WorldWideScience

Sample records for oxidized surface layer

  1. Characterization of SCC crack tips and surface oxide layers in alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsuhiko; Fukuya, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    In order to investigate the mechanism of primary water stress corrosion cracking (SCC), direct observation of microstructures of SCC crack tips and surface oxide layers in alloy 600 were carried out. A focused-ion beam (FIB) micro-processing technique was applied to prepare electron transparent foils including the crack tip and the surface oxide layer without any damage to those microstructures. Transmission electron microscopy and analysis were used to characterize the crack tips and surface oxide layers. Cr-rich oxides and a metal-Ni phase were identified in the crack tips and grain boundaries ahead of the crack tips independent of dissolved hydrogen concentrations. >From the fact that the Cr-rich oxides and metal-Ni phase were observed in the inner surface oxide layer, the same oxidation mechanism as the surface is proposed for the crack tip region and internal oxidation accompanying selective Cr oxidation is suggested as the mechanism. (author)

  2. Layer Dependence of Graphene for Oxidation Resistance of Cu Surface

    Institute of Scientific and Technical Information of China (English)

    Yu-qing Song; Xiao-ping Wang

    2017-01-01

    We studied the oxidation resistance of graphene-coated Cu surface and its layer dependence by directly growing monolayer graphene with different multilayer structures coexisted,diminishing the influence induced by residue and transfer technology.It is found that the Cu surface coated with the monolayer graphene demonstrate tremendous difference in oxidation pattern and oxidation rate,compared to that coated with the bilayer graphene,which is considered to be originated from the strain-induced linear oxidation channel in monolayer graphene and the intersection of easily-oxidized directions in each layer of bilayer graphene,respectively.We reveal that the defects on the graphene basal plane but not the boundaries are the main oxidation channel for Cu surface under graphene protection.Our finding indicates that compared to putting forth efforts to improve the quality of monolayer graphene by reducing defects,depositing multilayer graphene directly on metal is a simple and effective way to enhance the oxidation resistance of graphene-coated metals.

  3. Growth of micrometric oxide layers to explore laser decontamination of metallic surfaces

    Directory of Open Access Journals (Sweden)

    Carvalho Luisa

    2017-01-01

    Full Text Available The nuclear industry produces a wide range of radioactive waste in terms of hazard level, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop safe techniques for dismantling and for decontamination, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. In this paper we propose a method for the creation of oxide layers on stainless steel 304L with europium (Eu as contaminant. This technique consists in spraying an Eu-solution on stainless steel samples. The specimens are firstly treated with a pulsed nanosecond laser after which the steel samples are placed in a 873 K furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer were analyzed by scanning electron microscopy coupled to an energy-dispersive X-ray microanalyzer, as well as by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm–4.5 μm depending on the laser treatment parameters and the heating duration. These contaminated oxides had a ‘duplex structure’ with a mean concentration of the order of 6 × 1016 atoms/cm2 (15 μg/cm2 of europium in the volume of the oxide layer. It appears that europium implementation prevented the oxide growth in the furnace. Nevertheless, the presence of the contamination had no impact on the thickness of the oxide layers obtained by preliminary laser treatment. These oxide layers were used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  4. Atomic layer-by-layer oxidation of Ge (100) and (111) surfaces by plasma post oxidation of Al2O3/Ge structures

    International Nuclear Information System (INIS)

    Zhang, Rui; Huang, Po-Chin; Lin, Ju-Chin; Takenaka, Mitsuru; Takagi, Shinichi

    2013-01-01

    The ultrathin GeO x /Ge interfaces formed on Ge (100) and (111) surfaces by applying plasma post oxidation to thin Al 2 O 3 /Ge structures are characterized in detail using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. It is found that the XPS signals assigned to Ge 1+ and the 2+ states in the GeO x layers by post plasma oxidation have oscillating behaviors on Ge (100) surfaces in a period of ∼0.3 nm with an increase in the GeO x thickness. Additionally, the oscillations of the signals assigned to Ge 1+ and 2+ states show opposite phase to each other. The similar oscillation behaviors are also confirmed on Ge (111) surfaces for Ge 1+ and 3+ states in a period of ∼0.5 nm. These phenomena can be strongly regarded as an evidence of the atomic layer-by-layer oxidation of GeO x /Ge interfaces on Ge (100) and (111) surfaces.

  5. Study on the influence of carbon monoxide to the surface oxide layer of uranium metal

    International Nuclear Information System (INIS)

    Wang Xiaolin; Duan Rongliang; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1997-01-01

    The influence of carbon monoxide to the surface oxide layer of uranium metal has been studied by X-ray photoelectron spectroscopy (XPS) and gas chromatography (GC). Carbon monoxide adsorption on the oxide layer resulted in U4f peak shifting to the lower binding energy. The content of oxygen in the oxide is decreased and the atomic ratio (O/U) is decreased by 7.2%. The amount of carbon dioxide in the atmosphere after the surface reaction is increased by 11.0%. The investigation indicates that the surface layer can prevent the further oxidation uranium metal in the atmosphere of carbon monoxide

  6. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    Science.gov (United States)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  7. Influence of carbon monoxide to the surface layer of uranium metal and its oxides

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-09-01

    The surface structures of uranium metal and triuranium octaoxide (U 3 O 8 ) and the influence of carbon monoxide to the surface layers have been studied by X-ray photoelectron spectroscopy (XPS). After exposure to carbon monoxide, contents of oxygen in the surface oxides of uranium metal and U 3 O 8 are decreased and O/U ratios decrease 7.2%, 8.0% respectively. The investigation indicated the surface layers of uranium metal and its oxides were forbidden to further oxidation in the atmosphere of carbon monoxide. (11 refs., 9 figs., 2 tabs.)

  8. Growth of micrometric oxide layers to explore laser decontamination of metallic surfaces

    OpenAIRE

    Carvalho Luisa; Pacquentin Wilfried; Tabarant Michel; Maskrot Hicham; Semerok Alexandre

    2017-01-01

    The nuclear industry produces a wide range of radioactive waste in terms of hazard level, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop safe techniques for dismantling and for decontamination, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. In this paper we propose a method for the creation of oxide layers on stai...

  9. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    Science.gov (United States)

    Carvalho, Luisa; Pacquentin, Wilfried; Tabarant, Michel; Maskrot, Hicham; Semerok, Alexandre

    2017-09-01

    The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless steel 304L with europium (Eu) as contaminant marker. In this method, an Eu-solution is sprayed on the stainless steel samples. The specimen are firstly treated with a pulsed nanosecond laser and secondly the steel samples are exposed to a 600°C furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer are analysed by scanning electron microscopy coupled with energy dispersive X-ray microanalyzer, and by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm to 4.5 μm regarding to the laser treatment parameters and the heating duration. These contaminated oxides have a `duplex structure' with a mean weight percentage of 0.5% of europium in the volume of the oxide layer. It appears that europium implementation prevents the oxide growth by furnace but has no impact on laser heating. These oxide layers are used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  10. Deposition of thin layer (monoatomic layer) of barium on gold single crystal surfaces and studies of its oxidation employing X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ahmad, H.; Ahmad, R.; Khalid, M.; Alvi, R.A.

    2007-01-01

    Due to the high reactivity of barium with oxygen, some oxygen diffuse into the bulk to form bulk oxide and it is very difficult to differentiate the oxide over layer and the bulk oxide. To study the oxidation of barium surface layer, a thin layer (monolayer) of barium is developed over gold single crystal surface. Gold is selected as support because it is one of the least reactive metal in transition metal group and have very low probability of reaction with oxygen at room temperature (300K). Nitrous oxide (N/sub 2/O) was used as oxidant. Thin layer of barium was deposited on Au(100) surface. The barium coverage on gold surface was calculated that varied from 0.4 to 1.4 monolayer (ML). Photoelectron spectra for O(ls), N(ls), Ba (3d), and Au (4f) have been recorded on X-ray photoelectron spectrometer at different binding energy region specific for each element. The decomposition of nitrous oxide has been observed in all cases. It has found that nitrogen is evolved in the gaseous state and oxygen is adsorbed/chemisorbed on barium over layer. (author)

  11. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    Directory of Open Access Journals (Sweden)

    Carvalho Luisa

    2017-01-01

    Full Text Available The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless steel 304L with europium (Eu as contaminant marker. In this method, an Eu-solution is sprayed on the stainless steel samples. The specimen are firstly treated with a pulsed nanosecond laser and secondly the steel samples are exposed to a 600°C furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer are analysed by scanning electron microscopy coupled with energy dispersive X-ray microanalyzer, and by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm to 4.5 μm regarding to the laser treatment parameters and the heating duration. These contaminated oxides have a ‘duplex structure’ with a mean weight percentage of 0.5% of europium in the volume of the oxide layer. It appears that europium implementation prevents the oxide growth by furnace but has no impact on laser heating. These oxide layers are used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  12. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  13. Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass.

    Science.gov (United States)

    Caron, A; Qin, C L; Gu, L; González, S; Shluger, A; Fecht, H-J; Louzguine-Luzgin, D V; Inoue, A

    2011-03-04

    Owing to their low elastic moduli, high specific strength and excellent processing characteristics in the undercooled liquid state, metallic glasses are promising materials for applications in micromechanical systems. With miniaturization of metallic mechanical components down to the micrometer scale, the importance of a native oxide layer on a glass surface is increasing. In this work we use TEM and XPS to characterize the structure and properties of the native oxide layer grown on Ni(62)Nb(38) metallic glass and their evolution after annealing in air. The thickness of the oxide layer almost doubled after annealing. In both cases the oxide layer is amorphous and consists predominantly of Nb oxide. We investigate the friction behavior at low loads and in ambient conditions (i.e. at T = 295 K and 60% air humidity) of both as-cast and annealed samples by friction force microscopy. After annealing the friction coefficient is found to have significantly increased. We attribute this effect to the increase of the mechanical stability of the oxide layer upon annealing.

  14. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Ri [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Seo, Hyo Ree; Lee, Boeun; Cho, Byung Won [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Kwan-Young [Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Oh, Si Hyoung, E-mail: sho74@kist.re.kr [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2017-01-15

    Graphical abstract: Strategically-designed spinel-structured nano-scale surface layer, LiM{sub x}Mn{sup IV}{sub 1−x}O{sub 4}, featuring a high Li{sup +} ion conductivity and a good chemical stability was applied on Al-doped LiMn{sub 2}O{sub 4} spinel for the drastic improvement of the electrochemical performance at the elevated temperature as a promising cathode material for lithium rechargeable batteries. - Highlights: • Spinel-structured surface layer with a high Li-ion conductivity and a good chemical stability was prepared. • Simple wet process was developed to apply nano-scale surface layer on aluminum doped lithium manganese oxide spinel. • The properties of nano-scale surface layer were characterized by analytical tools including GITT, HR-TEM and XAS. • Materials with surface coating layer exhibit an excellent electrochemical performance at the elevated temperature. - Abstract: Li-ion conducting spinel-structured oxide layer with a manganese oxidation state close to being tetravalent was prepared on aluminum-doped lithium manganese oxide spinel for improving the electrochemical performances at the elevated temperatures. This nanoscale surface layer provides a good ionic conduction path for lithium ion transport to the core and also serves as an excellent chemical barrier for protecting the high-capacity core material from manganese dissolution into the electrolyte. In this work, a simple wet process was employed to prepare thin LiAlMnO{sub 4} and LiMg{sub 0.5}Mn{sub 1.5}O{sub 4} layers on the surface of LiAl{sub 0.1}Mn{sub 1.9}O{sub 4}. X-ray absorption studies revealed an oxidation state close to tetravalent manganese on the surface layer of coated materials. Materials with these surface coating layers exhibited excellent capacity retentions superior to the bare material, without undermining the lithium ion transport characteristics and the high rate performances.

  15. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    OpenAIRE

    Carvalho Luisa; Pacquentin Wilfried; Tabarant Michel; Maskrot Hicham; Semerok Alexandre

    2017-01-01

    The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless st...

  16. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  17. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.; Trapeznikova, I. N.; Bobyl, A. V.; Terukova, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.

  18. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won [Department of Materials Science and Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of); Yang, Hae Woong [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ko, Young Gun, E-mail: younggun@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shin, Dong Hyuk, E-mail: dhshin@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of)

    2015-08-30

    Highlights: • Ag nanoparticles were embedded into the oxide surface without any compositional changes. • Oxide layer from the electrolyte with 0.1 g/l Ag nanoparticles could disinfect all bacteria. • With increasing Ag nanoparticles, bone-forming ability and cell proliferation rate decrease. - Abstract: This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm{sup 2} for 300 s in potassium pyrophosphate (K{sub 4}P{sub 2}O{sub 7}) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity.

  19. Growth behavior of surface oxide layer on SUS316L stainless steel at the early stage of exposure to 288degC water

    International Nuclear Information System (INIS)

    Soma, Yasutaka; Kato, Chiaki; Yamamoto, Masahiro

    2012-01-01

    Surface oxide layer on SUS316L stainless steels exposed to 288degC pure water with 2 ppm dissolved oxygen (DO) for 1-100 h were analyzed using Focused Ion Beam (FIB) and Scanning Transmission Electron Microscope (STEM) technique to understand the early stage of surface oxide layer formation. In order to analyze the multi layered surface oxide, the interfaces between the outer and the inner oxide layers and that between the inner oxide layer and SUS316L substrate were determined from Energy Dispersive X-ray Spectroscopy (EDX) line profiles. At 1 h exposure, double oxide layer which is composed of compact inner oxide layer and outer oxide layer with Fe-rich and Ni-rich oxide particles was formed. At the outermost region of the SUS316L substrate, Ni and Cr were enriched. At 100 h exposure, growth of the inner oxide layer was suppressed and the Ni and Cr enriched region at the alloy substrate was preserved underneath the Ni-rich outer oxide particles. At 1 h exposure, most of the outer oxide particles were composed of Fe-rich ones, at 10 h exposure, another Ni-rich outer oxide particles were nucleated and grew faster than Fe-rich ones. Consequently, a part of pre-formed Fe-rich outer oxide particles were covered with Ni-rich ones. (author)

  20. Aging promotes todorokite formation from layered manganese oxide at near-surface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Haojie [Chinese Academy of Sciences, Xiamen (China). Key Lab. of Urban Environment and Health; Huazhong Agricultural Univ., Ministry of Agriculture, Wuhan (China). Key Lab. of Subtropical Agricultural Resources and Environment; Liu, Fan; Feng, Xionghan; Tan, Wenfeng [Huazhong Agricultural Univ., Ministry of Agriculture, Wuhan (China). Key Lab. of Subtropical Agricultural Resources and Environment; Wang, Ming Kuang [National Taiwan Univ., Taipei (China). Dept. of Agricultural Chemistry

    2010-12-15

    atmospheric pressure, and it is more suitable to explore the origination of natural todorokite in Earth surface environments using aged layered manganese oxides. (orig.)

  1. Fabrication and characterization of iron oxide dextran composite layers

    Science.gov (United States)

    Iconaru, S. L.; Predoi, S. A.; Beuran, M.; Ciobanu, C. S.; Trusca, R.; Ghita, R.; Negoi, I.; Teleanu, G.; Turculet, S. C.; Matei, M.; Badea, Monica; Prodan, A. M.

    2018-02-01

    Super paramagnetic iron oxide nanoparticles such as maghemite have been shown to exhibit antimicrobial properties [1-5]. Moreover, the iron oxide nanoparticles have been proposed as a potential magnetically controllable antimicrobial agent which could be directed to a specific infection [3-5]. The present research has focused on studies of the surface and structure of iron oxide dextran (D-IO) composite layers surface and structure. These composite layers were deposited on Si substrates. The structure of iron oxide dextran composite layers was investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) while the surface morphology was evaluated by Scanning Electron Microscopy (SEM). The structural characterizations of the iron oxide dextran composite layers revealed the basic constituents of both iron and dextran structure. Furthermore, the in vitro evaluation of the antifungal effect of the complex layers, which have been shown revealed to be active against C. albicans cells at distinct intervals of time, is exhibited. Our research came to confirm the fungicidal effect of iron oxide dextran composite layers. Also, our results suggest that iron oxide dextran surface may be used for medical treatment of biofilm associated Candida infections.

  2. Oxide layers for silicon detector protection against enviroment effects

    International Nuclear Information System (INIS)

    Bel'tsazh, E.; Brylovska, I.; Valerian, M.

    1986-01-01

    It is shown that for protection of silicon detectors of nuclear radiations oxide layers could be used. The layers are produced by electrochemical oxidation of silicon surface with the following low-temperature annealing. These layers have characteristics similar to those for oxide layers produced by treatment of silicon samples at elevated temperature in oxygen flow. To determine properties of oxide layers produced by electrochemical oxidation the α-particle back-scattering method and the method of volt-farad characteristics were used. Protection properties of such layers were checked on the surface-barrier detectors. It was shown that protection properties of such detectors were conserved during long storage at room temperature and during their storage under wet-bulb temperature. Detectors without protection layer have worsened their characteristics

  3. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  4. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    International Nuclear Information System (INIS)

    Morgado, Jorge; Barbagallo, Nunzio; Charas, Ana; Matos, Manuel; Alcacer, Luis; Cacialli, Franco

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide

  5. Boosting water oxidation layer-by-layer.

    Science.gov (United States)

    Hidalgo-Acosta, Jonnathan C; Scanlon, Micheál D; Méndez, Manuel A; Amstutz, Véronique; Vrubel, Heron; Opallo, Marcin; Girault, Hubert H

    2016-04-07

    Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and sizes. UV/vis spectroscopic and spectro-electrochemical studies confirmed that the total surface coverage and electrochemically addressable surface coverage of IrO2 NPs increased linearly with the number of bilayers up to 10 bilayers. The voltammetry of the modified electrode was that of hydrous iridium oxide films (HIROFs) with an observed super-Nernstian pH response of the Ir(III)/Ir(IV) and Ir(IV)-Ir(IV)/Ir(IV)-Ir(V) redox transitions and Nernstian shift of the oxygen evolution onset potential. The overpotential of the oxygen evolution reaction (OER) was essentially pH independent, varying only from 0.22 V to 0.28 V (at a current density of 0.1 mA cm(-2)), moving from acidic to alkaline conditions. Bulk electrolysis experiments revealed that the IrO2/PDDA films were stable and adherent under acidic and neutral conditions but degraded in alkaline solutions. Oxygen was evolved with Faradaic efficiencies approaching 100% under acidic (pH 1) and neutral (pH 7) conditions, and 88% in alkaline solutions (pH 13). This layer-by-layer approach forms the basis of future large-scale OER electrode development using ink-jet printing technology.

  6. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  7. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croue, Jean-Philippe

    2016-01-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  8. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-04-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  9. Oxidation of scandium thin films on tungsten surface

    International Nuclear Information System (INIS)

    Gorodetskij, D.A.; Martynyuk, A.V.

    1988-01-01

    Presence of Sc on the surface of W in amounts larger than a monolayer coverage leads to a decrease of the work function at the initial oxidation stage, which is attributed to oxygen implantation into the surface layer of the metal. A subsequent oxidation is followed by the formation on the surface of a thin oxide layer and an increase of the work function. An increase of the amount of Sc deposited on the surface before the oxidation decreases the work function of the obtained oxide from 5.8 (clean W surface) down to 3.3 eV (thick Sc layer on W)

  10. Nanoscale surface modification of Li-rich layered oxides for high-capacity cathodes in Li-ion batteries

    Science.gov (United States)

    Lan, Xiwei; Xin, Yue; Wang, Libin; Hu, Xianluo

    2018-03-01

    Li-rich layered oxides (LLOs) have been developed as a high-capacity cathode material for Li-ion batteries, but the structural complexity and unique initial charging behavior lead to several problems including large initial capacity loss, capacity and voltage fading, poor cyclability, and inferior rate capability. Since the surface conditions are critical to electrochemical performance and the drawbacks, nanoscale surface modification for improving LLO's properties is a general strategy. This review mainly summarizes the surface modification of LLOs and classifies them into three types of surface pre-treatment, surface gradient doping, and surface coating. Surface pre-treatment usually introduces removal of Li2O for lower irreversible capacity while surface doping is aimed to stabilize the structure during electrochemical cycling. Surface coating layers with different properties, protective layers to suppress the interface side reaction, coating layers related to structural transformation, and electronic/ionic conductive layers for better rate capability, can avoid the shortcomings of LLOs. In addition to surface modification for performance enhancement, other strategies can also be investigated to achieve high-performance LLO-based cathode materials.

  11. Determination of the composition of surface optical layers prepared with the use of rare earth and zirconium oxides

    International Nuclear Information System (INIS)

    Mishchenko, V.T.; Shilova, L.P.; Shkol'nikova, T.M.

    1991-01-01

    Simple titrimetric and gravimetric methods for determination of optical oxide layers (rare earth and zirconium oxides), sputtered on glass or quartz sublayer, have been developed. The minimal determined oxide mass in surface layers is equal to 0.01 mg in titrimetric determination and 0.1 mg - in gravimetric one. It is shown that composition of films and pellets, used for film sputtering, is identical

  12. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Youngseok Lee

    2012-01-01

    Full Text Available It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0 which improves the efficiency of HIT solar cell. The ultrathin thermal passivation silicon oxide (SiO2 layer was deposited by RTO system in the temperature range 500–950°C for 2 to 6 minutes. The thickness of the silicon oxide layer was affected by RTO annealing temperature and treatment time. The best value of surface recombination velocity was recorded for the sample treated at a temperature of 850°C for 6 minutes at O2 flow rate of 3 Lpm. A surface recombination velocity below 25 cm/s was obtained for the silicon oxide layer of 4 nm thickness. This ultrathin SiO2 layer was employed for the fabrication of HIT solar cell structure instead of a-Si:H, (i layer and the passivation and tunneling effects of the silicon oxide layer were exploited. The photocurrent was decreased with the increase of illumination intensity and SiO2 thickness.

  13. Ni And Co Segregations On Selective Surface Facets And Rational Design Of Layered Lithium Transition-metal Oxide Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Zheng, Jiaxin; Wang, Zhiguo; Teng, Gaofeng; Kuppan, Saravanan; Xiao, Jie; Chen, Guoying; Zhang, Jiguang; Wang, Chong M.; Pan, Feng

    2016-05-05

    The chemical processes occurring on the surface of cathode materials during battery cycling play a crucial role in determining battery’s performance. However, our understanding on such surface chemistry is far from clear due to the complexity of redox chemistry during battery charge/discharge. In this work, through intensive aberration corrected STEM investigation on eight layered oxide cathode materials, we report two important findings on the pristine oxides. First, Ni and Co show strong plane selectivity when building up their respective surface segregation layers (SSL). Specifically, Ni-SSL is exclusively developed on (200)m facet in Li-Mn-rich oxides (monoclinic C2/m symmetry) and (012)h facet in Mn-Ni equally rich oxides (hexagonal R-3m symmetry), while Co-SSL has a strong preference to (20-2)m plane with minimal Co-SSL also developed on some other planes in LMR cathodes. Structurally, Ni-SSLs tend to form spinel-like lattice while Co-SSLs are in a rock-salt-like structure. Secondly, by increasing Ni concentration in these layered oxides, Ni and Co SSLs can be suppressed and even eliminated. Our findings indicate that Ni and Co SSLs are tunable through controlling particle morphology and oxide composition, which opens up a new way for future rational design and synthesis of cathode materials.

  14. Surface and sub-surface thermal oxidation of thin ruthenium films

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kokke, S.; Zoethout, E. [FOM Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  15. Ellipsometry measurements of thickness of oxide and water layers on spherical and flat silicon surfaces

    International Nuclear Information System (INIS)

    Kenny, M.J.; Netterfield, R.; Wielunski, L.S.

    1998-01-01

    Full text: Ellipsometry has been used to measure the thickness of oxide layers on single crystal silicon surfaces, both flat and spherical and also to measure the extent of adsorption of moisture on the surface as a function of partial water vapour pressure. The measurements form part of an international collaborative project to make a precise determination of the Avogadro constant (ΔN A /N A -8 ) which will then be used to obtain an absolute definition of the kilogram, rather than one in terms of an artefact. Typically the native oxide layer on a cleaned silicon wafer is about 2 nm thick. On a polished sphere this oxide layer is typically 8 to 10 nm thick, the increased thickness being attributed to parameters related to the polishing process. Ellipsometry measurements on an 89 mm diameter polished silicon sphere at both VUW and CSIRO indicated a SiO 2 layer at 7 to 10 nm thick. It was observed that this thickness varied regularly. The crystal orientation of the sphere was determined using electron patterns generated from an electron microscope and the oxide layer was then measured through 180 arcs of great circles along (110) and (100) planes. It was observed that the thickness varied systematically with orientation. The minimum thickness was 7.4 nm at the axis (softest direction in silicon) and the greatest thickness was 9.5 nm at the axis (hardest direction in silicon). This is similar to an orientation dependent cubic pattern which has been observed to be superimposed on polished silicon spheres. At VUW, the sphere was placed in an evacuated bell jar and the ellipsometry signal was observed as the water vapour pressure was progressively increased up to saturation. The amount of water vapour adsorbed at saturation was one or two monolayers, indicating that the sphere does not wet

  16. Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

    Directory of Open Access Journals (Sweden)

    Yang-Il Jung

    2018-03-01

    Full Text Available An oxide-dispersion-strengthened (ODS layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide (Y2O3–coated Zircaloy-4 tube to induce the penetration of Y2O3 particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at 380°C, and from 385 to 470 MPa at 500°C. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to 830°C at a heating rate of 5°C/s and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties. Keywords: Laser Surface Treatment, Microstructure, Oxide Dispersion Strengthened Alloy, Tensile Strength, Zirconium Alloy

  17. Natively textured surface hydrogenated gallium-doped zinc oxide transparent conductive thin films with buffer layers for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin-liang, E-mail: cxlruzhou@163.com; Wang, Fei; Geng, Xin-hua; Huang, Qian; Zhao, Ying; Zhang, Xiao-dan

    2013-09-02

    Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. These natively textured HGZO thin films exhibit rough pyramid-like textured surface, high optical transmittances in the visible and near infrared region and excellent electrical properties. The experiment results indicate that tungsten-doped indium oxide (In{sub 2}O{sub 3}:W, IWO) buffer layers can effectively improve the surface roughness and enhance the light scattering ability of HGZO thin films. The root-mean-square roughness of HGZO, IWO (10 nm)/HGZO and IWO (30 nm)/HGZO thin films are 28, 44 and 47 nm, respectively. The haze values at the wavelength of 550 nm increase from 7.0% of HGZO thin film without buffer layer to 18.37% of IWO (10 nm)/HGZO thin film. The optimized IWO (10 nm)/HGZO exhibits a high optical transmittance of 82.18% in the visible and near infrared region (λ ∼ 400–1100 nm) and excellent electrical properties with a relatively low sheet resistance of 3.6 Ω/□ and the resistivity of 6.21 × 10{sup −4} Ωcm. - Highlights: • Textured hydrogenated gallium-doped zinc oxide (HGZO) films were developed. • Tungsten-doped indium oxide (IWO) buffer layers were applied for the HGZO films. • Light-scattering ability of the HGZO films can be improved through buffer layers. • Low sheet resistance and high haze were obtained for the IWO(10 nm)/HGZO film. • The IWO/HGZO films are promising transparent conductive layers for solar cells.

  18. Investigation of optical and magneto-optical constants and their surface-oxide-layer effects of single-crystalline GdCo2

    International Nuclear Information System (INIS)

    Lee, S.J.; Kim, K.J.; Canfield, P.C.; Lynch, D.W.

    2000-01-01

    We investigated the optical and magneto-optical properties of single-crystalline GdCo 2 by spectroscopic ellipsometry (SE) and magneto-optical Kerr spectrometry (MOKS). The diagonal component of the optical conductivity tensor of the compound was obtained by SE in the 1.5-5.5 eV region and the off-diagonal component by using the measured magneto-optical parameters (Kerr rotation and ellipticity) by MOKS and the SE data. The measured spectra were corrected for the surface oxide layer by employing a three-phase model treating the oxide layer as nonmagnetic with constant refractive index. The magnitude of the diagonal component becomes enhanced and the optical transition structures of the off-diagonal component become more pronounced by the oxide correction. The overall optical and magneto-optical data are discussed in terms of the calculated spin-polarized band structure and optical absorption of the compound and the effect of the surface oxide layer

  19. Oxidation of Ethylene Carbonate on Li Metal Oxide Surfaces

    DEFF Research Database (Denmark)

    Østergaard, Thomas M.; Giordano, Livia; Castelli, Ivano Eligio

    2018-01-01

    Understanding the reactivity of the cathode surface is of key importance to the development of batteries. Here, density functional theory is applied to investigate the oxidative decomposition of the electrolyte component, ethylene carbonate (EC), on layered LixMO(2) oxide surfaces. We compare...

  20. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    OpenAIRE

    Lee, Youngseok; Oh, Woongkyo; Dao, Vinh Ai; Hussain, Shahzada Qamar; Yi, Junsin

    2012-01-01

    It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT) solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO) process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0) which improves the efficie...

  1. Method of forming buried oxide layers in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  2. High temperature steam oxidation of Al3Ti-based alloys for the oxidation-resistant surface layer on Zr fuel claddings

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Kim, Il-Hyun; Jung, Yang-Il; Kim, Hyun-Gil; Park, Dong-Jun; Choi, Byung-Kwon

    2013-01-01

    We investigated the feasibility to apply Al 3 Ti-based alloys as the surface layer for improving the oxidation resistance of Zr fuel claddings under accident conditions. Two types of Al 3 Ti-based alloys with the compositions of Al–25Ti–10Cr and Al–21Ti–23Cr in atomic percent were prepared by arc-melting followed by homogenization annealing at 1423 K for 48 h. Al–25Ti–10Cr alloy showed an L1 2 quasi-single phase microstructure with a lot of needle-shaped minor phase and pores. Al–21Ti–23Cr alloy consisted of an L1 2 matrix and Cr 2 Al as the second phase. Al 3 Ti-based alloys showed an extremely low oxidation rate in a 1473 K steam for up to 7200 s when compared to Zircaloy-4. Both alloys exhibited almost the same oxidation rate in the early stage of oxidation, but Al–25Ti–10Cr showed a little lower oxidation rate after 4000 s than Al–21Ti–23Cr. The difference in the oxidation rate between two types of Al 3 Ti-based alloys was too marginal to distinguish the oxidation behavior of each alloy. The resultant oxide exhibited almost the same characteristics in both alloys even though the microstructure was explicitly distinguished from each other. The crystal structure of the oxide formed up to 2000 s was identified as Al 2 O 3 in both alloys. The oxide morphology consisted of columnar grains whose length was almost identical to the average oxide thickness. On the basis of the results obtained, it is considered that Al 3 Ti-based alloy is one of the promising candidates for the oxidation-resistant surface layer on Zr fuel claddings

  3. Mg-Fe-mixed oxides derived from layered double hydroxides: A study of the surface properties

    Directory of Open Access Journals (Sweden)

    Marinković-Nedučin Radmila P.

    2011-01-01

    Full Text Available The influence of surface properties on the selectivity of the synthesized catalysts was studied, considering that their selectivity towards particular hydrocarbons is crucial for their overall activity in the chosen Fischer- -Tropsch reaction. Magnesium- and iron-containing layered double hydroxides (LDH, with the general formula: [Mg1-xFex(OH2](CO3x/2?mH2O, x = = n(Fe/(n(Mg+n(Fe, synthesized with different Mg/Fe ratio and their thermally derived mixed oxides were investigated. Magnesium was chosen because of its basic properties, whereas iron was selected due to its well-known high Fischer-Tropsch activity, redox properties and the ability to form specific active sites in the layered LDH structure required for catalytic application. The thermally less stable multiphase system (synthesized outside the optimal single LDH phase range with additional Fe-phase, having a lower content of surface acid and base active sites, a lower surface area and smaller fraction of smaller mesopores, showed higher selectivity in the Fischer-Tropsch reaction. The results of this study imply that the metastability of derived multiphase oxides structure has a greater influence on the formation of specific catalyst surface sites than other investigated surface properties.

  4. Secondary electron emission influenced by oxidation on the aluminum surface: the roles of the chemisorbed oxygen and the oxide layer

    Science.gov (United States)

    Li, Jiangtao; Hoekstra, Bart; Wang, Zhen-Bin; Qiu, Jie; Pu, Yi-Kang

    2018-04-01

    A relationship between the apparent secondary electron yield ({γ }{{se}}) and the oxygen coverage/oxide layer thickness on an aluminum cathode is obtained in an experiment under a controlled environment. The apparent secondary electron yield ({γ }{{se}}) is deduced from the breakdown voltage between two parallel plate electrodes in a 360 mTorr argon environment using a simple Townsend breakdown model with the assumption that the variation of the apparent secondary electron yield is dominated by the variation of the argon ion induced processes. The oxygen coverage/oxide layer thickness on the aluminum cathode is measured by a semi in situ x-ray photoemission spectroscopy equipment which is directly attached to the discharge chamber. It is found that three phases exist: (1) in the monomonolayer regime, as the oxygen coverage increases from 0 to 0.3, {γ }{{se}} decreases by nearly 40 % , (2) as the oxygen coverage increases from 0.3 to 1, {γ }{{se}} keeps nearly constant, (3) as the oxide layer thickness increases from about 0.3 nm to about 1.1 nm, {γ }{{se}} increases by 150 % . We propose that, in the submonolayer regime, the chemisorbed oxygen on the aluminum surface causes the decrease of {γ }{{se}} by creating a local potential barrier, which reduces the Auger neutralization rate and the energy gained by the Auger electrons. In the multilayer regime, as the oxide layer grows in thickness, there are three proposed mechanisms which cause the increase of {γ }{{se}}: (1) the work function decreases; (2) resonance neutralization and Auger de-excitation may exist. This is served as another channel for secondary electron production; (3) the kinetic energy of Auger electrons is increased on average, leading to a higher probability for electrons to overcome the surface potential barrier.

  5. Study on thermo-oxide layers of uranium-niobium alloy

    International Nuclear Information System (INIS)

    Luo Lizhu; Yang Jiangrong; Zhou Ping

    2010-01-01

    Surface oxides structure of uranium-niobium alloys which were annealed under different temperatures (room temperature, 100, 200, 300 degree C, respectively)in air were studied by X-ray photoelectron spectroscopy (XPS) analysis and depth profile. Thickness of thermo-oxide layers enhance with the increasing oxide temperature, and obvious changes to oxides structure are observed. Under different delt temperatures, Nb 2 O 5 are detected on the initial surface of U-Nb alloys, and a layer of NbO mixed with some NbO x (0 2 O 5 and Nb metal. Dealing samples in air from room temperature to 200 degree C, non-stoichiometric UO 2+x (UO 2 + interstitial oxygen, P-type semiconductor) are found on initial surface of U-Nb alloys, which has 0.7 eV shift to lower binding energy of U 4f 7/2 characteristics comparing to that of UO 2 . Under room temperature, UO 2 are commonly detected in the oxides layer, while under temperature of 100 and 200 degree C, some P-type UO 2+x are found in the oxide layers,which has a satellite at binding energy of 396.6 eV. When annealing at 300 degree C, higher valence oxides, such as U 3 O 8 or UO x (2 5/2 and U 4f 7/2 peaks are 392.2 and 381.8 eV, respectively. UO 2 mixed uranium metal are the main compositions in the oxide layers. From the results, influence of temperature to oxidation of uranium is more visible than to niobium in uranium-niobium alloys. (authors)

  6. Polyethylene imine/graphene oxide layer-by-layer surface functionalization for significantly improved limit of detection and binding kinetics of immunoassays on acrylate surfaces.

    Science.gov (United States)

    Miyazaki, Celina M; Mishra, Rohit; Kinahan, David J; Ferreira, Marystela; Ducrée, Jens

    2017-10-01

    Antibody immobilization on polymeric substrates is a key manufacturing step for microfluidic devices that implement sample-to-answer automation of immunoassays. In this work, a simple and versatile method to bio-functionalize poly(methylmethacrylate) (PMMA), a common material of such "Lab-on-a-Chip" systems, is proposed; using the Layer-by-Layer (LbL) technique, we assemble nanostructured thin films of poly(ethylene imine) (PEI) and graphene oxide (GO). The wettability of PMMA surfaces was significantly augmented by the surface treatment with (PEI/GO) 5 film, with an 81% reduction of the contact angle, while the surface roughness increased by 600%, thus clearly enhancing wettability and antibody binding capacity. When applied to enzyme-linked immunosorbent assays (ELISAs), the limit of detection of PMMA surface was notably improved from 340pgmL -1 on commercial grade polystyrene (PS) and 230pgmL -1 on plain PMMA surfaces to 130pgmL -1 on (PEI/GO) 5 treated PMMA. Furthermore, the accelerated antibody adsorption kinetics on the LbL films of GO allowed to substantially shorten incubation times, e.g. for anti-rat IgG adsorption from 2h down to 15min on conventional and treated surfaces, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Antończak, Arkadiusz J., E-mail: arkadiusz.antonczak@pwr.edu.pl [Laser and Fiber Electronics Group, Faculty of Electrical Engineering, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Skowroński, Łukasz; Trzcinski, Marek [Institute of Mathematics and Physics, University of Technology and Life Sciences, Kaliskiego 7, 85-789 Bydgoszcz (Poland); Kinzhybalo, Vasyl V. [Wroclaw Research Centre EIT+, Stabłowicka 147, 54-066 Wrocław (Poland); Institute of Low Temperature and Structure Research, Okólna 2, 50-422 Wrocław (Poland); Łazarek, Łukasz K.; Abramski, Krzysztof M. [Laser and Fiber Electronics Group, Faculty of Electrical Engineering, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-01-15

    Highlights: • Chemical structure of the films induced by laser on titanium surface was analyzed. • It was shown that outer layer of this films consist of oxides doped with nitrogen. • The optical properties of the laser-induced oxynitride films were characterized. • We found that the films demonstrated significant absorption in the band of 300–580 nm. • The morphology of the layers as a function of the laser fluence was investigated. - Abstract: This paper presents the results of the analysis of the complex chemical structure of the layers made on titanium in the process of the heating of its surfaces in an atmospheric environment, by irradiating samples with a nanosecond-pulsed laser. The study was carried out for electroplated, high purity, polycrystalline titanium substrates using a Yb:glass fiber laser. All measurements were made for samples irradiated in a broad range of accumulated fluence, below the ablation threshold. It has been determined how the complex index of refraction of both the oxynitride layers and the substrate vary as a function of accumulated laser fluence. It was also shown that the top layer of the film produced on titanium, which is transparent, is not a pure TiO{sub 2} as had been supposed before. The XPS and XRD analyses confirmed the presence of nitrogen compounds and the existence of nonstoichiometric compounds. By sputtering of the sample's surface using an Ar{sup +} ion gun, the changes in the concentration of individual elements as a function of the layer's cross-section were determined. Lastly, an analysis of the surface morphology has also been carried out, explaining why the layers crack and exfoliate from their substrate.

  8. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  9. Modification on surface oxide layer structure and surface morphology of niobium by gas cluster ion beam treatments

    International Nuclear Information System (INIS)

    Wu, A.T.; Swenson, D.R.; Insepov, Z.

    2010-01-01

    Recently, it was demonstrated that significant reductions in field emission on Nb surfaces could be achieved by means of a new surface treatment technique called gas cluster ion beam (GCIB). Further study as shown in this paper revealed that GCIB treatments could modify surface irregularities and remove surface asperities leading to a smoother surface finish as demonstrated through measurements using a 3D profilometer, an atomic force microscope, and a scanning electron microscope. These experimental observations were supported by computer simulation via atomistic molecular dynamics and a phenomenological surface dynamics. Measurements employing a secondary ion mass spectrometry found that GCIB could also alter Nb surface oxide layer structure. Possible implications of the experimental results on the performance of Nb superconducting radio frequency cavities treated by GCIB will be discussed. First experimental results on Nb single cell superconducting radio frequency cavities treated by GCIB will be reported.

  10. Atomic and molecular layer deposition for surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Johansson, Leena-Sisko, E-mail: leena-sisko.johansson@aalto.fi [Aalto University, School of Chemical Technology, Department of Forest Products Technology, PO Box 16100, FI‐00076 AALTO (Finland); Koskinen, Jorma T.; Harlin, Ali [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland)

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  11. Interface Controlled Oxidation States in Layered Cobalt Oxide Nanoislands on Gold

    DEFF Research Database (Denmark)

    Walton, Alexander; Fester, Jakob; Bajdich, Michal

    2015-01-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER; half of the catalytic “water splitting” reaction), particularly when promoted with gold. However, the surface chemistry of cobalt oxides and in particular the nature of the synergistic effect...

  12. Change of the work function and potential barrier transparency of W(100) and GaAs(110) single crystals during removing the inherent surface oxide layer

    International Nuclear Information System (INIS)

    Asalkhanov, Yu.I.; Saneev, Eh.L.

    2002-01-01

    Changes of current voltage characteristics of slow monoenergetic electron beam through the surfaces of W(100) and GaAs(100) single crystals have been measured in the process of surface oxide layers elimination. It is shown that work function is decreased and transparency coefficient of surface potential barrier is increased under increasing the temperature of vacuum annealing. Peculiarities of surface potential change under oxide layer elimination in metals and semiconductors are discussed [ru

  13. Surface oxide formation during corona discharge treatment of AA 1050 aluminium surfaces

    DEFF Research Database (Denmark)

    Minzari, Daniel; Møller, Per; Kingshott, Peter

    2008-01-01

    process modifies aluminium AA 1050 surface, the oxide growth and resulting corrosion properties. The corona treatment is carried out in atmospheric air. Treated surfaces are characterized using XPS, SEM/EDS, and FIB-FESEM and results suggest that an oxide layer is grown, consisting of mixture of oxide...

  14. Surface characterization of low-temperature grown yttrium oxide

    Science.gov (United States)

    Krawczyk, Mirosław; Lisowski, Wojciech; Pisarek, Marcin; Nikiforow, Kostiantyn; Jablonski, Aleksander

    2018-04-01

    The step-by-step growth of yttrium oxide layer was controlled in situ using X-ray photoelectron spectroscopy (XPS). The O/Y atomic concentration (AC) ratio in the surface layer of finally oxidized Y substrate was found to be equal to 1.48. The as-grown yttrium oxide layers were then analyzed ex situ using combination of Auger electron spectroscopy (AES), elastic-peak electron spectroscopy (EPES) and scanning electron microscopy (SEM) in order to characterize their surface chemical composition, electron transport phenomena and surface morphology. Prior to EPES measurements, the Y oxide surface was pre-sputtered by 3 kV argon ions, and the resulting AES-derived composition was found to be Y0.383O0.465C0.152 (O/Y AC ratio of 1.21). The SEM images revealed different surface morphology of sample before and after Ar sputtering. The oxide precipitates were observed on the top of un-sputtered Y oxide layer, whereas the oxide growth at the Ar ion-sputtered surface proceeded along defects lines normal to the layer plane. The inelastic mean free path (IMFP) characterizing electron transport was evaluated as a function of energy in the range of 0.5-2 keV from the EPES method. Two reference materials (Ni and Au) were used in these measurements. Experimental IMFPs determined for the Y0.383O0.465C0.152 and Y2O3 surface compositions, λ, were uncorrected for surface excitations and approximated by the simple function λ = kEp at electron energies E between 500 eV and 2000 eV, where k and p were fitted parameters. These values were also compared with IMFPs resulting from the TPP-2 M predictive equation for both oxide compositions. The fitted functions were found to be reasonably consistent with the measured and predicted IMFPs. In both cases, the average value of the mean percentage deviation from the fits varied between 5% and 37%. The IMFPs measured for Y0.383O0.465C0.152 surface composition were found to be similar to the IMFPs for Y2O3.

  15. CHARACTERIZING SURFACE LAYERS IN NITINOL USING X-RAY PHOTOELECTRON SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Christopfel, R.; Mehta, A.

    2008-01-01

    Nitinol is a shape memory alloy whose properties allow for large reversible deformations and a return to its original geometry. This nickel-titanium (NiTi) alloy has become a material used widely in the biomedical fi eld as a stent to open up collapsed arteries. Both ambient and biological conditions cause surface oxidation in these devices which in turn change its biocompatibility. The thickness of oxidized layers can cause fractures in the material if too large and can allow for penetration if too thin. Depending on the type and abundance of the chemical species on or near the surface, highly toxic metal ions can leak into the body causing cell damage or even cell death. Thus, biocompatibility of such devices is crucial. By using highly surface sensitive x-ray photoelectron spectroscopy to probe the surface of these structures, it is possible to decipher both layer composition and layer thickness. Two samples, both of which were mechanically polished, were investigated. Of the two samples, one was then exposed to a phosphate buffered saline (PBS) solution to mimic the chemical properties of blood, while the other remained unexposed. Although both samples were found to have oxide layers of appropriate thickness (on the order of a few nm), it was found that the sample exposed to the saline solution had a slightly thicker oxide layer and more signifi cantly, a phosphate layer very near the surface suggesting toxic metal components are well contained within the sample. These are considerable indications of a biocompatible device.

  16. Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment.

    Science.gov (United States)

    Boinovich, Ludmila B; Emelyanenko, Alexandre M; Modestov, Alexander D; Domantovsky, Alexandr G; Emelyanenko, Kirill A

    2015-09-02

    We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed.

  17. Effect of CO on surface oxidation of uranium metal

    International Nuclear Information System (INIS)

    Wang, X.; Fu, Y.; Xie, R.

    1997-01-01

    The surface reactions of uranium metal with carbon monoxide at 25 and 200 deg C have been studied by X-ray photoelectron spectroscopy (XPS);respectively. Adsorption of carbon monoxide on the surface layer of uranium metal leads to partial reduction of surface oxide and results in U4f photoelectron peak shifting to the lower binding energy. The content of oxygen in the surface oxide is decreased and O1s/O4f ratio decreases with increasing the exposure of carbon monoxide. The investigation indicates the surface layer of uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide. (author)

  18. Layer-by-layer deposition of zirconium oxide films from aqueous solutions for friction reduction in silicon-based microelectromechanical system devices

    International Nuclear Information System (INIS)

    Liu Junfu; Nistorica, Corina; Gory, Igor; Skidmore, George; Mantiziba, Fadziso M.; Gnade, Bruce E.

    2005-01-01

    This work reports layer-by-layer deposition of zirconium oxide on a Si surface from aqueous solutions using the successive ionic layer adsorption and reaction technique. The process consists of repeated cycles of adsorption of zirconium precursors, water rinse, and hydrolysis. The film composition was determined by X-ray photoelectron spectroscopy. The film thickness was determined by Rutherford backscattering spectrometry, by measuring the Zr atom concentration. The average deposition rate from a 0.1 M Zr(SO 4 ) 2 solution on a SiO 2 /Si surface is 0.62 nm per cycle. Increasing the acidity of the zirconium precursor solution inhibits the deposition of the zirconium oxide film. Atomic force microscopy shows that the zirconium oxide film consists of nanoparticles of 10-50 nm in the lateral dimension. The surface roughness increased with increasing number of deposition cycles. Friction measurements made with a microelectromechanical system device reveal a reduction of 45% in the friction coefficient of zirconium oxide-coated surfaces vs. uncoated surfaces in air

  19. Titanium modified with layer-by-layer sol-gel tantalum oxide and an organodiphosphonic acid: a coating for hydroxyapatite growth.

    Science.gov (United States)

    Arnould, C; Volcke, C; Lamarque, C; Thiry, P A; Delhalle, J; Mekhalif, Z

    2009-08-15

    Titanium and its alloys are widely used in surgical implants due to their appropriate properties like corrosion resistance, biocompatibility, and load bearing. Unfortunately when metals are used for orthopedic and dental implants there is the possibility of loosening over a long period of time. Surface modification is a good way to counter this problem. A thin tantalum oxide layer obtained by layer-by-layer (LBL) sol-gel deposition on top of a titanium surface is expected to improve biocorrosion resistance in the body fluid, biocompatibility, and radio-opacity. This elaboration step is followed by a modification of the tantalum oxide surface with an organodiphosphonic acid self-assembled monolayer, capable of chemically binding to the oxide surface, and also improving hydroxyapatite growth. The different steps of this proposed process are characterized by surfaces techniques like contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM).

  20. Surface and sub-surface thermal oxidation of ruthenium thin films

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Zoethout, E.; Yakshin, Andrey; Bijkerk, Frederik

    2014-01-01

    For next generation Extreme UV photolithography, multilayer coatings may require protective capping layers against surface contamination. Ruthenium, as a low-oxidation metal, is often used as a reference material. The oxidation behaviour of Ru thin films has been studied using X-ray reflectometry

  1. Study on the surface oxidation of uranium in different gaseous atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou

    1996-03-01

    The studying for the surface oxidation of uranium and oxide by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), and the surface oxidation of uranium in different gaseous atmospheres such as O 2 , H 2 , CO, CO 2 , H 2 O(v) and air were reviewed. The surface oxidation of uranium is greatly influenced by a number of parameters including atmospheric temperature, pressure, diffusion of adsorbed gas atoms through the oxide layer, surface and interface chemical component, and defect structure and electron nature of the oxide layer. The initial oxidation mechanism and kinetics have been discussed. Suggestions for future work have also been presented. (32 refs., 7 figs., 5 tabs.)

  2. W-containing oxide layers obtained on aluminum and titanium by PEO as catalysts in thiophene oxidation

    Science.gov (United States)

    Rudnev, V. S.; Lukiyanchuk, I. V.; Vasilyeva, M. S.; Morozova, V. P.; Zelikman, V. M.; Tarkhanova, I. G.

    2017-11-01

    W-containing oxide layers fabricated on titanium and aluminum alloys by Plasma electrolytic oxidation (PEO) have been tested in the reaction of the peroxide oxidation of thiophene. Samples with two types of coatings have been investigated. Coatings I contained tungsten oxide in the matrix and on the surface of amorphous silica-titania or silica-alumina layers, while coatings II comprised crystalline WO3 and/or Al2(WO4)3. Aluminum-supported catalyst containing a smallest amount of transition metals in the form of tungsten oxides and manganese oxides in low oxidation levels showed high activity and stability.

  3. Characterization Of Oxide Layers Produced On The AISI 321 Stainless Steel After Annealing

    Directory of Open Access Journals (Sweden)

    Bochnowski W.

    2015-09-01

    Full Text Available In this study, the structure, chemical composition and topography of oxide layers produced on the surface of the AISI 321 austenitic steel in the annealing process were analyzed. Heat treatment was done at 980°C temperature for 1 hour time in different conditions. The annealing was done in a ceramic furnace in oxidation atmosphere and in vacuum furnaces with cylindrical molybdenum and graphite chambers. The analysis was carried out using the following methods: a scanning electron microscope (SEM equipped with an energy-dispersive X-ray spectrometer (EDX, a transmission electron microscope (TEM equipped with an energy-dispersive X-ray spectrometer (EDX, an X-ray diffractometer (XRD, a secondary ion mass spectrometer with time-of-flight mass analyzer (TOF SIMS and an atomic force microscope (AFM. The oxide layer formed during annealing of the AISI 321 steel at 980°C consisted of sub-layers, diversified in the chemical composition. The thickness of the oxidized layer is depended on the annealing conditions. In a ceramic furnace in oxidation atmosphere, the thickness of the oxide layer was of 300-500 nm, in a vacuum furnace with molybdenum and graphite heating chambers, it ranged from 40 to 300 nm and from a few to 50 nm, respectively. TOF SIMS method allows to get average (for the surface of 100 μm × 100 μm depth profiles of concentration of particular elements and elements combined with oxygen. In oxide layers formed in vacuum furnaces there are no iron oxides. Titanium, apart from being bounded with carbon in carbides, is a component of the oxide layer formed on the surface of the AISI 321 steel.

  4. Laser modification of macroscopic properties of metal surface layer

    Science.gov (United States)

    Kostrubiec, Franciszek

    1995-03-01

    Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.

  5. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    Science.gov (United States)

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  6. Enhanced Sensitivity of Anti-Symmetrically Structured Surface Plasmon Resonance Sensors with Zinc Oxide Intermediate Layers

    Directory of Open Access Journals (Sweden)

    Nan-Fu Chiu

    2013-12-01

    Full Text Available We report a novel design wherein high-refractive-index zinc oxide (ZnO intermediary layers are used in anti-symmetrically structured surface plasmon resonance (SPR devices to enhance signal quality and improve the full width at half maximum (FWHM of the SPR reflectivity curve. The surface plasmon (SP modes of the ZnO intermediary layer were excited by irradiating both sides of the Au film, thus inducing a high electric field at the Au/ZnO interface. We demonstrated that an improvement in the ZnO (002 crystal orientation led to a decrease in the FWHM of the SPR reflectivity curves. We optimized the design of ZnO thin films using different parameters and performed analytical comparisons of the ZnO with conventional chromium (Cr and indium tin oxide (ITO intermediary layers. The present study is based on application of the Fresnel equation, which provides an explanation and verification for the observed narrow SPR reflectivity curve and optical transmittance spectra exhibited by (ZnO/Au, (Cr/Au, and (ITO/Au devices. On exposure to ethanol, the anti-symmetrically structured showed a huge electric field at the Au/ZnO interface and a 2-fold decrease in the FWHM value and a 1.3-fold larger shift in angle interrogation and a 4.5-fold high-sensitivity shift in intensity interrogation. The anti-symmetrically structured of ZnO intermediate layers exhibited a wider linearity range and much higher sensitivity. It also exhibited a good linear relationship between the incident angle and ethanol concentration in the tested range. Thus, we demonstrated a novel and simple method for fabricating high-sensitivity, high-resolution SPR biosensors that provide high accuracy and precision over relevant ranges of analyte measurement.

  7. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    International Nuclear Information System (INIS)

    Fidan, S.; Muhaffel, F.; Riool, M.; Cempura, G.; Boer, L. de; Zaat, S.A.J.; Filemonowicz, A. Czyrska -; Cimenoglu, H.

    2017-01-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  8. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Fidan, S.; Muhaffel, F. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey); Riool, M. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Cempura, G. [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Boer, L. de; Zaat, S.A.J. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Filemonowicz, A. Czyrska - [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Cimenoglu, H., E-mail: cimenogluh@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey)

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC{sub 2}H{sub 3}O{sub 2}). In general, synthesized MAO layers were composed of zirconium oxide (ZrO{sub 2}) and zircon (ZrSiO{sub 4}). Addition of AgC{sub 2}H{sub 3}O{sub 2} into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  9. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    Science.gov (United States)

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  10. Texture and microstructure analysis of epitaxial oxide layers prepared on textured Ni-12wt%Cr tapes

    Energy Technology Data Exchange (ETDEWEB)

    Huehne, R; Kursumovic, A; Tomov, R I; Glowacki, B A [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Holzapfel, B [Institut fuer Festkoerper- und Werkstoffforschung, Helmholtzstrasse 20, 01069 Dresden (Germany); Evetts, J E [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom)

    2003-05-07

    Oxide layers for the preparation of YBa{sub 2}Cu{sub 3}O{sub 7-x} coated conductors were grown on highly textured Ni-12wt%Cr tapes in pure oxygen using surface oxidation epitaxy at temperatures between 1000 deg. C and 1300 deg. C. Microstructural investigations revealed a layered oxide structure. The upper layer consists mainly of dense cube textured NiO. This is followed by a porous layer containing NiO and NiCr{sub 2}O{sub 4} particles. A detailed texture analysis showed a cube-on-cube relationship of the NiCr{sub 2}O{sub 4} spinel to the metal substrate. Untextured Cr{sub 2}O{sub 3} particles in a nickel matrix were found in a third layer arising from internal oxidation of the alloy. A high surface roughness and mechanical instability of the oxide were observed, depending on oxidation temperature and film thickness. However, mechanically stable oxide layers have been prepared using an additional annealing step in a protective atmosphere. Additionally, mechanical polishing or a second buffer layer, which grows with a higher smoothness, may be applied to reduce the surface roughness for coated conductor applications.

  11. Insulating gallium oxide layer produced by thermal oxidation of gallium-polar GaN: Insulating gallium oxide layer produced by thermal oxidation of gallium-polar GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, T. [Kansas State Univ., Manhattan, KS (United States); Wei, D. [Kansas State Univ., Manhattan, KS (United States); Nepal, N. [Naval Research Lab. (NRL), Washington, DC (United States); Garces, N. Y. [Naval Research Lab. (NRL), Washington, DC (United States); Hite, J. K. [Naval Research Lab. (NRL), Washington, DC (United States); Meyer, H. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eddy, C. R. [Naval Research Lab. (NRL), Washington, DC (United States); Baker, Troy [Nitride Solutions, Wichita, KS (United States); Mayo, Ashley [Nitride Solutions, Wichita, KS (United States); Schmitt, Jason [Nitride Solutions, Wichita, KS (United States); Edgar, J. H. [Kansas State Univ., Manhattan, KS (United States)

    2014-02-24

    We report the benefits of dry oxidation of n -GaN for the fabrication of metal-oxide-semiconductor structures. GaN thin films grown on sapphire by MOCVD were thermally oxidized for 30, 45 and 60 minutes in a pure oxygen atmosphere at 850 °C to produce thin, smooth GaOx layers. Moreover, the GaN sample oxidized for 30 minutes had the best properties. Its surface roughness (0.595 nm) as measured by atomic force microscopy (AFM) was the lowest. Capacitance-voltage measurements showed it had the best saturation in accumulation region and the sharpest transition from accumulation to depletion regions. Under gate voltage sweep, capacitance-voltage hysteresis was completely absent. The interface trap density was minimum (Dit = 2.75×1010 cm–2eV–1) for sample oxidized for 30 mins. These results demonstrate a high quality GaOx layer is beneficial for GaN MOSFETs.

  12. Effects of nanorod structure and conformation of fatty acid self-assembled layers on superhydrophobicity of zinc oxide surface.

    Science.gov (United States)

    Badre, Chantal; Dubot, P; Lincot, Daniel; Pauporte, Thierry; Turmine, Mireille

    2007-12-15

    Superhydrophobic surfaces have been prepared from nanostructured zinc oxide layers by a treatment with fatty acid molecules. The layers are electrochemically deposited from an oxygenated aqueous zinc chloride solution. The effects of the layer's structure, from a dense film to that of a nanorod array, as well as that of the properties of the fatty acid molecules based on C18 chains are described. A contact angle (CA) as high as 167 degrees is obtained with the nanorod structure and the linear saturated molecule (stearic acid). Lower values are found with molecules having an unsaturated bond on C9, in particular with a cis conformation (140 degrees ). These results, supplemented by infrared spectroscopy, indicate an enhancement of the sensitivity to the properties of the fatty acid molecules (conformation, flexibility, saturated or not) when moving from the flat surface to the nanostructured surface. This is attributed to a specific influence of the structure of the tops of the rods and lateral wall properties on the adsorption and organization of the molecules. CA measurements show a very good stability of the surface in time if stored in an environment protected from UV radiations.

  13. Decontamination of U-metal surface by an oxidation etching system

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B.; Kansa, E.J.; Shaffer, R.J.; Weed, H.C. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab

    2001-07-01

    A surface treatment to remove surface contamination from uranium (U) metal and/or hydrides of uranium and heavy metals (HM) from U-metal parts is described. In the case of heavy metal atomic contamination on a surface, and potentially several atomic layers beneath, the surface oxidation treatment combines both chemical and chemically driven mechanical processes. The chemical process is a controlled temperature-time oxidation process to create a thin film of uranium oxide (UO{sub 2} and higher oxides) on the U-metal surface. The chemically driven mechanical process is strain induced by the volume increase as the U-metal surface transforms to a UO{sub 2} surface film. These volume strains are significantly large to cause surface failure spalling/scale formation and thus, removal of a U-oxide film that contains the HM-contaminated surface. The case of a HM-hydride surface contamination layer can be treated similarly by using inert hot gas to decompose the U-hydrides and/or HM-hydrides that are contiguous with the surface. A preliminary analysis to design and to plan for a sequence of tests is developed. The tests will provide necessary and sufficient data to evaluate the effective implementation and operational characteristics of a safe and reliable system. The following description is limited to only a surface oxidation process for HM-decontamination. (authors)

  14. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

    Science.gov (United States)

    Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.

    2018-02-01

    NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

  15. Room temperature plasma oxidation: A new process for preparation of ultrathin layers of silicon oxide, and high dielectric constant materials

    International Nuclear Information System (INIS)

    Tinoco, J.C.; Estrada, M.; Baez, H.; Cerdeira, A.

    2006-01-01

    In this paper we present basic features and oxidation law of the room temperature plasma oxidation (RTPO), as a new process for preparation of less than 2 nm thick layers of SiO 2 , and high-k layers of TiO 2 . We show that oxidation rate follows a potential law dependence on oxidation time. The proportionality constant is function of pressure, plasma power, reagent gas and plasma density, while the exponent depends only on the reactive gas. These parameters are related to the physical phenomena occurring inside the plasma, during oxidation. Metal-Oxide-Semiconductor (MOS) capacitors fabricated with these layers are characterized by capacitance-voltage, current-voltage and current-voltage-temperature measurements. Less than 2.5 nm SiO 2 layers with surface roughness similar to thermal oxide films, surface state density below 3 x 10 11 cm -2 and current density in the expected range for each corresponding thickness, were obtained by RTPO in a parallel-plate reactor, at 180 mW/cm 2 and pressure range between 9.33 and 66.5 Pa (0.07 and 0.5 Torr) using O 2 and N 2 O as reactive gases. MOS capacitors with TiO 2 layers formed by RTPO of sputtered Ti layers are also characterized. Finally, MOS capacitors with stacked layers of TiO 2 over SiO 2 , both layers obtained by RTPO, were prepared and evaluated to determine the feasibility of the use of TiO 2 as a candidate for next technology nodes

  16. Study on the surface oxidation resistance of uranium metal in the atmosphere of carbon monoxide

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1999-01-01

    The surface reactions of different layers on uranium metal with carbon monoxide at 25, 80 and 200 degree C are studied by X-ray photoelectron spectroscopy (XPS). The experimental results show that the carbon monoxide is adsorbed on the surface oxide layer of uranium and interacted each other. The content of oxygen in the surface oxide and O/U ratio are decreased with increasing the exposure of carbon monoxide to the surface layer. The effect of reduction on the metal surface is more obviously with a higher temperature and increasing of layer thickness. The investigation indicates the uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide

  17. Surface metal standards produced by ion implantation through a removable layer

    International Nuclear Information System (INIS)

    Schueler, B.W.; Granger, C.N.; McCaig, L.; McKinley, J.M.; Metz, J.; Mowat, I.; Reich, D.F.; Smith, S.; Stevie, F.A.; Yang, M.H.

    2003-01-01

    Surface metal concentration standards were produced by ion implantation and investigated for their suitability to calibrate surface metal measurements by secondary ion mass spectrometry (SIMS). Single isotope implants were made through a 100 nm oxide layer on silicon. The implant energies were chosen to place the peak of the implanted species at a depth of 100 nm. Subsequent removal of the oxide layer was used to expose the implant peak and to produce controlled surface metal concentrations. Surface metal concentration measurements by time-of-flight SIMS (TOF-SIMS) with an analysis depth of 1 nm agreed with the expected surface concentrations of the implant standards with a relative mean standard deviation of 20%. Since the TOF-SIMS relative sensitivity factors (RSFs) were originally derived from surface metal measurements of surface contaminated silicon wafers, the agreement implies that the implant standards can be used to measure RSF values. The homogeneity of the surface metal concentration was typically <10%. The dopant dose remaining in silicon after oxide removal was measured using the surface-SIMS protocol. The measured implant dose agreed with the expected dose with a mean relative standard deviation of 25%

  18. Fabrication of birnessite-type layered manganese oxide films for super capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.K.; Dorval-Douville, G.; Favier, F. [Montpellier-2 Univ., LAMMI, UMR CNRS 5072, 34 (France)

    2004-07-01

    Birnessite-type layered manganese oxide films were anodically deposited at the surface of an inexpensive stainless steel. MnSO{sub 4} plating solutions were used at various potentials and for various durations. X-ray diffraction and scanning electron microscopy were used to examine the material structure and surface morphologies of obtained manganese oxide films. The capacitive characteristics and stability of these oxides were systematically investigated by means of cyclic voltammetry method in aqueous electrolytes. Deposition conditions affected the oxides structure and morphologies, and consequently greatly affected their electrochemical capacitance performance. (authors)

  19. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics.

    Science.gov (United States)

    Fidan, S; Muhaffel, F; Riool, M; Cempura, G; de Boer, L; Zaat, S A J; Filemonowicz, A Czyrska-; Cimenoglu, H

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. In-situ oxidation study of Pd(100) by surface x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Volkan; Franz, Dirk; Stierle, Andreas [AG Grenzflaechen, Universitaet Siegen (Germany); Martin, Natalia; Lundgren, Edvin [Department of Synchrotron Radiation Research, Lund University (Sweden); Mantilla, Miguel [MPI fuer Metallforschung, Stuttgart (Germany)

    2011-07-01

    The oxidation of the Pd(100) surface at oxygen pressures in the 10{sup -6} mbar to 10{sup 3} mbar range and temperatures up to 1000 K has been studied in-situ by surface x-ray diffraction (SXRD). The SXRD experiments were performed at the MPI beamline at the Angstrom Quelle Karlsruhe (ANKA). We present the surface and crystal truncation rod (CTR) data from the ({radical}(5) x {radical}(5)) surface layer. We show that the transformation from the surface oxide to PdO bulk oxide can be observed in-situ under specific pressure and temperature conditions. We compare our results with previously proposed structure models based on low energy electron diffraction (LEED) I(V) curves and density functional theory calculations. Finally, we elucidate the question of commensurability of the surface oxide layer with respect to the Pd(100) substrate.

  1. Thermally oxidized aluminum as catalyst-support layer for vertically aligned single-walled carbon nanotube growth using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Mohd Asyadi, E-mail: asyadi@jaist.ac.jp [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Fujiwara, Akihiko [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo, Hyogo 679-5198 (Japan); Shimoda, Tatsuya [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2011-11-01

    Characteristics and role of Al oxide (Al-O) films used as catalyst-support layer for vertical growth of single-walled carbon nanotubes (SWCNTs) were studied. EB-deposited Al films (20 nm) were thermally oxidized at 400 deg. C (10 min, static air) to produce the most appropriate surface structure of Al-O. Al-O catalyst-support layers were characterized using various analytical measurements, i.e., atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and spectroscopy ellipsometry (SE). The thermally oxidized Al-O has a highly roughened surface, and also has the most suitable surface chemical states compared to other type of Al-O support layers. We suggest that the surface of thermally oxidized Al-O characterized in this work enhanced Co catalyst activity to promote the vertically aligned SWCNT growth.

  2. Oxidative Corrosion of the UO 2 (001) Surface by Nonclassical Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, Joanne E.; Biwer, Craig A.; Chaka, Anne M. [Pacific Northwest; Ilton, Eugene S. [Pacific Northwest; Du, Yingge [Pacific Northwest; Bargar, John R. [Stanford Synchrotron; Eng, Peter J.

    2017-11-07

    Uranium oxide is central to every stage of the nuclear fuel cycle, from mining through fuel fabrication and use, to waste disposal and environmental cleanup. Its chemical and mechanical stability are intricately linked to the concentration of interstitial O atoms within the structure and the oxidation state of U. We have previously shown that during corrosion of the UO2 (111) surface under either 1 atm O2 gas or oxygenated water at room temperature, oxygen interstitials diffuse into the substrate to form a superlattice with three-layer periodicity. In the current study, we present results from surface x-ray scattering that reveal the structure of the oxygen diffusion profile beneath the (001) surface. The first few layers below the surface oscillate strongly in their surface-normal lattice parameters, suggesting preferential interstitial occupation of every other layer below the surface, which is geometrically consistent with the interstitial network that forms below the oxidized (111) surface. Deeper layers are heavily contracted and indicate that the oxidation front penetrates ~52 Å below the (001) surface after 21 days of dry O2 gas exposure at ambient pressure and temperature. X-ray photoelectron spectroscopy indicates U is present as U(IV), U(V), and U(VI).

  3. Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer

    DEFF Research Database (Denmark)

    Stebunov, Yury V.; Aftenieva, Olga A.; Arsenin, Aleksey V.

    2015-01-01

    sensor chip for SPR biosensors based on graphene-oxide linking layers. The biosensing assay model was based on a graphene oxide film containing streptavidin. The proposed sensor chip has three times higher sensitivity than the carboxymethylated dextran surface of a commercial sensor chip. Moreover...

  4. Excellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation

    International Nuclear Information System (INIS)

    Liao, B; Stangl, R; Ma, F; Mueller, T; Lin, F; Aberle, A G; Bhatia, C S; Hoex, B

    2013-01-01

    We demonstrate that by using a water (H 2 O)-based thermal atomic layer deposited (ALD) aluminum oxide (Al 2 O 3 ) film, excellent surface passivation can be attained on planar low-resistivity silicon wafers. Effective carrier lifetime values of up to 12 ms and surface recombination velocities as low as 0.33 cm s −1 are achieved on float-zone wafers after a post-deposition thermal activation of the Al 2 O 3 passivation layer. This post-deposition activation is achieved using an industrial high-temperature firing process which is commonly used for contact formation of standard screen-printed silicon solar cells. Neither a low-temperature post-deposition anneal nor a silicon nitride capping layer is required in this case. Deposition temperatures in the 100–400 °C range and peak firing temperatures of about 800 °C (set temperature) are investigated. Photoluminescence imaging shows that the surface passivation is laterally uniform. Corona charging and capacitance–voltage measurements reveal that the negative fixed charge density near the AlO x /c-Si interface increases from 1.4 × 10 12 to 3.3 × 10 12 cm −2 due to firing, while the midgap interface defect density reduces from 3.3 × 10 11 to 0.8 × 10 11 cm −2 eV −1 . This work demonstrates that direct firing activation of thermal ALD Al 2 O 3 is feasible, which could be beneficial for solar cell manufacturing. (paper)

  5. Enhanced magnetic properties of Fe soft magnetic composites by surface oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guoliang; Wu, Chen, E-mail: chen_wu@zju.edu.cn; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2016-02-01

    Fe soft magnetic composites (SMCs) with low core loss were fabricated via surface oxidation of the Fe powders by H{sub 2}O and O{sub 2} at elevated temperatures. Surface oxidation prevents magnetic dilution due to the formation of the ferromagnetic iron oxide coating layer, giving rise to high magnetic flux density and effective permeability of the SMCs compared with those fabricated with traditional phosphate coating. Mechanism of the oxidation process has been investigated where Fe{sub 3}O{sub 4} forms by reactions of Fe with H{sub 2}O and O{sub 2}. The Fe{sub 3}O{sub 4} coating layer tends to convert into γ-Fe{sub 2}O{sub 3} with increased oxidation temperature and time. By controlling composition of the coating layer, low core loss of 688.9 mW/cm{sup 3} (measured at 50 mT and 100 kHz) and higher effective permeability of 88.3 can be achieved for the Fe SMCs. - Highlights: • Surface oxidation as a new method to fabricate Fe Soft magnetic composite (SMCs). • Oxidation mechanism revealed where Fe reacts with H2O and O2 at high temperatures. • Evolution of the iron oxide coating with growth temperature and time investigated. • The iron oxide insulation coating results in improved magnetic performance.

  6. Nanoporous silver cathode surface treated by atomic layer deposition of CeO_x for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Neoh, Ke Chean; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Choi, Hyung Jong; Park, Suk Won; Shim, Joon Hyung

    2016-01-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO_x) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C–450 °C. Our work confirms that ALD CeO_x treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO_x surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO_x treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO_x-treated Ag cathodes related to the microstructure of the layers. (paper)

  7. Characterization study of native oxides on GaAs(100) surface by XPS

    Science.gov (United States)

    Feng, Liu; Zhang, Lian-dong; Liu, Hui; Gao, Xiang; Miao, Zhuang; Cheng, Hong-chang; Wang, Long; Niu, Sen

    2013-08-01

    In order to know more about the surface state of GaAs(100) epitaxial wafer during a storage period of two years, the XPS analysis was carried out four times on the surface, respectively polished by chemical etching, stored in desiccator for half a year, one year and two years. The results indicated that even after cleaned by proper etchant solutions, the fresh surface was slightly oxidized with Ga2O3, As2O3 and organic contaminant. The epi-wafer was always exposed to air during the storage period, so more and more oxides turned out. The mixed oxide layer comprised of C-OR, COOR, Ga2O3, As2O3 and As2O5 appeared after only half a year. In the ageing process of two years, the oxide types of gallium or arsenic did not change with stable content of Ga2O3 and remarkably fluctuating relative contents of As2O3 and As2O5. Based on the intensity ratio of Ga 3d-Ga2O3 to Ga 3d-GaAs, the thickness of oxide layer was estimated. The oxide layer generated after chemical polishing was very thin, just only 0.435nm thick, and then it grew rapidly, approximately 1.822nm after one year while almost no change any more subsequently. It was indicated that after the epi-wafer was stored for one year, because of volatile As2O3 or As2O5, there remained a large amount of Ga2O3 in oxide layer, which prevented the reactions between bulk material and oxide layer with oxygen. So native oxide layer plays a role as passive film to protect epi-wafer against the environment during a long storage period.

  8. Surface layers in the 4A group metals with implanted silicon ions

    International Nuclear Information System (INIS)

    Kovneristyj, Yu.K.; Vavilova, V.V.; Krasnopevtsev, V.V.; Galkin, L.N.; Kudyshev, A.N.; Klechkovskaya, V.V.

    1987-01-01

    A study was made on the change of structure and phase composition of fine near the surface layers of 4A group metals (Hf, Zr, Ti) during ion Si implantation and successive thermal annealing at elevated temperatures. Implantation of Si + ions with 30 or 16 keV energy in Ti, Zr and Hf at room temperature results to amorphization of metal surface layer. The surface hafnium and titanium layer with implanted Si atoms due to interaction with residual atmosphere of oxygen turns during annealing at 870 K to amorphous solid solution of HfO 2m or TiO 2 with Si, preventing further metal oxidation; layers of amorphous alloy are characterized by thermal stability up to 1270 K. Oxidation of the surface amorphous layer in residual oxygen atmosphere and its crystallization in ZrO 2 take place in result of Zr annealing with implanted Si ions at temperature not exceeding 870 K. Similar phenomena are observed in the case of hafnium with implanted oxygen ions or small dose of silicon ions. Thermal stability of amorphous layers produced during ion implantation of Si in Ti, Zr and Hf corresponds to scale resistance of monolithic alloys in Ti-Si, Zr-Si and Hf-Si systems

  9. Control of Alq3 wetting layer thickness via substrate surface functionalization.

    Science.gov (United States)

    Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J

    2007-06-05

    The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.

  10. Corrosion and carburization behavior of Al-rich surface layer on Ni-base alloy in supercritical-carbon dioxide environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jung, E-mail: leehojung@kaist.ac.kr; Kim, Sung Hwan, E-mail: sciencetom@kaist.ac.kr; Kim, Hyunmyung, E-mail: h46kim@kaist.ac.kr; Jang, Changheui, E-mail: chjang@kaist.ac.kr

    2016-12-01

    Highlights: • Al-rich layer was developed on Alloy 600 by Al deposition and EB remelting. • When exposed to S-CO{sub 2} at 600 °C, mostly Cr{sub 2}O{sub 3} with transition Al{sub 2}O{sub 3} was formed. • Carburized region of amorphous C layer was observed at the oxide/matrix interface. • α-Al{sub 2}O{sub 3} was formed after pre-oxidation which resulted in superior resistance. - Abstract: In order to improve the corrosion and carburization resistance in a high-temperature supercritical-carbon dioxide (S-CO{sub 2}) environment, an Al-rich surface layer was developed on Alloy 600 by Al deposition and a subsequent high energy electron beam (EB) remelting. As a result of the EB surface treatment, an Al enriched (5–7 wt.%) micro-alloying zone (40 μm) was produced. When the EB surface-treated Alloy 600 was corroded in S-CO{sub 2} at 600 °C (20 MPa) for 500 h, the surface oxide layer mostly consisted of chromia (Cr{sub 2}O{sub 3}) with small amount of transition alumina (Al{sub 2}O{sub 3}). In addition, a carburized region of an amorphous C layer inter-mixed with the alumina was observed at the oxide/matrix interface. Meanwhile, when the EB surface-treated specimen was pre-oxidized in helium at 900 °C, α-alumina layer was formed on the surface, which showed superior corrosion and carburization resistance in S-CO{sub 2} environment. Therefore, it could be said that the presence of Al-rich surface layer alone is not enough to provide sufficient corrosion and carburization resistance in S-CO{sub 2} environment at 600 °C, unless pre-oxidation at higher temperature is applied to form a more protective α-alumina on the surface.

  11. Preliminary results on the chemical characterisation of the cathode nickel--emissive layer interface in oxide cathodes

    International Nuclear Information System (INIS)

    Jenkins, S.N.; Barber, D.K.; Whiting, M.J.; Baker, M.A.

    2003-01-01

    In cathode ray tube (CRT) thermionic oxide cathodes, the nickel-oxide interface properties are key to understanding the mechanisms of operation. At the elevated operational temperatures, free barium is formed at the interface by the reaction of reducing activators, from the nickel alloy, with barium oxide. The free barium diffuses to the outer surface of the oxide providing a low work function electron-emitting surface. However, during cathode life an interface layer grows between the nickel alloy and oxide, comprised of reaction products. The interfacial layer sets limits on the cathode performance and useful operational lifetime by inhibiting the barium reducing reaction. This paper discusses sample preparation procedures for exposure of the interface and the use of several surface and bulk analytical techniques to study interface layer formation. SEM, AES and SIMS data are presented, which provide preliminary insight into the mechanisms operating during the cathode's lifetime. There is evidence that the activator elements in the nickel alloy base, Al and Mg, are able to diffuse to the surface of the oxide during activation and ageing and that these elements are enriched at the interface after accelerated life

  12. Effect of ion irradiation on the optical properties and room temperature oxidation of copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Poperenko, L.V.; Ramadan Shaaban, Essam; Khanh, N.Q.; Stashchuk, V.S.; Vinnichenko, M.V.; Yurgelevich, I.V.; Nosach, D.V.; Lohner, T

    2004-05-01

    Ex situ and in situ spectroellipsometric investigation of room temperature oxidation of ion-implanted copper surface was performed. The ellipsometer is capable to measure simultaneously the ellipsometric parameters {psi} and {delta} at 88 different wavelength values in the range of 280-760 nm within a few minutes in the high precision operation mode using two zone averaging and within a fraction of a second in the one zone operation mode. The native oxide layer formed earlier on the surface of the copper was sputtered off during the aluminum ion implantation. In situ study of the growth of the newly formed native oxide layer on the ion implanted surface was carried out. Ion beam analytical measurements were performed to gain further information on the native oxide layer. The absolute number of the oxygen atoms in the native copper oxide layer was determined. The depth distribution of the implanted aluminum was extracted from Rutherford backscattering spectra. It is found that Al implantation enhanced the oxidation resistance.

  13. Effect of ion irradiation on the optical properties and room temperature oxidation of copper surface

    International Nuclear Information System (INIS)

    Poperenko, L.V.; Ramadan Shaaban, Essam; Khanh, N.Q.; Stashchuk, V.S.; Vinnichenko, M.V.; Yurgelevich, I.V.; Nosach, D.V.; Lohner, T.

    2004-01-01

    Ex situ and in situ spectroellipsometric investigation of room temperature oxidation of ion-implanted copper surface was performed. The ellipsometer is capable to measure simultaneously the ellipsometric parameters Ψ and Δ at 88 different wavelength values in the range of 280-760 nm within a few minutes in the high precision operation mode using two zone averaging and within a fraction of a second in the one zone operation mode. The native oxide layer formed earlier on the surface of the copper was sputtered off during the aluminum ion implantation. In situ study of the growth of the newly formed native oxide layer on the ion implanted surface was carried out. Ion beam analytical measurements were performed to gain further information on the native oxide layer. The absolute number of the oxygen atoms in the native copper oxide layer was determined. The depth distribution of the implanted aluminum was extracted from Rutherford backscattering spectra. It is found that Al implantation enhanced the oxidation resistance

  14. Effect of Ge surface termination on oxidation behavior

    Science.gov (United States)

    Lee, Younghwan; Park, Kibyung; Cho, Yong Soo; Lim, Sangwoo

    2008-09-01

    Sulfur-termination was formed on the Ge(1 0 0) surface using (NH 4) 2S solution. Formation of Ge-S and the oxidation of the S-terminated Ge surface were monitored with multiple internal reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. In the 0.5, 5, or 20% (NH 4) 2S solution, H-termination on the Ge(1 0 0) surface was substituted with S-termination in 1 min. When the S-terminated Ge(1 0 0) surface was exposed in air ambient, the oxidation was retarded for about 3600 min. The preservation time of the oxide layer up to one monolayer of S-terminated Ge(1 0 0) surface was about 120 times longer than for the H-terminated Ge(1 0 0) surface. However, the oxidation of S-terminated Ge(1 0 0) surface drastically increased after the threshold time. There was no significant difference in threshold time between S-terminations formed in 0.5, 5, and 20% (NH 4) 2S solutions. With the surface oxidation, desorption of S on the Ge surface was observed. The desorption behavior of sulfur on the S-terminated Ge(1 0 0) surface was independent of the concentration of the (NH 4) 2S solution that forms S-termination. Non-ideal S-termination on Ge surfaces may be related to drastic oxidation of the Ge surface. Finally, with the desulfurization on the S-terminated Ge(1 0 0) surface, oxide growth is accelerated.

  15. Atomic profile imaging of ceramic oxide surfaces

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng JuLin; Sellar, J.R.

    1989-01-01

    Atomic surface profile imaging is an electron optical technique capable of revealing directly the surface crystallography of ceramic oxides. Use of an image-intensifier with a TV camera allows fluctuations in surface morphology and surface reactivity to be recorded and analyzed using digitized image data. This paper reviews aspects of the electron optical techniques, including interpretations based upon computer-simulation image-matching techniques. An extensive range of applications is then presented for ceramic oxides of commercial interest for advanced materials applications: including uranium oxide (UO 2 ); magnesium and nickel oxide (MgO,NiO); ceramic superconductor YBa 2 Cu 3 O 6.7 ); barium titanate (BaTiO 3 ); sapphire (α-A1 2 O 3 ); haematite (α-Fe-2O 3 ); monoclinic, tetragonal and cubic monocrystalline forms of zirconia (ZrO 2 ), lead zirconium titanate (PZT + 6 mol.% NiNbO 3 ) and ZBLAN fluoride glass. Atomic scale detail has been obtained of local structures such as steps associated with vicinal surfaces, facetting parallel to stable low energy crystallographic planes, monolayer formation on certain facets, relaxation and reconstructions, oriented overgrowth of lower oxides, chemical decomposition of complex oxides into component oxides, as well as amorphous coatings. This remarkable variety of observed surface stabilization mechanisms is discussed in terms of novel double-layer electrostatic depolarization mechanisms, as well as classical concepts of the physics and chemistry of surfaces (ionization and affinity energies and work function). 46 refs., 16 figs

  16. Effects of electrolytes variation on formation of oxide layers of 6061 Al alloys by plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Bon-Heun KOO; Chan-Gyu LEE; Young-Joo KIM; Sung-Hun LEE; Eungsun BYON

    2009-01-01

    Plasma electrolytic oxidation(PEO) processes were carried out to produce ceramic layers on 6061 aluminum substrates in four kinds of electrolytes such as silicate and aluminate solution with and without sodium fluorosilicate. The PEO processes were carried out under a hybrid voltage (260 V DC combined with 200 V, 60 Hz AC amplitude) at room temperature for 5 min. The composition, microstructure and element distribution analyses of the PEO-treated layers were carried out by XRD and SEM & EDS. The effect of the electrolyte contents on the growth mechanism, element distribution and properties of oxide layers were studied. It is obvious that the layers generated in aluminate solutions show smoother surfaces than those in silicate solutions. Moreover, an addition of fluorine ion can effectively control the layer porosity; therefore, it can enhance the properties of the layers.

  17. Surface Passivation of CIGS Solar Cells Using Gallium Oxide

    KAUST Repository

    Garud, Siddhartha

    2018-02-27

    This work proposes gallium oxide grown by plasma-enhanced atomic layer deposition, as a surface passivation material at the CdS buffer interface of Cu(In,Ga)Se2 (CIGS) solar cells. In preliminary experiments, a metal-insulator-semiconductor (MIS) structure is used to compare aluminium oxide, gallium oxide, and hafnium oxide as passivation layers at the CIGS-CdS interface. The findings suggest that gallium oxide on CIGS may show a density of positive charges and qualitatively, the least interface trap density. Subsequent solar cell results with an estimated 0.5 nm passivation layer show an substantial absolute improvement of 56 mV in open-circuit voltage (VOC), 1 mA cm−2 in short-circuit current density (JSC), and 2.6% in overall efficiency as compared to a reference (with the reference showing 8.5% under AM 1.5G).

  18. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1995-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  19. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    Science.gov (United States)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  20. Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications

    International Nuclear Information System (INIS)

    Gieraltowska, S.; Wachnicki, L.; Witkowski, B.S.; Godlewski, M.; Guziewicz, E.

    2012-01-01

    In this paper, we report on transparent transistor obtained using laminar structure of two high-k dielectric oxides (hafnium dioxide, HfO 2 and aluminum oxide, Al 2 O 3 ) and zinc oxide (ZnO) layer grown at low temperature (60 °C–100 °C) using Atomic Layer Deposition (ALD) technology. Our research was focused on the optimization of technological parameters for composite layers Al 2 O 3 /HfO 2 /Al 2 O 3 for thin film transistor structures with ZnO as a channel and a gate layer. We elaborate on the ALD growth of these oxides, finding that the 100 nm thick layers of HfO 2 and Al 2 O 3 exhibit fine surface flatness and required amorphous microstructure. Growth parameters are optimized for the monolayer growth mode and maximum smoothness required for gating.

  1. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO2 on AlGaN

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    Atomic layer deposition (ALD) of ZrO 2 on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO 2 and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications

  2. Control of Surface and Edge Oxidation on Phosphorene.

    Science.gov (United States)

    Kuntz, Kaci L; Wells, Rebekah A; Hu, Jun; Yang, Teng; Dong, Baojuan; Guo, Huaihong; Woomer, Adam H; Druffel, Daniel L; Alabanza, Anginelle; Tománek, David; Warren, Scott C

    2017-03-15

    Phosphorene is emerging as an important two-dimensional semiconductor, but controlling the surface chemistry of phosphorene remains a significant challenge. Here, we show that controlled oxidation of phosphorene determines the composition and spatial distribution of the resulting oxide. We used X-ray photoemission spectroscopy to measure the binding energy shifts that accompany oxidation. We interpreted these spectra by calculating the binding energy shift for 24 likely bonding configurations, including phosphorus oxides and hydroxides located on the basal surface or edges of flakes. After brief exposure to high-purity oxygen or high-purity water vapor at room temperature, we observed phosphorus in the +1 and +2 oxidation states; longer exposures led to a large population of phosphorus in the +3 oxidation state. To provide insight into the spatial distribution of the oxide, transmission electron microscopy was performed at several stages during the oxidation. We found crucial differences between oxygen and water oxidants: while pure oxygen produced an oxide layer on the van der Waals surface, water oxidized the material at pre-existing defects such as edges or steps. We propose a mechanism based on the thermodynamics of electron transfer to interpret these observations. This work opens a route to functionalize the basal surface or edges of two-dimensional (2D) black phosphorus through site-selective chemical reactions and presents the opportunity to explore the synthesis of 2D phosphorene oxide by oxidation.

  3. Study of the process of positron annihilation in GaAs disturbed surface layers

    International Nuclear Information System (INIS)

    Vorob'ev, A.A.; Aref'ev, K.P.; Vorob'ev, S.A.; Karetnikov, A.S.; Prokop'ev, E.P.; Kuznetsov, Yu.N.; Khashimov, F.R.; Markova, T.I.

    1977-01-01

    The effect was investigated of single-crystal semiconductor surface treatment types on positron annihilation characteristics. CaAs single-crystal specimens were investigated with the following surface treatment types: (a) polishing with Al 2 O 3 abrasive powder water suspension; (b) mechanical polishing with diamond paste; (c) mechanical chemical polishing with Al 2 O 3 or ZrO 2 suspensions; (d) chemical polishing with the 1HF:3HNO 3 :2H 2 O mixture. The investigation of annihilation was performed by the method of distinguishing the narrow component Isub(N) from correlation curves in 14.5 kOc statical magnetic field and by that of measuring the relative value of friquantuum annihilation Psub(3γ). The maximum Isub(N) and Psub(3γ) values are shown to occur in GaAs specimens with the (d) type of treatment. The experimental data provided a conclusion about the presence of a maximum thickness oxide layer of complex composition on the surface of the specimens compared with oxide layer thicknesses on the surface of specimens with (a), (b), and (c) treatmens. It is concluded that the positron annihilation method may be successfully used for the study of semiconductor material oxide layers

  4. The electrochemical transfer reactions and the structure of the iron|oxide layer|electrolyte interface

    International Nuclear Information System (INIS)

    Petrović, Željka; Metikoš-Huković, Mirjana; Babić, Ranko

    2012-01-01

    The thickness, barrier (protecting) and semiconducting properties of the potentiostatically formed oxide films on the pure iron electrode in an aqueous borate buffer solution were investigated by electrochemical quartz crystal nanobalance (EQCN), electrochemical impedance spectroscopy (EIS), and Mott–Schottky (MS) analysis. The thicknesses of the prepassive Fe(II)hydroxide layer (up to monolayer) nucleated on the bare iron surface and the passive Fe(II)/Fe(III) layer (up to 2 nm), deposited on the top of the first one, were determined using in situ gravimetry. Electronic properties of iron prepassive and passive films as well as ionic and electronic transfer reactions at the film|solution interface were discussed on the basis of a band structure model of the surface oxide film and the potential distribution at the interface. The anodic oxide film formation and cathodic decomposition are coupled processes and their reversible inter-conversion is mediated by the availability of free charge carriers on the electrode|solution interface. The structure of the reversible double layer at the iron oxide|solution interface was discussed based on the concept of the specific adsorption of the imidazolium cation on the negatively charged electrode surface at pH > pH pzc .

  5. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    Science.gov (United States)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  6. Surface morphology study on chromium oxide growth on Cr films by Nd-YAG laser oxidation process

    International Nuclear Information System (INIS)

    Dong Qizhi; Hu Jiandong; Guo Zuoxing; Lian Jianshe; Chen Jiwei; Chen Bo

    2002-01-01

    Grain sized (60-100 nm) Cr 2 O 3 thin films were prepared on Cr thin film surfaces by Nd-YAG laser photothermal oxidation process. Surface morphology study showed crack-free short plateau-like oxide films formed. Increase of dislocation density after pulsed laser irradiation was found. Thin film external surfaces, grain boundaries and dislocations are main paths of laser surface oxidation. Pinning and sealing of grain boundary was the reason that deeper oxidation did not produce. Grain growth and agglomeration of Cr sub-layer yielded tensile stress on the surface Cr 2 O 3 thin film. It was the reason that short plateau-like surface morphology formed and cracks appeared sometimes. In oxygen annealing at 700 deg. C, grain boundaries were considered not to be pinned at the surface, mixture diffusion was main mechanism in growth of oxide. Compression stress development in whole film led to extrusion of grains that was the reason that multiple appearances such as pyramid-like and nutshell-like morphology formed

  7. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.R., E-mail: arribeiro@inmetro.gov.br [Department of Periodontology, Araraquara Dental School, University Estadual Paulista, Rua Humaitá 1680, 14801-903 Araraquara, São Paulo (Brazil); Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Oliveira, F., E-mail: fernando@dem.uminho.pt [Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Centre for Mechanical and Materials Technologies, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Boldrini, L.C., E-mail: lcboldrini@inmetro.gov.br [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Leite, P.E., E-mail: leitepec@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Falagan-Lotsch, P., E-mail: prifalagan@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Linhares, A.B.R., E-mail: adrianalinhares@hotmail.com [Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niterói (Brazil); and others

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  8. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    International Nuclear Information System (INIS)

    Ribeiro, A.R.; Oliveira, F.; Boldrini, L.C.; Leite, P.E.; Falagan-Lotsch, P.; Linhares, A.B.R.

    2015-01-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  9. Investigation of the Dissolution-Reformation Cycle of the Passive Oxide Layer on NiTi Orthodontic Archwires

    Science.gov (United States)

    Uzer, B.; Birer, O.; Canadinc, D.

    2017-09-01

    Dissolution-reformation cycle of the passive oxide layer on the nickel-titanium (NiTi) orthodontic archwires was investigated, which has recently been recognized as one of the key parameters dictating the biocompatibility of archwires. Specifically, commercially available NiTi orthodontic archwires were immersed in artificial saliva solutions of different pH values (2.3, 3.3, and 4.3) for four different immersion periods: 1, 7, 14, and 30 days. Characterization of the virgin and tested samples revealed that the titanium oxide layer on the NiTi archwire surfaces exhibit a dissolution-reformation cycle within the first 14 days of the immersion period: the largest amount of Ni ion release occurred within the first week of immersion, while it significantly decreased during the reformation period from day 7 to day 14. Furthermore, the oxide layer reformation was catalyzed on the grooves within the peaks and valleys due to relatively larger surface energy of these regions, which eventually decreased the surface roughness significantly within the reformation period. Overall, the current results clearly demonstrate that the analyses of dissolution-reformation cycle of the oxide layer in orthodontic archwires, surface roughness, and ion release behavior constitute utmost importance in order to ensure both the highest degree of biocompatibility and an efficient medical treatment.

  10. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate Ti, Y and Ce oxide powders into the surface of an Aluminium alloy. The FSP processed surface composite was subsequently anodized with an aim to develop optical effects in the anodized layer owing to the presence of incorporated...... oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...

  11. Investigation of thin oxide layer removal from Si substrates using an SiO2 atomic layer etching approach: the importance of the reactivity of the substrate

    International Nuclear Information System (INIS)

    Metzler, Dominik; Oehrlein, Gottlieb S; Li, Chen; Lai, C Steven; Hudson, Eric A

    2017-01-01

    The evaluation of a plasma-based atomic layer etching (ALE) approach for native oxide surface removal from Si substrates is described. Objectives include removal of the native oxide while minimizing substrate damage, surface residues and substrate loss. Oxide thicknesses were measured using in situ ellipsometry and surface chemistry was analyzed by x-ray photoelectron spectroscopy. The cyclic ALE approach when used for removal of native oxide SiO 2 from a Si substrate did not remove native oxide to the extent required. This is due to the high reactivity of the silicon substrate during the low-energy (<40 eV) ion bombardment phase of the cyclic ALE approach which leads to reoxidation of the silicon surface. A modified process, which used continuously biased Ar plasma with periodic CF 4 injection, achieved significant oxygen removal from the Si surface, with some residual carbon and fluorine. A subsequent H 2 /Ar plasma exposure successfully removed residual carbon and fluorine while passivating the silicon surface. The combined treatment reduced oxygen and carbon levels to about half compared to as received silicon surfaces. The downside of this process sequence is a net loss of about 40 Å of Si. A generic insight of this work is the importance of the substrate and final surface chemistry in addition to precise etch control of the target film for ALE processes. By a fluorocarbon-based ALE technique, thin SiO 2 layer removal at the Ångstrom level can be precisely performed from an inert substrate, e.g. a thick SiO 2 layer. However, from a reactive substrate, like Si, complete removal of the thin SiO 2 layer is prevented by the high reactivity of low energy Ar + ion bombarded Si. The Si surfaces are reoxidized during the ALE ion bombardment etch step, even for very clean and ultra-low O 2 process conditions. (paper)

  12. High temperature oxidation behavior of AISI 304L stainless steel—Effect of surface working operations

    International Nuclear Information System (INIS)

    Ghosh, Swati; Kumar, M. Kiran; Kain, Vivekanand

    2013-01-01

    Highlights: ► Surface working resulted in thinner oxide on the surface. ► Oxides on machined/ground surfaces richer in Cr, higher in specific resistivity. ► Additional ionic transport process at the metal-oxide for ground sample established. ► Presence of fragmented grains and martensite influenced oxide nature/morphology. - Abstract: The oxidation behavior of grade 304L stainless steel (SS) subjected to different surface finishing (machining and grinding) operations was followed in situ by contact electric resistance (CER) and electrochemical impedance spectroscopy (EIS) measurements using controlled distance electrochemistry (CDE) technique in high purity water (conductivity −1 ) at 300 °C and 10 MPa in an autoclave connected to a recirculation loop system. The results highlight the distinct differences in the oxidation behavior of surface worked material as compared to solution annealed material in terms of specific resistivity and low frequency Warburg impedance. The resultant oxide layer was characterized for (a) elemental analyses by glow discharge optical emission spectroscopy (GDOES) and (b) morphology by scanning electron microscopy (SEM). Oxide layers with higher specific resistivity and chromium content were formed in case of machined and ground conditions. Presence of an additional ionic transport process has also been identified for the ground condition at the metal/oxide interface. These differences in electrochemical properties and distinct morphological features of the oxide layer as a result of surface working were attributed to the prevalence of heavily fragmented grain structure and presence of martensite.

  13. Characterization Of Oxide Layers Formed On 13CrMo4-5 Steel Operated For A Long Time At An Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Gwoździk M.

    2015-09-01

    Full Text Available The paper contains results of studies into the formation of oxide layers on 13CrMo4-5 (15HM steel long-term operated at an elevated temperature. The oxide layer was studied on a surface and a cross-section at the inner and outer surface of the tube wall. The 13CrMo4-5 steel operated at the temperature of 470°C during 190,000 hours was investigated. X-ray structural examinations (XRD were carried out, microscope observation s using an optical, scanning microscope were performed. The native material chemical composition was analysed by means of emission spark spectroscopy, while that of oxide layers on a scanning microscope (EDS. The studies on the topography of the oxide layers comprised studies on the roughness plane, which were carried out using a AFM microscope designed for 2D and 3D studies on the surface. Mechanical properties of the oxide layer – steel (substrate were characterised on the basis of scratch test. The adhesion of oxide layers, friction force, friction coefficient, scratching depth were determined as well as the force at which the layer was delaminated.

  14. Dissolution model for a glass having an adherent insoluble surface layer

    International Nuclear Information System (INIS)

    Harvey, K.B.; Larocque, C.A.B.

    1990-01-01

    Waste form glasses that contain substantial quantities of iron, manganese, and aluminum oxides, such as the Savannah River SRL TDS-131 glass, form a thick, hydrated surface layer when placed in contact with water. The dissolution of such a glass has been modeled with the Savannah River Model. The authors showed previously that the equations of the Savannah River Model could be fitted to published experimental data if a time-dependent diffusion coefficient was assumed for species of diffusing through the surface layer. The Savannah River Model assumes that all of the material dissolved from the glass enters solution, whereas it was observed that substantial quantities of material were retained in the surface layer. An alternative model, presented contains a mass balance equation that allows material either to enter solution or to be retained in the surface layer. It is shown that the equations derived using this model can be fitted to the published experimental data assuming a constant diffusion coefficient for species diffusing through the surface layer

  15. Layered Cu-based electrode for high-dielectric constant oxide thin film-based devices

    International Nuclear Information System (INIS)

    Fan, W.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    Ti-Al/Cu/Ta multilayered electrodes were fabricated on SiO 2 /Si substrates by ion beam sputtering deposition, to overcome the problems of Cu diffusion and oxidation encountered during the high dielectric constant (κ) materials integration. The Cu and Ta layers remained intact through the annealing in oxygen environment up to 600 deg. C. The thin oxide layer, formed on the Ti-Al surface, effectively prevented the oxygen penetration toward underneath layers. Complex oxide (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the layered Ti-Al/Cu/Ta electrodes using rf magnetron sputtering. The deposited BST films exhibited relatively high permittivity (150), low dielectric loss (0.007) at zero bias, and low leakage current -8 A/cm 2 at 100 kV/cm

  16. HREM investigation of the constitution and the crystallography of thin thermal oxide layers on iron

    DEFF Research Database (Denmark)

    Graat, P.C.J.; Brongers, M.P.H.; Zandbergen, H.W.

    1997-01-01

    Oxide layers formed at 573 K in O2 at atmospheric pressure, both on a clean iron surface and on an iron surface covered with an etching induced (hydro)oxide film, were investigated with high-resolution transmission electron microscopy (HREM). Cross-sections of oxidised samples were prepared by a ...

  17. Theoretical aspects of studies of oxide and semiconductor surfaces using low energy positrons

    Science.gov (United States)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2011-01-01

    This paper presents the results of a theoretical study of positron surface and bulk states and annihilation characteristics of surface trapped positrons at the oxidized Cu(100) single crystal and at both As- and Ga-rich reconstructed GaAs(100) surfaces. The variations in atomic structure and chemical composition of the topmost layers of the surfaces associated with oxidation and reconstructions and the charge redistribution at the surfaces are found to affect localization and spatial extent of the positron surface-state wave functions. The computed positron binding energy, work function, and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the surfaces. Theoretical positron annihilation probabilities with relevant core electrons computed for the oxidized Cu(100) surface and the As- and Ga-rich reconstructed GaAs(100) surfaces are compared with experimental ones estimated from the positron annihilation induced Auger peak intensities measured from these surfaces.

  18. XPS studies of SiO2 surface layers formed by oxygen ion implantation into silicon

    International Nuclear Information System (INIS)

    Schulze, D.; Finster, J.

    1983-01-01

    SiO 2 surface layers of 160 nm thickness formed by 16 O + ion implantation into silicon are examined by X-ray photoelectron spectroscopy measurements into the depth after a step-by-step chemical etching. The chemical nature and the thickness of the transition layer were determined. The results of the XPS measurements show that the outer surface and the bulk of the layers formed by oxygen implantation and subsequent high temperature annealing consist of SiO 2 . There is no evidence for Si or SiO/sub x/ (0 2 and Si is similar to that of thin grown oxide layers. Only its thickness is somewhat larger than in thermal oxide

  19. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  20. Iron oxide surfaces

    Science.gov (United States)

    Parkinson, Gareth S.

    2016-03-01

    known with a high degree of precision and the major defects and properties are well characterised. A major factor in this is that a termination at the Feoct-O plane can be reproducibly prepared by a variety of methods, as long as the surface is annealed in 10-7-10-5 mbar O2 in the final stage of preparation. Such straightforward preparation of a monophase termination is generally not the case for iron oxide surfaces. All available evidence suggests the oft-studied (√2×√2)R45° reconstruction results from a rearrangement of the cation lattice in the outermost unit cell in which two octahedral cations are replaced by one tetrahedral interstitial, a motif conceptually similar to well-known Koch-Cohen defects in Fe1-xO. The cation deficiency results in Fe11O16 stoichiometry, which is in line with the chemical potential in ultra-high vacuum (UHV), which is close to the border between the Fe3O4 and Fe2O3 phases. The Fe3O4(111) surface is also much studied, but two different surface terminations exist close in energy and can coexist, which makes sample preparation and data interpretation somewhat tricky. Both the Fe3O4(100) and Fe3O4(111) surfaces exhibit Fe-rich terminations as the sample selvedge becomes reduced. The Fe3O4(110) surface forms a one-dimensional (1×3) reconstruction linked to nanofaceting, which exposes the more stable Fe3O4(111) surface. α-Fe2O3(0001) is the most studied haematite surface, but difficulties preparing stoichiometric surfaces under UHV conditions have hampered a definitive determination of the structure. There is evidence for at least three terminations: a bulk-like termination at the oxygen plane, a termination with half of the cation layer, and a termination with ferryl groups. When the surface is reduced the so-called "bi-phase" structure is formed, which eventually transforms to a Fe3O4(111)-like termination. The structure of the bi-phase surface is controversial; a largely accepted model of coexisting Fe1-xO and α-Fe2O3(0001) islands

  1. Quantification of Discrete Oxide and Sulfur Layers on Sulfur-Passivated InAs by XPS

    National Research Council Canada - National Science Library

    Petrovykh, D. Y; Sullivan, J. M; Whitman, L. J

    2005-01-01

    .... The S-passivated InAs(001) surface can be modeled as a sulfur-indium-arsenic layer-cake structure, such that characterization requires quantification of both arsenic oxide and sulfur layers that are at most a few monolayers thick...

  2. Improvement of corrosion resistance of transparent conductive multilayer coating consisting of silver layers and transparent metal oxide layers

    International Nuclear Information System (INIS)

    Koike, Katsuhiko; Yamazaki, Fumiharu; Okamura, Tomoyuki; Fukuda, Shin

    2007-01-01

    An optical filter for plasma display panel (PDP) requires an electromagnetic shield with very high ability. The authors investigated a transparent conductive multilayer coating consisting of silver (Ag) layers and transparent metal oxide layers. The durability of the multilayer sputter coating, including the silver layer, is very sensitive to the surrounding atmosphere. For example, after an exposure test they found discolored points on the multilayer sputter coatings, possibly caused by migration of silver atoms in the silver layers. In their investigation, they modified the top surface of the multilayer sputter coatings with transition metals to improve the corrosion resistance of the multilayer coating. Specifically, they deposited transition metals 0.5-2 nm thick on the top surface of the multilayer coatings by sputtering. They chose indium tin oxide (ITO) as the transparent metal oxide. They applied the multilayer sputter coatings of seven layers to a polyethylene terephthalate (PET) film substrate. A cross-sectional structure of the film with the multilayer coatings is PET film/ITO/Ag/ITO/Ag/ITO/Ag/ITO. They evaluated the corrosion resistance of the films by a salt-water immersion test. In the test, they immersed the film with multilayer coatings into salt water, and then evaluated the appearance, transmittance, and electrical resistance of the multilayer coatings. They investigated several transition metals as the modifying material, and found that titanium and tantalum drastically improved the resistance of the multilayer coatings to the salt-water exposure without a significant decline in transmittance. They also investigated the relation between elapsed time after deposition of the modifying materials and resistance to the salt water. Furthermore, they investigated the effects of a heat treatment and an oxide plasma treatment on resistance to the salt water

  3. Formation of Lamellar Structured Oxide Dispersion Strengthening Layers in Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Park, Jung-Hwan; Park, Dong-Jun; Kim, Hyun-Gil; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lim, Yoon-Soo [Hanbat National University, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute (KAERI) is one of the leading organizations for developing ATF claddings. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high-temperature mechanical strength of Zr tube. The oxide dispersion strengthened (ODS) zirconium was proposed to increase the strength of the Zr-based alloy up to high temperatures. According to our previous investigations, the tensile strength of Zircaloy-4 was increased by up to 20% with the formation of a thin dispersed oxide layer with a thickness less than 10% of that of the Zircaloy-4 substrate. However, the tensile elongation of the samples decreased drastically. The brittle fracture was a major concern in development of the ODS Zircaloy-4. In this study, a lamellar structure of ODS layer was formed to increase ductility of the ODS Zircaloy-4. The mechanical properties were varied depending on the structure of ODS layer. For example, the partial formation of ODS layer with the thickness of 10% to the substrate thickness induced the increase in tensile strength up to about 20% than fresh Zircaloy-4.

  4. Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation.

    Science.gov (United States)

    Chen, Guan-Liang; Shau, Shi-Min; Juang, Tzong-Yuan; Lee, Rong-Ho; Chen, Chih-Ping; Suen, Shing-Yi; Jeng, Ru-Jong

    2011-12-06

    In this study, we used direct molecular exfoliation for the rapid, facile, large-scale fabrication of single-layered graphene oxide nanosheets (GOSs). Using macromolecular polyaniline (PANI) as a layered space enlarger, we readily and rapidly synthesized individual GOSs at room temperature through the in situ polymerization of aniline on the 2D GOS platform. The chemically modified GOS platelets formed unique 2D-layered GOS/PANI hybrids, with the PANI nanorods embedded between the GO interlayers and extended over the GO surface. X-ray diffraction revealed that intergallery expansion occurred in the GO basal spacing after the PANI nanorods had anchored and grown onto the surface of the GO layer. Transparent folding GOSs were, therefore, observed in transmission electron microscopy images. GOS/PANI nanohybrids possessing high conductivities and large work functions have the potential for application as electrode materials in optoelectronic devices. Our dispersion/exfoliation methodology is a facile means of preparing individual GOS platelets with high throughput, potentially expanding the applicability of nanographene oxide materials. © 2011 American Chemical Society

  5. Effect of dew point on the formation of surface oxides of twinning-induced plasticity steel

    International Nuclear Information System (INIS)

    Kim, Yunkyum; Lee, Joonho; Shin, Kwang-Soo; Jeon, Sun-Ho; Chin, Kwang-Geun

    2014-01-01

    The surface oxides of twinning-induced plasticity (TWIP) steel annealed at 800 °C for 43 s were investigated using transmission electron microscopy. During the annealing process, the oxygen potential was controlled by adjusting the dew point in a 15%H 2 –N 2 gas atmosphere. It was found that the type of surface oxides formed and the thickness of the oxide layer were determined by the dew point. In a gas mixture with a dew point of − 20 °C, a MnO layer with a thickness of ∼ 100 nm was formed uniformly on the steel surface. Under the MnO layer, a MnAl 2 O 4 layer with a thickness of ∼ 15 nm was formed with small Mn 2 SiO 4 particles that measured ∼ 70 nm in diameter. Approximately 500 nm below the MnAl 2 O 4 layer, Al 2 O 3 was formed at the grain boundaries. On the other hand, in a gas mixture with a dew point of − 40 °C, a MnAl 2 O 4 layer with a thickness of ∼ 5 nm was formed on most parts of the surface. On some parts of the surface, Mn 2 SiO 4 particles were formed irregularly up to a thickness of ∼ 50 nm. Approximately 200 nm below the MnAl 2 O 4 layer, Al 2 O 3 was found at the grain boundaries. Thermodynamic calculations were performed to explain the experimental results. The calculations showed that when a O2 > ∼ 1.26 × 10 −28 , MnO, MnAl 2 O 4 , and Mn 2 SiO 4 can be formed together, and the major oxide is MnO. When a O2 is in the range of 1.26 × 10 −28 –2.51 × 10 −31 , MnO is not stable but MnAl 2 O 4 is the major oxide. When a O2 < ∼ 2.51 × 10 −31 , only Al 2 O 3 is stable. Consequently, the effective activity of oxygen is considered the dominant factor in determining the type and shape of surface oxides of TWIP steel. - Highlights: • The surface oxides of TWIP steel annealed at 800 °C were investigated using TEM. • The surface oxides were determined by the dew point during the annealing process. • The activity of oxygen is the major factor determining the oxides of TWIP steel

  6. Native oxide transport and removal during the atomic layer deposition of Ta{sub 2}O{sub 5} on InAs(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Henegar, Alex J.; Gougousi, Theodosia, E-mail: gougousi@umbc.edu [Department of Physics, UMBC, Baltimore, Maryland 21250 (United States)

    2016-05-15

    Atomic layer deposition (ALD) was used to deposit Ta{sub 2}O{sub 5} on etched and native oxide-covered InAs(100) using pentakis dimethyl amino tantalum and H{sub 2}O at 200–300 °C. The transport and removal of the native oxides during the ALD process was investigated using x-ray photoelectron spectroscopy (XPS). Depositions above 200 °C on etched surfaces protected the interface from reoxidation. On native oxide-covered surfaces, depositions resulted in enhanced native oxide removal at higher temperatures. The arsenic oxides were completely removed above 250 °C after 3 nm of film growth, but some of the As{sub 2}O{sub 3} remained in the film at lower temperatures. Angle-resolved and sputter depth profiling XPS confirmed indium and arsenic oxide migration into the Ta{sub 2}O{sub 5} film at deposition temperatures as low as 200 °C. Continuous removal of both arsenic and indium oxides was confirmed even after the deposition of several monolayers of a coalesced Ta{sub 2}O{sub 5} film, and it was demonstrated that native oxide transport is a prevalent component of the interface “clean-up” mechanism.

  7. The magnetic characteristics of perpendicular magnetic tunnel junction with MgO and Al-O oxidation layers in various thickness

    International Nuclear Information System (INIS)

    Chen, T.-J.; Canizo-Cabrera, A.; Chang, C.-H.; Liao, K.-A.; Li, Simon C.; Hou, C.-K.; Wu Teho

    2006-01-01

    In this work we show the magnetic characteristics of perpendicular magnetic tunnel junction (pMTJ) with different oxidation layers. The pMTJs structures were made by RF and DC magnetron sputtering. Individual depositions of magnesium oxide layers and of aluminum oxide films were prepared by plasma oxidation. The experimental results showed that the initial switching field was decreased as the magnesium oxide thickness was increased. Further work of the aluminum oxide surface roughness and hysteresis loop influenced by different oxidation layers on pMTJs structures will be discussed as well

  8. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

    Science.gov (United States)

    Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Measurement of oxide-layer thickness of internal granules in high-purity aluminium

    International Nuclear Information System (INIS)

    Takacs, S.; Ditroi, F.; Mahunka, I.

    1989-01-01

    Charged-particle activation analysis was used for the determination of bulk oxygen concentration in aluminium. High-purity aluminium samples and mixtures containing different amounts of alumina were irradiated by 13 MeV 3 He particles. The aim of the investigation was to determine the oxide-layer thickness on the surface of internal aluminium granules. The measurement was carried out by determining the bulk oxygen concentration in the samples, and calculating the oxide-layer thickness, by using model conditions about the microstructure of the aluminium samples. (author) 5 refs

  10. Effect of biomolecules adsorption on oxide layers developed on metallic materials used in cooling water systems

    International Nuclear Information System (INIS)

    Torres-Bautista, Blanca-Estela

    2014-01-01

    This thesis was carried out in the frame of the BIOCOR ITN European project, in collaboration with the industrial partner RSE S.p.A. (Italy). Metallic materials commonly used in cooling systems of power plants may be affected by bio-corrosion induced by biofilm formation. The objective of this work was to study the influence of biomolecules adsorption, which is the initial stage of biofilm formation, on the electrochemical behaviour and the surface chemical composition of three metallic materials (70Cu-30Ni alloy, 304L stainless steel and titanium) in seawater environments. In a first step, the interactions between a model protein, the bovine serum albumin (BSA), and the surface of these materials were investigated. Secondly, tightly bound (TB) and loosely bound (LB) extracellular polymeric substances (EPS), that play a fundamental role in the different stages of biofilm formation, maturation and maintenance, were extracted from Pseudomonas NCIMB 2021 marine strain, and their effects on oxide layers were also evaluated. For that purpose, electrochemical measurements (corrosion potential E(corr) vs time, polarization curves and electrochemical impedance spectroscopy (EIS)) performed during the very first steps of oxide layers formation (1 h immersion time) were combined to surface analysis by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ions mass spectrometry (ToF-SIMS). Compared to 70Cu-30Ni alloy in static artificial seawater (ASW) without biomolecules, for which a thick duplex oxide layer (outer redeposited Cu 2 O layer and inner oxidized nickel layer) is shown, the presence of BSA, TB EPS and LB EPS leads to a mixed oxide layer (oxidized copper and nickel) with a lower thickness. In the biomolecules-containing solutions, this oxide layer is covered by an adsorbed organic layer, mainly composed of proteins. A model is proposed to analyse impedance data obtained at E(corr). The results show a slow-down of the anodic reaction in the presence

  11. Solid oxide fuel cell cathode with oxygen-reducing layer

    Science.gov (United States)

    Surdoval, Wayne A.; Berry, David A.; Shultz, Travis

    2018-04-03

    The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous film or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes.

  12. High-temperature oxidation of tungsten covered by layer of glass-enamel melt

    International Nuclear Information System (INIS)

    Vasnetsova, V.B.; Shardakov, N.T.; Kudyakov, V.Ya.; Deryabin, V.A.

    1997-01-01

    Corrosion losses of tungsten covered by the layer of glass-enamel melt were determined at 800, 850, 900, 950 deg C. It is shown that the rate of high-temperature oxidation of tungsten decreases after application of glass-enamel melt on its surface. This is probably conditioned by reduction of area of metal interaction with oxidizing atmosphere

  13. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

    Science.gov (United States)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes.

    Science.gov (United States)

    Xiong, Guang; Elam, Jeffrey W; Feng, Hao; Han, Catherine Y; Wang, Hsien-Hau; Iton, Lennox E; Curtiss, Larry A; Pellin, Michael J; Kung, Mayfair; Kung, Harold; Stair, Peter C

    2005-07-28

    Anodic aluminum oxide (AAO) membranes were characterized by UV Raman and FT-IR spectroscopies before and after coating the entire surface (including the interior pore walls) of the AAO membranes by atomic layer deposition (ALD). UV Raman reveals the presence of aluminum oxalate in bulk AAO, both before and after ALD coating with Al2O3, because of acid anion incorporation during the anodization process used to produce AAO membranes. The aluminum oxalate in AAO exhibits remarkable thermal stability, not totally decomposing in air until exposed to a temperature >900 degrees C. ALD was used to cover the surface of AAO with either Al2O3 or TiO2. Uncoated AAO have FT-IR spectra with two separate types of OH stretches that can be assigned to isolated OH groups and hydrogen-bonded surface OH groups, respectively. In contrast, AAO surfaces coated by ALD with Al2O3 display a single, broad band of hydrogen-bonded OH groups. AAO substrates coated with TiO2 show a more complicated behavior. UV Raman results show that very thin TiO2 coatings (1 nm) are not stable upon annealing to 500 degrees C. In contrast, thicker coatings can totally cover the contaminated alumina surface and are stable at temperatures in excess of 500 degrees C.

  15. Study the formation of porous surface layer for a new biomedical titanium alloy

    Science.gov (United States)

    Talib Mohammed, Mohsin; Diwan, Abass Ali; Ali, Osamah Ihsan

    2018-03-01

    In the present work, chemical treatment using hydrogen peroxide (H2O2) oxidation and subsequent thermal treatment was applied to create a uniform porous layer over the surface of a new metastable β-Ti alloy. The results revealed that this oxidation treatment can create a stable ultrafine porous film over the oxidized surface. This promoted the electrochemical characteristics of H2O2-treated Ti-Zr-Nb (TZN) alloy system, presenting nobler corrosion behavior in simulated body fluid (SBF) comparing with untreated sample.

  16. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Bei, E-mail: 1021453457@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Wu, Jing-Jing, E-mail: 957522275@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Su, Yu, E-mail: 819388710@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Zhou, Jin, E-mail: zhoujin_ah@163.com [Department of Materials and Chemical Engineering, Chizhou University, Muzhi Rd. 199, Chizhou, Anhui 247000 (China); Gao, Yong, E-mail: 154682180@qq.com [School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Yu, Hai-Yin, E-mail: yhy456@mail.ahnu.edu.cn [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Gu, Jia-Shan, E-mail: jiashanG@mail.ahnu.edu.cn [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Clickable membrane prepared by photo bromination and S{sub N}2 nucleophilic substitution. • Azide graphene oxide prepared by ring-opening reaction. • Alkyne graphene oxide was prepared via esterification reaction. • Layer-by-layer assembly of graphene oxide on membrane by click chemistry. • Antibacterial and antifouling characteristics were enhanced greatly. - Abstract: Polypropylene is an extensively used membrane material; yet, polypropylene membranes exhibit extremely poor resistance to protein fouling. To ameliorate this issue, graphene oxide (GO) nanosheets were used to modify macroporous polypropylene membrane (MPPM) via layer-by-layer assembly technique through click reaction. First, alkyne-terminated GO was prepared through esterification between carboxyl groups in GO and amide groups in propargylamine; azide-terminated GO was synthesized by the ring-opening reaction of epoxy groups in GO with sodium azide. Second, GO was introduced to the membrane by click chemistry. Characterizations of infrared spectra and X-ray photoelectron spectroscopy confirmed the modification. The sharply decreasing of static water contact angle indicated the improvement of the surface hydrophilicity for GO modified membrane. Introducing GO to the membrane results in a dramatic increase of water flux, improvements in the antifouling characteristics and antibacterial property for the membranes. The pure water flux through the 5-layered GO modified membrane is 1.82 times that through the unmodified one. The water flux restores to 43.0% for the unmodified membrane while to 79.8% for the modified membrane. The relative flux reduction decreases by 32.1% due to GO modification. The antibacterial property was also enhanced by two-thirds. These results demonstrate that the antifouling and antibacterial characteristics can be raised by tethering GO to the membrane surface.

  17. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance

    International Nuclear Information System (INIS)

    Zhang, Zhen-Bei; Wu, Jing-Jing; Su, Yu; Zhou, Jin; Gao, Yong; Yu, Hai-Yin; Gu, Jia-Shan

    2015-01-01

    Graphical abstract: - Highlights: • Clickable membrane prepared by photo bromination and S N 2 nucleophilic substitution. • Azide graphene oxide prepared by ring-opening reaction. • Alkyne graphene oxide was prepared via esterification reaction. • Layer-by-layer assembly of graphene oxide on membrane by click chemistry. • Antibacterial and antifouling characteristics were enhanced greatly. - Abstract: Polypropylene is an extensively used membrane material; yet, polypropylene membranes exhibit extremely poor resistance to protein fouling. To ameliorate this issue, graphene oxide (GO) nanosheets were used to modify macroporous polypropylene membrane (MPPM) via layer-by-layer assembly technique through click reaction. First, alkyne-terminated GO was prepared through esterification between carboxyl groups in GO and amide groups in propargylamine; azide-terminated GO was synthesized by the ring-opening reaction of epoxy groups in GO with sodium azide. Second, GO was introduced to the membrane by click chemistry. Characterizations of infrared spectra and X-ray photoelectron spectroscopy confirmed the modification. The sharply decreasing of static water contact angle indicated the improvement of the surface hydrophilicity for GO modified membrane. Introducing GO to the membrane results in a dramatic increase of water flux, improvements in the antifouling characteristics and antibacterial property for the membranes. The pure water flux through the 5-layered GO modified membrane is 1.82 times that through the unmodified one. The water flux restores to 43.0% for the unmodified membrane while to 79.8% for the modified membrane. The relative flux reduction decreases by 32.1% due to GO modification. The antibacterial property was also enhanced by two-thirds. These results demonstrate that the antifouling and antibacterial characteristics can be raised by tethering GO to the membrane surface

  18. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron......(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide....

  19. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  20. Effect of surface oxidation on the nm-scale wear behavior of a metallic glass

    International Nuclear Information System (INIS)

    Caron, A.; Louzguine-Luzguin, D. V.; Sharma, P.; Inoue, A.; Shluger, A.; Fecht, H.-J.

    2011-01-01

    Metallic glasses are good candidates for applications in micromechanical systems. With size reduction of mechanical components into the micrometer and submicrometer range, the native surface oxide layer starts playing an important role in contact mechanical applications of metallic glasses. We use atomic force microscopy to investigate the wear behavior of the Ni 62 Nb 38 metallic glass with a native oxide layer and with an oxide grown after annealing in air. After the annealing, the wear rate is found to have significantly decreased. Also the dependency of the specific wear on the velocity is found to be linear in the case of the as spun sample while it follows a power law in the case of the sample annealed in air. We discuss these results in relation to the friction behavior and properties of the surface oxide layer obtained on the same alloy.

  1. Effect of dew point on the formation of surface oxides of twinning-induced plasticity steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yunkyum [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136–713 (Korea, Republic of); Lee, Joonho, E-mail: joonholee@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136–713 (Korea, Republic of); Shin, Kwang-Soo [Research Institute of Industrial Science and Technology, Pohang 790–600 (Korea, Republic of); Jeon, Sun-Ho; Chin, Kwang-Geun [POSCO Technical Research Laboratories, Gwangyang 545–090 (Korea, Republic of)

    2014-03-01

    The surface oxides of twinning-induced plasticity (TWIP) steel annealed at 800 °C for 43 s were investigated using transmission electron microscopy. During the annealing process, the oxygen potential was controlled by adjusting the dew point in a 15%H{sub 2}–N{sub 2} gas atmosphere. It was found that the type of surface oxides formed and the thickness of the oxide layer were determined by the dew point. In a gas mixture with a dew point of − 20 °C, a MnO layer with a thickness of ∼ 100 nm was formed uniformly on the steel surface. Under the MnO layer, a MnAl{sub 2}O{sub 4} layer with a thickness of ∼ 15 nm was formed with small Mn{sub 2}SiO{sub 4} particles that measured ∼ 70 nm in diameter. Approximately 500 nm below the MnAl{sub 2}O{sub 4} layer, Al{sub 2}O{sub 3} was formed at the grain boundaries. On the other hand, in a gas mixture with a dew point of − 40 °C, a MnAl{sub 2}O{sub 4} layer with a thickness of ∼ 5 nm was formed on most parts of the surface. On some parts of the surface, Mn{sub 2}SiO{sub 4} particles were formed irregularly up to a thickness of ∼ 50 nm. Approximately 200 nm below the MnAl{sub 2}O{sub 4} layer, Al{sub 2}O{sub 3} was found at the grain boundaries. Thermodynamic calculations were performed to explain the experimental results. The calculations showed that when a{sub O2} > ∼ 1.26 × 10{sup −28}, MnO, MnAl{sub 2}O{sub 4}, and Mn{sub 2}SiO{sub 4} can be formed together, and the major oxide is MnO. When a{sub O2} is in the range of 1.26 × 10{sup −28}–2.51 × 10{sup −31}, MnO is not stable but MnAl{sub 2}O{sub 4} is the major oxide. When a{sub O2} < ∼ 2.51 × 10{sup −31}, only Al{sub 2}O{sub 3} is stable. Consequently, the effective activity of oxygen is considered the dominant factor in determining the type and shape of surface oxides of TWIP steel. - Highlights: • The surface oxides of TWIP steel annealed at 800 °C were investigated using TEM. • The surface oxides were determined by the dew point

  2. Oxidation of hydrogen terminated Ge(1 0 0) surface in the presence of iodine in methanol

    International Nuclear Information System (INIS)

    Lee, Younghwan; Park, Kibyung; Lim, Sangwoo

    2008-01-01

    Surface reaction on Ge(1 0 0) in liquid methanol (MeOH) was systematically studied. In particular, the characteristics of the Ge surface in the presence of iodine (I 2 ) in MeOH were investigated. MeOH treatment of the Ge surface in the presence of 0.05 or 0.005 mM of I 2 exhibited a similar result to that without I 2 , which produces a GeO x -dominant oxide structure. However, when the concentration of I 2 in MeOH increased to 0.5 mM, Ge surface revealed a GeO 2 -dominant oxide structure. Therefore, it is believed that the addition of enough I 2 in MeOH modifies the Ge oxidation mechanism. Hydroxide produced by the reaction between MeOH and the iodine radical may oxidize the Ge surface to form a Ge-O layer. Because MeOH is greatly consumed by chain and series reactions when I 2 concentration is high, a GeO 2 structure is not etched and a GeO 2 -dominant oxide structure is obtained with the addition of 0.5 mM I 2 in MeOH. The modified oxide layer prepared in MeOH with 0.5 mM I 2 exhibited an atomically smoother surface compared to a pure MeOH- or H 2 O 2 -treated Ge surface and a much thinner oxide layer than H 2 O 2 treatment.

  3. Single-Step Electrophoretic Deposition of Non-noble Metal Catalyst Layer with Low Onset Voltage for Ethanol Electro-oxidation.

    Science.gov (United States)

    Ahmadi Daryakenari, Ahmad; Hosseini, Davood; Ho, Ya-Lun; Saito, Takumi; Apostoluk, Aleksandra; Müller, Christoph R; Delaunay, Jean-Jacques

    2016-06-29

    A single-step electrophoretic deposition (EPD) process is used to fabricate catalyst layers which consist of nickel oxide nanoparticles attached on the surface of nanographitic flakes. Magnesium ions present in the colloid charge positively the flake's surface as they attach on it and are also used to bind nanographitic flakes together. The fabricated catalyst layers showed a very low onset voltage (-0.2 V vs Ag/AgCl) in the electro-oxidation of ethanol. To clarify the occurring catalytic mechanism, we performed annealing treatment to produce samples having a different electrochemical behavior with a large onset voltage. Temperature dependence measurements of the layer conductivity pointed toward a charge transport mechanism based on hopping for the nonannealed layers, while the drift transport is observed in the annealed layers. The hopping charge transport is responsible for the appearance of the low onset voltage in ethanol electro-oxidation.

  4. Thin polycrystalline diamond films protecting zirconium alloys surfaces: From technology to layer analysis and application in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashcheulov, P. [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Škoda, R.; Škarohlíd, J. [Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, Prague 6, CZ-160 07 (Czech Republic); Taylor, A.; Fekete, L.; Fendrych, F. [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Vega, R.; Shao, L. [Texas A& M University, Department of Nuclear Engineering TAMU-3133, College Station, TX TX 77843 (United States); Kalvoda, L.; Vratislav, S. [Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, Brehova 7, CZ-115 19, Prague 1 (Czech Republic); Cháb, V.; Horáková, K.; Kůsová, K.; Klimša, L.; Kopeček, J. [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Sajdl, P.; Macák, J. [University of Chemistry and Technology, Power Engineering Department, Technická 3, Prague 6, CZ-166 28 (Czech Republic); Johnson, S. [Nuclear Fuel Division, Westinghouse Electric Company, 5801 Bluff Road, Hopkins, SC 29209 (United States); Kratochvílová, I., E-mail: krat@fzu.cz [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, Brehova 7, CZ-115 19, Prague 1 (Czech Republic)

    2015-12-30

    Graphical abstract: - Highlights: • In this work we showed that films prepared by MW-LA-PECVD technology can be used as anticorrosion protective layer for Zircaloy2 nuclear fuel claddings at elevated temperatures (950 °C) when α phase of zirconium changes to β phase (more opened for oxygen/hydrogen diffusion). Quality of PCD films was examined by Raman spectroscopy, XPS, SEM, AFM and SIMS analysis. • The polycrystalline diamond films were of high quality - without defects and contaminations. After hot steam oxidation (950 °C) a high level of structural integrity of PCD layer was observed. Both sp{sup 2} and sp{sup 3} C phases were present in the protective PCD layer. Higher resistance and a lower degree of impedance dispersion was found in the hot steam oxidized PCD coated Zircaloy2 samples, which may suggest better protection of the Zircaloy2 surface. The PCD layer blocks the hydrogen diffusion into the Zircaloy2 surface thus protecting the material from degradation. • Hot steam oxidation tests confirmed that PCD coated Zircaloy2 surfaces were effectively protected against corrosion. Presented results demonstrate that the PCD anticorrosion protection can significantly prolong service life of Zircaloy2 nuclear fuel claddings in nuclear reactors even at elevated temperatures. - Abstract: Zirconium alloys can be effectively protected against corrosion by polycrystalline diamond (PCD) layers grown in microwave plasma enhanced linear antenna chemical vapor deposition apparatus. Standard and hot steam oxidized PCD layers grown on Zircaloy2 surfaces were examined and the specific impact of polycrystalline Zr substrate surface on PCD layer properties was investigated. It was found that the presence of the PCD coating blocks hydrogen diffusion into the Zircaloy2 surface and protects Zircaloy2 material from degradation. PCD anticorrosion protection of Zircaloy2 can significantly prolong life of Zircaloy2 material in nuclear reactors even at temperatures above Zr

  5. Surface chemistry and cytotoxicity of reactively sputtered tantalum oxide films on NiTi plates

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, K. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Kolaj-Robin, O.; Belochapkine, S.; Laffir, F. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Gandhi, A.A. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Tofail, S.A.M., E-mail: tofail.syed@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland)

    2015-08-31

    NiTi, an equiatomic alloy containing nickel and titanium, exhibits unique properties such as shape memory effect and superelasticity. NiTi also forms a spontaneous protective titanium dioxide (TiO{sub 2}) layer that allows its use in biomedical applications. Despite the widely perceived biocompatibility there remain some concerns about the sustainability of the alloy's biocompatibility due to the defects in the TiO{sub 2} protective layer and the presence of high amount of sub-surface Ni, which can give allergic reactions. Many surface treatments have been investigated to try to improve both the corrosion resistance and biocompatibility of this layer. For such purposes, we have sputter deposited tantalum (Ta) oxide thin films onto the surface of the NiTi alloy. Despite being one of the promising metals for biomedical applications, Ta, and its various oxides and their interactions with cells have received relatively less attention. The oxidation chemistry, crystal structure, morphology and biocompatibility of these films have been investigated. In general, reactive sputtering especially in the presence of a low oxygen mixture yields a thicker film with better control of the film quality. The sputtering power influenced the surface oxidation states of Ta. Both microscopic and quantitative cytotoxicity measurements show that Ta films on NiTi are biocompatible with little to no variation in cytotoxic response when the surface oxidation state of Ta changes. - Highlights: • Reactive sputtering in low oxygen mixture yields thicker better quality films. • Sputtering power influenced surface oxidation states of Ta. • Cytotoxicity measurements show Ta films on NiTi are biocompatible. • Little to no variation in cytotoxic response when oxidation state changes.

  6. Nanoscale Structural/Chemical Characterization of Manganese Oxide Surface Layers and Nanoparticles, and the Associated Implications for Drinking Water

    Science.gov (United States)

    Michel Eduardo Vargas Vallejo

    Water treatment facilities commonly reduce soluble contaminants, such as soluble manganese (Mn2+), in water by oxidation and subsequent filtration. Previous studies have shown that conventional porous filter system removes Mn2+ from drinking water by developing Mn-oxides (MnO x(s)) bearing coating layers on the surface of filter media. Multiple models have been developed to explain this Mn2+ removal process and the formation mechanism of MnOx(s) coatings. Both, experimental and theoretical studies to date have been largely focused on the micrometer to millimeter scale range; whereas, coating layers are composed of nanoscale particles and films. Hence, understanding the nanoscale particle and film formation mechanisms is essential to comprehend the complexity of soluble contaminant removal processes. The primary objective of this study was to understand the initial MnOx(s) coating formation mechanisms and evaluate the influence of filter media characteristics on these processes. We pursued this objective by characterizing at the micro and nanoscale MnO x(s) coatings developed on different filter media by bench-scale column tests with simulating inorganic aqueous chemistry of a typical coagulation fresh water treatment plant, where free chlorine is present across filter bed. Analytical SEM and TEM, powder and synchrotron-based XRD, XPS, and ICPMS were used for characterization of coatings, filter media and water solution elemental chemistry. A secondary objective was to model how surface coating formation occurred and its correlation with experimentally observed physical characteristics. This modeling exercise indicates that surface roughness and morphology of filtering media are the major contributing factors in surface coating formation process. Contrary to previous models that assumed a uniform distribution and growth of surface coating, the experimental results showed that greater amounts of coating were developed in rougher areas. At the very early stage of

  7. Oxidation behaviour of cast aluminium matrix composites with Ce surface coatings

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Feliu, S.; Viejo, F.

    2007-01-01

    The oxidation behaviour of SiC-reinforced aluminium matrix composites (A3xx.x/SiCp) has been studied after Ce-based treatments. Kinetics data of oxidation process were obtained from gravimetric tests performed at different temperatures (350, 425 and 500 o C). The nature of the oxidation layer was analyzed by scanning electron and atomic force microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy and X-ray diffraction. The extent of oxidation degradation in untreated composites was preferentially localized in matrix/SiCp interfaces favouring the MgO formation. Ce coatings favoured a uniform oxidation of the composite surface with MgAl 2 O 4 spinel formation. This oxide increased the surface hardness of the materials

  8. Charge state of oxide layer of SIMOX-structures

    CERN Document Server

    Askinazi, A Y; Dmitriev, V A; Miloglyadova, L V

    2001-01-01

    The charge state of the oxide layer of the SIMOX-structures, obtained in the course of forming the oxide layers, bricked up in the silicon volume, through the oxygen ions implantation into the Si, is studied. The charge state of the given structures is studied through the method of the layer-by-layer profiling, which makes it possible to obtain the dependence of the plane zones potential on the oxide layer thickness. It is established, that during the process of the SIMOX-structures formation in the oxide layer near the boundary with the Si there appear defects, responsible for the charge. The radiation from the near-the-ultraviolet (NUV) area without the applied electric field neutralizes the given charge. The simultaneous impact of the NUV-radiation and electric field leads to the formation of significantly positive charge

  9. Study of oxide layers in creep of Ti alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Machado, J.P.B.; Martins, G.V.; Barboza, M.J.R.

    2009-01-01

    The present study is about the effect of oxide layers in creep of Ti-6Al-4V alloy, in different atmospheres (air, nitrogen and argon). Ti-6Al-4V alloy was treated during 24 hours in a thermal treatment furnace at 600°C in different atmospheres (argon, nitrogen and air). The samples were analyzed by High Resolution X-Ray Diffraction, Scanning Electronic Microscopy (SEM), Atomic Force Microscopy (AFM) and microhardness test. The polished samples of Ti-6Al-4V alloy were treated during 24 hours at 600°C and the oxidation behavior in each case using argon, nitrogen and air atmospheres was observed. The oxidation was more aggressive in air atmosphere, forming TiO 2 film in the surface. The oxidation produced a weight gain through the oxide layer growth and hardening by oxygen dissolution. Ti-6Al-4V alloy specimens also were produced in order to test them in creep, at 250 MPa and 600 deg C, with argon, nitrogen and air atmospheres. When the Ti-6Al-4V alloy was tested under argon and nitrogen atmospheres oxidation effects are smaller and the behavior of the creep curves shows that the creep life time was better in atmospheres not so oxidant. It is observed a decreasing of steady state creep in function of the oxidation process reduction. It is shown that, for the Ti-6Al-4V alloy, their useful life is strongly affected by the atmosphere that is submitted, on account of the oxidation suffered by the material. (author)

  10. Growth of light-emitting SiGe heterostructures on strained silicon-on-insulator substrates with a thin oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    Baidakova, N. A., E-mail: banatale@ipmras.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Bobrov, A. I. [University of Nizhny Novgorod (Russian Federation); Drozdov, M. N.; Novikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, D. A. [University of Nizhny Novgorod (Russian Federation); Shaleev, M. V.; Yunin, P. A.; Yurasov, D. V.; Krasilnik, Z. F. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-08-15

    The possibility of using substrates based on “strained silicon on insulator” structures with a thin (25 nm) buried oxide layer for the growth of light-emitting SiGe structures is studied. It is shown that, in contrast to “strained silicon on insulator” substrates with a thick (hundreds of nanometers) oxide layer, the temperature stability of substrates with a thin oxide is much lower. Methods for the chemical and thermal cleaning of the surface of such substrates, which make it possible to both retain the elastic stresses in the thin Si layer on the oxide and provide cleaning of the surface from contaminating impurities, are perfecte. It is demonstrated that it is possible to use the method of molecular-beam epitaxy to grow light-emitting SiGe structures of high crystalline quality on such substrates.

  11. Suppression of Magnetoresistance in Thin WTe2 Flakes by Surface Oxidation.

    Science.gov (United States)

    Woods, John M; Shen, Jie; Kumaravadivel, Piranavan; Pang, Yuan; Xie, Yujun; Pan, Grace A; Li, Min; Altman, Eric I; Lu, Li; Cha, Judy J

    2017-07-12

    Recent renewed interest in layered transition metal dichalcogenides stems from the exotic electronic phases predicted and observed in the single- and few-layer limit. Realizing these electronic phases requires preserving the desired transport properties down to a monolayer, which is challenging. Surface oxides are known to impart Fermi level pinning or degrade the mobility on a number of different systems, including transition metal dichalcogenides and black phosphorus. Semimetallic WTe 2 exhibits large magnetoresistance due to electron-hole compensation; thus, Fermi level pinning in thin WTe 2 flakes could break the electron-hole balance and suppress the large magnetoresistance. We show that WTe 2 develops an ∼2 nm thick amorphous surface oxide, which shifts the Fermi level by ∼300 meV at the WTe 2 surface. We also observe a dramatic suppression of the magnetoresistance for thin flakes. However, due to the semimetallic nature of WTe 2 , the effects of Fermi level pinning are well screened and are not the dominant cause for the suppression of magnetoresistance, supported by fitting a two-band model to the transport data, which showed the electron and hole carrier densities are balanced down to ∼13 nm. However, the fitting shows a significant decrease of the mobilities of both electrons and holes. We attribute this to the disorder introduced by the amorphous surface oxide layer. Thus, the decrease of mobility is the dominant factor in the suppression of magnetoresistance for thin WTe 2 flakes. Our study highlights the critical need to investigate often unanticipated and sometimes unavoidable extrinsic surface effects on the transport properties of layered dichalcogenides and other 2D materials.

  12. Functional Layer-by-Layer Thin Films of Inducible Nitric Oxide (NO) Synthase Oxygenase and Polyethylenimine: Modulation of Enzyme Loading and NO-Release Activity.

    Science.gov (United States)

    Gunasekera, Bhagya; Abou Diwan, Charbel; Altawallbeh, Ghaith; Kalil, Haitham; Maher, Shaimaa; Xu, Song; Bayachou, Mekki

    2018-03-07

    Nitric oxide (NO) release counteracts platelet aggregation and prevents the thrombosis cascade in the inner walls of blood vessels. NO-release coatings also prevent thrombus formation on the surface of blood-contacting medical devices. Our previous work has shown that inducible nitric oxide synthase (iNOS) films release NO fluxes upon enzymatic conversion of the substrate l-arginine. In this work, we report on the modulation of enzyme loading in layer-by-layer (LbL) thin films of inducible nitric oxide synthase oxygenase (iNOSoxy) on polyethylenimine (PEI). The layer of iNOSoxy is electrostatically adsorbed onto the PEI layer. The pH of the iNOSoxy solution affects the amount of enzyme adsorbed. The overall negative surface charge of iNOSoxy in solution depends on the pH and hence determines the density of adsorbed protein on the positively charged PEI layer. We used buffered iNOSoxy solutions adjusted to pHs 8.6 and 7.0, while saline PEI solution was used at pH 7.0. Atomic force microscopy imaging of the outermost layer shows higher protein adsorption with iNOSoxy at pH 8.6 than with a solution of iNOSoxy at pH 7.0. Graphite electrodes with PEI/iNOSoxy films show higher catalytic currents for nitric oxide reduction mediated by iNOSoxy. The higher enzyme loading translates into higher NO flux when the enzyme-modified surface is exposed to a solution containing the substrate and a source of electrons. Spectrophotometric assays showed higher NO fluxes with iNOSoxy/PEI films built at pH 8.6 than with films built at pH 7.0. Fourier transform infrared analysis of iNOSoxy adsorbed on PEI at pH 8.6 and 7.0 shows structural differences of iNOSoxy in films, which explains the observed changes in enzymatic activity. Our findings show that pH provides a strategy to optimize the NOS loading and enzyme activity in NOS-based LbL thin films, which enables improved NO release with minimum layers of PEI/NOS.

  13. Surface oxidation phenomena of boride coatings grown on iron

    International Nuclear Information System (INIS)

    Carbucicchio, M.; Palombarini, G.; Sambogna, G.

    1992-01-01

    Very hard boride coatings are grown on various metals using thermochemical as well as chemical vapour deposition techniques. In this way many surface properties, and in particular the wear resistance, can be considerably improved. Usually, also the corrosion behaviour of the treated components is important. In particular, oxidizing atmospheres are involved in many applications where, therefore, coating-environment interactions can play a relevant role. In a previous work, the early stages of the oxidation of iron borides were studied by treating single phase compacted powders in flowing oxygen at low temperatures (300-450deg C). In the present paper, the attention is addressed to the oxidation of both single phase and polyphase boride coatings thermochemically grown on iron. The single phase boride coatings were constituted by Fe 2 B, while the polyphase coatings were constituted by an inner Fe 2 B layer and an outer FeB-base layer. All the boride layers displayed strong (002) preferred crystallographic orientations. (orig.)

  14. Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition.

    Science.gov (United States)

    Gong, Yunhui; Palacio, Diego; Song, Xueyan; Patel, Rajankumar L; Liang, Xinhua; Zhao, Xuan; Goodenough, John B; Huang, Kevin

    2013-09-11

    We demonstrate that the highly active but unstable nanostructured intermediate-temperature solid oxide fuel cell cathode, La0.6Sr0.4CoO3-δ (LSCo), can retain its high oxygen reduction reaction (ORR) activity with exceptional stability for 4000 h at 700 °C by overcoating its surfaces with a conformal layer of nanoscale ZrO2 films through atomic layer deposition (ALD). The benefits from the presence of the nanoscale ALD-ZrO2 overcoats are remarkable: a factor of 19 and 18 reduction in polarization area-specific resistance and degradation rate over the pristine sample, respectively. The unique multifunctionality of the ALD-derived nanoscaled ZrO2 overcoats, that is, possessing porosity for O2 access to LSCo, conducting both electrons and oxide-ions, confining thermal growth of LSCo nanoparticles, and suppressing surface Sr-segregation is deemed the key enabler for the observed stable and active nanostructured cathode.

  15. Surface and interfacial reaction study of half cycle atomic layer deposited HfO{sub 2} on chemically treated GaSb surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhernokletov, D. M. [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Dong, H.; Brennan, B.; Kim, J. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Yakimov, M.; Tokranov, V.; Oktyabrsky, S. [College of Nanoscale Science and Engineering, University at Albany - SUNY, Albany, New York 12203 (United States); Wallace, R. M. [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2013-04-01

    An in situ half-cycle atomic layer deposition/X-ray photoelectron spectroscopy (XPS) study was conducted in order to investigate the evolution of the HfO{sub 2} dielectric interface with GaSb(100) surfaces after sulfur passivation and HCl etching, designed to remove the native oxides. With the first pulses of tetrakis(dimethylamido)hafnium(IV) and water, a decrease in the concentration of antimony oxide states present on the HCl-etched surface is observed, while antimony sulfur states diminished below the XPS detection limit on sulfur passivated surface. An increase in the amount of gallium oxide/sulfide is seen, suggesting oxygen or sulfur transfers from antimony to gallium during antimony oxides/sulfides decomposition.

  16. Photo-oxidation: Major sink of oxygen in the ocean surface layer

    NARCIS (Netherlands)

    Gieskes, W.W.C.; Laane, R.W.P.M.; Ruardij, P.

    2015-01-01

    Evidence is presented that the oxygen demand associated with photochemical processes in the surface layer of oceans and seas worldwide is of the same order of magnitude as the amount of oxygen released by photosynthesis of the world's marine phytoplankton. Both estimates are of necessity quite rough

  17. Photo-oxidation : Major sink of oxygen in the ocean surface layer

    NARCIS (Netherlands)

    Gieskes, W. W. C.; Laane, R. W. P. M.; Ruardij, P.

    2015-01-01

    Evidence is presented that the oxygen demand associated with photochemical processes in the surface layer of oceans and seas worldwide is of the same order of magnitude as the amount of oxygen released by photosynthesis of the world's marine phytoplankton. Both estimates are of necessity quite rough

  18. Effect of aging treatment on the in vitro nickel release from porous oxide layers on NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Huan, Z.; Fratila-Apachitei, L.E., E-mail: e.l.fratila-apachitei@tudelft.nl; Apachitei, I.; Duszczyk, J.

    2013-06-01

    Despite the ability of creating porous oxide layers on nickel–titanium alloy (NiTi) surface for biofunctionalization, the use of plasma electrolytic oxidation (PEO) has raised concerns over the possible increased levels of Ni release. Therefore, the primary aim of this study was to investigate the effect of aging in boiling water on Ni release from porous NiTi surfaces that have been formed by the PEO process. Based on different oxidation conditions, e.g. electrolyte composition and electrical parameters, three kinds of oxide layers with various characteristics were prepared on NiTi substrate. The process was followed by aging in boiling water for different durations. The Ni release was assessed by immersion tests in phosphate buffer saline and the Ni concentration was measured using the flame atomic absorption spectrometry. The results showed that aging in boiling water can significantly reduce the Ni release from oxidized porous samples, given that the duration of the treatment is finely adjusted according to the parameters of the as-formed oxide layer. Surface examination of the samples before and after aging in boiling water suggested that such a treatment is non-destructive while improving the corrosion resistance of oxidized samples, as evidenced by potentiodynamic polarization tests. The results of this study indicate that water boiling may be a suitable post-treatment required to minimize Ni release from porous oxides produced on NiTi by PEO for biomedical applications.

  19. Preferred hydride growth orientations on oxide-coated gadolinium surfaces

    International Nuclear Information System (INIS)

    Benamar, G.M.; Schweke, D.; Kimmel, G.; Mintz, M.H.

    2012-01-01

    Highlights: ► The preferred hydride growth orientations on gadolinium metal coated by a thin oxide layer are presented. ► A preferred growth of the (1 0 0) h plane of the face centered cubic (FCC) GdH 2 is observed for the hydride spots forming below the oxidation layer. ► A change to the (1 1 1) h plane of the cubic hydride dominates for the hydride's Growth Centers. ► The texture change is attributed to the surface normal compressive stress component exerted by the oxidation layer on the developing hydride. - Abstract: The initial development of hydrides on polycrystalline gadolinium (Gd), as on some other hydride forming metals, is characterized by two sequential steps. The first step involves the rapid formation of a dense pattern of small hydride spots (referred to as the “small family” of hydrides) below the native oxidation layer. The second stage takes place when some of the “small family” nucleants (referred to as “growth centers”, GCs) break the oxide layer, leading to their rapid growth and finally to the massive hydriding of the sample. In the present study, the texture of the two hydride families was studied, by combining X-ray diffraction (XRD) analysis with a microscopic analysis of the hydride, using scanning electron microscopy (SEM) and atomic force microscopy (AFM). It has been observed that for the “small family”, a preferred growth of the (1 0 0) h plane of the cubic GdH 2 takes place, whereas for the GCs, a change to the (1 1 1) h plane of the cubic hydride dominates. These preferred growth orientations were analyzed by their structure relation with the (0 0 .1) m basal plane of the Gd metal. It has been concluded that the above texture change is due to the surface normal compressive stress component exerted by the oxidation overlayer on the developing hydride, preventing the (0 0 .1) m ||(1 1 1) h growth orientation. This stress is relieved upon the rupture of that overlayer and the development of the GCs, leading to

  20. Effects of electrical discharge surface modification of superalloy Haynes 230 with aluminum and molybdenum on oxidation behavior

    International Nuclear Information System (INIS)

    Bai, C.-Y.

    2007-01-01

    The effects of the electrical discharge alloying (EDA) process on improving the high temperature oxidation resistance of the Ni-based superalloy Haynes 230 have been investigated. The 85 at.% Al and 15 at.% Mo composite electrode provided the surface alloying materials. An Al-rich layer is produced on the surface of the EDA specimen alloyed with positive electrode polarity, whereas, many discontinuous piled layers are attached to the surface of the EDA superalloy when negative electrode polarity is selected. The oxidation resistance of the specimen alloyed with positive electrode polarity is better than that of the unalloyed superalloy, and the effective temperature of oxidation resistance of the alloyed layer can be achieved to 1100 o C. Conversely, the oxidation resistance of the other EDA specimen alloyed with negative electrode polarity is even worse than that of the unalloyed superalloy

  1. Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells

    International Nuclear Information System (INIS)

    Badawy, Waheed A.

    2008-01-01

    Photovoltaic and photoelectrochemical systems were prepared by the formation of a thin porous film on silicon. The porous silicon layer was formed on the top of a clean oxide free silicon wafer surface by anodic etching in HF/H 2 O/C 2 H 5 OH mixture (2:1:1). The silicon was then covered by an oxide film (tin oxide, ITO or titanium oxide). The oxide films were prepared by the spray/pyrolysis technique which enables doping of the oxide film by different atoms like In, Ru or Sb during the spray process. Doping of SnO 2 or TiO 2 films with Ru atoms improves the surface characteristics of the oxide film which improves the solar conversion efficiency. The prepared solar cells are stable against environmental attack due to the presence of the stable oxide film. It gives relatively high short circuit currents (I sc ), due to the presence of the porous silicon layer, which leads to the recorded high conversion efficiency. Although the open-circuit potential (V oc ) and fill factor (FF) were not affected by the thickness of the porous silicon film, the short circuit current was found to be sensitive to this thickness. An optimum thickness of the porous film and also the oxide layer is required to optimize the solar cell efficiency. The results represent a promising system for the application of porous silicon layers in solar energy converters. The use of porous silicon instead of silicon single crystals in solar cell fabrication and the optimization of the solar conversion efficiency will lead to the reduction of the cost as an important factor and also the increase of the solar cell efficiency making use of the large area of the porous structures

  2. Emissivity model of steel 430 during the growth of oxide layer at 800-1100 K and 1.5 μm

    Science.gov (United States)

    Xing, Wei; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2018-01-01

    This work studied the variation in spectral emissivity with growth of oxide layer at the different temperatures. For this reason, we measured the normal spectral emissivity during the growth of oxide layer on the sample surface at a wavelength of 1.5 μm over a temperature range 800-1100 K. In the experiment, the temperature was measured by the two thermocouples, which were symmetrically welded onto the front surface of specimens. The average of their readings was regarded as the true temperature. The detector should be perpendicular to the specimen surface as accurately as possible. The variation in spectral emissivity with growth of oxide layer was evaluated at a certain temperature. Altogether 11 emissivity models were evaluated. The conclusion was gained that the more the number of parameters used in the models was, the better the fitting accuracy became. On the whole, all the PEE models, the four-parameter LEE model and the five-parameter PFE, PLE and LEE models could be employed to well fit this kind of variation. The variation in spectral emissivity with temperature was determined at a certain thickness of oxide film. Almost all the models studied in this paper could be used to accurately evaluate this variation. The approximate models of spectral emissivity as a function of temperature and oxide-layer thickness were proposed. The strong oscillations of spectral emissivity were observed, which were affirmed to arise from the interference effect between the two radiations stemming from the oxide layer and from the substrate. The uncertainties in the temperature of steel 430 generated only by the surface oxidization were approximately 4.1-10.7 K in this experiment.

  3. XPS studies of SiO/sub 2/ surface layers formed by oxygen ion implantation into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, D.; Finster, J. (Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Sektion Chemie); Hensel, E.; Skorupa, W.; Kreissig, U. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))

    1983-03-16

    SiO/sub 2/ surface layers of 160 nm thickness formed by /sup 16/O/sup +/ ion implantation into silicon are examined by X-ray photoelectron spectroscopy measurements into the depth after a step-by-step chemical etching. The chemical nature and the thickness of the transition layer were determined. The results of the XPS measurements show that the outer surface and the bulk of the layers formed by oxygen implantation and subsequent high temperature annealing consist of SiO/sub 2/. There is no evidence for Si or SiO/sub x/ (0oxide layers. Only its thickness is somewhat larger than in thermal oxide.

  4. Application of various surface passivation layers in solar cells

    International Nuclear Information System (INIS)

    Lee, Ji Youn; Lee, Soo Hong

    2004-01-01

    In this work, we have used different techniques for surface passivation: conventional thermal oxidation (CTO), rapid thermal oxidation (RTO), and plasma-enhanced chemical vapour deposition (PECVD). The surface passivation qualities of eight different single and combined double layers have been investigated both on phosphorus non-diffused p-type Float Zone (FZ) silicon wafers and on diffused emitters (100 Ω/□ and 40 Ω/□). CTO/SiN 1 passivates very well not only on a non-diffused surface (τ eff = 1361 μs) but also on an emitter (τ eff = 414 μs). However, we concluded that RTO/SiN 1 and RTO/SiN 2 stacks were more suitable than CTO/SiN stacks for surface passivation in solar cells since those stacks had relatively good passivation qualities and suitable optical reflections. RTO/SiN 1 for rear-surface passivation and RTO/SiN 2 for front-surface passivation were applied to the fabrication of solar cells. We achieved efficiencies of 18.5 % and 18.8 % on 0.5 Ω-cm (FZ) silicon with planar and textured front surfaces, respectively. An excellent open circuit voltage (V oc ) of 675.6 mV was obtained for the planar cell.

  5. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Mascagni, Daniela Branco Tavares [São Paulo State University - UNESP, Sorocaba, São Paulo (Brazil); Miyazaki, Celina Massumi [Federal University of São Carlos, UFSCar, Campus Sorocaba, SP (Brazil); Cruz, Nilson Cristino da [São Paulo State University - UNESP, Sorocaba, São Paulo (Brazil); Leite de Moraes, Marli [Federal University of São Paulo, Unifesp, Campus São José dos Campos, SP (Brazil); Riul, Antonio [University of Campinas - Unicamp, Campinas, São Paulo (Brazil); Ferreira, Marystela, E-mail: marystela@ufscar.br [Federal University of São Carlos, UFSCar, Campus Sorocaba, SP (Brazil)

    2016-11-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4 μmol·L{sup ‐1} and sensitivity of 2.47 μA·cm{sup −2}·mmol{sup −1}·L for glucose with the (GPDDA/GPSS){sub 1}/(GPDDA/GOx){sub 2} architecture, whose thickness was 19.80 ± 0.28 nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. - Highlights: • Direct electrochemistry of glucose oxidase at functionalized reduced graphene oxide. • Thickness (layer-by-layer) LbL film determined by Surface Plasmon Resonance (SPR). • Selective determination of glucose in the presence of several interferents. • Real sample test: commercial oral electrolyte solution and lactose-free milk.

  6. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection

    International Nuclear Information System (INIS)

    Mascagni, Daniela Branco Tavares; Miyazaki, Celina Massumi; Cruz, Nilson Cristino da; Leite de Moraes, Marli; Riul, Antonio; Ferreira, Marystela

    2016-01-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4 μmol·L ‐1 and sensitivity of 2.47 μA·cm −2 ·mmol −1 ·L for glucose with the (GPDDA/GPSS) 1 /(GPDDA/GOx) 2 architecture, whose thickness was 19.80 ± 0.28 nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. - Highlights: • Direct electrochemistry of glucose oxidase at functionalized reduced graphene oxide. • Thickness (layer-by-layer) LbL film determined by Surface Plasmon Resonance (SPR). • Selective determination of glucose in the presence of several interferents. • Real sample test: commercial oral electrolyte solution and lactose-free milk.

  7. Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion.

    Science.gov (United States)

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-03-01

    To improve the biocorrosion resistance of stainless steel (SS) and to confer the bactericidal function on its surface for inhibiting bacterial adhesion and biofilm formation, well-defined inorganic-organic hybrid coatings, consisting of the inner compact titanium oxide multilayers and outer dense poly(vinyl-N-hexylpyridinium) brushes, were successfully developed. Nanostructured titanium oxide multilayer coatings were first built up on the SS substrates via the layer-by-layer sol-gel deposition process. The trichlorosilane coupling agent, containing the alkyl halide atom-transfer-radical polymerization (ATRP) initiator, was subsequently immobilized on the titanium oxide coatings for surface-initiated ATRP of 4-vinylpyridine (4VP). The pyridium nitrogen moieties of the covalently immobilized 4VP polymer, or P(4VP), brushes were quaternized with hexyl bromide to produce a high concentration of quaternary ammonium salt on the SS surfaces. The excellent antibacterial efficiency of the grafted polycations, poly(vinyl-N-pyridinium bromide), was revealed by viable cell counts and atomic force microscopy images of the surface. The effectiveness of the hybrid coatings in corrosion protection was verified by the Tafel plot and electrochemical impedance spectroscopy measurements.

  8. The Interface Structure of High-Temperature Oxidation-Resistant Aluminum-Based Coatings on Titanium Billet Surface

    Science.gov (United States)

    Xu, Zhefeng; Rong, Ju; Yu, Xiaohua; Kun, Meng; Zhan, Zhaolin; Wang, Xiao; Zhang, Yannan

    2017-10-01

    A new type of high-temperature oxidation-resistant aluminum-based coating, on a titanium billet surface, was fabricated by the cold spray method, at a high temperature of 1050°C, for 8 h, under atmospheric pressure. The microstructure of the exposed surface was analyzed via optical microscopy, the microstructure of the coating and elemental diffusion was analyzed via field emission scanning electron microscopy, and the interfacial phases were identified via x-ray diffraction. The Ti-Al binary phase diagram and Gibbs free energy of the stable phase were calculated by Thermo-calc. The results revealed that good oxidation resistant 50-μm-thick coatings were successfully obtained after 8 h at 1050°C. Two layers were obtained after the coating process: an Al2O3 oxidation layer and a TiAl3 transition layer on the Ti-based substrate. The large and brittle Al2O3 grains on the surface, which can be easily spalled off from the surface after thermal processing, protected the substrate against oxidation during processing. In addition, the thermodynamic calculation results were in good agreement with the experimental data.

  9. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    Science.gov (United States)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  10. Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies

    International Nuclear Information System (INIS)

    Dincer, Ilker; Tozkoparan, Onur; German, Sergey V.; Markin, Alexey V.; Yildirim, Oguz; Khomutov, Gennady B.; Gorin, Dmitry A.; Venig, Sergey B.; Elerman, Yalcin

    2012-01-01

    Aqueous colloidal suspension of iron oxide nanoparticles has been synthesized. Z-potential of iron oxide nanoparticles stabilized by citric acid was −35±3 mV. Iron oxide nanoparticles have been characterized by the light scattering method and transmission electron microscopy. The polyelectrolyte/iron oxide nanoparticle thin films with different numbers of iron oxide nanoparticle layers have been prepared on the surface of silicon substrates via the layer-by-layer assembly technique. The physical properties and chemical composition of nanocomposite thin films have been studied by atomic force microscopy, magnetic force microscopy, magnetization measurements, Raman spectroscopy. Using the analysis of experimental data it was established, that the magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers, the size of iron oxide nanoparticle aggregates, the distance between aggregates, and the chemical composition of iron oxide nanoparticles embedded into the nanocomposite films. The magnetic permeability of nanocomposite coatings has been calculated. The magnetic permeability values depend on the number of iron oxide nanoparticle layers in nanocomposite film. - Highlights: ► The magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers. ► The iron oxide nanoparticle phase in nanocomposite coatings is a mixture of magnetite and maghemite phases. ► The magnetite and maghemite phases depend on a number of iron oxide nanoparticle layers because the iron oxide nanoparticles are oxidized from magnetite to maghemite.

  11. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Cheng-Yang; Hong, Shao-Chyang; Hwang, Fu-Tsai; Lai, Li-Wen; Lin, Tan-Wei; Liu, Day-Shan

    2011-01-01

    The effect of a nickel oxide (NiO x ) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO x ) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO x films, with and without a NiO x seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO x film, deposited on a NiO x seed layer, was found to be lower than that of a pure TiO x film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO x film deposited onto the NiO x seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO x /TiO x system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  12. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  13. In-situ observation of oxidation of Ti(0001) surface by real-time photoelectron spectroscopy using synchrotron radiation

    CERN Document Server

    Takakuwa, Y; Yoshigoe, A; Teraoka, Y; Mizuno, Y; Tonda, H; Homma, T

    2003-01-01

    Temperature dependence of the initial oxidation kinetics of Ti(0001) surface was investigated by low energy electron diffraction (LEED) and real-time photoelectron spectroscopy using synchrotron radiation of surface- and bulk-sensitive photon energies. LEED observation revealed that oxide layers grow epitaxially with different surface structures depending on temperature: 1x1 at 200degC and sq root 3 x sq root 3 at 400degC. From the oxygen uptake curve measured by O 1s photo-electron intensity, it was clarified that oxygen diffusion through the epitaxially grown oxide layer is significantly enhanced with raising temperature, making the oxide layer thicker than 70A at 400degC. The chemical shift components observed for Ti 2p showed that TiO sub 2 becomes predominant at the subsurface with O sub 2 dose, while the stoichiometry of oxide near the interface is maintained as TiO and Ti sub 2 O sub 3 , for both cases at 200degC and 400degC. Thus it is concluded that the epitaxial growth of a very thin oxide on the Ti...

  14. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    Science.gov (United States)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  15. ZIF-67-derived hollow nanocages with layered double oxides shell as high-Efficiency catalysts for CO oxidation

    Science.gov (United States)

    Kong, Wenpeng; Li, Jing; Chen, Yao; Ren, Yuqing; Guo, Yonghua; Niu, Shengli; Yang, Yanzhao

    2018-04-01

    Constructing non-precious hybrid metal oxides with specific morphology as cost-effective and highly efficient catalysts is a promising way for the automotive exhaust purification. In this work, we report a facile strategy for the fabrication of a unique hollow Co-Ni layered double oxides (HLDO) nanocages by using zeolitic imidazole frameworks (ZIFs) as template. The synthesis of intermediate core-shell and hollow Co-Ni layered double hydroxides (HLDH) nanoflakes as well as the corresponding Co-Ni oxides products were successfully controlled, and the formation process was also explained. Among ZIF-67-derived oxides, HLDO exhibits excellent catalytic activities (complete conversion of CO into CO2 at 118 °C) and long-term stability for CO oxidation. The remarkable catalytic activities of HLDO can be attributed to high surface area (258 m2 g-1) inherited from the HLDH, which could provide more active sites for CO oxidation. In addition, active oxygen species indicated by the O 1 s XPS spectrum and improved synergistic effect between NiO and Co3O4 reflected by H2-TPR, further explain the enhanced performance of the HLDO catalysts. The presented strategy for controlled design and synthesis of hollow multicomponent metal oxides will provide prospects in developing highly effective catalysts.

  16. Layer-by-layer self-assembling copper tetrasulfonated phthalocyanine on carbon nanotube modified glassy carbon electrode for electro-oxidation of 2-mercaptoethanol

    International Nuclear Information System (INIS)

    Shaik, Mahabul; Rao, V.K.; Gupta, Manish; Pandey, P.

    2012-01-01

    This paper describes the electrocatalytic activity of layer-by-layer self-assembled copper tetrasulfonated phthalocyanine (CuPcTS) on carbon nanotube (CNT)-modified glassy carbon (GC) electrode. CuPcTS is immobilized on the negatively charged CNT surface by alternatively assembling a cationic poly(diallyldimethylammonium chloride) (PDDA) layer and a CuPcTS layer. UV–vis absorption spectra and electrochemical measurements suggested the successive linear depositions of the bilayers of CuPcTs and PDDA on CNT. The surface morphology was observed using scanning electron microscopy. The viability of this CuPcTS/PDDA/CNT modified GC electrode as a redox mediator for the anodic oxidation and sensitive amperometric determination of 2-mercaptoethanol (2-ME) in alkaline conditions is described. The effect of number of bilayers of CuPcTS/PDDA and pH on electrochemical oxidation of 2-ME was studied. The proposed electrochemical sensor displayed excellent characteristics towards the determination of 2-ME in 0.1 M NaOH; such as low overpotentials (− 0.15 V vs Ag/AgCl), linear concentration range of 3 × 10 −5 M to 6 × 10 −3 M, and with a detection limit of 2.5 × 10 −5 M using simple amperometry. - Highlights: ► Carbon nanotubes (CNT) were drop-dried on glassy carbon electrode (GCE). ► Copper tetrasulfonated phthalocyanine (CuPcTS) was deposited on CNT/GCE. ► Layer-by-layer self-assembling method is used for depositing CuPcTS. ► Electrocatalytic oxidation of 2-mercaptoethanol (ME) was studied at this electrode ► The detection limit of ME at modified electrode was 25 μM by amperometry.

  17. Alkali-resistant low-temperature atomic-layer-deposited oxides for optical fiber sensor overlays

    Science.gov (United States)

    Kosiel, K.; Dominik, M.; Ściślewska, I.; Kalisz, M.; Guziewicz, M.; Gołaszewska, K.; Niedziółka-Jonsson, J.; Bock, W. J.; Śmietana, M.

    2018-04-01

    This paper presents an investigation of properties of selected metallic oxides deposited at a low temperature (100 °C) by atomic layer deposition (ALD) technique, relating to their applicability as thin overlays for optical fiber sensors resistant in alkaline environments. Hafnium oxide (Hf x O y with y/x approx. 2.70), tantalum oxide (Ta x O y with y/x approx. 2.75) and zirconium oxide (Zr x O y with y/x approx. 2.07), which deposition was based, respectively, on tetrakis(ethylmethyl)hafnium, tantalum pentachloride and tetrakis(ethylmethyl)zirconium with deionized water, were tested as thin layers on planar Si (100) and glass substrates. Growth per cycle (GPC) in the ALD processes was 0.133-0.150 nm/cycle. Run-to-run GPC reproducibility of the ALD processes was best for Hf x O y (0.145 ± 0.001 nm/cycle) and the poorest for Ta x O y (0.133 ± 0.003 nm/cycle). Refractive indices n of the layers were 2.00-2.10 (at the wavelength λ = 632 nm), with negligible k value (at λ for 240-930 nm). The oxides examined by x-ray diffractometry proved to be amorphous, with only small addition of crystalline phases for the Zr x O y . The surfaces of the oxides had grainy but smooth topographies with root-mean square roughness ˜0.5 nm (at 10 × 10 μm2 area) according to atomic force microscopy. Ellipsometric measurements, by contrast, suggest rougher surfaces for the Zr x O y layers. The surfaces were also slightly rougher on the glass-based samples than on the Si-based ones. Nanohardness and Young modules were 4.90-8.64 GPa and 83.7-104.4 GPa, respectively. The tests of scratch resistance revealed better tribological properties for the Hf x O y and the Ta x O y than for the Zr x O y . The surfaces were hydrophilic, with wetting angles of 52.5°-62.9°. The planar oxides on Si, being resistive even to concentrated alkali (pH 14), proved to be significantly more alkali-resistive than Al2O3. The Ta x O y overlay was deposited on long-period grating sensor induced in optical

  18. Effect of nitrogen doping on wetting and photoactive properties of laser processed zinc oxide-graphene oxide nanocomposite layers

    Energy Technology Data Exchange (ETDEWEB)

    György, E., E-mail: egyorgy@icmab.es [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona (CSIC-ICMAB), Campus UAB, 08193 Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, P. O. Box MG 36, 76900 Bucharest V (Romania); Pérez del Pino, A. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona (CSIC-ICMAB), Campus UAB, 08193 Bellaterra (Spain); Logofatu, C. [National Institute for Materials Physics, P. O. Box MG. 7, 77125 Bucharest (Romania); Duta, A.; Isac, L. [Transilvania University of Brasov, Research Centre for Renewable Energy Systems and Recycling, Eroilor 29, 500036, Brasov (Romania)

    2014-07-14

    Zinc oxide-graphene oxide nanocomposite layers were submitted to laser irradiation in air or controlled nitrogen atmosphere using a frequency quadrupled Nd:YAG (λ = 266 nm, τ{sub FWHM} ≅ 3 ns, ν = 10 Hz) laser source. The experiments were performed in air at atmospheric pressure or in nitrogen at a pressure of 2 × 10{sup 4} Pa. The effect of the irradiation conditions, incident laser fluence value, and number of subsequent laser pulses on the surface morphology of the composite material was systematically investigated. The obtained results reveal that nitrogen incorporation improves significantly the wetting and photoactive properties of the laser processed layers. The kinetics of water contact angle variation when the samples are submitted to laser irradiation in nitrogen are faster than that of the samples irradiated in air, the surfaces becoming super-hydrophilic under UV light irradiation.

  19. Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide.

    Science.gov (United States)

    Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders

    2018-04-12

    Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

  20. A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces

    International Nuclear Information System (INIS)

    Gholivand, Kh.; Khosravi, M.; Hosseini, S.G.; Fathollahi, M.

    2010-01-01

    Most products especially metallic surfaces require cleaning treatment to remove surface contaminations that remain after processing or usage. Lead fouling is a general problem which arises from lead fouling on the chromium surfaces of bores and other interior parts of systems which have interaction with metallic lead in high temperatures and pressures. In this study, a novel chemical solution was introduced as a cleaner reagent for removing metallic lead pollution, as a fouling metal, from chromium surfaces. The cleaner aqueous solution contains hydrogen peroxide (H 2 O 2 ) as oxidizing agent of lead layer on the chromium surface and acetic acid (CH 3 COOH) as chelating agent of lead ions. The effect of some experimental parameters such as acetic acid concentration, hydrogen peroxide concentration and temperature of the cleaner solution during the operation on the efficiency of lead cleaning procedure was investigated. The results of scanning electron microscopy (SEM) showed that using this procedure, the lead pollution layer could be completely removed from real chromium surfaces without corrosion of the original surface. Finally, the optimum conditions for the complete and fast removing of lead pollution layer from chromium surfaces were proposed. The experimental results showed that at the optimum condition (acetic acid concentration 28% (V/V), hydrogen peroxide 8% (V/V) and temperature 35 deg. C), only 15-min time is needed for complete removal of 3 g fouling lead from a chromium surface.

  1. Intrinsically water-repellent copper oxide surfaces; An electro-crystallization approach

    Science.gov (United States)

    Akbari, Raziyeh; Ramos Chagas, Gabriela; Godeau, Guilhem; Mohammadizadeh, Mohammadreza; Guittard, Frédéric; Darmanin, Thierry

    2018-06-01

    Use of metal oxide thin layers is increased due to their good durability under environmental conditions. In this work, the repeatable nanostructured crystalite Cu2O thin films, developed by electrodeposition method without any physical and chemical modifications, demonstrate good hydrophobicity. Copper (I) oxide (Cu2O) layers were fabricated on gold/Si(1 0 0) substrates by different electrodeposition methods i.e. galvanostatic deposition, cyclic voltammetry, and pulse potentiostatic deposition and using copper sulfate (in various concentrations) as a precursor. The greatest crystalline face on prepared Cu2O samples is (1 1 1) which is the most hydrophobic facet of Cu2O cubic structure. Indeed, different crystallite structures such as nanotriangles and truncated octahedrons were formed on the surface for various electrodeposition methods. The increase of the contact angle (θw) measured by the rest time, reaching to about 135°, was seen at different rates and electrodeposition methods. In addition, two-step deposition surfaces were also prepared by applying two of the mentioned methods, alternatively. In general, the morphology of the two-step deposition surfaces showed some changes compared to that of one-step samples, allowing the formation of different crystallite shapes. Moreover, the wettability behavior showd the larger θw of the two-step deposition layers compared to the related one-step deposition layers. Therefore, the highest observed θw was related to the one of two-step deposition layers due to the creation of small octahedral structures on the surface, having narrow and deep valleys. However, there was an exception which was due to the resulted big structures and broad valleys on the surface. So, it is possible to engineer different crystallites shapes using the proposed two-step deposition method. It is expected that hydrophobic crystallite thin films can be used in environmental and electronic applications to save energy and materials properties.

  2. Single-layer model for surface roughness.

    Science.gov (United States)

    Carniglia, C K; Jensen, D G

    2002-06-01

    Random roughness of an optical surface reduces its specular reflectance and transmittance by the scattering of light. The reduction in reflectance can be modeled by a homogeneous layer on the surface if the refractive index of the layer is intermediate to the indices of the media on either side of the surface. Such a layer predicts an increase in the transmittance of the surface and therefore does not provide a valid model for the effects of scatter on the transmittance. Adding a small amount of absorption to the layer provides a model that predicts a reduction in both reflectance and transmittance. The absorbing layer model agrees with the predictions of a scalar scattering theory for a layer with a thickness that is twice the rms roughness of the surface. The extinction coefficient k for the layer is proportional to the thickness of the layer.

  3. Electron tunneling in tantalum surface layers on niobium

    International Nuclear Information System (INIS)

    Ruggiero, S.T.; Track, E.K.; Prober, D.E.; Arnold, G.B.; DeWeert, M.J.

    1986-01-01

    We have performed electron tunneling measurements on tantalum surface layers on niobium. The tunnel junctions comprise 2000-A-circle Nb base electrodes with 10--100-A-circle in situ--deposited Ta overlayers, an oxide barrier, and Ag, Pb, or Pb-Bi alloy counterelectrodes. The base electrodes were prepared by ion-beam sputter deposition. The characteristics of these junctions have been studied as a function of Ta-layer thickness. These include the critical current, bound-state energy, phonon structure, and oxide barrier shape. We have compared our results for the product I/sub c/R versus tantalum-layer thickness with an extended version of the Gallagher theory which accounts for both the finite mean free path in the Ta overlayers and suppression of the I/sub c/R product due to strong-coupling effects. Excellent fits to the data yield a value of the intrinsic scattering probability for electrons at the Ta/Nb interface of r 2 = 0.01. This is consistent with the value expected from simple scattering off the potential step created by the difference between the Fermi energies of Ta and Nb. We have found a universal empirical correlation in average barrier height phi-bar and width s in the form phi-bar = 6 eV/(s-10 A-circle) for measured junctions which holds both for our data and results for available data in the literature for oxide-barrier junctions. The latter are composed of a wide variety of base and counterelectrode materials. These results are discussed in the general context of oxide growth and compared with results for artificial tunnel barriers

  4. Water surface coverage effects on reactivity of plasma oxidized Ti films

    International Nuclear Information System (INIS)

    Pranevicius, L.; Pranevicius, L.L.; Vilkinis, P.; Baltaragis, S.; Gedvilas, K.

    2014-01-01

    Highlights: • The reactivity of Ti films immersed in water vapor plasma depends on the surface water coverage. • The adsorbed water monolayers are disintegrated into atomic constituents on the hydrophilic TiO 2 under plasma radiation. • The TiO 2 surface covered by water multilayer loses its ability to split adsorbed water molecules under plasma radiation. - Abstract: The behavior of the adsorbed water on the surface of thin sputter deposited Ti films maintained at room temperature was investigated in dependence on the thickness of the resulting adsorbed water layer, controllably injecting water vapor into plasma. The surface morphology and microstructure were used to characterize the surfaces of plasma treated titanium films. Presented experimental results showed that titanium films immersed in water vapor plasma at pressure of 10–100 Pa promoted the photocatalytic activity of overall water splitting. The surfaces of plasma oxidized titanium covered by an adsorbed hydroxyl-rich island structure water layer and activated by plasma radiation became highly chemically reactive. As water vapor pressure increased up to 300–500 Pa, the formed water multilayer diminished the water oxidation and, consequently, water splitting efficiency decreased. Analysis of the experimental results gave important insights into the role an adsorbed water layer on surface of titanium exposed to water vapor plasma on its chemical activity and plasma activated electrochemical processes, and elucidated the surface reactions that could lead to the split of water molecules

  5. Chemical state analysis of oxidation products on steel surface by conversion electron Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Nomura, Kiyoshi

    1978-01-01

    The polished NT-70H steel (Fe: 95.97%, C: 0.56%, diameter: 5 cm, thickness: 0.5 cm) was immersed in deionized water or in solutions containing (0.25 -- 0.5) M of chloride, sulfate and nitrate ions. The chemical states of oxidation products of iron on the surface were identified through the analysis of conversion electron Moessbauer spectra (CEMS). CEMS of the steel surface, which had been dipped in deionized water, revealed that γ-FeOOH was formed on the surface. The thickness of γ-FeOOH layer increased with the increase of the duration of dipping. Dissolved oxygen in the solution played an essential role in the oxidation of iron to γ-FeOOH. Oxidation product of iron dipped in the 0.5 M sodium chloride solution was identified as γ-FeOOH. Amorphous paramagnetic iron (III) compound tended to form in the presence of hydrogen peroxide or ammonium ions in the solutions. The increase of alkalinity of the solution up to pH 12 suppressed the oxidation rate and assisted the formation of green rust, which was confirmed by the appearance of the quadrupole splitting peaks of the green rust. In the 0.25 M sodium sulfate solution, oxidation of the steel surface proceeded slowly and the quadrupole splitting peaks of Fe(OH) 2 were seen in the CEMS. The peak intensity of Fe(OH) 2 gradually decreased and that of γ-FeOOH increased by the extension of immersion of steel in the solution. Magnetite (Fe 3 O 4 ) layer was developed beneath the γ-FeOOH layer, when steel was dipped in 0.5 M sodium nitrate solution. However, the peaks of Fe 3 O 4 were not seen on CEMS of steel surface immersed in 0.5 M ammonium nitrate solution. Thus, applying the feasibility of CEMS for the characterization of oxidated compounds of iron on the steel surface formed by the immersion in solutions, the oxidation mechanism of the steel surface was discussed based upon the results of chemical state analyses. (author)

  6. Effects of prior surface damage on high-temperature oxidation of Fe-, Ni-, and Co-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL; Lowe, Tracie M [ORNL; Pint, Bruce A [ORNL

    2009-01-01

    Multi-component metallic alloys have been developed to withstand high-temperature service in corrosive environments. Some of these applications, like exhaust valve seats in internal combustion engines, must also resist sliding, impact, and abrasion. The conjoint effects of temperature, oxidation, and mechanical contact can result in accelerated wear and the formation of complex surface layers whose properties differ from those of the base metal and the oxide scale that forms in the absence of mechanical contact. The authors have investigated the effects of prior surface damage, produced by scratch tests, on the localized reformation of oxide layers. Three high-performance commercial alloys, based on iron, nickel, and cobalt, were used as model materials. Thermogravimetric analysis (TGA) was used to determine their static oxidation rates at elevated temperature (850o C). A micro-abrasion, ball-cratering technique was used to measure oxide layer thickness and to compare it with TGA results. By using taper-sectioning techniques and energy-dispersive elemental mapping, a comparison was made between oxide compositions grown on non-damaged surfaces and oxides that formed on grooves produced by a diamond stylus. Microindentation and scratch hardness data revealed the effects of high temperature exposure on both the substrate hardness and the nature of oxide scale disruption. There were significant differences in elemental distribution between statically-formed oxides and those that formed on scratched regions

  7. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, Heike, E-mail: angermann@helmholtz-berlin.de

    2014-09-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D{sub it}(E), and density D{sub it,min} of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly

  8. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    International Nuclear Information System (INIS)

    Angermann, Heike

    2014-01-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D it (E), and density D it,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on

  9. Oxidation Behavior of Surface-modified Stainless Steel 316LN in Supercritical-CO{sub 2} Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan; Heo, Jin Woo; Kim, Hyunm Yung; Jang, Chang Heui [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Compared to other working fluids such as helium or nitrogen, S-CO{sub 2} offers a higher efficiency at operating temperatures of advanced reactors above 550 .deg. C. Moreover, the S-CO{sub 2} cycle is expected to have a significantly smaller footprint compared to other power conversion cycles, resulting in a broader range of applications with lower capital costs. Currently, stainless steel 316 is considered as the candidate structural material for the SFR. In comparison, it is well known that alumina (Al{sub 2}O{sub 3}) have superior oxidation and carburization resistance specifically at higher temperatures where α-Al{sub 2}O{sub 3} may form. Thus, various surface modification techniques have been applied to mostly Ni-base alloys so that a protective and continuous Al-rich oxide layer forms on the surface, conferring superior oxidation and carburization resistance. In this study, SS 316LN was deposited with Al via physical vapor deposition (PVD) method followed by heat treatment processes to develop an Al-rich layer at the surface. The specimens are to be exposed to high temperature S-CO{sub 2} environment to evaluate the oxidation and carburization resistance. Stainless steel 316LN was surface-modified to develop an Al-rich layer for improvement of oxidation behavior in S-CO{sub 2} environment. As the test temperature of 600 .deg. C is not sufficiently high for the formation of protective α-Al{sub 2}O{sub 3} formation, pre-oxidation of surface modified SS 316LN was conducted.

  10. Improvement of in-plane alignment for surface oxidized NiO layer on textured Ni substrate by two-step heat-treatment

    International Nuclear Information System (INIS)

    Hasegawa, Katsuya; Izumi, Toru; Izumi, Teruo; Shiohara, Yuh; Maeda, Toshihiko

    2004-01-01

    Epitaxial growth of NiO on a textured Ni substrate as a template for an REBa 2 Cu 3 O y coated conductor was investigated. Highly in-plane aligned NiO layers were successfully fabricated using a new process of a two-step heat-treatment for oxidation. In the first-step, a highly in-plane aligned thin NiO layer was formed on a textured Ni substrate under a low driving force of oxidation. Then, in the second-step, a thick NiO layer was grown at a higher rate with maintaining its high in-plane grain alignment, as if the first NiO layer acts as a seed crystal layer. Further, growth rates and microstructures of the NiO layers were studied comparatively in the cases with and without the first layer. It was found that the oxidation rate in the case with the first layer was lower than that without the first layer. The microstructure observation revealed that the NiO without the first layer was poly-crystalline with many grain-boundaries. On the other hand, in the case with the first layer, grain-boundaries of the NiO were hardly observed. Hence, the reason for this difference of the growth rate and the microstructure of the NiO layers were discussed in view of a diffusivity path

  11. Mechanical tearing of graphene on an oxidizing metal surface

    International Nuclear Information System (INIS)

    George, Lijin; Gupta, Aparna; Shaina, P R; Jaiswal, Manu; Gupta, Nandita Das

    2015-01-01

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3–0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp"3-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm. (paper)

  12. Mechanical tearing of graphene on an oxidizing metal surface.

    Science.gov (United States)

    George, Lijin; Gupta, Aparna; Shaina, P R; Das Gupta, Nandita; Jaiswal, Manu

    2015-12-11

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp(3)-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.

  13. Effect of passive film on electrochemical surface treatment for indium tin oxide

    International Nuclear Information System (INIS)

    Wu, Yung-Fu; Chen, Chi-Hao

    2013-01-01

    Highlights: ► Oxalic, tartaric, and citric acid baths accompanying with applied voltages were used to treat the ITO surface. ► We investigated the changes in ITO surfaces by examining the potentiodynamic behavior of ITO films. ► AFM analysis showed the formation of a passive layer could assist to planarize surface. ► XPS analysis indicated this passive layer was mainly composed of SnO 2. ► A better planarization was obtained by treating in 3.0 wt.% tartaric acid at 0.5 V due to weak complexation strength. - Abstract: Changes in indium tin oxide (ITO) film surface during electrochemical treatment in oxalic acid, tartaric acid, and citric acid were investigated. Controlling the voltage applied on ITO film allows the formation of a passive layer, effectively protecting the film surface. X-ray photoelectron spectrometry showed that the passive layer composition was predominantly SnO 2 in tartaric acid, while a composite of tin oxide and tin carboxylate in citric or oxalic acid. Even though the passive films on ITO surface generated in these organic acids, the indium or tin could complex with the organic acid anions, enhancing the dissolution of ITO films. The experimental results show that the interaction between the dissolution and passivation could assist to planarize the ITO surface. We found that the optimal treatment at 0.5 V in 3 wt.% tartaric acid could provide the ITO surface with root-mean-squared roughness less than 1.0 nm, due to the weak complexing characteristics of tartaric acid.

  14. Atomic Layer Deposition of Chemical Passivation Layers and High Performance Anti-Reflection Coatings on Back-Illuminated Detectors

    Science.gov (United States)

    Hoenk, Michael E. (Inventor); Greer, Frank (Inventor); Nikzad, Shouleh (Inventor)

    2014-01-01

    A back-illuminated silicon photodetector has a layer of Al2O3 deposited on a silicon oxide surface that receives electromagnetic radiation to be detected. The Al2O3 layer has an antireflection coating deposited thereon. The Al2O3 layer provides a chemically resistant separation layer between the silicon oxide surface and the antireflection coating. The Al2O3 layer is thin enough that it is optically innocuous. Under deep ultraviolet radiation, the silicon oxide layer and the antireflection coating do not interact chemically. In one embodiment, the silicon photodetector has a delta-doped layer near (within a few nanometers of) the silicon oxide surface. The Al2O3 layer is expected to provide similar protection for doped layers fabricated using other methods, such as MBE, ion implantation and CVD deposition.

  15. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel

    Science.gov (United States)

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially ‘clean’ strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2•- radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO-) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  16. Water reactivity with mixed oxide (U,Pu)O2 surfaces

    International Nuclear Information System (INIS)

    Gaillard, Jeremy

    2013-01-01

    The interaction of water with actinides oxide surfaces remains poorly understood. The adsorption of water on PuO 2 surface and (U,Pu)O 2 surface leads to hydrogen generation through radiolysis but also surface evolution. The study of water interaction with mixed oxide (U,Pu)O 2 and PuO 2 surfaces requires the implementation of non intrusive techniques. The study of the hydration of CeO 2 surface is used to study the effectiveness of different techniques. The results show that the water adsorption leads to the surface evolution through the formation of a hydroxide superficial layer. The reactivity of water on the surface depends on the calcination temperature of the oxide precursor. The thermal treatment of hydrated surfaces can regenerate the surface. The study on CeO 2 hydration emphasizes the relevancies of these techniques in studying the hydration of surfaces. The hydrogen generation through water radiolysis is studied with an experimental methodology based on constant relative humidity in the radiolysis cell. The hydrogen accumulation is linear for the first hours and then tends to a steady state content. A mechanism of hydrogen consumption is proposed to explain the existence of the steady state of hydrogen content. This mechanism enables to explain also the evolution of the oxide surface during hydrogen generation experiments as shown by the evolution of hydrogen accumulation kinetics. The accumulation kinetics depends on the dose rate, specific surface area and the relative humidity but also on the oxide aging. The plutonium percentage appears to be a crucial parameter in hydrogen accumulation kinetics. (author) [fr

  17. Oxidation characteristics of the electron beam surface-treated Alloy 617 in high temperature helium environments

    International Nuclear Information System (INIS)

    Lee, Ho Jung; Sah, Injin; Kim, Donghoon; Kim, Hyunmyung; Jang, Changheui

    2015-01-01

    The oxidation characteristics of the electron beam surface-treated Alloy 617, which has an Al-rich surface layer, were evaluated in high temperature helium environments. Isothermal oxidation tests were performed in helium (99.999% purity) and VHTR-helium (helium of prototypical VHTR chemistry containing impurities like CO, CO 2 , CH 4 , and H 2 ) environments at 900 °C for up to 1000 h. The surface-treated Alloy 617 showed an initial transient oxidation stage followed by the steady-state oxidation in all test environments. In addition, the steady-state oxidation kinetics of the surface-treated Alloy 617 was 2-order of magnitude lower than that of the as-received Alloy 617 in both helium environments as well as in air. The improvement in oxidation resistance was primarily due to the formation of the protective Al 2 O 3 layer on the surface. The weight gain was larger in the order of air, helium, and VHTR-helium, while the parabolic rate constants (k p ) at steady-state were similar for all test environments. In both helium environments, the oxide structure consisted of the outer transition Al 2 O 3 with a small amount of Cr 2 O 3 and inner columnar structured Al 2 O 3 without an internal oxide. In the VHTR-helium environment, where the impurities were added to helium, the initial transient oxidation increased but the steady state kinetics was not affected

  18. Transition of hydrated oxide layer for aluminum electrolytic capacitors

    International Nuclear Information System (INIS)

    Chi, Choong-Soo; Jeong, Yongsoo; Ahn, Hong-Joo; Lee, Jong-Ho; Kim, Jung-Gu; Lee, Jun-Hee; Jang, Kyung-Wook; Oh, Han-Jun

    2007-01-01

    A hydrous oxide film for the application as dielectric film is synthesized by immersion of pure aluminum in hot water. From a Rutherford backscattering analysis, the ratio of aluminum to oxygen atoms was found to be 3:2 in the anodized aluminum oxide film, and 2:1 in the hydrous oxide layer. Anodization of the hydrous oxide layer was more effective for the transition of amorphous anodic oxides to the crystalline aluminum oxides

  19. Hot zirconium cathode sputtered layers for useful surface modification

    International Nuclear Information System (INIS)

    Duckworth, R.G.

    1986-01-01

    It has been found that multilayer zirconium based sputtered coatings can greatly improve the wear properties of a wide variety of mechanical components, machine tools, and metal surfaces. Although a hot (approximately 1000 0 C) cathode is employed, temperature sensitive components can be beneficially treated, and for precision parts a total coating thickness of only 0.5μm is often perfectly effective. Even at the highest coating rates substrate temperatures are below 300 0 C. For the corrosion protection of less well finished surfaces thicker layers are usually required and it is important that relatively stress free layers are produced. The authors employed a variety of tailored zirconium/zirconium nitride/zirconium oxide mixed layers to solve a number of tribological problems for some 5 or 6 years. However, it is only recently that they designed, built, and commissioned rapid cycle, multiple cathode, load-lock plant for economic production of such coatings. This paper provides an introduction to this method of depositing pure zirconium and pure synthetic zirconium nitride films

  20. Deposition of heated whey proteins on a chromium oxide surface.

    NARCIS (Netherlands)

    Jeurnink, Th.; Verheul, M.; Cohen Stuart, M.A.; Kruif, de C.G.

    1996-01-01

    Whey protein solutions were given different heat treatments after which their deposition on a chromium oxide surface (the outer layer of stainless steel) was measured by reflectometry. The deposition was studied under controlled flow conditions by using a stagnation point flow configuration. The

  1. Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO™ oxide layers

    International Nuclear Information System (INIS)

    Gabory, Benoit de; Motta, Arthur T.; Wang, Ke

    2015-01-01

    Waterside corrosion of zirconium alloy nuclear fuel cladding varies markedly from one alloy to another. In addition, for a given alloy, the corrosion rate evolves during the corrosion process, most notably when the oxide loses its stability at the oxide transition. In an effort to understand the mechanism resulting in the variations of corrosion rate observed at the oxide transition, oxide layers formed on Zircaloy-4 and ZIRLO™ in high temperature water autoclave environments, and archived before and after the transition, are characterized using transmission electron microscopy. The study characterizes and compares the oxide morphology in both alloys at different times during the corrosion process, in an effort to understand the oxide growth mechanism for these alloys. Results show that the oxide is mainly composed of monoclinic ZrO 2 , with a preponderance of columnar oxide grains which extend to the oxide/metal interface. The oxide formed right after the transition has occurred, exhibits a 150 nm-wide layer of small equiaxed grains with high tetragonal oxide fraction. This layer has a similar morphology and structure as the first oxide layer formed (observed near the oxide/water interface). A study of the oxygen-rich region near the oxide/metal interface reveals a complex structure of different phases at different stages of corrosion. The interface exhibits an intermediate layer, identified as ZrO, a discontinuous layer of “blocky” Zr 3 O grains embedded in the ZrO layer, and a suboxide layer corresponding to an oxygen saturated solid solution in the metal matrix side. The thickness of this interfacial layer decreased markedly at the transition. Hydrides are also observed in that region, with a definite orientation relationship with the matrix. The observations of the oxide/metal interface are qualitatively similar for the two alloys but quantitatively different. The incorporation of intermetallic precipitates into the oxide layer is also studied, and

  2. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    Science.gov (United States)

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  3. A parametric study of laser induced ablation-oxidation on porous silicon surfaces

    International Nuclear Information System (INIS)

    De Stefano, Luca; Rea, Ilaria; Nigro, M Arcangela; Della Corte, Francesco G; Rendina, Ivo

    2008-01-01

    We have investigated the laser induced ablation-oxidation process on porous silicon layers having different porosities and thicknesses by non-destructive optical techniques. In particular, the interaction between a low power blue light laser and the porous silicon surfaces has been characterized by variable angle spectroscopic ellipsometry and Fourier transform infrared spectroscopy. The oxidation profiles etched on the porous samples can be tuned as functions of the layer porosity and laser fluence. Oxide stripes of width less than 2 μm and with thicknesses between 100 nm and 5 μm have been produced, depending on the porosity of the porous silicon, by using a 40 x focusing objective

  4. Cyclic etching of tin-doped indium oxide using hydrogen-induced modified layer

    Science.gov (United States)

    Hirata, Akiko; Fukasawa, Masanaga; Nagahata, Kazunori; Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi; Tatsumi, Tetsuya

    2018-06-01

    The rate of etching of tin-doped indium oxide (ITO) and the effects of a hydrogen-induced modified layer on cyclic, multistep thin-layer etching were investigated. It was found that ITO cyclic etching is possible by precisely controlling the hydrogen-induced modified layer. Highly selective etching of ITO/SiO2 was also investigated, and it was suggested that cyclic etching by selective surface adsorption of Si can precisely control the etch rates of ITO and SiO2, resulting in an almost infinite selectivity for ITO over SiO2 and in improved profile controllability.

  5. Influence of oxidation treatment on ballistic electron surface-emitting display of porous silicon

    International Nuclear Information System (INIS)

    Du, Wentao; Zhang, Xiaoning; Zhang, Yujuan; Wang, Wenjiang; Duan, Xiaotao

    2012-01-01

    Two groups of porous silicon (PS) samples are treated by rapid thermal oxidation (RTO) and electrochemical oxidation (ECO), respectively. Scanning electron microscopy images show that PS samples are segmented into two layers. Oxidized film layer is formed on the top surface of PS samples treated by RTO while at the bottom of PS samples treated by ECO. Both ECO and RTO treatment can make emission current density, diode current density, and emission efficiency of PS increase with the bias voltage increasing. The emission current density and the field emission enhancement factor β of PS sample treated by RTO are larger than that treated by ECO. The Fowler–Nordheim curves of RTO and ECO samples are linear which indicates that high electric field exists on the oxidized layer and field emission occurs whether PS is treated by RTO or ECO.

  6. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Xu, Fei; Liu, Yijun

    2017-01-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  7. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu, E-mail: yu.sun@xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yilun [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Chen, Xuefeng; Zhai, Zhi [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Fei [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yijun [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 (United States)

    2017-06-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  8. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes

    International Nuclear Information System (INIS)

    Liao, C.-S.; Ye, W.-B.

    2004-01-01

    The oligo(ethylene oxide) modified layered double hydroxide (LDH) prepared by template method was added as a nanoscale nucleating agent into poly(ethylene oxide) (PEO) to form PEO/OLDH nanocomposite electrolytes. The effects of OLDH addition on morphology and conductivities of nanocomposite electrolytes were studied using wide-angle X-ray diffractometer, polarized optical microscopy, differential scanning calorimetry and ionic conductivity measurement. The results show that the exfoliated morphology of nanocomposites is formed due to the surface modification of LDH layers with PEO matrix compatible oligo(ethylene oxide)s. The nanoscale dispersed OLDH layers inhibit the crystal growth of PEO crystallites and result in a plenty amount of intercrystalline grain boundary within PEO/OLDH nanocomposites. The ionic conductivities of nanocomposite electrolytes are enhanced by three orders of magnitude compared to the pure PEO polymer electrolytes at ambient temperature. It can be attributed to the ease transport of Li + along intercrystalline amorphous phase. This novel nanocomposite electrolytes system with high conductivities will be benefited to fabricate the thin-film type of Li-polymer secondary battery

  9. Structure and Construction Assessment of the Surface Layer of Hardfaced Coating after Friction

    Directory of Open Access Journals (Sweden)

    Krzysztof Dziedzic

    2017-09-01

    Full Text Available The paper presents an analysis of the surface layer of Fe-Mn-C-B-Si-Ni-Cr alloy coating after friction with C45 steel. The coatings were obtained by arc welding (GMA. Flux-cored wires were used as a welding material. The flux-cored wires had a diameter of 2,4 mm. The tribological assessment was performed with the Amsler tribotester under dry friction conditions at unit pressures 10 MPa. The use of XPS spectroscopy allowed deep profile analysis of the surface layer. Based on the obtained results developed model of the surface layer for friction couple, hardfaced coating obtained from Fe-Mn-C-B-Si-Ni-Cr alloy – C45 steel. It was observed that the operational surface layer (OSL of hardfaced coatings contained oxides (B2O3, SiO2, NiO, Cr2O3, FeO, Fe3O4, Fe2O3, carbides (Fe3C, Cr7C3 and borides (FeB, Fe2B.

  10. Mechanisms of damage to the oxide layer of cladding of fuel rods under accident conditions like RI

    International Nuclear Information System (INIS)

    Busser, Vincent

    2009-01-01

    During reactivity initiated accident, the importance of cladding tube oxidation on its thermomechanical behavior has been investigated. After RIA tests in experimental reactors oxide damage including radial cracking and spallation of the outer oxide layer has been evidenced. This work aims at better understanding the key mechanisms controlling these phenomena. Laboratory air-oxidation of Zircaloy-4 cladding tubes has been performed at 470 C. SEM micrographs show that radial cracks are initiated from the outer surface of the oxide layer and propagated radially towards the oxide-metal interface. A model predicting the stress evolution within the oxide and the depth of crack has been developed and validated on literature tests and tests of this study. Ring compression tests were used for the experimental study of the oxide degradation under mechanical loading. Experimental data revealed three mechanisms: densification of the radial crack network, propagation of these radial cracks, branching and spallation of oxide fragments. The influence of the circumferential cracks, periodically distributed in the oxide layer, on the stress distribution in oxide fragments has been analysed using finite element modelling. The determining influence of these cracks on the maximum stress oxide fragments has been demonstrated. (author)

  11. Iridium/Iridium Silicide as an Oxidation Resistant Capping Layer for Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Prisbrey, S; Vernon, S

    2004-01-01

    Rust on a sword, tarnish on the silverware, and a loss in reflectivity for soft x-ray mirrors are all caused by oxidation that changes the desired characteristics of a material. Methods to prevent the oxidation have varied over the centuries with the default method of a protective coating being the most common. The protective coating for x-ray mirrors is usually a self-limiting oxidized layer on the surface of the material that stops further oxidation of the material by limiting the diffusion of oxygen to the material underneath

  12. Reusable urine glucose sensor based on functionalized graphene oxide conjugated Au electrode with protective layers

    Directory of Open Access Journals (Sweden)

    Hye Youn Kim

    2014-09-01

    Full Text Available An electrochemical based system with multiple layers coated on a functionalized graphene oxide Au electrode was developed to measure glucose concentration in urine in a more stable way. Two types of gold printed circuit boards were fabricated and graphene oxide was immobilized on their surface by chemical adsorption. Multiple layers, composed of a couple of polymers, were uniformly coated on the surface electrode. This device exhibited higher electrochemical responses against glucose, a greater resistivity in the presence of interferential substances in urine, and durable stabilities for longer periods of time than conventional units. The efficiency in current level according to the order and ratio of solution was evaluated during the immobilization of the layer. The fabricated electrodes were then also evaluated using hyperglycemic clinical samples and compared with the patterns of blood glucose measured with commercially available glucose meters. Our findings show that not only was their pattern similar but this similarity is well correlated.

  13. Conformal bi-layered perovskite/spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route

    Science.gov (United States)

    Park, Beom-Kyeong; Song, Rak-Hyun; Lee, Seung-Bok; Lim, Tak-Hyoung; Park, Seok-Joo; Jung, WooChul; Lee, Jong-Won

    2017-04-01

    Solid oxide fuel cells (SOFCs) require low-cost metallic components for current collection from electrodes as well as electrical connection between unit cells; however, the degradation of their electrical properties and surface stability associated with high-temperature oxidation is of great concern. It is thus important to develop protective conducting oxide coatings capable of mitigating the degradation of metallic components under SOFC operating conditions. Here, we report a conformal bi-layered coating composed of perovskite and spinel oxides on a metallic wire network fabricated by a facile electrodeposition-based route. A highly dense, crack-free, and adhesive bi-layered LaMnO3/Co3O4 coating of ∼1.2 μm thickness is conformally formed on the surfaces of wires with ∼100 μm diameter. We demonstrate that the bi-layered LaMnO3/Co3O4 coating plays a key role in improving the power density and durability of a tubular SOFC by stabilizing the surface of the metallic wire network used as a cathode current collector. The electrodeposition-based technique presented in this study offers a low-cost and scalable process to fabricate conformal multi-layered coatings on various metallic structures.

  14. Cation Effects on the Layer Structure of Biogenic Mn-Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, M.; Ginder-Vogel, M; Parikh, S; Feng, X; Sparks, D

    2010-01-01

    Biologically catalyzed Mn(II) oxidation produces biogenic Mn-oxides (BioMnO{sub x}) and may serve as one of the major formation pathways for layered Mn-oxides in soils and sediments. The structure of Mn octahedral layers in layered Mn-oxides controls its metal sequestration properties, photochemistry, oxidizing ability, and topotactic transformation to tunneled structures. This study investigates the impacts of cations (H{sup +}, Ni(II), Na{sup +}, and Ca{sup 2+}) during biotic Mn(II) oxidation on the structure of Mn octahedral layers of BioMnO{sub x} using solution chemistry and synchrotron X-ray techniques. Results demonstrate that Mn octahedral layer symmetry and composition are sensitive to previous cations during BioMnO{sub x} formation. Specifically, H{sup +} and Ni(II) enhance vacant site formation, whereas Na{sup +} and Ca{sup 2+} favor formation of Mn(III) and its ordered distribution in Mn octahedral layers. This study emphasizes the importance of the abiotic reaction between Mn(II) and BioMnO{sub x} and dependence of the crystal structure of BioMnO{sub x} on solution chemistry.

  15. Effects of plasma cleaning of the Cu seed layer surface on Cu electroplating

    International Nuclear Information System (INIS)

    O, Jun Hwan; Lee, Seong Wook; Kim, Jae Bum; Lee, Chong Mu

    2001-01-01

    Effects of plasma pretreatment to Cu seed/tantalum nitride (TaN)/ borophosphosilicate glass (BPSG) samples on copper (Cu) electroplating were investigated. Copper seed layers were deposited by magnetron sputtering onto tantalum nitride barrier layers before electroplating copper in the forward pulsed mode. The Cu seed layer was cleaned by plasma H 2 and N 2 prior to electroplating a copper film. Cu films electroplated on the copper seed layer with plasma pretreatment showed better electrical and physical properties such as electrical resistivities, surface morphologies, levels of impurities, adhesion and surface roughness than those without plasma pretreatment. It is shown that carbon and metal oxide contaminants at the sputtered Cu seed/TaN surface could be effectively removed by plasma H 2 cleaning. The degree of the (111) prefered orientation of the Cu film with plasma H 2 pretreatment is as high as pulse plated Cu film without plasma pretreatment. Also, plasma H 2 precleaning is more effective in enhancing the Cu electroplating properties onto the Cu seed layer than plasma N 2 precleaning

  16. Development of examination technique for oxide layer thickness measurement of irradiated fuel rods

    International Nuclear Information System (INIS)

    Koo, D. S.; Park, S. W.; Kim, J. H.; Seo, H. S.; Min, D. K.; Kim, E. K.; Chun, Y. B.; Bang, K. S.

    1999-06-01

    Technique for oxide layer thickness measurement of irradiated fuel rods was developed to measure oxide layer thickness and study characteristic of fuel rods. Oxide layer thickness of irradiated fuels were measured, analyzed. Outer oxide layer thickness of 3 cycle-irradiated fuel rods were 20 - 30 μm, inner oxide layer thickness 0 - 10 μm and inner oxide layer thickness on cracked cladding about 30 μm. Oxide layer thickness of 4 cycle-irradiated fuel rods were about 2 times as thick as those of 1 cycle-irradiated fuel rods. Oxide layer on lower region of irradiated fuel rods was thin and oxide layer from lower region to upper region indicated gradual increase in thickness. Oxide layer thickness from 2500 to 3000 mm showed maximum and oxide layer thickness from 3000 to top region of irradiated fuel rods showed decreasing trend. Inner oxide layer thicknesses of 4 cycle-irradiated fuel rod were about 8 μm at 750 - 3500 mm from the bottom end of fuel rod. Outer oxide layer thickness were about 8 μm at 750 - 1000 mm from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel rod. These indicated gradual increase up to upper region from the bottom end of fuel. Oxide layer thickness technique will apply safety evaluation and study of reactor fuels. (author). 6 refs., 14 figs

  17. Flexible bactericidal graphene oxide-chitosan layers for stem cell proliferation

    Science.gov (United States)

    Mazaheri, M.; Akhavan, O.; Simchi, A.

    2014-05-01

    Graphene oxide (GO)-chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ˜1 μm and thickness of ˜1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ˜80% and 45%, respectively. Similar to the chitosan layer, the GO-chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured on the chitosan and GO(1.5 wt%)-chitosan composite layers was found nearly the same, while it significantly decreased by increasing the GO content to 3 and 6 wt%. Our results indicated that although a high concentration of GO in the chitosan layer (here, 6 wt%) could decelerate the proliferation of the hMSCs on the flexible layer, a low concentration of GO (i.e., 1.5 wt%) not only resulted in biocompatibility but also kept the mechanical flexibility of the self-sterilized layers for high proliferation of hMSCs.

  18. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Mthunzi, P. [National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria (South Africa); Muller, T.F.G. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Julies, B. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Ramponi, R. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa)

    2014-12-01

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr{sub 2}O{sub 3} layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr{sub 2}O{sub 3} layer. The α-Cr{sub 2}O{sub 3} layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

  19. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Quesnel, David J. [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  20. X-ray photoelectron spectroscopy/Ar+ ion profile study of thin oxide layers on InP

    International Nuclear Information System (INIS)

    Thurgate, S.M.; Erickson, N.E.

    1990-01-01

    The effect of incremental ion bombardment on the surface layers of an aqua regia etched InP sample was studied by monitoring the components of the In 3d 5/2 and O 1s x-ray photoelectron spectroscopy (XPS) lines as the sample was bombarded with low energy (1 keV) Ar + ions. The changes in the stoichiometry of the surface produced large shifts in the position of the In 3d and O 1s lines that were not paralleled by shifts in the P 2p line. Analysis of these shifts indicated that the surface was covered with a mixture of indium hydroxide and indium phosphate, with the phosphate closer to the InP substrate. It is proposed that this layer structure is due to differences in the dissolution rates of the oxidation products in the acid etch and the effect of the distilled water rinse. It may be possible to alter the composition of such oxides by carefully tailoring the etch conditions to optimize the kinetics for the particular oxide phase required. The analysis of the XPS lines also showed that the InP substrate was damaged at very low ion doses, and finally decomposed by the ion beam. When the ion ''cleaned'' sample was exposed to oxygen, a different oxide system was produced which consisted largely of In 2 O 3 and InPO 4 [or In(PO 3 ) x ]. This model of the oxidized surface of InP is consistent with other measurements and we conclude that ion milling together with XPS and careful curve fitting can be used to find the nature of the thin oxides on InP

  1. Nanostructured antistatic and antireflective thin films made of indium tin oxide and silica over-coat layer

    Science.gov (United States)

    Cho, Young-Sang; Hong, Jeong-Jin; Yang, Seung-Man; Choi, Chul-Jin

    2010-08-01

    Stable dispersion of colloidal indium tin oxide nanoparticles was prepared by using indium tin oxide nanopowder, organic solvent, and suitable dispersants through attrition process. Various comminution parameters during the attrition step were studied to optimize the process for the stable dispersion of indium tin oxide sol. The transparent and conductive films were fabricated on glass substrate using the indium tin oxide sol by spin coating process. To obtain antireflective function, partially hydrolyzed alkyl silicate was deposited as over-coat layer on the pre-fabricated indium tin oxide film by spin coating technique. This double-layered structure of the nanostructured film was characterized by measuring the surface resistance and reflectance spectrum in the visible wavelength region. The final film structure was enough to satisfy the TCO regulations for EMI shielding purposes.

  2. Simulation of Natural Convection in the Oxide Layer of Three-Layer Corium Pool in an IVR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su-Hyeon; Park, Hae-Kyun; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    This paper describes the three-layer phenomena and preliminary plan to simulate the oxide layer experimentally. We will perform the mass transfer experiments using a copper sulfate-sulfuric acid (CuSO{sub 4}-H{sub 2}SO{sub 4}) electroplating system based on the heat and mass transfer analogy concept. By performing the mass transfer experiments, we can achieve the high buoyancy condition with small facilities. The test facility is semicircular whose bottom is chopped, simulating the oxide pool above the heavy metal layer in a three-layer configuration. We will measure the heat flux at the top plate, side wall and bottom plate, and compare these results with those for a two-layer pool. In a three-layer configuration, the upper light metal layer becomes thinner, increasing the focusing effect. Thus, it is important to evaluate the heat flux from the oxide pool to the upper metallic layer. However, there is few heat transfer studies for a three-layer configuration. This paper is to discuss and to make a plan for the heat transfer experiments of oxide pool in a three- layer system. We will perform the mass transfer experiments based on the heat and mass transfer analogy concept. The test results will be analyzed phenomenologically and compared with two-layer results.

  3. A method for the densification of ceramic layers, especially ceramic layers within solid oxide cell (SOC) technology, and products obtained by the method

    DEFF Research Database (Denmark)

    2013-01-01

    A ceramic layer, especially for use in solid oxide cell (SOC) technology, is densified in a method comprising (a) providing a multilayer system by depositing the porous ceramic layer, which is to be densified, onto the selected system of ceramic layers on a support, (b) pre-sintering the resulting......(s) in the porous layer surface and (e) performing a thermal treatment at a temperature T2, where T2 > ?1, to obtain densification of and grain growth in the porous layer formed in step (b). The method makes it possible to obtain dense ceramic layers at temperatures, which are compatible with the other materials...... present in a ceramic multilayer system....

  4. Growth and characterization of oxide layers on zirconium alloys

    International Nuclear Information System (INIS)

    Maroto, A.J.G.; Bordoni, R.; Villegas, M.; Olmedo, A.M.; Blesa, M.A.; Iglesias, A.; Koenig, P.

    1996-01-01

    In the range 265-435 C Zr-2.5Nb corrosion takes place in two stages, as opposed to the cyclic behaviour of Zry-4. The Zry-4 corrosion stages are described by a single equation, in terms of the dense oxide layer thickness that decreases sharply at each transition. Tetragonal zirconia is present in the oxide layers of both alloys. In Zry-4, its volume fraction decreases as the oxide grows; it is barely discernible in Zr-2.5Nb in films below 1 μm, to later increase up to the transition. In both alloys, compressive stresses are developed associated with the oxide growth. Their relaxation at the transition correlates with the transformation of ZrO 2 (t) to ZrO 2 (m) and with the decrease of the dense oxide layer. In Zr-2.5Nb, oxide ridges form on the β-Zr phase filaments, at the very onset of film growth. The cyclic behaviour associated with the periodical breakdown of the dense oxide layer is therefore blurred, although optical microscopy shows that the scale retains the multilayered structure typical of Zry-4. (orig.)

  5. Study on the oxidation and reduction of tungsten surface for sub-50 nm patterning process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kyu; Nam, Seok Woo; Cho, Sung Il; Jhon, Myung S.; Min, Kyung Suk; Kim, Chan Kyu; Jung, Ho Bum; Yeom, Geun Young [Memory Division Semiconductor Business, Samsung Electronics, San No. 16 Banwol-Ri, Taean-Eup, Hwasung-City, Gyeonggi-Do 449-711, South Korea and Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Memory Division Semiconductor Business, Samsung Electronics, San No. 16 Banwol-Ri, Taean-Eup, Hwasung-City, Gyeonggi-Do 449-711 (Korea, Republic of); Department of Chemical Engineering and Data Storage Systems Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2012-11-15

    The oxidation characteristics of tungsten line pattern during the carbon-based mask-layer removal process using oxygen plasmas have been investigated for sub-50 nm patterning processes, in addition to the reduction characteristics of the WO{sub x} layer formed on the tungsten line surface using hydrogen plasmas. The surface oxidation of tungsten lines during the mask layer removal process could be minimized by using low-temperature (300 K) plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WO{sub x} on the tungsten line could be decreased to 25% compared to results from high-temperature processing. The WO{sub x} layer could also be completely removed at a low temperature of 300 K using a hydrogen plasma by supplying bias power to the tungsten substrate to provide a activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40-nm-CD device processing, the complete removal of WO{sub x} formed on the sidewall of tungsten line could be observed.

  6. Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Eun [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Choi, Jinsub, E-mail: jinsub@inha.ac.k [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of)

    2010-07-15

    Nanoporous niobium oxide film with a maximum thickness of 520 nm was prepared by anodizing niobium in a mixture of 1 wt% HF, 1 M H{sub 3}PO{sub 4}, and a small amount of Sodium Dodecyl Sulfate (SDS) surfactant. The porosity of the anodic niobium oxide prepared without SDS is irregular with the surface of the oxide suggesting a grained surface pattern rather than an ordered porous structure. A proper amount of SDS addition can prepare a pore arrangement with stripe patterns. The pore depth and surface pattern were strongly affected by the concentration of SDS and bath temperature. We found that the addition of SDS surfactant facilitated improvement in the chemical resistance of niobium oxide, leading to the formation of pores with a longer length compared to those prepared without a SDS surfactant. This can be in part ascribed to the protection of the surface by the physical adsorption of SDS on the surface due to a charge-charge interaction and be in part attributed to the formation of Nb=O bonding on the outermost oxide layer by SDS. When anodization was carried out for 4 h, the surface dissolution of niobium oxide was observed, which means that the maximum tolerance time against chemical dissolution was less than 4 h.

  7. Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR

    Science.gov (United States)

    Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei

    2015-05-01

    The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.

  8. Study on the CMP characteristics of a copper passivity layer formed by dipping in an oxidizer

    International Nuclear Information System (INIS)

    Choi, Youn-Ok; Lee, Woo-Sun; Choi, Gwon-Woo; Lee, Kang-Yeon; Kim, Nam-Oh

    2011-01-01

    Copper has been the material for ultra-large-scale integrated circuits owing to its excellent electromigration resistance and low electrical resistance. The polishing mechanism of metal chemical mechanical polishing (CMP) has been reported to be a repeated process of passive oxide layer formation through the use of on oxidizer and then the abrasion action of the slurry. However, because copper is softer and more sensitive to corrosion than tungsten, the slurry composition and the polishing mechanism during the copper CMP process may be more complicated. In a general Cu-CMP process, a mixture of an alumina-based slurry and an oxidizer in proper proportion is used in order to form a passive oxide layer such as CuO and CuO 2 . However, a conventional CMP process consumes an unnecessary amount of slurry to formed the passive layer. Therefore, in this paper, we propose a new method. The copper samples were oxidized by dipping in an oxidizer for an appropriate time to minimize the consumption of slurry before the CMP process. Then, we performed the CMP process. In order to compare the polishing characteristics of the copper thin film, we discuss the CMP removal rate and non-uniformity, as well as the microstructure of the surface and a layer cross-section based on a scanning.

  9. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    Directory of Open Access Journals (Sweden)

    Shutthanandan V

    2008-06-01

    Full Text Available Abstract Molybdenum disulfide (MoS2, a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM, scanning electron microscopy (SEM, transmission electron microscopy (TEM, Rutherford backscattering spectrometry (RBS, and nuclear reaction analysis (NRA. Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400°C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and

  10. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics.

    Science.gov (United States)

    Ramana, C V; Becker, U; Shutthanandan, V; Julien, C M

    2008-06-05

    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia.The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA).Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400 degrees C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant

  11. High Temperature Oxidation Behavior of Zirconium Alloy with Nano structured Oxide Layer in Air Environment

    International Nuclear Information System (INIS)

    Park, Y. J.; Kim, J. W.; Park, J. W.; Cho, S. O.

    2016-01-01

    If the temperature of the cladding materials increases above 1000 .deg. C, which can be caused by a loss of coolant accident (LOCA), Zr becomes an auto-oxidation catalyst and hence produces a huge amount of hydrogen gas from water. Therefore, many investigations are being carried out to prevent (or reduce) the hydrogen production from Zr-based cladding materials in the nuclear reactors. Our team has developed an anodization technique by which nanostructured oxide can be formed on various flat metallic elements such as Al, Ti, and Zr-based alloy. Anodization is a simple electrochemical technique and requires only a power supply and an electrolyte. In this study, Zr-based alloys with nanostructured oxide layers were oxidized by using Thermogravimetry analysis (TGA) and compared with the pristine one. It reveals that the nanostructured oxide layer can prevent oxidation of substrate metal in air. Oxidation behavior of the pristine Zr-Nb-Sn alloy and the Zr-Nb-Sn alloy with nanostructured oxide layer evaluated by measuring weight gain (TGA). In comparison with the pristine Zr-Nb-Sn alloy, weight gain of the Zr-Nb-Sn alloy with nanostructured oxide layer is lower than 10% even for 12 hours oxidation in air.

  12. Characterization of surface layers of aluminum alloys for automobile body panels; Jidoshayo aluminium gokin no hyomen kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, K; Takagi, Y [Nippon Steel Corp., Tokyo (Japan)

    1996-03-29

    This paper reports analytical examples, on an oxidized film on the surface of aluminum alloys for automobiles, using the conventional method for a surface analysis or a new method entirely different from it. For example, (1) a new method was proposed which evaluated the thickness of MgO layers on the surface of Al-Mg alloy by means of a colorimeter. In the case where the thickness of the oxidized film was several tens of nanometers or less, the chromatic value of L, b, etc., and the thickness of the films were in one-to-one correspondence to each other; therefore, the MgO film was easily estimated non-destructively by measuring the chromatic values of the surface. (2) An analysis was made on the state of adhesion of the organic matters in the oxidized film on Al-Mg-Si alloy by means of an angle-resolved XPS (X-ray photoelectron spectroscopy) depth analysis. Consequently, it was elucidated that a fatty film adhered with hydrophilic groups faced to the oxidized surface and with hydrophobic groups faced to the outside, and that this adhered fatty acid also formed a metallic soap by a heat treatment, deteriorating the fattiness. Further, the paper also reports on the analysis of crystal structures on the surface layer with the use of GIXD (grazing incidence-angle X-ray diffraction). 22 refs., 15 figs.

  13. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood

    International Nuclear Information System (INIS)

    Lozhechnikova, Alina; Bellanger, Hervé; Michen, Benjamin; Burgert, Ingo; Österberg, Monika

    2017-01-01

    Highlights: • A facile sonication route to produce aqueous wax dispersions is developed. • The wax dispersion is naturally stable and free of surfactants or stabilizers. • Wax and ZnO particles are coated onto wood using layer-by-layer assembly. • The coating brings superhydrophobicity while preserving moisture buffering. • ZnO improves the color stability of wood to UV light. - Abstract: Protection from liquid water and UV radiation are equally important, and a sophisticated approach is needed when developing surface coatings that preserve the natural and well-appreciated aesthetic appearance of wood. In order to prevent degradation and prolong the service life of timber, a protective coating was assembled using carnauba wax particles and zinc oxide nanoparticles via layer-by-layer deposition in water. For this purpose, a facile sonication route was developed to produce aqueous wax dispersion without any surfactants or stabilizers. The suspension was stable above pH 4 due to the electrostatic repulsion between the negatively charged wax particles. The particle size could be controlled by the initial wax concentration with average particle sizes ranging from 260 to 360 nm for 1 and 10 g/L, respectively. The deposition of wax particles onto the surface of spruce wood introduced additional roughness to the wood surface at micron level, while zinc oxide provided nano roughness and UV-absorbing properties. In addition to making wood superhydrophobic, this novel multilayer coating enhanced the natural moisture buffering capability of spruce. Moreover, wood surfaces prepared in this fashion showed a significant reduction in color change after exposure to UV light. A degradation of the wax through photocatalytic activity of the ZnO particles was measured by FTIR, indicating that further studies are required to achieve long-term stability. Nevertheless, the developed coating showed a unique combination of superhydrophobicity and excellent moisture buffering

  14. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood

    Energy Technology Data Exchange (ETDEWEB)

    Lozhechnikova, Alina [Department of Forest Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, FI-00076, Aalto (Finland); Bellanger, Hervé; Michen, Benjamin; Burgert, Ingo [Institute for Building Materials (IfB), Wood Materials Science, ETH Zürich, Stefano-Franscini-Platz 3, 8093 Zürich (Switzerland); Applied Wood Materials Laboratory, Empa − Swiss Federal Laboratories for Material Testing and Research, 8600 Dübendorf (Switzerland); Österberg, Monika, E-mail: monika.osterberg@aalto.fi [Department of Forest Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, FI-00076, Aalto (Finland)

    2017-02-28

    Highlights: • A facile sonication route to produce aqueous wax dispersions is developed. • The wax dispersion is naturally stable and free of surfactants or stabilizers. • Wax and ZnO particles are coated onto wood using layer-by-layer assembly. • The coating brings superhydrophobicity while preserving moisture buffering. • ZnO improves the color stability of wood to UV light. - Abstract: Protection from liquid water and UV radiation are equally important, and a sophisticated approach is needed when developing surface coatings that preserve the natural and well-appreciated aesthetic appearance of wood. In order to prevent degradation and prolong the service life of timber, a protective coating was assembled using carnauba wax particles and zinc oxide nanoparticles via layer-by-layer deposition in water. For this purpose, a facile sonication route was developed to produce aqueous wax dispersion without any surfactants or stabilizers. The suspension was stable above pH 4 due to the electrostatic repulsion between the negatively charged wax particles. The particle size could be controlled by the initial wax concentration with average particle sizes ranging from 260 to 360 nm for 1 and 10 g/L, respectively. The deposition of wax particles onto the surface of spruce wood introduced additional roughness to the wood surface at micron level, while zinc oxide provided nano roughness and UV-absorbing properties. In addition to making wood superhydrophobic, this novel multilayer coating enhanced the natural moisture buffering capability of spruce. Moreover, wood surfaces prepared in this fashion showed a significant reduction in color change after exposure to UV light. A degradation of the wax through photocatalytic activity of the ZnO particles was measured by FTIR, indicating that further studies are required to achieve long-term stability. Nevertheless, the developed coating showed a unique combination of superhydrophobicity and excellent moisture buffering

  15. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.

    2015-02-13

    Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.

  16. Fabrication of hybrid graphene oxide/polyelectrolyte capsules by means of layer-by-layer assembly on erythrocyte cell templates

    Directory of Open Access Journals (Sweden)

    Joseba Irigoyen

    2015-12-01

    Full Text Available A novel and facile method was developed to produce hybrid graphene oxide (GO–polyelectrolyte (PE capsules using erythrocyte cells as templates. The capsules are easily produced through the layer-by-layer technique using alternating polyelectrolyte layers and GO sheets. The amount of GO and therefore its coverage in the resulting capsules can be tuned by adjusting the concentration of the GO dispersion during the assembly. The capsules retain the approximate shape and size of the erythrocyte template after the latter is totally removed by oxidation with NaOCl in water. The PE/GO capsules maintain their integrity and can be placed or located on other surfaces such as in a device. When the capsules are dried in air, they collapse to form a film that is approximately twice the thickness of the capsule membrane. AFM images in the present study suggest a film thickness of approx. 30 nm for the capsules in the collapsed state implying a thickness of approx. 15 nm for the layers in the collapsed capsule membrane. The polyelectrolytes used in the present study were polyallylamine hydrochloride (PAH and polystyrenesulfonate sodium salt (PSS. Capsules where characterized by transmission electron microscopy (TEM, atomic force microscopy (AFM, dynamic light scattering (DLS and Raman microscopy, the constituent layers by zeta potential and GO by TEM, XRD, and Raman and FTIR spectroscopies.

  17. Role of atomic layer deposited aluminum oxide as oxidation barrier for silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Fiorentino, Giuseppe, E-mail: g.fiorentino@tudelft.nl; Morana, Bruno [Department of Microelectronic, Delft University of Technology, Feldmannweg 17, 2628 CT Delft (Netherlands); Forte, Salvatore [Department of Electronic, University of Naples Federico II, Piazzale Tecchio, 80125 Napoli (Italy); Sarro, Pasqualina Maria [Department of Microelectronic, Delft University of Technology, Feldmannweg 17, 2628 CT, Delft (Netherlands)

    2015-01-15

    In this paper, the authors study the protective effect against oxidation of a thin layer of atomic layer deposited (ALD) aluminum oxide (Al{sub 2}O{sub 3}). Nitrogen doped silicon carbide (poly-SiC:N) based microheaters coated with ALD Al{sub 2}O{sub 3} are used as test structure to investigate the barrier effect of the alumina layers to oxygen and water vapor at very high temperature (up to 1000 °C). Different device sets have been fabricated changing the doping levels, to evaluate possible interaction between the dopants and the alumina layer. The as-deposited alumina layer morphology has been evaluated by means of AFM analysis and compared to an annealed sample (8 h at 1000 °C) to estimate the change in the grain structure and the film density. The coated microheaters are subjected to very long oxidation time in dry and wet environment (up to 8 h at 900 and 1000 °C). By evaluating the electrical resistance variation between uncoated reference devices and the ALD coated devices, the oxide growth on the SiC is estimated. The results show that the ALD alumina coating completely prevents the oxidation of the SiC up to 900 °C in wet environment, while an oxide thickness reduction of 50% is observed at 1000 °C compared to uncoated devices.

  18. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    International Nuclear Information System (INIS)

    Comes, Ryan; Liu Hongxue; Lu Jiwei; Gu, Man; Khokhlov, Mikhail; Wolf, Stuart A.

    2013-01-01

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  19. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    Science.gov (United States)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  20. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    Science.gov (United States)

    Habibi, Neda

    2014-05-05

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chubenko, E. B., E-mail: eugene.chubenko@gmail.com; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P. [Belarusian State University of Information and RadioElectronics (Belarus)

    2016-03-15

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  2. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    International Nuclear Information System (INIS)

    Chubenko, E. B.; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P.

    2016-01-01

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  3. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer.

    Science.gov (United States)

    Bhaumik, Saikat; Pal, Amlan J

    2014-07-23

    We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.

  4. A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices

    Science.gov (United States)

    Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.

    2016-12-01

    A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.

  5. Adhesion-enhanced thick copper film deposition on aluminum oxide by an ion-beam-mixed Al seed layer

    International Nuclear Information System (INIS)

    Kim, Hyung-Jin; Park, Jae-Won

    2012-01-01

    We report a highly-adherent 30-μm Cu conductive-path coating on an aluminum-oxide layer anodized on an aluminum-alloy substrate for a metal-printed circuit-board application. A 50-nm Al layer was first coated with an e-beam evaporative deposition method on the anodized oxide, followed by ion bombardment to mix the interfacial region. Subsequently, a Cu coating was deposited onto the mixed seed layer to the designed thickness. Adhesions of the interface were tested by using tape adhesion test, and pull-off tests and showed commercially acceptable adhesions for such thick coating layers. The ion beam mixing (IBM) plays the role of fastening the thin seed coating layer to the substrate and enhancing the adhesion of the Cu conductive path on the anodized aluminum surface.

  6. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    Paul C. McIntyre

    2012-07-01

    Full Text Available The literature on polar Gallium Nitride (GaN surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  7. Surface oxidation of porous ZrB2-SiC ceramic composites by continuous-wave ytterbium fibre laser

    International Nuclear Information System (INIS)

    Mahmod, Dayang Salyani Abang; Glandut, Nicolas; Khan, Amir Azam; Labbe, Jean-Claude

    2015-01-01

    Highlights: • Surface oxidation of ZrB 2 -SiC ceramic composites by Yb-fibre laser. • Round spiral laser pattern created for the surface oxidation. • Presence of laser-formed oxide scale and unaffected beneath regions. • Crazed but uncracked surface oxide. • A dense glassy SiO 2 -rich layer exhibited enhances oxidation resistance. - Abstract: Surface treatment of ceramic substrates by a laser beam can allow to incorporate interesting properties to these ceramics. In the present work, surface oxidation of ca. 30% porous ZrB 2 -SiC ceramic composites by using an ytterbium fibre laser was conducted. Oxidation of ceramic substrates through this process under ambient conditions has certain advantages compared to the classical oxidation method. A particular spiral laser pattern was created in order to produce an oxidized structure on ZrB 2 -SiC porous substrates. The laser parameters were as follows i.e., laser power of 50, 60 and 70 W, a beam diameter of 1.25 mm, velocity of 2 mm/s, acceleration and deceleration of 1 mm/s 2 . The microstructural and morphological changes in the laser-treated region was examined using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. At laser power of 70 W, the sample exhibits uniform oxidation. It revealed that the very porous bulk beneath remained unaffected and unoxidized because this laser-formed oxide scale protects the substrate from oxidation. The presence of oxidized and unaffected regions indicated a high degree of heat localization. The dense glassy SiO 2 -rich layer prevents the inward oxygen diffusion into the inner bulk hence enhances the oxidation resistance.

  8. A Novel Oxidation-Reduction Route for Layer-by-Layer Synthesis of TiO2 Nanolayers and Investigation of Its Photocatalytical Properties

    Directory of Open Access Journals (Sweden)

    Konstantin Semishchenko

    2014-01-01

    Full Text Available Layer-by-layer (LbL synthesis of titanium dioxide was performed by an oxidation-reduction route using a Ti(OH3 colloid and NaNO2 solutions. A model of chemical reactions was proposed based on the results of an investigation of synthesized nanolayers by scanning electron microscopy, electron microprobe analysis and X-ray photoelectron spectroscopy, and studying colloidal solution of Ti(OH3 with laser Doppler microelectrophoresis. At each cycle, negatively charged colloidal particles of [Ti(OH3]HSO4- adsorbed onto the surface of substrate. During the next stage of treatment in NaNO2 solution, the particles were oxidized to Ti(OH4. Photocatalytic activity was studied by following decomposition of methylene blue (MB under UV irradiation. Sensitivity of the measurements was increased using a diffuse transmittance (DT method. The investigation revealed strong photocatalytical properties of the synthesized layers, caused by their high area per unit volume and uniform globular structure.

  9. Preparation and Investigation of the Microtribological Properties of Graphene Oxide and Graphene Films via Electrostatic Layer-by-Layer Self-Assembly

    Directory of Open Access Journals (Sweden)

    Yongshou Hu

    2015-01-01

    Full Text Available Graphene oxide (GO films with controlled layers, deposited on single-crystal silicon substrates, were prepared by electrostatic self-assembly of negatively charged GO sheets. Afterward, graphene films were prepared by liquid-phase reduction of as-prepared GO films using hydrazine hydrate. The microstructures and microtribological properties of the samples were studied using X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, UV-vis absorption spectroscopy, water contact angle measurement, and atomic force microscopy. It is found that, whether GO films or graphene films, the adhesion force and the coefficients of friction both show strong dependence on the number of self-assembled layers, which both allow a downward trend as the number of self-assembled layers increases due to the interlayer sliding and the puckering effect when the tip slipped across the top surface of the films. Moreover, in comparison with the GO films with the same self-assembled layers, the graphene films possess lower adhesion force and coefficient of friction attributed to the difference of surface functional groups.

  10. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  11. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties.

    Science.gov (United States)

    Tian, Chixia; Lin, Feng; Doeff, Marca M

    2018-01-16

    Layered lithium transition metal oxides, in particular, NMCs (LiNi x Co y Mn z O 2 ) represent a family of prominent lithium ion battery cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety for electric vehicles and grid storage. Our work has focused on various strategies to improve performance and to understand the limitations to these strategies, which include altering compositions, utilizing cation substitutions, and charging to higher than usual potentials in cells. Understanding the effects of these strategies on surface and bulk behavior and correlating structure-performance relationships advance our understanding of NMC materials. This also provides information relevant to the efficacy of various approaches toward ensuring reliable operation of these materials in batteries intended for demanding traction and grid storage applications. In this Account, we start by comparing NMCs to the isostructural LiCoO 2 cathode, which is widely used in consumer batteries. Effects of changing the metal content (Ni, Mn, Co) upon structure and performance of NMCs are briefly discussed. Our early work on the effects of partial substitution of Al, Fe, and Ti for Co on the electrochemical and bulk structural properties is then covered. The original aim of this work was to reduce the Co content (and thus the raw materials cost) and to determine the effect of the substitutions on the electrochemical and bulk structural properties. More recently, we have turned to the application of synchrotron and advanced microscopy techniques to understand both bulk and surface characteristics of the NMCs. Via nanoscale-to-macroscale spectroscopy and atomically resolved imaging techniques, we were able to determine that the surfaces of NMC undergo heterogeneous reconstruction from a layered structure to rock salt under a variety of conditions. Interestingly, formation of rock salt also occurs under abuse conditions. The surface

  12. Improvement of optical and electrical properties of indium tin oxide layer of GaN-based light-emitting diode by surface plasmon in silver nanoparticles

    International Nuclear Information System (INIS)

    Cho, Chu-Young; Hong, Sang-Hyun; Park, Seong-Ju

    2015-01-01

    We report on the effect of silver (Ag) nanoparticles on the optical transmittance and electrical conductivity of indium tin oxide (ITO) transparent conducting layer deposited on p-GaN layer of light-emitting diodes (LEDs). The sheet resistance of ITO and the series resistance of LEDs were decreased due to the increased electrical conductivity of ITO by Ag nanoparticles, compared with those of the LEDs with a bare ITO only. The ITO transmittance was also improved by localized surface plasmon resonance between the incident light and the randomly distributed Ag nanoparticles on ITO. The optical output power of LEDs with Ag nanoparticles on ITO was increased by 16% at 20 mA of injection current. - Highlights: • We studied the effect of Ag nanoparticles deposited on ITO on the properties of LED. • The optical power of LED and transmittance of ITO were improved by Ag surface plasmon. • The electrical conductivity of ITO was increased by Ag nanoparticles

  13. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction

    Science.gov (United States)

    Gao, Linjie; Li, Yaguang; Xiao, Mu; Wang, Shufang; Fu, Guangsheng; Wang, Lianzhou

    2017-06-01

    Two-dimensional (2D) metal oxide nanosheets have demonstrated their great potential in a broad range of applications. The existing synthesis strategies are mainly preparing 2D nanosheets from layered and specific transition metal oxides. How to prepare the other types of metal oxides as ultrathin 2D nanosheets remains unsolved, especially for metal oxides containing alkali, alkaline earth metal, and multiple metal elements. Herein, we developed a half-successive ion layer adsorption and reaction (SILAR) method, which could synthesize those types of metal oxides as ultrathin 2D nanosheets. The synthesized 2D metal oxides nanosheets are within 1 nm level thickness and 500 m2 · g-1 level surface area. This method allows us to develop many new types of ultrathin 2D metal oxides nanosheets that have never been prepared before.

  14. FORMATION AND RESEARCH OF MULTI-LAYER COMPOSITE PLASMA OXIDE COATINGS BASED ON ELEMENTS OF SCREEN METEROID PTOTECTION

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2016-01-01

    Full Text Available The paper presents results of research for influence of plasma jet parameters (current, spraying distance, plasmasupporting nitrogen gas consumption, fractional composition of an initial powder and cooling degree by compressed air on characteristics of anti-meteorite coatings, subsequent processing modes by pulsed plasma. Properties of the obtained coatings and results of ballistic tests have been given in the paper. The proposed methodology has been based on complex metallographic, X-ray diffraction and electron microscopic investigations of anti-meteorite aluminum oxide coating. Optimization of air plasma spraying parameters for NiAl and Al2O3 materials has been carried out in the paper. The spraying parameters optimization has been executed on the basis of obtaining maximum materials utilization factor. Surface treatment of model screen elements with a double-layer composite coating (adhesive metal NiAl layer and hard ceramic oxide Al2O3 layer has been fulfilled while using compression plasma stream. Nitrogen has been used as working gas. Composite hard ceramic oxide Al2O3 coating is represented by porous structure consisting of 10–15 µm-size fused Al2O3 particles. Metallic inclusions formed due to erosion of plasmatron electrodes have been observed in the space between the particles. Surface of bilayer composite coatings has been processed by a compression plasma stream and due to nonsteady processes of melting and recrystallization high strength polycrystalline layer has been formed on their surface. In this context, those areas of the polycrystalline layer which had metal inclusions have appeared to be painted in various colors depending on chemical composition of the inclusions.

  15. Morphology and phase structures of CW laser-induced oxide layers on iron surface with evolving reflectivity and colors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Taotao, E-mail: wutaotao@nint.ac.cn; Wang, Lijun; Wei, Chenghua; Zhou, Menglian; He, Minbo; Wu, Lixiong

    2016-11-30

    Highlights: • Firstly, iron samples with different color features were obtained by continuous wave laser irradiation depending on progressive durations. The real-time reflectivity and temperature of samples were measured. The color and the reflectivity evolution were related. They were both caused by the forming oxide films. • Secondly, laser-induced oxidation process of iron was studied by microscope, X-ray diffraction and Raman spectrum. The first formed magnetite made the surface reflectivity decline rapidly and caused the “positive feedback” effect because of molecular absorption. The later formed hematite oscillated the reflectivity by interference effect. • Lastly, the laser-induced oxide films were thin, orientated and badly crystallized. The Wagner oxidation theory was incapable of describing the non-isothermal and early stage oxidation process. So we emphasized that a precise oxidation model depending on the experiment and the optical constants of the laser-induced oxides must be studied. - Abstract: Laser-induced oxidation will change the laser reflectivity and color features of metal surface. Both changes can be theoretically calculated based on the oxidation kinetics and the optical constants of oxides. For the purpose of calculation, the laser-induced oxidation process of pure polycrystalline iron was studied. Samples with various color features were obtained by continuous wave Nd:YAG fiber laser (1.06 μm) irradiation depending on progressive durations in the intensity of 1.90 W/cm{sup 2}. The real-time reflectivity and temperature were measured with integral sphere and thermocouples. The irradiated surface morphology and phase structures were characterized by microscope, X-ray diffraction and Raman spectrum. It was found that the first formed magnetite made the surface reflectivity decline rapidly and caused the “positive feedback” effect because of molecular absorption. The later formed hematite oscillated the reflectivity by

  16. Effects of stress on the oxide layer thickness and post-oxidation creep strain of zircaloy-4

    International Nuclear Information System (INIS)

    Lim, Sang Ho; Yoon, Young Ku

    1986-01-01

    Effects of compressive stress generated in the oxide layer and its subsequent relief on oxidation rate and post-oxidation creep characteristics of zircaloy-4 were investigated by oxidation studies in steam with and without applied tensile stress and by creep testing at 700 deg C in high purity argon. The thickness of oxide layer increased with the magnitude of tensile stress applied during oxidation at 650 deg C in steam whereas similar phenomenon was not observed during oxidation at 800 deg C. Zircaloy-4 specimens oxidized at 600 deg C in steam without applied stress exhibited higher creep strain than that shown by unoxidized specimens when creep-tested in argon. Zircaloy-4 specimens oxidized at 600 deg C steam under the applied stress of 8.53MPa and oxidized at 800 deg C under the applied stress of 0 and 8.53MPa exhibited lower strain than that shown by unoxidized specimen. The above experimental results were accounted for on the basis of interactions among applied stress during oxidation, compressive stress generated in the oxide layer and elasticity of zircaloy-4 matrix. (Author)

  17. Multi-layered zinc oxide-graphene composite thin films for selective nitrogen dioxide sensing

    Science.gov (United States)

    Ghosh, A.; Bhowmick, T.; Majumder, S. B.

    2018-02-01

    In the present work, selective nitrogen dioxide (NO2) sensing characteristics of multi-layered graphene-zinc oxide (G-ZnO) thin films have been demonstrated at 150 °C. The response% of 5 ppm NO2 was measured to be 894% with response and recovery times estimated to be 150 s and 315 s, respectively. In these composite films, the interaction between graphene and zinc oxide is established through X-ray photoelectron spectroscopy in conjunction with the analyses of photoluminescence spectra. Superior NO2 sensing of these films is due to simultaneous chemiadsorption of molecular oxygen and NO2 gases onto graphene and ZnO surfaces, resulting in an appreciable increase in the depletion layer width and thereby the sensor resistance. The sensor responses for other reducing gases (viz., CO, H2, and i-C4H10) are postulated to be due to their catalytic oxidation on the sensor surface, resulting in a decrease in the sensor resistance upon gas exposure. At lower operating temperature, due to the molecular nature of the chemiadsorbed oxygen, poor catalytic oxidation leads to a far lower sensor response for reducing gases as compared to NO2. For mixed NO2 and reducing gas sensing, we have reported that fast Fourier transformation of the resistance transients of all these gases in conjunction with principal component analyses forms a reasonably distinct cluster and, therefore, could easily be differentiated.

  18. Surface functionalization of carbon nanofibers by sol-gel coating of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shao Dongfeng [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Changzhou Textile Garment Institute, Changzhou 213164 (China); Wei Qufu [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)], E-mail: qfwei@jiangnan.edu.cn; Zhang Liwei; Cai Yibing; Jiang Shudong [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)

    2008-08-15

    In this paper the functional carbon nanofibers were prepared by the carbonization of ZnO coated PAN nanofibers to expand the potential applications of carbon nanofibers. Polyacrylonitrile (PAN) nanofibers were obtained by electrospinning. The electrospun PAN nanofibers were then used as substrates for depositing the functional layer of zinc oxide (ZnO) on the PAN nanofiber surfaces by sol-gel technique. The effects of coating, pre-oxidation and carbonization on the surface morphology and structures of the nanofibers were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM), respectively. The results of SEM showed a significant increase of the size of ZnO nanograins on the surface of nanofibers after the treatments of coating, pre-oxidation and carbonization. The observations by SEM also revealed that ZnO nanoclusters were firmly and clearly distributed on the surface of the carbon nanofibers. FTIR examination also confirmed the deposition of ZnO on the surface of carbon nanofibers. The XRD analysis indicated that the crystal structure of ZnO nanograins on the surface of carbon nanofibers.

  19. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces

    OpenAIRE

    Jogikalmath, G.; Stuart, J.K.; Pungor, A.; Hlady, V.

    1999-01-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface mo...

  20. Surface oxidation of porous ZrB{sub 2}-SiC ceramic composites by continuous-wave ytterbium fibre laser

    Energy Technology Data Exchange (ETDEWEB)

    Mahmod, Dayang Salyani Abang, E-mail: dygsalyani@gmail.com [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia); Glandut, Nicolas [SPCTS, UMR 7315, CNRS, University of Limoges, European Ceramic Center, 12 Rue Atlantis, 87068 Limoges (France); Khan, Amir Azam [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia); Labbe, Jean-Claude [SPCTS, UMR 7315, CNRS, University of Limoges, European Ceramic Center, 12 Rue Atlantis, 87068 Limoges (France)

    2015-12-01

    Highlights: • Surface oxidation of ZrB{sub 2}-SiC ceramic composites by Yb-fibre laser. • Round spiral laser pattern created for the surface oxidation. • Presence of laser-formed oxide scale and unaffected beneath regions. • Crazed but uncracked surface oxide. • A dense glassy SiO{sub 2}-rich layer exhibited enhances oxidation resistance. - Abstract: Surface treatment of ceramic substrates by a laser beam can allow to incorporate interesting properties to these ceramics. In the present work, surface oxidation of ca. 30% porous ZrB{sub 2}-SiC ceramic composites by using an ytterbium fibre laser was conducted. Oxidation of ceramic substrates through this process under ambient conditions has certain advantages compared to the classical oxidation method. A particular spiral laser pattern was created in order to produce an oxidized structure on ZrB{sub 2}-SiC porous substrates. The laser parameters were as follows i.e., laser power of 50, 60 and 70 W, a beam diameter of 1.25 mm, velocity of 2 mm/s, acceleration and deceleration of 1 mm/s{sup 2}. The microstructural and morphological changes in the laser-treated region was examined using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. At laser power of 70 W, the sample exhibits uniform oxidation. It revealed that the very porous bulk beneath remained unaffected and unoxidized because this laser-formed oxide scale protects the substrate from oxidation. The presence of oxidized and unaffected regions indicated a high degree of heat localization. The dense glassy SiO{sub 2}-rich layer prevents the inward oxygen diffusion into the inner bulk hence enhances the oxidation resistance.

  1. Phase inversion and frequency doubling of reflection high-energy electron diffraction intensity oscillations in the layer-by-layer growth of complex oxides

    Science.gov (United States)

    Mao, Zhangwen; Guo, Wei; Ji, Dianxiang; Zhang, Tianwei; Gu, Chenyi; Tang, Chao; Gu, Zhengbin; Nie*, Yuefeng; Pan, Xiaoqing

    In situ reflection high-energy electron diffraction (RHEED) and its intensity oscillations are extremely important for the growth of epitaxial thin films with atomic precision. The RHEED intensity oscillations of complex oxides are, however, rather complicated and a general model is still lacking. Here, we report the unusual phase inversion and frequency doubling of RHEED intensity oscillations observed in the layer-by-layer growth of SrTiO3 using oxide molecular beam epitaxy. In contacts to the common understanding that the maximum(minimum) intensity occurs at SrO(TiO2) termination, respectively, we found that both maximum or minimum intensities can occur at SrO, TiO2, or even incomplete terminations depending on the incident angle of the electron beam, which raises a fundamental question if one can rely on the RHEED intensity oscillations to precisely control the growth of thin films. A general model including surface roughness and termination dependent mean inner potential qualitatively explains the observed phenomena, and provides the answer to the question how to prepare atomically and chemically precise surface/interfaces using RHEED oscillations for complex oxides. We thank National Basic Research Program of China (No. 11574135, 2015CB654901) and the National Thousand-Young-Talents Program.

  2. Influences of ultra-thin Ti seed layers on the dewetting phenomenon of Au films deposited on Si oxide substrates

    Science.gov (United States)

    Kamiko, Masao; Kim, So-Mang; Jeong, Young-Seok; Ha, Jae-Ho; Koo, Sang-Mo; Ha, Jae-Geun

    2018-05-01

    The influences of a Ti seed layer (1 nm) on the dewetting phenomenon of Au films (5 nm) grown onto amorphous SiO2 substrates have been studied and compared. Atomic force microscopy results indicated that the introduction of Ti between the substrate and Au promoted the dewetting phenomenon. X-ray diffraction measurements suggested that the initial deposition of Ti promoted crystallinity of Au. A series of Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that Ti transformed to a Ti oxide layer by reduction of the amorphous SiO2 substrate surface, and that the Ti seed layer remained on the substrate, without going through the dewetting process during annealing. We concluded that the enhancement of Au dewetting and the improvement in crystallinity of Au by the insertion of Ti could be attributed to the fact that Au location was changed from the surface of the amorphous SiO2 substrate to that of the Ti oxide layer.

  3. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    Science.gov (United States)

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  4. Band energy control of molybdenum oxide by surface hydration

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Keith T., E-mail: k.t.butler@bath.ac.uk; Walsh, Aron [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Crespo-Otero, Rachel [School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London E1 4NS (United Kingdom); Buckeridge, John; Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Bovill, Edward; Lidzey, David [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-12-07

    The application of oxide buffer layers for improved carrier extraction is ubiquitous in organic electronics. However, the performance is highly susceptible to processing conditions. Notably, the interface stability and electronic structure is extremely sensitive to the uptake of ambient water. In this study we use density functional theory calculations to asses the effects of adsorbed water on the electronic structure of MoO{sub x}, in the context of polymer-fullerene solar cells based on PCDTBT. We obtain excellent agreement with experimental values of the ionization potential for pristine MoO{sub 3} (010). We find that IP and EA values can vary by as much as 2.5 eV depending on the oxidation state of the surface and that adsorbed water can either increase or decrease the IP and EA depending on the concentration of surface water.

  5. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Guimond, Sebastien

    2009-06-04

    The growth and the surface structure of well-ordered V{sub 2}O{sub 3}, V{sub 2}O{sub 5} and MoO{sub 3} thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V{sub 2}O{sub 3}(0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V{sub 2}O{sub 3} bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V{sub 2}O{sub 5}(001) and MoO{sub 3}(010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O{sub 2} in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V{sub 2}O{sub 5} and MoO{sub 3} layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a

  6. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    International Nuclear Information System (INIS)

    Guimond, Sebastien

    2009-01-01

    The growth and the surface structure of well-ordered V 2 O 3 , V 2 O 5 and MoO 3 thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V 2 O 3 (0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V 2 O 3 bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V 2 O 5 (001) and MoO 3 (010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O 2 in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V 2 O 5 and MoO 3 layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a monolayer is formed dur-ing the preparation of supported vanadia

  7. WO3 and W Thermal Atomic Layer Etching Using "Conversion-Fluorination" and "Oxidation-Conversion-Fluorination" Mechanisms.

    Science.gov (United States)

    Johnson, Nicholas R; George, Steven M

    2017-10-04

    The thermal atomic layer etching (ALE) of WO 3 and W was demonstrated with new "conversion-fluorination" and "oxidation-conversion-fluorination" etching mechanisms. Both of these mechanisms are based on sequential, self-limiting reactions. WO 3 ALE was achieved by a "conversion-fluorination" mechanism using an AB exposure sequence with boron trichloride (BCl 3 ) and hydrogen fluoride (HF). BCl 3 converts the WO 3 surface to a B 2 O 3 layer while forming volatile WO x Cl y products. Subsequently, HF spontaneously etches the B 2 O 3 layer producing volatile BF 3 and H 2 O products. In situ spectroscopic ellipsometry (SE) studies determined that the BCl 3 and HF reactions were self-limiting versus exposure. The WO 3 ALE etch rates increased with temperature from 0.55 Å/cycle at 128 °C to 4.19 Å/cycle at 207 °C. W served as an etch stop because BCl 3 and HF could not etch the underlying W film. W ALE was performed using a three-step "oxidation-conversion-fluorination" mechanism. In this ABC exposure sequence, the W surface is first oxidized to a WO 3 layer using O 2 /O 3 . Subsequently, the WO 3 layer is etched with BCl 3 and HF. SE could simultaneously monitor the W and WO 3 thicknesses and conversion of W to WO 3 . SE measurements showed that the W film thickness decreased linearly with number of ABC reaction cycles. W ALE was shown to be self-limiting with respect to each reaction in the ABC process. The etch rate for W ALE was ∼2.5 Å/cycle at 207 °C. An oxide thickness of ∼20 Å remained after W ALE, but could be removed by sequential BCl 3 and HF exposures without affecting the W layer. These new etching mechanisms will enable the thermal ALE of a variety of additional metal materials including those that have volatile metal fluorides.

  8. Oxidation effects on the electric resistance of In and Al in thin layers

    International Nuclear Information System (INIS)

    Moncada, G.; Araya, J.; Clark, N.

    1981-01-01

    Measurements of electric resistance (R) in function of the time in evaporated samples of thin layers of In and Al trivalent elements in both vacuum and atmospheric pressure are reported. Measurements in samples at ambient and cooled with nitrogen temperatures taken place. The changes observed in R is attributed partly to changes in the sample surface produced by the oxidation. (L.C.) [pt

  9. Properties of InGaAs/GaAs metal-oxide-semiconductor heterostructure field-effect transistors modified by surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gregušová, D., E-mail: Dagmar.Gregusova@savba.sk [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84104 (Slovakia); Gucmann, F.; Kúdela, R. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84104 (Slovakia); Mičušík, M. [Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84541 (Slovakia); Stoklas, R.; Válik, L. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84104 (Slovakia); Greguš, J. [Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, Bratislava SK-84248 (Slovakia); Blaho, M. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84104 (Slovakia); Kordoš, P. [Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology STU, Ilkovičova 3, Bratislava SK-81219 (Slovakia)

    2017-02-15

    Highlights: • AlGaAs/InGaAs/GaAs-based metal oxide semiconductor transistors-MOSHFET. • Thin Al-layer deposited in-situ and oxidize in air – gate insulator. • MOSHFET vs HFET transistor properties, density of traps evaluated. - Abstract: GaAs-based heterostructures exhibit excellent carrier transport properties, mainly the high carrier velocity. An AlGaAs-GaAs heterostructure field-effect transistor (HFET) with an InGaAs channel was prepared using metal-organic chemical vapor deposition (MOVPE). An AlOx layer was formed on the AlGaAs barrier layer by the air-assisted oxidation of a thin Al layer deposited in-situ in an MOVPE reactor immediately after AlGaAs/InGaAs growth. The HFETs and MOSHFETs exhibited a very low trap state density in the order of 10{sup 11} cm{sup −2} eV{sup −1}. Capacitance measurement yielded no significant difference between the HFET and MOSHFET structures. The formation of an AlOx layer modified the surface by partially eliminating surface states that arise from Ga-and As-based native oxides. The presence of an AlOx layer reflected in a reduced gate leakage current, which was evidenced by the two-terminal transistor measurement. Presented preparation procedure and device properties show great potential of AlGaAs/InGaAs-based MOSHFETs.

  10. NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction

    Science.gov (United States)

    Yang, Liting; Chen, Lin; Yang, Dawen; Yu, Xu; Xue, Huaiguo; Feng, Ligang

    2018-07-01

    High valence transition metal oxide is significant for anode catalyst of proton membrane water electrolysis technique. Herein, we demonstrate NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires hierarchical nanocomposite catalyst with surface rich high valence metal oxide as an efficient catalyst for oxygen evolution reaction. A low overpotential of 310 mV is needed to drive a 10 mA cm-2 with a Tafel slope of 99 mV dec-1, and a remarkable stability during 8 h is demonstrated in a chronoamperometry test. Theoretical calculation displays the change in the rate-determining step on the nanocomposite electrode in comparison to NiCo2O4 nanowires alone. It is found high valence Ni and Mn oxide in the catalyst system can efficiently facilitate the charge transport across the electrode/electrolyte interface. The enhanced electrical conductivity, more accessible active sites and synergistic effects between NiMn layered double hydroxide nanosheets and NiCo2O4 nanowires can account for the excellent oxygen evolution reaction. The catalytic performance is comparable to most of the best non-noble catalysts and IrO2 noble catalyst, indicating the promising applications in water-splitting technology. It is an important step in the development of hierarchical nanocomposites by surface valence state tuning as an alternative to noble metals for oxygen evolution reaction.

  11. The Recovery of a Magnetically Dead Layer on the Surface of an Anatase (Ti,CoO2 Thin Film via an Ultrathin TiO2 Capping Layer

    Directory of Open Access Journals (Sweden)

    Thantip S. Krasienapibal

    2017-03-01

    Full Text Available The effect of an ultrathin TiO2 capping layer on an anatase Ti0.95Co0.05O2−δ (001 epitaxial thin film on magnetism at 300 K was investigated. Films with a capping layer showed increased magnetization mainly caused by enhanced out-of-plane magnetization. In addition, the ultrathin capping layer was useful in prolonging the magnetization lifetime by more than two years. The thickness dependence of the magnetic domain structure at room temperature indicated the preservation of magnetic domain structure even for a 13 nm thick film covered with a capping layer. Taking into account nearly unchanged electric conductivity irrespective of the capping layer’s thickness, the main role of the capping layer is to prevent surface oxidation, which reduces electron carriers on the surface.

  12. Organic light emitting diode with surface modification layer

    Science.gov (United States)

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  13. Strengthening of Zircaloy-4 with Oxide Particles by Surface Treatment using Laser Beam

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Park, Jung Hwan; Park, Dong Jun; Kim, Hyun Gil; Yang, Jae Ho; Koo, Yang Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Accident tolerant fuel (ATF) cladding is being developed globally after the Fukushima accident with the demands for the nuclear fuel having higher safety at normal operation conditions as well as even in a severe accident conditions. Korea Atomic Energy Research Institute (KAERI) is one of the leading organizations for developing ATF claddings. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high-temperature mechanical strength of Zr tube. High-power laser beam was exposed on the zirconium surface previously coated by oxides. Various oxides such as Y{sub 2}O{sub 3}, CeO{sub 2}, Gd{sub 2}O{sub 3}, Er{sub 2}O{sub 3} were used for the ODS treatment. In this study, the effect of strengthening by the ODS treatment was investigated. The oxide particles of Y{sub 2}O{sub 3} were dispersed well in the Zr matrix at the surface region.

  14. Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes

    KAUST Repository

    McDowell, Matthew T.

    2011-09-14

    With its high specific capacity, silicon is a promising anode material for high-energy lithium-ion batteries, but volume expansion and fracture during lithium reaction have prevented implementation. Si nanostructures have shown resistance to fracture during cycling, but the critical effects of nanostructure size and native surface oxide on volume expansion and cycling performance are not understood. Here, we use an ex situ transmission electron microscopy technique to observe the same Si nanowires before and after lithiation and have discovered the impacts of size and surface oxide on volume expansion. For nanowires with native SiO2, the surface oxide can suppress the volume expansion during lithiation for nanowires with diameters <∼50 nm. Finite element modeling shows that the oxide layer can induce compressive hydrostatic stress that could act to limit the extent of lithiation. The understanding developed herein of how volume expansion and extent of lithiation can depend on nanomaterial structure is important for the improvement of Si-based anodes. © 2011 American Chemical Society.

  15. Characterization of hafnium oxide resistive memory layers deposited on copper by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.D.; Bishop, S.M. [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States); Leedy, K.D. [Air Force Research Laboratory, 2241 Avionics Circle, Wright Patterson Air Force Base, Dayton, OH 45433 (United States); Cady, N.C., E-mail: ncady@albany.edu [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States)

    2014-07-01

    Hafnium oxide-based resistive memory devices have been fabricated on copper bottom electrodes. The HfO{sub x} active layers in these devices were deposited by atomic layer deposition (ALD) at 250 °C with tetrakis(dimethylamido)hafnium(IV) as the metal precursor and an O{sub 2} plasma as the reactant. Depth profiles of the HfO{sub x} by X-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a copper concentration on the order of five atomic percent throughout the HfO{sub x} film. In addition to the Cu doped HfO{sub x}, a thin layer (20 nm) of Cu{sub x}O is present at the surface. This surface layer is believed to have formed during the ALD process, and greatly complicates the analysis of the switching mechanism. The resistive memory structures fabricated from the ALD HfO{sub x} exhibited non-polar resistive switching, independent of the top metal electrode (Ni, Pt, Al, Au). Resistive switching current voltage (I–V) curves were analyzed using Schottky emission and ionic hopping models to gain insight into the physical mechanisms underpinning the device behavior. During the forming process it was determined that, at voltages in excess of 2.5 V, an ionic hopping model is in good agreement with the I–V data. The extracted ion hopping distance ∼ 4 Å was within the range of interatomic spacing of HfO{sub 2} during the forming process consistent with ionic motion of Cu{sup 2+} ions. Lastly the on state I–V data was dominated at larger voltages by Schottky emission with an estimated barrier height of ∼ 0.5 eV and a refractive index of 2.59. The consequence of the Schottky emission analysis indicates the on state resistance to be a product of a Pt/Cu{sub 2}O/Cu filament(s)/Cu{sub 2}O/Cu structure. - Highlights: • HfO{sub 2} was grown via atomic layer deposition at 250 and 100 °C on Cu substrates. • A Cu{sub 2}O surface layer and Cu doping were observed in post-deposition of HfO{sub 2}. • Resistive memory devices were fabricated and

  16. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood

    Science.gov (United States)

    Lozhechnikova, Alina; Bellanger, Hervé; Michen, Benjamin; Burgert, Ingo; Österberg, Monika

    2017-02-01

    Protection from liquid water and UV radiation are equally important, and a sophisticated approach is needed when developing surface coatings that preserve the natural and well-appreciated aesthetic appearance of wood. In order to prevent degradation and prolong the service life of timber, a protective coating was assembled using carnauba wax particles and zinc oxide nanoparticles via layer-by-layer deposition in water. For this purpose, a facile sonication route was developed to produce aqueous wax dispersion without any surfactants or stabilizers. The suspension was stable above pH 4 due to the electrostatic repulsion between the negatively charged wax particles. The particle size could be controlled by the initial wax concentration with average particle sizes ranging from 260 to 360 nm for 1 and 10 g/L, respectively. The deposition of wax particles onto the surface of spruce wood introduced additional roughness to the wood surface at micron level, while zinc oxide provided nano roughness and UV-absorbing properties. In addition to making wood superhydrophobic, this novel multilayer coating enhanced the natural moisture buffering capability of spruce. Moreover, wood surfaces prepared in this fashion showed a significant reduction in color change after exposure to UV light. A degradation of the wax through photocatalytic activity of the ZnO particles was measured by FTIR, indicating that further studies are required to achieve long-term stability. Nevertheless, the developed coating showed a unique combination of superhydrophobicity and excellent moisture buffering ability and some UV protection, all achieved using an environmentally friendly coating process, which is beneficial to retain the natural appearance of wood and improve indoor air quality and comfort.

  17. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  18. An evaluation of the effect of surface chromium concentration on the oxidation of a stainless steel

    International Nuclear Information System (INIS)

    Lobb, R.C.; Evans, H.E.

    1983-01-01

    Short-term oxidation tests have been performed at 850 deg C in a CO 2 -based atmosphere on 20Cr-25Ni-Nb-stabilized steels previously exposed to dynamic vacuum at 1000 deg C. This pre-treatment preferentially removes chromium from the metal surface and is always detrimental to the oxidation properties. It is shown that porous, iron-rich oxides initially form on specimens with surface chromium concentrations 18.5 w/o chromium, a protective surface layer is produced. It is suggested that the transition between these extremes is determined by nucleation conditions and, in the present steels, it is shown how the metal grain size plays a significant role. (author)

  19. Mass transfer model for two-layer TBP oxidation reactions: Revision 1

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the Canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. Bubbles containing reaction products enhance the rate of transfer of water from the aqueous layer to the organic layer. These bubbles are generated by the oxidation of TBP and its reaction products in the organic layer and by the oxidation of butanol in the aqueous layer. Butanol is formed by the hydrolysis of TBP in the organic layer. For aqueous-layer bubbling to occur, butanol must transfer into the aqueous layer. Consequently, the rate of oxidation and bubble generation in the aqueous layer strongly depends on the rate of transfer of butanol from the organic to the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments

  20. Significant electrical control of amorphous oxide thin film transistors by an ultrathin Ti surface polarity modifier

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byungsu [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Choi, Yonghyuk; Shin, Seokyoon [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Seo, Hyungtak, E-mail: hseo@ajou.ac.kr [Department of Materials Science and Engineering and Energy Systems Research, Ajou University, Suwon 443-739 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-01-27

    We demonstrate an enhanced electrical stability through a Ti oxide (TiO{sub x}) layer on the amorphous InGaZnO (a-IGZO) back-channel; this layer acts as a surface polarity modifier. Ultrathin Ti deposited on the a-IGZO existed as a TiO{sub x} thin film, resulting in oxygen cross-binding with a-IGZO surface. The electrical properties of a-IGZO thin film transistors (TFTs) with TiO{sub x} depend on the surface polarity change and electronic band structure evolution. This result indicates that TiO{sub x} on the back-channel serves as not only a passivation layer protecting the channel from ambient molecules or process variables but also a control layer of TFT device parameters.

  1. Atomic Layer Deposited Thin Films for Dielectrics, Semiconductor Passivation, and Solid Oxide Fuel Cells

    Science.gov (United States)

    Xu, Runshen

    Atomic layer deposition (ALD) utilizes sequential precursor gas pulses to deposit one monolayer or sub-monolayer of material per cycle based on its self-limiting surface reaction, which offers advantages, such as precise thickness control, thickness uniformity, and conformality. ALD is a powerful means of fabricating nanoscale features in future nanoelectronics, such as contemporary sub-45 nm metal-oxide-semiconductor field effect transistors, photovoltaic cells, near- and far-infrared detectors, and intermediate temperature solid oxide fuel cells. High dielectric constant, kappa, materials have been recognized to be promising candidates to replace traditional SiO2 and SiON, because they enable good scalability of sub-45 nm MOSFET (metal-oxide-semiconductor field-effect transistor) without inducing additional power consumption and heat dissipation. In addition to high dielectric constant, high-kappa materials must meet a number of other requirements, such as low leakage current, high mobility, good thermal and structure stability with Si to withstand high-temperature source-drain activation annealing. In this thesis, atomic layer deposited Er2O3 doped TiO2 is studied and proposed as a thermally stable amorphous high-kappa dielectric on Si substrate. The stabilization of TiO2 in its amorphous state is found to achieve a high permittivity of 36, a hysteresis voltage of less than 10 mV, and a low leakage current density of 10-8 A/cm-2 at -1 MV/cm. In III-V semiconductors, issues including unsatisfied dangling bonds and native oxides often result in inferior surface quality that yields non-negligible leakage currents and degrades the long-term performance of devices. The traditional means for passivating the surface of III-V semiconductors are based on the use of sulfide solutions; however, that only offers good protection against oxidation for a short-term (i.e., one day). In this work, in order to improve the chemical passivation efficacy of III-V semiconductors

  2. Role of the SiO2 buffer layer thickness in the formation of Si/SiO2/nc-Ge/SiO2 structures by dry oxidation

    International Nuclear Information System (INIS)

    Kling, A.; Ortiz, M.I.; Prieto, A.C.; Rodriguez, A.; Rodriguez, T.; Jimenez, J.; Ballesteros, C.; Soares, J.C.

    2006-01-01

    Nanomemories, containing Ge-nanoparticles in a SiO 2 matrix, can be produced by dry thermal oxidation of a SiGe layer deposited onto a Si-wafer with a barrier SiO 2 layer on its top. Rutherford backscattering spectrometry has been used to characterize the kinetics of the oxidation process, the composition profile of the growing oxide, the Ge-segregation and its diffusion into the barrier oxide in samples with thin and thick barrier oxide layers. The Ge segregated during the oxidation of the SiGe layer diffuses into the barrier oxide. In the first case the diffusion through the thin oxide is enhanced by the proximity of the substrate that acts as a sink for the Ge, resulting in the formation of a low Ge concentration SiGe layer in the surface of the Si-wafer. In the second case, the Ge-diffusion progresses as slowly as in bulk SiO 2 . Since barrier oxide layers as thin as possible are favoured for device fabrication, the structures should be oxidized at lower temperatures and the initial SiGe layer thickness reduced to minimize the Ge-diffusion

  3. Determination of surface oxide compositions on Alloy 600 using Rutherford backscattering

    International Nuclear Information System (INIS)

    Hanson, A.L.; Kraner, H.W.

    1984-01-01

    The surface composition of oxides formed on Alloy 600 under conditions similar to those in the primary side of PWR heat exchangers has been studied as a function of potential using Rutherford backscattering and proton inelastic scattering. Electropolished samples of Alloy 600 were exposed at several potentials to a solution of 0.18M H 3 BO 3 (2000ppm B) with 0.21mM LiOH (1.5ppm Li) at 300 0 C for 450 hours. The potentials relative to an internal hydrogen electrode ranged from -.09 to 750 mV. RBS analysis showed little or no oxide formation on samples exposed at 0 mV. Above 0 mV oxide layers formed whose thicknesses increased with potential. In addition the RBS showed a significantly enhanced concentration of aluminum and silicon in oxide. Both the oxygen and the sum of the aluminum and silicon content appeared to maintain a fixed surface concentration independent of the oxide thickness. Boron and lithium concentrations were analyzed with proton inelastic scattering. No lithium was detected in any sample. The boron concentration was found to follow the thickness of the oxide

  4. Determination of surface oxide compositions on Alloy 600 using Rutherford backscattering

    International Nuclear Information System (INIS)

    Hanson, A.L.; Isaacs, H.S.; Kraner, H.W.

    1984-01-01

    The surface composition of oxides formed on Alloy 600 under conditions similar to those in the primary side of PWR heat exchangers has been studied as a function of potential using Rutherford backscattering and proton inelastic scattering. Electropolished samples of Alloy 600 were exposed at several potentials to a solution of 0.18M H 3 BO 3 (2000 ppM B) with 0.28M LiOH (1.4 ppM Li) at 300 0 C for 450 hours. The potentials relative to an internal hydrogen electrode ranged from -.09 to 750 mV. RBS analysis showed little or no oxide formation on samples exposed at 0 mV. Above 0 mV oxide layers formed whose thicknesses increased with potential. In addition the RBS showed a significantly enhanced concentration of aluminum and silicon in oxide. Both the oxygen and the sum of the aluminum and silicon content appeared to maintain a fixed surface concentration independent of the oxide thickness. Boron and lithium concentration were analyzed with proton inelastic scattering. No lithium was found in any sample. The boron concentration was found to follow the thickness of the oxide

  5. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    Science.gov (United States)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ˜550 °C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 °C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  6. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    International Nuclear Information System (INIS)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-01-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ∼550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M 2,3 VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  7. Surface state of GaN after rapid-thermal-annealing using AlN cap-layer

    Energy Technology Data Exchange (ETDEWEB)

    El-Zammar, G., E-mail: georgio.elzammar@univ-tours.fr [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Khalfaoui, W. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Oheix, T. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); STMicroelectronics, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Yvon, A.; Collard, E. [STMicroelectronics, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Cayrel, F.; Alquier, D. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France)

    2015-11-15

    Graphical abstract: Surface state of a crack-free AlN cap-layer reactive sputtered on GaN and annealed at high temperature showing a smooth, pit-free surface. - Highlights: • We deposit a crystalline AlN layer by reactive magnetron sputtering on GaN. • We show the effect of deposition parameters of AlN by reactive magnetron sputtering on the quality of the grown layer. • We demonstrate the efficiency of double cap-layer for GaN protection during high temperature thermal treatments. • We show an efficient selective etch of AlN without damaging GaN surface. - Abstract: Critical issues need to be overcome to produce high performance Schottky diodes on gallium nitride (GaN). To activate dopant, high temperature thermal treatments are required but damage GaN surface where hexagonal pits appear and prevent any device processing. In this paper, we investigated the efficiency of cap-layers on GaN during thermal treatments to avoid degradation. Aluminum nitride (AlN) and silicon oxide (SiO{sub x}) were grown on GaN by direct current reactive magnetron sputtering and plasma-enhanced chemical vapor deposition, respectively. AlN growth parameters were studied to understand their effect on the grown layers and their protection efficiency. Focused ion beam was used to measure AlN layer thickness. Crystalline quality and exact composition were verified using X-ray diffraction and energy dispersive X-ray spectroscopy. Two types of rapid thermal annealing at high temperatures were investigated. Surface roughness and pits density were evaluated using atomic force microscopy and scanning electron microscopy. Cap-layers wet etching was processed in H{sub 3}PO{sub 4} at 120 °C for AlN and in HF (10%) for SiO{sub x}. This work reveals effective protection of GaN during thermal treatments at temperatures as high as 1150 °C. Low surface roughness was obtained. Furthermore, no hexagonal pit was observed on the surface.

  8. Interfacial bonding stabilizes rhodium and rhodium oxide nanoparticles on layered Nb oxide and Ta oxide supports.

    Science.gov (United States)

    Strayer, Megan E; Binz, Jason M; Tanase, Mihaela; Shahri, Seyed Mehdi Kamali; Sharma, Renu; Rioux, Robert M; Mallouk, Thomas E

    2014-04-16

    Metal nanoparticles are commonly supported on metal oxides, but their utility as catalysts is limited by coarsening at high temperatures. Rhodium oxide and rhodium metal nanoparticles on niobate and tantalate supports are anomalously stable. To understand this, the nanoparticle-support interaction was studied by isothermal titration calorimetry (ITC), environmental transmission electron microscopy (ETEM), and synchrotron X-ray absorption and scattering techniques. Nanosheets derived from the layered oxides KCa2Nb3O10, K4Nb6O17, and RbTaO3 were compared as supports to nanosheets of Na-TSM, a synthetic fluoromica (Na0.66Mg2.68(Si3.98Al0.02)O10.02F1.96), and α-Zr(HPO4)2·H2O. High surface area SiO2 and γ-Al2O3 supports were also used for comparison in the ITC experiments. A Born-Haber cycle analysis of ITC data revealed an exothermic interaction between Rh(OH)3 nanoparticles and the layered niobate and tantalate supports, with ΔH values in the range -32 kJ·mol(-1) Rh to -37 kJ·mol(-1) Rh. In contrast, the interaction enthalpy was positive with SiO2 and γ-Al2O3 supports. The strong interfacial bonding in the former case led to "reverse" ripening of micrometer-size Rh(OH)3, which dispersed as 0.5 to 2 nm particles on the niobate and tantalate supports. In contrast, particles grown on Na-TSM and α-Zr(HPO4)2·H2O nanosheets were larger and had a broad size distribution. ETEM, X-ray absorption spectroscopy, and pair distribution function analyses were used to study the growth of supported nanoparticles under oxidizing and reducing conditions, as well as the transformation from Rh(OH)3 to Rh nanoparticles. Interfacial covalent bonding, possibly strengthened by d-electron acid/base interactions, appear to stabilize Rh(OH)3, Rh2O3, and Rh nanoparticles on niobate and tantalate supports.

  9. Unzipping of multi-wall carbon nanotubes with different diameter distributions: Effect on few-layer graphene oxide obtention

    Science.gov (United States)

    Torres, D.; Pinilla, J. L.; Suelves, I.

    2017-12-01

    Few-layer graphene oxide (FLGO) was obtained by chemical unzipping of multi-wall carbon nanotubes (MWCNT) of different diameter distributions. MWCNT were synthesized by catalytic decomposition of methane using Fe-Mo/MgO catalysts. The variation in the Fe/Mo ratio (1, 2 and 5) was very influential in MWCNT diameter distribution and type of MWCNT obtained, including textural, chemical, structural and morphological characteristics. MWCNT diameter distribution and surface defects content had a profound impact on the characteristics of the resulting FLGO. Thus, MWCNT obtained with the catalyst with a Fe/Mo: 5 and presenting a narrow diameter distribution centered at 8.6 ± 3.3 nm led to FLGO maintaining non-oxidized graphite stacking (according to XRD analysis), lower specific surface area and higher thermostability as compared to FLGO obtained from MWCNT showing wider diameter distributions. The presence of more oxygen-containing functionalities and structural defects in large diameter nanotubes promotes the intercalation of species towards the inner layers of the nanotube, resulting in an enhanced MWCNT oxidation and opening into FLGO, what improves both micro- and mesoporosity.

  10. Fabrication of free standing anodic titanium oxide membranes with clean surface using recycling process.

    Science.gov (United States)

    Meng, Xianhui; Lee, Tae-Young; Chen, Huiyu; Shin, Dong-Wook; Kwon, Kee-Won; Kwon, Sang Jik; Yoo, Ji-Beom

    2010-07-01

    Large area of self-organized, free standing anodic titanium oxide (ATO) nanotube membranes with clean surfaces were facilely prepared to desired lengths via electrochemical anodization of highly pure Ti sheets in an ethylene glycol electrolyte, with a small amount of NH4F and H2O at 50 V, followed by self-detachment of the ATO membrane from the Ti substrate using recycling processes. In the first anodization step, the nanowire oxide layer existed over the well-arranged ATO nanotube. After sufficiently rinsing with water, the whole ATO layer was removed from the Ti sheet by high pressure N2 gas, and a well-patterned dimple layer with a thickness of about 30 nm existed on the Ti substrate. By using these naturally formed nano-scale pits as templates, in the second and third anodization process, highly ordered, vertically aligned, and free standing ATO membranes with the anodic aluminum oxide (AAO)-like clean surface were obtained. The inter-pore distance and diameter was 154 +/- 2 nm and 91+/- 2 nm, the tube arrays lengths for 25 and 46 hours were 44 and 70 microm, respectively. The present study demonstrates a simple approach to producing high quality, length controllable, large area TiO2 membrane.

  11. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating

    International Nuclear Information System (INIS)

    Tissera, Nadeeka D.; Wijesena, Ruchira N.; Perera, J. Rangana; Nalin de Silva, K.M.; Amaratunge, Gehan A.J.

    2015-01-01

    Graphical abstract: - Highlights: • Different GO dispersions were prepared by sonicating different amounts of GO in water. Degree of exfoliation of these GO sheets in water was analyzed using Atomic Force Microscopy (AFM). • AFM results obtained showed higher the GO concentration on water more the size of GO sheets and lesser the degree of exfoliation. • GO with different amounts was deposited on cotton fabric using simple dyeing method. • High GO loading on cotton increase the surface area coverage of the textile fibers with GO sheets. This led to less edge to mid area ratio of grafted GO sheets. • As contribution of mid area of GO increase on fiber surface cotton fabric becomes more hydrophobic. • Amphiphilic property of GO sheets was used to lower the surface energy of the cotton fibers leading to hydrophobic property. - Abstract: We report for the first time hydrophobic properties on cotton fabric successfully achieved by grafting graphene oxide on the fabric surface, using a dyeing method. Graphite oxide synthesized by oxidizing natural flake graphite employing improved Hummer's method showed an inter layer spacing of ∼1 nm from XRD. Synthesized graphite oxide was exfoliated in water using ultrasound energy to obtain graphene oxide (GO). AFM data obtained for the graphene oxide dispersed in an aqueous medium revealed a non-uniform size distribution. FTIR characterization of the synthesized GO sheets showed both hydrophilic and hydrophobic functional groups present on the nano sheets giving them an amphiphilic property. GO flakes of different sizes were successfully grafted on to a cotton fabric surface using a dip dry method. Loading different amounts of graphene oxide on the cotton fiber surface allowed the fabric to demonstrate different degrees of hydrophobicity. The highest observed water contact angle was at 143° with the highest loading of graphene oxide. The fabric surfaces grafted with GO also exhibits adhesive type hydrophobicity

  12. Characterization of Zircaloy-4 oxide layers by impedance spectroscopy

    International Nuclear Information System (INIS)

    Barberis, P.

    1999-01-01

    Two Zircaloy-4 type alloys with different tin contents (0.5 and 1.2 wt%) have been oxidized in autoclave (400 C in steam) for several durations (1-140 days). The film has been characterized by electrochemical impedance spectroscopy (EIS). Several soaking times have been investigated (up to 40 days). The Cole-Cole representation has been used to display and study the data. A simple electrical model has been derived from the observed spectra: the electrical circuit includes two RC loops in series, whose capacitances are frequency dispersed. It is thoroughly related to the layer structure. It has been shown that even before the kinetic transition, the film is constituted of three parts: an inner layer which is compact, an outer layer subdivided in an external region immediately soaked by the electrolyte, and an internal one in which electrolyte diffusion processes can take place. The kinetic transition is interpreted in terms of an abrupt 'compacity' change, both layers degrading at this point. The alloy with high tin content exhibits higher dispersive properties of the oxide layer formed on it, in correlation with its faster oxidation kinetics. (orig.)

  13. Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals.

    Science.gov (United States)

    Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin

    2015-06-03

    In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV).

  14. Surface Selective Oxide Reduction During the Intercritical Annealing of Medium Mn Steel

    Science.gov (United States)

    Jo, Kyoung Rae; Cho, Lawrence; Oh, Jong Han; Kim, Myoung Soo; Kang, Ki Cheol; De Cooman, Bruno C.

    2017-08-01

    Third generation advanced high-strength steels achieve an excellent strength-ductility balance using a cost-effective alloy composition. During the continuous annealing of medium Mn steel, the formation of an external selective oxide layer of MnO has a negative impact on the coating quality after galvanizing. A procedure to reduce the selective oxide was therefore developed. It involves annealing in the temperature range of 1073 K to 1323 K (800 °C to 1050 °C) in a HNx gas atmosphere. Annealing at higher temperatures and the use of larger H2 volume fractions are shown to make the gas atmosphere reducing with respect to MnO. The reduction of the surface MnO layer was observed by SEM, GDOES, and cross-sectional TEM analysis.

  15. Adsorption of poly(ethylene oxide) on smectite: Effect of layer charge.

    Science.gov (United States)

    Su, Chia-Chi; Shen, Yun-Hwei

    2009-04-01

    The adsorption of polymers on clay is important in many applications. However the mechanisms of poly(ethylene oxide) (PEO) adsorption on smectite is not well elucidated at present. The aim of this study was to investigate the effect of layer charge density on the adsorption of PEO by smectite. The results indicated that both the hydrophobic interaction (between CH(2)CH(2) groups and siloxane surface) and the hydrogen bonding (between ether oxygen of PEO and structure OH of smectite) lead to PEO preferential adsorption on the surface of low-charge smectite. In addition, the delamination of low-charge smectite in water is enhanced upon PEO adsorption presumably due to the hydrophilic ether oxygen of adsorbed PEO.

  16. Chemical gating of epitaxial graphene through ultrathin oxide layers.

    Science.gov (United States)

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-08-07

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

  17. Ultra thin buried oxide layers formed by low dose Simox process

    Energy Technology Data Exchange (ETDEWEB)

    Aspar, B.; Pudda, C.; Papon, A.M. [CEA Centre d`Etudes de Grenoble, 38 (France). Lab. d`Electronique et d`Instrumentation; Auberton Herve, A.J.; Lamure, J.M. [SOITEC, 38 - Grenoble (France)

    1994-12-31

    Oxygen low dose implantation is studied for two implantation energies. For 190 keV, a continuous buried oxide layer is obtained with a high dislocation density in the top silicon layer due to SiO{sub 2} precipitates. For 120 keV, this silicon layer is free of SiO{sub 2} precipitate and has a low dislocation density. Low density of pin-holes is observed in the buried oxide. The influence of silicon islands in the buried oxide on the breakdown electric fields is discussed. (authors). 6 refs., 5 figs.

  18. Ultra thin buried oxide layers formed by low dose Simox process

    International Nuclear Information System (INIS)

    Aspar, B.; Pudda, C.; Papon, A.M.

    1994-01-01

    Oxygen low dose implantation is studied for two implantation energies. For 190 keV, a continuous buried oxide layer is obtained with a high dislocation density in the top silicon layer due to SiO 2 precipitates. For 120 keV, this silicon layer is free of SiO 2 precipitate and has a low dislocation density. Low density of pin-holes is observed in the buried oxide. The influence of silicon islands in the buried oxide on the breakdown electric fields is discussed. (authors). 6 refs., 5 figs

  19. Tailor-made surface plasmon polaritons above the bulk plasma frequency: a design strategy for indium tin oxide

    International Nuclear Information System (INIS)

    Brand, S; Abram, R A; Kaliteevski, M A

    2010-01-01

    A simple phase-matching approach is employed as a design aid to engineer surface plasmon polariton states at the interface of an indium tin oxide layer on the top of a Bragg reflector. By altering the details of the reflector, and in particular the ordering of the layers and the thickness of the layer adjacent to the indium tin oxide, it is possible to readily adjust the energy of these states. Examples of structures engineered to give rise to distinctive features in the reflectivity spectra above the bulk screened plasma frequency for states of both possible polarizations are presented.

  20. Heavy-ion induced current through an oxide layer

    International Nuclear Information System (INIS)

    Takahashi, Yoshihiro; Ohki, Takahiro; Nagasawa, Takaharu; Nakajima, Yasuhito; Kawanabe, Ryu; Ohnishi, Kazunori; Hirao, Toshio; Onoda, Shinobu; Mishima, Kenta; Kawano, Katsuyasu; Itoh, Hisayoshi

    2007-01-01

    In this paper, the heavy-ion induced current in MOS structure is investigated. We have measured the transient gate current in a MOS capacitor and a MOSFET induced by single heavy-ions, and found that a transient current can be observed when the semiconductor surface is under depletion condition. In the case of MOSFET, a transient gate current with both positive and negative peaks is observed if the ion hits the gate area, and that the total integrated charge is almost zero within 100-200 ns after irradiation. From these results, we conclude that the radiation-induced gate current is dominated by a displacement current. We also discuss the generation mechanism of the radiation-induced current through the oxide layer by device simulation

  1. Interface analysis of Ge ultra thin layers intercalated between GaAs substrates and oxide stacks

    Energy Technology Data Exchange (ETDEWEB)

    Molle, Alessandro, E-mail: alessandro.molle@mdm.infm.i [Laboratorio Nazionale MDM, CNR-INFM, Via C. Olivetti 2, 20041 Agrate Brianza (Italy); Lamagna, Luca; Spiga, Sabina [Laboratorio Nazionale MDM, CNR-INFM, Via C. Olivetti 2, 20041 Agrate Brianza (Italy); Fanciulli, Marco [Laboratorio Nazionale MDM, CNR-INFM, Via C. Olivetti 2, 20041 Agrate Brianza (MI) (Italy); Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Milano (Italy); Brammertz, Guy; Meuris, Marc [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium)

    2010-01-01

    Capping III-V compound surfaces with Ge ultra-thin layer might be a viable pathway to passivate the electrically active interface traps which usually jeopardize the integration of III-V materials in metal-oxide-semiconductor devices. As the physical nature of such traps is intrinsically related to the chemical details of the interface composition, the structural and compositional features of the Ge/GaAs interface were thoroughly investigated in two different configurations, the atomic layer deposition of La-doped ZrO{sub 2} films on Ge-capped GaAs and the ultra-high vacuum based molecular beam deposition of GeO{sub 2}/Ge double stack on in situ prepared GaAs. In the former case, the intercalation of a Ge interface layer is shown to suppress the concentration of interface Ga-O, As-O and elemental As bonding which were significantly detected in case of the direct oxide deposition on GaAs. In the latter case, the incidence of two different in situ surface preparations, the Ar sputtering and the atomic H cleaning, on the interface composition is elucidated and the beneficial role played by the atomic H exposure in reducing the semiconductor-oxygen bonds at the interface level is demonstrated.

  2. Surface layer effects on waste glass corrosion

    International Nuclear Information System (INIS)

    Feng, X.

    1993-01-01

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties

  3. Modulating the size of ZnO nanorods on SiO2 substrates by incorporating reduced graphene oxide into the seed layer solution

    Directory of Open Access Journals (Sweden)

    Tzu-Yi Yu

    2017-06-01

    Full Text Available In this research, reduced graphene oxide was incorporated into the ZnO seed layer to modulate the rod diameter of ZnO nanorods (NRs during solgel/hydrothermal growth. To characterize the reduced graphene oxide incorporated ZnO NRs, multiple material analysis techniques including field-emission scanning electron microscopy, surface contact angle measurements, X-ray diffraction, and photoluminescence were used to explore distinct properties of these size modulatable NRs. Results indicate ZnO NRs with smaller diameters could be observed with more reduced graphene oxide added into the ZnO seed layer. Furthermore, better crystallinity, higher hydrophobicity and lower defect concentration could be obtained with more amount of reduced graphene oxide added into the ZnO seed layer. The modulatable reduced graphene oxide-incorporated ZnO NRs growth is promising for future ZnO NRs based nanodevice applications.

  4. Advanced oxidation of rhodamine B with hydrogen peroxide over ZnCr layered double hydroxide catalysts

    Directory of Open Access Journals (Sweden)

    Nguyen Tien Thao

    2017-09-01

    Full Text Available Zn/Cr layered zinc hydroxide materials with different molar ratios of Cr/Zn have been synthesized through the coprecipitation method at pH of 9.0–9.5. At high Cr/Zn molar ratios of 0.5/1–1/3, the materials possess some layered structure with carbonate anions between the interlayer galleries. The catalysts present uniform particle sizes and quite high surface area. An isomorphous substitution of Zn2+ by Cr3+ in the brucite-like sheets makes the layered Cr-doped zinc hydroxides potential catalysts for efficient oxidation of rhodamine B with H2O2 solution. The experimental results indicated that the intra-lattice Cr3+ ions are more active than Cr2O3 components in the oxidative removal of rhodamine B. The degradation efficiency is dependent on the intra lattice Cr3+ contents and reaction variables. The Cr/Zn LDH gave a high decolorization (99% of rhodamine B at near neutral pH and room temperature.

  5. Laser surface treatment on a nickel based alloy in order to form chromium oxide to reduce cations release in primary circuit. Experimental and numerical study of laser mater interaction

    International Nuclear Information System (INIS)

    Gouton, Lucille

    2015-01-01

    Alloy 690 (60%Ni, 30%Cr, 10%Fe) is mainly used in primary circuit pipes for nuclear power plants.The aim of this thesis is to form a Cr 2 O 3 layer, using laser surface melting, with the objective of creating a chromium-rich oxide layer. In order to optimize the treatment, it was first important to determine parameters influence on the layer oxide properties then, with the objective of a deeper understanding of mechanisms involved, to address thermo-physical phenomena occurring during and after the laser pulse striking the upper surface. A deep parametric study first enabled to find an optimized laser surface treatment which produces chromium enrichment of the upper surface and a dense and continuous oxide layer. This treatment has been applied on samples, set in a primary medium simulation loop. Experiments and calculations were carried out to provide understanding of surface chromium enrichment by laser process. The results were shown to explain chromium enrichment until melt pool solidification occurred on the upper surface, assumingly just before chromium oxide formation. This was also promoted by a high affinity with oxygen and a higher stability of Cr 2 O 3 oxide compared with other potential oxide formation. (author) [fr

  6. Optical Characterizations of VCSEL for Emission at 850 nm with Al Oxide Confinement Layers

    Science.gov (United States)

    Mokhtari, Merwan; Pagnod-Rossiaux, Philippe; Laruelle, Francois; Landesman, Jean-Pierre; Moreac, Alain; Levallois, Christophe; Cassidy, Daniel T.

    2018-03-01

    In-plane micro-photoluminescence (μ-PL) and micro-reflectivity measurements have been performed at room temperature by optical excitation perpendicular to the surface of two different structures: a complete vertical surface-emitting laser (VCSEL) structure and a VCSEL without the upper p-type distributed Bragg reflector (P-DBR). The two structures were both laterally oxidized and measurements were made on the top of oxidized and unoxidized regions. We show that, since the photoluminescence (PL) spectra consist of the cumulative effect of InGaAs/AlGaAs multi-quantum wells (MQWs) luminescence and interferences in the DBR, the presence or not of the P-DBR and oxide layers can significantly modify the spectrum. μ-PL mapping performed on full VCSEL structures clearly shows oxidized and unoxidized regions that are not resolved with visible light optical microscopy. Finally, preliminary measurements of the degree of polarization (DOP) of the PL have been made on a complete VCSEL structure before and after an oxidation process. We obtain an image of DOP measured by polarization-resolved μ-PL. These measurements allow us to evaluate the main components of strain.

  7. Effect of the substrate surface topology and temperature on the structural properties of ZnO layers obtained by plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kitova, S; Danev, G, E-mail: skitova@clf.bas.b [Acad. J .Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria)

    2010-04-01

    In this work thin ZnO layers were grown by metal-organic PECVD (RF 13.56 MHz) on Si wafers. Zn acetylacetonate was used as a precursor and oxygen as oxidant. A system for dosed injection of the precursor and oxidant into the plasma reactor was developed. The influence of the substrate surface topology and temperature on the structural properties of the deposited layers was studied. ZnO and graphite powder dispersions were used to modify the silicon wafers before starting the deposition process of the layers. Some of the ZnO layers were deposited on the back, unpolished, side of Si wafers. Depositions at 400 {sup 0}C were performed to examine the effect of the substrate temperatures on the layer growth. The film structure was examined by XRD and SEM. The results show that all layers are crystalline with hexagonal wurtzite structure. The crystallites are preferentially oriented along the c-axis direction perpendicular to the substrate surfaces. ZnO layers deposited on thin ZnO seed films and clean Si surface exhibit well-developed grain structures and more c-axis preferred phase with better crystal quality than that of the layers deposited on graphite seed layer or rough, unpolished Si wafer.

  8. Influence of steam generator surface state on corrosion and oxide formation

    International Nuclear Information System (INIS)

    Mazenc, Arnaud; Leclercq, Stephanie; Seyeux, Antoine; Galtayries, Anouk; Marcus, Philippe

    2012-09-01

    The corrosion and release of nickel-based alloy Steam Generator tubes are partly due to their surface state. Among the most important parameters influencing the corrosion, the effect of grain size and the effect of grain crystallographic orientation have been chosen to be studied. The aim of this study is to determine how these parameters have an impact on the corrosion of Steam Generator tubes. Thermal treatments (700 deg. C and 1050 deg. C) have been performed on several samples in Alloy 690 to obtain homogeneous grain sizes, varying from 25 μm to 110 μm. Two samples have been oxidised for four days in a recirculating autoclave, reproducing primary conditions. The changes of oxide composition and thickness were examined by ToF-SIMS on samples exposed to primary water conditions. The intensity profiles versus thicknesses of characteristic oxide anions, such as CrO - , NiO - or FeO - enable us to evaluate the effect of grain size and crystallographic orientation on the formation of an enriched inner chromium layer. As regards to the grain size, there was no effect on the growth, but smaller grains led to a chromium-rich oxide layer. The effect of crystallographic orientation was observed on the oxidation kinetics and the composition of oxide scales. (authors)

  9. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe; Andrä, Gudrun [Leibniz-Institut für Photonische Technologien, PF 100239, 07702 Jena (Germany); Himmerlich, Marcel; Krischok, Stefan [Institut für Mikro-und Nanotechnologien, Technische Universität Ilmenau, PF 100565, 98684 Ilmenau (Germany)

    2016-01-28

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) or silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  10. Binary Oxide p-n Heterojunction Piezoelectric Nanogenerators with an Electrochemically Deposited High p-Type Cu2O Layer.

    Science.gov (United States)

    Baek, Seung Ki; Kwak, Sung Soo; Kim, Joo Sung; Kim, Sang Woo; Cho, Hyung Koun

    2016-08-31

    The high performance of ZnO-based piezoelectric nanogenerators (NGs) has been limited due to the potential screening from intrinsic electron carriers in ZnO. We have demonstrated a novel approach to greatly improve piezoelectric power generation by electrodepositing a high-quality p-type Cu2O layer between the piezoelectric semiconducting film and the metal electrode. The p-n heterojunction using only oxides suppresses the screening effect by forming an intrinsic depletion region, and thus sufficiently enhances the piezoelectric potential, compared to the pristine ZnO piezoelectric NG. Interestingly, a Sb-doped Cu2O layer has high mobility and low surface trap states. Thus, this doped layer is an attractive p-type material to significantly improve piezoelectric performance. Our results revealed that p-n junction NGs consisting of Au/ZnO/Cu2O/indium tin oxide with a Cu2O:Sb (cuprous oxide with a small amount of antimony) layer of sufficient thickness (3 μm) exhibit an extraordinarily high piezoelectric potential of 0.9 V and a maximum output current density of 3.1 μA/cm(2).

  11. The role of surface oxides on hydrogen sorption kinetics in titanium thin films

    Science.gov (United States)

    Hadjixenophontos, Efi; Michalek, Lukas; Roussel, Manuel; Hirscher, Michael; Schmitz, Guido

    2018-05-01

    Titanium is presently discussed as a catalyst to accelerate the hydrogenation kinetics of hydrogen storage materials. It is however known that H absorption in Ti decisively depends on the surface conditions (presence or absence of the natural surface oxide). In this work, we use Ti thin films of controlled thickness (50-800 nm) as a convenient tool for quantifying the atomic transport. XRD and TEM investigations allow us to follow the hydrogenation progress inside the film. Hydrogenation of TiO2/Ti bi-layers is studied at 300 °C, for different durations (10 s to 600 min) and at varying pressures of pure H2 atmosphere. Under these conditions, the hydrogenation is found to be linear in time. By comparing films with and without TiO2, as well as by studying the pressure dependence of hydrogenation, it is demonstrated that hydrogen transport across the oxide represents the decisive kinetic barrier rather than the splitting of H2 molecules at the surface. Hydrogenation appears by a layer-like reaction initiated by heterogeneous nucleation at the backside interface to the substrate. The linear growth constant and the H diffusion coefficient inside the oxide are quantified, as well as a reliable lower bound to the hydrogen diffusion coefficient in Ti is derived. The pressure dependence of hydrogen absorption is quantitatively modelled.

  12. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    Science.gov (United States)

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-06

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.

  13. Enhanced Column Filtration for Arsenic Removal from Water: Polymer-Templated Iron Oxide Nanoparticles Immobilized on Sand via Layer-by-Layer Deposition

    Science.gov (United States)

    Cheng, Calvin Chia-Hung

    Arsenic is ubiquitous in water sources around the world and is highly toxic. While precipitation and membrane filtration techniques are successfully implemented in developed cities, they are unsuitable for rural and low-resource settings lacking centralized facilities. This thesis presents the use of ultra-small iron oxide (Fe2O3) nanoparticles functionalized on sand granules for use as a house-hold scale adsorption filter. Water-stable alpha-Fe2O3 (hematite) nanoparticles (arsenic adsorption, with 147 +/- 2 mg As(III) per g Fe2O3 and 91 +/- 10 mg As(V) per g Fe2O3. The platform was also used to synthesize iron-based composites, including magnetite (Fe 3O4) and Fe-Cu oxide nanoparticles. For use as a column filter, Fe2O3-PAA nanoparticles were functionalized on sand granules using a layer-by-layer deposition method, with the nanoparticles embedded in the negative layer. The removal of As(III) by the Fe2O 3-PAA functionalized column was described by reversible 1st order kinetics where the forward and reverse rate constants were 0.31 hr -1 and 0.097 hr-1, respectively. Implemented as a passive water filter with 30 x 30 x 50 cm3 dimensions, the filter has an expected lifetime in the order of many years. By controlling the flow rate of the column depending on contamination levels, the filter effectively removes arsenic down to the safety limit of 0.01 mg/L. In a parallel project, the layer-by-layer deposition of Poly(diallydimethyl ammonium chloride) (PDDA) and poly(sodium 5-styrenesulfonate) (PSS) was exploited for a highly practical synthesis of discrete gradient surfaces. By independently controlling the concentration of NaCl in PDDA and PSS deposition solutions, a 2-dimensional matrix of surfaces was created in 96-well microtiter plates. Distinct non-monotonic dye adsorption patterns on the gradient surfaces was observed. Practical knowledge from this project was also used to enhance the nanoparticle surface functionalization described above. In all, a practical

  14. The surface roughness and planetary boundary layer

    Science.gov (United States)

    Telford, James W.

    1980-03-01

    Applications of the entrainment process to layers at the boundary, which meet the self similarity requirements of the logarithmic profile, have been studied. By accepting that turbulence has dominating scales related in scale length to the height above the surface, a layer structure is postulated wherein exchange is rapid enough to keep the layers internally uniform. The diffusion rate is then controlled by entrainment between layers. It has been shown that theoretical relationships derived on the basis of using a single layer of this type give quantitatively correct factors relating the turbulence, wind and shear stress for very rough surface conditions. For less rough surfaces, the surface boundary layer can be divided into several layers interacting by entrainment across each interface. This analysis leads to the following quantitatively correct formula compared to published measurements. 1 24_2004_Article_BF00877766_TeX2GIFE1.gif {σ _w }/{u^* } = ( {2/{9Aa}} )^{{1/4}} ( {1 - 3^{{1/2}{ a/k{d_n }/z{σ _w }/{u^* }z/L} )^{{1/4}} = 1.28(1 - 0.945({{σ _w }/{u^* }}}) {{z/L}})^{{1/4 where u^* = ( {{tau/ρ}}^{{1/2}}, σ w is the standard deviation of the vertical velocity, z is the height and L is the Obukhov scale lenght. The constants a, A, k and d n are the entrainment constant, the turbulence decay constant, Von Karman's constant, and the layer depth derived from the theory. Of these, a and A, are universal constants and not empirically determined for the boundary layer. Thus the turbulence needed for the plume model of convection, which resides above these layers and reaches to the inversion, is determined by the shear stress and the heat flux in the surface layers. This model applies to convection in cool air over a warm sea. The whole field is now determined except for the temperature of the air relative to the water, and the wind, which need a further parameter describing sea surface roughness. As a first stop to describing a surface where roughness elements

  15. Atomic layer deposition of calcium oxide and calcium hafnium oxide films using calcium cyclopentadienyl precursor

    International Nuclear Information System (INIS)

    Kukli, Kaupo; Ritala, Mikko; Sajavaara, Timo; Haenninen, Timo; Leskelae, Markku

    2006-01-01

    Calcium oxide and calcium hafnium oxide thin films were grown by atomic layer deposition on borosilicate glass and silicon substrates in the temperature range of 205-300 o C. The calcium oxide films were grown from novel calcium cyclopentadienyl precursor and water. Calcium oxide films possessed refractive index 1.75-1.80. Calcium oxide films grown without Al 2 O 3 capping layer occurred hygroscopic and converted to Ca(OH) 2 after exposure to air. As-deposited CaO films were (200)-oriented. CaO covered with Al 2 O 3 capping layers contained relatively low amounts of hydrogen and re-oriented into (111) direction upon annealing at 900 o C. In order to examine the application of CaO in high-permittivity dielectric layers, mixtures of Ca and Hf oxides were grown by alternate CaO and HfO 2 growth cycles at 230 and 300 o C. HfCl 4 was used as a hafnium precursor. When grown at 230 o C, the films were amorphous with equal amounts of Ca and Hf constituents (15 at.%). These films crystallized upon annealing at 750 o C, showing X-ray diffraction peaks characteristic of hafnium-rich phases such as Ca 2 Hf 7 O 16 or Ca 6 Hf 19 O 44 . At 300 o C, the relative Ca content remained below 8 at.%. The crystallized phase well matched with rhombohedral Ca 2 Hf 7 O 16 . The dielectric films grown on Si(100) substrates possessed effective permittivity values in the range of 12.8-14.2

  16. Deuterium permeation behavior of HTUPS4 steel with thermal oxidation layer

    International Nuclear Information System (INIS)

    Xu, Yu-Ping; Liu, Feng; Zhao, Si-Xiang; Li, Xiao-Chun; Wang, Jing; An, Zhong-Qing; Lu, Tao; Liu, Hao-Dong; Ding, Fang; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-01-01

    The permeation behavior of creep-resistant, Al 2 O 3 -forming HTUPS austenitic stainless steels was studied using a gas driven permeation (GDP) device. The steel samples were first thermal oxidized at air condition, followed by GDP experiments. The permeability and diffusion coefficients of oxidized samples and bare 316L steels were derived and compared. In order to characterize the oxide layer, X-ray photoelectron spectroscopy was performed. An oxide layer with a thickness of 200 nm which mainly consists of Al 2 O 3 was detected.

  17. Oxide thickness measurement technique for duplex-layer Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    McClelland, R.G.; O'Leary, P.M.

    1992-01-01

    Siemens Nuclear Power Corporation (SNP) is investigating the use of duplex-layer Zircaloy-4 tubing to improve the waterside corrosion resistance of cladding for high-burnup pressurized water reactor (PWR) fuel designs. Standard SNP PWR cladding is typically 0.762-mm (0.030-in.)-thick Zircaloy-4. The SNP duplex cladding is nominally 0.660-mm (0.026-in.)-thick Zircalloy-4 with an ∼0.102-mm (0.004-in.) outer layer of another, more corrosion-resistant, zirconium-based alloy. It is common industry practice to monitor the in-reactor corrosion behavior of Zircaloy cladding by using an eddy-current 'lift-off' technique to measure the oxide thickness on the outer surface of the fuel cladding. The test program evaluated three different cladding samples, all with the same outer diameter and wall thickness: Zircaloy-4 and duplex clad types D2 and D4

  18. Morphology and grain structure evolution during epitaxial growth of Ag films on native-oxide-covered Si surface

    International Nuclear Information System (INIS)

    Hur, Tae-Bong; Kim, Hong Koo; Perello, David; Yun, Minhee; Kulovits, Andreas; Wiezorek, Joerg

    2008-01-01

    Epitaxial nanocrystalline Ag films were grown on initially native-oxide-covered Si(001) substrates using radio-frequency magnetron sputtering. Mechanisms of grain growth and morphology evolution were investigated. An epitaxially oriented Ag layer (∼5 nm thick) formed on the oxide-desorbed Si surface during the initial growth phase. After a period of growth instability, characterized as kinetic roughening, grain growth stagnation, and increase of step-edge density, a layer of nanocrystalline Ag grains with a uniform size distribution appeared on the quasi-two-dimensional layer. This hierarchical process of film formation is attributed to the dynamic interplay between incoming energetic Ag particles and native oxide. The cyclic interaction (desorption and migration) of the oxide with the growing Ag film is found to play a crucial role in the characteristic evolution of grain growth and morphology change involving an interval of grain growth stagnation

  19. Exploring Scintillometry in the Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.

    2006-01-01

    The main objective of this thesis is to investigate observation methods of heat and momentum exchange and key variables that characterise turbulence in the atmospheric stable surface layer (SSL), a layer defined as the lower part of the stable boundary layer (SBL) where surface fluxes do not change

  20. Oxidation of InP nanowires: a first principles molecular dynamics study.

    Science.gov (United States)

    Berwanger, Mailing; Schoenhalz, Aline L; Dos Santos, Cláudia L; Piquini, Paulo

    2016-11-16

    InP nanowires are candidates for optoelectronic applications, and as protective capping layers of III-V core-shell nanowires. Their surfaces are oxidized under ambient conditions which affects the nanowire physical properties. The majority of theoretical studies of InP nanowires, however, do not take into account the oxide layer at their surfaces. In this work we use first principles molecular dynamics electronic structure calculations to study the first steps in the oxidation process of a non-saturated InP nanowire surface as well as the properties of an already oxidized surface of an InP nanowire. Our calculations show that the O 2 molecules dissociate through several mechanisms, resulting in incorporation of O atoms into the surface layers. The results confirm the experimental observation that the oxidized layers become amorphous but the non-oxidized core layers remain crystalline. Oxygen related bonds at the oxidized layers introduce defective levels at the band gap region, with greater contributions from defects involving In-O and P-O bonds.

  1. Tungsten oxides as interfacial layers for improved performance in hybrid optoelectronic devices

    International Nuclear Information System (INIS)

    Vasilopoulou, M.; Palilis, L.C.; Georgiadou, D.G.; Argitis, P.; Kennou, S.; Kostis, I.; Papadimitropoulos, G.; Stathopoulos, N.A.; Iliadis, A.A.; Konofaos, N.; Davazoglou, D.; Sygellou, L.

    2011-01-01

    Tungsten oxide (WO 3 ) films with thicknesses ranging from 30 to 100 nm were grown by Hot Filament Vapor Deposition (HFVD). Films were studied by X-Ray Photoemission Spectroscopy (XPS) and were found to be stoichiometric. The surface morphology of the films was characterized by Atomic Force Microscopy (AFM). Samples had a granular form with grains in the order of 100 nm. The surface roughness was found to increase with film thickness. HFVD WO 3 films were used as conducting interfacial layers in advanced hybrid organic-inorganic optoelectronic devices. Hybrid-Organic Light Emitting Diodes (Hy-OLEDs) and Organic Photovoltaics (Hy-OPVs) were fabricated with these films as anode and/or as cathode interfacial conducting layers. The Hy-OLEDs showed significantly higher current density and a lower turn-on voltage when a thin WO 3 layer was inserted at the anode/polymer interface, while when inserted at the cathode/polymer interface the device performance was found to deteriorate. The improvement was attributed to a more efficient hole injection and transport from the Fermi level of the anode to the Highest Occupied Molecular Orbital (HOMO) of a yellow emitting copolymer (YEP). On the other hand, the insertion of a thin WO 3 layer at the cathode/polymer interface of Hy-OPV devices based on a polythiophene-fullerene bulk-heterojunction blend photoactive layer resulted in an increase of the produced photogenerated current, more likely due to improved electron extraction at the Al cathode.

  2. Effect of Si on the oxidation reaction of α-Ti(0 0 0 1) surface: ab initio molecular dynamics study.

    Science.gov (United States)

    Bhattacharya, Somesh Kr; Sahara, Ryoji; Ueda, Kyosuke; Narushima, Takayuki

    2017-01-01

    We present our ab initio molecular dynamics (MD) study of the effect of Si on the oxidation of α-Ti(0   0   0   1) surfaces. We varied the Si concentration in the first layer of the surface from 0 to 25 at.% and the oxygen coverage ( θ ) on the surface was varied up to 1 monolayer (ML). The MD was performed at 300, 600 and 973 K. For θ  = 0.5 ML, oxygen penetration into the slab was not observed after 16 ps of MD at 973 K while for θ  > 0.5 ML, oxygen penetration into the Ti slab was observed even at 300 K. From Bader charge analysis, we confirmed the formation of the oxide layer on the surface of the Ti slab. At higher temperatures, the Si atoms diffused from the first layer to the interior of the slab, while the Ti atoms moved from second layer to the first layer. The pair correlation function shows the formation of a disordered Ti-O network during the initial stage of oxidation. Si was found to have a strong influence on the penetration of oxygen in the Ti slab at high temperatures.

  3. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    International Nuclear Information System (INIS)

    Ismail, R.; Tauviqirrahman, M.; Jamari; Schipper, D. J.

    2009-01-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio‐degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser‐print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running‐in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  4. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  5. Spectroscopic investigation of oxidized solder surfaces

    International Nuclear Information System (INIS)

    Song, Jenn-Ming; Chang-Chien, Yu-Chien; Huang, Bo-Chang; Chen, Wei-Ting; Shie, Chi-Rung; Hsu, Chuang-Yao

    2011-01-01

    Highlights: → UV-visible spectroscopy is successfully used to evaluate the degree of discoloring of solders. → The surface oxides of solders can also be identified by UV-visible absorption spectra. → The discoloration of solder surface can be correlated with optical characterization of oxides. → A strategy against discoloring by alloying was also suggested. - Abstract: For further understanding of the discoloration of solder surfaces due to oxidation during the assembly and operation of electronic devices, UV-vis and X-ray photoelectron spectroscopic analyses were applied to evaluate the degree of discoloring and identify the surface oxides. The decrease in reflectance of the oxidized solder surface is related to SnO whose absorption band is located within the visible region. A trace of P can effectively depress the discoloration of solders under both solid and semi-solid states through the suppression of SnO.

  6. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value...

  7. Poly(organo phosphazene) nanoparticles surface modified with poly(ethylene oxide).

    Science.gov (United States)

    Vandorpe, J; Schacht, E; Stolnik, S; Garnett, M C; Davies, M C; Illum, L; Davis, S S

    1996-10-05

    The use of biodegradable derivatives of poly(organo phosphazenes) for the preparation of nanoparticles and their surface modification with the novel poly(ethylene oxide) derivative of poly(organo phosphazene) has been assessed using a range of in vitro characterization methods. The nanoparticles were produced by the precipitation solvent evaporation method from the derivative co-substituted with phenylalanine and glycine ethyl ester side groups. A reduction in particle size to less than 200 nm was achieved by an increase in pH of the preparation medium. The formation (and colloidal stability) of these nanoparticles seems to be controlled by two opposite effects: attractive hydrophobic interactions between phenylalanine ester groups and electrostatic repulsions arising from the carboxyl groups formed due to (partial) hydrolysis of the ester bond(s) at the high pH of the preparation medium. The poly[(glycine ethyl ester)phosphazene] derivative containing 5000-Da poly(ethylene oxide) as 5% of the side groups was used for the surface modification of nanoparticles. Adsorbed onto the particles, the polymer produced a thick coating layer of approximately 35 nm. The coated nanoparticles exhibited reduced surface negative potential and improved colloidal stability toward electrolyte-induced flocculation, relative to the uncoated system. However, the steric stabilization provided was less effective than that of a Poloxamine 908 coating. This difference in effectiveness of the steric stabilization might indicate that, although both the stabilizing polymers possess a 5000-Da poly(ethylene oxide) moiety, there is a difference in the arrangements of these poly(ethylene oxide) chains at the particle surface. (c) 1996 John Wiley & Sons, Inc.

  8. In-situ surface hardening of cast iron by surface layer metallurgy

    International Nuclear Information System (INIS)

    Fischer, Sebastian F.; Muschna, Stefan; Bührig-Polaczek, Andreas; Bünck, Matthias

    2014-01-01

    Abrasive wear is a serious problem in many cast iron castings used in industry. To minimize failure and repair of these components, different strategies exist to improve their surface microhardness thus enhancing their wear resistance. However, most of these methods lead to very brittle and/or expensive castings. In the current work a new method for surface hardening is presented which utilizes surface layer metallurgy to generate in-situ a boron-enriched white cast iron surface layer with a high microhardness on a gray cast iron casting. To do this, sand molds are coated with a ferroboron suspension and cast with a cast iron melt. After solidification, a 100–900 µm thick layer of boron-enriched ledeburite is formed on the surface of the casting which produces an increase in the average microhardness from 284 HV 0.1 ±52 HV 0.1 to 505 HV 0.1 ±87 HV 0.1 . Analyses of the samples' core reveal a typical cast iron microstructure which leads to the conclusion that the coating mainly affects the castings' surface. By varying the grain size of the ferroboron powder in the coatings, it is shown that a powder size ≤100 µm is most suitable to create a boron-enriched ledeburite surface layer possessing high hardness values

  9. Charge transport along luminescent oxide layers containing Si and SiC nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jambois, O. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)]. E-mail: ojambois@el.ub.es; Vila, A. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Pellegrino, P. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Carreras, J. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Perez-Rodriguez, A. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Garrido, B. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Bonafos, C. [Nanomaterials Group, CEMES-CNRS, 29 rue J. Marvig 31055, Toulouse (France); BenAssayag, G. [Nanomaterials Group, CEMES-CNRS, 29 rue J. Marvig 31055, Toulouse (France)

    2006-12-15

    The electrical conductivity of silicon oxides containing silicon and silicon-carbon nanoparticles has been investigated. By use of sequential Si{sup +} and C{sup +} ion implantations in silicon oxide followed by an annealing at 1100 deg. C, luminescent Si nanocrystals and SiC nanoparticles were precipitated. The characterization of the electrical transport has been carried out on two kinds of structures, allowing parallel or perpendicular transport, with respect to the substrate. The first type of samples were elaborated by means of a focus-ion-beam technique: electrical contacts to embedded nanoparticles were made by milling two nanotrenches on the sample surface until reaching the buried layer, then filling them with tungsten. The distance between the electrodes is about 100 nm. The second type of samples correspond to 40 nm thick typical MOS capacitors. The electron transport along the buried layer has shown a dramatic lowering of the electrical current, up to five orders of magnitude, when applying a sequence of voltages. It has been related to a progressive charge retention inside the nanoparticles, which, on its turn, suppresses the electrical conduction along the layer. On the other hand, the MOS capacitors show a reversible carrier charge and discharge effect that limits the current at low voltage, mostly due to the presence of C in the layers. A typical Fowler-Nordheim injection takes place at higher applied voltages, with a threshold voltage equal to 23 V.

  10. Low temperature removal of surface oxides and hydrocarbons from Ge(100) using atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M., E-mail: m.walker@warwick.ac.uk; Tedder, M.S.; Palmer, J.D.; Mudd, J.J.; McConville, C.F.

    2016-08-30

    Highlights: • Preparation of a clean, well-ordered Ge(100) surface with atomic hydrogen. • Surface oxide layers removed by AHC at room temperature, but not hydrocarbons. • Increasing surface temperature during AHC dramatically improves efficiency. • AHC with the surface heated to 250 °C led to a near complete removal of contaminants. • (2 × 1) LEED pattern from IBA and AHC indicates asymmetric dimer reconstruction. - Abstract: Germanium is a group IV semiconductor with many current and potential applications in the modern semiconductor industry. Key to expanding the use of Ge is a reliable method for the removal of surface contamination, including oxides which are naturally formed during the exposure of Ge thin films to atmospheric conditions. A process for achieving this task at lower temperatures would be highly advantageous, where the underlying device architecture will not diffuse through the Ge film while also avoiding electronic damage induced by ion irradiation. Atomic hydrogen cleaning (AHC) offers a low-temperature, damage-free alternative to the common ion bombardment and annealing (IBA) technique which is widely employed. In this work, we demonstrate with X-ray photoelectron spectroscopy (XPS) that the AHC method is effective in removing surface oxides and hydrocarbons, yielding an almost completely clean surface when the AHC is conducted at a temperature of 250 °C. We compare the post-AHC cleanliness and (2 × 1) low energy electron diffraction (LEED) pattern to that obtained via IBA, where the sample is annealed at 600 °C. We also demonstrate that the combination of a sample temperature of 250 °C and atomic H dosing is required to clean the surface. Lower temperatures prove less effective in removal of the oxide layer and hydrocarbons, whilst annealing in ultra-high vacuum conditions only removes weakly bound hydrocarbons. Finally, we examine the subsequent H-termination of an IBA-cleaned sample using XPS, LEED and ultraviolet

  11. Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr-Mo

    Science.gov (United States)

    Wei, Xiangfei; Zhang, Pingze; Wang, Qiong; Wei, Dongbo; Chen, Xiaohu

    2017-07-01

    A Cr-Mo alloyed layer was prepared on a TiAl-based alloy using plasma surface alloying technique. The isothermal oxidation kinetics of the untreated and treated samples was examined at 850 °C. The microstructure and phase composition of the alloyed layer were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray powder diffraction (XRD). The morphology and constituent of the oxide scales were also analyzed. The results indicated that the oxidation resistance of TiAl was improved significantly after the alloying treatment. The oxide scale eventually became a mixture of Al2O3, Cr2O3 and TiO2. The oxide scale was dense and integrated throughout the oxidation process. The improvement was mainly owing to the enhancing of scale adhesion and the preferential oxidation of aluminum brought by the alloying effect for TiAl-based alloy.

  12. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    International Nuclear Information System (INIS)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K.K.; Srivastava, Ritu; Singh, P.K.

    2015-01-01

    Graphical abstract: - Highlights: • HfO 2 films using thermal ALD are studied for silicon surface passivation. • As-deposited thin film (∼8 nm) shows better passivation with surface recombination velocity (SRV) <100 cm/s. • Annealing improves passivation quality with SRV ∼20 cm/s for ∼8 nm film. - Abstract: Hafnium oxide (HfO 2 ) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO 2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (D it ) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  13. Investigation of the effects of high-energy proton-beam irradiation on metal-oxide surfaces by using methane adsorption isotherms

    International Nuclear Information System (INIS)

    Kim, Euikwoun; Lee, Junggil; Kim, Jaeyong; Kim, Kyeryung

    2012-01-01

    The creation of possible local defects on metal-oxide surfaces due to irradiation with a high-energy proton beam was investigated by using a series of gas adsorption isotherms for methane (CH 4 ) on a MgO powder surface. After a MgO powder surface having only a (100) surface had been irradiated with a 35-MeV proton beam, the second atomic layer of methane had completely disappeared while two distinct atomic layers were found in a layer-by-layer fashion on the surfaces of unirradiated samples. This subtle modification of the surface is evidenced by a change of the contrasts in the morphologies measured a using a transmission electron microscopy. Combined results obtained from an electron microscopy and methane adsorption isotherms strongly suggest that the high-energy proton-beam irradiation induced a local surface modification by imparting kinetic energy to the sample. The calculation of the 2-dimensional compressibility values, which are responsible for the formation of the atomic layers, confirmed the surface modification after irradiating surface-clean MgO powders with a proton beam.

  14. Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers.

    Science.gov (United States)

    Hyun, Byung-Ryool; Choi, Joshua J; Seyler, Kyle L; Hanrath, Tobias; Wise, Frank W

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Room-temperature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures.

  15. Oxidation of aqueous HF-treated Si(001) surface induced by translational kinetic energy of O sub 2 at room temperature

    CERN Document Server

    Yoshigoe, A

    2003-01-01

    The oxidation induced by the translational kinetic energy of O sub 2 on the Si(001) surface treated with HF solution were investigated by combining synchrotron radiation photoemission spectroscopy with the supersonic molecular beam techniques. The oxidation at room temperature did not progress up to 3600 L of O sub 2 exposure with incident energy of 0.04 eV, whereas the oxidation states of up to Si sup 4 sup + species were formed in the case of 3.0 eV. The oxide-layer thickness was estimated to be 0.26 nm at the final oxidation stages. We concluded that the Si atoms at the top layers were oxidized by the incident energy of 3.0 eV.

  16. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; dos Reis, Roberto; Chen, Gong

    2017-01-01

    The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic...... or hybrid technologies, where precise control of the charge transport properties through the interfacial layer is highly important for improving device performance. In this work, we study the effects of in situ annealing in nearly stoichiometric MoOx (x ∼ 3.0) thin-films deposited by reactive sputtering. We...... with structural characterizations, this work addresses a novel method for tuning, and correlating, the optoelectronic properties and microstructure of device-relevant MoOx layers....

  17. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    Science.gov (United States)

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  18. The speciation of Si and other alloying elements in the oxide surface film of galvanically corroded weld fusion zone of laser welded AA6061 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mujibur Rahman, A.B.M.; Kumar, Sunil [Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095 (Australia); Gerson, Andrea R. [Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095 (Australia)], E-mail: Andrea.Gerson@unisa.edu.au

    2008-05-15

    It has recently been proposed that on galvanic corrosion of laser weldments of AA6061 aluminium alloy the temporal increase in galvanic corrosion resulted from either the build up of intermetallic phases in the surface oxide layer and/or a significant increase in the surface area of the cathodic weld fusion zone due to the porous nature of the surface layer. This proposition has motivated a comprehensive surface analytical study of the incorporation of alloying elements into the oxide surface film, which is composed predominately of alumina. Si is found to be present as silicate and silicides. The Gibbs free energy of formation, per cation, of silicate is more negative than that for alumina and hence silicate formation is thermodynamically, relatively, favourable. In contrast the Gibbs free energy for oxide formation, per cation, for the other alloying elements is less negative and hence relatively unfavourable compared to the formation of alumina. We propose therefore that Fe, Cu and Cr are present in the metallic form, possibly as silicides, within the oxide surface layer. Magnesium is found to be depleted relative to the weld fusion zone presumably due to dissolution within the electrolyte.

  19. The speciation of Si and other alloying elements in the oxide surface film of galvanically corroded weld fusion zone of laser welded AA6061 aluminium alloy

    International Nuclear Information System (INIS)

    Mujibur Rahman, A.B.M.; Kumar, Sunil; Gerson, Andrea R.

    2008-01-01

    It has recently been proposed that on galvanic corrosion of laser weldments of AA6061 aluminium alloy the temporal increase in galvanic corrosion resulted from either the build up of intermetallic phases in the surface oxide layer and/or a significant increase in the surface area of the cathodic weld fusion zone due to the porous nature of the surface layer. This proposition has motivated a comprehensive surface analytical study of the incorporation of alloying elements into the oxide surface film, which is composed predominately of alumina. Si is found to be present as silicate and silicides. The Gibbs free energy of formation, per cation, of silicate is more negative than that for alumina and hence silicate formation is thermodynamically, relatively, favourable. In contrast the Gibbs free energy for oxide formation, per cation, for the other alloying elements is less negative and hence relatively unfavourable compared to the formation of alumina. We propose therefore that Fe, Cu and Cr are present in the metallic form, possibly as silicides, within the oxide surface layer. Magnesium is found to be depleted relative to the weld fusion zone presumably due to dissolution within the electrolyte

  20. Growth and properties of epitaxial iron oxide layers

    NARCIS (Netherlands)

    Voogt, F.C; Fujii, T; Hibma, T; Zhang, G.L.; Smulders, P.J M

    1996-01-01

    Epitaxial layers of iron oxides have been grown on a MgO(001) substrate by evaporating natural Fe or Fe-57 from Knudsen cells in the presence of a NO2 flow directed to the substrate. The resulting layers have been investigated in situ with LEED, RHEED, AES and XPS and ex situ with GEMS and ion beam

  1. Electroless atomic layer deposition

    Science.gov (United States)

    Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.

    2017-10-31

    A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.

  2. Surface and sub-surface thermal oxidation of thin ruthenium films

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Kokke, S.; Zoethout, E.; Yakshin, Andrey; Bijkerk, Frederik

    2014-01-01

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low

  3. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors.

    Science.gov (United States)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F; Su, Wu

    2015-01-14

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m(2) g(-1)). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.

  4. Double-layer indium doped zinc oxide for silicon thin-film solar cell prepared by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jiao Bao-Chen; Zhang Xiao-Dan; Wei Chang-Chun; Sun Jian; Ni Jian; Zhao Ying

    2011-01-01

    Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82×10 −3 Ω·cm and particle grains. The double-layers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58×10 −3 Ω·cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substrate-layer, and the second-layer plays a large part in the resistivity of the double-layer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities

    Science.gov (United States)

    Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of

  6. Calcium carbonate electronic-insulating layers improve the charge collection efficiency of tin oxide photoelectrodes in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Shaikh, Shoyebmohamad F.; Mane, Rajaram S.; Hwang, Yun Jeong; Joo, Oh-Shim

    2015-01-01

    In dye-sensitized solar cells (DSSCs), a surface passivation layer has been employed on the tin oxide (SnO 2 ) photoanodes to enhance the charge collection efficiency, and thus the power conversion efficiency. Herein, we demonstrate that the electronic-insulating layering of calcium carbonate (CaCO 3 ) can improve the charge collection efficiency in dye-sensitized solar cells designed with photoanodes. In order to evaluate the effectiveness of CaCO 3 layering, both layered and pristine SnO 2 photoanodes are characterized with regard to their structures, morphologies, and photo-electrochemical measurements. The SnO 2 -6L CaCO 3 photoanode has demonstrated as high as 3.5% power conversion efficiency; 3.5-fold greater than that of the pristine SnO 2 photoanode. The enhancement in the power conversion efficiency is corroborated with the number of the dye molecules, the passivation of surface states, a negative shift in the conduction band position, and the reduced electron recombination rate of photoelectrons following the coating of the CaCO 3 surface layer

  7. Effects of surface modification on the critical behaviour in multiple-surface-layer ferroelectric thin films

    International Nuclear Information System (INIS)

    Lu, Z X

    2013-01-01

    Using the usual mean-field theory approximation, the critical behaviour (i.e. the Curie temperature T c and the critical surface transverse field Ω sc ) in a multiple-surface-layer ferroelectric thin film is studied on the basis of the spin- 1/2 transverse Ising model. The dependence of the Curie temperature T c on the surface transverse field Ω s and the surface layer number N s are discussed in detail. Meanwhile the dependence of the critical surface transverse field Ω sc on the surface layer number N s is also examined. The numerical results indicate that the critical behaviour of ferroelectric thin films is obviously affected by modifications of the surface transverse field Ω s and surface layer number N s .

  8. Heterojunction PbS Nanocrystal Solar Cells with Oxide Charge-Transport Layers

    KAUST Repository

    Hyun, Byung-Ryool

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Roomerature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures. © 2013 American Chemical Society.

  9. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    Science.gov (United States)

    Renaud, Gilles

    Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having

  10. Experimental and Theoretical Studies on Corrosion Inhibition of Niobium and Tantalum Surfaces by Carboxylated Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Valbonë Mehmeti

    2018-05-01

    Full Text Available The corrosion of two different metals, niobium and tantalum, in aqueous sulfuric acid solution has been studied in the presence and absence of carboxylated graphene oxide. Potentiodynamic measurements indicate that this nanomaterial inhibits corrosion due to its adsorption on the metal surfaces. The adsorbed layer of carboxylated graphene hinders two electrochemical reactions: the oxidation of the metal and the transport of metal ions from the metal to the solution but also hydrogen evolution reaction by acting as a protective barrier. The adsorption behavior at the molecular level of the carboxylated graphene oxide with respect to Nb, NbO, Ta, and TaO (111 surfaces is also investigated using Molecular Dynamic and Monte Carlo calculations.

  11. Improved adhesion of metal oxide layer

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to: a method of preparing a coating ink for forming a zinc oxide layer, which method comprises the steps of: a) mixing zinc acetate and AlOH (OAc)2 in water or methanol and b) filtering out solids; a coating ink comprising zinc acetate and AlOH (OAc)2 in aqueous or m...

  12. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    Science.gov (United States)

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  13. Growth and thermal oxidation of Ru and ZrO2 thin films as oxidation protective layers

    NARCIS (Netherlands)

    Coloma Ribera, R.

    2017-01-01

    This thesis focuses on the study of physical and chemical processes occurring during growth and thermal oxidation of Ru and ZrO2 thin films. Acting as oxidation resistant capping materials to prevent oxidation of layers underneath, these films have several applications, i.e., in microelectronics

  14. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum

    Directory of Open Access Journals (Sweden)

    Satoru Inoue, Song-Zhu Chu, Kenji Wada, Di Li and Hajime Haneda

    2003-01-01

    Full Text Available New processes for the preparation of nanostructure on glass surfaces have been developed through anodic oxidation of sputtered aluminum. Aluminum thin film sputtered on a tin doped indium oxide (ITO thin film on a glass surface was converted into alumina by anodic oxidation. The anodic alumina gave nanometer size pore array standing vertically on the glass surface. Kinds of acids used in the anodic oxidation changed the pore size drastically. The employment of phosphoric acid solution gave several tens nanometer size pores. Oxalic acid cases produced a few tens nanometer size pores and sulfuric acid solution provided a few nanometer size pores. The number of pores in a unit area could be changed with varying the applied voltage in the anodization and the pore sizes could be increased by phosphoric acid etching. The specimen consisting of a glass substrate with the alumina nanostructures on the surface could transmit UV and visible light. An etched specimen was dipped in a TiO2 sol solution, resulting in the impregnation of TiO2 sol into the pores of alumina layer. The TiO2 sol was heated at ~400 °C for 2 h, converting into anatase phase TiO2. The specimens possessing TiO2 film on the pore wall were transparent to the light in UV–Visible region. The electro deposition technique was applied to the introduction of Ni metal into pores, giving Ni nanorod array on the glass surface. The removal of the barrier layer alumina at the bottom of the pores was necessary to attain smooth electro deposition of Ni. The photo catalytic function of the specimens possessing TiO2 nanotube array was investigated in the decomposition of acetaldehyde gas under the irradiation of UV light, showing that the rate of the decomposition was quite large.

  15. Mass transfer model for two-layer TBP oxidation reactions

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development

  16. Oxide layers of Zr-1% Nb under PWR primary circuit conditions

    International Nuclear Information System (INIS)

    Nagy, Gabor; Kerner, Zsolt; Battistig, Gabor; Pinter-Csordas, Anna; Balogh, Janos; Pajkossy, Tamas

    2001-01-01

    Oxide layers were grown on Zr-1% Nb under conditions simulating those in VVER-type pressurised water reactors (PWRs), viz. in borate solutions in an autoclave at 290 deg. C. The layers were characterised by various methods: their respective thickness values were determined by weight gain measurements, Rutherford backscattering (RBS), nuclear reaction analysis (NRA) and scanning electron microscopy (SEM); the electrical properties were tested by electrochemical impedance spectroscopy. The results show that the oxide layer on Zr-1% Nb is homogeneous and somewhat thicker than that on Zircaloy-4

  17. In Situ Scanning Tunneling Microscopy Topography Changes of Gold (111) in Aqueous Sulfuric Acid Produced by Electrochemical Surface Oxidation and Reduction and Relaxation Phenomena

    Science.gov (United States)

    Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.

    The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.

  18. Study on tribological properties of multi-layer surface texture on Babbitt alloys surface

    Science.gov (United States)

    Zhang, Dongya; Zhao, Feifei; Li, Yan; Li, Pengyang; Zeng, Qunfeng; Dong, Guangneng

    2016-12-01

    To improve tribological properties of Babbitt alloys, multi-layer surface texture consisted of the main grooves and secondary micro-dimples are fabricated on the Babbitt substrate through laser pulse ablation. The tribological behaviors of multi-layer surface texture are investigated using a rotating type pin-on-disc tribo-meter under variation sliding speeds, and the film pressure distributions on the textured surfaces are simulated using computational fluid dynamics (CFD) method for elucidating the possible mechanisms. The results suggest that: (i) the multi-layer surface texture can reduce friction coefficient of Babbitt alloy, which has lowest friction coefficient of 0.03, in case of the groove parameter of 300 μm width and 15% of area density; (ii) the improvement effect may be more sensitive to the groove area density and the siding speed, and the textured surface with lower area density has lower friction coefficient under high sliding speed. Based on the reasons of (i) the secondary micro-dimples on Babbitt alloy possesses a hydrophobicity surface and (ii) the CFD analysis indicates that main grooves enhancing hydrodynamic effect, thus the multi-layer surface texture is regarded as dramatically improve the lubricating properties of the Babbitt alloy.

  19. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    Science.gov (United States)

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Topotactic oxidative and reductive control of the structures and properties of layered manganese oxychalcogenides.

    Science.gov (United States)

    Hyett, Geoffrey; Barrier, Nicolas; Clarke, Simon J; Hadermann, Joke

    2007-09-12

    Topotactic modification, by both oxidation and reduction, of the composition, structures, and magnetic properties of the layered oxychalcogenides Sr4Mn3O7.5Cu2Ch2 (Ch=S, Se) is described. These Mn3+ compounds are composed of alternating perovskite-type strontium manganese oxide slabs separated by anti-fluorite-type copper chalcogenide layers and are intrinsically oxide deficient in the central layer of the perovskite slabs. The systems are unusual examples of perovskite-related compounds that may topotactically be both oxidized by fluorination and reduced by deintercalation of oxygen from the oxide-deficient part of the structure. The compounds exhibit antiferromagnetic ordering of the manganese magnetic moments in the outer layers of the perovskite slabs, while the other moments, in the central layers, exhibit spin-glass-like behavior. Fluorination has the effect of increasing the antiferromagnetic ordering temperature and the size of the ordered moment, whereas reduction destroys magnetic long-range order by introducing chemical disorder which leads to both further disorder and frustration of the magnetic interactions in the manganese oxide slab.

  1. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    Science.gov (United States)

    Manthiram, Arumugam (Inventor); Wu, Yan (Inventor)

    2010-01-01

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  2. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko; Haggren, Tuomas; Lipsanen, Harri [Department of Micro- and Nanosciences, Micronova, Aalto University, P.O. Box 13500, FI-00076 (Finland); Naureen, Shagufta; Shahid, Naeem [Research School of Physics & Engineering, Department of Electronic Materials Engineering, Australian National University, Canberra ACT 2601 (Australia); Jiang, Hua; Kauppinen, Esko [Department of Applied Physics and Nanomicroscopy Center, Aalto University, P.O. Box 15100, FI-00076 (Finland); Srinivasan, Anand [School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, S-164 40 Kista (Sweden)

    2016-01-15

    Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  3. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Veer Dhaka

    2016-01-01

    Full Text Available Low temperature (∼200 °C grown atomic layer deposition (ALD films of AlN, TiN, Al2O3, GaN, and TiO2 were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP nanowires (NWs, and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL at low temperatures (15K, and the best passivation was achieved with a few monolayer thick (2Å film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL was achieved with a capping of 2nm thick Al2O3. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al2O3 layer increased the carrier decay time from 251 ps (as-etched nanopillars to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al2O3 provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  4. Stripping scattering of fast atoms on surfaces of metal-oxide crystals and ultrathin films

    International Nuclear Information System (INIS)

    Blauth, David

    2010-01-01

    In the framework of the present dissertation the interactions of fast atoms with surfaces of bulk oxides, metals and thin films on metals were studied. The experiments were performed in the regime of grazing incidence of atoms with energies of some keV. The advantage of this scattering geometry is the high surface sensibility and thus the possibility to determine the crystallographic and electronic characteristics of the topmost surface layer. In addition to these experiments, the energy loss and the electron emission induced by scattered projectiles was investigated. The energy for electron emission and exciton excitation on Alumina/NiAl(110) and SiO 2 /Mo(112) are determined. By detection of the number of projectile induced emitted electrons as function of azimuthal angle for the rotation of the target surface, the geometrical structure of atoms forming the topmost layer of different adsorbate films on metal surfaces where determined via ion beam triangulation. (orig.)

  5. Electrogeneration and study of oxide layer on AISI 316 L steel

    International Nuclear Information System (INIS)

    Otero, T.F.; Mateo, M.L.

    1989-01-01

    It has been studied by impedance technique the properties of oxide layers electrogenerated on a stainless steel by cyclic voltammetry. Also, it has been studied the behavior of these layers in chloride media applying a fast corrosion test. The results have been compared with such obtained in mild steel. UV - Vis reflectance and FTIR spectroscopies have been applied to know about the oxide composition [pt

  6. Thermal healing of the sub-surface damage layer in sapphire

    International Nuclear Information System (INIS)

    Pinkas, Malki; Lotem, Haim; Golan, Yuval; Einav, Yeheskel; Golan, Roxana; Chakotay, Elad; Haim, Avivit; Sinai, Ela; Vaknin, Moshe; Hershkovitz, Yasmin; Horowitz, Atara

    2010-01-01

    The sub-surface damage layer formed by mechanical polishing of sapphire is known to reduce the mechanical strength of the processed sapphire and to degrade the performance of sapphire based components. Thermal annealing is one of the methods to eliminate the sub-surface damage layer. This study focuses on the mechanism of thermal healing by studying its effect on surface topography of a- and c-plane surfaces, on the residual stresses in surface layers and on the thickness of the sub-surface damage layer. An atomically flat surface was developed on thermally annealed c-plane surfaces while a faceted roof-top topography was formed on a-plane surfaces. The annealing resulted in an improved crystallographic perfection close to the sample surface as was indicated by a noticeable decrease in X-ray rocking curve peak width. Etching experiments and surface roughness measurements using white light interferometry with sub-nanometer resolution on specimens annealed to different extents indicate that the sub-surface damage layer of the optically polished sapphire is less than 3 μm thick and it is totally healed after thermal treatment at 1450 deg. C for 72 h.

  7. A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces.

    Science.gov (United States)

    Schneider, Julian; Ciacchi, Lucio Colombi

    2011-02-08

    The behavior of titanium implants in physiological environments is governed by the thin oxide layer that forms spontaneously on the metal surface and mediates the interactions with adsorbate molecules. In order to study the adsorption of biomolecules on titanium in a realistic fashion, we first build up a model of an oxidized Ti surface in contact with liquid water by means of extensive first-principles molecular dynamics simulations. Taking the obtained structure as reference, we then develop a classical potential to model the Ti/TiOx/water interface. This is based on the mapping with Coulomb and Lennard-Jones potentials of the adsorption energy landscape of single water and ammonia molecules on the rutile TiO2(110) surface. The interactions with arbitrary organic molecules are obtained via standard combination rules to established biomolecular force fields. The transferability of our potential to the case of organic molecules adsorbing on the oxidized Ti surface is checked by comparing the classical potential energy surfaces of representative systems to quantum mechanical results at the level of density functional theory. Moreover, we calculate the heat of immersion of the TiO2 rutile surface and the detachment force of a single tyrosine residue from steered molecular dynamics simulations, finding good agreement with experimental reference data in both cases. As a first application, we study the adsorption behavior of the Arg-Gly-Asp (RGD) peptide on the oxidized titanium surface, focusing particularly on the calculation of the free energy of desorption.

  8. Sputter fabricated Nb-oxide-Nb josephson junctions incorporating post-oxidation noble metal layers

    International Nuclear Information System (INIS)

    Bain, R.J.P.; Donaldson, G.B.

    1985-01-01

    We present an extension, involving other metals, of the work of Hawkins and Clarke, who found that a thin layer of copper prevented the formation of the superconductive shorts which are an inevitable consequence of sputtering niobium counter-electrodes directly on top of niobium oxide. We find gold to be the most satisfactory, and that 0.3 nm is sufficient to guarantee short-free junctions of excellent electrical and mechanical stability, though high excess conductance means they are best suited to shunted-junction applications, as in SQUIDs. We present results for critical current dependence on oxide thickness and on gold thickness. Our data shows that thermal oxide growth is described by the Cabrera-Mott mechanism. We show that the protective effect of the gold layer can be understood in terms of the electro-chemistry of the Nb-oxide-Au structure, and that the reduced quasi-particle resistance of the junctions relative to goldfree junctions with evaporated counterelectrodes can be explained in terms of barrier shape modification, and not by proximity effect mechanisms. The performance of a DC SQUID based on these junctions is described

  9. On the growth of native oxides on hydrogen-terminated silicon surfaces in dark and under illumination with light

    NARCIS (Netherlands)

    Kovalgin, Alexeij Y.; Zinine, A.; Bankras, R.G.; Wormeester, Herbert; Poelsema, Bene; Schmitz, Jurriaan

    2006-01-01

    After a cleaning procedure, a silicon surface can be terminated by Si-OH groups which results in a high chemical activity. As it is accepted, after removing the wet-chemically grown oxide layer using an HF solution, the surface becomes terminated with Si-H groups. This results in a chemically stable

  10. Defects at oxide surfaces

    CERN Document Server

    Thornton, Geoff

    2015-01-01

    This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties ha...

  11. In situ photoemission spectroscopy using synchrotron radiation for O2 translational kinetic energy induced oxidation processes of partially-oxidized Si(001) surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2001-01-01

    The influence of translational kinetic energy of incident O 2 molecules for the passive oxidation process of partially-oxidized Si(001) surfaces has been studied by photoemission spectroscopy. The translational kinetic energy of O 2 molecules was controlled up to 3 eV by a supersonic seed beam technique using a high temperature nozzle. Two translational kinetic energy thresholds (1.0 eV and 2.6 eV) were found out in accordance with the first-principles calculation for the oxidation of clean surfaces. Si-2p photoemission spectra measured in representative translational kinetic energies revealed that the translational kinetic energy dependent oxidation of dimers and the second layer (subsurface) backbonds were caused by the direct dissociative chemisorption of O 2 molecules. Moreover, the difference in chemical bonds for oxygen atoms was found out to be as low and high binding energy components in O-1s photoemission spectra. Especially, the low binding energy component increased with increasing the translational kinetic energy that indicates the translational kinetic energy induced oxidation in backbonds. (author)

  12. Atomic layer deposition of Al{sub 2}O{sub 3} for single electron transistors utilizing Pt oxidation and reduction

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Michael S., E-mail: mmcconn5@nd.edu; Schneider, Louisa C.; Karbasian, Golnaz; Rouvimov, Sergei; Orlov, Alexei O.; Snider, Gregory L. [Department of Electrical Engineering, University of Notre Dame, 275 Fitzpatrick Hall, Notre Dame, Indiana 46556 (United States)

    2016-01-15

    This work describes the fabrication of single electron transistors using electron beam lithography and atomic layer deposition to form nanoscale tunnel transparent junctions of alumina (Al{sub 2}O{sub 3}) on platinum nanowires using either water or ozone as the oxygen precursor and trimethylaluminum as the aluminum precursor. Using room temperature, low frequency conductance measurements between the source and drain, it was found that devices fabricated using water had higher conductance than devices fabricated with ozone. Subsequent annealing caused both water- and ozone-based devices to increase in conductance by more than 2 orders of magnitude. Furthermore, comparison of devices at low temperatures (∼4 K) showed that annealed devices displayed much closer to the ideal behavior (i.e., constant differential conductance) outside of the Coulomb blockade region and that untreated devices showed nonlinear behavior outside of the Coulomb blockade region (i.e., an increase in differential conductance with source-drain voltage bias). Transmission electron microscopy cross-sectional images showed that annealing did not significantly change device geometry, but energy dispersive x-ray spectroscopy showed an unusually large amount of oxygen in the bottom platinum layer. This suggests that the atomic layer deposition process results in the formation of a thin platinum surface oxide, which either decomposes or is reduced during the anneal step, resulting in a tunnel barrier without the in-series native oxide contribution. Furthermore, the difference between ozone- and water-based devices suggests that ozone promotes atomic layer deposition nucleation by oxidizing the surface but that water relies on physisorption of the precursors. To test this theory, devices were exposed to forming gas at room temperature, which also reduces platinum oxide, and a decrease in resistance was observed, as expected.

  13. Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT:PSS Hole Transport Layer

    Science.gov (United States)

    Luo, Hui; Lin, Xuanhuai; Hou, Xian; Pan, Likun; Huang, Sumei; Chen, Xiaohong

    2017-10-01

    As a hole transport layer, PEDOT:PSS usually limits the stability and efficiency of perovskite solar cells (PSCs) due to its hygroscopic nature and inability to block electrons. Here, a graphene-oxide (GO)-modified PEDOT:PSS hole transport layer was fabricated by spin-coating a GO solution onto the PEDOT:PSS surface. PSCs fabricated on a GO-modified PEDOT:PSS layer exhibited a power conversion efficiency (PCE) of 15.34%, which is higher than 11.90% of PSCs with the PEDOT:PSS layer. Furthermore, the stability of the PSCs was significantly improved, with the PCE remaining at 83.5% of the initial PCE values after aging for 39 days in air. The hygroscopic PSS material at the PEDOT:PSS surface was partly removed during spin-coating with the GO solution, which improves the moisture resistance and decreases the contact barrier between the hole transport layer and perovskite layer. The scattered distribution of the GO at the PEDOT:PSS surface exhibits superior wettability, which helps to form a high-quality perovskite layer with better crystallinity and fewer pin holes. Furthermore, the hole extraction selectivity of the GO further inhibits the carrier recombination at the interface between the perovskite and PEDOT:PSS layers. Therefore, the cooperative interactions of these factors greatly improve the light absorption of the perovskite layer, the carrier transport and collection abilities of the PSCs, and especially the stability of the cells.

  14. All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal

    Science.gov (United States)

    Chen, Binbin; Xu, Haoran; Ma, Chao; Mattauch, Stefan; Lan, Da; Jin, Feng; Guo, Zhuang; Wan, Siyuan; Chen, Pingfan; Gao, Guanyin; Chen, Feng; Su, Yixi; Wu, Wenbin

    2017-07-01

    Synthesizing antiferromagnets with correlated oxides has been challenging, owing partly to the markedly degraded ferromagnetism of the magnetic layer at nanoscale thicknesses. Here we report on the engineering of an antiferromagnetic interlayer exchange coupling (AF-IEC) between ultrathin but ferromagnetic La2/3Ca1/3MnO3 layers across an insulating CaRu1/2Ti1/2O3 spacer. The layer-resolved magnetic switching leads to sharp steplike hysteresis loops with magnetization plateaus depending on the repetition number of the stacking bilayers. The magnetization configurations can be switched at moderate fields of hundreds of oersted. Moreover, the AF-IEC can also be realized with an alternative magnetic layer of La2/3Sr1/3MnO3 that possesses a Curie temperature near room temperature. The findings will add functionalities to devices with correlated-oxide interfaces.

  15. Oxidation Characteristics and Electrical Properties of Doped Mn-Co Spinel Reaction Layer for Solid Oxide Fuel Cell Metal Interconnects

    Directory of Open Access Journals (Sweden)

    Pingyi Guo

    2018-01-01

    Full Text Available To prevent Cr poisoning of the cathode and to retain high conductivity during solid oxide fuel cell (SOFC operation, Cu or La doped Co-Mn coatings on a metallic interconnect is deposited and followed by oxidation at 750 °C. Microstructure and composition of coatings after preparation and oxidation is analyzed by X-ray diffraction (XRD and scanning electron microscopy (SEM. High energy micro arc alloying process, a low cost technique, is used to prepare Cu or La doped Co-Mn coatings with the metallurgical bond. When coatings oxidized at 750 °C in air for 20 h and 100 h, Co3O4 is the main oxide on the surface of Co-38Mn-2La and Co-40Mn coatings, and (Co,Mn3O4 spinel continues to grow with extended oxidation time. The outmost scales of Co-33Mn-17Cu are mainly composed of cubic MnCo2O4 spinel with Mn2O3 after oxidation for 20 h and 100 h. The average thickness of oxide coatings is about 60–70 μm after oxidation for 100 h, except that Co-40Mn oxide coatings are a little thicker. Area-specific resistance of Cu/La doped Co-Mn coatings are lower than that of Co-40Mn coating. (Mn,Co3O4/MnCo2O4 spinel layer is efficient at blocking the outward diffusion of chromium and iron.

  16. Mechanism and Thermochemistry of Coal Char Oxidation and Desorption of Surface Oxides

    DEFF Research Database (Denmark)

    Levi, Gianluca; Causà, Mauro; Lacovig, Paolo

    2017-01-01

    The present study investigates the coal char combustion by a combination of thermochemical and X-ray photoemission spectroscopy (XPS) analyses. Thermoanalytical methods (differential thermogravimetry, differential scanning calorimetry, and temperature-programmed desorption) are used to identify...... the key reactive steps that occur upon oxidation and heating of coal char (chemisorption, structural rearrangement and switchover of surface oxides, and desorption) and their energetics. XPS is used to reveal the chemical nature of the surface oxides that populate the char surface and to monitor...... functionalities prevail. The rearrangement of epoxy during preoxidation goes together with activation of the more stable and less reactive carbon sites. Results are in good agreement with semi-lumped kinetic models of carbon oxidation, which include (1) formation of "metastable" surface oxides, (2) complex...

  17. Measurement of UO2 surface oxidation using grazing-incidence x-ray diffraction: Implications for nuclear forensics

    Science.gov (United States)

    Tracy, Cameron L.; Chen, Chien-Hung; Park, Sulgiye; Davisson, M. Lee; Ewing, Rodney C.

    2018-04-01

    Nuclear forensics involves determination of the origin and history of interdicted nuclear materials based on the detection of signatures associated with their production and trafficking. The surface oxidation undergone by UO2 when exposed to air is a potential signature of its atmospheric exposure during handling and transport. To assess the sensitivity of this oxidation to atmospheric parameters, surface sensitive grazing-incidence x-ray diffraction (GIXRD) measurements were performed on UO2 samples exposed to air of varying relative humidity (34%, 56%, and 95% RH) and temperature (room temperature, 50 °C, and 100 °C). Near-surface unit cell contraction was observed following exposure, indicating oxidation of the surface and accompanying reduction of the uranium cation ionic radii. The extent of unit cell contraction provides a measure of the extent of oxidation, allowing for comparison of the effects of various exposure conditions. No clear influence of relative humidity on the extent of oxidation was observed, with samples exhibiting similar degrees of unit cell contraction at all relative humidities investigated. In contrast, the thickness of the oxidized layers increased substantially with increasing temperature, such that differences on the order of 10 °C yielded readily observable crystallographic signatures of the exposure conditions.

  18. Analysis of oxide formation induced by UV laser coloration of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.L., E-mail: zlli@SIMTech.a-star.edu.sg [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Zheng, H.Y.; Teh, K.M.; Liu, Y.C.; Lim, G.C. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Seng, H.L.; Yakovlev, N.L. [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore)

    2009-12-15

    Laser-induced coloration on metal surfaces has important applications in product identification, enhancing styles and aesthetics. The color generation is the result of controlled surface oxidation during laser beam interaction with the metal surfaces. In this study, we aim to obtain in-depth understanding of the oxide formation process when an UV laser beam interacts with stainless steel in air. The oxide layer is analysed by means of optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometer (TOF-SIMS). TOF-SIMS results clearly show the formation of duplex oxide structures. The duplex structure includes an inner layer of Cr oxide solution and an outer layer of Fe oxide solution. The oxide layer thickness increased as the results of Fe diffusion to surface during multiple laser scanning passes.

  19. Analysis of oxide formation induced by UV laser coloration of stainless steel

    International Nuclear Information System (INIS)

    Li, Z.L.; Zheng, H.Y.; Teh, K.M.; Liu, Y.C.; Lim, G.C.; Seng, H.L.; Yakovlev, N.L.

    2009-01-01

    Laser-induced coloration on metal surfaces has important applications in product identification, enhancing styles and aesthetics. The color generation is the result of controlled surface oxidation during laser beam interaction with the metal surfaces. In this study, we aim to obtain in-depth understanding of the oxide formation process when an UV laser beam interacts with stainless steel in air. The oxide layer is analysed by means of optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometer (TOF-SIMS). TOF-SIMS results clearly show the formation of duplex oxide structures. The duplex structure includes an inner layer of Cr oxide solution and an outer layer of Fe oxide solution. The oxide layer thickness increased as the results of Fe diffusion to surface during multiple laser scanning passes.

  20. Protective effect of surface layer proteins isolated from four Lactobacillus strains on hydrogen-peroxide-induced HT-29 cells oxidative stress.

    Science.gov (United States)

    Zhao, Bin-Bin; Meng, Jun; Zhang, Qiu-Xiang; Kang, Ting-Ting; Lu, Rong-Rong

    2017-09-01

    The objective of this study was to explore the antioxidant effect of the surface layer proteins (SLPs) and their mechanism. We investigated four SLPs which were extracted from L. casei zhang, L. rhamnosus, L. gasseri and L. acidophilus NCFM respectively using LiCl. The protective effect of SLPs on H 2 O 2 -induced HT-29 cells oxidative injury was investigated. As results, SLPs (100μg/mL) could significantly mitigate HT-29 cells cytotoxicity, improve the activities of total antioxidant capacity (T-AOC), catalase (CAT) and superoxide dismutase (SOD), decrease the contents of malondialdehyde (MDA) and lactate dehydrogenase (LDH), compared with H 2 O 2 -induced group (Pproteins of caspase-3 and caspase-9 (Pcells induced by H 2 O 2 , and the mechanism could be attributed to SLPs' ability to enhance the activity of the intracellular antioxidant enzyme system, reduce ROS accumulation and to inhibit apoptosis by regulating mitochondrial pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers

    Science.gov (United States)

    2015-10-01

    hydrostatic equation: dP dz = −ρa g −→ ∫ ZI 0 ρa dz = − 1 g ∫ dP = + 1 g [P (0)− P (ZI)]. (6.14) The pressure at the surface is... surface pressure is estimated, we can compute a vertical pressure profile using the hydrostatic equation and a selected temperature profile based on dP... surface -layer atmosphere. By surface layer what is intended is a layer of foliage plus the surface itself. That is, a flat ground surface that

  2. Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO{sub 2}/Si interfaces with low defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Bert, E-mail: bert.stegemann@htw-berlin.de [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Gad, Karim M. [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Balamou, Patrice [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Sixtensson, Daniel [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Vössing, Daniel; Kasemann, Martin [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Angermann, Heike [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany)

    2017-02-15

    Highlights: • Fabrication of ultrathin SiO{sub 2} tunnel layers on c-Si. • Correlation of electronic and chemical SiO{sub 2}/Si interface properties revealed by XPS/SPV. • Chemically abrupt SiO{sub 2}/Si interfaces generate less interface defect states considerable. - Abstract: Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO{sub 2}/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO{sub 2}/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO{sub 2}/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO{sub 2}/Si interfaces have been shown to generate less interface defect states.

  3. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment.

    Science.gov (United States)

    van Genuchten, Case M; Bandaru, Siva R S; Surorova, Elena; Amrose, Susan E; Gadgil, Ashok J; Peña, Jasquelin

    2016-06-01

    Extended field trials to remove arsenic (As) via Fe(0) electrocoagulation (EC) have demonstrated consistent As removal from groundwater to concentrations below 10 μg L(-1). However, the coulombic performance of long-term EC field operation is lower than that of laboratory-based systems. Although EC electrodes used over prolonged periods show distinct passivation layers, which have been linked to decreased treatment efficiency, the spatial distribution and mineralogy of such surface layers have not been investigated. In this work, we combine wet chemical measurements with sub-micron-scale chemical maps and selected area electron diffraction (SAED) to determine the chemical composition and mineral phase of surface layers formed during long-term Fe(0) EC treatment. We analyzed Fe(0) EC electrodes used for 3.5 months of daily treatment of As-contaminated groundwater in rural West Bengal, India. We found that the several mm thick layer that formed on cathodes and anodes consisted of primarily magnetite, with minor fractions of goethite. Spatially-resolved SAED patterns also revealed small quantities of CaCO3, Mn oxides, and SiO2, the source of which was the groundwater electrolyte. We propose that the formation of the surface layer contributes to decreased treatment performance by preventing the migration of EC-generated Fe(II) to the bulk electrolyte, where As removal occurs. The trapped Fe(II) subsequently increases the surface layer size at the expense of treatment efficiency. Based on these findings, we discuss several simple and affordable methods to prevent the efficiency loss due to the surface layer, including alternating polarity cycles and cleaning the Fe(0) surface mechanically or via electrolyte scouring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. An analysis of the impact of native oxide, surface contamination and material density on total electron yield in the absence of surface charging effects

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Susumu, E-mail: susumu.iida@toshiba.co.jp [EUVL Infrastructure Development Center, Inc., 16-1 Onogawa, Tsukuba-shi, Ibaraki-ken, 305-8569 (Japan); Ohya, Kaoru [Institute of Technology and Science, The University of Tokushima, 2-1 Minamijyousanjima-cho,Tokushima, 770-8506 (Japan); Hirano, Ryoichi; Watanabe, Hidehiro [EUVL Infrastructure Development Center, Inc., 16-1 Onogawa, Tsukuba-shi, Ibaraki-ken, 305-8569 (Japan)

    2016-10-30

    Highlights: • Total electron yields were assessed in the absence of any surface charging effect. • Experimental and simulation results showed a low native oxide energy barrier. • The yield enhancement effect of a native oxide layer was confirmed. • The yield enhancement effect of a thin surface contamination layer was confirmed. • Deviations in the material density from the theoretical values were evaluated. - Abstract: The effects of the presence of a native oxide film or surface contamination as well as variations in material density on the total electron yield (TEY) of Ru and B{sub 4}C were assessed in the absence of any surface charging effect. The experimental results were analyzed using semi-empirical Monte Carlo simulations and demonstrated that a native oxide film increased the TEY, and that this effect varied with film thickness. These phenomena were explained based on the effect of the backscattered electrons (BSEs) at the interface between Ru and RuO{sub 2}, as well as the lower potential barrier of RuO{sub 2}. Deviations in the material density from the theoretical values were attributed to the film deposition procedure based on fitting simulated TEY curves to experimental results. In the case of B{sub 4}C, the TEY was enhanced by the presence of a 0.8-nm-thick surface contamination film consisting of oxygenated hydrocarbons. The effect of the low potential barrier of the contamination film was found to be significant, as the density of the B{sub 4}C was much lower than that of the Ru. Comparing the simulation parameters generated in the present work with Joy’s database, it was found that the model and the input parameters used in the simulations were sufficiently accurate.

  5. CO oxidation on PdO surfaces

    DEFF Research Database (Denmark)

    Hirvi, Janne T.; Kinnunen, Toni-Jani J.; Suvanto, Mika

    2010-01-01

    Density functional calculations were performed in order to investigate CO oxidation on two of the most stable bulk PdO surfaces. The most stable PdO(100) surface, with oxygen excess, is inert against CO adsorption, whereas strong adsorption on the stoichiometric PdO(101) surface leads to favorable...... oxidation via the Langmuir–Hinshelwood mechanism. The reaction with a surface oxygen atom has an activation energy of 0.66 eV, which is comparable to the lowest activation energies observed on metallic surfaces. However, the reaction rate may be limited by the coverage of molecular oxygen. Actually...... adsorption, following the Eley–Rideal mechanism and taking advantage of the reaction tunnel provided by the adjacent palladium atom, has an activation energy of only 0.24 eV. The reaction mechanism and activation energy for the palladium activated CO oxidation on the most stable PdO(100)–O surface...

  6. Formation and effect of orientation domains in layered oxide cathodes of lithium-ion batteries

    International Nuclear Information System (INIS)

    Jarvis, Karalee A.; Wang, Chih-Chieh; Knight, James C.; Rabenberg, Lew; Manthiram, Arumugam; Ferreira, Paulo J.

    2016-01-01

    We show that in layered oxides that are employed as cathodes in lithium-ion batteries, the cation layers can order on different {111} NaCl planes within a single particle, which makes the lithium layer discontinuous across a particle. The findings challenge previous assertions that lithium undergoes 2-D diffusion in layered oxides and the data provide new insights into the decrease in rate capabilities for some layered oxides. Therefore, it is critically important to understand how these discontinuities form and how the loss of 2-D diffusion impacts the overall performance of the layered oxide cathode materials. Employing X-ray diffraction (XRD) and aberration-corrected scanning transmission electron microscopy (STEM), we find that as the material transitions from a disordered to an ordered state, it forms four orientation variants corresponding to the four {111} NaCl planes. This transition is not intrinsic to all layered oxides and appears to be more strongly affected by nickel. Furthermore, with energy dispersive spectroscopy (EDS), we show that there is an increase in the nickel concentration at the interface between each orientation variant. This reduces the rate of lithium diffusion, negatively affects the rate capability, and could be contributing to the overall capacity fade.

  7. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer

    Science.gov (United States)

    Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.

    2017-12-01

    The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.

  8. Characterization and use of crystalline bacterial cell surface layers

    Science.gov (United States)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  9. Surface Oxidation of the High-Strength Steels Electrodeposited with Cu or Fe and the Resultant Defect Formation in Their Coating during the Following Galvanizing and Galvannealing Processes

    Science.gov (United States)

    Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi

    2010-12-01

    This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.

  10. Comparison of the reactivity of alkyl and alkyl amine precursors with native oxide GaAs(100) and InAs(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Henegar, A.J., E-mail: henegar1@umbc.edu; Gougousi, T., E-mail: gougousi@umbc.edu

    2016-12-30

    Graphical abstract: The interaction of the native oxides of GaAs(100) and InAs(100) with alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition (ALD) of Al{sub 2}O{sub 3} and TiO{sub 2} is compared. Al{sub 2}O{sub 3} if found to be a significantly better barrier against the transport of the surface native oxide during the film deposition as well as after post-deposition heat treatment. This superior blocking ability also limits the removal of the native oxides during the Al{sub 2}O{sub 3} ALD process. - Highlights: • Native oxide diffusion is required for continuous native oxide removal. • The diffusion barrier capabilities of Al{sub 2}O{sub 3} limits native oxide removal during ALD. • Arsenic oxide exhibits higher mobility from InAs compared to GaAs substrates. • Oxygen scavenging from the surface by trimethyl aluminum is confirmed. - Abstract: In this manuscript we compare the interaction of alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition with III-V native oxides. For that purpose we deposit Al{sub 2}O{sub 3} and TiO{sub 2}, using H{sub 2}O as the oxidizer, on GaAs(100) and InAs(100) native oxide surfaces. We find that there are distinct differences in the behavior of the two films. For the Al{sub 2}O{sub 3} ALD very little native oxide removal happens after the first few ALD cycles while the interaction of the alkyl amine precursor for TiO{sub 2} and the native oxides continues well after the surface has been covered with 2 nm of TiO{sub 2}. This difference is traced to the superior properties of Al{sub 2}O{sub 3} as a diffusion barrier. Differences are also found in the behavior of the arsenic oxides of the InAs and GaAs substrates. The arsenic oxides from the InAs surface are found to mix more efficiently in the growing dielectric film than those from the GaAs surface. This difference is attributed to

  11. Comparison of the reactivity of alkyl and alkyl amine precursors with native oxide GaAs(100) and InAs(100) surfaces

    International Nuclear Information System (INIS)

    Henegar, A.J.; Gougousi, T.

    2016-01-01

    Graphical abstract: The interaction of the native oxides of GaAs(100) and InAs(100) with alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition (ALD) of Al_2O_3 and TiO_2 is compared. Al_2O_3 if found to be a significantly better barrier against the transport of the surface native oxide during the film deposition as well as after post-deposition heat treatment. This superior blocking ability also limits the removal of the native oxides during the Al_2O_3 ALD process. - Highlights: • Native oxide diffusion is required for continuous native oxide removal. • The diffusion barrier capabilities of Al_2O_3 limits native oxide removal during ALD. • Arsenic oxide exhibits higher mobility from InAs compared to GaAs substrates. • Oxygen scavenging from the surface by trimethyl aluminum is confirmed. - Abstract: In this manuscript we compare the interaction of alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition with III-V native oxides. For that purpose we deposit Al_2O_3 and TiO_2, using H_2O as the oxidizer, on GaAs(100) and InAs(100) native oxide surfaces. We find that there are distinct differences in the behavior of the two films. For the Al_2O_3 ALD very little native oxide removal happens after the first few ALD cycles while the interaction of the alkyl amine precursor for TiO_2 and the native oxides continues well after the surface has been covered with 2 nm of TiO_2. This difference is traced to the superior properties of Al_2O_3 as a diffusion barrier. Differences are also found in the behavior of the arsenic oxides of the InAs and GaAs substrates. The arsenic oxides from the InAs surface are found to mix more efficiently in the growing dielectric film than those from the GaAs surface. This difference is attributed to lower native oxide stability as well as an initial diffusion path formation by the indium oxides.

  12. Calculations of oxide formation on low-index Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Xin; Liu, Renlong, E-mail: lrl@cqu.edu.cn, E-mail: henkelman@utexas.edu [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Xiao, Penghao; Yang, Sheng-Che; Henkelman, Graeme, E-mail: lrl@cqu.edu.cn, E-mail: henkelman@utexas.edu [Department of Chemistry and the Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas 78712-0165 (United States)

    2016-07-28

    Density-functional theory is used to evaluate the mechanism of copper surface oxidation. Reaction pathways of O{sub 2} dissociation on the surface and oxidation of the sub-surface are found on the Cu(100), Cu(110), and Cu(111) facets. At low oxygen coverage, all three surfaces dissociate O{sub 2} spontaneously. As oxygen accumulates on the surfaces, O{sub 2} dissociation becomes more difficult. A bottleneck to further oxidation occurs when the surfaces are saturated with oxygen. The barriers for O{sub 2} dissociation on the O-saturated Cu(100)-c(2×2)-0.5 monolayer (ML) and Cu(100) missing-row structures are 0.97 eV and 0.75 eV, respectively; significantly lower than those have been reported previously. Oxidation of Cu(110)-c(6×2), the most stable (110) surface oxide, has a barrier of 0.72 eV. As the reconstructions grow from step edges, clean Cu(110) surfaces can dissociatively adsorb oxygen until the surface Cu atoms are saturated. After slight rearrangements, these surface areas form a “1 ML” oxide structure which has not been reported in the literature. The barrier for further oxidation of this “1 ML” phase is only 0.31 eV. Finally the oxidized Cu(111) surface has a relatively low reaction energy barrier for O{sub 2} dissociation, even at high oxygen coverage, and allows for facile oxidation of the subsurface by fast O diffusion through the surface oxide. The kinetic mechanisms found provide a qualitative explanation of the observed oxidation of the low-index Cu surfaces.

  13. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces.

    Science.gov (United States)

    Jogikalmath, G; Stuart, J K; Pungor, A; Hlady, V

    1999-08-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface more uniform. The subsequent hydrolysis of the terminal epoxide groups resulted in a larger surface heterogeneity which was modeled by two populations of the terminal hydroxyl groups, each with its own distribution of adhesion forces and force variance. The activation of the hydroxyls with carbonyldiimmidazole (CDI) healed the surface and lowered its adhesion, however, the force variance remained rather large. Finally, the grafting of the α,ω-diamino poly(ethyleneoxide) chains to the CDI-activated glass largely eliminated adhesion except at a few discrete regions. The adhesion on the PEO grafted layer followed the Poisson distribution of the pull-off forces. With the exception of the glass surface, a correlation between the water contact angles and the mean pull-off forces measured with the Si(3)N(4) tip surfaces was found for all modified glass surfaces.

  14. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    Skryabin M.L.

    2017-12-01

    Full Text Available The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential dependence of the current density from the electric field in the surface film of the base metal. The role of discharges in the formation of oxide layers on the treated surface. Proposed and described features of the three main theories of formation of oxide films on the surface of the piston: physical and geometrical model of Keller; models of formation of oxide films as a colloid formations and plasma theory (theory of oxidation with the formation of plasma in the zone of oxidation. The features of formation of films in each of the models. For the model of Keller porous oxide film is a close-Packed oxide cell, having the shape of a prism. They are based on a hexagonal prism. These cells have normal orientation to the surface of the metal. In the center of the unit cell there is one season that is a channel, whose size is determined by the composition of the electrolyte, the chemical composition of the base metal and the electrical parameters of the process of oxidation. In the micro-arc oxidation process according to this model, the beginning of the formation of cells occurs with the formation of the barrier layer, passing in the porous layer and, over time, the elonga-tion of the pores, due to the constant etching electrolyte. In the theory of formation of the oxide films as kolloidnyh formations revealed that formation of pores in the film is a result of their growth. The anodic oxide is represented by a directed electric field, the alumina gel colloidal and

  15. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  16. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  17. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  18. Near-field microwave microscopy of high-κ oxides grown on graphene with an organic seeding layer

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander, E-mail: tseleva@ornl.gov; Kalinin, Sergei V. [Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee 37831 (United States); Sangwan, Vinod K.; Jariwala, Deep; Lauhon, Lincoln J. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Marks, Tobin J.; Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

    2013-12-09

    Near-field scanning microwave microscopy (SMM) is used for non-destructive nanoscale characterization of Al{sub 2}O{sub 3} and HfO{sub 2} films grown on epitaxial graphene on SiC by atomic layer deposition using a self-assembled perylene-3,4,9,10-tetracarboxylic dianhydride seeding layer. SMM allows imaging of buried inhomogeneities in the dielectric layer with a spatial resolution close to 100 nm. The results indicate that, while topographic features on the substrate surface cannot be eliminated as possible sites of defect nucleation, the use of a vertically heterogeneous Al{sub 2}O{sub 3}/HfO{sub 2} stack suppresses formation of large outgrowth defects in the oxide film, ultimately improving lateral uniformity of the dielectric film.

  19. Surface studies on uranium monocarbide using XPS and SIMS

    International Nuclear Information System (INIS)

    Asuvathraman, R.

    1995-01-01

    The air-exposed surfaces of sintered and arc-melted UC samples were examined by XPS and SIMS. XPS results indicate that the surface is covered with a very thin layer of UO 2 mixed with free carbon, which would have formed along with the oxide during the reaction between UC and oxygen or moisture. From the SIMS depth profile of oxygen, the thickness of the oxide layer is found to be approximately 10 nm. The SIMS oxygen images of the surface as a function of etching time reveal that the surface of UC consists of a top layer of adsorbed moisture/oxygen; this contamination layer is followed by a layer containing uranium oxide, uranium hydroxide and free carbon and then grain boundary oxide and finally bulk UC. The behaviour of sintered and arc-melted samples is similar. ((orig.))

  20. Silver-graphene oxide based plasmonic spacer for surface plasmon-coupled fluorescence emission enhancements

    Science.gov (United States)

    Badiya, Pradeep Kumar; Srinivasan, Venkatesh; Sathish Ramamurthy, Sai

    2017-06-01

    We report the application of single layered graphene oxide (SLGO) and silver decorated SLGO (Ag-SLGO) as plasmonic spacer material for obtaining enhanced fluorescence from a Rhodamine 6G (Rh6G) radiating dipole in a surface plasmon-coupled emission platform. To this end, we have decorated SLGO with biphasic silver nanoparticles using an in situ deposition technique to achieve 112-fold fluorescence enhancements.

  1. The Influences of Water Vapor/Hydrogen Ratio, Gas-Flow Rate and Antimony on the Surface Oxidation of Trip Steels

    International Nuclear Information System (INIS)

    Kwon, You Jong; Zhu, Jing Xi; Sridhar, Seetharaman; Sohn, Il Ryong

    2011-01-01

    In the current paper, we are reporting the results from an investigation of the surface and sub-surface oxidation of a TRIP steel containing 2 wt.% Mn and 0.5 wt.% Al with and without 0.03 wt.% Sb. The oxidizing conditions in the gas were successively varied in terms of the linear gas flow-rate and dew-point, from conditions were gas-phase mass transport limited conditions prevailed, to those were solid state processes became the rate determining conditions. It was found, that at sufficient low oxidizing conditions (defined as flow-rate/dew-point), the metal surfaces were clear of any external oxides, and as the oxidizing conditions were increased, Mn- and Si- oxide nodules formed along with magnetite. As the oxidizing conditions were increased further, a dense magnetite layer was present. The limits of the various regions were experimentally quantified and a proposed hypothesis for their occurrences is presented. No obvious effect of Sb was noted in this micro-structural research of the oxides that results from the various conditions investigated in this study

  2. Improved biological performance of low modulus Ti-24Nb-4Zr-7.9Sn implants due to surface modification by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y. [School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Gao, B., E-mail: gaobo_fmmu@163.com [School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Wang, R. [Fengtai Health Center of Navy Outpatient Department, Beijing 100071 (China); Wu, J.; Zhang, L.J. [School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Hao, Y.L.; Tao, X.J. [Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016 (China)

    2009-02-15

    Dental implants are usually made from commercially pure titanium or titanium alloys. The purpose of this study was to evaluate the influence of surface treatment to low modulus Ti-24Nb-4Zr-7.9Sn (TNZS) on cell and bone responses. The TNZS alloy samples were modified using anodic oxidation (AD). Surface oxide properties were characterized by using various surface analytic techniques, involving scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS), X-ray diffractometry (XRD) and surface profilometer. During the AD treatment, porous titanium oxide layer was formed and Ca ions were incorporated into the oxide layer. The viability and morphology of osteoblasts on Ca-incorporated TNZS were studied. The bone responses of Ca-incorporated TNZS were evaluated by pull-out tests and morphological analysis after implantation in rabbit tibiae. The non-treated Ti and TNZS samples were used as the control. Significant increases in cell viability and pull-out forces (p < 0.05) were observed for Ca-incorporated TNZS implants compared with those for the control groups. Porous structures supplied positive guidance cues for osteoblasts to attach. The enhanced cell and bone responses to Ca-incorporated TNZS implants could be explained by the surface chemistry and microtopography.

  3. Producing of multicomponent and composite surface layers

    International Nuclear Information System (INIS)

    Wierzchon, T.; Bielinski, P.; Michalski, A.

    1995-01-01

    The paper presents a new method of producing multicomponent and composite layers on steel substrate. The combination of nickel plating with glow-discharge bordering or impulse-plasma deposition method gives an opportunity to obtain good properties of surface layers. The results of examinations of carbon 45 (0.45%C) steel, nickel plated and then borided under glow discharge conditions or covered with TiN layers are presented. The corrosion and friction wear resistance of such layers are markedly higher than for layer produced on non nickel plated substrates. (author). 19 refs, 5 figs

  4. Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Szesz, Eduardo M., E-mail: eszesz@neoortho.com.br [Neoortho Research Institute, Rua Ângelo Domingos Durigan, 607-Cascatinha, CEP 82025-100 Curitiba, PR (Brazil); Pereira, Bruno L., E-mail: brnl7@hotmail.com [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Kuromoto, Neide K., E-mail: kuromoto@fisica.ufpr.br [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Marino, Claudia E.B., E-mail: claudiamarino@yahoo.com [Mechanical Engineering Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Souza, Gelson B. de, E-mail: gelsonbs@uepg.br [Physics Department, Universidade Estadual de Ponta Grossa, 84051-510 Ponta Grossa, PR (Brazil); Soares, Paulo, E-mail: pa.soares@pucpr.br [Mechanical Engineering Department, Pontifícia Universidade Católica do Paraná, 80215-901 Curitiba, PR (Brazil)

    2013-01-01

    In recent years, many surface modification processes have been developed in order to induce the osseointegration on titanium surface and thus to improve the implants' biocompatibility. In this work, Ti surface has been modified by shot blasting followed by anodic oxidation process in order to associate the good surface characteristics of both processes to obtain a rough and porous surface able to promote the titanium surface bioactivity. Commercially pure titanium (grade 2) plates were used on the surface treatments that were as follows: Shot blasting (SB) performed using alumina (Al{sub 2}O{sub 3}) particles, and anodic oxidation (AO) using NaOH electrolyte. The morphology, structural changes and the open-circuit potentials (OCP) of the surfaces were analyzed. It can be observed that an increase on the roughness of the blasted surface and a rough and porous surface happens after the AO process. The anodic film produced is thin and followed the blasted surface topography. It can be observed that there are small pores with regular shape covering the entire surface. X-ray diffraction results showed the presence of the anatase and rutile phases on the blasted and anodized surface after heat treatment at 600 °C/1 h. Concerning electrochemical measurements, when the different samples were submitted to open-circuit conditions in a physiological electrolyte, the protective effect increases with the oxidation process due to the oxide layer. When the surface was blasted, the OCP was more negative when compared with the Ti surface without surface treatments. - Highlights: ► A combination of shot blasting and anodic oxidation surface treatments is proposed. ► Both processes produced an increase in roughness compared to the polished surface. ► The combination of processes produced a rough and porous surface. ► Open circuit results show that the protective effect increases with oxidation process. ► The combination of processes presents the better results in this

  5. Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1980-01-01

    Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

  6. Surface layer temperature inversion in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Gopalakrishna, V.V.; Muraleedharan, P.M.; Reddy, G.V.; Araligidad, N.; Shenoy, Shrikant

    Surface layer temperature inversion occurring in the Bay of Bengal has been addressed. Hydrographic data archived in the Indian Oceanographic Data Center are used to understand various aspects of the temperature inversion of surface layer in the Bay...

  7. Behind the Nature of Titanium Oxide Excellent Surface Passivation and Carrier Selectivity of c-Si

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Crovetto, Andrea; Hansen, Ole

    We present an expanded study of the passivation properties of titanium dioxide (TiO2) on p-type crystalline silicon (c-Si). We report a low surface recombination velocity (16 cm/s) for TiO2 passivation layers with a thin tunnelling oxide interlayer (SiO2 or Al2O3) on p-type crystalline silicon (c-Si......), and post-deposition annealing temperature were investigated. We have observed that that SiO2 and Al2O3 interlayers enhance the TiO2 passivation of c-Si. TiO2 thin film passivation layers alone result in lower effective carrier lifetime. Further annealing at 200  ̊C in N2 gas enhances the surface...

  8. Structural characterization of oxidized allotaxially grown CoSi2 layers by x-ray scattering

    International Nuclear Information System (INIS)

    Kaendler, I. D.; Seeck, O. H.; Schlomka, J.-P.; Tolan, M.; Press, W.; Stettner, J.; Kappius, L.; Dieker, C.; Mantl, S.

    2000-01-01

    A series of buried CoSi 2 layers prepared by a modified molecular beam epitaxy process (allotaxy) and a subsequent wet-oxidation process was investigated by x-ray scattering. The oxidation time which determines the depth in which the CoSi 2 layers are located within the Si substrates has been varied during the preparation. The electron density profiles and the structure of the interfaces were extracted from specular reflectivity and diffuse scattering measurements. Crystal truncation rod investigations yielded the structure on an atomic level (crystalline quality). It turns out that the roughness of the CoSi 2 layers increases drastically with increasing oxidation time, i.e., with increasing depth of the buried layers. Furthermore, the x-ray data reveal that the oxidation growth process is diffusion limited. (c) 2000 American Institute of Physics

  9. Antiferromagnetic MnN layer on the MnGa(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@cnyn.unam.mx; Takeuchi, Noboru

    2016-12-30

    Highlights: • A ferromagnetic Gallium terminated surface is stable before N incorporation. • After N incorporation, an antiferromagnetic MnN layer becomes stable in a wide range of chemical potential. • Spin density distribution shows an antiferromagnetic/ferromagnetic (MnN/MnGa) arrangement at the surface. - Abstract: Spin polarized first principles total energy calculations have been applied to study the stability and magnetic properties of the MnGa(001) surface and the formation of a topmost MnN layer with the deposit of nitrogen. Before nitrogen adsorption, surface formation energies show a stable gallium terminated ferromagnetic surface. After incorporation of nitrogen atoms, the antiferromagnetic manganese terminated surface becomes stable due to the formation of a MnN layer (Mn-N bonding at the surface). Spin density distribution shows a ferromagnetic/antiferromagnetic arrangement in the first surface layers. This thermodynamically stable structure may be exploited to growth MnGa/MnN magnetic heterostructures as well as to look for exchange biased systems.

  10. Selective UV–O3 treatment for indium zinc oxide thin film transistors with solution-based multiple active layer

    Science.gov (United States)

    Kim, Yu-Jung; Jeong, Jun-Kyo; Park, Jung-Hyun; Jeong, Byung-Jun; Lee, Hi-Deok; Lee, Ga-Won

    2018-06-01

    In this study, a method to control the electrical performance of solution-based indium zinc oxide (IZO) thin film transistors (TFTs) is proposed by ultraviolet–ozone (UV–O3) treatment on the selective layer during multiple IZO active layer depositions. The IZO film is composed of triple layers formed by spin coating and UV–O3 treatment only on the first layer or last layer. The IZO films are compared by X-ray photoelectron spectroscopy, and the results show that the atomic ratio of oxygen vacancy (VO) increases in the UV–O3 treatment on the first layer, while it decreases on last layer. The device characteristics of the bottom gated structure are also improved in the UV–O3 treatment on the first layer. This indicates that the selective UV–O3 treatment in a multi-stacking active layer is an effective method to optimize TFT properties by controlling the amount of VO in the IZO interface and surface independently.

  11. Electrically conductive aluminum oxide thin film used as cobalt catalyst-support layer in vertically aligned carbon nanotube growth

    International Nuclear Information System (INIS)

    Azam, Mohd Asyadi; Ismail, Syahriza; Mohamad, Noraiham; Isomura, Kazuki; Shimoda, Tatsuya

    2015-01-01

    This paper will present the unique characteristics of aluminum oxide (Al–O) and cobalt catalyst included in aligned carbon nanotube (CNT) electrode system of energy storage device, namely electrochemical capacitor. Electrical conductivity and nanostructure of the thermally oxidized Al–O used as catalyst-support layer in vertically grown single-walled CNTs were studied. Al–O films were characterized by means of current–voltage measurement and high resolution transmission electron microscopy analysis. The Al–O support layer was found to be conductive, with a relatively low resistance and, approximately 20 nm film thickness of Al–O is suggested to be too thin to form insulating barrier. The scanning TEM—annular dark field analysis confirmed that the nanosized cobalt catalyst particles distributed on Al–O surfaces and also embedded inside the Al–O film structure. (paper)

  12. Perform Tests and Document Results and Analysis of Oxide Layer Effects and Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E. D. [ORNL; DelCul, G. D. [ORNL; Spencer, B. B. [ORNL; Hunt, R. D. [ORNL; Ausmus, C. [ORNL

    2014-08-30

    During the initial feasibility test using actual used nuclear fuel (UNF) cladding in FY 2012, an incubation period of 30–45 minutes was observed in the initial dry chlorination. The cladding hull used in the test had been previously oxidized in a dry air oxidation pretreatment prior to removal of the fuel. The cause of this incubation period was attributed to the resistance to chlorination of an oxide layer imparted by the dry oxidation pretreatment on the cladding. Subsequently in 2013, researchers at the Korea Atomic Energy Institute (KAERI) reported on their chlorination study [R1] on ~9-gram samples of unirradiated ZirloTM cladding tubes that had been previously oxidized in air at 500oC for various time periods to impart oxide layers of varying thickness. In early 2014, discussions with Indefinite Delivery, Indefinite Quantity (IDIQ) contracted technical consultants from Westinghouse described their previous development (and patents) [R2] on methods of chemical washing to remove some or all of the hydrous oxide layer imparted on UNF cladding during irradiation in light water reactors (LWRs) . Thus, the Oak Ridge National Laboratory (ORNL) study, described herein, was planned to extend the KAERI study on the effects of anhydrous oxide layers, but on larger ~100-gram samples of unirradiated zirconium alloy cladding tubes, and to investigate the effects of various methods of chemical pretreatment prior to chlorination with 100% chlorine on the average reaction rates and Cl2 usage efficiencies.

  13. One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor.

    Science.gov (United States)

    Kumarasamy, Jayakumar; Camarada, María Belén; Venkatraman, Dharuman; Ju, Huangxian; Dey, Ramendra Sundar; Wen, Yangping

    2018-01-18

    A layer-by-layer (LBL) assembly was employed for preparing multilayer thin films with a controlled architecture and composition. In this study, we report the one-step coelectrodeposition-assisted LBL assembly of both gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) on the surface of a glassy carbon electrode (GCE) for the ultrasensitive electrochemical impedance sensing of DNA hybridization. A self-healable nanohybrid thin film with a three-dimensional (3D) alternate-layered nanoarchitecture was obtained by the one-step simultaneous electro-reduction of both graphene oxide and gold chloride in a high acidic medium of H 2 SO 4 using cyclic voltammetry and was confirmed by different characterization techniques. The DNA bioelectrode was prepared by immobilizing the capture DNA onto the surface of the as-obtained self-healable AuNP/rGO/AuNP/GCE with a 3D LBL nanoarchitecture via gold-thiol interactions, which then served as an impedance sensing platform for the label-free ultrasensitive electrochemical detection of DNA hybridization over a wide range from 1.0 × 10 -9 to 1.0 × 10 -13 g ml -1 , a low limit of detection of 3.9 × 10 -14 g ml -1 (S/N = 3), ultrahigh sensitivity, and excellent selectivity. This study presents a promising electrochemical sensing platform for the label-free ultrasensitive detection of DNA hybridization with potential application in cancer diagnostics and the preparation of a self-healable nanohybrid thin film with a 3D alternate-layered nanoarchitecture via a one-step coelectrodeposition-assisted LBL assembly.

  14. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Fazleev, N. G. [Department of Physics, Box 19059, University of Texas at Arlington, Arlington Texas 76019 (United States) and Institute of Physics, Kazan Federal University, Kremlevskaya18, Kazan 420008 (Russian Federation); Weiss, A. H. [Department of Physics, Box 19059, University of Texas at Arlington, Arlington Texas 76019 (United States)

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  15. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  16. Metal oxide nanorod arrays on monolithic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    2018-01-02

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.

  17. Surface Modification of Titanium with Heparin-Chitosan Multilayers via Layer-by-Layer Self-Assembly Technique

    International Nuclear Information System (INIS)

    Shu, Y.; Zou, J.; Ou, G.; Wang, L.; Li, Q.

    2011-01-01

    Extracellular matrix (ECM), like biomimetic surface modification of titanium implants, is a promising method for improving its biocompatibility. In this paper chitosan (Chi) and heparin (Hep) multilayer was coated on pure titanium using a layer-by-layer (LbL) self-assembly technique. The Hep-Chi multilayer growth was carried out by first depositing a single layer of positively charged poly-L-lysine (PLL) on the NaOH-treated titanium substrate (negatively charged surface), followed by alternate deposition of negatively charged Hep and positively charged Chi, and terminated by an outermost layer of Chi. The multilayer was characterized by DR-FTIR, SEM, and AFM, and osteoblasts were cocultured with the modified titanium and untreated titanium surfaces, respectively, to evaluate their cytocompatibility in vitro. The results confirmed that Hep-Chi multilayer was fabricated gradually on the titanium surface. The Hep-Chi multilayer-coated titanium improved the adhesion, proliferation and differentiation of osteoblasts. Thus, the approach described here may provide a basis for the preparation of modified titanium surfaces for use in dental or orthopedic implants

  18. Improvement of the long term stability in the high temperature solid oxide fuel cell using functional layers

    Energy Technology Data Exchange (ETDEWEB)

    Brueckner, B.; Guenther, C.; Ruckdaeschel, R. [Siemens AG, Erlangen (Germany)] [and others

    1996-12-31

    In the planar Siemens design of the solid oxide fuel cell a metallic interconnector is used to seperate the ceramic single cells. A disadvantage of the metallic bipolar plate which consists of a chromium alloy is the formation of high volatile Cr-oxides and hydroxides at the surface at the cathode side. The reaction products evaporate and are reduced at the cathode/electrolyte interface to form new crystalline phases. This process gives rise to long term cell degradation. Protective coatings might be successful in preventing the chromium oxide evaporation. The required properties of the protective layers are (I) high electrical conductivity, (II) similar coefficients of thermal expansion to the bipolar plate (III), chemical compatibility to the bipolar plate and cathode material, (IV) a low diffusion coefficient of Cr and (V) chemical stability up to 1223K under oxygen atmosphere. Furthermore, during operation at 1223K an electrical contact between the metallic plate and the electrodes has to be maintained. This problem could be solved using ceramic layer between the metallic plate and the single cells.

  19. On the effect of pre-oxidation on the nitriding kinetics

    DEFF Research Database (Denmark)

    Friehling, Peter Bernhard; Somers, Marcel A. J.

    2000-01-01

    The oxidation of ferritic surfaces prior to gaseous nitriding has been reported to lead to improved uniformity of the compound layer thickness and enhanced nitriding kinetics. The present work considers the nucleation and growth of a model compound layer on pure iron and, using previous...... experimental and theoretical work reported in the literature, puts forward two hypotheses to explain the effects of pre-oxidation on compound layer formation. It is proposed that the nucleation of iron nitrides is enhanced by the presence of an iron-oxide layer and that the growth of an iron-nitride layer...... proceeds faster after pre-oxidation, due to a higher nitrogen content in the part of the compound layer closest to the surface....

  20. Presence of Fe-Al binary oxide adsorbent cake layer in ceramic membrane filtration and their impact for removal of HA and BSA.

    Science.gov (United States)

    Kim, Kyung-Jo; Jang, Am

    2018-04-01

    To enhance the removal of natural organic matter (NOM) in ceramic (Ce) membrane filtration, an iron-aluminum binary oxide (FAO) was applied to the ceramic membrane surface as the adsorbent cake layer, and it was compared with heated aluminum oxide (HAO) for the evaluation of the control of NOM. Both the HAO and FAO adsorbent cake layers efficiently removed the NOM regardless of NOM's hydrophobic/hydrophilic characteristics, and the dissolved organic carbon (DOC) removal in NOM for FAO was 1-1.12 times greater than that for HAO, which means FAO was more efficient in the removal of DOC in NOM. FAO (0.03 μm), which is smaller in size than HAO (0.4 μm), had greater flux reduction than HAO. The flux reduction increased as the filtration proceeded because most of the organic foulants (colloid/particles and soluble NOM) were captured by the adsorbent cake layer, which caused fouling between the membrane surface and the adsorbent cake layer. However, no chemically irreversible fouling was observed on the Ce membrane at the end of the FAO adsorbent cake layer filtration. This means that a stable adsorbent cake layer by FAO formed on the Ce membrane, and that the reduced pure water flux of the Ce membrane, resulting from the NOM fouling, can easily be recovered through physicochemical cleaning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine

    Science.gov (United States)

    Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.

    2013-02-01

    Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.

  2. An RBS study of thin PLD and MOCVD strontium copper oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Kantor, Z. [Institute of Physics, University of Pannonia, H-8200 Veszprem (Hungary); Papadopoulou, E.L.; Aperathitis, E. [Inst. Electronic Struture and Laser, Foundation for Research and Technology - Hellas, P.O. Box 1527, Heraklion 71110 (Greece); Deschanvres, J.-L. [LMPG INP Grenoble-Minatec, BP 257, 38016 Grenoble Cedex 1 (France); Somogyi, K. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)], E-mail: karoly.somogyi@microvacuum.com; Szendro, I. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)

    2008-09-30

    Strontium copper oxide (SCO) has been studied as p-type transparent (VIS) conductive oxide material. Also theoretical studies suggested p-type conductivity of the SrCu{sub 2}O{sub 2} composition. SCO thin layers, with thicknesses of 30-2000 nm, were deposited on glass and silicon substrates both by pulsed laser deposition (PLD) and by MOCVD method. The as-grown layers showed high electrical resistance. Due to an annealing process, the resistivity significantly decreased and the layers showed p-type conductivity. Optical transparency measured on samples grown on glass substrates was found about or above 80%, including also thickness dependence. RBS measurements were applied for the determination of the chemical composition profile of the layers. A comparison revealed some specific differences between as-grown and annealed PLD samples. Due to the annealing, the ratio of oxide phases was changed and a vertical inhomogeneity in chemical composition was observed. Our measurements revealed also the influence of the deposition technique and of the substrate.

  3. Boundary layers of aqueous surfactant and block copolymer solutions against hydrophobic and hydrophilic solid surfaces

    International Nuclear Information System (INIS)

    Steitz, Roland; Schemmel, Sebastian; Shi Hongwei; Findenegg, Gerhard H

    2005-01-01

    The boundary layer of aqueous surfactants and amphiphilic triblock copolymers against flat solid surfaces of different degrees of hydrophobicity was investigated by neutron reflectometry (NR), grazing incidence small angle neutron scattering (GISANS) and atomic force microscopy (AFM). Solid substrates of different hydrophobicities were prepared by appropriate surface treatment or by coating silicon wafers with polymer films of different chemical natures. For substrates coated with thin films (20-30 nm) of deuterated poly(styrene) (water contact angle θ w ∼ 90), neutron reflectivity measurements on the polymer/water interface revealed a water depleted liquid boundary layer of 2-3 nm thickness and a density about 90% of the bulk water density. No pronounced depletion layer was found at the interface of water against a less hydrophobic polyelectrolyte coating (θ w ∼ 63). It is believed that the observed depletion layer at the hydrophobic polymer/water interface is a precursor of the nanobubbles which have been observed by AFM at this interface. Decoration of the polymer coatings by adsorbed layers of nonionic C m E n surfactants improves their wettability by the aqueous phase at surfactant concentrations well below the critical micellar concentration (CMC) of the surfactant. Here, GISANS experiments conducted on the system SiO 2 /C 8 E 4 /D 2 O reveal that there is no preferred lateral organization of the C 8 E 4 adsorption layers. For amphiphilic triblock copolymers (PEO-PPO-PEO) it is found that under equilibrium conditions they form solvent-swollen brushes both at the air/water and the solid/water interface. In the latter case, the brushes transform to uniform, dense layers after extensive rinsing with water and subsequent solvent evaporation. The primary adsorption layers maintain properties of the precursor brushes. In particular, their thickness scales with the number of ethylene oxide units (EO) of the block copolymer. In the case of dip-coating without

  4. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Chollet, Mélanie, E-mail: melanie.chollet@psi.ch [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland); Valance, Stéphane; Abolhassani, Sousan; Stein, Gene [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland); Grolimund, Daniel [Paul Scherrer Institute, SLS, 5232 Villigen (Switzerland); Martin, Matthias; Bertsch, Johannes [Paul Scherrer Institute, NES, 5232 Villigen (Switzerland)

    2017-05-15

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO{sub 2} are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components. - Highlights: •A Zircaloy-2 cladding irradiated 9 cycles was investigated thanks to synchrotron X-ray diffraction. •Microstructure and uniform strain through the oxide layer is revealed. •The m-ZrO{sub 2} uniform strain is oriented presenting compression along the (−111) plane. •Virtual tensor is built based on reflecting planes of families of grains. •Tensor components vary from tensile to compressive along the oxide layer.

  5. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Chollet, Mélanie; Valance, Stéphane; Abolhassani, Sousan; Stein, Gene; Grolimund, Daniel; Martin, Matthias; Bertsch, Johannes

    2017-01-01

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO 2 are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components. - Highlights: •A Zircaloy-2 cladding irradiated 9 cycles was investigated thanks to synchrotron X-ray diffraction. •Microstructure and uniform strain through the oxide layer is revealed. •The m-ZrO 2 uniform strain is oriented presenting compression along the (−111) plane. •Virtual tensor is built based on reflecting planes of families of grains. •Tensor components vary from tensile to compressive along the oxide layer.

  6. Durable superhydrophobic surfaces made by intensely connecting a bipolar top layer to the substrate with a middle connecting layer.

    Science.gov (United States)

    Zhi, Jinghui; Zhang, Li-Zhi

    2017-08-30

    This study reported a simple fabrication method for a durable superhydrophobic surface. The superhydrophobic top layer of the durable superhydrophobic surface was connected intensely to the substrate through a middle connecting layer. Glycidoxypropyltrimethoxysilane (KH-560) after hydrolysis was used to obtain a hydrophilic middle connecting layer. It could be adhered to the hydrophilic substrate by covalent bonds. Ring-open reaction with octadecylamine let the KH-560 middle layer form a net-like structure. The net-like sturcture would then encompass and station the silica particles that were used to form the coarse micro structures, intensely to increase the durability. The top hydrophobic layer with nano-structures was formed on the KH-560 middle layer. It was obtained by a bipolar nano-silica solution modified by hexamethyldisilazane (HMDS). This layer was connected to the middle layer intensely by the polar Si hydroxy groups, while the non-polar methyl groups on the surface, accompanied by the micro and nano structures, made the surface rather hydrophobic. The covalently interfacial interactions between the substrate and the middle layer, and between the middle layer and the top layer, strengthened the durability of the superhydrophobic surface. The abrasion test results showed that the superhydrophobic surface could bear 180 abrasion cycles on 1200 CW sandpaper under 2 kPa applied pressure.

  7. Improve the surface of silver nanowire transparent electrode using a double-layer structure for the quantum-dot light-emitting diodes

    Science.gov (United States)

    Cho, Seok Hyeon; Been Heo, Su; Kang, Seong Jun

    2018-03-01

    We developed a double-layer structured transparent electrode for use in flexible quantum-dot light-emitting diodes (QLEDs). Silver nanowires (AgNWs) and highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were coated on a transparent substrate to obtain a highly conductive and flexible transparent electrode. The highly conductive PEDOT:PSS improved the surface roughness of the AgNWs transparent electrode film as well as the surface coverage area of the film. The double-layer structured transparent electrode showed superior mechanical properties than conventional indium-tin oxide (ITO) and AgNWs transparent electrodes. QLEDs with the double-layer structured transparent electrode also showed good reliability under cyclic bending conditions. These results indicate that the double-layer structured AgNWs/PEDOT:PSS transparent electrode described here is a feasible alternative to ITO transparent electrodes for flexible QLEDs.

  8. XPS study of the passive layers formed on lead in aqueous nitrate solutions

    International Nuclear Information System (INIS)

    Uchida, Miho; Okuwaki, Akitsugu

    1997-01-01

    The analysis of the lead surface immersed in aqueous nitrate solutions by X-ray photoelectron spectroscopy (XPS) shows the formation of passive oxide layer containing nitrogen compound. The oxide layer formed on the lead surface in aqueous ammonium nitrate solution was hydrolyzed and cracked. (author)

  9. Sputtered indium-tin oxide/cadmium telluride junctions and cadmium telluride surfaces

    International Nuclear Information System (INIS)

    Courreges, F.G.; Fahrenbruch, A.L.; Bube, R.H.

    1980-01-01

    The properties of indium-tin oxide (ITO)/CdTe junction solar cells prepared by rf sputtering of ITO on P-doped CdTe single-crystal substrates have been investigated through measurements of the electrical and photovoltaic properties of ITO/CdTe and In/CdTe junctions, and of electron beam induced currents (EBIC) in ITO/CdTe junctions. In addition, surface properties of CdTe related to the sputtering process were investigated as a function of sputter etching and thermal oxidation using the techniques of surface photovoltage and photoluminescence. ITO/CdTe cells prepared by this sputtering method consist of an n + -ITO/n-CdTe/p-CdTe buried homojunction with about a 1-μm-thick n-type CdTe layer formed by heating of the surface of the CdTe during sputtering. Solar efficiencies up to 8% have been observed with V/sub 0c/=0.82 V and J/sub s/c=14.5 mA/cm 2 . The chief degradation mechanism involves a decrease in V/sub 0c/ with a transformation of the buried homojunction structure to an actual ITO/CdTe heterojunction

  10. Multi-layer enhancement to polysilicon surface-micromachining technology

    Energy Technology Data Exchange (ETDEWEB)

    Sniegowski, J.J.; Rodgers, M.S. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachine Dept.

    1997-10-01

    A multi-level polysilicon surface-micromachining technology consisting of 5 layers of polysilicon is presented. Surface topography and film mechanical stress are the major impediments encountered in the development of a multilayer surface-micromachining process. However, excellent mechanical film characteristics have been obtained through the use of chemical-mechanical polishing for planarization of topography and by proper sequencing of film deposition with thermal anneals. Examples of operating microactuators, geared power-transfer mechanisms, and optical elements demonstrate the mechanical advantages of construction with 5 polysilicon layers.

  11. Atomic layer deposition precursor step repetition and surface plasma pretreatment influence on semiconductor–insulator–semiconductor heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Talkenberg, Florian, E-mail: florian.talkenberg@ipht-jena.de; Illhardt, Stefan; Schmidl, Gabriele; Schleusener, Alexander; Sivakov, Vladimir [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Radnóczi, György Zoltán; Pécz, Béla [Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege Miklós u. 29-33, H-1121 Budapest (Hungary); Dikhanbayev, Kadyrjan; Mussabek, Gauhar [Department of Physics and Engineering, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty (Kazakhstan); Gudovskikh, Alexander [Nanotechnology Research and Education Centre, St. Petersburg Academic University, Russian Academy of Sciences, Hlopina Str. 8/3, 194021 St. Petersburg (Russian Federation)

    2015-07-15

    Semiconductor–insulator–semiconductor heterojunction solar cells were prepared using atomic layer deposition (ALD) technique. The silicon surface was treated with oxygen and hydrogen plasma in different orders before dielectric layer deposition. A plasma-enhanced ALD process was applied to deposit dielectric Al{sub 2}O{sub 3} on the plasma pretreated n-type Si(100) substrate. Aluminum doped zinc oxide (Al:ZnO or AZO) was deposited by thermal ALD and serves as transparent conductive oxide. Based on transmission electron microscopy studies the presence of thin silicon oxide (SiO{sub x}) layer was detected at the Si/Al{sub 2}O{sub 3} interface. The SiO{sub x} formation depends on the initial growth behavior of Al{sub 2}O{sub 3} and has significant influence on solar cell parameters. The authors demonstrate that a hydrogen plasma pretreatment and a precursor dose step repetition of a single precursor improve the initial growth behavior of Al{sub 2}O{sub 3} and avoid the SiO{sub x} generation. Furthermore, it improves the solar cell performance, which indicates a change of the Si/Al{sub 2}O{sub 3} interface states.

  12. First-principles study on the effect of SiO{sub 2} layers during oxidation of 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Tomoya, E-mail: ono@ccs.tsukuba.ac.jp [Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); JST-PRESTO, Kawaguchi, Saitama 332-0012 (Japan); Saito, Shoichiro [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2015-02-23

    The effect of SiO{sub 2} layers during the thermal oxidation of a 4H-SiC(0001) substrate is examined by performing the first-principles total-energy calculations. Although it is expected that a CO molecule is the most preferable product during the oxidation, CO{sub 2} molecules are mainly emitted from the SiC surface at the initial stage of the oxidation. As the oxidation proceeds, CO{sub 2} emission becomes less favorable and CO molecules are emitted from the interface. We conclude that the interface stress due to the lattice constant mismatch between 4H-SiC(0001) and SiO{sub 2} is responsible for the removal of C during the oxidation, resulting in the characteristic electronic property of the interface fabricated by the thermal oxidation.

  13. A novel and efficient oxidative functionalization of lignin by layer-by-layer immobilised Horseradish peroxidase.

    Science.gov (United States)

    Perazzini, Raffaella; Saladino, Raffaele; Guazzaroni, Melissa; Crestini, Claudia

    2011-01-01

    Horseradish peroxidase (HRP) was chemically immobilised onto alumina particles and coated by polyelectrolytes layers, using the layer-by-layer technique. The reactivity of the immobilised enzyme was studied in the oxidative functionalisation of softwood milled wood and residual kraft lignins and found higher than the free enzyme. In order to investigate the chemical modifications in the lignin structure, quantitative (31)P NMR was used. The immobilised HRP showed a higher reactivity with respect to the native enzyme yielding extensive depolymerisation of lignin. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Oxidation and photo-oxidation of water on TiO2 surface

    DEFF Research Database (Denmark)

    Valdes, A.; Qu, Z.W.; Kroes, G.J.

    2008-01-01

    The oxidation and photo-oxidation of water on the rutile TiO2(110) surface is investigated using density functional theory (DFT) calculations. We investigate the relative stability of different surface terminations of TiO2 interacting with H2O and analyze the overpotential needed for the electrol...

  15. Study of the oxidation mechanisms between impurities and surfaces applied to the future gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Duval, A.

    2010-01-01

    Inconel 617, main candidate for the heat exchangers of the gas-cooled next generation of nuclear reactors has been investigated. Two different problems occurring in the cooling system splits the study into two parts. Oxidizing impurities contained in the coolant can cause severe corrosion at 850 C. Radioactive impurities, coming from the fission reaction of the core can, in another hand contaminate the cooling loop and cause radioprotection problem for the maintenance and dismantling operations. Firstly, oxidizing gas partial pressure influence on oxidation of IN 617 at 850 C was investigated varying oxygen and water vapour partial pressure between 1.10 -5 mbar and 200 mbar. Oxide layers were characterized using XPS, SEM, EDX, GD-OES, XRD. Influence of partial pressure on layers structure and composition was determined. Effect of water vapour and partial pressure on growth mechanisms were also investigated. The second part of this study is focused on diffusion of Ag, stable isotope of Ag-110m in IN617 alloy and in the oxide layer forming at its surface at 850 C. Concentration profiles were obtained by GD-OES calibrated analysis. Diffusion coefficient could be obtained from these diffusion profiles: volume diffusion and grain boundary diffusion coefficients for the diffusion in the alloy, and an apparent diffusion coefficient for the diffusion in the oxide, due to the porosity of the structure. (author) [fr

  16. Analysis of chemical bond states and electrical properties of stacked AlON/HfO{sub 2} gate oxides formed by using a layer-by-layer technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wonjoon; Lee, Jonghyun; Yang, Jungyup; Kim, Chaeok; Hong, Jinpyo; Nahm, Tschanguh; Byun, Byungsub; Kim, Moseok [Hanyang University, Seoul (Korea, Republic of)

    2006-06-15

    Stacked AlON/HfO{sub 2} thin films for gate oxides in metal-oxide-semiconductor devices are successfully prepared on Si substrates by utilizing a layer-by-layer technique integrated with an off-axis RF remote plasma sputtering process at room temperature. This off-axis structure is designed to improve the uniformity and the quality of gate oxide films. Also, a layer-by-layer technique is used to control the interface layer between the gate oxide and the Si substrate. The electrical properties of our stacked films are characterized by using capacitance versus voltage and leakage current versus voltage measurements. The stacked AlON/HfO{sub 2} gate oxide exhibits a low leakage current of about 10{sup -6} A/cm{sup 2} and a high dielectric constant value of 14.26 by effectively suppressing the interface layer between gate oxide and Si substrate. In addition, the chemical bond states and the optimum thickness of each AlON and HfO{sub 2} thin film are analyzed using X-ray photoemission spectroscopy and transmission electron microscopy measurement.

  17. Molecular beam epitaxy of InN layers on Sapphire, GaN and indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Denker, Christian; Landgraf, Boris; Schuhmann, Henning; Malindretos, Joerg; Seibt, Michael; Rizzi, Angela [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany); Segura-Ruiz, Jaime; Gomez-Gomez, Maribel; Cantarero, Andres [Materials Science Institute, University of Valencia, Paterna (Spain)

    2009-07-01

    Among the group-III nitrides semiconductors, InN is the one with the narrowest gap (0.67 eV), lowest effective electron mass and highest peak drift velocity. It is therefore a very interesting material for several applications, in particular semiconductor solar cells. Furthermore, the high electron affinity makes it suitable also as electrode material for organic solar cells. InN layers were grown by molecular beam epitaxy on MOCVD GaN templates, on bare c-plane sapphire and on polycrystalline indium tin oxide. On all substrates the III-V ratio as well as the substrate temperature was varied. A RHEED analysis of InN growth on GaN showed a relatively sharp transition from N-rich and columnar growth to In-rich growth with droplet formation by increasing the In flux impinging on the surface. The InN layers on single crystalline substrates were characterized by SEM, AFM, XRD, PL and Raman. The InN layers on ITO were mainly analyzed with respect to the surface morphology with SEM. HRTEM in cross section gives insight into the structure of the interface to the ITO substrate.

  18. Development of a classical force field for the oxidized Si surface: application to hydrophilic wafer bonding.

    Science.gov (United States)

    Cole, Daniel J; Payne, Mike C; Csányi, Gábor; Spearing, S Mark; Colombi Ciacchi, Lucio

    2007-11-28

    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.

  19. Layer-by-Layer Method for the Synthesis and Growth of Surface Mounted Metal-Organic Frameworks (SURMOFs

    Directory of Open Access Journals (Sweden)

    Osama Shekhah

    2010-02-01

    Full Text Available A layer-by-layer method has been developed for the synthesis of metal-organic frameworks (MOFs and their deposition on functionalized organic surfaces. The approach is based on the sequential immersion of functionalized organic surfaces into solutions of the building blocks of the MOF, i.e., the organic ligand and the inorganic unit. The synthesis and growth of different types of MOFs on substrates with different functionalization, like COOH, OH and pyridine terminated surfaces, were studied and characterized with different surface characterization techniques. A controlled and highly oriented growth of very homogenous films was obtained using this method. The layer-by-layer method offered also the possibility to study the kinetics of film formation in more detail using surface plasmon resonance and quartz crystal microbalance. In addition, this method demonstrates the potential to synthesize new classes of MOFs not accessible by conventional methods. Finally, the controlled growth of MOF thin films is important for many applications like chemical sensors, membranes and related electrodes.

  20. A literature review of surface alteration layer effects on waste glass behavior

    International Nuclear Information System (INIS)

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-01-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution

  1. Unusual Application Of Ion Beam Analysis For The Study Of Surface Layers On Materials Relevant To Cultural Heritage

    International Nuclear Information System (INIS)

    Mathis, F.; Salomon, J.; Aucouturier, M.; Trocellier, P.

    2006-01-01

    Recently a new thematic of research -- intentional patinas on antic copper-base objects -- lead the AGLAE (Accelerateur Grand Louvre pour l'Analyse Elementaire) team of the C2RMF (Centre de Recherche et de Restauration des Musees de France) to improve its methods of analyzing thin surface layers both in their elemental composition and in-depth elemental distribution. A new beam extraction set-up containing a particle detector has been developed in order to use a 6 MeV alpha beam both in PIXE and RBS mode and to monitor precisely the ion dose received by the sample. Both RBS and ionization cross sections were assessed in order to make sure that the analysis can be quantitative. This set up allows great progresses in the understanding of both nature and structure of this very particular oxide layer obtained in the antiquity by chemical treatment on copper alloys, containing gold and/or silver and presenting very interesting properties of color and stability.Besides the non destructive properties of the IBA in external beam mode, this method of analyzing allows the study of samples in interaction with its environment. This was used to study the high temperature oxidation of Cu-Sn alloys using a furnace developed in order to heat a sample and analyze it in RBS mode at the same time. This new way of studying the growth of oxide layers permits to understand the oxidation mechanism of this system and to propose an experimental model for the identification of oxide layers due to an exposition to a high temperature, model needed for a long time by curators in charge of the study and the conservation of archaeological bronzes

  2. Contact mechanics for layered materials with randomly rough surfaces.

    Science.gov (United States)

    Persson, B N J

    2012-03-07

    The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.

  3. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches

    International Nuclear Information System (INIS)

    Hausbrand, R.; Cherkashinin, G.; Ehrenberg, H.; Gröting, M.; Albe, K.; Hess, C.; Jaegermann, W.

    2015-01-01

    Graphical abstract: - Highlights: • Description of recent in operando and in situ analysis methodology. • Surface science approach using photoemission for analysis of cathode surfaces and interfaces. • Ageing and fatigue of layered oxide Li-ion battery cathode materials from the atomistic point of view. • Defect formation and electronic structure evolution as causes for cathode degradation. • Significance of interfacial energy alignment and contact potential for side reactions. - Abstract: This overview addresses the atomistic aspects of degradation of layered LiMO 2 (M = Ni, Co, Mn) oxide Li-ion battery cathode materials, aiming to shed light on the fundamental degradation mechanisms especially inside active cathode materials and at their interfaces. It includes recent results obtained by novel in situ/in operando diffraction methods, modelling, and quasi in situ surface science analysis. Degradation of the active cathode material occurs upon overcharge, resulting from a positive potential shift of the anode. Oxygen loss and eventual phase transformation resulting in dead regions are ascribed to changes in electronic structure and defect formation. The anode potential shift results from loss of free lithium due to side reactions occurring at electrode/electrolyte interfaces. Such side reactions are caused by electron transfer, and depend on the electron energy level alignment at the interface. Side reactions at electrode/electrolyte interfaces and capacity fade may be overcome by the use of suitable solid-state electrolytes and Li-containing anodes

  4. Characterization of surface-modified LiMn2O4 cathode materials with indium tin oxide (ITO) coatings and their electrochemical performance

    International Nuclear Information System (INIS)

    Kim, Chang-Sam; Kwon, Soon-Ho; Yoon, Jong-Won

    2014-01-01

    Graphical abstract: -- Highlights: • Indium tin oxide (ITO) is used to modify the surface of LiMn 2 O 4 by a sol–gel method. • The surface-modified layer was observed at a scale of several nanometers on LiMn 2 O 4 . • The ITO-coated LiMn 2 O 4 shows better capacity retention at 30 and 55 °C than pristine LiMn 2 O 4 . -- Abstract: Indium tin oxide (ITO) is used to modify the surface of LiMn 2 O 4 by a sol–gel method in an attempt to improve its electrochemical performance at elevated temperatures. The surface-modified LiMn 2 O 4 is characterized via XRD, FE-SEM, TEM, Auger electron spectroscopy (AES) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The surface layer modified by substitution with indium was observed at a scale of several nanometers near the surface on LiMn 2 O 4 . The concentration of ITO for electrochemical performance was varied from 0.3 wt% to 0.8 wt%. The 0.5 wt% ITO coated LiMn 2 O 4 showed the best electrochemical performance. This enhancement in electrochemical performance is mainly attributed to the effect of the surface layer modified through ITO, which could suppress Mn dissolution and reduce the charge transfer resistance at the solid electrolyte interface

  5. Expansible apparatus for removing the surface layer from a concrete object

    International Nuclear Information System (INIS)

    Allen, C.H.

    1979-01-01

    A method and apparatus for removing the surface layer from a concrete object are described. The method consists of providing a hole having a circular wall in the surface layer of the object, the hole being at least as deep as the thickness of the surface layer to be removed, and applying an outward wedging pressure on the wall of the hole sufficient to spall the surface layer around the hole. By the proper spacing of an appropriate number of holes, it is possible to remove the entire surface layer. The apparatus consists of an elongated tubular-shaped body having a relatively short handle with a solid wall at one end. The wall of the remainder of the body contains a plurality of evenly spaced longitudinal cuts to form a relatively long expandable section. The outer end of the expandable section has an expandable, wedge-shaped spalling edge extending from the outer surface of the wall, perpendicular to the longitudinal axis of the body, and expanding means in the body for outwardly expanding the expandable section and forcing the spalling edge into the wall of a hole with sufficient outward pressure to spall away the surface layer of concrete. The method and apparatus are particularly suitable for removing surface layers of concrete which are radioactively contaminated

  6. Electrografted diazonium salt layers for antifouling on the surface of surface plasmon resonance biosensors.

    Science.gov (United States)

    Zou, Qiongjing; Kegel, Laurel L; Booksh, Karl S

    2015-02-17

    Electrografted diazonium salt layers on the surface of surface plasmon resonance (SPR) sensors present potential for a significant improvement in antifouling coatings. A pulsed potential deposition profile was used in order to circumvent mass-transport limitations for layer deposition rate. The influence of number of pulses with respect to antifouling efficacy was evaluated by nonspecific adsorption surface coverage of crude bovine serum proteins. Instead of using empirical and rough estimated values, the penetration depth and sensitivity of the SPR instrument were experimentally determined for the calculation of nonspecific adsorption surface coverage. This provides a method to better examine antifouling surface coatings and compare crossing different coatings and experimental systems. Direct comparison of antifouling performance of different diazonium salts was facilitated by a tripad SPR sensor design. The electrografted 4-phenylalanine diazonium chloride (4-APhe) layers with zwitterionic characteristic demonstrate ultralow fouling.

  7. Investigation of Thin Layered Cobalt Oxide Nano-Islands on Gold

    Science.gov (United States)

    Bajdich, Michal; Walton, Alex S.; Fester, Jakob; Arman, Mohammad A.; Osiecki, Jacek; Knudsen, Jan; Vojvodic, Aleksandra; Lauritsen, Jeppe V.

    2015-03-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER), but the synergistic effect of contact with gold is yet to be fully understood. The synthesis of three distinct types of thin-layered cobalt oxide nano-islands supported on a single crystal gold (111) substrate is confirmed by combination of STM and XAS methods. In this work, we present DFT+U theoretical investigation of above nano-islands using several previously known structural models. Our calculations confirm stability of two low-oxygen pressure phases: (a) rock-salt Co-O bilayer and (b) wurtzite Co-O quadlayer and single high-oxygen pressure phase: (c) O-Co-O trilayer. The optimized geometries agree with STM structures and calculated oxidation states confirm the conversion from Co2+ to Co3+ found experimentally in XAS. The O-Co-O trilayer islands have the structure of a single layer of CoOOH proposed to be the true active phase for OER catalyst. For that reason, the effect of water on the Pourbaix stabilities of basal planes and edge sites is fully investigated. Lastly, we also present the corresponding OER theoretical overpotentials.

  8. Evolution of the thickness of the aluminum oxide film due to the pH of the cooling water and surface temperature of the fuel elements clad of a nuclear reactor

    International Nuclear Information System (INIS)

    Babiche, Ivan

    2013-01-01

    This paper describes the mechanism of growth of a film of aluminum oxide on an alloy of the same material, which serves as a protective surface being the constituent material of the RP-10 nuclear reactor fuel elements clads. The most influential parameters on the growth of this film are: the pH of the cooling water and the clad surface temperature of the fuel element. For this study, a mathematical model relating the evolution of the aluminum oxide layer thickness over the time, according to the same oxide film using a power law is used. It is concluded that the time of irradiation, the heat flux at the surface of the aluminum material, the speed of the coolant, the thermal conductivity of the oxide, the initial thickness of the oxide layer and the solubility of the protective oxide are parameters affecting in the rate and film formation. (author).

  9. Deposition of O atomic layers on Si(100) substrates for epitaxial Si-O superlattices: investigation of the surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Delabie, Annelies; Billen, Arne [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Dekkers, Harold; Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Caymax, Matty [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, Marc [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-01

    Highlights: • Atomic layer is deposited by O{sub 3} chemisorption reaction on H-terminated Si(100). • O-content has critical impact on the epitaxial thickness of the above-deposited Si. • Oxygen atoms at dimer/back bond configurations enable epitaxial Si on O atomic layer. • Oxygen atoms at hydroxyl and more back bonds, disable epitaxial Si on O atomic layer. - Abstract: Epitaxial Si-O superlattices consist of alternating periods of crystalline Si layers and atomic layers of oxygen (O) with interesting electronic and optical properties. To understand the fundamentals of Si epitaxy on O atomic layers, we investigate the O surface species that can allow epitaxial Si chemical vapor deposition using silane. The surface reaction of ozone on H-terminated Si(100) is used for the O deposition. The oxygen content is controlled precisely at and near the atomic layer level and has a critical impact on the subsequent Si deposition. There exists only a small window of O-contents, i.e. 0.7–0.9 atomic layers, for which the epitaxial deposition of Si can be realized. At these low O-contents, the O atoms are incorporated in the Si-Si dimers or back bonds (-OSiH), with the surface Si atoms mainly in the 1+ oxidation state, as indicated by infrared spectroscopy. This surface enables epitaxial seeding of Si. For O-contents higher than one atomic layer, the additional O atoms are incorporated in the Si-Si back bonds as well as in the Si-H bonds, where hydroxyl groups (-Si-OH) are created. In this case, the Si deposition thereon becomes completely amorphous.

  10. Rapid Hydrothermal Synthesis of Zinc Oxide Nanowires by Annealing Methods on Seed Layers

    Directory of Open Access Journals (Sweden)

    Jang Bo Shim

    2011-01-01

    Full Text Available Well-aligned zinc oxide (ZnO nanowire arrays were successfully synthesized on a glass substrate using the rapid microwave heating process. The ZnO seed layers were produced by spinning the precursor solutions onto the substrate. Among coatings, the ZnO seed layers were annealed at 100°C for 5 minutes to ensure particle adhesion to the glass surface in air, nitrogen, and vacuum atmospheres. The annealing treatment of the ZnO seed layer was most important for achieving the high quality of ZnO nanowire arrays as ZnO seed nanoparticles of larger than 30 nm in diameter evolve into ZnO nanowire arrays. Transmission electron microscopy analysis revealed a single-crystalline lattice of the ZnO nanowires. Because of their low power (140 W, low operating temperatures (90°C, easy fabrication (variable microwave sintering system, and low cost (90% cost reduction compared with gas condensation methods, high quality ZnO nanowires created with the rapid microwave heating process show great promise for use in flexible solar cells and flexible display devices.

  11. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells.

    Science.gov (United States)

    Trost, S; Becker, T; Zilberberg, K; Behrendt, A; Polywka, A; Heiderhoff, R; Görrn, P; Riedl, T

    2015-01-16

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1-20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated.

  12. Ozone Oxidation of Self-Assembled Monolayers on SiOx-Coated Zinc Selenide Surfaces

    Science.gov (United States)

    McIntire, T. M.; Ryder, O. S.; Finlayson-Pitts, B. J.

    2008-12-01

    Airborne particles are important for visibility, human health, climate, and atmospheric reactions. Atmospheric particles contain a significant fraction of organics and such compounds present on airborne particles are susceptible to oxidation by atmospheric oxidants, such as OH, ozone, halogen atoms, and nitrogen trioxide. Oxidized organics associated with airborne particles are thought to be polar, hygroscopic species with enhanced cloud-nucleating properties. Oxide layers on silicon, or SiO2-coated substrates, act as models of environmentally relevant surfaces such as dust particles upon which organics adsorb. We have shown previously that ozone oxidation of unsaturated self-assembled monolayers (SAMs) on silicon attenuated total reflectance (ATR) crystals leads to the formation of carbonyl groups and micron-sized, hydrophobic organic aggregates surrounded by carbon depleted substrate that do not have increased water uptake as previously assumed. Reported here are further ATR-FTIR studies of the oxidation of alkene SAMs on ZnSe and SiO2-coated ZnSe. These substrates have the advantage that they transmit below 1500 cm-1, allowing detection of additional product species. These experiments show that the loss of C=C and formation of carbonyl groups is also accompanied by formation of a peak at 1110 cm-1, attributed to the secondary ozonide. Details concerning the products and mechanism of ozonolysis of alkene SAMs on surfaces based on these new data are presented and the implications for the oxidation of alkenes on airborne dust particles are discussed.

  13. Mechanisms of oxide layer formation and destruction on a chromia former nickel base alloy in HTR environment

    International Nuclear Information System (INIS)

    Rouillard, F.

    2007-10-01

    Haynes 230 alloy which contains 22 wt.% chromium could be a promising candidate material for structures and heat exchangers (maximum operating temperature: 850-950 C) in Very High Temperature Reactors (VHTR). The feasibility demonstration involves to valid its corrosion resistance in the reactor specific environment namely impure helium. The alloys surface reactivity was investigated at temperatures between 850 and 1000 C. We especially focused on the influence of different parameters such as concentrations of impurities in the gas phase (carbon monoxide and methane, water vapour/hydrogen ratio), alloy composition (activities of Cr and C, alloying element contents) and temperature. Two main behaviours have been revealed: the formation of a Cr/Mn rich oxide layer at 900 C and its following reduction at higher temperatures. At 900 C, the water vapour is the main oxidizing gas. However in the initial times, the carbon monoxide reacts at the metal/oxide interface which involves a gaseous transport through the scale; CO mainly oxidizes the minor alloying elements aluminium and silicon. Above a critical temperature TA, the carbon in solution in the alloy reduces chromia. To ascribe the scale destruction, a model is proposed based on thermodynamic interfacial data for the alloy, oxide layer morphology and carbon monoxide partial pressure in helium; the model is then validated regarding experimental results and observations. (author)

  14. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    Science.gov (United States)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  15. Study on microstructure and properties of Mg-alloy surface alloying layer fabricated by EPC

    Directory of Open Access Journals (Sweden)

    Chen Dongfeng

    2010-02-01

    Full Text Available AZ91D surface alloying was investigated through evaporative pattern casting (EPC technology. Aluminum powder (0.074 to 0.104 mm was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of β-Mg17Al12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen.

  16. Control of morphology and surface wettability of anodic niobium oxide microcones formed in hot phosphate-glycerol electrolytes

    International Nuclear Information System (INIS)

    Yang, Shu; Habazaki, Hiroki; Fujii, Takashi; Aoki, Yoshitaka; Skeldon, Peter; Thompson, George E.

    2011-01-01

    Highlights: → Anodic niobium oxide microcones with nanofiber morphology are formed simply by anodizing. → The cone size and its tip angle are controlled by anodizing condition. → The surface shows extremely high contact angle for water after coating with a fluoroalkyl layer. - Abstract: We report the fabrication of superhydrophobic surfaces with a hierarchical morphology by self-organized anodizing process. Simply by anodizing of niobium metal in hot phosphate-glycerol electrolyte, niobium oxide microcones, consisting of highly branched oxide nanofibers, develop on the surface. The size of the microcones and their tip angles are controlled by changing the applied potential difference in anodizing and the water content in the electrolyte. Reduction of the water content increases the size of the microcones, with the nanofibers changing to nanoparticles. The size of microcones is also reduced by increasing the applied potential difference, without influencing the tip angle. The hierarchical oxide surfaces are superhydrophilic, with static contact angles close to 0 o . Coating of the anodic oxide films with a monolayer of fluoroalkyl phosphate makes the surfaces superhydrophobic with a contact angle for water as high as 175 o and a very small contact angle hysteresis of only 2 o . The present results indicate that the larger microcones with smaller tip angles show the higher contact angle for water.

  17. Properties of Co-deposited indium tin oxide and zinc oxide films using a bipolar pulse power supply and a dual magnetron sputter source

    International Nuclear Information System (INIS)

    Hwang, Man-Soo; Seob Jeong, Heui; Kim, Won Mok; Seo, Yong Woon

    2003-01-01

    Multilayer coatings consisting of metal layers sandwiched between transparent conducting oxide layers are widely used for flat panel display electrodes and electromagnetic shield coatings for plasma displays, due to their high electrical conductivity and light transmittance. The electrical and optical properties of these multilayer films depend largely on the surface characteristics of the transparent conducting oxide thin films. A smoother surface on the transparent conducting oxide thin films makes it easier for the metal layer to form a continuous film, thus resulting in a higher conductivity and visible light transmittance. Indium tin oxide (ITO) and zinc oxide (ZnO) films were co-deposited using a dual magnetron sputter and a bipolar pulse power supply to decrease the surface roughness of the transparent conducting oxide films. The symmetric pulse mode of the power supply was used to simultaneously sputter an In 2 O 3 (90 wt %) : SnO 2 (10 wt %) target and a ZnO target. We varied the duty of the pulses to control the ratio of ITO : ZnO in the thin films. The electrical and optical properties of the films were studied, and special attention was paid to the surface roughness and the crystallinity of the films. By co-depositing ITO and ZnO at a pulse duty ratio of ITO:ZnO=45:45 using a dual magnetron sputter and a bipolar pulse power supply, we were able to obtain amorphous transparent conducting oxide films with a very smooth surface which had a Zn-rich buffer layer under a In-rich surface layer. All of the films exhibited typical electrical and optical properties of transparent conducting oxide films deposited at room temperature

  18. Impacts of oxidants in atomic layer deposition method on Al2O3/GaN interface properties

    Science.gov (United States)

    Taoka, Noriyuki; Kubo, Toshiharu; Yamada, Toshikazu; Egawa, Takashi; Shimizu, Mitsuaki

    2018-01-01

    The electrical interface properties of GaN metal-oxide-semiconductor (MOS) capacitors with an Al2O3 gate insulator formed by atomic layer deposition method using three kinds of oxidants were investigated by the capacitance-voltage technique, Terman method, and conductance method. We found that O3 and the alternate supply of H2O and O3 (AS-HO) are effective for reducing the interface trap density (D it) at the energy range of 0.15 to 0.30 eV taking from the conduction band minimum. On the other hand, we found that surface potential fluctuation (σs) induced by interface charges for the AS-HO oxidant is much larger than that for a Si MOS capacitor with a SiO2 layer formed by chemical vapor deposition despite the small D it values for the AS-HO oxidant compared with the Si MOS capacitor. This means that the total charged center density including the fixed charge density, charged slow trap density, and charged interface trap density for the GaN MOS capacitor is higher than that for the Si MOS capacitor. Therefore, σs has to be reduced to improve the performances and reliability of GaN devices with the Al2O3/GaN interfaces.

  19. Sn-L3 EDGE and Fe K edge XANES spectra of the surface layer of ancient Chinese black mirror Heiqigu

    International Nuclear Information System (INIS)

    Gaowei Mengjia; Liu Yuzhen; Chu Wangsheng; Wu Ziyu; Wang Changsui

    2009-01-01

    The Chinese ancient black mirror known as Heiqigu was studied by x-ray-absorption near-edge structure spectroscopy and results were reported. The Sn-L 3 edge and Fe K edge spectra further confirmed the Schottky-type defect model in the Heiqigu surface system. And it was suggested that the surface layer of the mirror was a combined structure of oxidation of Sn(IV) and Sn(II). (authors)

  20. Micro-layers of polystyrene film preventing metal oxidation: implications in cultural heritage conservation

    Science.gov (United States)

    Giambi, Francesca; Carretti, Emiliano; Dei, Luigi; Baglioni, Piero

    2014-12-01

    Protection of surfaces directly exposed to the detrimental action of degradative agents (i.e. oxygen, air pollutants and bacteria) is one of the most important challenges in the field of conservation of works of art. Metallic objects are subjected to specific surface corrosion phenomena that, over the years, make mandatory the research of innovative materials that should avoid the direct contact between the metal surface and the weathering agents. In this paper, the set-up, characterisation and application of a new reversible material for preserving metal artefacts are reported. Micro-layers constituted of low-adhesive polystyrene (PS) films obtained from recycling waste packaging materials made of expanded PS were studied. The morphology and thickness of PS films were characterised by optical, atomic force and scanning electron microscopy (SEM). A further check on thickness was carried out by means of visible spectrophotometry doping the films with a hydrophobic dye. Thermal properties of the PS micro-layers were studied by means of differential scanning calorimetry coupled with optical microscopy. Permeability of the PS films to water vapour was also determined. The potential of the low-adhesive PS films, that enabled an easy removal in case of film deterioration, for preventing metal oxidation was investigated on brass specimens by simulating standard artificial corrosion programmes. Morphological and chemical (coupling the energy-dispersive X-rays spectrometry to SEM measurements) analyses carried out on these metal samples showed promising results in terms of surface protection against corrosion.

  1. Novel Dry-Type Glucose Sensor Based on a Metal-Oxide-Semiconductor Capacitor Structure with Horseradish Peroxidase + Glucose Oxidase Catalyzing Layer

    Science.gov (United States)

    Lin, Jing-Jenn; Wu, You-Lin; Hsu, Po-Yen

    2007-10-01

    In this paper, we present a novel dry-type glucose sensor based on a metal-oxide-semiconductor capacitor (MOSC) structure using SiO2 as a gate dielectric in conjunction with a horseradish peroxidase (HRP) + glucose oxidase (GOD) catalyzing layer. The tested glucose solution was dropped directly onto the window opened on the SiO2 layer, with a coating of HRP + GOD catalyzing layer on top of the gate dielectric. From the capacitance-voltage (C-V) characteristics of the sensor, we found that the glucose solution can induce an inversion layer on the silicon surface causing a gate leakage current flowing along the SiO2 surface. The gate current changes Δ I before and after the drop of glucose solution exhibits a near-linear relationship with increasing glucose concentration. The Δ I sensitivity is about 1.76 nA cm-2 M-1, and the current is quite stable 20 min after the drop of the glucose solution is tested.

  2. Carrier confinement in Ge/Si quantum dots grown with an intermediate ultrathin oxide layer

    Science.gov (United States)

    Kuryliuk, V.; Korotchenkov, O.; Cantarero, A.

    2012-02-01

    We present computational results for strain effects on charge carrier confinement in GexSi1-x quantum dots (QDs) grown on an oxidized Si surface. The strain and free carrier probability density distributions are obtained using the continuum elasticity theory and the effective-mass approximation implemented by a finite-element modeling scheme. Using realistic parameters and conditions for hemisphere and pyramid QDs, it is pointed out that an uncapped hemisphere dot deposited on the Si surface with an intermediate ultrathin oxide layer offers advantageous electron-hole separation distances with respect to a square-based pyramid grown directly on Si. The enhanced separation is associated with a larger electron localization depth in the Si substrate for uncapped hemisphere dots. Thus, for dot diameters smaller than 15-20 nm and surface density of the dots (nQD) ranging from about 1010 to 1012 cm-2, the localization depth may be enhanced from about 8 nm for a pyramid to 38 nm for a hemisphere dot. We find that the effect in a hemisphere dot is very sensitive to the dot density and size, whereas the localization depth is not significantly affected by the variation of the Ge fraction x in GexSi1-x and the aspect ratio of the dot. We also calculate the effect of the fixed oxide charge (Qox) with densities ranging from 10-9 to 10-7 C/cm2 for 10-Ωcm p-type Si wafers on the carrier confinement. Although the confinement potential can be strongly perturbed by the charge at nQD less than ≈4×1011 cm-2, it is not very sensitive to the value of Qox at higher nQD. Since, to our knowledge, there are no data on carrier confinement for Ge QDs deposited on oxidized Si surfaces, these results might be applicable to functional devices utilizing separated electrons and holes such as photovoltaic devices, spin transistors, and quantum computing components. The use of hemisphere QDs placed on oxidized Si rather than pyramid dots grown on bare Si may help to confine charge carriers deeper

  3. Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors.

    Science.gov (United States)

    Wang, Lei; Wang, Dong; Dong, Xin Yi; Zhang, Zhi Jun; Pei, Xian Feng; Chen, Xin Jiang; Chen, Biao; Jin, Jian

    2011-03-28

    An innovative strategy of fabricating electrode material by layered assembling two kinds of one-atom-thick sheets, carboxylated graphene oxide (GO) and Co-Al layered double hydroxide nanosheet (Co-Al LDH-NS) for the application as a pseudocapacitor is reported. The Co-Al LDH-NS/GO composite exhibits good energy storage properties.

  4. Prediction of Isoelectric Point of Manganese and Cobalt Lamellar Oxides: Application to Controlled Synthesis of Mixed Oxides.

    Science.gov (United States)

    Tang, Céline; Giaume, Domitille; Guerlou-Demourgues, Liliane; Lefèvre, Grégory; Barboux, Philippe

    2018-05-30

    To design novel layered materials, bottom-up strategy is very promising. It consists of (1) synthesizing various layered oxides, (2) exfoliating them, then (3) restacking them in a controlled way. The last step is based on electrostatic interactions between different layered oxides and is difficult to control. The aim of this study is to facilitate this step by predicting the isoelectric point (IEP) of exfoliated materials. The Multisite Complexation model (MUSIC) was used for this objective and was shown to be able to predict IEP from the mean oxidation state of the metal in the (hydr)oxides, as the main parameter. Moreover, the effect of exfoliation on IEP has also been calculated. Starting from platelets with a high basal surface area over total surface area, we show that the exfoliation process has no impact on calculated IEP value, as verified with experiments. Moreover, the restacked materials containing different monometallic (hydr)oxide layers also have an IEP consistent with values calculated with the model. This study proves that MUSIC model is a useful tool to predict IEP of various complex metal oxides and hydroxides.

  5. Oxide layer stability in lead-bismuth at high temperature

    Science.gov (United States)

    Martín, F. J.; Soler, L.; Hernández, F.; Gómez-Briceño, D.

    2004-11-01

    Materials protection by 'in situ' oxidation has been studied in stagnant lead-bismuth, with different oxygen levels (H 2/H 2O ratios of 0.3 and 0.03), at temperatures from 535 °C to 600 °C and times from 100 to 3000 h. The materials tested were the martensitic steels F82Hmod, EM10 and T91 and the austenitic stainless steels, AISI 316L and AISI 304L. The results obtained point to the existence of an apparent threshold temperature above which corrosion occurs and the formation of a protective and stable oxide layer is not possible. This threshold temperature depends on material composition, oxygen concentration in the liquid lead-bismuth and time. The threshold temperature is higher for the austenitic steels, especially for the AISI 304L, and it increases with the oxygen concentration in the lead-bismuth. The oxide layer formed disappear with time and, after 3000 h all the materials, except AISI 304L, suffer corrosion, more severe for the martensitic steels and at the highest temperature tested.

  6. Increased cathode performance using a thin film LSM layer on a structured 8YSZ electrolyte surface

    Energy Technology Data Exchange (ETDEWEB)

    Herbstritt, D.; Weber, A.; Ivers-Tiffee, E. [Karlsruhe Univ. (T.H.) (DE). Inst. fuer Werkstoffkunde der Elektrotechnik (IWE); Guntow, U.; Mueller, G. [Fraunhofer-Institut fuer Silicatforschung (ISC), Wuerzburg (Germany)

    2000-07-01

    A considerable part of the power losses in a SOFC single cell occurs due to the polarization resistance of the cathode/electrolyte interface. The resulting high cathodic overvoltage corresponds to an enhanced degradation of the cell. In case of a screen printed LSM cathode layer (LSM: La{sub 1-x}Sr{sub x}MnO{sub 3}) on a YSZ electrolyte substrate (YSZ: Y{sub 2}O{sub 3} stabilised ZrO{sub 2}) the cathodic reaction is generally assumed to be restricted to the three phase boundary (tpb) between cathode, oxidant and the electrolyte surface. The electrochemical active area was increased by a modification of the cathode/electrolyte interface. Single cells with a thin film LSM layer on a structured 8YSZ electrolyte showed a power output of about 0.95 W/cm{sup 2} at 0.7 V cell voltage (950 C; oxidant: air, 0.7 1/min; fuel: hydrogen, 0.5 1/min, 15% fuel utilization). (orig.)

  7. Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu Tae; Black, Robert; Yim, Taeeun; Ji, Xiulei; Nazar, Linda F. [University of Waterloo, Department of Chemistry, Waterloo, ON (Canada)

    2012-12-15

    The concept of surface-initiated growth of oxides on functionalized carbons is introduced as a method to inhibit the dissolution of polysulfide ions in Li-S battery cathode materials. MO{sub x} (M: Si, V) thin layers are homogeneously coated on nanostructured carbon-sulfur composites. The coating significantly inhibits the dissolution of polysulfides on cycling, resulting in enhanced cycle performance and coulombic efficiency of the Li-S battery. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Glow discharge mass spectrometry study of chemical impurities diffusion in zirconium oxide layers

    International Nuclear Information System (INIS)

    Actis-Dato, L.O.

    2000-02-01

    In the Pressurised Water Reactors (PWR) the primary cooling system is water at 350 deg C and 16 Mpa. In these extreme conditions the corrosion of the out-of-pile components of the reactor and in particular of the Zircaloy cladding containing the nuclear fuel pellets is accelerated. The formation of a growing oxide layer is observed on the elements of the nuclear reactor core. When the thickness of the oxide layer reaches a critical value, problems like structural malfunction and material failure can occur. At this stage the danger of the release of radioactivity in the coolant becomes effective. In this work a glow discharge mass spectrometer is used to study the diffusion of impurities like lithium, zinc and boron in oxide layers growing on Zircaloy samples. After a brief description of the different technique used the preparation and analysis of Zircaloy samples on which oxide layers of different thickness have been produced will be described. The analysis of these samples will allow the determination and evaluation the depth profiles of the impurities absorbed by the oxide. The analysis of the shape of the crater produced during the mass spectrometric analysis will give additional informations on the quality of the results obtained. The technique developed will finally be applied to the study of samples produced during reactor operation under real irradiation conditions. The results obtained show a lithium intake in the oxide layer and confirm the beneficial effect on the corrosion produced by boron. The influence of zinc on the corrosion behaviour of Zircaloy has not been established. The technique developed has also shown interesting capabilities concerning the analysis of irradiated samples. (author)

  9. Microarc Oxidation of Product Surfaces without Using a Bath

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2015-01-01

    Full Text Available While using an electrochemical method to cover the large-sized work-pieces, units, and products up to 6 м3 by protective coating, there is a certain difficulty to apply traditional anodizing techniques in a plating vat, and it is necessary to find various processing techniques.To use the existing micro-arc oxide coating (MOC methods for work-pieces of various forms and sizes in a plating vat is complicated in case it is required to provide oxide layers in separate places rather than over entire surface of a work-piece. The challenge is to treat flat surfaces in various directions, external and internal surfaces of rotation bodies, profiled surfaces, intersections, closed and through holes, pipes, as well as spline and thread openings for ensuring anti-seize properties in individual or small-scale production to meet technical requirements and operational properties of products.A design of tools to provide MOC-process of all possible surfaces of various engineering box-type products depends on many factors and can be considerably different even when processing the surfaces of the same forms. An attachment to be used is fixed directly on a large-sized design (a work-piece, a product or fastened in the special tool. The features of technological process, design shape, and arrangement of the processed surfaces define a fastening method of the attachment. Therefore it is necessary to pay much attention to a choice of the processing pattern and a design of tools.The Kaluga-branch of Bauman Moscow State Technical University is an original proposer of methods to form MOC-coatings on the separate surfaces of large-sized work-pieces using the moved and stationary electrodes to solve the above listed tasks.The following results of work will have an impact on development of the offered processing methods and their early implementation in real production:1. To provide oxide coatings on the surfaces of large-sized products or assemblies in a single or small

  10. Bulk-heterojunction organic solar cells sandwiched by solution processed molybdenum oxide and titania nanosheet layers

    Science.gov (United States)

    Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi

    2014-02-01

    The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.

  11. Surface characteristics of hydroxyapatite-coated layer prepared on nanotubular Ti–35Ta–xHf alloys by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Moon, Byung-Hak [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    In this study, we investigated the surface characteristics of hydroxyapatite (HA)-coated layers prepared by electron-beam physical vapor deposition (EB-PVD) on nanotubular Ti–35Ta–xHf alloys (x = 3, 7, and 15 wt.%). Ti–35Ta–xHf alloys were first prepared by arc melting. Formation of a nanotube structure on these alloys was achieved by an electrochemical method in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF electrolytes. The HA coatings were then deposited on the nanotubular surface by an EB-PVD method. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The electrochemical behavior was examined using a potentiodynamic polarization test in 0.9% NaCl solution. The Ti–35Ta–xHf alloys had an equiaxed grain structure with α″ + β phases, and the α″ phase disappeared with increases in Hf content. The Ti–35Ta–15Hf alloy showed higher β-phase peak intensity in the XRD patterns than that for the lower Hf-content alloys. A highly ordered nanotubular oxide layer was formed on the Ti–35Ta–15Hf alloy, and the tube length depended on Hf content. The HA coating surface formed at traces of the nanotubular titanium oxide layer and completely covered the tips of the nanotubes with a cluster shape. From the potentiodynamic polarization tests, the incorporation of Hf element and formation of the nanotubular structure were the main factors for achieving lower current density. In particular, the surface of the HA coating on the nanotubular structure exhibited higher corrosion resistance than that of the nanotubular titanium oxide structure without an HA coating. - Highlights: • Hydroxyapatite (HA) was coated on nanotubular Ti–35Ta–xHf alloys, using EB-PVD. • Increasing the Hf content reduced the relative proportion of α″ martensite to β-Ti in the microstructures. • The detailed nanotubular structure formed by anodization depended on alloy composition

  12. Surface characteristics of hydroxyapatite-coated layer prepared on nanotubular Ti–35Ta–xHf alloys by EB-PVD

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Moon, Byung-Hak; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    In this study, we investigated the surface characteristics of hydroxyapatite (HA)-coated layers prepared by electron-beam physical vapor deposition (EB-PVD) on nanotubular Ti–35Ta–xHf alloys (x = 3, 7, and 15 wt.%). Ti–35Ta–xHf alloys were first prepared by arc melting. Formation of a nanotube structure on these alloys was achieved by an electrochemical method in 1 M H 3 PO 4 + 0.8 wt.% NaF electrolytes. The HA coatings were then deposited on the nanotubular surface by an EB-PVD method. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The electrochemical behavior was examined using a potentiodynamic polarization test in 0.9% NaCl solution. The Ti–35Ta–xHf alloys had an equiaxed grain structure with α″ + β phases, and the α″ phase disappeared with increases in Hf content. The Ti–35Ta–15Hf alloy showed higher β-phase peak intensity in the XRD patterns than that for the lower Hf-content alloys. A highly ordered nanotubular oxide layer was formed on the Ti–35Ta–15Hf alloy, and the tube length depended on Hf content. The HA coating surface formed at traces of the nanotubular titanium oxide layer and completely covered the tips of the nanotubes with a cluster shape. From the potentiodynamic polarization tests, the incorporation of Hf element and formation of the nanotubular structure were the main factors for achieving lower current density. In particular, the surface of the HA coating on the nanotubular structure exhibited higher corrosion resistance than that of the nanotubular titanium oxide structure without an HA coating. - Highlights: • Hydroxyapatite (HA) was coated on nanotubular Ti–35Ta–xHf alloys, using EB-PVD. • Increasing the Hf content reduced the relative proportion of α″ martensite to β-Ti in the microstructures. • The detailed nanotubular structure formed by anodization depended on alloy composition. • The

  13. Usage of neural network to predict aluminium oxide layer thickness.

    Science.gov (United States)

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A · dm(-2) and 3 A · dm(-2) for creating aluminium oxide layer.

  14. Usage of Neural Network to Predict Aluminium Oxide Layer Thickness

    Directory of Open Access Journals (Sweden)

    Peter Michal

    2015-01-01

    Full Text Available This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A·dm−2 and 3 A·dm−2 for creating aluminium oxide layer.

  15. Electrostatic layer-by-layer a of platinum-loaded multiwall carbon nanotube multilayer: A tunable catalyst film for anodic methanol oxidation

    International Nuclear Information System (INIS)

    Yuan Junhua; Wang Zhijuan; Zhang Yuanjian; Shen Yanfei; Han Dongxue; Zhang Qixian; Xu Xiaoyu; Niu Li

    2008-01-01

    A simple layer-by-layer (LBL) electrostatic adsorption technique was developed for deposition of films composed of alternating layers of positively charged poly(diallyldimethylammonium chloride) (PDDA) and negatively charged multiwall carbon nanotubes bearing platinum nanoparticles (Pt-CNTs). PDDA/Pt-CNT film structure and morphology up to six layers were characterized by scanning electron microscopy and ultraviolet-visible spectroscopy, showing the Pt-CNT layers to be porous and uniformly deposited within the multilayer films. Electrochemical properties of the PDDA/Pt-CNT films, as well as electrocatalytic activity toward methanol oxidation, were investigated with cyclic voltammetry. Significant activity toward anodic methanol oxidation was observed and is readily tunable through changing film thickness and/or platinum-nanoparticle loading. Overall, the observed properties of these PDDA/Pt-CNT multilayer films indicated unique potential for application in direct methanol fuel cell

  16. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    Science.gov (United States)

    Schaefer, Michael; Schlaf, Rudy

    2015-08-01

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru0) and its oxide (RuO2) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru0 and RuO2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO2 and 0.04 Å/cycle for Ru.0 An interface dipole of up to -0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO2/OH compound whose surface is saturated with hydroxyl groups.

  17. Evaporation rates and surface profiles on heterogeneous surfaces with mass transfer and surface reaction

    Energy Technology Data Exchange (ETDEWEB)

    Flytzani-Stephanopoulos, M; Schmidt, L D

    1979-01-01

    Simple models incorporating surface reaction and diffusion of volatile products through a boundary layer are developed to calculate effective rates of evaporation and local surface profiles on surfaces having active and inactive regions. The coupling between surface heterogeneities with respect to a particular reaction and external mass transfer may provide a mechanism for the surface rearrangement and metal loss encountered in several catalytic systems of practical interest. Calculated transport rates for the volatilization of platinum in oxidizing environments and the rearrangement of this metal during the ammonia oxidation reaction agree well with published experimental data.

  18. Effect of surface states of layered double hydroxides on conductive and transport properties of nanocomposite polymer electrolytes

    International Nuclear Information System (INIS)

    Liao, C.-S.; Ye, W.-B.

    2004-01-01

    All solid-state poly(ethylene oxide) (PEO) nanocomposite electrolytes were made containing nanoscale fillers of layered double hydroxides (LDHs). Two kinds of LDHs with different surface states were prepared by aqueous co-precipitation method. The LDHs were added into PEO matrix to study the structures, conductivities and ionic transport properties of nanocomposite electrolytes. The structures of LDHs were characterized by infrared spectra, thermogravimetric analysis and wide-angle X-ray diffraction. With enhanced compatibility of LDH sheets by oligo(ethylene oxide) surface modification, the PEO/OMLDH nanocomposite electrolyte exhibits an amorphous morphology and an enhancement of conductivity by three orders of magnitude as compared to pure PEO electrolyte. The lithium ion transference number T Li + of PEO/LDH nanocomposite electrolyte measured with a value of 0.42 is two times higher than the one of pure PEO electrolyte, which can be attributed to the Lewis acid-base interaction between surface states of metal hydroxides and counter anions of lithium salts

  19. An unusual temperature dependence in the oxidation of oxycarbide layers on uranium

    Science.gov (United States)

    Ellis, Walton P.

    1981-09-01

    An anomalous temperature dependence has been observed for the oxidation kinetics of outermost oxycarbide layers on polycrystalline uranium metal. Normally, oxidation or corrosion reactions are expected to proceed more rapidly as the temperature is elevated. Thus, it came as a surprise when we observed that the removal of the outermost atomic layers of carbon from uranium oxycarbide by O 2 reproducibly proceeds at a much faster rate at 25°C than at 280°C.

  20. Spectroellipsometric detection of silicon substrate damage caused by radiofrequency sputtering of niobium oxide

    Science.gov (United States)

    Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós

    2017-11-01

    Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.

  1. Controlling the interface charge density in GaN-based metal-oxide-semiconductor heterostructures by plasma oxidation of metal layers

    International Nuclear Information System (INIS)

    Hahn, Herwig; Kalisch, Holger; Vescan, Andrei; Pécz, Béla; Kovács, András; Heuken, Michael

    2015-01-01

    In recent years, investigating and engineering the oxide-semiconductor interface in GaN-based devices has come into focus. This has been driven by a large effort to increase the gate robustness and to obtain enhancement mode transistors. Since it has been shown that deep interface states act as fixed interface charge in the typical transistor operating regime, it appears desirable to intentionally incorporate negative interface charge, and thus, to allow for a positive shift in threshold voltage of transistors to realise enhancement mode behaviour. A rather new approach to obtain such negative charge is the plasma-oxidation of thin metal layers. In this study, we present transmission electron microscopy and energy dispersive X-ray spectroscopy analysis as well as electrical data for Al-, Ti-, and Zr-based thin oxide films on a GaN-based heterostructure. It is shown that the plasma-oxidised layers have a polycrystalline morphology. An interfacial amorphous oxide layer is only detectable in the case of Zr. In addition, all films exhibit net negative charge with varying densities. The Zr layer is providing a negative interface charge density of more than 1 × 10 13  cm –2 allowing to considerably shift the threshold voltage to more positive values

  2. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization.

    Science.gov (United States)

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; Zhang, Jinshui; Zhang, Pengfei; Zhu, Huiyuan; Li, Changfeng; Chen, Zhigang; Li, Huaming; Dai, Sheng

    2016-01-04

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  3. Mechanism for the effect of sulphate on SCC in BWRs. Part 1: Hypothesis; Part 2: Microstructural examination of an oxide layer on steel

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Gott, K.; Vatter, I.; Crossley, A.; Cattle, G.

    1999-07-01

    Part 1: Stress corrosion cracking is one of the most serious materials related problems encountered in BWRs. The crack propagation rate has been shown to be strongly affected by sulphates in the coolant. Typical concentrations of sulphates and other anions in the primary water is 1 ppb. The values can increase temporarily to much higher values during transients. Shorter periods of such extra exposure give no effect, but there seems to be an integrated threshold value ('Memory effect') beyond which the propagation rate increases rapidly. The primary system surfaces communicating with the bulk water are normally protected by a very thin, passivating oxide film. This is composed of spinel phases like chromite, situated closest to the metal upon which there could be a layer of nickel ferrite. On top of the spinels there is also normally a cover of deposits. This composite film is going to act as a surface for adsorption, transportation and storage of sulphates from the primary bulk water. Starting from a comparison of the surface conditions around a corrosion pit it was proposed that in the close vicinity of an active crack, the surface oxide is going to function as a cathode on which pH and also the potential are high compared to the surrounding surfaces. The permeability of the oxide is essential for the cathodic function as chemical species and charge have to be transported through it. This has led to the hypothesis that the rate determining step of the crack propagation should be found in the set of processes on the cathode like adsorption, transportation, chemical transformation and precipitation in which hydrogen sulphate and sulphate participate while migrating through the cathodic area towards the crack. It is also postulated that the permeability and geometry of the cathodic surface oxide will be influenced by sulphate and other sulphur containing species breaking down the passive film. Sulphate entering the crack environment can be reduced down to sulphide

  4. Dynamic air layer on textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model. © 2013 American Chemical Society.

  5. Functionalised zinc oxide nanowire gas sensors: Enhanced NO(2) gas sensor response by chemical modification of nanowire surfaces.

    Science.gov (United States)

    Waclawik, Eric R; Chang, Jin; Ponzoni, Andrea; Concina, Isabella; Zappa, Dario; Comini, Elisabetta; Motta, Nunzio; Faglia, Guido; Sberveglieri, Giorgio

    2012-01-01

    Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO(2) produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO(2) down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO(2) compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO(2) target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

  6. Influence of annealing conditions on anodic tungsten oxide layers and their photoelectrochemical activity

    International Nuclear Information System (INIS)

    Syrek, Karolina; Zych, Marta; Zaraska, Leszek; Sulka, Grzegorz D.

    2017-01-01

    Highlights: • Effect of annealing temperature on the morphology and crystalline structure of anodic WO 3 was investigated. • Photoelectrochemical properties of WO 3 layers annealed at different temperatures were studied. • Edges of conduction and valence bands were estimated for tungsten oxide layers annealed at different temperatures. • Influence of annealing time on crystalline structure, morphology and photoelectrochemical performance was studied. - Abstract: The nanoporous tungsten oxide films having an amorphous structure were prepared in an electrolyte containing fluoride ions via an anodization process. The as-synthesized anodic oxide layers can be easily converted to the monoclinic WO 3 phase upon annealing in air. The as-synthesized and annealed WO 3 layers were investigated by using X-ray diffraction, scanning electron microscopy, and photocurrent spectroscopy. The effect of annealing temperature and annealing time on the oxide morphology, crystal structure and electrochemical properties were studied. The samples were annealed in air at the temperatures ranging from 400 to 600 °C, and it was found that the original porous morphology of oxide is completely lost after annealing at 600 °C. The changes in the average crystallite sizes upon annealing were confirmed by XRD measurements. The photoelectrochemical performance of the annealed WO 3 layers were studied under pulsed UV illumination, and the highest photocurrents were observed at the incident light wavelength of 350 nm for the sample annealed at 500 °C for 2 h. The band gap energy and the positions of conduction and valence band edges were determined for all studied samples.

  7. Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy

    OpenAIRE

    Lei, Qingyu; Golalikhani, Maryam; Davidson, Bruce A.; Liu, Guozhen; Schlom, D. G.; Qiao, Qiao; Zhu, Yimei; Chandrasena, Ravini U.; Yang, Weibing; Gray, Alexander X.; Arenholz, Elke; Farrar, Andrew K.; Tenne, Dmitri A.; Hu, Minhui; Guo, Jiandong

    2016-01-01

    Advancements in nanoscale engineering of oxide interfaces and heterostructures have led to discoveries of emergent phenomena and new artificial materials. Combining the strengths of reactive molecular-beam epitaxy and pulsed-laser deposition, we show here, with examples of Sr1+xTi1-xO3+delta, Ruddlesden-Popper phase Lan+1NinO3n+1 (n = 4), and LaAl1+yO3(1+0.5y)/SrTiO3 interfaces, that atomic layer-by-layer laser molecular-beam epitaxy (ALL-Laser MBE) significantly advances the state of the art...

  8. Effect of Al added to a NiCrMo alloy on the development of the oxide layer of intermetallic coatings

    International Nuclear Information System (INIS)

    D'Oliveira, A.S.C.M.; Cangue, F.J.R.

    2010-01-01

    Components performance in different environment is strongly dependent on oxides that develop on their surfaces. This study analyzed the oxide layer that develops on coatings processed with mixtures of an atomized Hastelloy C alloy with Al powders. Powder mixtures containing 10, 20 and 30wt%Al were deposited on AISI 1020 and AISI304 steel plates. Coatings were subsequently exposed to 850 deg C for two hours in a low PO 2 environment. X-ray diffraction was used to identify the phases that developed in the coating during processing and Raman analysis and Scanning Electron Microscopy were used to characterize the oxide layers. The results showed that coatings processed with the richer Al mixtures, 30wt%Al, which developed NiAl aluminides, reduced the development of α alumina when processing was done on AISI 304. Coatings processed on AISI 1020 with the three powder mixtures tested developed the different allotropic forms of alumina, as predicted for the tested temperature. (author)

  9. Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process.

    Science.gov (United States)

    Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae

    2017-11-24

    We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.

  10. Prediction of iodide adsorption on oxides by surface complexation modeling with spectroscopic confirmation.

    Science.gov (United States)

    Nagata, Takahiro; Fukushi, Keisuke; Takahashi, Yoshio

    2009-04-15

    A deficiency in environmental iodine can cause a number of health problems. Understanding how iodine is sequestered by materials is helpful for evaluating and developing methods for minimizing human health effects related to iodine. In addition, (129)I is considered to be strategically important for safety assessment of underground radioactive waste disposal. To assess the long-term stability of disposed radioactive waste, an understanding of (129)I adsorption on geologic materials is essential. Therefore, the adsorption of I(-) on naturally occurring oxides is of environmental concern. The surface charges of hydrous ferric oxide (HFO) in NaI electrolyte solutions were measured by potentiometric acid-base titration. The surface charge data were analyzed by means of an extended triple-layer model (ETLM) for surface complexation modeling to obtain the I(-) adsorption reaction and its equilibrium constant. The adsorption of I(-) was determined to be an outer-sphere process from ETLM analysis, which was consistent with independent X-ray absorption near-edge structure (XANES) observation of I(-) adsorbed on HFO. The adsorption equilibrium constants for I(-) on beta-TiO(2) and gamma-Al(2)O(3) were also evaluated by analyzing the surface charge data of these oxides in NaI solution as reported in the literature. Comparison of these adsorption equilibrium constants for HFO, beta-TiO(2), and gamma-Al(2)O(3) based on site-occupancy standard states permitted prediction of I(-) adsorption equilibrium constants for all oxides by means of the Born solvation theory. The batch adsorption data for I(-) on HFO and amorphous aluminum oxide were reasonably reproduced by ETLM with the predicted equilibrium constants, confirming the validity of the present approach. Using the predicted adsorption equilibrium constants, we calculated distribution coefficient (K(d)) values for I(-) adsorption on common soil minerals as a function of pH and ionic strength.

  11. Formation of an interface layer in thermionic oxide cathodes for CRT applications

    International Nuclear Information System (INIS)

    Hashim, A A; Barratt, D S; Ray, A K; Hassan, A K

    2004-01-01

    Scanning electron microscopic techniques were employed to study the surface morphological changes of oxide cathodes and nickel caps as a result of cathode activation extending over periods of 1-12 h. Elemental analysis of barium, strontium, tungsten, magnesium and aluminium was performed using energy dispersion x-ray spectroscopy. An abrupt change was observed after activation longer than 3 h. Conduction through well activated cathode assemblies was found to be due to intergranular electron tunnelling at low temperatures (T ≤ 500 K), while trapping and detrapping at grain boundaries becomes the dominant mechanism at high temperatures (T ≥ 500 K). The contribution of the interfacial layer to conductivity was found to be significant for cathodes activated for smaller periods

  12. Application of poly (p-phenylene oxide) as blocking layer to reduce self-discharge in supercapacitors

    Science.gov (United States)

    Tevi, Tete; Yaghoubi, Houman; Wang, Jing; Takshi, Arash

    2013-11-01

    Supercapacitors are electrochemical energy storage devices with high power density. However, application of supercapacitors is limited mainly due to their high leakage current. In this work, application of an ultra-thin layer of electrodeposited poly (p-phenylene oxide) (PPO) has been investigated as a blocking layer to reduce the leakage current. The polymer was first deposited on a glassy carbon electrode. The morphology of the film was studied by atomic force microscopy (AFM), and the film thickness was estimated to be ˜1.5 nm by using the electrochemical impedance spectroscopy (EIS) technique. The same deposition method was applied to coat the surface of the activated carbon electrodes of a supercapacitor with PPO. The specific capacitance, the leakage current, and the series resistance were measured in two devices with and without the blocking layer. The results demonstrate that the application of the PPO layer reduced the leakage current by ˜78%. However, the specific capacitance was decreased by ˜56%, when the blocking layer was applied. Due to the lower rate of self-discharge, the suggested approach can be applied to fabricate devices with longer charge storage time.

  13. Conversion electron Moessbauer spectroscopic studies on the chemical states of surface layers of corroded tin plates and tin-coated iron plates

    International Nuclear Information System (INIS)

    Kato, Akinori; Endo, Kazutoyo; Sano, Hirotoshi

    1980-01-01

    By means of the conversion electron Moessbauer spectroscopy (CEMS), we studied surface layers of ''tin'' plates and tin-coated iron plates corroded by various acids. Transmission Moessbauer spectra and X-ray diffraction patterns were also measured. Metastannic acid was formed, when the ''tin'' plate was corroded by nitric acid solution. In corrosion by phosphoric acid solution, the X-ray diffractometry revealed the formation of tin(IV) pyrophosphate. In corrosion by various organic acid solutions, the formation of oxides was identified by the 119 Sn CEMS, but not by the X-ray diffractometry because of the too thin corrosion layer. In corrosion of tin-coated iron plates, maleic acid, malonic acid, formic acid, and oxalic acid were used. It was determined by CEMS that the corrosion products caused by these acids were tin(IV) oxides, although they could not be identified by the X-ray diffractometry. CEMS also confirmed that the surface of uncorroded tin-coated iron plate was already oxidized by air. Colorimetric determinations of Sn and Fe dissolved from tin-coated iron plates to various acid solutions confirmed that maleic acid had the strongest corrosion effect among the organic acids studied. (author)

  14. Surface studies of YBa2Cu3O7-x -matching oxide substrates and interfaces

    International Nuclear Information System (INIS)

    Enevold Thaulov Andersen, J.

    1990-11-01

    Crystallographic changes as a result of heat-treatment at 700-900 deg. C are found for SrTiO 3 (100), MgO(100) and LaAlO 3 (100). The p(2x2) reconstruction of the SrTiO 3 (100) and the superstructures on MgO(100) and on LaAlO 3 (100) thus observed are suggested to be induced by segregation of impurities to the surface. The surface charge-effects which disturb electron- and photon-impact experiments with these insulators are removed by heat-treatments. Deposition of copper results in formation of copper islands on SrTiO 3 (100) and on LaAlO 3 (100). Yttrium forms islands on LaAlO 3 (100) and grows in a layer-by-layer mode on SrTiO 3 (100) and on MgO(100). An yttrium 1x1 epitaxy is observed on the MgO(100) surface, which is suggested to be an YO superstructure. Oxidation of the 1x1 Y/MgO(100) systems diminishes the charge-effects and improves all diffraction and spectroscopic measurements. This may be due to the formation of metallic states around the Fermi level when the film is oxidized. An in situ synthesized YBa 2 Cu 3 O 7 thin film on SrTiO 3 (100) compared to a thick epitaxial YBa 2 Cu 3 O 7-x (001) film on MgO(100) reveals differences in surface electronic structures but not in surface stoichiometries. (au) 18 refs

  15. Marine Atmospheric Surface Layer and Its Application to Electromagnetic Wave Propagation

    Science.gov (United States)

    Wang, Q.

    2015-12-01

    An important application of the atmospheric surface layer research is to characterize the near surface vertical gradients in temperature and humidity in order to predict radar and radio communication conditions in the environment. In this presentation, we will give an overview of a new research initiative funded under the Office of Naval Research (ONR) Multi-University Research Initiative (MURI): the Coupled Air-Sea Processes and EM Ducting Research (CASPER). The objective is to fully characterize the marine atmospheric boundary layer (MABL) as an electromagnetic (EM) propagation environment with the emphasis of spatial and temporal heterogeneities and surface wave/swell effects, both of which contravene the underlying assumptions of Monin-Obukhov Similarity Theory (MOST) used in coupled environmental forecast models. Furthermore, coastal variability in the inversion atop the MABL presents a challenge to forecast models and also causes practical issues in EM prediction models. These issues are the target of investigation of CASPER. CASPER measurement component includes two major field campaigns: CASPER-East (2015 Duck, NC) and CASPER-West (2018 southern California). This presentation will show the extensive measurements to be made during the CASPER -East field campaign with the focus on the marine atmospheric surface layer measurements with two research vessels, two research aircraft, surface flux buoy, wave gliders, ocean gliders, tethered balloons, and rawinsondes. Unlike previous research on the marine surface layer with the focus on surface fluxes and surface flux parameterization, CASPER field campaigns also emphasize of the surface layer profiles and the validation of the surface layer flux-profile relationship originally derived over land surfaces. Results from CASPER pilot experiment and preliminary results from CASPER-East field campaign will be discussed.

  16. Effect of annealing and oxide layer thickness on doping profiles shape of ''through-oxide'' implanted P+ ions in textured silicon

    International Nuclear Information System (INIS)

    El-Dessouki, M.S.; Galloni, R.

    1987-10-01

    Phosphorous ions at energies of 60+100 KeV, and doses (4+5)x10 15 atom/cm 2 have been implanted randomly through SiO 2 layers into textured silicon crystals. The penetration profiles of the P + ions have been determined by means of differential sheet resistivity and Hall-effect, together with the anodic oxidation stripping technique. The effect of the oxide layer thickness, annealing temperature on the junction properties has been studied. The damage produced by implantation, has also been investigated using transmission electron microscope (TEM). From the mobility measurements of the free carriers as a function of depth through the junction, two minima have been observed in through oxide implanted samples. The one nearer to the Si-SiO 2 interface (at about 200A from the interface) was related to the damage produced by the recoil oxygen atoms from the oxide layer into silicon. The deeper minimum is lying at ∼ 0.2μm from the interface and was attributed to the damage produced by the implanted P + ions, which caused clusters and defect loops after annealing. This damage was observed through TEM photographs. The optimum conditions for producing shallow junction without losing much of the implanted P + ions through the oxide layer were estimated. (author). 22 refs, 7 figs, 1 tab

  17. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy

    2015-01-01

    The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment ...

  18. Thiol-ene thermosets exploiting surface reactivity for layer-by-layer structures and control of penetration depth for selective surface reactivity

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Westh, Andreas; Pereira Rosinha Grundtvig, Ines

    Thiol-ene thermosets have been shown to be an efficient platform for preparation of functional polymer surfaces. Especially the effectiveness and versatility of the system has enabled a large variety of network properties to be obtained in a simple and straight-forward way. Due to its selectivity......, various thiols and allyl or other vinyl reactants can be used to obtain either soft and flexible1 or more rigid functional thermosets 2. The methodology permits use of etiher thermal or photochemical conditions both for matrix preparation as well as for surface functionalization. Due to excess reactive...... groups in thµe surface of thiol-ene thermosets, it is possible to prepare surface functional thermosets or to exploit the reactive groups for modular construction and subsequent chemical bonding. Here a different approach preparing monolithic layer-by-layer structures with controlled mechanical...

  19. Defects and defect generation in oxide layer of ion implanted silicon-silicon dioxide structures

    CERN Document Server

    Baraban, A P

    2002-01-01

    One studies mechanism of generation of defects in Si-SiO sub 2 structure oxide layer as a result of implantation of argon ions with 130 keV energy and 10 sup 1 sup 3 - 3.2 x 10 sup 1 sup 7 cm sup - sup 2 doses. Si-SiO sub 2 structures are produced by thermal oxidation of silicon under 950 deg C temperature. Investigations were based on electroluminescence technique and on measuring of high-frequency volt-farad characteristics. Increase of implantation dose was determined to result in spreading of luminosity centres and in its maximum shifting closer to boundary with silicon. Ion implantation was shown, as well, to result in increase of density of surface states at Si-SiO sub 2 interface. One proposed model of defect generation resulting from Ar ion implantation into Si-SiO sub 2

  20. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection.

    Science.gov (United States)

    Mascagni, Daniela Branco Tavares; Miyazaki, Celina Massumi; da Cruz, Nilson Cristino; de Moraes, Marli Leite; Riul, Antonio; Ferreira, Marystela

    2016-11-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4μmol·L(-1) and sensitivity of 2.47μA·cm(-2)·mmol(-1)·L for glucose with the (GPDDA/GPSS)1/(GPDDA/GOx)2 architecture, whose thickness was 19.80±0.28nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.