three dietary spices and their mixture on lipid metabolism and oxidative stress in a rat model of chronic alcohol consumption.

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide

    2016-07-01

    The protective effect of aqueous extracts of three dietary spices, garlic, (Allium sativum), ginger (Zingiber officinale) and pepper (Capsicum frutescens) singly and combined was investigated using a rat model of chronic alcohol intake. Rats were given 30% ethanol, with or without aqueous extracts of garlic, ginger, pepper or mixture of the three administered at 200mg/kg body weight by oral gavage for 28 days. Lipid profile, lipid peroxidation, oxidative and antioxidative profiles of serum, faecal, liver, kidney, heart and brain tissues of the rats were analyzed. Alcohol treatment significantly elevated liver enzymes, lipid peroxidation, depleted antioxidant system and induced histopathological changes in the liver. These alterations were markedly ameliorated by treatment with aqueous extracts of the three spices singly or mixed at 200mg/kg body weight. These results suggest that aqueous extracts of garlic, ginger, pepper or a blend of the three protects against alcohol- induced hypercholesterolemia, lipid peroxidation, oxidative stress and liver damage.

  10. Biobutanol as Fuel for Direct Alcohol Fuel Cells-Investigation of Sn-Modified Pt Catalyst for Butanol Electro-oxidation.

    Puthiyapura, Vinod Kumar; Brett, Dan J L; Russell, Andrea E; Lin, Wen-Feng; Hardacre, Christopher

    2016-05-25

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the

  11. Evaluation of poly (vinyl alcohol) based cryogel–zinc oxide nanocomposites for possible applications as wound dressing materials

    Chaturvedi, Archana [Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College Jabalpur (India); Bajpai, Anil K., E-mail: akbmrl@yahoo.co.in [Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College Jabalpur (India); Bajpai, Jaya [Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College Jabalpur (India); Singh, Sunil K. [Department of Chemistry, Guru Ghasidas University, Bilaspur, CG (India)

    2016-08-01

    In this investigation cryogels composed of poly (vinyl alcohol) (PVA) were prepared by repeated freeze thaw method followed by in situ precipitation of zinc oxide nanoparticles within the cryogel networks. Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX) were used to characterize the nanocomposites. The morphologies of native PVA cryogels and PVA cryogel-ZnO nanocomposites were observed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) techniques. The SEM analysis suggested that cryogels show a well-defined porous morphology whereas TEM micrographs revealed the presence of nearly spherical and well separated zinc oxide nanoparticles with diameter < 100 nm. XRD results showed all relevant Bragg's reflections for crystal structure of zinc oxide nanoparticles. Thermo gravimetric-differential thermal analysis (TG-DTA) was conducted to evaluate thermal stability of the nanocomposites. Mechanical properties of nanocomposites were determined in terms of tensile strength and percent elongation. Biocompatible nature was ascertained by anti-haemolytic activity, bovine serum albumin (blood protein) adsorption and in vitro cytotoxicity tests. The prepared nanocomposites were also investigated for swelling and deswelling behaviours. The results revealed that both the swelling and deswelling process depend on the chemical composition of the nanocomposites, number of freeze-thaw cycles, pH and temperature of the swelling medium. The developed biocompatible PVA cryogel-ZnO nanocomposites were also tested for antibacterial activities against both Gram-negative and Gram-positive bacteria. - Highlights: • PVA–zinc oxide nanocomposites have been prepared with no chemical crosslinking. • The nanocomposites are completely biocompatible. • They also show antibacterial property. • The nanocomposites

  12. Physiological roles and metabolism of fungal aryl alcohols

    Jong, de E.

    1993-01-01

    The major structural elements of wood and other vascular tissues are cellulose, hemicellulose and generally 20-30% lignin. Lignin gives the plant strength, it serves as a barrier against microbial attack and it acts as a water impermeable seal across cell walls of the xylem tissue. However,

  13. Biobutanol as fuel for direct alcohol fuel cells - Investigation of Sn-modified Pt catalyst for butanol electro-oxidation

    Puthiyapura, Vinod Kumar; Dan J. L. Brett,; Andrea E. Russell,; Wen-Feng Lin,; Hardacre, Chris

    2016-01-01

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies ...

  14. Catalytic Performance of Co3O4 on Different Activated Carbon Supports in the Benzyl Alcohol Oxidation

    Misael Cordoba

    2017-12-01

    Full Text Available Co3O4 particles were supported on a series of activated carbons (G60, CNR, RX3, and RB3. Incipient wetness method was used to prepare these catalysts. The effect of the structural and surface properties of the carbonaceous supports during oxidation of benzyl alcohol was evaluated. The synthetized catalysts were characterized via IR, TEM, TGA/MS, XRD, TPR, AAS, XPS, and N2 adsorption/desorption isotherm techniques. Co3O4/G60 and Co3O4/RX3 catalysts have high activity and selectivity on the oxidation reaction reaching conversions above 90% after 6 h, without the presence of promoters. Catalytic performances show that differences in chemistry of support surface play an important role in activity and suggest that the presence of different ratios of species of cobalt and oxygenated groups on surface in Co3O4/G60 and Co3O4/RX3 catalysts, offered a larger effect synergic between both active phase and support increasing their catalytic activity when compared to the other tested catalysts.

  15. Influence of the covalent immobilization of graphene oxide in poly(vinyl alcohol) on human osteoblast response.

    Linares, Javier; Matesanz, María Concepción; Feito, María José; Salavagione, Horacio Javier; Martínez, Gerardo; Gómez-Fatou, Marián; Portolés, María Teresa

    2016-02-01

    The differences in the response of human Saos-2 osteoblasts to nanocomposites of poly(vinyl alcohol) (PVA) and 1.5wt.% graphene oxide (GO) prepared by covalent linking (PVA/GO-c) and simple blending (PVA/GO-m) have been evaluated through different biocompatibility parameters. The effects produced on osteoblasts by these two nanocomposites were analysed in parallel and compared with the direct action of GO and with the effect of PVA films without GO. The intracellular content of reactive oxygen species (ROS) and the levels of interleukin-6 (IL-6) were measured to evaluate oxidative stress induction and protective response, respectively. The results demonstrate that the combination of GO with PVA reduces both the proliferation delay and the internal cell complexity alterations induced by GO on human osteoblasts. Moreover, the covalent attachment of GO to the PVA chains increases both cell viability and IL-6 levels, reducing both apoptosis and intracellular ROS content when compared to simple blending of both materials. The use of this strategy to modulate the biointerface reduces the toxic effects of graphene while preserving the reinforcement characteristics for application in tissue engineering scaffolds, and has enormous interest for polymer/graphene biomaterials development. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Influence of alcohol additives in the preparation of electrodeposited Pt-Ru catalysts on oxidized graphite cloths

    Sieben, Juan Manuel; Duarte, Marta M.E.; Mayer, Carlos E.

    2011-01-01

    Research highlights: → Pt-Ru catalysts were prepared by potential pulse electrodeposition from solutions containing EtOH or EG at pH 2 and 5. → The catalyst particle size, loading and dispersion were influenced by solution pH and alcohol addition. → The deposits prepared at pH 2 exhibited large irregular agglomerates while those prepared at pH 5 presented smaller globular particles. → Pt-Ru system prepared using EG at pH 5 exhibited the best performance for CH 3 OH oxidation. - Abstract: Carbon supported Pt-Ru catalysts were prepared by multiple cycles of potentiostatic pulses from aqueous diluted chloroplatinic acid and ruthenium chloride solutions in the presence of ethanol or ethylene glycol at pH 2 and 5. SEM images showed that the metallic deposit prepared at pH 2 consisted of large irregular agglomerates, whereas smaller globular particles were obtained at pH 5. In addition, the average particle size was considerably decreased in the presence of the stabilizers. The supported Pt-Ru alloys were tested as catalysts for methanol electro-oxidation in acid media. Electrocatalytic activity measurements indicated that the most active electrode was obtained with ethylene glycol as additive at pH 5.

  17. Synthesis of Highly Effective Novel Graphene Oxide-Polyethylene Glycol-Polyvinyl Alcohol Nanocomposite Hydrogel For Copper Removal

    Eman Serag

    2017-10-01

    Full Text Available A novel Graphene oxide-polyethylene glycol and polyvinyl alcohol (GO-PEG-PVA triple network hydrogel were prepared to remove Copper(II ion from its aqueous solution. The structures, morphologies, and properties of graphene oxide (GO, the composite GO-PEG-PVA and PEG-PVA were characterized using FTIR, X-ray diffraction, Scanning Electronic Microscope and Thermal Gravimetric analysis. A series of systematic batch adsorption experiments were conducted to study the adsorption property of GO, GO-PEG-PVA hydrogel and PEG-PVA hydrogel under different conditions (e.g. pH, contact time and Cu2+ ions concentration. The high adsorption capacity, easy regeneration, and effective adsorption–desorption results proved that the prepared GO-PEG-PVA composite hydrogel could be an effective adsorbent in removing Cu2+ ion from its aqueous solution. The maximum adsorption capacities were found to be 917, 900 and 423 mg g–1 for GO-PEG-PVA hydrogel, GO and PEG-PVA hydrogel, respectively at pH 5, 25 °C and Cu2+ ions’ concentration 500 mg l–1. The removal efficiency of the recycled GO-PEG-PVA hydrogel were 83, 81, 80 and 79% for the first four times, which proved efficient reusability.

  18. Effects of dark chocolate on NOX-2-generated oxidative stress in patients with non-alcoholic steatohepatitis.

    Loffredo, L; Del Ben, M; Perri, L; Carnevale, R; Nocella, C; Catasca, E; Baratta, F; Ceci, F; Polimeni, L; Gozzo, P; Violi, F; Angelico, F

    2016-08-01

    Activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is considered a pathogenetic mechanism determining fibrosis and disease progression in non-alcoholic steatohepatitis (NASH). Polyphenols exert antioxidant action and inhibit NADPH oxidase in humans. To analyse the effect of cocoa polyphenols on NADPH oxidase isoform 2 (NOX2) activation, oxidative stress and hepatocyte apoptosis in a population affected by NASH. In a cross-sectional study comparing 19 NASH and 19 controls, oxidative stress, as assessed by serum NOX2 activity and F2-isoprostanes, and hepatocyte apoptosis, as assessed by serum cytokeratin-18 (CK-18) levels, were measured. Furthermore, the 19 NASH patients were randomly allocated in a crossover design to 40 g/day of dark chocolate (>85% cocoa) or 40 g/day of milk chocolate (chocolate intake. Compared to controls, NASH patients had higher sNOX2-dp, serum isoprostanes and CK-18 levels. A significant difference for treatments was found in subjects with respect to sNOX2-dp, serum isoprostanes and serum CK-18. The pairwise comparisons showed that, compared to baseline, after 14 days of dark chocolate intake, a significant reduction in sNOX2-dp serum isoprostanes and CK-18 M30 was found. No change was observed after milk chocolate ingestion. A simple linear regression analysis showed that ∆ of sNOX2-dp was associated with ∆ of serum isoprostanes. Cocoa polyphenols exert an antioxidant activity via NOX2 down-regulation in NASH patients. © 2016 John Wiley & Sons Ltd.

  19. Identification of 1-Aryl-1H-1,2,3-triazoles as Potential New Antiretroviral Agents.

    Gonzaga, Daniel T G; Souza, Thiago M L; Andrade, Viviane M M; Ferreira, Vitor F; de C da Silva, Fernando

    2018-01-01

    Low molecular weight 1-Aryl-1H-1,2,3-triazoles are endowed with various types of biological activities, such as against cancer, HIV and bacteria. Despite the existence of six different classes of antiretroviral drugs in clinical use, HIV/AIDS continue to be an on growing public health problem. In the present study, we synthesized and evaluated thirty 1-Aryl-1H-1,2,3-triazoles against HIV replication. The compounds were prepared by Huisgen 1,3-dipolar cycloaddition protocol catalyzed by Cu(I) between aryl azides and propargylic alcohol followed by further esterification and etherification from a nucleophilic substitution with acid chlorides or alkyl bromides in good yields. The compounds were submitted to the inhibition of HIV replication and evaluation of their cytotoxicity. Initially, the compounds were screened at 10 µM and the most active were further evaluated in order to obtain some pharmacological parameters. Thirty molecules were evaluated, six were selected - because they inhibited more than 80% HIV replication. We further showed that two of these compounds are 8-times more potent, and less cytotoxic, than nevirapine, an antiretroviral drug in clinical use. We identified very simple triazoles with promissing antiretroviral activities that led to the development of new drugs against AIDS. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Rhodium Catalyzed Intramolecular C-H Insertion of α-Aryl-α-diazo Ketones

    Taber, Douglass F.; Tian, Weiwei

    2011-01-01

    Direct diazo transfer proceeds smoothly with α-aryl ketones. The derived α-aryl-α-diazo ketones cyclize efficiently with Rh catalysis to give the corresponding α-aryl cyclopentanones. PMID:17385917

  1. Porous Silicates Modified with Zirconium Oxide and Sulfate Ions for Alcohol Dehydration Reactions

    Heriberto Esteban Benito

    2015-01-01

    Full Text Available Porous silicates were synthesized by a nonhydrothermal method, using sodium silicate as a source of silica and cetyltrimethylammonium bromide as a template agent. Catalysts were characterized using thermogravimetric analysis, N2 physisorption, X-ray diffraction, FTIR spectroscopy, pyridine adsorption, potentiometric titration with n-butylamine, scanning electronic microscopy, and transmission electronic microscopy. The surface area of the materials synthesized was greater than 800 m2/g. The introduction of zirconium atoms within the porous silicates increased their acid strength from −42 to 115 mV, while the addition of sulfate ions raised this value to 470 mV. The catalytic activity for the dehydration of alcohols yields conversions of up to 70% for ethanol and 30% for methanol.

  2. Association between insulin resistance and oxidative stress parameters in obese adolescents with non-alcoholic fatty liver disease.

    Pirgon, Özgür; Bilgin, Hüseyin; Çekmez, Ferhat; Kurku, Hüseyin; Dündar, Bumin Nuri

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in children. The aim of this study was to investigate the associations of oxidative stress with insulin resistance and metabolic risk factors in obese adolescents with NAFLD. Forty-six obese adolescents (23 girls and 23 boys, mean age: 12.8 ± 2.2 years) and 29 control subjects (15 girls and 14 boys, mean age: 12.7 ± 2.7 years) were enrolled in the study. The obese subjects were divided into two groups (NAFLD group and non-NAFLD group) based on the elevated alanine aminotransferase levels (>30 IU/L) and the presence or absence of liver steatosis detected by ultrasonography. Insulin resistance was evaluated by homeostasis model assessment (HOMA-IR) from fasting samples. Plasma total antioxidant status (TAS) and total oxidant status (TOS) level measurements (REL Assay Diagnostics) were done in all participants. The ratio of TOS to TAS was regarded as an oxidative stress index (OSI), an indicator of the degree of OS. Fasting insulin levels and HOMA-IR values in the NAFLD group were significantly higher than in the non-NAFLD and control groups. TAS measurements were decreased in both obese groups (NAFLD and non-NAFLD) in comparison with the control group. TOS and OSI measurements were higher in the NAFLD group than in the non-NAFLD and control groups. OSI was positively correlated with fasting insulin (r=0.67, p=0.01) and HOMA-IR (r=0.71, p=0.02) in the NAFLD obese group. In this cross-sectional study, elevated OS markers in obese adolescents with NAFLD were associated with insulin resistance. This data suggest that an antioxidant therapy might have a potential for treating NAFLD associated with insulin resistance.

  3. Reduction of brain mitochondrial β-oxidation impairs complex I and V in chronic alcohol intake: the underlying mechanism for neurodegeneration.

    James Haorah

    Full Text Available Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1 and cPT2 levels. The mitochondrial outer (cPT1 and inner (cPT2 membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function can cause a negative impact on ATP production (complex V function. Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2 prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10 was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders.

  4. Reduction of brain mitochondrial β-oxidation impairs complex I and V in chronic alcohol intake: the underlying mechanism for neurodegeneration.

    Haorah, James; Rump, Travis J; Xiong, Huangui

    2013-01-01

    Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC) that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v) and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1) and cPT2 levels. The mitochondrial outer (cPT1) and inner (cPT2) membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function) can cause a negative impact on ATP production (complex V function). Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence) and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2) prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10) was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders.

  5. Interaction of neptunium (7) with some oxidation products of normal and secondary alcohols

    Tananaev, I.G.

    1990-01-01

    Interaction of neptunium (7) with formaldehyde and acetone -products of methane and isopropanol oxidation in alkali medium -was studied. With increase in KOH concentration neptunium (7) reduction rate decreases. The reaction order in the range of 0.2-1.0 mol/l KOH equals -1. The reaction order with regard to reducing agent is 0.9 at acetone concentrations 0.07-0.35 mol/l and 1.0 at formaldehyde concentration 2.5-10 mmol/l. Activation energies are equal to 49±2 kJ/mol for neptunium (7) reduction by acetone and 59±4 kJ/mol - by formaldehyde. Formaldehyde is oxidized by neptunium (7) to formic acid

  6. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells

    Xu, C.W. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, H. [Departement of Applied Chemistry, Dongguan University of Technology, Dongguan 523106 (China); Shen, P.K. [School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Jiang, S.P.

    2007-12-03

    Pd nanowire arrays (NWAs) with high electrochemically active surface area are successfully fabricated using anodized aluminum oxide electrodeposition. The electrocatalytic activity and stability of the Pd NWAs for ethanol electrooxidation are not only significantly higher that of conventional Pd film electrodes, but also higher than that of well-established commercial PtRu/C electrocatalysts. The Pd NWAs show great potential as electrocatalysts for ethanol electrooxidation in alkaline media in direct ethanol fuel cells. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  7. Carbon Dioxide-Mediated C(sp3)-H Arylation of Amine Substrates.

    Kapoor, Mohit; Liu, Daniel; Young, Michael C

    2018-05-25

    Elaborating amines via C-H functionalization has been an important area of research over the past decade but has generally relied on an added directing group or sterically hindered amine approach. Since free-amine-directed C(sp 3 )-H activation is still primarily limited to cyclization reactions and to improve the sustainability and reaction scope of amine-based C-H activation, we present a strategy using CO 2 in the form of dry ice that facilitates intermolecular C-H arylation. This methodology has been used to enable an operationally simple procedure whereby 1° and 2° aliphatic amines can be arylated selectively at their γ-C-H positions. In addition to potentially serving as a directing group, CO 2 has also been demonstrated to curtail the oxidation of sensitive amine substrates.

  8. Ligand-Enabled Reactivity and Selectivity in a Synthetically Versatile Aryl C–H Olefination*

    Wang, Dong-Hui; Engle, Keary M.; Shi, Bing-Feng; Yu, Jin-Quan

    2010-01-01

    The Mizoroki–Heck reaction, which couples aryl halides with olefins, has been widely used to stitch together the carbogenic cores of numerous complex organic molecules. Given that the position-selective introduction of a halide onto an arene is not always straightforward, direct olefination of aryl C–H bonds would obviate the inefficiencies associated with generating halide precursors or their equivalents; however, methods for carrying out such a reaction have suffered from narrow substrate scope and low positional selectivity. Here we report an operationally simple, atom-economical, carboxylate-directed Pd(II)-catalyzed C–H olefination reaction with phenylacetic acid and 3-phenylpropionic acid substrates, using oxygen at atmospheric pressure as the oxidant. The positional selectivity can be tuned by introducing amino acid derivatives as ligands. We demonstrate the versatility of the method through direct elaboration of commercial drug scaffolds and efficient synthesis of 2-tetralone and naphthoic acid natural product cores. PMID:19965380

  9. Electrochemical Grafting of Graphene Nano Platelets with Aryl Diazonium Salts.

    Qiu, Zhipeng; Yu, Jun; Yan, Peng; Wang, Zhijie; Wan, Qijin; Yang, Nianjun

    2016-10-26

    To vary interfacial properties, electrochemical grafting of graphene nano platelets (GNP) with 3,5-dichlorophenyl diazonium tetrafluoroborate (aryl-Cl) and 4-nitrobenzene diazonium tetrafluoroborate (aryl-NO 2 ) was realized in a potentiodynamic mode. The covalently bonded aryl layers on GNP were characterized using atomic force microscopy and X-ray photoelectron spectroscopy. Electrochemical conversion of aryl-NO 2 into aryl-NH 2 was conducted. The voltammetric and impedance behavior of negatively and positively charged redox probes (Fe(CN) 6 3-/4- and Ru(NH 3 ) 6 2+/3+ ) on three kinds of aryl layers grafted on GNP reveal that their interfacial properties are determined by the charge states of redox probes and reactive terminal groups (-Cl, -NO 2 , -NH 2 ) in aryl layers. On aryl-Cl and aryl-NH 2 garted GNP, selective and sensitive monitoring of positively charged lead ions as well as negatively charged nitrite and sulfite ions was achieved, respectively. Such a grafting procedure is thus a perfect way to design and control interfacial properties of graphene.

  10. Palladium-Catalyzed alpha-Arylation of Tetramic Acids

    Storgaard, Morten; Dorwald, F. Z.; Peschke, B.

    2009-01-01

    A mild, racemization-free, palladium-Catalyzed alpha-arylation of tetramic acids (2,4-pyrrolidinediones) has been developed. Various amino acid-derived tetramic acids were cleanly arylated by treatment with 2 mol % of Pd(OAc)(2), 4 mol % of a sterically demanding biaryl phosphine, 2.3 equiv of K2CO...... no effect on their reactivity: both electron-rich and electron-poor aryl chlorides and bromides or triflates led to good yields. Ortho-substituted aryl halides and heteroaryl halides, however, did not undergo the title reaction....

  11. Selective hydrodeoxygenation of cyclic vicinal diols to cyclic alcohols over tungsten oxide-palladium catalysts.

    Amada, Yasushi; Ota, Nobuhiko; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2014-08-01

    Hydrodeoxygenation of cyclic vicinal diols such as 1,4-anhydroerythritol was conducted over catalysts containing both a noble metal and a group 5-7 transition-metal oxide. The combination of Pd and WOx allowed the removal of one of the two OH groups selectively. 3-Hydroxytetrahydrofuran was obtained from 1,4-anhydroerythritol in 72 and 74% yield over WOx -Pd/C and WOx -Pd/ZrO2 , respectively. The WOx -Pd/ZrO2 catalyst was reusable without significant loss of activity if the catalyst was calcined as a method of regeneration. Characterization of WOx -Pd/C with temperature-programmed reduction, X-ray diffraction, and transmission electron microscopy/energy-dispersive X-ray spectroscopy suggested that Pd metal particles approximately 9 nm in size were formed on amorphous tungsten oxide particles. A reaction mechanism was proposed on the basis of kinetics, reaction results with tungsten oxides under an atmosphere of Ar, and density functional theory calculations. A tetravalent tungsten center (W(IV) ) was formed by reduction of WO3 with the Pd catalyst and H2 , and this center served as the reductant for partial hydrodeoxygenation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO).

    Gutha, Yuvaraja; Pathak, Janak L; Zhang, Weijiang; Zhang, Yaping; Jiao, Xu

    2017-10-01

    Treatment against bacterial infection is crucial for wound healing. Development of cost-effective antibacterial agent with wound healing properties is still in high demand. In this study we aimed to design chitosan/poly(vinyl alcohol)/zinc oxide (CS/PVA/ZnO) beads as novel antibacterial agent with wound healing properties. CS/PVA/ZnO beads were synthesized, and characterized by using XRD, FTIR, SEM, and TEM analysis. Pure chitosan exhibits two peaks at 2θ=10 and 20 and the CS/PVA polymer matrix exhibit the peaks at 2θ=19.7° and another of low intensity at 2θ=11.5°. Pure ZnO shows the characteristic peaks at (100), (002), (101), (102), (110), (103), (200), and (112) that were in good agreement with wurtzite ore having hexagonal lattice structure. The antibacterial activity of CS/PVA/ZnO against Escherichia coli, and Staphylococcus aureus were evaluated with the zone of inhibition method. Antibacterial activity of CS/PVA/ZnO was higher than that of chitosan (CS) and poly(vinyl alcohol (PVA). Hemocompatibility and biocompatibility of CS/PVA/ZnO were tested in in vitro. Wound healing properties of CS/PVA/ZnO were tested in mice skin wound. CS/PVA/ZnO showed strong antimicrobial, wound healing effect, hemocompatibility and biocompatibility. Hence the results strongly support the possibility of using this novel CS/PVA/ZnO material for the anti bacterial and wound healing application. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Statins Increase Mitochondrial and Peroxisomal Fatty Acid Oxidation in the Liver and Prevent Non-Alcoholic Steatohepatitis in Mice

    Han-Sol Park

    2016-04-01

    Full Text Available BackgroundNon-alcoholic fatty liver disease is the most common form of chronic liver disease in industrialized countries. Recent studies have highlighted the association between peroxisomal dysfunction and hepatic steatosis. Peroxisomes are intracellular organelles that contribute to several crucial metabolic processes, such as facilitation of mitochondrial fatty acid oxidation (FAO and removal of reactive oxygen species through catalase or plasmalogen synthesis. Statins are known to prevent hepatic steatosis and non-alcoholic steatohepatitis (NASH, but underlying mechanisms of this prevention are largely unknown.MethodsSeven-week-old C57BL/6J mice were given normal chow or a methionine- and choline-deficient diet (MCDD with or without various statins, fluvastatin, pravastatin, simvastatin, atorvastatin, and rosuvastatin (15 mg/kg/day, for 6 weeks. Histological lesions were analyzed by grading and staging systems of NASH. We also measured mitochondrial and peroxisomal FAO in the liver.ResultsStatin treatment prevented the development of MCDD-induced NASH. Both steatosis and inflammation or fibrosis grades were significantly improved by statins compared with MCDD-fed mice. Gene expression levels of peroxisomal proliferator-activated receptor α (PPARα were decreased by MCDD and recovered by statin treatment. MCDD-induced suppression of mitochondrial and peroxisomal FAO was restored by statins. Each statin's effect on increasing FAO and improving NASH was independent on its effect of decreasing cholesterol levels.ConclusionStatins prevented NASH and increased mitochondrial and peroxisomal FAO via induction of PPARα. The ability to increase hepatic FAO is likely the major determinant of NASH prevention by statins. Improvement of peroxisomal function by statins may contribute to the prevention of NASH.

  14. Interaction of aluminum oxide nanoparticles with flow of polyvinyl alcohol solutions base nanofluids over a wedge

    Hassan, Mohsan; Faisal, Abrar; Bhatti, Muhammad Mubashir

    2018-02-01

    Polyvinyl alcohol (PVA) is an important industrial chemical, which is used in numerous chemical engineering applications. It is important to study and predict the flow behavior of PVA solutions and the role of nanoparticles in heat transfer applications to be used in chemical processes on industrial scale. Therefore, the present study deals with the PVA solution-based non-Newtonian Al2O3-nanofluid flow along with heat transfer over wedge. The power-law model is used for this non-Newtonian nanofluid which exhibited shear-thinning behavior. The influences of PVA and nanoparticles concentrations on the characteristics of velocity and temperature profiles are examined graphically. The impacts of these parameters on wall shear stress and convective heat transfer coefficient are also studied through tabular form. During the numerical computations, the impacts of these parameters on flow index and consistency index along with other physical properties of nanofluid are also considered. In this study, we found an improvement in heat transfer and temperature profile of fluid by distribution of Al2O3 nanoparticles. It is also noticed that resistance between adjacent layers of moving fluid is enhanced due to these nanoparticles which leads to decline in velocity profile and increases in shear stress at wall.

  15. Electrical transport properties of nanoplates shaped tungsten oxide embedded poly(vinyl-alcohol) film

    Das, Amit Kumar; Chatterjee, Piyali; Meikap, Ajit Kumar

    2018-04-01

    Tungsten oxide (WO3) nanoplates have been synthesized via hydrothermal method. The average crystallite size of the nanoplates is 28.9 ± 0.5 nm. The direct and indirect band gap of WO3 is observed. The AC conductivity of PVA-WO3 composite film has been observed and carrier transport mechanism follows correlated barrier hopping model. The maximum barrier height of the composite film is 0.1 eV. The electric modulus reflects the non-Debye type behaviour of relaxation time which is simulated by Kohlrausch-Willims-Watts (KWW) function.

  16. Alcohol Alert

    ... of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol Exposure Support & Treatment Alcohol Policy Special ... 466 KB] No. 81: Exploring Treatment Options for Alcohol Use Disorders [ PDF - 539K] No. 80: Alcohol and HIV/AIDS: ...

  17. Aerobic and Electrochemical Oxidations with N-Oxyl Reagents

    Miles, Kelsey C.

    Selective oxidation of organic compounds represents a significant challenge for chemical transformations. Oxidation methods that utilize nitroxyl catalysts have become increasingly attractive and include Cu/nitroxyl and nitroxyl/NO x co-catalyst systems. Electrochemical activation of nitroxyls is also well known and offers an appealing alternative to the use of chemical co-oxidants. However, academic and industrial organic synthetic communities have not widely adopted electrochemical methods. Nitroxyl catalysts facilitate effective and selective oxidation of alcohols and aldehydes to ketones and carboxylic acids. Selective benzylic, allylic, and alpha-heteroatom C-H abstraction can also be achieved with nitroxyls and provides access to oxygenated products when used in combination with molecular oxygen as a radical trap. This thesis reports various chemical and electrochemical oxidation methods that were developed using nitroxyl mediators. Chapter 1 provides a short review on practical aerobic alcohol oxidation with Cu/nitroxyl and nitroxyl/NO x systems and emphasizes the utility of bicyclic nitroxyls as co-catalysts. In Chapter 2, the combination of these bicyclic nitroxyls with NOx is explored for development of a mild oxidation of alpha-chiral aryl aldehydes and showcases a sequential asymmetric hydroformylation/oxidation method. Chapter 3 reports the synthesis and characterization of two novel Cu/bicyclic nitroxyl complexes and the electronic structure analysis of these complexes. Chapter 4 highlights the electrochemical activation of various nitroxyls and reports an in-depth study on electrochemical alcohol oxidation and compares the reactivity of nitroxyls under electrochemical or chemical activation. N-oxyls can also participate in selective C-H abstraction, and Chapter 5 reports the chemical and electrochemical activation of N-oxyls for radical-mediated C-H oxygenation of (hetero)arylmethanes. For these electrochemical transformations, the development of

  18. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2017-01-01

    Highlights: • Cu and Au on γ-Al 2 O 3 catalysts were prepared and characterized. • Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide in the absence of any solvent using the prepared catalysts. • The as prepared catalysts exhibited good performance in terms of conversion and selectivity towards benzaldehyde. • The kinetics of the reaction was investigated; k app was proportional to the amount of nano catalyst and oxidant present in the system. • The catalysts was recycled and reused with neither significant loss of activity nor selectivity. - Abstract: Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al 2 O 3 supported copper and gold nanoparticles. Li 2 O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N 2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of

  19. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Kaphalia, Lata [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Boroumand, Nahal [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Hyunsu, Ju [Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Calhoun, William J. [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States)

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  20. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  1. Scope and Limitations of Auxiliary-Assisted, Palladium-Catalyzed Arylation and Alkylation of sp2 and sp3 C-H Bonds

    Nadres, Enrico T.; Santos, Gerson Ivan Franco; Shabashov, Dmitry; Daugulis, Olafs

    2013-01-01

    The scope of palladium-catalyzed, auxiliary-assisted direct arylation and alkylation of sp2 and sp3 C-H bonds of amine and carboxylic acid derivatives has been investigated. The method employs a palladium acetate catalyst, substrate, aryl, alkyl, benzyl, or allyl halide, and inorganic base in t-amyl alcohol or water solvent at 100-140 °C. Aryl and alkyl iodides as well as benzyl and allyl bromides are competent reagents in this transformation. Picolinic acid auxiliary is used for amine γ-functionalization and 8-aminoquinoline auxiliary is used for carboxylic acid β-functionalization. Some optimization of base, additives, and solvent is required for achieving best results. PMID:24090404

  2. Engineering Pt/Pd Interfacial Electronic Structures for Highly Efficient Hydrogen Evolution and Alcohol Oxidation.

    Fan, Jinchang; Qi, Kun; Zhang, Lei; Zhang, Haiyan; Yu, Shansheng; Cui, Xiaoqiang

    2017-05-31

    Tailoring the interfacial structure of Pt-based catalysts has emerged as an effective strategy to improve catalytic activity. However, little attention has been focused on investigating the relationship between the interfacial facets and their catalytic activity. Here, we design and implement Pd-Pt interfaces with controlled heterostructure features by epitaxially growing Pt nanoparticles on Pd nanosheets. On the basis of both density functional theory calculation and experimental results, we demonstrate that charge transfer from Pd to Pt is highly dependent on the interfacial facets of Pd substrates. Therefore, the Pd-Pt heterostructure with Pd(100)-Pt interface exhibits excellent activity and long-term stability for hydrogen evolution and methanol/ethanol oxidation reactions in alkaline medium, much better than that with Pd (111)-Pt interface or commercial Pt/C. Interfacial crystal facet-dependent electronic structural modulation sheds a light on the design and investigation of new heterostructures for high-activity catalysts.

  3. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Bioinspired Hierarchical Alumina-Graphene Oxide-Poly(vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness.

    Wang, Jinrong; Qiao, Jinliang; Wang, Jianfeng; Zhu, Ying; Jiang, Lei

    2015-05-06

    Due to hierarchical organization of micro- and nanostructures, natural nacre exhibits extraordinary strength and toughness, and thus provides a superior model for the design and fabrication of high-performance artificial composite materials. Although great progress has been made in constructing layered composites by alternately stacking hard inorganic platelets and soft polymers, the real issue is that the excellent strength of these composites was obtained at the sacrifice of toughness. In this work, inspired by the layered aragonite microplatelets/chitin nanofibers-protein structure of natural nacre, alumina microplatelets-graphene oxide nanosheets-poly(vinyl alcohol) (Al2O3/GO-PVA) artificial nacre is successfully constructed through layer-by-layer bottom-up assembly, in which Al2O3 and GO-PVA act as "bricks" and "mortar", respectively. The artificial nacre has hierarchical "brick-and-mortar" structure and exhibits excellent strength (143 ± 13 MPa) and toughness (9.2 ± 2.7 MJ/m(3)), which are superior to those of natural nacre (80-135 MPa, 1.8 MJ/m(3)). It was demonstrated that the multiscale hierarchical structure of ultrathin GO nanosheets and submicrometer-thick Al2O3 platelets can deal with the conflict between strength and toughness, thus leading to the excellent mechanical properties that cannot be obtained using only one size of platelet. We strongly believe that the work presented here provides a creative strategy for designing and developing new composites with excellent strength and toughness.

  5. Studies on the Electrical Properties of Graphene Oxide-Reinforced Poly (4-Styrene Sulfonic Acid) and Polyvinyl Alcohol Blend Composites

    Deshmukh, Kalim; Sankaran, Sowmya; Basheer Ahamed, M.; Khadheer Pasha, S. K.; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Ali Almaadeed, Mariam; Chidambaram, K.

    In the present study, graphene oxide (GO)-reinforced poly (4-styrenesulfonic acid) (PSSA)/polyvinyl alcohol (PVA) blend composite films were prepared using colloidal blending technique at various concentrations of GO (0-3wt.%). The morphological investigations of the prepared composites were carried out using polarized optical microscopy and scanning electron microscopy. The electrical properties of composites were evaluated using an impedance analyzer in the frequency range 50Hz to 20MHz and temperature in the range 40-150∘C. Morphological studies infer that GO was homogeneously dispersed in the PSSA/PVA blend matrix. Investigations of electrical property indicate that the incorporation of GO into PSSA/PVA blend matrix resulted in the enhancement of the impedance (Z) and the quality factor (Q-factor) values. A maximum impedance of about 4.32×106Ω was observed at 50Hz and 90∘C for PSSA/PVA/GO composites with 3wt.% GO loading. The Q-factor also increased from 8.37 for PSSA/PVA blend to 59.8 for PSSA/PVA/GO composites with 3wt.% GO loading. These results indicate that PSSA/PVA/GO composites can be used for high-Q capacitor applications.

  6. Polymer supported gold nanoparticles: Synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water

    Kaboudin, Babak; Khanmohammadi, Hamid; Kazemi, Foad

    2017-12-01

    Sulfonated polystyrene microsphere were functionalized using ethylene diamine to introduce amine groups to the polymer chains. The amine functionalized polymers were used as a support for gold nanoparticles. A thorough structural characterization has been carried out by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) images, EDS, CHN and atomic absorption spectroscopy. The polymer supported gold nanoparticles was found to be an efficient catalyst for the oxidation of alcohols in water.

  7. Aryl Insertion vs Aryl-Aryl Coupling in C,C-Chelated Organoborates: The "Missing Link" of Tetraarylborate Photochemistry.

    Radtke, Julian; Mellerup, Soren K; Bolte, Michael; Lerner, Hans-Wolfram; Wang, Suning; Wagner, Matthias

    2018-06-14

    The photoreactivity of 9-borafluorene-based, C,C-chelated organoborates was investigated. Unlike the related tetraarylborates, the charge-transfer transitions imparted by the biphenyl chelate lead to selective insertion of one aryl substituent into the endocyclic B-C bond of the 9-borafluorene moiety, resulting in the formation of boratanorcaradienes. This photoreaction likely proceeds according to a Zimmerman rearrangement, which is analogous to one of the initially proposed mechanisms for tetraarylborates and provides additional insight into these long-debated photochemical reactions.

  8. Selective copper catalysed aromatic N-arylation in water

    Engel-Andreasen, Jens; Shimpukade, Bharat; Ulven, Trond.

    2013-01-01

    4,7-Dipyrrolidinyl-1,10-phenanthroline (DPPhen) was identified as an efficient ligand for copper catalyzed selective arom. N-arylation in water. N-Arylation of indoles, imidazoles and purines proceeds with moderate to excellent yields and complete selectivity over aliph. amines. Aq. medium...

  9. Cu(I)/Diamine-catalyzed Aryl-alkyne Coupling Reactions

    2005-01-01

    CuI/ethylene diamine/K2CO3/dioxane is shown to be a useful system for the cross coupling reactions of various aryl iodides and bromides with aryl and alkyl alkynes. Compared to the conventional Sonogashira reactions, the new procedure is free of palladium and phosphines.

  10. Rhodium(iii)-catalyzed ortho-olefination of aryl phosphonates.

    Chary, Bathoju Chandra; Kim, Sunggak

    2013-09-25

    Rhodium(iii)-catalyzed C-H olefination of aryl phosphonic esters is reported for the first time. In this mild and efficient process, the phosphonic ester group is utilized successfully as a new directing group. In addition, mono-olefination for aryl phosphonates is observed using a phosphonic diamide directing group.

  11. Mechanism-based inactivation of benzo[a]pyrene hydroxylase by aryl acetylenes and aryl olefins

    Gan, L.S.; Lu, J.Y.L.; Alworth, W.L.

    1986-01-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo[a]pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo[a]pyrene hydroxylase. The mechanism-based loss of benzo[a]pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenes therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, 3 H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo[a]pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne

  12. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fragrance material review on anisyl alcohol (o-m-p-).

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of anisyl alcohol (o-m-p-) when used as a fragrance ingredient is presented. Anisyl alcohol (o-m-p-) is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alkyl alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar(-)Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Multi-metallic oxides as catalysts for light alcohols and hydrocarbons from synthesis gas

    Perez, Miguel [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Diaz, L; Galindo, H de J; Dominguez, J. M; Salmon, Manuel [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    1999-08-01

    A series of Cu-Co-Cr oxides doped with alkaline metals (M), were prepared by the coprecipitation method with metal nitrates (Cu{sup I}I, CO{sup I}I, CR{sup I}II) and (M{sub 2})CO{sub 3} in aqueous solution. The calcined products were used as catalysts for the Fisher-Tropsch synthesis in a stainless-steel fixed bed microreactor. The material was characterized by x-ray diffraction, and the specific surface area, pore size and nitrogen adsorption-desorption properties were also determined. The alkaline metals favored the methanol synthesis and prevent the dehydration reactions whereas the hydrocarbon formation is independent to these metals. [Spanish] Una serie de oxidos Cu-Co-Cr soportados con metales alcalinos (M), fueron preparados por el metodo con nitratos metalicos (Cu{sup I}I, CO{sup I}I, CR{sup I}II) y (M{sub 2})CO{sub 3} en soluciones acuosas. Los productos calcinados fueron usados como catalizadores para la sintesis de Fisher-tropsch en la superficie fija de un microreactor de acero inoxidable. El material fue caracterizado por difraccion de rayos X y el area de superficie especifica, el tamano de poro y propiedades de absorcion-desorcion de nitrogeno fueron determinadas. Los metales alcalinos favorecieron la sintesis de metanol y previnieron las reacciones de deshidratacion, mientras que la formacion de hidrocarburos es independiente de estos metales.

  15. Alkyl and aryl phosphorodiiodidites. Pt. 2

    Feshchenko, N.G.; Kostina, V.G.

    1976-01-01

    Alkyl phosphorodiiodidites are formed in the reactions of alkyl phosphorodichloridites with lithium iodide. They are stable at -60 to -50 0 . When warmed to 20 0 , they disproportionate with conversion into trialkyl phosphites and phosphorus triiodide. The latter also react together and give alkyl iodides, diphosphorus tetraiodide, and a polymer of unestablished structure. Diaryl and dialkyl phosphoriodidites are stable only in solution at low temperatures. They disproportionate in a similar way to aryl and alkyl phosphorodiiodidites. Alkyl phosphorodiiodidites react with iodine with the formation of alkyl iodides and phosphoryl iodide

  16. Hydroformylation of olefins and reductive carbonylation of aryl halides with syngas formed ex situ from dehydrogenative decarbonylation of hexane-1,6-diol

    Christensen, Stig Holden; Olsen, Esben Paul Krogh; Rosenbaum, Jascha

    2014-01-01

    A variety of primary alcohols have been investigated as convenient substrates for the ex situ delivery of carbon monoxide and molecular hydrogen in a two-chamber reactor. The gaseous mixture is liberated in one chamber by an iridium-catalysed dehydrogenative decarbonylation of the alcohol...... and then consumed in the other chamber in either a rhodium-catalysed hydroformylation of olefins or a palladium-catalysed reductive carbonylation of aryl halides. Hexane-1,6-diol was found to be the optimum alcohol for both reactions where moderate to excellent yields were obtained of the product aldehydes...

  17. C- versus O-Arylation of an Enol-Lactone Using Potassium tert-butoxide

    El Moktar Essassi

    2003-05-01

    Full Text Available Abstract: The use of potassium tert-butoxide as the base in arylation reactions of an enollactone with a series of benzyl halides was explored. Our work demonstrates that the ratio of C-arylation to O-arylation varies with the substitution pattern of the aryl halide.

  18. Melamine-Schiff base/manganese complex with denritic structure: An efficient catalyst for oxidation of alcohols and one-pot synthesis of nitriles.

    Kazemnejadi, Milad; Nikookar, Mahsa; Mohammadi, Mohammad; Shakeri, Alireza; Esmaeilpour, Mohsen

    2018-05-18

    Efficient and selective oxidation of alcohol to the corresponding carbonyl and/or nitrile was carried out by a new water-soluble melamine-based dendritic Mn(III) complex (Melamine-Mn (III)-Schiff base complex) in the presence of 2,4,6-trichloro-1,3,5-triazine (TCT) and O 2 at room temperature. Also, the oxidation of amine to the corresponding nitrile with high selectivity and conversion was performed at room temperature using the current method and high amounts of turnover frequencies (TOFs) were obtained for reactions. This system was also applicable for direct preparation of oxime through oxidation of alcohol. The catalyst was characterized by Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis), thermogravimetric analysis (TGA), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), CHN and inductively coupled plasma (ICP) analyses. Also, oxidation/reduction behavior of the catalyst was studied by cyclic voltammetry (CV). Moreover, chemoselectivity of the catalyst was discussed with various combinations. The water-soluble catalyst could be recycled from the reaction mixture and reused for several times with a very low losing in efficiency. The recovered catalyst was also investigated with various analyses. Finally, gram scale preparation of nitrile was evaluated by present method. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Atmospheric chemistry of 4 : 2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH): Products and mechanism of Cl atom initiated oxidation

    Hurley, MD; Ball, JC; Wallington, TJ

    2004-01-01

    Smog chamber/FTIR techniques were used to study the products and mechanism of the Cl atom initiated oxidation of 4:2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH) in 700 Torr of N-2/O-2 diluent at 296 K. CF3(CF2)(3)CH2CHO is the sole primary oxidation product. CF3(CF2)(3)CHO, CF3(CF2)(3)CH2COOH...... respectively. Using relative rate techniques, a value of k(Cl + CF3(CF2)(3)CH2CHO) = (1.84 +/- 0.30) x 10(-11) cm(3) molecule(-1) s(-1) was determined. The yield of the perfluorinated acid, CF3(CF2)(3)COOH, from the 4:2 fluorotelomer alcohol increased with the diluent gas oxygen concentration......, and CF3(CF2)(3)CH2C(O)OOH are secondary oxidation products. Further irradiation results in the formation of CF3(CF2)(3)COOH, COF2, and CF3OH. CF3(CF2)(3)CHO, CF3(CF2)(3)CH2COOH, and CF3(CF2)(3)CH2C(O)OOH are formed from CF3(CF2)(3)CH2CHO oxidation in yields of 46 27 and less than or equal to 27...

  20. Aryl sulfonate based anticancer alkylating agents.

    Sheikh, Hamdullah Khadim; Arshad, Tanzila; Kanwal, Ghazala

    2018-05-01

    This research work revolves around synthesis of antineoplastic alkylating sulfonate esters with dual alkylating sites for crosslinking of the DNA strands. These molecules were evaluated as potential antineoplastic cross linking alkylating agents by reaction with the nucleoside of Guanine DNA nucleobase at both ends of the synthesized molecule. Synthesis of the alkylating molecules and the crosslinking with the guanosine nucleoside was monitored by MALDITOF mass spectroscopy. The synthesized molecule's crosslinking or adduct forming rate with the nucleoside was compared with that of 1,4 butane disulfonate (busulfan), in form of time taken for the appearance of [M+H] + . It was found that aryl sulfonate leaving group was causing higher rate of nucleophilic attack by the Lewis basic site of the nucleobase. Furthermore, the rate was also found to be a function of electron withdrawing or donating nature of the substituent on the aryl ring. Compound with strong electron withdrawing substituent on the para position of the ring reacted fastest. Hence, new alkylating agents were synthesized with optimized or desired reactivity.

  1. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum.Evidence for the production of 4-hydroxycinnamyl alcohols from 4-allylphenols

    Fraaije, Marco W.; Veeger, Cees; Berkel, Willem J.H. van

    1995-01-01

    The substrate specificity of the flavoprotein vanillyl-alcohol oxidase from Penicillium simplicissimum was investigated. Vanillyl-alcohol oxidase catalyzes besides the oxidation of 4-hydroxybenzyl alcohols, the oxidative deamination of 4-hydroxybenzylamines and the oxidative demethylation of

  2. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-03-01

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity

  3. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  5. The Nutraceutic Silybin Counteracts Excess Lipid Accumulation and Ongoing Oxidative Stress in an In Vitro Model of Non-Alcoholic Fatty Liver Disease Progression

    Giulia Vecchione

    2017-09-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a major cause of liver-related morbidity and mortality. Oxidative stress and release of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα, are major consequences of hepatic lipid overload, which can contribute to progression of NAFLD to non-alcoholic steatohepatitis (NASH. Also, mitochondria are involved in the NAFLD pathogenesis for their role in hepatic lipid metabolism. Definitive treatments for NAFLD/NASH are lacking so far. Silybin, the extract of the milk thistle seeds, has previously shown beneficial effects in NAFLD. Sequential exposure of hepatocytes to high concentrations of fatty acids (FAs and TNFα resulted in fat overload and oxidative stress, which mimic in vitro the progression of NAFLD from simple steatosis (SS to steatohepatitis (SH. The exposure to 50 µM silybin for 24 h reduced fat accumulation in the model of NAFLD progression. The in vitro progression of NAFLD from SS to SH resulted in reduced hepatocyte viability, increased apoptosis and oxidative stress, reduction in lipid droplet size, and up-regulation of IκB kinase β-interacting protein and adipose triglyceride lipase expressions. The direct action of silybin on SS or SH cells and the underlying mechanisms were assessed. Beneficial action of silybin was sustained by changes in expression/activity of peroxisome proliferator-activated receptors and enzymes for FA oxidation. Moreover, silybin counteracted the FA-induced mitochondrial damage by acting on complementary pathways: (i increased the mitochondrial size and improved the mitochondrial cristae organization; (ii stimulated mitochondrial FA oxidation; (iii reduced basal and maximal respiration and ATP production in SH cells; (iv stimulated ATP production in SS cells; and (v rescued the FA-induced apoptotic signals and oxidative stress in SH cells. We provide new insights about the direct protective effects of the nutraceutic silybin on hepatocytes

  6. Quantitative production of compound I from a cytochrome P450 enzyme at low temperatures. Kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol.

    Wang, Qin; Sheng, Xin; Horner, John H; Newcomb, Martin

    2009-08-05

    Cytochrome P450 enzymes are commonly thought to oxidize substrates via an iron(IV)-oxo porphyrin radical cation transient termed Compound I, but kinetic studies of P450 Compounds I are essentially nonexistent. We report production of Compound I from cytochrome P450 119 (CYP119) in high conversion from the corresponding Compound II species at low temperatures in buffer mixtures containing 50% glycerol by photolysis with 365 nm light from a pulsed lamp. Compound I was studied as a reagent in oxidations of benzyl alcohol and its benzylic mono- and dideuterio isotopomers. Pseudo-first-order rate constants obtained at -50 degrees C with concentrations of substrates between 1.0 and 6.0 mM displayed saturation kinetics that gave binding constants for the substrate in the Compound I species (K(bind)) and first-order rate constants for the oxidation reactions (k(ox)). Representative results are K(bind) = 214 M(-1) and k(ox) = 0.48 s(-1) for oxidation of benzyl alcohol. For the dideuterated substrate C(6)H(5)CD(2)OH, kinetics were studied between -50 and -25 degrees C, and a van't Hoff plot for complexation and an Arrhenius plot for the oxidation reaction were constructed. The H/D kinetic isotope effects (KIEs) at -50 degrees C were resolved into a large primary KIE (P = 11.9) and a small, inverse secondary KIE (S = 0.96). Comparison of values extrapolated to 22 degrees C of both the rate constant for oxidation of C(6)H(5)CD(2)OH and the KIE for the nondeuterated and dideuterated substrates to values obtained previously in laser flash photolysis experiments suggested that tunneling could be a significant component of the total rate constant at -50 degrees C.

  7. Hetero-Diels–Alder reactions of hetaryl and aryl thioketones with acetylenic dienophiles

    Grzegorz Mlostoń

    2015-04-01

    Full Text Available Selected hetaryl and aryl thioketones react with acetylenecarboxylates under thermal conditions in the presence of LiClO4 or, alternatively, under high-pressure conditions (5 kbar at room temperature yielding thiopyran derivatives. The hetero-Diels–Alder reaction occurs in a chemo- and regioselective manner. The initially formed [4 + 2] cycloadducts rearrange via a 1,3-hydrogen shift sequence to give the final products. The latter were smoothly oxidized by treatment with mCPBA to the corresponding sulfones.

  8. Improved biological processes for the production of aryl sulfates

    2017-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using recombinant host cells. More particularly, the present invention pertains to recombinant host cells comprising (e.g., expressing) a polypeptide having aryl sulfotransferase...... activity, wherein said recombinant host cells have been modified to have an increased uptake of sulfate compared to identical host cells that does not carry said modification. Further provided are processes for the production of aryl sulfates, such as zosteric acid, employing such recombinant host cells....

  9. Regioselective synthesis of C3 alkylated and arylated benzothiophenes

    Shrives, Harry J.; Fernández-Salas, José A.; Hedtke, Christin; Pulis, Alexander P.; Procter, David J.

    2017-03-01

    Benzothiophenes are heterocyclic constituents of important molecules relevant to society, including those with the potential to meet modern medical challenges. The construction of molecules would be vastly more efficient if carbon-hydrogen bonds, found in all organic molecules, can be directly converted into carbon-carbon bonds. In the case of elaborating benzothiophenes, functionalization of carbon-hydrogen bonds at carbon-number 3 (C3) is markedly more demanding than at C2 due to issues of regioselectivity (C3 versus C2), and the requirement of high temperatures, precious metals and the installation of superfluous directing groups. Herein, we demonstrate that synthetically unexplored but readily accessible benzothiophene S-oxides serve as novel precursors for C3-functionalized benzothiophenes. Employing an interrupted Pummerer reaction to capture and then deliver phenol and silane coupling partners, we have discovered a directing group-free method that delivers C3-arylated and -alkylated benzothiophenes with complete regioselectivity, under metal-free and mild conditions.

  10. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    Wu, Linglin; Falivene, Laura; Drinkel, Emma E.; Grant, Sharday; Linden, Anthony; Cavallo, Luigi; Dorta, Reto

    2012-01-01

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    Wu, Linglin

    2012-02-06

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preparation of poly(vinyl alcohol)-grafted graphene oxide/poly(vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization

    Zhang, Shengchang; Liu, Pengqing; Zhao, Xiangsen; Xu, Jianjun

    2017-02-01

    An in-situ polymerization combined with chemical grafting modification method for preparing Poly(vinyl alcohol)-grafted graphene oxide/Poly(vinyl alcohol) (PVA-g-GO/PVA) nanocomposites was reported. Firstly, Poly(vinyl acetate)-grafted graphene oxide/Poly(vinyl acetate) nanocomposites were prepared, and then the PVA-g-GO/PVA nanocomposites could be obtained through alcoholysis reaction. X-ray photoelectron spectrometer and fourier-transform infrared spectrometer confirmed that the PVAc or PVA chains were successfully grafted to GO sheets during in-situ polymerization and alcoholysis. And the results from transmission electron microscopy, scanning electron microscopy and X-ray diffraction showed that the well compatibility and homogenous dispersion of PVA-g-GO in PVA matrix could be achieved. Differential scanning calorimetric, thermogravimetry analysis and tensile test were employed to study the thermal and mechanical properties of the PVA-g-GO/PVA nanocomposites. The results indicated that a 53% improvement of tensile strength and a 36% improvement of Young's modulus were achieved by addition of 0.5 wt% of GO sheets. And the glass transition temperature of PVA-g-GO/PVA nanocomposites was increased, and their thermal stability and crystallization degree were both decreased. Due to well dispersion of fillers and strong interfacial interactions at the filler-matrix interface, in-situ polymerization combined with chemical grafting modification was a good choice to prepare graphene/PVA nanocomposite with excellent mechanical properties.

  13. The unexpected influence of aryl substituents in N-aryl-3-oxobutanamides on the behavior of their multicomponent reactions with 5-amino-3-methylisoxazole and salicylaldehyde

    Volodymyr V. Tkachenko

    2014-12-01

    Full Text Available The switchable three-component reactions of 5-amino-3-methylisoxazole, salicylaldehyde and N-aryl-3-oxobutanamides under different conditions were studied and discussed. The unexpected influence of the aryl substituent in N-aryl-3-oxobutanamides on the behavior of the reaction was discovered. The key influence of ultrasonication and Lewis acid catalysts led to an established protocol to selectively obtain two or three types of heterocyclic scaffolds depending on the substituent in the N-aryl moiety.

  14. α-Alkylation of ketones with primary alcohols driven by visible light and bimetallic gold and palladium nanoparticles supported on transition metal oxide

    Bai, Meifen; Xin, Hui; Guo, Zhi; Guo, Dapeng; Wang, Yan; Zhao, Peng; Li, Jingyi, E-mail: lijingyicn@163.com

    2017-01-01

    Highlights: • The catalysts were prepared by reduction method at room temperature. • α-Alkylation of ketones and primary alcohols occurred on Au-Pd/CeO{sub 2} in visible light. • Superior catalytic activities were shown on bimetallic Au-Pd/CeO{sub 2} catalysts. • The catalyst can be reused for 4 times. • The mechanism of the synthesis for ketones was proposed. - Abstract: The direct α-alkylation of ketones with primary alcohols to obtain the corresponding saturated coupled ketones was achieved with bimetallic gold(Au)-palladium(Pd) nanoparticles(NPs) supported on a transition metal oxide (such as CeO{sub 2}). This system demonstrated a higher catalytic property than Au/CeO{sub 2} and Pd/CeO{sub 2} under visible light irradiation at 40 ± 3 °C in an Ar atmosphere. Such phenomenon was caused by the synergistic effect between Au and Pd. Isopropyl alcohol was used as the solvent and CH{sub 3}ONa as the base. The effect of the bimetallic Au-Pd mass ratio and the two different transition metal oxide supports (such as CeO{sub 2} or ZrO{sub 2}) during the reaction process was studied. The highest catalytic activity of those examined happened with the 1.5 wt% Au-1.5 wt% Pd (Au and Pd mass ratio 1:1)/CeO{sub 2} photo-catalyst. The intensity and wavelength of the visible light had a strong influence on the system. The catalyst can be reused for four times. A reaction mechanism was proposed for the α-alkylation of ketones with primary alcohols.

  15. First-Row-Transition Ion Metals(II-EDTA Functionalized Magnetic Nanoparticles as Catalysts for Solvent-Free Microwave-Induced Oxidation of Alcohols

    Nuno M. R. Martins

    2017-11-01

    Full Text Available A series of first-row transition-metals combined with ethylenediamine tetraacetic acid (EDTA, as metal-based N,O-chelating ligands, at the surface of ferrite magnetic nanoparticles (MNPs was prepared by a co-precipitation method. Those EDTA functionalized MNPs with general formula Fe3O4@EDTA-M2+ [M = Mn2+ (1, Fe2+ (2, Co2+ (3, Ni2+ (4, Cu2+ (5 or Zn2+ (6] were characterized by FTIR (Fourier Transform Infrared spectroscopy, powder XRD (X-ray Diffraction, SEM (Scanning Electron Microscope, EDS (Energy Dispersive Spectrometer, VSM (Vibrating Sample Magnetometer and TGA (Thermal Gravity Analysis. The application of the magnetic NPs towards the microwave-assisted oxidation of several alcohol substrates in a solvent-free medium was evaluated. The influence of reaction parameters such as temperature, time, type of oxidant, and presence of organic radicals was investigated. This study demonstrates that these MNPs can act as efficient catalysts for the conversion of alcohols to the corresponding ketones or aldehydes with high selectivity and yields up to 99% after 2 h of reaction at 110 °C using t-BuOOH as oxidant. Moreover, they have the advantage of being magnetically recoverable catalysts that can be easily recycled in following runs.

  16. Carvedilol Improves Inflammatory Response, Oxidative Stress and Fibrosis in the Alcohol-Induced Liver Injury in Rats by Regulating Kuppfer Cells and Hepatic Stellate Cells.

    Raimundo Fernandes de Araújo Júnior

    Full Text Available To evaluate the anti-inflammatory, anti-oxidant and antifibrotic effects of carvedilol (CARV in rats with ethanol-induced liver injury.Liver injury was induced by gavage administration of alcohol (7 g/kg for 28 consecutive days. Eighty Wistar rats were pretreated with oral CARV at 1, 3, or 5 mg/kg or with saline 1 h before exposure to alcohol. Liver homogenates were assayed for interleukin (IL-1β, IL-10, and tumor necrosis factor (TNF-α level as well as for myeloperoxidase (MPO activity and malonyldialdehyde (MDA and glutathione (GSH levels. Serum aspartate aminotransferase (AST activity and liver triglyceride (TG levels were also assayed. Immunohistochemical analyses of cyclooxygenase 2 (COX-2, receptor activator of nuclear factor kappa-B/ligand (RANK/RANKL, suppressor of cytokine signalling (SOCS1, the Kupffer cell marker IBA-1 (ionized calcium-binding adaptor molecule 1, intercellular adhesion molecule 1 (ICAM-1, superoxide dismutase (SOD-1, and glutathione peroxidase (GPx-1 expression were performed. Confocal microscopy analysis of IL-1β and NF-κB expression and real-time quantitative PCR analysis for TNFα, PCI, PCIII, and NF-κB were performed.CARV treatment (5 mg/kg during the alcohol exposure protocol was associated with reduced steatosis, hepatic cord degeneration, fibrosis and necrosis, as well as reduced levels of AST (p < 0.01, ALT (p < 0.01, TG (p < 0.001, MPO (p < 0.001, MDA (p < 0.05, and proinflammatory cytokines (IL-1β and TNF-α, both p < 0.05, and increased levels of the anti-inflammatory cytokine IL-10 (p < 0.001 and GSH (p < 0.05, compared to the alcohol-only group. Treatment with CARV 5 mg/kg also reduced expression levels of COX-2, RANK, RANKL, IBA-1, and ICAM-1 (all p < 0.05, while increasing expression of SOCS1, SOD-1, and GPx-1 (all p < 0.05 and decreasing expression of IL-1β and NF-κB (both, p < 0.05. Real-time quantitative PCR analysis showed that mRNA production of TNF-α, procollagen type I (PCI, procollagen

  17. Estrés oxidativo hepatocitario y hepatopatía alcohólica Hepatocyte oxidant stress and alcoholic liver disease

    L. Conde de la Rosa

    2008-03-01

    Full Text Available El consumo agudo y crónico de alcohol aumenta la producción de las especies reactivas de oxígeno (ERO y de la peroxidación de lípidos, proteínas y ADN. El mecanismo por el que el alcohol causa daño celular no está claro todavía, pero se considera que las ERO y los productos finales de la peroxidación lipídica juegan un papel importante. Se cree que existen muchos mecanismos por los que el alcohol induce un estado de "estrés oxidativo", incluyendo cambios en el estado redox, producción de acetaldehído, daño mitocondrial, lesión de la membrana, apoptosis, hipoxia inducida por el etanol, efectos sobre el sistema inmune y cambios en la producción de citoquinas, incremento en los niveles de endotoxina y activación de las células de Kupffer, movilización de hierro, cambios en la defensa antioxidante, particularmente del glutatión mitocondrial (GSH, la oxidación del etanol y la formación del radical 1-hidroxi-etilo, y la inducción de CYP2E1. Estos mecanismos no son exclusivos y es probable que varios de ellos contribuyan a la capacidad del etanol de inducir un estado de estrés oxidativo.Acute and chronic alcohol consumption increases the production of reactive oxygen species (ROS, and enhances lipid peroxidation of lipids, proteins, and DNA. The mechanism by which alcohol causes cell injury is still not clear but a major role for ROS and lipid peroxidation-end products is considered. Many pathways have been suggested to play a role on how ethanol induces a state of "oxidative stress", including redox-state changes, acetaldehyde production, damage to mitochondria, membrane injury, apoptosis, ethanol-induced hypoxia, effects on the immune system and altered cytokine production, increased endotoxin levels and activation of Kupffer cells, mobilization of iron, modulation of the antioxidant defense, particularly mitochondrial glutathione (GSH, one electron oxidation of ethanol to 1-hydroxy-ethyl radical, and induction of CYP2E1

  18. Divergent unprotected peptide macrocyclisation by palladium-mediated cysteine arylation.

    Rojas, Anthony J; Zhang, Chi; Vinogradova, Ekaterina V; Buchwald, Nathan H; Reilly, John; Pentelute, Bradley L; Buchwald, Stephen L

    2017-06-01

    Macrocyclic peptides are important therapeutic candidates due to their improved physicochemical properties in comparison to their linear counterparts. Here we detail a method for a divergent macrocyclisation of unprotected peptides by crosslinking two cysteine residues with bis-palladium organometallic reagents. These synthetic intermediates are prepared in a single step from commercially available aryl bis-halides. Two bioactive linear peptides with cysteine residues at i , i + 4 and i , i + 7 positions, respectively, were cyclised to introduce a diverse array of aryl and bi-aryl linkers. These two series of macrocyclic peptides displayed similar linker-dependent lipophilicity, phospholipid affinity, and unique volume of distributions. Additionally, one of the bioactive peptides showed target binding affinity that was predominantly affected by the length of the linker. Collectively, this divergent strategy allowed rapid and convenient access to various aryl linkers, enabling the systematic evaluation of the effect of appending unit on the medicinal properties of macrocyclic peptides.

  19. Palladium-catalysed arylation of sulfonamide stabilised enolates

    Zeevaart, JG

    2005-03-07

    Full Text Available Alpha-Arylation of inethanesulfonamides using palladium catalysis is described. For example, treatment of N-benzyl-Nmethylmethanesulfonamide with catalytic Pd (OAc) (2) in the presence of sodium tert-butoxide, triphenylphosphine and toluene afforded...

  20. Catalytic oxidation using nitrous oxide

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  1. Oxidation reaction of ferrocytochrome C by ferricyanide as a probe to effects of alcohols on structure and reactivity of the protein. Technical progress report

    Ilan, Y.; Shafferman, A.

    1977-05-01

    Results are reported on the effect of ethanol on the oxidation of ferrocytochrome c by ferricyanide and its cumulative effect with pH and temperature, on structure and spectra of cytochrome c. It is concluded that low concentrations of alcohols which do not change dramatically the structure and physical properties of cytochrome c, but produce changes in the structure of water, cause small changes in the structure of the protein. This is manifested by the shift in the pKa, and also in the retardation of the redox reactions. This indicates that water molecules participate in the reaction complex of cytochrome c with its redox substrates. (DLC)

  2. Silica functionalized Cu(II) acetylacetonate Schiff base complex: An efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amines

    Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.

    2017-09-01

    Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.

  3. Zeolite-encapsulated Co(II), Mn(II), Cu(II) and Cr(III) salen complexes as catalysts for efficient selective oxidation of benzyl alcohol

    Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.

    2018-01-01

    Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.

  4. Facile synthesis of glucose-functionalized reduced graphene oxide (GFRGO)/poly(vinyl alcohol) nanocomposites for improving thermal and mechanical properties

    Abdolmaleki, Amir; Mallakpour, Shadpour; Karshenas, Azam

    2017-01-01

    Highlights: • GFRGO composites were synthesized and used for fabrication of PVA/GFRGO NCs. • Attached glucose on RGO enhances RGO interaction with PVA hydroxyl groups. • PVA/GFRGO NCs exhibited enhanced thermal and mechanical properties. • FE-SEM and TEM micrographs prove good dispersion of GFRGO into PVA matrix. - Abstract: In this work, we provided a facile pathway to the modification of reduced graphene oxide (RGO) nanosheets by glucose as a biologically active molecule through covalent functionalization. Then, flexible and smooth poly(vinyl alcohol) (PVA)/glucose-functionalized reduced graphene oxide (PVA/GFRGO) nanocomposite (NC) films were fabricated using 0, 1, 3 and 5 wt% concentrations of RGO-glucose in water. As a reducing sugar, glucose can reduce graphene oxide. Thus, graphene oxide was converted to reduced graphene oxide (RGO) by hydrazine hydrate. Then, RGO was functionalized with glucose to achieve good dispersion in the polymer matrix. Due to the increased interfacial interaction between GFRGO and PVA matrix, the prepared PVA/GFRGO NCs showed a 52% increase in tensile strength and a 47% improvement in Young’s modulus by adding of only 5 wt% of GFRGO. Thermal analysis results showed that the thermal stability of the PVA/GFRGO NCs increased compared to the neat PVA film.

  5. Facile synthesis of glucose-functionalized reduced graphene oxide (GFRGO)/poly(vinyl alcohol) nanocomposites for improving thermal and mechanical properties

    Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Center of Excellence in Sensors and Green Chemistry, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Center of Excellence in Sensors and Green Chemistry, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Karshenas, Azam [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2017-03-15

    Highlights: • GFRGO composites were synthesized and used for fabrication of PVA/GFRGO NCs. • Attached glucose on RGO enhances RGO interaction with PVA hydroxyl groups. • PVA/GFRGO NCs exhibited enhanced thermal and mechanical properties. • FE-SEM and TEM micrographs prove good dispersion of GFRGO into PVA matrix. - Abstract: In this work, we provided a facile pathway to the modification of reduced graphene oxide (RGO) nanosheets by glucose as a biologically active molecule through covalent functionalization. Then, flexible and smooth poly(vinyl alcohol) (PVA)/glucose-functionalized reduced graphene oxide (PVA/GFRGO) nanocomposite (NC) films were fabricated using 0, 1, 3 and 5 wt% concentrations of RGO-glucose in water. As a reducing sugar, glucose can reduce graphene oxide. Thus, graphene oxide was converted to reduced graphene oxide (RGO) by hydrazine hydrate. Then, RGO was functionalized with glucose to achieve good dispersion in the polymer matrix. Due to the increased interfacial interaction between GFRGO and PVA matrix, the prepared PVA/GFRGO NCs showed a 52% increase in tensile strength and a 47% improvement in Young’s modulus by adding of only 5 wt% of GFRGO. Thermal analysis results showed that the thermal stability of the PVA/GFRGO NCs increased compared to the neat PVA film.

  6. Elaboration of modified poly(NiII-DHS films as electrodes by the electropolymerization of Ni(II-[5,5′-dihydroxysalen] onto indium tin oxide surface and study of their electrocatalytic behavior toward aliphatic alcohols

    Ali Ourari

    2017-11-01

    Full Text Available Nickel(II-DHS complex was obtained from N,N′-bis(2,5-dihydroxybenzylidene-1,2-diaminoethane (H2DHS ligand and nickel acetate tetrahydrated in ethanolic solution with stirring under reflux. This complex, dissolved in an alkaline solution, was oxidized to form electroactive films strongly adhered on the ITO (indium tin oxide electrode surface. In this alkaline solution, the poly-[NiII-DHS]/ITO films showed the typical voltammetric response of (Ni2+/Ni3+ redox couple centers which are immobilized in the polymer-film. The modified electrodes (MEs obtained were also characterized by several techniques such as scanning electronic microscopy, atomic force microscopy and electrochemical methods. The electrocatalytic behavior of these MEs toward the oxidation reaction of some aliphatic alcohols such as methanol, ethanol, 2-Methyl-1-propanol and isopropanol was investigated. The voltammograms recorded with these alcohols showed good electrocatalytic efficiency. The electrocatalytic currents were at least 80 times higher than those obtained for the oxidation of methanol on electrodes modified with nickel hydroxide films in alkaline solutions. We noticed that these electrocatalytic currents are proportional to the concentration of methanol (0.050–0.30 μM. In contrast, those recorded for the oxidation of other aliphatic short chain alcohols such as ethanol, 2-methyl-1-propanol and isopropanol are rather moderately weaker. In all cases the electrocatalytic currents presented a linear dependence with the concentration of alcohol. These modified electrodes could be applied as alcohol sensors.

  7. Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion

    Ana Chira

    2017-02-01

    Full Text Available Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctylaniline, 4-aminoantipyrine, 4-(4-aminophenylbutyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM. The electrodeposited mass varies between 26 ng/cm2 for 4-fluoroaniline formed during 30 s to 442 ng/cm2 for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenylbutyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found.

  8. Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion.

    Chira, Ana; Bucur, Bogdan; Radu, Gabriel-Lucian

    2017-02-28

    Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctyl)aniline, 4-aminoantipyrine, 4-(4-aminophenyl)butyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM). The electrodeposited mass varies between 26 ng/cm² for 4-fluoroaniline formed during 30 s to 442 ng/cm² for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN) and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenyl)butyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found.

  9. N-Benzylhydroxylamine addition to beta-aryl enoates. Enantioselective synthesis of beta-aryl-beta-amino acid precursors

    Sibi; Liu

    2000-10-19

    Chiral Lewis acid catalyzed N-benzylhydroxylamine addition to pyrrolidinone-derived enoates afforded beta-aryl-beta-amino acid derivatives in high enantiomeric purity with moderate to very good chemical efficiency.

  10. A convenient catalyst system for microwave accelerated cross-coupling of a range of aryl boronic acids with aryl chlorides

    Milton Edward J

    2007-05-01

    Full Text Available Abstract A convenient microwave accelerated cross-coupling procedure between aryl chlorides with a range of boronic acids has been developed. An explanation for the low reactivity of highly fluorinated boronic acids in Suzuki coupling is provided.

  11. Preparation of Pt Ru/C + rare earths by the method of reduction by alcohol for the electro-oxidation of ethanol

    Tusi, M.M.; Rodrigues, R.M.S.; Spinace, E.V.; Oliveira Neto, A.

    2010-01-01

    PtRu/C electrocatalyst was prepared in a single step, while that PtRu/85%C-15%Ce, PtRu/85%C-15%La, PtRu/85%C-15%Nd and PtRu/85%C-15%Er electrocatalyst were prepared in a two step. In the first step a Carbon Vulcan XC72 + rare earth supports were prepared. In the second step PtRu electrocatalyst were prepared by an alcohol-reduction process using ethylene glycol as solvent and reducing agent and supported on Vulcan XC72 + earth rare. The obtained electrocatalysts were characterized by EDAX, XRD and chronoamperometry. The electro-oxidation of ethanol was studied by chronoamperometry at room temperature. PtRu/85%C- 15%Ce electrocatalyst showed a significant increase of performance for ethanol oxidation compared to PtRu/C electrocatalyst. (author)

  12. Enhanced electro-oxidation of ethanol using PtSn/CeO{sub 2}-C electrocatalyst prepared by an alcohol-reduction process

    Neto, Almir Oliveira; Farias, Luciana A.; Dias, Ricardo R.; Brandalise, Michelle; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 - Cidade Universitaria, CEP 05508-900 Sao Paulo-SP (Brazil)

    2008-09-15

    PtSn/CeO{sub 2}-C electrocatalysts were prepared by an alcohol-reduction process using ethylene glycol as solvent and reduction agent and CeO{sub 2} and Vulcan Carbon XC72 as supports. The electrocatalysts were characterized by EDX and XRD. The electro-oxidation of ethanol was studied at room temperature by chronoamperometry. PtSn/CeO{sub 2}-C electrocatalyst with 15 wt% of CeO{sub 2} showed a significant increase of performance for ethanol oxidation compared to PtSn/C catalyst. Preliminary tests at 100C on a single cell of a direct ethanol fuel cell (DEFC) also confirm the results obtained by chronoamperometry. (author)

  13. Facile Synthesis of 3-Aryl-3-hydroxy-2-oxindoles from 2-Arylindoles

    Moon, Hye Ran; Roh, Hwa Jung; Kim, Jae Nyoung [Chonnam National University, Gwangju (Korea, Republic of); Lee, Sangku [Korea Research Institute of Bioscience and Biotechnology, Chungju (Korea, Republic of)

    2016-07-15

    An efficient synthetic route of 3-aryl-3-hydroxy-2-oxindoles has been developed from 2-arylindoles. The procedure provides a brand-new synthetic method of 3-aryl-3-hydroxy-2-oxindoles from readily available starting materials in high yields. We reported an aerobic transition metal-free synthesis of 2,3-diarylindoles via an oxidative nucleophilic substitution of hydrogen (ONSH) pathway from 2-arylindoles and nitroarenes. As an example, the reaction of 2-phenylindole (1a) and 1,3-dinitrobenzene in DMSO in the presence of Cs{sub 2}CO{sub 3} under O{sub 2} balloon atmosphere afforded 2,3-diarylindole in good yield (78%) in short time, as shown in Scheme 1. During the study, we found the formation of 3-phenyl-3-hydroxy-2-oxindole (2a), albeit in moderate yield (41%), under the same reaction condition for a long time (8 h) without 1,3-dinitrobenzene. Based on the experimental results, the reaction mechanism for the conversion of 1a to 2a is proposed, as shown in Scheme 2. The indole anion I was converted to 3-hydroxyindolenine intermediate III via the hydroperoxide intermediate II. Subsequently, III was changed to an epoxide intermediate IV under basic condition, and a following semipinacol type rearrangement of IV would produce 3-phenyloxindole VI. A subsequent aerobic oxidation of VI would produce 2a.

  14. On molybdenum (6) alcoholates

    Turova, N.Ya.; Kessler, V.G.

    1990-01-01

    Synthesis techniques for molybdenum (6) alcoholates of MoO(OR) 4 (1) and MoO 2 (OR) 2 (2) series by means of exchange interaction of corresponding oxychloride with MOR (M=Li, Na) are obtained. These techniques have allowed to prepare 1(R=Me, Et, i-Pr) and 2(R=Me, Et) with 70-98 % yield. Methylates are also prepared at ether interchange of ethylates by methyl alcohol. Metal anode oxidation in corresponding alcohol may be used for 1 synthesis. Physicochemical properties of both series alcoholates, solubility in alcohols in particular, depend on their formation conditions coordination polymerism. Alcoholates of 1 are rather unstable and tend to decomposition up to 2 and ether. It is suggested to introduce NaOR microquantities to stabilize those alcoholates

  15. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Acupuncture reduces memory impairment and oxidative stress and enhances cholinergic function in an animal model of alcoholism.

    Phunchago, Nattaporn; Wattanathorn, Jintanaporn; Chaisiwamongkol, Kowit; Muchimapura, Supaporn; Thukham-Mee, Wipawee

    2015-02-01

    Currently, the therapeutic strategy against memory deficit induced by alcoholism is not satisfactory and is expensive. Therefore, an effective, low-cost strategy is required. On the basis of the memory-enhancing effect of stimulation of the HT7 acupoint, we aimed to determine whether acupuncture at the HT7 acupoint can reduce alcoholism-induced memory impairment. The possible underlying mechanism was also explored. Alcoholism was induced in male Wistar rats weighing 180-220 g. The alcoholic rats received either acupuncture at HT7 or sham acupuncture for 1 minute bilaterally once daily for 14 days. Their spatial memory was assessed after 1 day, 7 days, and 14 days of treatment. At the end of the study, the malondialdehyde level and the activities of catalase, superoxide dismutase, glutathione peroxidase, and acetylcholinesterase enzymes in the hippocampus were determined using colorimetric assays. The results showed that acupuncture at HT7 significantly decreased the acetylcholinesterase activity and the malondialdehyde level, but increased the activities of catalase, superoxide dismutase, and glutathione peroxidase in the hippocampus. These results suggest that acupuncture at HT7 can effectively reduce the alcoholism-induced memory deficit. However, further studies concerning the detailed relationships between the location of the HT7 acupoint and the changes in the observed parameters are required. Copyright © 2015. Published by Elsevier B.V.

  17. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17-10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  18. Effects of Pomegranate peel hydroAlcoholic extract and vitamin E supplementation on Paraoxonase, myeloperoxidase Activities and nitric oxide levels following an exhaustive exercise in rats

    Saeid Veiskarami

    2017-03-01

    Full Text Available Background: free radicals produced as a result of heavy training exercise especially oxygen species (ROS damage to body tissues Which can be prevent from this by consuming antioxidant substances timely. The aim of this study was to evaluate effect of Pomegranate (Punica Granatum peel hydro alcoholic on reduced of oxidative stress induced by an exhaustive exercise. Materials and Methods: Thirty two weight-matched male Wistar rats were evenly divided into: 1 control: received saline (0.2 ml saline/ rat by oral administration via epigastric tube. 2 Received oral administration of 200 mg/kg pomegranate peel hydro alcoholic extract (PPHE200. 3 Received oral administration of 250 mg/kg Pomegranate peel hydro alcoholic extract (PPHE250. 4 Received oral administration of vitamin E (vit E 5 mg/kg. Animals were submitted to swimming exhaustive exercise stress for an 8-week. At the end of the experiment, blood samples were collected for serum. Serum samples were analyzed for paraoxonase-1(PON-1 and myeloperoxidase (MPO activities and nitric oxide levels. Results: Paraoxonase-1 (PON-1 activities serum were significantly increases in PPHE200 (23.03±1.47, PPHE250 (23.59±1.98 and vit E (25.38±2.65 than in the control (18.57±1.380 (p<0.05.In PPHE200 (32.76±9.97 ،PPHE250 (31.45±6.05 and vit E (24.94±4.65 treated animals was determined in serum where myeloperoxidase activities reduced significantly compared with control (40.70±6.14 (p<0.05. Levels of Nitric oxide levels were significantly lower in PPHE 200 (46.59±2.48, PPHE250 (40.27±2.62 and vit E (36.25±3.82 treated than in control (47.18±5.36 (p<0.05. Conclusion: Results indicated that Pomegranate peel hydro alcoholic extract supplementations can strength antioxidant defense system and anti-inflammatory induced by exhaustive exercise.

  19. Hepatoprotective Effects of Antrodia cinnamomea: The Modulation of Oxidative Stress Signaling in a Mouse Model of Alcohol-Induced Acute Liver Injury

    Yange Liu

    2017-01-01

    Full Text Available In the present study, the components of A. cinnamomea (AC mycelia were systematically analyzed. Subsequently, its hepatoprotective effects and the underlying mechanisms were explored using a mouse model of acute alcohol-induced liver injury. AC contained 25 types of fatty acid, 16 types of amino acid, 3 types of nucleotide, and 8 types of mineral. The hepatoprotective effects were observed after 2 weeks of AC treatment at doses of 75 mg/kg, 225 mg/kg, and 675 mg/kg in the mouse model. These effects were indicated by the changes in the levels of aspartate aminotransferase, alanine aminotransferase, several oxidation-related factors, and inflammatory cytokines in serum and/or liver samples. AC reduced the incidence rate of necrosis, inflammatory infiltration, fatty droplets formation, and cell apoptosis in liver detecting via histological and TUNEL assay. In addition, AC reduced the expression of cleaved caspase-3, -8, and -9 and the levels of phosphor-protein kinase B (Akt and phosphor-nuclear factor-κB (NF-κB in the liver samples. Collectively, AC-mediated hepatoprotective effects in a mouse model of acute alcohol-induced liver injury are the result of reduction in oxidative stress. This may be associated with Akt/NF-κB signaling. These results provide valuable evidence to support the use of A. cinnamomea as a functional food and/or medicine.

  20. Protective Role of Dietary Curcumin in the Prevention of the Oxidative Stress Induced by Chronic Alcohol with respect to Hepatic Injury and Antiatherogenic Markers

    Ravi Varatharajalu

    2016-01-01

    Full Text Available Curcumin, an antioxidant compound found in Asian spices, was evaluated for its protective effects against ethanol-induced hepatosteatosis, liver injury, antiatherogenic markers, and antioxidant status in rats fed with Lieber-deCarli low menhaden (2.7% of total calories from ω-3 polyunsaturated fatty acids (PUFA and Lieber-deCarli high menhaden (13.8% of total calories from ω-3 PUFA alcohol-liquid (5% diets supplemented with or without curcumin (150 mg/kg/day for 8 weeks. Treatment with curcumin protected against high ω-3 PUFA and ethanol-induced hepatosteatosis and increase in liver injury markers, alanine aminotransferase, and aspartate aminotransferase. Curcumin upregulated paraoxonase 1 (PON1 mRNA and caused significant increase in serum PON1 and homocysteine thiolactonase activities as compared to high ω-3 PUFA and ethanol group. Moreover, treatment with curcumin protected against ethanol-induced oxidative stress by increasing the antioxidant glutathione and decreasing the lipid peroxidation adduct 4-hydroxynonenal. These results strongly suggest that chronic ethanol in combination with high ω-3 PUFA exacerbated hepatosteatosis and liver injury and adversely decreases antiatherogenic markers due to increased oxidative stress and depletion of glutathione. Curcumin supplementation significantly prevented these deleterious actions of chronic ethanol and high ω-3 PUFA. Therefore, we conclude that curcumin may have therapeutic potential to protect against chronic alcohol-induced liver injury and atherosclerosis.

  1. Effects of Modified Iron Oxide Nanoparticles on the Thermal and Dynamic Mechanical Properties of Cellulose Poly(vinyl alcohol Blend Films

    Mehdi Roohani

    2015-11-01

    Full Text Available This study was designed to investigate the effect of modified iron oxide nanoparticles (MINP and cellulose nanocrystals (NCC on magnetic, thermal and dynamic-mechanical properties of poly(vinyl alcohol based nanocomposites. Fe3O4 nanoparticles have been synthesized using a chemical co-precipitation route. Nanocomposite films were developed by solvent casting method and their properties were characterized by vibrating sample magnetometer (VSM, differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of nanoparticles, the glass transition temperature increase slightly to higher temperatures; however, the degree of crystallinity and the values of the melting temperature are found to decrease. Dynamic mechanical analysis revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of nanoparticles was even more noticeable. Addition of nanoparticles resulted in increased thermal stability of PVA due to the reduction in mobility of matrix molecules by strong hydrogen bonds between nanocomposite components. Results indicated that, MINP and NCC have synergistic effect on improving of poly(vinyl alcohol properties. The VSM findings showed that the saturation magnetization of iron oxide nanoparticles reduced after modification. This can be attributed to formation of hydroxyapatite on nanoparticles surface. The saturation magnetization (Ms of PVA- MINP films was higher than PVA-MINP- NCC film. This result probably is related to more amount of magnetic nanoparticles in PVA-MINP films.

  2. Electrochemical oxidation of ethanol using PtRh/C electrocatalysts in alkaline medium and synthesized by sodium borohydride and alcohol reduction

    Fontes, Eric Hossein

    2017-01-01

    PtRh/C were prepared by the following atomic proportions: (100,0), (0,100), (90,10), (70,30) and (50,50). The methods employed in the synthesis of these materials were reduction by sodium borohydride and reduction by alcohol. The metal salts used were H 2 PtCl 6 3•6H 2 0 and (RhNO 3 ) 3 , the support used was Carbon black XC72 and the bulk metal composition was 20% and 80% of support. The electrocatalysts were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction and Transmission electron microscopy. The ethanol electrochemical oxidation mechanism was investigated by in situ Fourier Transform Infrared Spectroscopy couple to an Attenuated Total Reflection technique. The electrocatalytic activity were evaluated by Cyclic Voltammetry, Linear Sweep Voltammetry and Chronoamperometry techniques. The Fuel Cells tests were made in a single direct alcohol fuel cell with alkaline membrane. The working electrodes were prepared by a thin porous coating technique. X-ray diffraction allowed to verify metallic alloys, segregate phases and to calculate the percentage of metallic alloys. It was else possible to identify crystallographic phases. Infrared Spectroscopy allowed to verify that the electrochemical oxidation of ethanol was carried out by an incomplete mechanism. PtRh(70:30)/C prepared by sodium borohydride produced large amounts of carbon dioxide and acetaldehyde. Rh/C showed electrocatalytic activity when compared with other materials studied.

  3. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.

    Wongnate, Thanyaporn; Chaiyen, Pimchai

    2013-07-01

    Enzymes in the glucose-methanol-choline (GMC) oxidoreductase superfamily catalyze the oxidation of an alcohol moiety to the corresponding aldehyde. In this review, the current understanding of the sugar oxidation mechanism in the reaction of pyranose 2-oxidase (P2O) is highlighted and compared with that of other enzymes in the GMC family for which structural and mechanistic information is available, including glucose oxidase, choline oxidase, cholesterol oxidase, cellobiose dehydrogenase, aryl-alcohol oxidase, and pyridoxine 4-oxidase. Other enzymes in the family that have been newly discovered or for which less information is available are also discussed. A large primary kinetic isotope effect was observed for the flavin reduction when 2-d-D-glucose was used as a substrate, but no solvent kinetic isotope effect was detected for the flavin reduction step. The reaction of P2O is consistent with a hydride transfer mechanism in which there is stepwise formation of d-glucose alkoxide prior to the hydride transfer. Site-directed mutagenesis of P2O and pH-dependence studies indicated that His548 is a catalytic base that facilitates the deprotonation of C2-OH in D-glucose. This finding agrees with the current mechanistic model for aryl-alcohol oxidase, glucose oxidase, cellobiose dehydrogenase, methanol oxidase, and pyridoxine 4-oxidase, but is different from that of cholesterol oxidase and choline oxidase. Although all of the GMC enzymes share similar structural folding and use the hydride transfer mechanism for flavin reduction, they appear to have subtle differences in the fine-tuned details of how they catalyze substrate oxidation. © 2013 The Authors Journal compilation © 2013 FEBS.

  4. Synthesis of aryl-1H-1,2,3-triazoles via 1,3-dipolar cycloaddition

    Wagner O. Valença

    2012-06-01

    Full Text Available A series of Aryl-1H-1,2,3-triazoles were prepared from the reaction between aril-azide (1 with 1.5 equiv. of terminal alkynes (2a-o. The reactions carried out at room temperature and in the presence of CuI (10 mol% in acetonitrile. The compounds (3a-o were obtained in moderate-to-good yields (50-94%. In general, not was observed significant inductive effect on the reactivity of the alkynes (2a-f. The alcohol alkynes (2i-k showed moderate yields 50-72%. On the other hand, the reaction with alkyl alkynes (2m,n furnished the compounds (3m and (3n in excellent yields of 89% and 90%, respectively.

  5. Nickel-catalyzed synthesis of aryl trifluoromethyl sulfides at room temperature.

    Zhang, Cheng-Pan; Vicic, David A

    2012-01-11

    Inexpensive nickel-bipyridine complexes were found to be active for the trifluoromethylthiolation of aryl iodides and aryl bromides at room temperature using the convenient [NMe(4)][SCF(3)] reagent. © 2011 American Chemical Society

  6. Aryl hydrocarbon receptor and intestinal immunity.

    Lamas, Bruno; Natividad, Jane M; Sokol, Harry

    2018-04-07

    Aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix-(bHLH) superfamily of transcription factors, which are associated with cellular responses to environmental stimuli, such as xenobiotics and oxygen levels. Unlike other members of bHLH, AhR is the only bHLH transcription factor that is known to be ligand activated. Early AhR studies focused on understanding the role of AhR in mediating the toxicity and carcinogenesis properties of the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In recent years, however, it has become apparent that, in addition to its toxicological involvement, AhR is highly receptive to a wide array of endogenous and exogenous ligands, and that its activation leads to a myriad of key host physiological functions. In this study, we review the current understanding of the functions of AhR in the mucosal immune system with a focus on its role in intestinal barrier function and intestinal immune cells, as well as in intestinal homeostasis.

  7. Adriamycin-induced oxidative stress is prevented by mixed hydro-alcoholic extract of Nigella sativa and Curcuma longa in rat kidney.

    Mohebbati, Reza; Shafei, Mohammad Naser; Soukhtanloo, Mohammad; Mohammadian Roshan, Noema; Khajavi Rad, Abolfazl; Anaeigoudari, Akbar; Hosseinian, Sara; Karimi, Sareh; Beheshti, Farimah

    2016-01-01

    Inflammation and oxidative stress is considered to have a crucial role in induction of nephropathy. Curcuma longa (C. longa) and Nigella sativa (N. sativa) have anti-inflammatory and antioxidant effects. This study was designed to investigate the effect of mixed hydro-alcoholic extract of N.sativa and C. longa on the oxidative stress induced by Adriamycin (ADR) in rat kidney. The animals were divided into 6 groups: control (CO), ADR, Adriamycin+ Vitamin C (ADR+VIT C), C. longa extract+ Adriamycin (C.LE+ADR), N. sativa extract+ Adriamycin (N.SE+ADR) and C. longa extract+ N. sativa extract + Adriamycin (N.S+C.L+ADR). ADR (5mg/kg) was injected intravenously, whereas VITC (100mg/kg) and extract of C. longa (1000mg/kg) and N. sativa (200mg/kg) were administrated orally. Finally, the renal tissue, urine and blood samples were collected and submitted to measure of redox markers, osmolarity and renal index. The renal content of total thiol and superoxide dismutase (SOD) activity significantly decreased and Malondialdehyde (MDA) concentration increased in Adriamycin group compared to control group. The renal content of total thiol and SOD activity significantly enhanced and MDA concentration reduced in treated-mixed extract of C. longa and N. sativa along with ADR group compared to ADR group. The mixed extract did not restore increased renal index percentage induced by ADR. There also was no significant difference in urine and serum osmolarity between the groups. hydro-alcoholic extracts of N.sativa and C.longa led to an improvement in ADR-induced oxidative stress and mixed administration of the extracts enhanced the aforementioned therapeutic effect.

  8. Visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO.

    Pramanik, Mukund M D; Rastogi, Namrata

    2016-06-30

    The visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO is illustrated. This is the first example of DMSO being used as the source of the methylsulfinyl group. The procedure tolerates a wide range of functional groups on (het)aryl diazonium salts and provides aryl methyl sulfoxides in excellent yields under mild reaction conditions.

  9. Decarboxylative Aminomethylation of Aryl- and Vinylsulfonates through Combined Nickel- and Photoredox-Catalyzed Cross-Coupling

    Fan, Lulu; Jia, Jiaqi; Hou, Hong; Lefebvre, Quentin; Rueping, Magnus

    2016-01-01

    A mild approach for the decarboxylative aminomethylation of aryl sulfonates by the combination of photoredox and nickel catalysis through C−O bond cleavage is described for the first time. A wide range of aryl triflates as well as aryl mesylates, tosylates and alkenyl triflates afford the corresponding products in good to excellent yields.

  10. Decarboxylative Aminomethylation of Aryl- and Vinylsulfonates through Combined Nickel- and Photoredox-Catalyzed Cross-Coupling

    Fan, Lulu

    2016-09-23

    A mild approach for the decarboxylative aminomethylation of aryl sulfonates by the combination of photoredox and nickel catalysis through C−O bond cleavage is described for the first time. A wide range of aryl triflates as well as aryl mesylates, tosylates and alkenyl triflates afford the corresponding products in good to excellent yields.

  11. Chemoselective N-arylation of aminobenzamides via copper catalysed Chan-Evans-Lam reactions.

    Liu, Shuai; Zu, Weisai; Zhang, Jinli; Xu, Liang

    2017-11-15

    Chemoselective N-arylation of unprotected aminobenzamides was achieved via Cu-catalysed Chan-Evans-Lam cross-coupling with aryl boronic acids for the first time. Simple copper catalysts enable the selective arylation of amino groups in ortho/meta/para-aminobenzamides under open-flask conditions. The reactions were scalable and compatible with a wide range of functional groups.

  12. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    Liu, Shumin; Zheng, Yudong, E-mail: zhengyudong@mater.ustb.edu.cn; Qiao, Kun [University of Science and Technology Beijing, School of Material Science and Engineering (China); Su, Lei [University of Science and Technology Beijing, School of Chemistry and Biological Engineering (China); Sanghera, Amendeep; Song, Wenhui [University College London, UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science (United Kingdom); Yue, Lina; Sun, Yi [University of Science and Technology Beijing, School of Material Science and Engineering (China)

    2015-12-15

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  13. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue.

    Dai, Hongjie; Huang, Yue; Huang, Huihua

    2018-04-01

    Eco-friendly polyvinyl alcohol/carboxymethyl cellulose (isolated from pineapple peel) hydrogels reinforced with graphene oxide and bentonite were prepared as efficient adsorbents for methylene blue (MB). The structure and morphology of the prepared hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). Introducing graphene oxide and bentonite into the hydrogels evidently enhanced the thermal stability, swelling ability and MB adsorption capacity. The effects of initial concentration of MB, pH, contact time and temperature on MB adsorption capacity of the prepared hydrogels were investigated. Adsorption kinetics and equilibrium adsorption isotherm fitted pseudo-second-order kinetic model and Langmuir isotherm model well, respectively. After introducing graphene oxide and bentonite into the hydrogels, the maximum adsorption capacity calculated from the Langmuir isotherm model reached 172.14 mg/g at 30 °C, obviously higher than the hydrogels prepared without these additions (83.33 mg/g). Furthermore, all the prepared hydrogels also displayed good reusability for the efficient removal of MB. Consequently, the prepared hydrogels could be served as eco-friendly, stable, efficient and reusable adsorbents for anionic dyes in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Alkylation and arylation of alkenes by transition metal complexes

    Volkova, L.G.; Levitin, I.Ya.; Vol'pin, M.E.

    1975-01-01

    In this paper are reviewed methods of alkylation and irylation of unsaturated compounds with complexes of transition metals (Rh, Pd). Analysis of alkylation and arylation of olefines with organic derivatives of transition metals, obtained as a result of exchange reactions between organic compounds of transition metals and salts of metals of the 8th group of the periodic system, allows a conclusion as to the wide possibilities of these reactions in the synthesis of various derivatives of unsaturated compounds. In all the reactions under consideration, intermediate formation of sigma-complexes is assumed. Also considered are alkylation and arylation of olefines with organic derivatives of halogens in the presence of compounds of metals of the 8th group of the periodic system, as well as arylation of olefines with aromatic compounds in the presence of salts of transition metals

  15. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Graphical abstract: - Highlights: • Carbon fibers are functionalized with benzoic acid groups via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 66%. • Tensile strength of the carbon fibers is preserved after grafting reaction. • The treatment in molten urea can improve modification efficiency greatly. • Using molten urea as the reaction medium can avoid pollution from organic solvents. - Abstract: Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17–10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  16. Spectroscopic Identification of the Au-C Bond Formation upon Electroreduction of an Aryl Diazonium Salt on Gold.

    Guo, Limin; Ma, Lipo; Zhang, Yelong; Cheng, Xun; Xu, Ye; Wang, Jin; Wang, Erkang; Peng, Zhangquan

    2016-11-08

    Electroreduction of aryl diazonium salts on gold can produce organic films that are more robust than their analogous self-assembled monolayers formed from chemical adsorption of organic thiols on gold. However, whether the enhanced stability is due to the Au-C bond formation remains debated. In this work, we report the electroreduction of an aryl diazonium salt of 4,4'-disulfanediyldibenzenediazonium on gold forming a multilayer of Au-(Ar-S-S-Ar) n , which can be further degraded to a monolayer of Au-Ar-S - by electrochemical cleavage of the S-S moieties within the multilayer. By conducting an in situ surface-enhanced Raman spectroscopic study of both the multilayer formation/degradation and the monolayer reduction/oxidation processes, coupled to density functional theory calculations, we provide compelling evidence that an Au-C bond does form upon electroreduction of aryl diazonium salts on gold and that the enhanced stability of the electrografted organic films is due to the Au-C bond being intrinsically stronger than the Au-S bond for a given phenylthiolate compound by ca. 0.4 eV.

  17. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    Wang, Yuwei [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Meng, Linghui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Fan, Liquan [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wu, Guangshun; Ma, Lichun; Zhao, Min [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Huang, Yudong, E-mail: ydhuang.hit1@yahoo.com.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2016-01-30

    Graphical abstract: - Highlights: • Carbon fibers are functionalized with benzoic acid groups via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 66%. • Tensile strength of the carbon fibers is preserved after grafting reaction. • The treatment in molten urea can improve modification efficiency greatly. • Using molten urea as the reaction medium can avoid pollution from organic solvents. - Abstract: Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17–10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  18. Photoreactive molecular layers containing aryl ester units: Preparation, UV patterning and post-exposure modification

    Hoefler, Thomas [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 16, A-8010 Graz (Austria); Track, Anna M. [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16/II, A-8010 Graz (Austria); Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Pacher, Peter [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16/II, A-8010 Graz (Austria); Shen, Quan [Institute of Physics, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Flesch, Heinz-Georg [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16/II, A-8010 Graz (Austria); Hlawacek, Gregor [Institute of Physics, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Koller, Georg; Ramsey, Michael G. [Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Schennach, Robert; Resel, Roland [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16/II, A-8010 Graz (Austria); Teichert, Christian [Institute of Physics, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Kern, Wolfgang [Institute of Chemistry of Polymers, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Trimmel, Gregor [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 16, A-8010 Graz (Austria); Griesser, Thomas, E-mail: thomas.griesser@unileoben.ac.at [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 16, A-8010 Graz (Austria); Institute of Chemistry of Polymers, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria)

    2010-01-15

    The photolithographic modification of thin functional silane layers provides a versatile and powerful means of fabricating functionalized patterned surfaces which can be applied for tuning inorganic surface properties and for modern immobilisation techniques. In this contribution we present the synthesis of a new functional trichloro organosilane bearing photoreactive aryl ester groups and its application in thin silane layers on silicon oxide surfaces. Whereas the trichlorosilyl group acts as anchoring unit to the inorganic surface, the aryl ester group undergoes the photo-Fries rearrangement to yield hydroxyketones upon irradiation with UV-light of 254 nm which leads to a change in chemical reactivity of the surface. By a subsequent reaction with perfluorobutyryl chloride, the photogenerated hydroxy groups yield the corresponding perfluorinated ester compound, which allows further tuning of surface properties. The layer formation as well as the photoreaction and post-modification reaction was monitored by FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). The thickness of the obtained thin layers was determined by X-ray reflectivity (XRR). Photopatterned surfaces were produced using a contact mask during illumination followed by the post-modification reaction. Friction force microscopy (FFM) revealed the contrast between modified and unmodified regions of the patterned samples.

  19. Synthesis, Half-Wave Potentials and Antiproliferative Activity of 1-Aryl-substituted Aminoisoquinolinequinones

    Juana Andrea Ibacache

    2014-01-01

    Full Text Available The synthesis of a variety of 1-aryl-7-phenylaminoisoquinolinequinones from 1,4-benzoquinone and arylaldehydes via the respective 1-arylisoquinolinequinones is reported. The cyclic voltammograms of the new compounds exhibit two one-electron reduction waves to the corresponding radical-anion and dianion and two quasi-reversible oxidation peaks. The half-wave potential values (EI½ of the members of the series have proven sensitive to the electron-donor effect of the aryl group (phenyl, 2-thienyl, 2-furyl at the 1-position as well as to the phenylamino groups (anilino, p-anisidino at the 7-position. The antiproliferative activity of the new compounds was evaluated in vitro using the MTT colorimetric method against one normal cell line (MRC-5 lung fibroblasts and two human cancer cell lines: AGS human gastric adenocarcinoma and HL-60 human promyelocytic leukemia cells in 72-h drug exposure assays. Among the series, compounds 5a, 5b, 5g, 5h, 6a and 6d exhibited interesting antiproliferative activities against human gastric adenocarcinoma. The 1-arylisoquinolinequinone 6a was found to be the most promising active compound against the tested cancer cell lines in terms of IC50 values (1.19; 1.24 µM and selectivity index (IS: 3.08; 2.96, respect to the anti-cancer agent etoposide used as reference (IS: 0.57; 0.14.

  20. Sulfonamidation of Aryl and Heteroaryl Halides through Photosensitized Nickel Catalysis.

    Kim, Taehoon; McCarver, Stefan J; Lee, Chulbom; MacMillan, David W C

    2018-03-19

    Herein we report a highly efficient method for nickel-catalyzed C-N bond formation between sulfonamides and aryl electrophiles. This technology provides generic access to a broad range of N-aryl and N-heteroaryl sulfonamide motifs, which are widely represented in drug discovery. Initial mechanistic studies suggest an energy-transfer mechanism wherein C-N bond reductive elimination occurs from a triplet excited Ni II complex. Late-stage sulfonamidation in the synthesis of a pharmacologically relevant structure is also demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metal-Free α-C(sp3–H Functionalized Oxidative Cyclization of Tertiary N,N-Diaryl Amino Alcohols: Theoretical Approach for Mechanistic Pathway

    Zakir Ullah

    2017-03-01

    Full Text Available The mechanistic pathway of TEMPO/I2-mediated oxidative cyclization of N,N-diaryl amino alcohols 1 was investigated. Based on direct empirical experiments, three key intermediates (aminium radical cation 3, α-aminoalkyl radical 4, and iminium 5, four types of reactive species (radical TEMPO, cationic TEMPO, TEMPO-I, and iodo radical, and three types of pathways ((1 SET/PCET mechanism; (2 HAT/1,6-H transfer mechanism; (3 ionic mechanism were assumed. Under the assumption, nine free energy diagrams were acquired through density functional theory calculations. From the comparison of solution-phase free energy, some possible mechanisms were excluded, and then the chosen plausible mechanisms were concretized using the more stable intermediate 7.

  2. Preparation and characterization of Pt Sn / C-rare earth and PtRu / C-rare earth using an alcohol reduction process for ethanol electron-oxidation

    Rodrigues, Rita Maria de Sousa

    2011-01-01

    The electro catalyst PtRu / C-rare earth and PtSn/C-rare earth (20 wt%) were prepared by alcohol reduction method using H 2 PtCl 6 .6H 2 O Ru Cl xH 2 O, SnCl 2 .2H 2 O as a source of metals 85 % Vulcan - 15 % rare earth as a support and, finally, ethylene glycol as reducing agent. The electrocatalysts were characterized physically by X-ray diffraction (XRD), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). Analyses by EDX showed that the atomic ratios of different electrocatalysts, prepared by alcohol reduction method are similar to the nominal starting compositions indicating that this methodology is promising for the preparation of electrocatalysts. In all the XRD patterns for the prepared electrocatalysts there is a broad peak at about 2θ = 25 o , which is associated with the carbon support and four additional diffraction peaks at approximately 2θ = 40 o , 47 o , 67 o e 82 o , which in turn are associated with the plans (111), (200), (220) e (311), respectively, of face-centered cubic structure (FCC) platinum. The results of X-ray diffraction also showed average crystallite sizes between 2.0 and 4.0 nm for PtSn e 2,0 a 3,0 para PtRu. The studies for the electrochemical oxidation of ethanol in acid medium were carried out using the technique of chronoamperometry in a solution 0,5 mol.L-1 H 2 SO 4 , + 1,0 mol.L-1 de C 2 H 5 OH. The polarization curves obtained in the fuel cell unit, powered directly by ethanol, are in agreement with the results of voltammetry and chronoamperometry noting the beneficial effect of rare earths in the preparation of electrocatalysts and attesting that the electrocatalysts PtSn/C are more effective than PtRu/C for the oxidation of ethanol.

  3. Environmentally friendly synthesis of CeO2 nanoparticles for the catalytic oxidation of benzyl alcohol to benzaldehyde and selective detection of nitrite.

    Tamizhdurai, P; Sakthinathan, Subramanian; Chen, Shen-Ming; Shanthi, K; Sivasanker, S; Sangeetha, P

    2017-04-13

    Cerium oxide nanoparticles (CeO 2 NPs) are favorable in nanotechnology based on some remarkable properties. In this study, the crystalline CeO 2 NPs are successfully prepared by an efficient microwave combustion (MCM) and conventional route sol-gel (CRSGM) methods. The structural morphology of the as-prepared CeO 2 NPs was investigated by various spectroscopic and analytical techniques. Moreover, the XRD pattern confirmed the formation of CeO 2 NPs as a face centered cubic structure. The magnetometer studies indicated the low saturation magnetization (23.96 emu/g) of CeO 2 NPs for weak paramagnetic and high saturation magnetization (32.13 emu/g) of CeO 2 NPs for super paramagnetic. After that, the oxidation effect of benzyl alcohol was investigated which reveals good conversion and selectivity. Besides, the CeO 2 NPs modified glassy carbon electrode (GCE) used for the detection of nitrite with linear concentration range (0.02-1200 μM), low limit of detection (0.21 μM) and higher sensitivity (1.7238 μAμM -1 cm -2 ). However, the CeO 2 NPs modified electrode has the fast response, high sensitivity and good selectivity. In addition, the fabricated electrode is applied for the determination of nitrite in various water samples. Eventually, the CeO 2 NPs can be regarded as an effective way to enhance the catalytic activity towards the benzyl alcohol and nitrite.

  4. Synthesis of acetic acid by catalytic oxidation of butenes-2. Synthesis of acetic acid from sec. -butyl alcohol and methyl ethyl ketone in vapor-phase catalytic oxidation

    Yamashita, T.; Matsuzawa, Y.; Ninagawa, S.

    1977-11-01

    Eleven binary catalysts containing vanadium pentoxide (V/sub 2/O/sub 5/), 17 binary catalysts containing cobalt oxide (Co/sub 3/O/sub 4/), and 18 ternary catalysts containing both V/sub 2/O/sub 5/ and Co/sub 3/O/sub 4/ were screened for the stepwise conversion of sec.-butanol to methyl ethyl ketone (MEK) and acetic acid. Of the binary catalysts, 4:1 Rh/V and Co/V binary oxides gave the best acetic acid yields. With the Co/V catalyst, the selectivity for MEK increased rapidly as the cobalt content of the catalyst increased above 50%, reaching 81% at 226/sup 0/C and 90% conversion on 9:1 Co/V oxide. The 9:1 Co/V catalyst also yielded acetaldehyde from ethanol with 98% selectivity at 210/sup 0/C and acetone from isopropanol with 98% selectivity at 200/sup 0/C, but dehydrated tert.-butanol to isobutene. V/Cr and V/Sb binary oxides were the most effective catalysts for the oxidation of MEK to acetic acid, with 78-88% selectivities at 100% conversion at 260/sup 0/C. Of the ternary oxides tested for the one-step conversion of sec.-butanol to acetic acid, a 6:2:2 Co/V/Al catalyst gave best results, (i.e., 34% selectivity for acetic acid (45% for total acids) at 100% conversion and 68% selectivity (90% for total acids) at 50Vertical Bar3< conversion). Graphs, tables, and 21 references.

  5. Solar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride-Molecular Ni Catalyst System.

    Kasap, Hatice; Caputo, Christine A; Martindale, Benjamin C M; Godin, Robert; Lau, Vincent Wing-Hei; Lotsch, Bettina V; Durrant, James R; Reisner, Erwin

    2016-07-27

    Solar water-splitting represents an important strategy toward production of the storable and renewable fuel hydrogen. The water oxidation half-reaction typically proceeds with poor efficiency and produces the unprofitable and often damaging product, O2. Herein, we demonstrate an alternative approach and couple solar H2 generation with value-added organic substrate oxidation. Solar irradiation of a cyanamide surface-functionalized melon-type carbon nitride ((NCN)CNx) and a molecular nickel(II) bis(diphosphine) H2-evolution catalyst (NiP) enabled the production of H2 with concomitant selective oxidation of benzylic alcohols to aldehydes in high yield under purely aqueous conditions, at room temperature and ambient pressure. This one-pot system maintained its activity over 24 h, generating products in 1:1 stoichiometry, separated in the gas and solution phases. The (NCN)CNx-NiP system showed an activity of 763 μmol (g CNx)(-1) h(-1) toward H2 and aldehyde production, a Ni-based turnover frequency of 76 h(-1), and an external quantum efficiency of 15% (λ = 360 ± 10 nm). This precious metal-free and nontoxic photocatalytic system displays better performance than an analogous system containing platinum instead of NiP. Transient absorption spectroscopy revealed that the photoactivity of (NCN)CNx is due to efficient substrate oxidation of the material, which outweighs possible charge recombination compared to the nonfunctionalized melon-type carbon nitride. Photoexcited (NCN)CNx in the presence of an organic substrate can accumulate ultralong-lived "trapped electrons", which allow for fuel generation in the dark. The artificial photosynthetic system thereby catalyzes a closed redox cycle showing 100% atom economy and generates two value-added products, a solar chemical, and solar fuel.

  6. A chiral aluminum solvating agent (CASA) for 1H NMR chiral analysis of alcohols at low temperature.

    Seo, Min-Seob; Jang, Sumin; Kim, Hyunwoo

    2018-03-16

    A chiral aluminum solvating agent (CASA) was demonstrated to be a general and efficient reagent for 1H NMR chiral analysis of alcohols. The sodium salt of the CASA (CASA-Na) showed a complete baseline peak separation of the hydroxyl group for various chiral alcohols including primary, secondary, and tertiary alcohols with alkyl and aryl substituents in CD3CN. Due to the weak intermolecular interaction, 1H NMR measurement at low temperature (-40 to 10 °C) was required.

  7. Preparation of poly(vinyl alcohol)-grafted graphene oxide/poly(vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization

    Zhang, Shengchang; Liu, Pengqing; Zhao, Xiangsen; Xu, Jianjun

    2017-01-01

    Highlights: • In-situ emulsion polymerization and alcoholysis reaction is a good method to prepare GO/PVA nanocomposites. • Surface chemical grafting modification of GO with PVA chains was also carried out during the in-situ emulsion polymerization and alcoholysis reaction. • The surface chemical grafting modification of GO by in-situ polymerization and alcoholysis reaction could not only improve the dispersion of fillers in matrix, but also the interfacial interactions between fillers and matrix. • The thermal and mechanical properties of PVA-g-GO/PVA nanocompistes were also studied. - Abstract: An in-situ polymerization combined with chemical grafting modification method for preparing Poly(vinyl alcohol)-grafted graphene oxide/Poly(vinyl alcohol) (PVA-g-GO/PVA) nanocomposites was reported. Firstly, Poly(vinyl acetate)-grafted graphene oxide/Poly(vinyl acetate) nanocomposites were prepared, and then the PVA-g-GO/PVA nanocomposites could be obtained through alcoholysis reaction. X-ray photoelectron spectrometer and fourier-transform infrared spectrometer confirmed that the PVAc or PVA chains were successfully grafted to GO sheets during in-situ polymerization and alcoholysis. And the results from transmission electron microscopy, scanning electron microscopy and X-ray diffraction showed that the well compatibility and homogenous dispersion of PVA-g-GO in PVA matrix could be achieved. Differential scanning calorimetric, thermogravimetry analysis and tensile test were employed to study the thermal and mechanical properties of the PVA-g-GO/PVA nanocomposites. The results indicated that a 53% improvement of tensile strength and a 36% improvement of Young’s modulus were achieved by addition of 0.5 wt% of GO sheets. And the glass transition temperature of PVA-g-GO/PVA nanocomposites was increased, and their thermal stability and crystallization degree were both decreased. Due to well dispersion of fillers and strong interfacial interactions at the filler

  8. Preparation of poly(vinyl alcohol)-grafted graphene oxide/poly(vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization

    Zhang, Shengchang; Liu, Pengqing, E-mail: liupq@scu.edu.cn; Zhao, Xiangsen; Xu, Jianjun, E-mail: xujj@scu.edu.cn

    2017-02-28

    Highlights: • In-situ emulsion polymerization and alcoholysis reaction is a good method to prepare GO/PVA nanocomposites. • Surface chemical grafting modification of GO with PVA chains was also carried out during the in-situ emulsion polymerization and alcoholysis reaction. • The surface chemical grafting modification of GO by in-situ polymerization and alcoholysis reaction could not only improve the dispersion of fillers in matrix, but also the interfacial interactions between fillers and matrix. • The thermal and mechanical properties of PVA-g-GO/PVA nanocompistes were also studied. - Abstract: An in-situ polymerization combined with chemical grafting modification method for preparing Poly(vinyl alcohol)-grafted graphene oxide/Poly(vinyl alcohol) (PVA-g-GO/PVA) nanocomposites was reported. Firstly, Poly(vinyl acetate)-grafted graphene oxide/Poly(vinyl acetate) nanocomposites were prepared, and then the PVA-g-GO/PVA nanocomposites could be obtained through alcoholysis reaction. X-ray photoelectron spectrometer and fourier-transform infrared spectrometer confirmed that the PVAc or PVA chains were successfully grafted to GO sheets during in-situ polymerization and alcoholysis. And the results from transmission electron microscopy, scanning electron microscopy and X-ray diffraction showed that the well compatibility and homogenous dispersion of PVA-g-GO in PVA matrix could be achieved. Differential scanning calorimetric, thermogravimetry analysis and tensile test were employed to study the thermal and mechanical properties of the PVA-g-GO/PVA nanocomposites. The results indicated that a 53% improvement of tensile strength and a 36% improvement of Young’s modulus were achieved by addition of 0.5 wt% of GO sheets. And the glass transition temperature of PVA-g-GO/PVA nanocomposites was increased, and their thermal stability and crystallization degree were both decreased. Due to well dispersion of fillers and strong interfacial interactions at the filler

  9. Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl alpha-D-glucopyranoside.

    Bragd, P L; Besemer, A C; van Bekkum, H

    2000-09-22

    TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-mediated oxidation of potato starch and methyl alpha-D-glucopyranoside (MGP) was performed in the absence of sodium bromide (NaBr) as co-catalyst, solely using sodium hypochlorite (NaOCl) as the primary oxidant. The low reaction rate associated with a bromide-free process was increased by performing the oxidation at increased temperatures. The reaction proceeded stoichiometrically and with high selectivity and with only minor depolymerisation, provided that temperature and pH were kept or = 25 degrees C) and under more alkaline conditions (pH > or = 9.0) degradation of the starch skeleton occurred. Simultaneously, side-reactions of the nitrosonium ion lowered the yield of the oxidation. Despite the absence of the NaBr catalyst, the reaction rate-controlling step was found to be the oxidation of the primary hydroxyl groups with the nitrosonium ion. The reaction was first-order in MGP and in TEMPO.

  10. Deracemization of Secondary Alcohols by using a Single Alcohol Dehydrogenase

    Karume, Ibrahim

    2016-03-01

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We developed a single-enzyme-mediated two-step approach for deracemization of secondary alcohols. A single mutant of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase enables the nonstereoselective oxidation of racemic alcohols to ketones, followed by a stereoselective reduction process. Varying the amounts of acetone and 2-propanol cosubstrates controls the stereoselectivities of the consecutive oxidation and reduction reactions, respectively. We used one enzyme to accomplish the deracemization of secondary alcohols with up to >99% ee and >99.5% recovery in one pot and without the need to isolate the prochiral ketone intermediate.

  11. Photochemical Aryl Radical Cyclizations to Give (E-3-Ylideneoxindoles

    Michael Gurry

    2014-09-01

    Full Text Available (E-3-Ylideneoxindoles are prepared in methanol in reasonable to good yields, as adducts of photochemical 5-exo-trig of aryl radicals, in contrast to previously reported analogous radical cyclizations initiated by tris(trimethylsilylsilane and azo-initiators that gave reduced oxindole adducts.

  12. Cyclohexenones Through Addition of Ethyl Acetoacetate to 3-Aryl-1 ...

    Chalcone derivatives 3a–i containing a thiophene ring were prepared by the condensation of 1-(thiophen-3-yl)ethanone with aromatic aldehydes in excellent yields. The Michael addition of ethyl acetoacetate 4 to chalcone derivatives 3a–i resulted in the formation of nine novel ethyl 6-aryl ...

  13. Investigation into ramie whisker reinforced arylated soy protein composites

    Kumar, R

    2010-03-01

    Full Text Available isolate (SPI). Thiodiglycol was used as a plasticizer for the preparation of SW composites. The SW composites were arylated with 2,2-diphenyl-2-hydroxyethanoic acid through the process of “dip-coating” and coded as SW-B. In this paper, the characterization...

  14. Cobalt-promoted regioselective preparation of aryl tetrazole amines

    KONDRAGANTI LAKSHMI

    2018-04-17

    Apr 17, 2018 ... To the best of .... coupled product with aryl iodide under mild reaction ..... Having the optimal conditions studied, the scope of ... ity, environmental acceptability and cost-effectiveness ... lite as a new and reusable heterogeneous catalyst Chem. ... Aminotetrazoles from Thioureas: A Strategy for Diver-.

  15. Copper-Catalyzed Synthesis of Mixed Alkyl Aryl Phosphonates

    Fañanás-Mastral, Martín; Feringa, Ben L

    2014-01-01

    Copper-catalysis allows the direct oxygenarylation of dialkyl phosphonates with diaryliodonium salts. This novel methodology proceeds with a wide range of phosphonates and phosphoramidates under mild conditions and gives straightforward access to valuable mixed alkyl aryl phosphonates in very good

  16. Combination of Hypomorphic Mutations of the Drosophila Homologues of Aryl Hydrocarbon Receptor and Nucleosome Assembly Protein Family Genes Disrupts Morphogenesis, Memory and Detoxification

    Kuzin, Boris A.; Nikitina, Ekaterina A.; Cherezov, Roman O.; Vorontsova, Julia E.; Slezinger, Mikhail S.; Zatsepina, Olga G.; Simonova, Olga B.; Enikolopov, Grigori N.; Savvateeva-Popova, Elena V.

    2014-01-01

    Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response...

  17. Quasi-zero-dimensional cobalt-doped CeO2 dots on Pd catalysts for alcohol electro-oxidation with enhanced poisoning-tolerance.

    Tan, Qiang; Zhu, Haiyan; Guo, Shengwu; Chen, Yuanzhen; Jiang, Tao; Shu, Chengyong; Chong, Shaokun; Hultman, Benjamin; Liu, Yongning; Wu, Gang

    2017-08-31

    Deactivation of an anode catalyst resulting from the poisoning of CO ad -like intermediates is one of the major problems for methanol and ethanol electro-oxidation reactions (MOR & EOR), and remains a grand challenge towards achieving high performance for direct alcohol fuel cells (DAFCs). Herein, we report a new approach for the preparation of ultrafine cobalt-doped CeO 2 dots (Co-CeO 2 , d = 3.6 nm), which can be an effective anti-poisoning promoter for Pd catalysts towards MOR and EOR in alkaline media. Compared to Pd/CeO 2 and pure Pd, the hybrid Pd/Co-CeO 2 nanocomposite catalyst exhibited a much enhanced activity and remarkable anti-poisoning ability for both MOR and EOR. The nanocomposite catalyst showed much higher mass activity (4×) than a state-of-the-art PtRu catalyst. The promotional mechanism was elucidated using extensive characterization and density-functional theory (DFT). A bifunctional effect of the Co-CeO 2 dots was discovered to be due to (i) an enhanced electronic interaction between Co-CeO 2 and Pd dots and (ii) the increased oxygen storage capacity of Co-CeO 2 dots to facilitate the oxidation of CO ad . Therefore, the Pd/Co-CeO 2 nanocomposite appears to be a promising catalyst for advanced DAFCs with low cost and high performance.

  18. A directional entrapment modification on the polyethylene surface by the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether

    Lu, Qiang; Chen, Yi; Huang, Juexin; Huang, Jian; Wang, Xiaolin; Yao, Jiaying

    2018-05-01

    A novel entrapment modification method involving directional implantation of the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether (AEO) into the high-density polyethylene (HDPE) surface is proposed. This modification technique allows the AEO modifier to be able to spontaneously attain and subsequently penetrate into the swollen HDPE surface with its hydrophobic stearyl segment, while its hydrophilic poly(ethylene oxide) (PEO) segment spontaneously points to water. The AEO modifier with a HLB number below 8.7 was proved appropriate for the directional entrapment, Nevertheless, AEOs with larger HLB numbers were also effective modifiers in the presence of salt additives. In addition, a larger and hydrophobic micelle, induced respectively by the AEO concentration above 1.3 × 10-2 mol/L and the entrapping temperature above the cloud point of AEO, could lead to a sharp contact angle decline of the modified surface. Finally, a hydrophilic HDPE surface with the modifier coverage of 38.9% was reached by the directional entrapment method, which is far larger than that of 19.2% by the traditional entrapment method.

  19. Poly(vinyl alcohol)-Assisted Fabrication of Hollow Carbon Spheres/Reduced Graphene Oxide Nanocomposites for High-Performance Lithium-Ion Battery Anodes.

    Zhang, Yunqiang; Ma, Qiang; Wang, Shulan; Liu, Xuan; Li, Li

    2018-05-22

    Three-dimensional hollow carbon spheres/reduced graphene oxide (DHCSs/RGO) nanocomposites with high-level heteroatom doping and hierarchical pores are fabricated via a versatile method. Poly(vinyl alcohol) (PVA) that serves as a dispersant and nucleating agent is used as the nonremoval template for synthesizing melamine resin (MR) spheres with abundant heteroatoms, which are subsequently composited with graphene oxide (GO). Use of PVA and implementation of freezing treatment prevent agglomeration of MR spheres within the GO network. Molten KOH is used to achieve the one-step carbonization/activation/reduction for the synthesis of DHCSs/RGO. DHCSs/RGO annealed at 700 °C shows superior discharge capacity of 1395 mA h/g at 0.1 A/g and 606 mA h/g at 5 A/g as well as excellent retentive capacity of 755 mA h/g after 600 cycles at a current density of 2 A/g. An extra CO 2 activation leads to further enhancement of electrochemical performance with outstanding discharge capacity of 1709 mA h/g at 0.1 A/g and 835 mA h/g at 2 A/g after 600 cycles. This work may improve our understanding of the synthesis of graphene-like nanocomposites with hollow and porous carbon architectures and fabrication of high-performance functional devices.

  20. Utilização do TEMPO (N-oxil-2,2,6,6-tetrametilpiperidina na oxidação de álcoois primários e secundários The use of TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl for the oxidation of primary and secondary alcohols

    Marcus Vinícius Nora de Souza

    2004-04-01

    Full Text Available The oxidation of alcohols to obtain ketones, aldehydes or carboxylic acids is a fundamental transformation in organic synthesis and many reagents are known for these conversions. However, there is still a demand for mild and selective reagents for the oxidation of alcohols in the presence of other functional groups. As an alternative, the nitroxyl radical TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl has been demonstrated to be a useful reagent for the transformation of alcohols. The oxidation of alcohols using TEMPO is often efficient, fast, selective, made in mild conditions and can tolerate sensitive functional groups. In this article we report different methodologies using TEMPO in the oxidation of alcohols.

  1. Formation of imines by selective gold-catalysed aerobic oxidative coupling of alcohols and amines under ambient conditions

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie

    2010-01-01

    with excellent selectivity (above 98%) at moderate conversion under optimized conditions. The effect of catalytic amounts of different bases was studied, along with reaction temperature and time. Utilisation of a selective catalyst system that uses dioxygen as an oxidant and only produces water as by...

  2. In vivo roles of alcohol dehydrogenase (ADH), catalase and the microsomal ethanol oxidizing system (MEOS) in deermice

    Takagi, T.; Alderman, J.; Lieber, C.S.

    1985-01-01

    The relative importance of ADH and MEOS for ethanol oxidation in the liver has yet to be elucidated. The discovery of a strain of deermice genetically lacking ADH (ADH-) which can consume ethanol at greater than 50% of the rates seen in deermice having ADH (ADH+) suggested a significant role for non-ADH pathways in vivo. To quantitate contributions of the various pathways, the authors examined first the ethanol oxidation rates with or without 4-methylpyrazole in isolated deermice hepatocytes. 4-Methylpyrazole significantly reduced the ethanol oxidation in both ADH+ and ADH- hepatocytes. The reduction seen in ADH- cells can be applied to correct for the effect of 4-methylpyrazole on non-ADH pathways of ADH+ deermouse hepatocytes. After correction, non-ADH pathways were found to contribute 28% of ethanol metabolism at 10 mM and 52% at 50 mM. When using a different approach namely measurement of the isotope effect, MEOS was calculated to account for 35% at low and about 70% at high blood ethanol concentrations. Thus, they found that two different complementary approaches yielded similar results, namely that non-ADH pathways play a significant role in ethanol oxidation even in the presence of ADH

  3. Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide

    Yin, Wang; Venderbosch, Hendrikus; Bottari, Giovanni; Krawzcyk, Krzysztof K.; Barta, Katalin; Heeres, Hero Jan

    In this work, we report on the catalytic valorization of sugar fractions, obtained by aqueous phase extraction of fast pyrolysis oils, in supercritical methanol (scMeOH) and ethanol (scEtOH) over a copper doped porous metal oxide (Cu-PMO). The product mixtures obtained are, in principle, suitable

  4. Preparation of MIP grafts for quercetin by tandem aryl diazonium surface chemistry and photopolymerization

    Salmi, Zakaria; Benmehdi, Houcine; Lamouri, Aazdine; Decorse, Philippe; Jouini, Mohamed; Chehimi, Mohamed M.; Yagci, Yusuf

    2013-01-01

    The food antioxidant quercetin was used as a template in an ultrathin molecularly imprinted polymer (MIP) film prepared by photopolymerization. Indium tin oxide (ITO) plates were electrografted with aryl layers via a diazonium salt precursor bearing two terminal hydroxyethyl groups. The latter act as hydrogen donors for the photosensitizer isopropylthioxanthone and enabled the preparation of MIP grafts through radical photopolymerization of methacrylic acid (the functional monomer) and ethylene glycol dimethacrylate (the crosslinker) in the presence of quercetin (the template) on the ITO. The template was extracted, and the remaining ITO electrode used for the amperometric determination of quercetin at a working potential of 0.26 V (vs. SCE). The analytical range is from 5.10 −8 to 10 −4 mol L −1 , and the detection limit is 5.10 −8 mol L −1 . (author)

  5. P-type sub-tungsten-oxide based urchin-like nanostructure for superior room temperature alcohol sensor

    Yao, Yao; Yin, Mingli; Yan, Junqing; Liu, Shengzhong (Frank)

    2018-05-01

    Nanowires assembled sub-WO3 urchin-like nanostructures have been fabricated via a solvothermal method. The detailed structure and morphology features were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The results reveal that the individual nanowires are grown along the [0 0 1] direction, and assembled together to form an urchin-like nanostructure. Sensing performance of the sub-WO3 was investigated toward alcohol vapor. At room temperature, the sensor devices based on the WO3-x exhibit significantly higher sensitivity comparing to that of the stoichiometric WO3. The superior sensing performance of this WO3-x sensor is ascribed to the large specific surface area and abundant oxygen vacancies. The obvious enhancement of the gas sensing property can be very useful for the future design and development of room temperature gas sensors for other volatile organic compounds.

  6. Fabrication of novel ternary Au/CeO2@g-C3N4 nanocomposite: kinetics and mechanism investigation of 4-nitrophenol reduction, and benzyl alcohol oxidation

    Kohantorabi, Mona; Gholami, Mohammad Reza

    2018-06-01

    Au nanoparticles supported on cerium oxide/graphitic carbon nitride (CeO2@g-C3N4) was synthesized and used as heterogeneous catalyst in redox reaction. The catalyst was characterized by different techniques such as FT-IR, XRD, FE-SEM, EDS, TEM, BET, TGA, and ICP. The as-prepared ternary nanocomposite was used as an effective catalyst for the reduction of toxic 4-nitrophenol to useful 4-aminophenol by NaBH4. The rate constant value of reduction reaction reached up to 0.106 s-1 by Au/CeO2@g-C3N4, which was 3.8, and 8.8 times higher than that of Au@CeO2 (0.028 s-1), and Au@g-C3N4 (0.012 s-1) nanocomposites, respectively. The superior catalytic performance of as-prepared catalyst in 4-NP reduction can be attributed to synergistic effect between Au nanoparticles and CeO2@g-C3N4 support, and efficient electron transfer. The reduction reaction was carried out at different temperatures, and the energy of activation ({Ea}), and thermodynamic parameters including, activation of entropy (Δ S^ ≠), enthalpy (Δ H^ ≠), and Gibbs free energy (Δ G^ ≠) were determined. Additionally, the mechanism of reaction was studied in details, and equilibrium constants of 4-NP ( K 4-NP), and {BH}4^{ - } ({K_{{BH}4^{{ - }} }}) were calculated using Langmuir-Hinshelwood model. Furthermore, this nanocomposite exhibited excellent catalytic activity in oxidation of benzyl alcohol by molecular oxygen as a green oxidant. This study revealed that the ternary Au/CeO2@g-C3N4 nanocomposite is an attractive candidate for catalytic applications.

  7. Active form of vitamin D ameliorates non-alcoholic fatty liver disease by alleviating oxidative stress in a high-fat diet rat model.

    Zhu, Chong-Gui; Liu, Ya-Xin; Wang, Hao; Wang, Bao-Ping; Qu, Hui-Qi; Wang, Bao-Li; Zhu, Mei

    2017-07-28

    The purpose of this study was to determine whether treatment using the active form of vitamin D (1,25(OH) 2 D 3 ) could protect against high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in rats and ameliorate oxidative stress. Male Sprague-Dawley rats were divided into three groups and treated with standard chow, HFD, or HFD plus intraperitoneal injection of 1,25(OH) 2 D 3 (5 μg/kg body weight, twice per week), respectively, for 16 weeks. Serum lipid profiles, hepatic function, intrahepatic lipid, and calcium levels were determined. Hepatic histology was examined using hematoxylin/eosin, Masson's trichrome, and Oil Red O staining. Oxidative stress was assessed by measuring hepatic malondialdehyde (MDA) and F2α-isoprostane content. Expression of nuclear factor-erythroid-2-related factor 2 (Nrf2) and downstream target genes was analyzed using quantitative RT-PCR. 1,25(OH) 2 D 3 treatment improved the serum lipid profile, reduced intrahepatic lipid levels, and attenuated hepatic steatosis and inflammation in HFD rats. Furthermore, MDA and F2α-isoprostane levels in liver tissue were reduced by 1,25(OH) 2 D 3 administration. Although 1,25(OH) 2 D 3 did not regulate the expression of Nrf2 mRNA, it did induce Nrf2 nuclear translocation. The expression of Nrf2 target genes, including Gclc, Nqo1, Sod2, and Cat, was up-regulated by 1,25(OH) 2 D 3 . We conclude that 1,25(OH) 2 D 3 protects against HFD-induced NAFLD by attenuating oxidative stress, inducing NRF2 nuclear translocation, and up-regulating the expression of genes encoding antioxidant enzymes.

  8. SYNTHESIS AND STUDY OF ANTIOXIDANT ACTIVITY OF [(1-ARYL-5-FORMYL-1H-IMIDAZOLE-4-ILTHIO]PROPIONIC ACIDS

    A. O. Palamar

    2014-12-01

    Full Text Available Introduction. Derivatives of imidazole belong to the promising group of compounds for antioxidant activity study, due to the series of recent publications. This is defined by special features of their structure, specific reactivity and significant potential of pharmacological action. Earlier during process of looking for new antioxidants we studied significant amount of imidazole derivatives, among which the [(1-aryl-5-formylimidazole-4-ilthio]acetic acids structurally modified by the formyl group and thioacetic acid fragment, are especially worth noting. The purpose of the study. Synthesis of [(1-aryl-5-formylimidazole-4-ilthio]propionic acids and comparison of their antioxidant effect with [(1-aryl-5-formylimidazole-4-ilthio]acetic acids with to identify prospects of in-depth study of the most active compounds as antioxidants. Materials and methods. The method based on interaction of available 4-chloro-5-formylimidazoles with thiopropionic acid was proposed for the synthesis of [(1-aryl-5-formylimidazole-4-ilthio]propionic acids. The reaction takes place in ethanol in presence of potassium hydroxide and leads to the target compounds with yields of 81-86%. The study of antioxidant activity of synthesized compounds was conducted in vitro by speed inhibition value of rats’ liver endogenous lipids ascorbate-dependent peroxide oxidation. It was determined by concentration of one of the final products of free radical oxidation of lipids (FROL – maleic aldehyde (MA in the investigated sample. Concentrations of synthesized compounds were chosen within concentrations which were studied for thiotriazolin (manufactured by corporation “Arterium”, Ukraine, solution for injection, 25 mg/ml. The results of the study and their discussion. Preparative method for the synthesis of [(1-aryl-5-formylimidazole-4-ilthio]propionic acids has been designed. Imidazolylthiopropionic acids have been synthesized; they are crystalline compounds, of light

  9. ALCOHOL I

    Despite the increase in alcohol marketing activities by the transnational alcohol corporations in Nigeria .... were recorded with a digital device with ..... era (i.e., before alcohol industry was es- tablished in ..... university student drinking: A na-.

  10. Pathophysiology of alcoholic pancreatitis: An overview

    Parimal Chowdhury; Priya Gupta

    2006-01-01

    Use of alcohol is a worldwide habit regardless of socioeconomic background. Heavy alcohol consumption is a potential risk factor for induction of pancreatitis. The current review cites the updated literature on the alcohol metabolism, its effects on gastrointestinal and pancreatic function and in causing pancreatic injury, genetic predisposition of alcohol induced pancreatitis. Reports describing prospective mechanisms of action of alcohol activating the signal transduction pathways, induction of oxidative stress parameters through the development of animal models are being presented.

  11. Supported nano gold as a recyclable catalyst for green, selective and efficient oxidation of alcohol using molecular oxygen

    Bashir Dar

    2011-09-01

    Full Text Available The myth that gold cannot act as a catalyst has been discarded in view of recent studies, which have demonstrated the high catalytic efficiency of pure nano-gold and supported nano-gold catalysts. In recent years, numerous papers have described the use of supported nano-gold particles for catalysis in view of their action on CO and O2 to form CO2, as well as a variety of other reactions. Special emphasis is placed on the oxidation studies undertaken on model nano-Au systems. In this work a solvent free oxidation of 1-phenyl ethanol was carried out using gold supported on ceria-silica, ceria-titania, ceria- zirconia and ceria-alumina at 160 0C. Almost 88-97% conversion was obtained with >99% selectivity. Temperature screening was done from 70 to 160 0C.Catalysts were prepared by deposition co-precipitation method and deposition was determined by EDEX analysis.

  12. Rhodium(III)-catalyzed [3+2] annulation of 5-aryl-2,3-dihydro-1H-pyrroles with internal alkynes through C(sp²)-H/alkene functionalization.

    Zhou, Ming-Bo; Pi, Rui; Hu, Ming; Yang, Yuan; Song, Ren-Jie; Xia, Yuanzhi; Li, Jin-Heng

    2014-10-13

    This study describes a new rhodium(III)-catalyzed [3+2] annulation of 5-aryl-2,3-dihydro-1H-pyrroles with internal alkynes using a Cu(OAc)2 oxidant for building a spirocyclic ring system, which includes the functionalization of an aryl C(sp(2))-H bond and addition/protonolysis of an alkene C=C bond. This method is applicable to a wide range of 5-aryl-2,3-dihydro-1H-pyrroles and internal alkynes, and results in the assembly of the spiro[indene-1,2'-pyrrolidine] architectures in good yields with excellent regioselectivities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches

    Antonella Borrelli

    2018-05-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD represents the most common chronic liver disease in industrialized countries. NAFLD progresses through the inflammatory phase of non-alcoholic steatohepatitis (NASH to fibrosis and cirrhosis, with some cases developing liver failure or hepatocellular carcinoma (HCC. Liver biopsy remains the gold standard approach to a definitive diagnosis of NAFLD and the distinction between simple steatosis and NASH. The pathogenesis of NASH is still not clear. Several theories have been proposed ranging from the “Two Hit Theory” to the “Multiple Hit Theory”. However, the general consensus is that the gut microbiota, oxidative stress, and mitochondrial damage play key roles in the pathogenesis of NASH. The interaction between the gut epithelia and some commensal bacteria induces the rapid generation of reactive oxygen species (ROS. The main goal of any therapy addressing NASH is to reverse or prevent progression to liver fibrosis/cirrhosis. This problem represents the first “Achilles’ heel” of the new molecules being evaluated in most ongoing clinical trials. The second is the inability of these molecules to reach the mitochondria, the primary sites of energy production and ROS generation. Recently, a variety of non-pharmacological and pharmacological treatment approaches for NASH have been evaluated including vitamin E, the thiazolidinediones, and novel molecules related to NASH pathogenesis (including obeticholic acid and elafibranor. Recently, a new isoform of human manganese superoxide dismutase (MnSOD was isolated and obtained in a synthetic recombinant form designated rMnSOD. This protein has been shown to be a powerful antioxidant capable of mediating ROS dismutation, penetrating biological barriers via its uncleaved leader peptide, and reducing portal hypertension and fibrosis in rats affected by liver cirrhosis. Based on these distinctive characteristics, it can be hypothesized that this novel

  14. Oxide (CeO{sub 2}, NiO, Co{sub 3}O{sub 4} and Mn{sub 3}O{sub 4})-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media

    Xu, Changwei; Tian, Zhiqun; Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Shen, Peikang [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2008-01-01

    This study investigated Pt/C, Pd/C and oxide (CeO{sub 2}, NiO, Co{sub 3}O{sub 4} and Mn{sub 3}O{sub 4})-promoted Pd/C for electrooxidation reactions of methanol, ethanol, ethylene glycol and glycerol in alkaline media. The results show that Pd/C electrocatalysts alone have low activity and very poor stability for the alcohol electrooxidation. However, addition of oxides like CeO{sub 2}, NiO, Co{sub 3}O{sub 4} and Mn{sub 3}O{sub 4} significantly promotes catalytic activity and stability of the Pd/C electrocatalysts for the alcohol electrooxidation. The Pd-Co{sub 3}O{sub 4} (2:1, w:w)/C shows the highest activity for the electrooxidation of methanol, EG and glycerol while the most active catalyst for the ethanol electrooxidation is Pd-NiO (6:1, w:w)/C. On the other hand, Pd-Mn{sub 3}O{sub 4}/C shows significantly better performance stability than other oxide-promoted Pd/C for the alcohol electrooxidation. The poor stability of the Pd-Co{sub 3}O{sub 4}/C electrocatalysts is most likely related to the limited solubility of cobalt oxides in alkaline solutions. (author)

  15. Investigation of Zinc Oxide-Loaded Poly(Vinyl Alcohol) Nanocomposite Films in Tailoring Their Structural, Optical and Mechanical Properties

    Aslam, Muhammad; Kalyar, Mazhar Ali; Raza, Zulfiqar Ali

    2018-04-01

    Wurtzite ZnO nanoparticles, as a nanofiller, were incorporated in a poly(vinyl alcohol) (PVA) matrix to prepare multipurpose nanocomposite films using a solution casting approach. Some advanced analytical techniques were used to investigate the properties of prepared nanocomposite films. The mediation of ZnO nanofillers resulted in modification of structural, optical and mechanical properties of nanocomposite films. A comprehensive band structure investigation might be useful for designing technological applications like in optoelectronic devices. The experimental results were found to be closely dependent on the nanofiller contents. Some theoretical models like Tauc's and Wemple-DiDomenico, were employed to investigate the band structure parameters. The imaginary part of the dielectric constant was used to investigate the band gap. Then, the Helpin-Tsai model was employed to predict Young's moduli of the prepared nanocomposite films. On 3 wt.% ZnO nanofiller loading, the optical band gap of the PVA-based nanocomposite film was decreased from 5.26 eV to 3 eV, the tensile strength increased from 25.3 MPa to 48 MPa and Young's modulus increased from 144 MPa to 544 MPa.

  16. Alcohol and atherosclerosis

    DA LUZ PROTASIO L.

    2001-01-01

    Full Text Available Atherosclerosis is manifested as coronary artery disease (CAD, ischemic stroke and peripheral vascular disease. Moderate alcohol consumption has been associated with reduction of CAD complications. Apparently, red wine offers more benefits than any other kind of drinks, probably due to flavonoids. Alcohol alters lipoproteins and the coagulation system. The flavonoids induce vascular relaxation by mechanisms that are both dependent and independent of nitric oxide, inhibits many of the cellular reactions associated with atherosclerosis and inflammation, such as endothelial expression of vascular adhesion molecules and release of cytokines from polymorphonuclear leukocytes. Hypertension is also influenced by the alcohol intake. Thus, heavy alcohol intake is almost always associated with systemic hypertension, and hence shall be avoided. In individuals that ingest excess alcohol, there is higher risk of coronary occlusion, arrhythmias, hepatic cirrhosis, upper gastrointestinal cancers, fetal alcohol syndrome, murders, sex crimes, traffic and industrial accidents, robberies, and psychosis. Alcohol is no treatment for atherosclerosis; but it doesn't need to be prohibited for everyone. Thus moderate amounts of alcohol (1-2 drinks/day, especially red wine, may be allowed for those at risk for atherosclerosis complications.

  17. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al{sub 2}O{sub 3} supported copper and gold nanoparticles

    Ndolomingo, Matumuene Joe; Meijboom, Reinout, E-mail: rmeijboom@uj.ac.za

    2017-03-15

    Highlights: • Cu and Au on γ-Al{sub 2}O{sub 3} catalysts were prepared and characterized. • Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide in the absence of any solvent using the prepared catalysts. • The as prepared catalysts exhibited good performance in terms of conversion and selectivity towards benzaldehyde. • The kinetics of the reaction was investigated; k{sub app} was proportional to the amount of nano catalyst and oxidant present in the system. • The catalysts was recycled and reused with neither significant loss of activity nor selectivity. - Abstract: Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al{sub 2}O{sub 3} supported copper and gold nanoparticles. Li{sub 2}O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N{sub 2} absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol

  18. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt40/C or Pt20/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  19. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt_4_0/C or Pt_2_0/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  20. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Jeena, S. E.; Gnanaprakasam, P. [Karunya University, Department of Chemistry (India); Selvaraju, T., E-mail: veluselvaraju@gmail.com [Bharathiar University, Department of Chemistry (India)

    2017-01-15

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt{sub 40}/C or Pt{sub 20}/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  1. Mechanistic Studies on the Copper-Catalyzed N-Arylation of Amides

    Strieter, Eric R.; Bhayana, Brijesh; Buchwald, Stephen L.

    2009-01-01

    The copper-catalyzed N-arylation of amides, i.e., the Goldberg reaction, is an efficient method for the construction of products relevant to both industry and academic settings. Herein, we present mechanistic details concerning the catalytic and stoichiometric N-arylation of amides. In the context of the catalytic reaction, our findings reveal the importance of chelating diamine ligands in controlling the concentration of the active catalytic species. The consistency between the catalytic and stoichiometric results suggest that the activation of aryl halides occurs through a 1,2-diamine-ligated copper(I) amidate complex. Kinetic studies on the stoichiometric N-arylation of aryl iodides using 1,2-diamine ligated Cu(I) amidates also provide insights into the mechanism of aryl halide activation. PMID:19072233

  2. Copper(II)-catalyzed enantioselective hydrosilylation of halo-substituted alkyl aryl and heteroaryl ketones: asymmetric synthesis of (R)-fluoxetine and (S)-duloxetine.

    Zhou, Ji-Ning; Fang, Qiang; Hu, Yi-Hu; Yang, Li-Yao; Wu, Fei-Fei; Xie, Lin-Jie; Wu, Jing; Li, Shijun

    2014-02-14

    A set of reaction conditions has been established to facilitate the non-precious copper-catalyzed enantioselective hydrosilylation of a number of structurally diverse β-, γ- or ε-halo-substituted alkyl aryl ketones and α-, β- or γ-halo-substituted alkyl heteroaryl ketones under air to afford a broad spectrum of halo alcohols in high yields and good to excellent enantioselectivities (up to 99% ee). The developed procedure has been successfully applied to the asymmetric synthesis of antidepressant drugs (R)-fluoxetine and (S)-duloxetine, which highlighted its synthetic utility.

  3. Black Alcoholism.

    Watts, Thomas D.; Wright, Roosevelt

    1988-01-01

    Examines some aspects of the problem of alcoholism among Blacks, asserting that Black alcoholism can best be considered in an ecological, environmental, sociocultural, and public health context. Notes need for further research on alcoholism among Blacks and for action to reduce the problem of Black alcoholism. (NB)

  4. Alcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling.

    Jiaojiao Pang

    Full Text Available The endoplasmic reticulum (ER plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to examine the impact of ADH on ER stress-induced cardiac anomalies and underlying mechanisms involved using cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were subjected to the ER stress inducer tunicamycin (1 mg/kg, i.p., for 48 hrs. Myocardial mechanical and intracellular Ca(2+ properties, ER stress, autophagy and associated cell signaling molecules were evaluated.ER stress compromised cardiac contractile function (evidenced as reduced fractional shortening, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration and impaired intracellular Ca(2+ homeostasis, oxidative stress and upregulated autophagy (increased LC3B, Atg5, Atg7 and p62, along with dephosphorylation of PTEN, Akt and mTOR, all of which were attenuated by ADH. In vitro study revealed that ER stress-induced cardiomyocyte anomaly was abrogated by ADH overexpression or autophagy inhibition using 3-MA. Interestingly, the beneficial effect of ADH was obliterated by autophagy induction, inhibition of Akt and mTOR. ER stress also promoted phosphorylation of the stress signaling ERK and JNK, the effect of which was unaffected by ADH transgene.Taken together, these findings suggested that ADH protects against ER stress-induced cardiac anomalies possibly via attenuation of oxidative stress and PTEN/Akt/mTOR pathway-regulated autophagy.

  5. Preparation of catalysts PtSb2O5.SnO2 supported on carbon and ATO using the alcohol reduction method for electrochemical oxidation of ethanol

    Ayoub, Jamil Mahmoud Said

    2013-01-01

    Pt Sn/C-ATO electrocatalysts with different Pt:Sn atomic ratios (90:10, 70:30 and 50:50) were prepared in a single step by an alcohol-reduction process using H 2 PtCl 6 .6H 2 O and SnCl 2 .2H 2 O as metal sources and ethylene glycol as solvent and reducing agent and a physical mixture of carbon Vulcan XC72 (85 wt%) and Sb 2 O 5 .SnO 2 (15 wt%) as support (C-ATO). The obtained materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The catalytic activity for ethanol electro-oxidation in acid medium was investigated by cyclic voltammetry and chronoamperometry and in single direct ethanol fuel cell (DEFC). XRD analyses showed that Pt(FCC), SnO 2 , carbon and ATO phases coexist in the obtained materials. The electrochemical studies showed that PtSn/C-ATO electrocatalysts were more active for ethanol electro-oxidation than PtSn/C electrocatalyst. The experiments at 100 deg C on a single DEFC showed that the power density of the cell using Pt Sn/C-ATO (90:10) was nearly 100% higher than the one obtained using Pt Sn/C (50:50). FTIR measurements showed that the addition of ATO to Pt Sn/C favors the formation of acetic acid as a product while for PtSn/C acetaldehyde was the principal product formed. (author)

  6. Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics

    Deshmukh, Kalim, E-mail: deshmukh.kalim@gmail.com [Department of Physics, B.S. Abdur Rahman University, Chennai, 600048, TN (India); Ahamed, M. Basheer [Department of Physics, B.S. Abdur Rahman University, Chennai, 600048, TN (India); Sadasivuni, Kishor Kumar [Mechanical and Industrial Engineering Department, Qatar University, P.O. Box 2713, Doha (Qatar); Ponnamma, Deepalekshmi; AlMaadeed, Mariam Al-Ali [Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha (Qatar); Khadheer Pasha, S.K. [Department of Physics, School of Advanced Sciences, VIT University, Vellore, 632014, TN (India); Deshmukh, Rajendra R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai, 400019 (India); Chidambaram, K. [Department of Physics, School of Advanced Sciences, VIT University, Vellore, 632014, TN (India)

    2017-01-15

    In this work, Graphene Oxide (GO) reinforced novel polymer composites comprising of poly (4-styrenesulfonic acid) (PSSA) and polyvinyl alcohol (PVA) blend matrix have been developed using colloidal processing technique. The properties and the structure of prepared composites were investigated using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), UV–vis spectroscopy (UV), Thermogravimetric analysis (TGA), Polarized optical microscopy (POM), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM). The FTIR and Raman spectroscopy analysis indicate the strong interfacial interaction between GO and PSSA/PVA blend matrix. The XRD and SEM analysis confirm that GO was fully exfoliated into individual graphene sheets and dispersed homogeneously within the polymer matrix. The effective reinforcement of GO into PSSA/PVA blend matrix has resulted in the enhancement of dielectric constant. The dielectric constant has increased from 82.67 (50 Hz, 150 °C) for PSSA/PVA (50/50) blend to 297.91 (50 Hz, 150 °C) for PSSA/PVA/GO composites with 3 wt % GO loading. The dielectric loss (tan δ) has increased from 1.56 (50 KHz, 140 °C) for PSSA/PVA (50/50) blend to 2.64 (50 KHz, 140 °C) for PSSA/PVA/GO composites with 3 wt % GO loading. These findings provide a new insight to fabricate flexible, high-k dielectric composite as a promising material for energy storage applications. - Highlights: • Graphene Oxide was prepared from natural graphite using modified Hummers method. • Novel PSSA/PVA/GO composites were prepared by reinforcing GO into PSSA/PVA blend matrix. • Molecular level dispersion of GO in PSSA/PVA blend matrix was successfully achieved. • Enhancement in the dielectric constant was observed due to effective reinforcement of GO in PSSA/PVA blend matrix. • PSSA/PVA/GO composites with high dielectric performances can be considered for energy storage applications.

  7. Design and synthesis of aryl ether and sulfone hydroxamic acids as potent histone deacetylase (HDAC) inhibitors.

    Pabba, Chittari; Gregg, Brian T; Kitchen, Douglas B; Chen, Zhen Jia; Judkins, Angela

    2011-01-01

    A series of novel hydroxamic acid based histone deacetylases (HDAC) inhibitors with aryl ether and aryl sulfone residues at the terminus of a substituted, unsaturated 5-carbon spacer moiety have been synthesized for the first time and evaluated. Compounds with meta- and para-substitution on the aryl ring of ether hydroxamic acids 19c, 20c, 19e, 19f and 19g are potent HDAC inhibitors with activities at low nanomolar levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Diversification of indoles via microwave-assisted ligand-free copper-catalyzed N-arylation

    Kwon, Jae Kwan; Lee, Jin Hee; Kim, Tae Sung; Yum, Eul Kgun [Dept. of Chemistry, Chu ngnam National University, Daejon (Korea, Republic of); Park, Jee Jung [Western Seoul Center Korea Basic Science Institute, Seoul (Korea, Republic of)

    2016-12-15

    A simple, efficient Cu{sub 2}O catalyst system under microwave irradiation was developed for N-arylation of various indoles without ligands and additives. Diverse N-heteroarylated indoles were prepared by coupling indoles with various heteroaryl halides within 1 h. The selective reactivity of bromoindole with aryl iodide provided N-aryl bromoindoles, which could be useful intermediates for palladium-catalyzed Heck and Suzuki coupling reactions.

  9. Menthone aryl acid hydrazones: a new class of anticonvulsants.

    Jain, Jainendra; Kumar, Y; Sinha, Reema; Kumar, Rajeev; Stables, James

    2011-01-01

    A series of ten compounds (Compounds J(1)-J(10)) of (±) 3-menthone aryl acid hydrazone was synthesized and characterized by thin layer chromatography and spectral analysis. Synthesized compounds were evaluated for anticonvulsant activity after intraperitoneal (i.p) administration to mice by maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) induced seizure method and minimal clonic seizure test. Minimal motor impairment was also determined for these compounds. Results obtained showed that four compounds out of ten afforded significant protection in the minimal clonic seizure screen at 6 Hz. Compound J(6), 4-Chloro-N-(2-isopropyl-5-methylcyclohexylidene) benzohydrazide was found to be the most active compound with MES ED(50) of 16.1 mg/kg and protective index (pI) of greater than 20, indicating that (±) 3-menthone aryl acid hydrazone possesses better and safer anticonvulsant properties than other reported menthone derivatives viz. menthone Schiff bases, menthone semicarbazides and thiosemicarbazides.

  10. Effects of electron beam irradiation on properties of corn starch undergone periodate oxidation mechanism blended with polyvinyl alcohol

    Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Yap, Bee-Fen; Rahmat, A. R.

    2018-02-01

    This work was performed to examine the properties of pristine PVOH and PVOH-starch blends under exposure of different irradiation dosages. The periodate oxidation method was used to produce dialdehyde starch. The application of low dosages of electron beam irradiation (≤10 kGy) has improved the tensile strength by forming crosslinking networks. However, the tensile strength drastically declined when radiated at 30 kGy due to the reduction of available hydroxyl groups inside polymer matrix for intermolecular interaction. Also, the incorporation of corn starch and dialdehyde starch has significantly reduced the melting temperature and enthalpy of melting of PVOH blends due to cessation of the hydrogen bonding between PVOH and starch molecules. The crystallite size for deflection planes (1 0 1), (1 0 1) and (2 0 0) for all PVOH blends was significant reduced when irradiated. The electron beam irradiation has also weakened the hydrophilic characteristic of all PVOH blends as evidenced in infrared and microscopy analysis.

  11. Novel routes in flame retardancy of bisphenol A polycarbonate/impact modifier/aryl phosphate blends

    Wawrzyn, Eliza

    2013-07-01

    The massive use of electronic engineering products accompanied by high demands on fire safety has led to increasing interest in environmentally friendly flame retardancy of bisphenol A polycarbonate (PC) based materials. In this work, novel routes for enhancing the flame retardancy of PC/Impact Modifier/Aryl phosphate were studied with respect to pyrolysis (TG, TG-FTIR, ATR-FTIR, NMR), flammability (LOI and UL 94) and fire behavior (cone calorimeter at different irradiations). To improve charring of PC/ABS{sub PTFE}+Aryl phosphate, the exchange of bisphenol A bis(diphenyl phosphate) (BDP) with novel aryl phosphates was proposed. Two novel flame retardants were synthesized: 3,3,5-trimethylcyclohexylbisphenol-bis(diphenyl phosphate) (TMC-BDP) and bisphenol A-bis(diethylphosphate) (BEP). TMC-BDP was more stable than BDP, thus gave a potential to increase the chemical reactions between the components of the PC/ABS{sub PTFE}+Aryl phosphate, whereas more reactive BEP was expected to increase the cross linking activity with the polymer matrix. Nevertheless, the corresponding blends did not enhance the flame retardancy compared to PC/ABS{sub PTFE}+BDP. BEP in PC/ABS{sub PTFE} preferred to cross-link with itself instead of with PC, thus it showed poor fire protection performance. TMC-BDP gave as good results as BDP in PC/ABS PTFE material. The results delivered evidence that BDP possesses a high degree of optimization in PC/ABS{sub PTFE} system. To provide a novel impact modifier improving not only mechanical properties but also the fire retardancy of PC/BDP material, the replacement of highly flammable acrylonitrile-butadiene-styrene (ABS) with silicon acrylate rubber (SiR) with high content of polydimethylsiloxane (PDMS) was studied. In PC/SiR{sub PTFE}/BDP the replacement of ABS is beneficial, but PDMS worsened the BDP gas phase and condensed phase action. PDMS reacted also with PC during combustion. PDMS-PC and PDMS-BDP interactions led to silicon dioxide. In fact, the

  12. Effect of rose water on structural, optical and electrical properties of composites of reduced graphene oxide-poly (vinyl alcohol) (PVA) grafted with silver nanoparticles

    Kumar, Devender; Wadhwa, Heena; Mahendia, Suman; Chand, Fakir; Kumar, Shyam

    2017-02-01

    In this work, nanocomposites of reduced graphene oxide-poly (vinyl alcohol) (PVA) grafted with silver nanoparticles (rGO-PVA-Ag) were prepared in the absence and presence of rose water. The optical characterizations of prepared nanocomposites were done through UV-visible spectroscopy and Transmission Electron Microscopy (TEM) and Raman spectroscopy was employed for the surface characterization. The grafted silver (Ag) nanoparticles are found to be almost spherical in shape with reduction in their mean diameter from 47 nm to 26 nm after addition of rose water. The UV-visible absorption spectra of as-prepared rGO-PVA-Ag nanocomposites without and with rose water depicted surface plasmon resonance (SPR) peak at around 448 nm which coincides with the predicted spectra from simulation based on the Mie Theory. The electrical dc conductivity measurements as the function of temperature from room temperature to 55 °C were investigated. It has been found that use of rose water in synthesis process increases the electrical conductivity of the rGO-PVA-Ag. The mode of the electrical conduction in the composites can be explained using Efros-Shklovskii Variable Range Hopping mechanism (ES VRH).

  13. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging.

    Liu, Mengli; Xu, Yuanhong; Niu, Fushuang; Gooding, J Justin; Liu, Jingquan

    2016-04-25

    Carbon quantum dots (CQDs) are attracting tremendous interest owing to their low toxicity, water dispersibility, biocompatibility, optical properties and wide applicability. Herein, CQDs with an average diameter of (4.0 ± 0.2) nm and high crystallinity were produced simply from the electrochemical oxidation of a graphite electrode in alkaline alcohols. The as-formed CQDs dispersion was colourless but the dispersion gradually changed to bright yellow when stored in ambient conditions. Based on UV-Vis absorption, fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM), this colour change appeared to be due to oxygenation of surface species over time. Furthermore, the CQDs were used in specific and sensitive detection of ferric ion (Fe(3+)) with broad linear ranges of 10-200 μM with a low limit of detection of 1.8 μM (S/N = 3). The application of the CQDs for Fe(3+) detection in tap water was demonstrated and the possible mechanism was also discussed. Finally, based on their good characteristics of low cytotoxicity and excellent biocompatibility, the CQDs were successfully applied to cell imaging.

  14. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  15. Ethanol-induced oxidative stress and acetaldehyde formation in rat mammary tissue: Potential factors involved in alcohol drinking promotion of breast cancer

    Castro, Gerardo D.; Rodriguez de Castro, Carmen; Maciel, Maria E.; Fanelli, Silvia L.; Cignoli de Ferreyra, Elida; Gomez, Maria I. Diaz; Castro, Jose A.

    2006-01-01

    Recent studies from our laboratory provided evidence that part of the carcinogenic effects of ethanol consumption might be related to its in situ metabolism at cytosolic and microsomal levels, to the mutagen acetaldehyde and to hydroxyl and 1-hydroxyethyl radicals. In this work, we report on our experiments where Sprague-Dawley female rats were exposed to the standard Lieber and De Carli diet for 28 days. We observed: the induction of the (xanthineoxidoreductase mediated) cytosolic and microsomal (lipoxygenase mediated) pathways of ethanol metabolism; promotion of oxidative stress as shown by increased formation of lipid hydroperoxides; delay in the t-butylhydroperoxide induced chemiluminiscence, and a significant decrease in protein sulfhydryls. In addition, the epithelial cells showed ultrastructural alterations consisting of markedly irregular nuclei, with frequent invaginations at the level of the nuclear envelope, condensation of chromatin around the inner nuclear membrane, and marked dilatation of the nuclear pores showing filamentous material exiting to the cytoplasm. In conclusion, the presence in mammary epithelial cells of cytosolic and microsomal pathways of ethanol bioactivation to carcinogenic and to tumorigenic metabolites might play a role in alcohol promotion of breast cancer

  16. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    Thompson, Christopher [Univ. of California, Berkeley, CA (United States)

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  17. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    Highlights: • Gel electrolyte is prepared and used in electric double layer capacitor. • Insertion of boron crosslinks into GO agglomerates opens channels for ion migration. • Solid supercapacitors show excellent specific capacitance and cycle stability. • Nanocomposite electrolyte shows better thermal stability and mechanical properties. - Abstract: A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs

  18. To immobilize polyethylene glycol-borate ester/lithium fluoride in graphene oxide/poly(vinyl alcohol for synthesizing new polymer electrolyte membrane of lithium-ion batteries

    Y. F. Huang

    2017-01-01

    Full Text Available Polymer electrolyte membranes (PEMs are potentially applicable in lithium-ion batteries with high safety, low cost and good performance. Here, to take advantages of ionic conductivity and selectivity of borate ester-functionalized small molecules as well as structural properties of polymer nanocomposite, a strategy of immobilizing as-synthesized polyethylene glycol-borate ester/lithium fluoride (B-PEG/LiF in graphene oxide/poly(vinyl alcohol (GO/PVA to prepare a PEM is put forward. Chemical structure of the PEM is firstly characterized by 1H-, 11B- and 19F-nuclear magnetic resonance spectra, and Fourier transform infrared spectroscopy spectra, respectively, and then is further investigated under consideration of the interactions among PVA, B-PEG and LiF components. The immobilization of B-PEG/LiF in PVA-based structure is confirmed. As the interactions within electrolyte components can be further tuned by GO, ionic conductivity (~10–3 S·cm–1, lithium-ion transfer number (~0.49, and thermal (~273 °C/electrochemical (>4 V stabilities of the PEM can be obtained, and the feasibility of PEMs applied in a lithium-ion battery is also confirmed. It is believed that such PEM is a promising candidate as a new battery separator.

  19. Kinetics of the H 2O 2-dependent ligninase-catalyzed oxidation of veratryl alcohol in the presence of cationic surfactant studied by spectrophotometric technique

    Liu, Airong; Huang, Xirong; Song, Shaofang; Wang, Dan; Lu, Xuemei; Qu, Yinbo; Gao, Peiji

    2003-09-01

    The kinetics of ligninase-catalyzed oxidation of veratryl alcohol (VA) by H 2O 2 in the aqueous medium containing cationic surfactant cetyltrimethylammonium bromide (CTAB) has been investigated using spectrophotometric technique. Steady-state kinetic studies at different concentrations of CTAB indicate that the reaction follows a ping pong mechanism and the mechanism always holds but the kinetic parameters vary with CTAB concentrations. CTAB is a weak inhibitor for ligninase; it lowers the maximum initial velocity. CTAB also causes the Michaelis constant of H 2O 2 to decrease dramatically and that of VA to increase markedly. Based on the changes in kinetic parameters of the enzyme-catalyzed reaction at different CTAB concentrations (lower than, near to and larger than its critical micelle concentration) and the effects of the CTAB monomer and the micelles on the spectra of VA and its corresponding aldehyde, a conclusion could be made that modification of the enzymatic protein by the surfactant monomer should be responsible for the above-mentioned results.

  20. Effects of symbiotic and vitamin E supplementation on blood pressure, nitric oxide and inflammatory factors in non-alcoholic fatty liver disease.

    Ekhlasi, Golnaz; Zarrati, Mitra; Agah, Shahram; Hosseini, Agha Fatemeh; Hosseini, Sharieh; Shidfar, Shahrzad; Soltani Aarbshahi, Seyed Soroush; Razmpoosh, Elham; Shidfar, Farzad

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) has been suggested to be well correlated with altered blood pressure. This study was conducted to determine the effects of symbiotic and vitamin E supplementation on blood pressure and inflammatory indices of patients with NAFLD. This randomized, double-blind, placebo-controlled trial was performed among 60 NAFLD patients aged 25 to 64 years old. Participants were randomly divided into four groups to receive a 400 IU alpha-tocopherol and 2 × 10 8 CFU/g symbiotic supplement for 8 weeks. The anthropometric parameters, systolic blood pressure (SBP) and diastolic blood pressure (DBP), serum malondialdehyde (MDA), nitric oxide (NO) and tumor necrosis factor α (TNFα) were assessed at baseline and after 8 weeks of intervention. After 8 weeks of intervention, combined symbiotic and alpha-tocopherol, symbiotic and alpha-tocopherol alone administration, compared with the placebo, resulted in significant decreases in SBP (-17.07±2.1, -16.07±3.56, -1.73±2.25 and -1.55±3.01 mmHg, P=0.01), serum MDA (-1.19±0.5, -0.12±0.65, 0.14 ± 0.64 and 0.16±0.34 nmol/mL, Psymbiotic supplementation among patients with NAFLD resulted in decreased SBP, serum MDA, TNFα levels and enzymes liver; however, they did not affect DBP and serum NO concentration.

  1. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    Huang, Yi-Fu

    2014-06-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  2. Arylation of Rhodium(II) Azavinyl Carbenes with Boronic Acids

    Selander, Nicklas; Worrell, Brady T.; Chuprakov, Stepan; Velaparthi, Subash; Fokin, Valery V.

    2013-01-01

    A highly efficient and stereoselective arylation of in situ generated azavinyl carbenes affording 2,2-diaryl enamines at ambient temperatures has been developed. These transition metal carbenes are directly produced from readily available and stable 1-sulfonyl-1,2,3-triazoles in the presence of a rhodium carboxylate catalyst. In several cases, the enamines generated in this reaction can be cyclized into substituted indoles employing copper catalysts. PMID:22913576

  3. Manganese-Catalyzed Cross-Coupling of Aryl Halides and Grignard Reagents by a Radical Mechanism

    Antonacci, Giuseppe; Ahlburg, Andreas; Fristrup, Peter

    2017-01-01

    The substrate scope and the mechanism have been investigated for the MnCl2-catalyzed cross-coupling reaction between aryl halides and Grignard reagents. The transformation proceeds rapidly and in good yield when the aryl halide component is an aryl chloride containing a cyano or an ester group....... Two radical-clock experiments were carried out, and in both cases an intermediate aryl radical was successfully trapped. The cross-coupling reaction is therefore believed to proceed by an SRN1 mechanism, with a triorganomanganate complex serving as the most likely nucleophile and single-electron donor...

  4. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-900 Sao Paulo, SP (Brazil)

    2007-03-30

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature. (author)

  5. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.

  6. Photolytic inhibition and labeling of proteins with aryl diazonium compounds

    Tometsko, A.M.; Turula, J.; Comstock, J.

    1978-01-01

    In the course of preparing aryl azide derivatives for use as photoprobes, we have observed significant light sensitivity in the precursor aryl diazonium compounds. The photosensitive properties of this class of compounds are of interest since they will seek out cationic binding sites in biological targets, and can be employed to inhibit complementary targets at acid pH. The relationship between photolytic change in the structure of diazonium compounds and the corresponding change in function of a biological target are presented. Experiments are described in which the dark and light sensitive properties of a model diazonium compound, diazobenzene sulfonate (DBS), were determined. The ultraviolet spectra were used to evaluate the dark stability and light sensitivity og DBS. Chymotrypsin and trypsin served as functioning targets for further evaluation of the photochemical properties. Both enzymes are stable to the probe in the dark at acid pH. A rapid loss of enzyme activity was observed following flash photolysis of DBS-enzyme solutions. Photolytic incorporation of radioactive DBS into chymotrypsin was observed. Aryl diazonium salts can be employed to probe the availability of complementary sites in biological targets at different acid pH values. (Author)

  7. Microenvironment effects in electrocatalysis: ionic-liquid-like coating on carbon nanotubes enhances the Pd-electrocatalytic alcohol oxidation.

    Li, Shuwen; Dong, Zhengping; Yang, Honglei; Guo, Shujing; Gou, Galian; Ren, Ren; Zhu, Zhejun; Jin, Jun; Ma, Jiantai

    2013-02-11

    A new catalyst consisting of ionic liquid (IL)-functionalized carbon nanotubes (CNTs) obtained through 1,3-dipolar cycloaddition support-enhanced electrocatalytic Pd nanoparticles (Pd@IL(Cl(-))-CNTs) was successfully fabricated and applied in direct ethanol alkaline fuel cells. The morphology, structure, component and stability of Pd@IL(Cl(-))-CNTs were systematic characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectra, thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The new catalyst exhibited higher electrocatalytic activity, better tolerance and electrochemical stability than the Pd nanoparticles (NPs) immobilized on CNTs (Pd@CNTs), which was ascribed to the effects of the IL, larger electrochemically active surface area (ECSA), and greater processing performance. Cyclic voltammograms (CVs) at various scan rates illustrated that the oxidation behaviors of ethanol at all electrodes were controlled by diffusion processes. The investigation of the different counteranions demonstrated that the performance of the IL-CNTs hybrid material was profoundly influenced by the subtly varied structures of the IL moiety. All the results indicated that the Pd@IL(Cl(-))-CNTs catalyst is an efficient anode catalyst, which has potential applications in direct ethanol fuel cells and the strategy of IL functionalization of CNTs could be available to prepare other carbonaceous carrier supports to enhance the dispersivity, stability, and catalytic performance of metal NPs as well. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis of nanodispersible 6-aryl-2,4-diamino-1,3,5-triazine and its derivatives

    Padalkar, Vikas S.; Patil, Vikas S.; Phatangare, Kiran R.; Gupta, Vinod D.; Umape, Prashant G.; Sekar, N.

    2010-01-01

    A series of novel branched derivatives of 6-aryl-2,4-diamino-1,3,5-triazine from corresponding aryl nitriles and dicyanodiamide was synthesized. These compounds show a nanodispersibility and good thermal stability.

  9. Application of a Heterogeneous Chiral Titanium Catalyst Derived from Silica-Supported 3-Aryl H8-BINOL to Enantioselective Alkylation and Arylation of Aldehydes.

    Akai, Junichiro; Watanabe, Satoshi; Michikawa, Kumiko; Harada, Toshiro

    2017-07-07

    A 3-aryl H 8 -BINOL was grafted on the surface of silica gel using a hydrosilane derivative as a precursor, and the resulting silica-supported ligand (6 mol %) was employed in the enantioselective alkylation and arylation of aldehydes in the presence of Ti(O i Pr) 4 . The reactions using Et 2 Zn, Et 3 B, and aryl Grignard reagents all afforded the corresponding adducts in high enantioselectivities and yields. The silica-immobilized titanium catalyst could be reused up to 14 times without appreciable deterioration of the activity.

  10. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications.

    Robinson, Joshua W; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J Timothy; Cosimbescu, Lelia

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.

  11. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.

  12. Synthesis of Quinolines through Three-Component Cascade Annulation of Aryl Diazonium Salts, Nitriles, and Alkynes.

    Wang, Hao; Xu, Qian; Shen, Sheng; Yu, Shouyun

    2017-01-06

    An efficient and rapid synthesis of multiply substituted quinolines is described. This method is enabled by a three-component cascade annulation of readily available aryl diazonium salts, nitriles, and alkynes. This reaction is catalyst- and additive-free. Various aryl diazonium salts, nitriles, and alkynes can participate in this transformation, and the yields are up to 83%.

  13. Visible-light-mediated selective arylation of cysteine in batch and flow

    Bottecchia, C.; Rubens, M.; Gunnoo, S.B.; Hessel, V.; Madder, A.

    2017-01-01

    A mild visible-light-mediated strategy for cysteine arylation is presented. The method relies on the use of eosin Y as a metal-free photocatalyst and aryldiazonium salts as arylating agents. The reaction can be significantly accelerated in a microflow reactor, whilst allowing the in situ formation

  14. Unprecedentedly mild direct Pd-catalyzed arylation of oxazolo[4,5-b]pyridine

    Zhuravlev, Fedor

    2006-01-01

    Pd-catalyzed C-2 arylation of oxazolo[4,5-b]pyridine proceeds efficiently at 30 degrees C and tolerates a variety of aryl halides, including derivatized amino acids for which no racemization was observed during the reaction. Experimental evidence for facile deprotonation of oxazolo[4,5-b...

  15. Metal-Free N-Arylation of Secondary Amides at Room Temperature

    Tinnis, Fredrik; Stridfeldt, Elin; Lundberg, Helena; Adolfsson, Hans; Olofsson, Berit

    2015-01-01

    The arylation of secondary acyclic amides has been achieved with diaryliodonium salts under mild and metal-free conditions. The methodology has a wide scope, allows synthesis of tertiary amides with highly congested aryl moieties, and avoids the regioselectivity problems observed in reactions with (diacetoxyiodo)benzene.

  16. Pd-Catalyzed Cross-Coupling Reactions of Amides and Aryl Mesylates

    Dooleweerdt, Karin; Fors, Brett P.; Buchwald, Stephen L.

    2010-01-01

    A catalyst, based on a biarylphosphine ligand, for the Pd-catalyzed cross-coupling reactions of amides and aryl mesylates is described. This system allows an array of aryl and heteroaryl mesylates to be transformed into the corresponding N-arylamides in moderate to excellent yields. PMID:20420379

  17. Preparation and Property Evaluation of Conductive Hydrogel Using Poly (Vinyl Alcohol/Polyethylene Glycol/Graphene Oxide for Human Electrocardiogram Acquisition

    Xueliang Xiao

    2017-06-01

    Full Text Available Conductive hydrogel combined with Ag/AgCl electrode is widely used in the acquisition of bio-signals. However, the high adhesiveness of current commercial hydrogel causes human skin allergies and pruritus easily after wearing hydrogel for electrodes for a long time. In this paper, a novel conductive hydrogel with good mechanical and conductive performance was prepared using polyvinyl alcohol (PVA, polyethylene glycol (PEG, and graphene oxide (GO nanoparticles. A cyclic freezing–thawing method was employed under processing conditions of −40 °C (8 h and 20 °C (4 h separately for three cycles in sequence until a strong conductive hydrogel, namely, PVA/PEG/GO gel, was obtained. Characterization (Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy results indicated that the assembled hydrogel was successfully prepared with a three-dimensional network structure and, thereafter, the high strength and elasticity due to the complete polymeric net formed by dense hydrogen bonds in the freezing process. The as-made PVA/PEG/GO hydrogel was then composited with nonwoven fabric for electrocardiogram (ECG electrodes. The ECG acquisition data indicated that the prepared hydrogel has good electro-conductivity and can obtain stable ECG signals for humans in a static state and in motion (with a small amount of drift. A comparison of results indicated that the prepared PVA/PEG/GO gel obtained the same quality of ECG signals with commercial conductive gel with fewer cases of allergies and pruritus in volunteer after six hours of wear.

  18. Protective effects of orange (Citrus sinensis L.) peel aqueous extract and hesperidin on oxidative stress and peptic ulcer induced by alcohol in rat.

    Selmi, Slimen; Rtibi, Kais; Grami, Dhekra; Sebai, Hichem; Marzouki, Lamjed

    2017-08-14

    Massive alcohol drinking can lead to gastric ulcer. In the present study we investigated the gastroprotective effect of Citrus sinensis peel aqueous extract (CSPE) and Hesperidin (H) in ethanol (EtOH) induced oxidative stress and peptic ulcer in rats. Seventy adult male Wistar rats were divided into seven groups of 10 each: control, EtOH (4 g/kg b.w.), EtOH + various doses of CSPE (100, 200 and 400 mg/kg, b.w.), EtOH + Hesperidin (50 mg/kg, p.o.) and EtOH + Omeprazole (OM, 20 mg/kg, p.o.). Animals were perorally (p.o.) pre-treated with CSPE during 15 days and intoxicated with a single oral administration of EtOH (4 g/kg b.w.) during 2 h. Gastric ulcer was induced in rats with a single dose of ethanol (EtOH). Ulcer index, gene expression of gastric cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), malondialdhyde (MDA), hydrogen peroxide H 2 O 2 and Thiol groups (-SH) content in stomach and antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and gluthation peroxidise (GPx) were measured. Furthermore, histopathological examinations were performed. The results showed that ethanol induced gastric damage, improving oxidative stress markers level such as MDA (121 ± 4.45 nmol/mg proteins) and H 2 O 2 (24.62 ± 1.04 μmol/mg proteins), increased pro-inflammatory cytokine (TNF-α level), as well as the expression of COX-2 in the ethanol group. However, a significant depletion of enzymatic and non-enzymatic antioxidants were observed, such as, GPx (72%), SOD (57.5%), CAT (41.6%) and -SH (50%). The lesions were associated with severe histopathological damage. The both Citrus sinensis peel aqueous extract (CSPE) and hesperidin significantly protect against all gastric damages caused by ethanol administration in rats. We propose that CSPE and hesperidin exhibit protective effects in EtOH-induced peptic ulcer in rat. This protection might be related in to part its antioxidant properties as well as its opposite effects on some studied

  19. Alcohol Advertising

    Trkovská, Jana

    2017-01-01

    The thesis concerns itself with alcohol advertising. Alcohol is the most widespread habit-forming substance, yet its consumption is permitted in most countries all around the world, possibly restricted by the age of consumers only. Drinking alcohol cannot be either regulated or prohibited today. It has become commonplace for the majority of our lives. Being aware of its apparent risks, however, there is an effort to regulate at least alcohol advertising. The main objective of this work was to...

  20. Influence of Functionality on Direct Arylation of Model Systems as a Route Toward Fluorinated Copolymers via Direct Arylation Polymerization (DArP)

    Livi, Francesco; Gobalasingham, Nemal S.; Bundgaard, Eva

    2015-01-01

    A screening of direct arylation conditions on amodel small molecule system is carried out to develop suitableconditions for the direct arylation polymerization (DArP) of fluorinatedcopolymers, which are incompatible with conditionspreviously utilized successfully for nonfluorinated systems. Themo......,4-phenylene)dithiophene. Polymers arefree of β-defects and significant homocoupling. This work furtherunderscores the attractive simplicity, relevance, and easeof DArP while reconfirming its broad compatibility withincreasingly popular fluorinated copolymers....

  1. Preparation and characterization of electrocatalysts based on palladium for electro-oxidation of alcohols in alkaline medium; Preparacao e caracterizacao de eletrocatalisadores a base de paladio para oxidacao eletroquimica de alcoois em meio alcalino

    Brandalise, Michele

    2012-07-01

    In this study Pd/C, Au/C, PdAu/C, PdAuPt/C, PdAuBi/C and PdAuIr/C electrocatalysts were prepared by the sodium borohydride reduction method for the electrochemical oxidation of methanol, ethanol and ethylene glycol. This methodology consists in mix an alkaline solution of sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. The electrocatalysts were characterized by energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry. The electrochemical oxidation of the alcohols was studied by chronoamperometry using a thin porous coating technique. The mechanism of ethanol electro-oxidation was studied by Fourier Transformed Infrared (FTIR) in situ. The most effective electrocatalysts were tested in alkaline single cells directly fed with methanol, ethanol or ethylene glycol. Preliminary studies showed that the most suitable atomic composition for preparing the ternary catalysts is 50:45:05. Electrochemical data in alkaline medium show that the electrocatalysts PdAuPt/C (50:45:05) showed the better activity for methanol electro oxidation, while PdAuIr/C was the most active for ethanol oxidation and PdAuBi/C (50:45:05) was the most effective for ethylene glycol oxidation in alkaline medium. These results show that the addition of gold in the composition of electrocatalysts increases their catalytic activities. The spectroelectrochemical FTIR in situ data permitted to conclude that C-C bond is not broken and the acetate is formed. (author)

  2. Alcoholic fermentation

    Colin, P

    1961-01-04

    The addition of C/sub 6-10/ alcohols to the fermenting sugar solutions, increased the yield of alcohol by 1.5 to 5%. The best additives were (additive, % additive in sugar solution, % increased in yield of alcohol): hexanol, 0.03, 2.5; heptanol, 0.05, 3; nonanol, 0.01, 3; 2-ethylbutanol, 0.05, 4; 2-ethylhexanol, 0.05, 5; a mixture of C/sub 7-9/ alcohols from the Oxo synthesis, 0.05, 4.5, and a mixture of C/sub 10/ alcohols 0.05, 3.

  3. Role of the Aryl Hydrocarbon Receptor in Colon Neoplasia

    Xie, Guofeng, E-mail: gxie@medicine.umaryland.edu; Raufman, Jean-Pierre [Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2015-07-31

    For both men and women, colorectal cancer (CRC) is the second leading cause of cancer death in the United States, primarily as a consequence of limited therapies for metastatic disease. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor with diverse functions in detoxification of xenobiotics, inflammatory responses, and tissue homeostasis. Emerging evidence indicates that AhR also plays an important role in regulating intestinal cell proliferation and tumorigenesis. Here, we review both the pro- and anti-carcinogenic properties of AhR signaling and its potential role as a therapeutic target in CRC.

  4. Practical synthesis of aryl-2-methyl-3-butyn-2-ols from aryl bromides via conventional and decarboxylative copper-free Sonogashira coupling reactions

    Andrea Caporale

    2014-02-01

    Full Text Available Two efficient protocols for the palladium-catalyzed synthesis of aryl-2-methyl-3-butyn-2-ols from aryl bromides in the absence of copper were developed. A simple catalytic system consisting of Pd(OAc2 and P(p-tol3 using DBU as the base and THF as the solvent was found to be highly effective for the coupling reaction of 2-methyl-3-butyn-2-ol (4 with a wide range of aryl bromides in good to excellent yields. Analogously, the synthesis of aryl-2-methyl-3-butyn-2-ols was performed also through the decarboxylative coupling reaction of 4-hydroxy-4-methyl-2-pentynoic acid with aryl bromides, using a catalyst containing Pd(OAc2 in combination with SPhos or XPhos in the presence of tetra-n-butylammonium fluoride (TBAF as the base and THF as the solvent. Therefore, new efficient approaches to the synthesis of terminal acetylenes from widely available aryl bromides rather than expensive iodides and using 4 or propiolic acid rather than TMS-acetylene as inexpensive alkyne sources are described.

  5. Protective effect of polysaccharide from maca (Lepidium meyenii) on Hep-G2 cells and alcoholic liver oxidative injury in mice.

    Zhang, Lijun; Zhao, Qingsheng; Wang, Liwei; Zhao, Mingxia; Zhao, Bing

    2017-06-01

    To study the characterization and hepatoprotective activity of polysaccharide from maca (Lepidium meyenii), the main polysaccharide from maca (MP-1) was obtained by DEAE-52 cellulose column. The average molecular weight of MP-1 was 1067.3kDa and the polysaccharide purity was 91.63%. In order to assess the antioxidant activities of MP-1, four kinds of methods were used, including scavenging hydroxyl radical, DPPH, superoxide anion radical, and FRAP, and the results indicated high antioxidant activities. Furthermore, hepatoprotective activity of MP-1 was studied both in vitro and vivo. In vitro, the alcohol induced Hep-G2 cells model was established to evaluate the protective effect of MP-1, which demonstrated MP-1 can alleviate alcohol damage in Hep-G2 cells. In vivo, the Institute of Cancer Researcch (ICR) mice were used to evaluate hepatoprotecive effects of MP-1 on alcoholic liver disease (ALD). Supplement with MP-1 supressed the triglyceride level both in serum and in hepatic tissue. In addition, MP-1 ameliorated serous transaminases increase induced by alcohol, including aspartate transaminase, alanine aminotransferase, and γ-glutamyl transpeptidase. Moreover, MP-1 also dramatically increased the superoxide dismutase, glutathione peroxidase, and glutathione s-transferase levels in alcoholic mice. Meantime, histopathologic results MP-1 lighten inflammation induced by alcohol. These results indicate that MP-1 possesses hepatoprotective activity against hepatic injury induced by alcohol. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. One-pot hydrothermal synthesis and characterization of CoFe{sub 2}O{sub 4} nanoparticles and its application as magnetically recoverable catalyst in oxidation of alcohols by periodic acid

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar, E-mail: ssd_iitg@hotmail.com

    2016-09-15

    A novel and facile approach for one-pot synthesis of spinel cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles (NPs) is presented here. The synthesis involves homogeneous chemical precipitation followed by hydrothermal heating, using tributylamine (TBA) as a hydroxylating agent. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized CoFe{sub 2}O{sub 4} NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption isotherm (BET) and vibrating sample magnetometry (VSM). TEM image showed formation of spherical particles of sizes 2–30 nm. These NPs were used as magnetically recoverable catalyst in oxidation of alcohols to their corresponding aldehydes by periodic acid. This oxidative procedure is found to be highly efficient affording products in very high yield and selectivity. The easy magnetic separation of the catalyst and efficient reusability are key features of this methodology. - Highlights: • Hydrothermal synthesis of CoFe{sub 2}O{sub 4} NPs with (C{sub 4}H{sub 9}){sub 3}N as hydroxylating agent. • The TEM images showed the particles to be spherical in shape with sizes 2–30 nm. • CoFe{sub 2}O{sub 4} was used as recyclable catalyst for oxidation of alcohols by periodic acid.

  7. One-pot hydrothermal synthesis and characterization of CoFe2O4 nanoparticles and its application as magnetically recoverable catalyst in oxidation of alcohols by periodic acid

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-01-01

    A novel and facile approach for one-pot synthesis of spinel cobalt ferrite (CoFe 2 O 4 ) nanoparticles (NPs) is presented here. The synthesis involves homogeneous chemical precipitation followed by hydrothermal heating, using tributylamine (TBA) as a hydroxylating agent. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized CoFe 2 O 4 NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption-desorption isotherm (BET) and vibrating sample magnetometry (VSM). TEM image showed formation of spherical particles of sizes 2–30 nm. These NPs were used as magnetically recoverable catalyst in oxidation of alcohols to their corresponding aldehydes by periodic acid. This oxidative procedure is found to be highly efficient affording products in very high yield and selectivity. The easy magnetic separation of the catalyst and efficient reusability are key features of this methodology. - Highlights: • Hydrothermal synthesis of CoFe 2 O 4 NPs with (C 4 H 9 ) 3 N as hydroxylating agent. • The TEM images showed the particles to be spherical in shape with sizes 2–30 nm. • CoFe 2 O 4 was used as recyclable catalyst for oxidation of alcohols by periodic acid.

  8. Synthesis of γ-hydroxypropyl P-chirogenic (±-phosphorus oxide derivatives by regioselective ring-opening of oxaphospholane 2-oxide precursors

    Iris Binyamin

    2015-07-01

    Full Text Available The synthesis of P-chirogenic (±-phosphine oxides and phosphinates via selective nucleophilic ring opening of the corresponding oxaphospholanes is described. Two representative substrates: the phosphonate 2-ethoxy-1,2-oxaphospholane 2-oxide and the phosphinate 2-phenyl-1,2-oxaphospholane 2-oxide were reacted with various Grignard reagents to produce a single alkyl/aryl product. These products may possess further functionalities in addition to the phosphorus center such as the γ-hydroxypropyl group which results from the ring opening and π-donor moieties such as aryl, allyl, propargyl and allene which originates from the Grignard reagent.

  9. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Wei Zheng

    2016-03-01

    Full Text Available Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  10. Silicon dioxide surfaces with aryl interaction sites for chromatographic applications

    Gadzal-Kopciuch, R.; Kluska, M.; Welniak, M.; Buszewski, B.

    2005-01-01

    The paper presents the results of a study on aryl phases aimed at the increase of the separation selectivity of substances containing π electrons, and improving the reproducibility of retention data. The above phases contain not only a carbon chain of a different length, linking them to the support, but also one or two aromatic rings. The suitability of the newly obtained packings for the purposes of high-performance liquid chromatography was verified on the basis of a description of surface topography before and after the modification process. Various physicochemical methods were employed to determine the effectiveness of chemical modification, i.e., elemental analysis, infrared spectroscopy, and nuclear magnetic resonance. The aryl packings obtained were used for the separation of polynuclear aromatic hydrocarbons and budesonide epimers, tested under hydroorganic conditions (water/ethanol, water/methanol, water/acetonitrile). The application of a methanol/water mobile phase and a new-generation naphthylpropyl stationary phase for the separation of the 22R and 22S diastereoisomers of budesonide allowed the obtention of reproducible results and make qualitative and quantitative determinations of particular enantiomers

  11. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  12. Catalytic arylation methods from the academic lab to industrial processes

    Burke, Anthony J

    2014-01-01

    This "hands-on" approach to the topic of arylation consolidates the body of key research over the last ten years (and up to around 2014) on various catalytic methods which involve an arylation process. Clearly structured, the chapters in this one-stop resource are arranged according to the reaction type, and focus on novel, efficient and sustainable processes, rather than the well-known and established cross-coupling methods. The entire contents are written by two authors with academic and industrial expertise to ensure consistent coverage of the latest developments in the field, as well as industrial applications, such as C-H activation, iron and gold-catalyzed coupling reactions, cycloadditions or novel methodologies using arylboron reagents. A cross-section of relevant tried-and-tested experimental protocols is included at the end of each chapter for putting into immediate practice, along with patent literature. Due to its emphasis on efficient, "green" methods and industrial applications of the products c...

  13. Electronic states of aryl radical functionalized graphenes: Density functional theory study

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2016-06-01

    Functionalized graphenes are known as a high-performance molecular device. In the present study, the structures and electronic states of the aryl radical functionalized graphene have been investigated by the density functional theory (DFT) method to elucidate the effects of functionalization on the electronic states of graphene (GR). Also, the mechanism of aryl radical reaction with GR was investigated. The benzene, biphenyl, p-terphenyl, and p-quaterphenyl radicals [denoted by (Bz) n (n = 1-4), where n means numbers of benzene rings in aryl radical] were examined as aryl radicals. The DFT calculation of GR-(Bz) n (n = 1-4) showed that the aryl radical binds to the carbon atom of GR, and a C-C single bond was formed. The binding energies of aryl radicals to GR were calculated to be ca. 6.0 kcal mol-1 at the CAM-B3LYP/6-311G(d,p) level. It was found that the activation barrier exists in the aryl radical addition: the barrier heights were calculated to be 10.0 kcal mol-1. The electronic states of GR-(Bz) n were examined on the basis of theoretical results.

  14. Molecular characterization and expression of a novel alcohol oxidase from Aspergillus terreus MTCC6324.

    Mitun Chakraborty

    Full Text Available The alcohol oxidase (AOx cDNA from Aspergillus terreus MTCC6324 with an open reading frame (ORF of 2001 bp was constructed from n-hexadecane induced cells and expressed in Escherichia coli with a yield of ∼4.2 mg protein g-1 wet cell. The deduced amino acid sequences of recombinant rAOx showed maximum structural homology with the chain B of aryl AOx from Pleurotus eryngii. A functionally active AOx was achieved by incubating the apo-AOx with flavin adenine dinucleotide (FAD for ∼80 h at 16°C and pH 9.0. The isoelectric point and mass of the apo-AOx were found to be 6.5±0.1 and ∼74 kDa, respectively. Circular dichroism data of the rAOx confirmed its ordered structure. Docking studies with an ab-initio protein model demonstrated the presence of a conserved FAD binding domain with an active substrate binding site. The rAOx was specific for aryl alcohols and the order of its substrate preference was 4-methoxybenzyl alcohol >3-methoxybenzyl alcohol>3, 4-dimethoxybenzyl alcohol > benzyl alcohol. A significantly high aggregation to ∼1000 nm (diameter and catalytic efficiency (kcat/Km of 7829.5 min-1 mM-1 for 4-methoxybenzyl alcohol was also demonstrated for rAOx. The results infer the novelty of the AOx and its potential biocatalytic application.

  15. Enhancing hepatic fibrosis in spontaneously hypertensive rats fed a choline-deficient diet: a follow-up report on long-term effects of oxidative stress in non-alcoholic fatty liver disease.

    Yamamoto, Hiroya; Kanno, Keishi; Ikuta, Takuya; Arihiro, Koji; Sugiyama, Akiko; Kishikawa, Nobusuke; Tazuma, Susumu

    2016-05-01

    We previously reported a model of non-alcoholic fatty liver disease (NAFLD) using spontaneously hypertensive rats (SHRs), fed a choline-deficient (CD) diet for 5 weeks, that hepatic steatosis but not fibrosis is developed through oxidative stress. To determine the relationship between hypertension and hepatic fibrosis in NAFLD, we examined whether long-term CD diet leads to hepatic fibrosis through oxidative stress. Eight-week-old male SHR and normotensive Wistar Kyoto rats (WKYs) were fed a CD diet for 5 or 20 weeks, then liver histology and hepatic expression of genes related to lipid metabolism, fibrosis, and oxidative stress were assessed. Oxidative stress was assessed by hepatic thiobarbituric acid reactive substance (TBARS) levels. After 5 weeks on CD diet, prominent hepatic steatosis and decrease in expression of genes for lipid metabolism were observed in SHRs as compared with WKYs. SHRs on a CD diet demonstrated a downregulated expression of genes for antioxidants, along with significant increases in hepatic TBARS. After 20 weeks on CD diet, SHRs demonstrated severe liver fibrosis and upregulated expressions of genes for fibrosis when compared with WKY. Hypertension precipitated hepatic steatosis, and further, acts as an enhancer in NAFLD progression to liver fibrosis through oxidative stress. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  16. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  17. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  18. Alcohol combustion chemistry

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  19. Reaction of aryl diazonium tetrafluoro borates with allyl methacrylate in the presence of rhodanide-anion

    Grishchuk, B.D.; Baranovskij, V.S.; Simchak, R.V.; Tulajdan, G.N.; Gorbovoj, P.M.

    2006-01-01

    Reaction of aryl diazonium tetrafluoro borates (I) with allyl ester of methacrylic acid in the water-acetone (1:5) medium is studied by means of IR spectroscopy and 1 H NMR. It is established that (I) reacts with aryl methacrylate in the presence of rhodanide-anion and catalytic quantities of copper salts with the formation of allyl esters of 2-thiocyanato-2-methyl-3-aryl propionic acids with the yield of 32-56%. Allyl fragment of biunsaturated compound shows no reaction under the tested conditions [ru

  20. Cu-Click Compatible Triazabutadienes To Expand the Scope of Aryl Diazonium Ion Chemistry.

    Cornali, Brandon M; Kimani, Flora W; Jewett, John C

    2016-10-07

    Triazabutadienes can be used to readily generate reactive aryl diazonium ions under mild, physiologically relevant conditions. These conditions are compatible with a range of functionalities that do not tolerate traditional aryl diazonium ion generation. To increase the utility of this aryl diazonium ion releasing chemistry an alkyne-containing triazabutadiene was synthesized. The copper-catalyzed azide-alkyne cycloaddition ("Cu-click") reaction was utilized to modify the alkyne-containing triazabutadiene and shown to be compatible with the nitrogen-rich triazabutadiene. One of the triazole products was tethered to a fluorophore, thus enabling the direct fluorescent labeling of a model protein.