WorldWideScience

Sample records for oxidized pgx graphite

  1. Thermally exfoliated graphite oxide

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  2. Bridged graphite oxide materials

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  3. Oxidation Resistant Graphite Studies

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  4. Evaluation of the significance of inverse oxidation for HTGR graphites

    Lee, B.S.; Heiser, J. III; Sastre, C.

    1983-01-01

    The inverse oxidation refers to a higher mass loss inside the graphite than the outside. In 1980, Wichner et al reported this phenomenon (referred to as inside/out corrosion) observed in some H451 graphites, and offered an explanation that a catalyst (almost certainly Fe) is activated by the progressively increasing reducing conditions found in the graphite interior. Recently, Morgan and Thomas (1982) investigated this phenomenon is PGX graphites, and agreed on the existing mechanism to explain this pheomenon. They also called for attention to the possibility that this phenomenon may occur under HTGR (High Temperature Gas-Cooled Reactor) operating conditions. The purpose of this paper is to confirm the above mentioned explanation for this phenomenon and to evaluate the significance of this effect for HTGR graphites under realistic reactor conditions

  5. Radiolytic graphite oxidation revisited

    Minshall, P.C.; Sadler, I.A.; Wickham, A.J.

    1996-01-01

    The importance of radiolytic oxidation in graphite-moderated CO 2 -cooled reactors has long been recognised, especially in the Advanced Gas-Cooled Reactors where potential rates are higher because of the higher gas pressure and ratings than the earlier Magnox designs. In all such reactors, the rate of oxidation is partly inhibited by the CO produced in the reaction and, in the AGR, further reduced by the deliberate addition of CH 4 . Significant roles are also played by H 2 and H 2 O. This paper reviews briefly the mechanisms of these processes and the data on which they are based. However, operational experience has demonstrated that these basic principles are unsatisfactory in a number of respects. Gilsocarbon graphites produced by different manufacturers have demonstrated a significant difference in oxidation rate despite a similar specification and apparent equivalence in their pore size and distribution, considered to be the dominant influence on oxidation rate for a given coolant-gas composition. Separately, the inhibiting influence of CH 4 , which for many years had been considered to arise from the formation of a sacrificial deposit on the pore walls, cannot adequately be explained by the actual quantities of such deposits found in monitoring samples which frequently contain far less deposited carbon than do samples from Magnox reactors where the only source of such deposits is the CO. The paper also describes the current status of moderator weight-loss predictions for Magnox and AGR Moderators and the validation of the POGO and DIFFUSE6 codes respectively. 2 refs, 5 figs

  6. Graphite oxidation in HTGR atmosphere

    Growcock, F.B.; Barry, J.J.; Finfrock, C.C.; Rivera, E.; Heiser, J.H. III

    1982-01-01

    On-going and recently completed studies of the effect of thermal oxidation on the structural integrity of HTGR candidate graphites are described, and some results are presented and discussed. This work includes the study of graphite properties which may play decisive roles in the graphites' resistance to oxidation and fracture: pore size distribution, specific surface area and impurity distribution. Studies of strength loss mechanisms in addition to normal oxidation are described. Emphasis is placed on investigations of the gas permeability of HTGR graphites and the surface burnoff phenomenon observed during recent density profile measurements. The recently completed studies of catalytic pitting and the effects of prestress and stress on reactivity and ultimate strength are also discussed

  7. Separation medium containing thermally exfoliated graphite oxide

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  8. Purification and preparation of graphite oxide from natural graphite

    Panatarani, C., E-mail: c.panatarani@phys.unpad.ac.id; Muthahhari, N.; Joni, I. Made [Instrumentation Systems and Functional Material Processing Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Padjadjaran University, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, 45363, Jawa Barat (Indonesia); Rianto, Anton [Grafindo Nusantara Ltd., Belagio Mall Lantai 2, Unit 0 L3-19, Kawasan Mega Kuningan, Kav. B4 No.3, Jakarta Selatan (Indonesia)

    2016-03-11

    Graphite oxide has attracted much interest as a possible route for preparation of natural graphite in the large-scale production and manipulation of graphene as a material with extraordinary electronic properties. Graphite oxide was prepared by modified Hummers method from purified natural graphite sample from West Kalimantan. We demonstrated that natural graphite is well-purified by acid leaching method. The purified graphite was proceed for intercalating process by modifying Hummers method. The modification is on the reaction time and temperature of the intercalation process. The materials used in the intercalating process are H{sub 2}SO{sub 4} and KMNO{sub 4}. The purified natural graphite is analyzed by carbon content based on Loss on Ignition test. The thermo gravimetricanalysis and the Fouriertransform infrared spectroscopy are performed to investigate the oxidation results of the obtained GO which is indicated by the existence of functional groups. In addition, the X-ray diffraction and energy dispersive X-ray spectroscopy are also applied to characterize respectively for the crystal structure and elemental analysis. The results confirmed that natural graphite samples with 68% carbon content was purified into 97.68 % carbon content. While the intercalation process formed a formation of functional groups in the obtained GO. The results show that the temperature and reaction times have improved the efficiency of the oxidation process. It is concluded that these method could be considered as an important route for large-scale production of graphene.

  9. Graphite Oxidation Thermodynamics/Reactions

    Propp, W.A.

    1998-01-01

    The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study

  10. Tire containing thermally exfoliated graphite oxide

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A tire, tire lining or inner tube, containing a polymer composite, made of at least one rubber and/or at least one elastomer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g.

  11. Uranium Oxide Aerosol Transport in Porous Graphite

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  12. Status of Chronic Oxidation Studies of Graphite

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert W. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elements needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all

  13. Adsorption of lead over graphite oxide.

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. Published by Elsevier B.V.

  14. Inhibition of oxidation in nuclear graphite

    Winston, Philip L.; Sterbentz, James W.; Windes, William E.

    2015-01-01

    Graphite is a fundamental material of high-temperature gas-cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off-normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high-temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off-normal design basis event where an oxidising atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high-temperature reactor designs attempt to mitigate any damage caused by a postulated air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B 4 C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900 deg. C. The proposed addition of B 4 C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimise B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed. (authors)

  15. Large Scale Reduction of Graphite Oxide

    National Aeronautics and Space Administration — This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction...

  16. Capacitive behavior of highly-oxidized graphite

    Ciszewski, Mateusz; Mianowski, Andrzej

    2014-09-01

    Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte. It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.

  17. Effects of Oxidation on Oxidation-Resistant Graphite

    Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidation rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.

  18. Large Scale Reduction of Graphite Oxide Project

    Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy

    2015-01-01

    This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.

  19. Reduced graphite oxide in supercapacitor electrodes.

    Lobato, Belén; Vretenár, Viliam; Kotrusz, Peter; Hulman, Martin; Centeno, Teresa A

    2015-05-15

    The current energy needs have put the focus on highly efficient energy storage systems such as supercapacitors. At present, much attention focuses on graphene-like materials as promising supercapacitor electrodes. Here we show that reduced graphite oxide offers a very interesting potential. Materials obtained by oxidation of natural graphite and subsequent sonication and reduction by hydrazine achieve specific capacitances as high as 170 F/g in H2SO4 and 84F/g in (C2H5)4NBF4/acetonitrile. Although the particle size of the raw graphite has no significant effect on the physico-chemical characteristics of the reduced materials, that exfoliated from smaller particles (materials may suffer from a drop in their specific surface area upon fabrication of electrodes with features of the existing commercial devices. This should be taken into account for a reliable interpretation of their performance in supercapacitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Graphite Oxidation Simulation in HTR Accident Conditions

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  1. Oxidation behavior of IG and NBG nuclear graphites

    Choi, Woong-Ki; Kim, Byung-Joo [Jeonju Institute of Machinery and Carbon Composites Palbokdong-2ga, 817, Jeonju, Jeollabuk-do 561-844 (Korea, Republic of); Kim, Eung-Seon; Chi, Se-Hwan [Dept. of Nuclear Hydrogen Project, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.k [Dept. of Chemistry, Inha Univ., 253, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2011-01-15

    Graphical abstract: Water contact angles on nuclear graphite before and after oxidation treatments: the pictures show the contact angles obtained under deionized water on oxidation-treated and untreated nuclear graphite. The water contact angles are decreased after oxidation due to the increase in the hydrophilic. Display Omitted Research highlights: The average pore size of graphites shows an increase after the oxidation treatments. They also show that oxidation produces the surface functional groups on the graphite surfaces. The surface area of each graphite behaves in a unique manner. - Abstract: This work studies the oxidation-induced characteristics of four nuclear graphites (NBG-17, NBG-25, IG-110, and IG-430). The oxidation characteristics of the nuclear graphites were measured at 600 {sup o}C. The surface properties of the oxidation graphites were characterized by means of scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle methods. The N{sub 2}/77 K adsorption isotherm characteristics, including the specific surface area and micropore volume, were investigated by means of BET and t-plot methods. The experimental results show an increase in the average pore size of graphites; they also show that oxidation produces the surface functional groups on the graphite surfaces. The surface area of each graphite behaves in a unique manner. For example the surface area of NBG-17 increases slightly whereas the surface area of IG-110 increases significantly. This result confirms that the original surface state of each graphite is unique.

  2. Effect of total pressure on graphite oxidation

    Burnette, R.D.; Hoot, C.G.

    1983-04-01

    Graphite corrosion in the high-temperature gas-cooled reactor (HTGR) is calculated using two key assumptions: (1) the kinetic, catalysis, and transport characteristics of graphite determined by bench-scale tests apply to large components at reactor conditions and (2) the effects of high pressure and turbulent flow are predictable. To better understand the differences between laboratory tests and reactor conditions, a high-pressure test loop (HPTL) has been constructed and used to perform tests at reactor temperature, pressure, and flow conditions. The HPTL is intended to determine the functional dependence of oxidation rate and characteristics on total pressure and gas velocity and to compare the oxidation results with calculations using models and codes developed for the reactor

  3. Electron oxidation of graphite by fluorospecies

    Rosenthal, G.L.

    1984-09-01

    The fluoride-ion affinity (A/sub F - /) of phosphorus pentafluoride was determined to be 100 kcal/mole from the heats of reaction of the Lewis bases SF 4 and ClO 2 F with PF 5 near room temperature. The fluoride-ion affinity of boron trifluoride was determined to be 92 kcal/mole from the heat of reaction of ClO 2 F with BF 3 . The crystal structure of ClO 2 BF 4 was determined and a precise lattice energy was calculated from this structure and used to determined A/sub F - /. Both PF 5 and BF 3 were found to react with graphite in the presence of fluorine gas to yield a variety of non-stoichiometric compounds. The fluoride-ion affinity of silicon tetrafluoride is not known, but it does not react with graphite and F 2 except at high pressures. These and previous results suggested a threshold in oxidizing power of intercalating species below which the oxidative intercalation reaction would not occur. The reduction of C/sub x/PF 6 by PF 3 proved that the reaction is thermodynamically controlled to some extent. The displacement of PF 5 in C/sub x/PF 6 by BF 3 (with a smaller A/sub F - /) suggested that two BF 3 molecules may have a larger fluoride-ion affinity than one PF 5 and that B 2 F 7 - may be a stable anion in graphite. Conductivity studies of PF/sub x/ and BF/sub y/ salts showed that a large drop in conductivity when the reaction reaches first stage is due in the most part to direct fluorination of carbon in graphite

  4. Automotive body panel containing thermally exfoliated graphite oxide

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  5. Graphene oxide and H2 production from bioelectrochemical graphite oxidation.

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-11-17

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.

  6. Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization

    Kumar, A. R. S. S.; Piana, Francesco; Mičušík, M.; Pionteck, J.; Banerjee, S.; Voit, B.

    2016-01-01

    Roč. 182, 1 October (2016), s. 237-245 ISSN 0254-0584 Institutional support: RVO:61389013 Keywords : graphite oxide * surface modification * conductive nanoparticles Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.084, year: 2016

  7. Graphite oxidation and structural strength of graphite support column in VHTR

    Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.

    2009-01-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)

  8. Strength degradation of oxidized graphite support column in VHTR

    Park, Byung Ha; No, Hee Cheon

    2010-01-01

    Air-ingress events caused by large pipe breaks are important accidents considered in the design of Very High Temperature Gas-Cooled Reactors (VHTRs). A main safety concern for this type of event is the possibility of core collapse following the failure of the graphite support column, which can be oxidized by ingressed air. In this study, the main target is to predict the strength of the oxidized graphite support column. Through compression tests for fresh and oxidized graphite columns, the compressive strength of IG-110 was obtained. The buckling strength of the IG-110 column is expressed using the following empirical straight-line formula: σ cr,buckling =91.34-1.01(L/r). Graphite oxidation in Zone 1 is volume reaction and that in Zone 3 is surface reaction. We notice that the ultimate strength of the graphite column oxidized in Zones 1 and 3 only depends on the slenderness ratio and bulk density. Its strength degradation oxidized in Zone 1 is expressed in the following nondimensional form: σ/σ 0 =exp(-kd), k=0.114. We found that the strength degradation of a graphite column, oxidized in Zone 3, follows the above buckling empirical formula as the slenderness of the column changes. (author)

  9. Graphene-graphite oxide field-effect transistors.

    Standley, Brian; Mendez, Anthony; Schmidgall, Emma; Bockrath, Marc

    2012-03-14

    Graphene's high mobility and two-dimensional nature make it an attractive material for field-effect transistors. Previous efforts in this area have used bulk gate dielectric materials such as SiO(2) or HfO(2). In contrast, we have studied the use of an ultrathin layered material, graphene's insulating analogue, graphite oxide. We have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively minimal leakage at room temperature. The breakdown electric field of graphite oxide was found to be comparable to SiO(2), typically ~1-3 × 10(8) V/m, while its dielectric constant is slightly higher, κ ≈ 4.3. © 2012 American Chemical Society

  10. Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization

    Santha Kumar, Arunjunai Raja Shankar [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Piana, Francesco [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany); Mičušík, Matej [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava (Slovakia); Pionteck, Jürgen, E-mail: pionteck@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Banerjee, Susanta [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Voit, Brigitte [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany)

    2016-10-01

    Heavily oxidized and ordered graphene nanoplatelets were produced from natural graphite by oxidation using a mixture of phosphoric acid, sulphuric acid, and potassium permanganate (Marcano's method). The atomic percentage of oxygen in the graphite oxide produced was more than 30% confirmed by XPS studies. The graphite oxide produced had intact basal planes and remains in a layered structure with interlayer distance of 0.8 nm, analyzed by WAXS. The graphite oxide was treated with 4,4′-methylenebis(phenyl isocyanate) (MDI) to produce grafted isocyanate functionalization. Introduction of these bulky functional groups widens the interlayer distance to 1.3 nm. In addition, two reduction methods, namely benzyl alcohol mediated reduction and thermal reduction were carried out on isocyanate modified and unmodified graphite oxides and compared to each other. The decrease in the oxygen content and the sp{sup 3} defect-repair were studied with XPS and RAMAN spectroscopy. Compared to the thermal reduction process, which is connected with large material loss, the benzyl alcohol mediated reduction process is highly effective in defect repair. This resulted in an increase of conductivity of at least 9 orders of magnitude compared to the graphite oxide. - Highlights: • Preparation of GO by Marcano's method results in defined interlayer spacing. • Treatment of GO with diisocyanate widens the interlayer spacing to 1.3 nm. • Chemical reduction of GO with benzyl alcohol is effective in defect repair. • Electrical conductivity increases by 9 orders of magnitude during chemical reduction. • The isocyanate functionalization is stable under chemical reducing conditions.

  11. Graphite-graphite oxide composite electrode for vanadium redox flow battery

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2011-01-01

    Highlights: → A new composite electrode is designed for vanadium redox flow battery (VRB). → The graphite oxide (GO) is used as electrode reactions catalyst. → The excellent electrode activity is attributed to the oxygen-containing groups attached on the GO surface. → A catalytic mechanism of the GO towards the redox reactions is presumed. - Abstract: A graphite/graphite oxide (GO) composite electrode for vanadium redox battery (VRB) was prepared successfully in this paper. The materials were characterized with X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The specific surface area was measured by the Brunauer-Emmett-Teller method. The redox reactions of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ were studied with cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the electrochemical performances of the electrode were improved greatly when 3 wt% GO was added into graphite electrode. The redox peak currents of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ couples on the composite electrode were increased nearly twice as large as that on the graphite electrode, and the charge transfer resistances of the redox pairs on the composite electrode are also reduced. The enhanced electrochemical activity could be ascribed to the presence of plentiful oxygen functional groups on the basal planes and sheet edges of the GO and large specific surface areas introduced by the GO.

  12. Study by electronic microscopy of corrosion features of graphite after hot oxidation (air, 620 C)

    Jodon de Villeroche, Suzanne

    1968-01-01

    The author reports the study of corrosion features of graphite after hot oxidation in the air at 620 C. It is based on observations made by electronic microscopy. This study comes after another one dedicated to oxidation features obtained by hot corrosion of natural graphite, and aims at comparing pyrolytic graphite before and after irradiation in an atomic pile, and at performing tests on a graphite processed with ozone. After a recall of generalities about natural graphite and of some issues related to hot corrosion of natural graphite, the author presents some characteristics and features of irradiated and non-irradiated pyrolytic graphite. He reports the study of the oxidation of samples of pyrolytic graphite: production of thin lamellae, production of glaze-carbon replicates, oxidation of irradiated and of non-irradiated graphite, healing of irradiation defects, and oxidation of ozone-processed natural graphite [fr

  13. Comparison of Oxidation Characteristics of Selected Nuclear Graphite Grades

    Chi, Se Hwan; Kim, Gen Chan

    2010-02-01

    The oxidation behavior of some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) were compared in view of their filler coke type and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 ∼ 960 .deg. C in air by using a three-zone vertical tube furnace at a 10 L/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600 ∼ 950 .deg. C, the differences between the grades were not significant. The oxidation rates determined for a 5∼10 % weight loss at the six temperatures were nearly the same except for 702 and 808 .deg. C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608 ∼ 808 .deg. C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control

  14. Elaboration of aluminum oxide-based graphite containing castables

    Zhou, Ningsheng

    The aim of this work was set to develop effective and practicable new methods to incorporate natural flake graphite (FG) into the Al2O 3 based castables for iron and steel making applications. Three approaches, viz. micro-pelletized graphite (PG), crushed briquette of Al2O3-graphite (BAG) and TiO2 coated graphite (CFG), have been developed to insert flake graphite into Al2O 3 rich Al2O3-SiC based and Al2O 3-MgO based castables. These approaches were put into effect as countermeasures against the problems caused by FG in order: (1) to agglomerate the FG powders so as to decrease the specific surface area; (2) to diminish the density difference by using crushed carbon bonded compact of oxide-FG mixture; (3) to modify the surface of the flake graphite by forming hydrophilic coating; (4) to control the dispersion state of the graphite in the castable to maintain enough bonding strength; and (5) to use appropriate antioxidants to inhibit the oxidation of FG. The whole work was divided into two stages. In stage one, Al2O 3-SiC-C castables were dealt with to compare 4 modes of inserting graphite, i.e., by PG, BAG, CFG and FG. Overall properties were measured, all in correlation with graphite amount and incorporating mode. In stage two, efforts were made to reduce water demand in the Al2O3-MgO castables system. For this purpose, the matrix portion of the castable mixes was extracted and a coaxial double cylinder viscometer was adopted to investigate rheological characteristics of the matrix slurries vs. 4 kinds of deflocculants, through which the best deflocculant and its appropriate amount were found. Efforts were then made to add up to 30% MgO into the castables, using a limited amount of powders (antioxidants, Si, SiC, B4C and ZrB2, were added respectively or in combination. Overall properties of the castables, were investigated in correlation with MgO amount and graphite and antioxidant packages. Optimization work on oxidation and slag resistance was pursued. Finally

  15. Packaging material and flexible medical tubing containing thermally exfoliated graphite oxide

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A packaging material or flexible medical tubing containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  16. Comparative analysis of graphite oxidation behaviour based on microstructure

    Badenhorst, Heinrich, E-mail: heinrich.badenhorst@up.ac.za; Focke, Walter

    2013-11-15

    Two unidentified powdered graphite samples, from a natural and a synthetic origin respectively, were examined. These materials are intended for use in nuclear applications, but have an unknown treatment history since they are considered proprietary. In order to establish a baseline for comparison, the samples were compared to two commercial flake natural graphite samples with varying impurity levels. The samples were characterized by conventional techniques such as powder X-ray diffraction, Raman spectroscopy and X-ray fluorescence. The results indicated that all four samples were very similar, with low impurity levels and good crystallinity, yet they exhibit remarkably different oxidation behaviours. The oxidized microstructures of the materials were examined using high-resolution scanning electron microscopy at low acceleration voltages. The relative influence of each factor affecting the oxidation was established, enabling a structured comparison of the different oxidative behaviours. Based on this analysis, it was possible to account for the measured differences in oxidative reactivity. The material with the lowest reactivity was a flake natural graphite which was characterized as having highly visible crystalline perfection, large particles with a high aspect ratio and no traces of catalytic activity. The second sample, which had an identical inherent microstructure, was found to have an increased reactivity due to the presence of small catalytic impurities. This material also exhibited a more gradual reduction in the oxidation rate at higher conversion, caused by the accumulation of particles which impede the oxidation. The sample with the highest reactivity was found to be a milled, natural graphite material, despite its evident crystallinity. The increased reactivity was attributable to a smaller particle size, the presence of catalytic impurities and extensive damage to the particle structure caused by jet milling. Despite displaying the lowest levels of

  17. Graphite

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  18. Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit.

    Liu, Cheng-Qian; Hu, Kang-Di; Li, Ting-Ting; Yang, Ying; Yang, Feng; Li, Yan-Hong; Liu, He-Ping; Chen, Xiao-Yan; Zhang, Hua

    2017-01-01

    Aspergillus niger, a saprophytic fungus, is widely distributed in soil, air and cereals, and can cause postharvest diseases in fruit. Polygalacturonase (PG) is one of the main enzymes in fungal pathogens to degrade plant cell wall. To evaluate whether the deletion of an exo-polygalacturonase gene pgxB would influence fungal pathogenicity to fruit, pgxB gene was deleted in Aspergillus niger MA 70.15 (wild type) via homologous recombination. The ΔpgxB mutant showed similar growth behavior compared with the wild type. Pectin medium induced significant higher expression of all pectinase genes in both wild type and ΔpgxB in comparison to potato dextrose agar medium. However, the ΔpgxB mutant was less virulent on apple fruits as the necrosis diameter caused by ΔpgxB mutant was significantly smaller than that of wild type. Results of quantitive-PCR showed that, in the process of infection in apple fruit, gene expressions of polygalacturonase genes pgaI, pgaII, pgaA, pgaC, pgaD and pgaE were enhanced in ΔpgxB mutant in comparison to wild type. These results prove that, despite the increased gene expression of other polygalacturonase genes in ΔpgxB mutant, the lack of pgxB gene significantly reduced the virulence of A. niger on apple fruit, suggesting that pgxB plays an important role in the infection process on the apple fruit.

  19. Water-soluble highly fluorinated graphite oxide

    Jankovský, O.; Šimek, P.; Sedmidubský, D.; Matějková, Stanislava; Janoušek, Zbyněk; Šembera, Filip; Pumera, M.; Sofer, Z.

    2014-01-01

    Roč. 4, č. 3 (2014), s. 1378-1387 ISSN 2046-2069 Institutional support: RVO:61388963 Keywords : graphene oxide * electronic- properties * monolayer graphene * raman-spectroscopy Subject RIV: CC - Organic Chemistry Impact factor: 3.840, year: 2014

  20. Thermal deoxygenation of graphite oxide at low temperature

    Kampars, V; Legzdina, M

    2015-01-01

    Synthesis of graphene via the deoxygenation of the graphite oxide (GO) is a method for the large-scale production of this nanomaterial possessing exceptional mechanical, electrical and translucent properties. Graphite oxide sheet contains at least four different oxygen atoms connected to the Csp 3 and Csp 2 atoms of the sheet in the form of hydroxyl, epoxy, carboxyl or carbonyl groups. Some of these functional groups are located at the surface but others situated at the edges of the platelets. To obtain the graphene nanoplatelets or the few-layer graphene the oxygen functionalities must be removed. Exfoliation and deoxygenation can be accomplished by the use of chemical reductants or heat. Thermal deoxygenation as greener and simpler approach is more preferable over chemical reduction approach. Usually a considerable mass loss of GO observed upon heating at temperatures starting at 200 °C and is attributed to the deoxygenation process. In order to avoid the defects of the obtained graphene sheets it is very important to find the methods for lowering the deoxygenation temperature of GO. Herein, we have investigated the way treatment of the Hummer's synthesis product with acetone and methyl tert-butyl ether under ultrasonication in order to lower the thermal stability of the graphite oxide and its deoxygenation temperature. The obtained results indicate that treatment of the graphite oxide with solvents mentioned above substantially reduces the reduction and exfoliation temperature (130 °C) under ambient atmosphere. The investigation of the composition of evolved gases by hyphenated Pyr/GC/MS method at different experimental conditions under helium atmosphere shows that without the expected H 2 O, CO and CO 2 also sulphur dioxide and acetone has been released

  1. Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality?

    Sofer, Zdeněk; Luxa, Jan; Jankovský, Ondřej; Sedmidubský, David; Bystroň, Tomáš; Pumera, Martin

    2016-09-19

    It is well established that graphene oxide can be prepared by the oxidation of graphite using permanganate or chlorate in an acidic environment. Recently, however, the synthesis of graphene oxide using potassium ferrate(VI) ions has been reported. Herein, we critically replicate and evaluate this new ferrate(VI) oxidation method. In addition, we test the use of potassium ferrate(VI) for the synthesis of graphene oxide under various experimental routes. The synthesized materials are analyzed by a number of analytical methods in order to confirm or disprove the possibility of synthesizing graphene oxide by the ferrate(VI) oxidation route. Our results confirm the unsuitability of using ferrate(VI) for the oxidation of graphite on graphene oxide because of its high instability in an acidic environment and low oxidation power in neutral and alkaline environments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Insight into the Mechanism of the Thermal Reduction of Graphite Oxide: Deuterium-Labeled Graphite Oxide Is the Key

    Sofer, Z.; Jankovský, O.; Šimek, P.; Sedmidubský, D.; Šturala, J.; Kosina, J.; Mikšová, Romana; Macková, Anna; Mikulics, M.; Pumera, M.

    2015-01-01

    Roč. 9, č. 5 (2015), s. 5478-5485 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GA15-09001S; GA ČR(CZ) GBP108/12/G108 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61389005 Keywords : graphene * exfoliation * mechanism * isotope labeling * graphite oxide Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 13.334, year: 2015

  3. Low-energy electron observation of graphite and molybdenite crystals. Application to the study of graphite oxidation

    David, G.

    1969-01-01

    The LEED study of cleaved (0001) faces of crystals having a layered structure allowed to investigate flakes free of steps on graphite and molybdenite, to show twinning on natural graphite. By intensity measurements and computation in the case of a kinematical approximation it has been possible to determine an inner potential of 19 eV for graphite and to identify the direction of the Mo-S bond of the surface layer of molybdenite. The oxidation of graphite has been studied by observing changes, in symmetry of the diffraction patterns and by mass spectrometry of the gases evolved during the oxidation. No surface compounds have been detected and the carbon layers appeared to be peeled off one after the other. The oxidation took place at temperatures higher than 520 C under an oxygen pressure of 10 -5 torr. (author) [fr

  4. Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene

    Jankovský, Ondřej; Sedmidubský, David; Lojka, Michal; Sofer, Zdeněk

    2017-07-01

    We compared thermal behavior and other properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. Graphite was oxidized according to the Hofmann method using potassium chlorate as oxidizing agent in strongly acidic environment. In the next step, the formed graphite oxide was chemically or thermally reduced yielding graphene. The mechanism of thermal reduction was studied using STA-MS. Graphite oxide and both thermally and chemically reduced graphenes were analysed by SEM, EDS, elemental combustion analysis, XPS, Raman spectroscopy, XRD and BET. These findings will help for the large scale production of graphene with appropriate chemical composition.

  5. Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite

    Rathnayake, R.M.N.M.; Wijayasinghe, H.W.M.A.C.; Pitawala, H.M.T.G.A.; Yoshimura, Masamichi; Huang, Hsin-Hui

    2017-01-01

    Highlights: • The high purity of this form of needle platy natural vein graphite is expected to synthesize GO and rGO readily and efficiently, as compared to the synthetic and less pure graphite raw materials. • Production of large-scale GO and rGO for industrial applications can be achieved by using this highly crystalline NPG vein graphite, and it adds value to the natural resources. • High quality, few-layer, and cost effective GO and rGO can achieve great results using this low cost, natural graphite. - Abstract: Among natural graphite varieties, needle platy vein graphite (NPG) has very high purity. Therefore, it is readily used to prepare graphene oxide (GO) and reduced graphene oxide (rGO). In this study, GO and rGO were prepared using chemical oxidation and reduction process, respectively. The synthesized materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. XRD studies confirmed the increase of the interlayer spacing of GO and rGO in between 3.35 to 8.66 A°. AFM studies showed the layer height of rGO to be 1.05 nm after the reduction process. TEM micrographs clearly illustrated that the prepared GO has more than 25 layers, while the rGO has only less than 15 layers. Furthermore, the effect of chemical oxidation and reduction processes on surface morphology of graphite were clearly observed in FESEM micrographs. The calculated R_O_/_C of GO and rGO using XPS analysis are 5.37% and 1.77%, respectively. The present study revealed the successful and cost effective nature of the chemical oxidation, and the reduction processes for the production of GO and rGO out of natural vein graphite.

  6. Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite

    Rathnayake, R.M.N.M. [National Institute of Fundamental Studies, Kandy (Sri Lanka); Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Wijayasinghe, H.W.M.A.C., E-mail: athulawijaya@gmail.com [National Institute of Fundamental Studies, Kandy (Sri Lanka); Pitawala, H.M.T.G.A. [Department of Geology, University of Peradeniya, Peradeniya (Sri Lanka); Yoshimura, Masamichi; Huang, Hsin-Hui [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2017-01-30

    Highlights: • The high purity of this form of needle platy natural vein graphite is expected to synthesize GO and rGO readily and efficiently, as compared to the synthetic and less pure graphite raw materials. • Production of large-scale GO and rGO for industrial applications can be achieved by using this highly crystalline NPG vein graphite, and it adds value to the natural resources. • High quality, few-layer, and cost effective GO and rGO can achieve great results using this low cost, natural graphite. - Abstract: Among natural graphite varieties, needle platy vein graphite (NPG) has very high purity. Therefore, it is readily used to prepare graphene oxide (GO) and reduced graphene oxide (rGO). In this study, GO and rGO were prepared using chemical oxidation and reduction process, respectively. The synthesized materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. XRD studies confirmed the increase of the interlayer spacing of GO and rGO in between 3.35 to 8.66 A°. AFM studies showed the layer height of rGO to be 1.05 nm after the reduction process. TEM micrographs clearly illustrated that the prepared GO has more than 25 layers, while the rGO has only less than 15 layers. Furthermore, the effect of chemical oxidation and reduction processes on surface morphology of graphite were clearly observed in FESEM micrographs. The calculated R{sub O/C} of GO and rGO using XPS analysis are 5.37% and 1.77%, respectively. The present study revealed the successful and cost effective nature of the chemical oxidation, and the reduction processes for the production of GO and rGO out of natural vein graphite.

  7. Preliminary design study of a large scale graphite oxidation loop

    Epel, L.G.; Majeski, S.J.; Schweitzer, D.G.; Sheehan, T.V.

    1979-08-01

    A preliminary design study of a large scale graphite oxidation loop was performed in order to assess feasibility and to estimate capital costs. The nominal design operates at 50 atmospheres helium and 1800 F with a graphite specimen 30 inches long and 10 inches in diameter. It was determined that a simple single walled design was not practical at this time because of a lack of commercially available thick walled high temperature alloys. Two alternative concepts, at reduced operating pressure, were investigated. Both were found to be readily fabricable to operate at 1800 F and capital cost estimates for these are included. A design concept, which is outside the scope of this study, was briefly considered

  8. Evaluation of microstructures and oxidation behaviors of graphite for core support structure

    Park, Soo Jin; Bae, Kyung Min

    2010-03-01

    This work studies the oxidation-induced characteristics of five nuclear graphites (NBG-17, NBG-18, NBG-25, IG-110, and IG-430). The oxidation characteristics of the nuclear graphites were measured at 600 .deg. C. The surface properties of the oxidation graphites were characterized by means of scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle methods. The N2/77K adsorption isotherm characteristics, including the specific surface area and micropore volume, were investigated by means of BET and t-plot methods. The experimental results show an increase in the average pore size of graphites; they also show that oxidation produces the surface functional groups on the graphite surfaces. The surface area of each graphite behaves in a unique manner. For example the surface area of NBG-17 increases slightly whereas the surface area of IG-110 increases significantly. This result confirms that the original surface state of each graphite is unique

  9. Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization

    Hidayah, N. M. S.; Liu, Wei-Wen; Lai, Chin-Wei; Noriman, N. Z.; Khe, Cheng-Seong; Hashim, U.; Lee, H. Cheun

    2017-10-01

    Graphene oxide (GO) and reduced graphene oxide (RGO) are known to have superior properties for various applications. This work compares the properties of GO and RGO with graphite. GO was prepared by using Improved Hummer's method whereas the produced GO was subjected to chemical reduction with the use of hydrazine hydrate. Graphite, GO and RGO had different morphologies, quality, functionalized groups, UV-Vis absorption peaks and crystallinity. With the removal of oxygen-containing functional group during reduction for RGO, the quality of samples was decreased due to higher intensity of D band than G band was seen in Raman results. In addition, platelet-like surface can be observed on the surface of graphite as compared to GO and RGO where wrinkled and layered flakes, and crumpled thin sheets were observed on GO and RGO surface respectively. Fourier Transform Infra-Red (FTIR) analysis showed the presence of abundant oxygen-containing functional groups in GO as compared to RGO and graphite. The characteristic peaks at 26.62°, 9.03° and 24.10° for graphite, GO and RGO, respectively, can be detected from X-Ray diffraction (XRD). Furthermore, the reduction also caused red shift at 279nm from 238nm, as obtained from ultraviolet visible (UV-Vis) analysis. The results proved that GO was successfully oxidized from graphite whereas RGO was effectively reduced from GO.

  10. Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide.

    Srivastava, Suneel Kumar; Pionteck, Jürgen

    2015-03-01

    Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features. The present article culminates up-dated review on different preparative methods, morphology and characterization of physical/chemical properties of graphite oxide by XRD, XPS, FTIR, Raman, NMR, UV-visible, and DRIFT analyses. Finally, recent developments on intercalation and applications of GO in multifaceted areas of catalysis, sensor, supercapacitors, water purification, hydrogen storage and magnetic shielding etc. has also been reviewed.

  11. Oxidation parameters of nuclear graphite for HTGR air-ingress

    Kim, E.S.; No, H.C.

    2004-01-01

    In order to investigate chemical behaviors of the graphite during an air-ingress accident in HTGR, the kinetic tests on nuclear graphite IG-110 were performed in chemical reaction dominant regime. In the present experiment, inlet gas flow rate ranged between 8 and 18 SLPM, graphite temperatures and oxygen mole fraction ranged from 540 to 630degC and from 3 to 30% respectively. The test section was made of a quartz tube having 75 mm diameter and 750 mm length and the test specimen machined to the size of 21 mm diameter and 30 mm length was supported at the center of it by the alumina rod. The 15 kW induction heater was installed around the outside of test section to heat the specimen and its temperature was measured by 2 infrared thermometers. The oxidation rate was calculated from the gas concentration analysis between inlet and outlet using NDIR (non-dispersive infrared) gas analyzer. As a result the activation energy (Ea) and the order of reaction (n) were determined within 95% confidence level and the qualitative characteristics of the two parameters were also widely investigated by experimental and analytical methods. (author)

  12. Effect of reacting surface density on the overall graphite oxidation rate

    Oh, Chang; Kim, Eung; Lim, Jong; Schultz, Richard; Petti, David

    2009-01-01

    Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internal pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1) Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is because

  13. Graphite Oxide: An Interesting Candidate for Aqueous Supercapacitors

    Lobato Ortega, Belén; Wendelbo, Rune; Barranco, Violeta; Álvarez Centeno, Teresa

    2014-01-01

    A graphite oxide, obtained on a large scale at low cost as an intermediate in the graphene production, achieves specific capacitances (159 Fg−1 in H2SO4 and 82 Fg−1 in (C2H5)4NBF4 in acetonitrile) that compete with those of activated carbons and largely surpass the values obtained with graphene nanoplatelets. More promising, the high electrode density leads to volumetric capacitances of 177 and 59 F cm−3 in the aqueous and the organic electrolytes, respectively, which are above most data repo...

  14. Change of properties after oxidation of IG-11 graphite by air and CO2 gas

    Lim, Yun-Soo; Chi, Se-Hwan; Cho, Kwang-Yun

    2008-01-01

    Artificial graphite is typically manufactured by carbonization of a shaped body of a kneaded mixture using granular cokes as a filler and pitch as a binder. It undergoes a pitch impregnation process if necessary and finally applying graphitization heat treatment. The effect of thermal oxidation in air or a CO 2 atmosphere on IG-11 graphite samples is investigated in this study. The results show a localized oxidation process that progressively reveals the large coke particles with increasing level of overall weight loss in air. The surface of the graphite was peeled off and no change was found in the specific gravity after air oxidation. However, the specific gravity of graphite was continuously decreased by CO 2 oxidation. The decrease in the specific gravity by CO 2 oxidation was due to CO 2 gas that progressed from the surface to the interior. The pore shape after CO 2 oxidation differed from that under air oxidation

  15. Electrochemical oxidation of textile industry wastewater by graphite electrodes.

    Bhatnagar, Rajendra; Joshi, Himanshu; Mall, Indra D; Srivastava, Vimal C

    2014-01-01

    In the present article, studies have been performed on the electrochemical (EC) oxidation of actual textile industry wastewater by graphite electrodes. Multi-response optimization of four independent parameters namely initial pH (pHo): 4-10, current density (j): 27.78-138.89 A/m(2), NaCl concentration (w): 0-2 g/L and electrolysis time (t): 10-130 min have been performed using Box-Behnken (BB) experimental design. It was aimed to simultaneously maximize the chemical oxygen demand (COD) and color removal efficiencies and minimize specific energy consumption using desirability function approach. Pareto analysis of variance (ANOVA) showed a high coefficient of determination value for COD (R(2) = 0.8418), color (R(2) = 0.7010) and specific energy (R(2) = 0.9125) between the experimental values and the predicted values by a second-order regression model. Maximum COD and color removal and minimum specific energy consumed was 90.78%, 96.27% and 23.58 kWh/kg COD removed, respectively, were observed at optimum conditions. The wastewater, sludge and scum obtained after treatment at optimum condition have been characterized by various techniques. UV-visible study showed that all azo bonds of the dyes present in the wastewater were totally broken and most of the aromatic rings were mineralized during EC oxidation with graphite electrode. Carbon balance showed that out of the total carbon eroded from the graphite electrodes, 27-29.2% goes to the scum, 71.1-73.3% goes into the sludge and rest goes to the treated wastewater. Thermogravimetric analysis showed that the generated sludge and scum can be dried and used as a fuel in the boilers/incinerators.

  16. THE EFFECT OF GROUP IIIA TO VIA ELEMENTS AND THEIR OXIDES ON GRAPHITE OXIDATION

    Rakszawski, J F; Parker, W E

    1963-06-15

    The effect of group IIIA to VIA elements and oxides on graphite oxidation was determined. Additives were molded with spectroscopically pure graphite powder. The concentration was maintained constant at 0.1 mole percent based on the element. The rate of reaction with 1 atm of air was measured at 700 and 800 deg C. Air flow rate from 2000 to 3000 cc/min had no effect on the oxidation rate of the pure graphite at 700, 750, and 800 deg C indicating that reaction was not occurring in Zone III. The calculated Ea of 54 kcal/mole suggested reaction in Zone I. Visual inspection of the rods after reaction substantiated this conclusion. The reaction was first order with respect to oxygen partial pressure at 700 and 800 deg C. B, B/sub 2/O/sub 5/, P, and P/sub 2/ O/sub 6/ inhibited the oxid ation of graphite at 700 and 800 deg C while the other elements and oxides catalyzed the reaction to various degrees. The reaction remained kinetically of the first order when inhibited. A systematic variation in reaction rates appears to follow the diagonals of the periodic relationship of the element from the upper left to the lower right. These variations can be correlated with average ionization energy or electron affinity. (auth)

  17. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H.

    2014-01-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  18. Electrospray painted article containing thermally exfoliated graphite oxide and method for their manufacture

    Korkut, Sibel (Inventor); Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A painted polymer part containing a conductive polymer composition containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the painted polymer part has been electrospray painted.

  19. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    Contescu, Cristian I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burchell, Timothy D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetime of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.

  20. Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades

    Chi, Se-Hwan; Kim, Gen-Chan

    2008-10-01

    The oxidation rate and degree of graphitization (DOG) were determined for some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) and compared in view of their filler coke type (i.e., pitch or petroleum coke) and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 and 960 °C in air by using a three-zone vertical tube furnace at a 10 l/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. The DOG was determined based on the lattice parameter c determined from an X-ray diffraction (XRD). Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600-950 °C, the differences between the grades were not significant. The oxidation rates determined for a 5-10% weight loss at the six temperatures were nearly the same except for 702 and 808 °C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608-808 °C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control. A relationship between the oxidation rate and DOG was not observed.

  1. Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades

    Chi, Se-Hwan; Kim, Gen-Chan

    2008-01-01

    The oxidation rate and degree of graphitization (DOG) were determined for some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) and compared in view of their filler coke type (i.e., pitch or petroleum coke) and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 and 960 deg. C in air by using a three-zone vertical tube furnace at a 10 l/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. The DOG was determined based on the lattice parameter c determined from an X-ray diffraction (XRD). Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600-950 deg. C, the differences between the grades were not significant. The oxidation rates determined for a 5-10% weight loss at the six temperatures were nearly the same except for 702 and 808 deg. C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608-808 deg. C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control. A relationship between the oxidation rate and DOG was not observed

  2. Studies of physicochemical properties of graphite oxide and thermally exfoliated/reduced graphene oxide

    Drewniak Sabina Elżbieta

    2015-12-01

    Full Text Available The aim of the experimental research studies was to determine some electrical properties of graphite oxide and thermally exfoliated/reduced graphene oxide. The authors tried to interpret the obtained physicochemical results. For that purpose, both resistance measurements and investigation studies were carried out in order to characterize the samples. The resistance was measured at various temperatures in the course of composition changes of gas atmospheres (which surround the samples. The studies were also supported by such methods as: scanning electron microscopy (SEM, Raman spectroscopy (RS, atomic force microscopy (AFM and thermogravimetry (TG. Moreover, during the experiments also the elemental analyses (EA of the tested samples (graphite oxide and thermally exfoliated/reduced graphene oxide were performed.

  3. Use of Graphite Oxide and Graphene Oxide as Catalysts in the Synthesis of Dipyrromethane and Calix[4]pyrrole

    Sweta Mishra

    2011-08-01

    Full Text Available Graphite oxide and graphene oxides have been used as solid catalysts for the synthesis of 5,5-dialkyldipyrromethanes and calix[4]pyrroles in organic and aqueous solutions at room temperature.

  4. Dosage of boron traces in graphite, uranium and beryllium oxide

    Coursier, J.; Hure, J.; Platzer, R.

    1955-01-01

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.) [fr

  5. Direct printing and reduction of graphite oxide for flexible supercapacitors

    Jung, Hanyung [Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Ve Cheah, Chang [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Jeong, Namjo [Energy Materials and Convergence Research Department, Korea Institute of Energy Research, Daejeon (Korea, Republic of); Lee, Junghoon, E-mail: jleenano@snu.ac.kr [Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-08-04

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm{sup 3} in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.

  6. Direct printing and reduction of graphite oxide for flexible supercapacitors

    Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon

    2014-08-01

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.

  7. Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction

    Niyitanga, Theophile; Jeong, Hae Kyung

    2017-10-01

    Graphite oxide and molybdenum disulfide (GO-MoS2) composite is prepared through a wet process by using hydrolysis of ammonium tetrathiomolybdate, and it exhibits excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of -0.47 V, which is almost two and three times lower than those of precursor MoS2 and GO. The high performance of HER of the composite attributes to the reduced GO supporting MoS2, providing a conducting network for fast electron transport from MoS2 to electrodes. The composite also shows high stability after 500 cycles, demonstrating a synergistic effect of MoS2 and GO for efficient HER.

  8. Direct printing and reduction of graphite oxide for flexible supercapacitors

    Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon

    2014-01-01

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm 3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications

  9. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation

    Adriana Ibarra-Hernández

    2018-02-01

    Full Text Available Graphite oxide is synthesized via oxidation reaction using oxidant compounds that have lattice defects by the incorporation of unlike functional groups. Herein, we report the synthesis of the graphite oxide with diverse surface oxygen content through three (B, C, D different modified versions of the Hummers method assisted microwave radiation compared with the conventional graphite oxide sample obtained by Hummers method (A. These methods allow not only the production of graphite oxide but also reduced graphene oxide, without undergoing chemical, thermal, or mechanical reduction steps. The values obtained of C/O ratio were ~2, 3.4, and ~8.5 for methodologies C, B, and D, respectively, indicating the presence of graphite oxide and reduced graphene oxide, according to X-ray photoelectron spectroscopy. Raman spectroscopy of method D shows the fewest structural defects compared to the other methodologies. The results obtained suggest that the permanganate ion produces reducing species during graphite oxidation. The generation of these species is attributed to a reversible reaction between the permanganate ion with π electrons, ions, and radicals produced after treatment with microwave radiation.

  10. Implementing pharmacogenomics decision support across seven European countries: The Ubiquitous Pharmacogenomics (U-PGx) project.

    Blagec, Kathrin; Koopmann, Rudolf; Crommentuijn-van Rhenen, Mandy; Holsappel, Inge; van der Wouden, Cathelijne H; Konta, Lidija; Xu, Hong; Steinberger, Daniela; Just, Enrico; Swen, Jesse J; Guchelaar, Henk-Jan; Samwald, Matthias

    2018-02-09

    Clinical pharmacogenomics (PGx) has the potential to make pharmacotherapy safer and more effective by utilizing genetic patient data for drug dosing and selection. However, widespread adoption of PGx depends on its successful integration into routine clinical care through clinical decision support tools, which is often hampered by insufficient or fragmented infrastructures. This paper describes the setup and implementation of a unique multimodal, multilingual clinical decision support intervention consisting of digital, paper-, and mobile-based tools that are deployed across implementation sites in seven European countries participating in the Ubiquitous PGx (U-PGx) project. © The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  11. Modification of graphite structure by irradiation, revealed by thermal oxidation. Examination by electronic microscopy

    Rouaud, Michel

    1969-01-01

    Based on the analysis of images obtained by electronic microscopy, this document reports the comparative study of the action of neutrons on three different graphites: a natural one (Ticonderoga) and two pyrolytic ones (Carbone-Lorraine and Raytheon). The approach is based on the modification of features of thermal oxidation of graphites by dry air after irradiation. Different corrosion features are identified. The author states that there seems to be a relationship between the number and shape of these features, and defects existing on the irradiated graphite before oxidation. For low doses, the feature aspect varies with depth at which oxidation occurs. For higher doses, the aspect remains the same [fr

  12. Direct reform of graphite oxide electrodes by using ambient plasma for supercapacitor applications

    Kim, Ho Jun; Jeong, Hae Kyung

    2017-10-01

    Ambient plasma is applied to graphite oxide electrodes directly to improve electrochemical properties for supercapacitor applications. Surface morphology of the electrodes after the plasma treatment changes dramatically and amount of oxygen reduced significantly, demonstrating a reduction effect on the graphite oxide electrode by the ambient plasma. Equivalent series resistance of the electrode also reduced from 108 Ω to 84 Ω after the plasma treatment. Corresponding specific capacitance, therefore, increases from 0.45 F cm-2 to 0.85 F cm-2, proving that the ambient plasma treatment is very efficient, clean, economic, and environment-friendly method to reform the graphite oxide electrodes directly for the supercapacitor applications.

  13. Oxidation Behavior of IG-11, IG-110 and IG-430 Graphites in Air Flow

    Hong, Jin Ki; Chi, Se Hwan

    2006-01-01

    In high temperature gas-cooled reactor (HTGR), graphite is used as a moderator and a reflector as well as a major structural component. During operation or in the event of an accident, subsequent graphite oxidation due to the graphite out-gassing or heat exchanger tube leakage results in changes in the physical and mechanical properties of the components. For this reason, a lot of studies on oxidation have long been performed to understand the high temperature oxidation behavior and to find a proper countermeasure over the expected operating range. In this study, the oxidation rates of IG-11, IG-110 and IG-430 nuclear graphites were determined at high temperature and evaluated in view of the grades and the oxidation mechanisms at different temperature range

  14. Irradiation test plan of oxidation-resistant graphite in WWR-K Research Reactor

    Sumita, Junya; Shibata, Taiju; Sakaba, Nariaki; Osaki, Hirotaka; Kato, Hideki; Fujitsuka, Kunihiro; Muto, Takenori; Gizatulin, Shamil; Shaimerdenov, Asset; Dyussambayev, Daulet; Chakrov, Petr

    2014-01-01

    Graphite materials are used for the in-core components of High Temperature Gas-cooled Reactor (HTGR) which is a graphite-moderated and helium gas-cooled reactor. In the case of air ingress accident in HTGR, SiO_2 protective layer is formed on the surface of SiC layer in TRISO CFP and oxidation of SiC does not proceed and fission products are retained inside the fuel particle. A new safety concept for the HTGR, called Naturally Safe HTGR, has been recently proposed. To enhance the safety of Naturally Safe HTGR ultimately, it is expected that oxidation-resistant graphite is used for graphite components to prevent the TRISO CFPs and fuel compacts from failure. SiC coating is one of candidate methods for oxidation-resistant graphite. JAEA and four graphite companies launched R&Ds to develop the oxidation-resistant graphite and the International Science and Technology Center (ISTC) partner project with JAEA and INP was launched to investigate the irradiation effects on the oxidation-resistant graphite. To determine grades of the oxidation-resistant graphite which will be adopted as irradiation test, a preliminary oxidation test was carried out. This paper described the results of the preliminary oxidation test, the plan of out-of-pile test, irradiation test and post-irradiation test (PIE) of the oxidation-resistant graphite. The results of the preliminary oxidation test showed that the integrity of the oxidation resistant graphite was confirmed and that all of grades used in the preliminary test can be adopted as the irradiation test. Target irradiation temperature was determined to be 1473 (K) and neutron fluence was determined to be from 0.54 × 10"2"5through 1.4 × 10"2"5 (/m"2, E>0.18MeV). Weight change, oxidation rate, activation energy, surface condition, etc. will be evaluated in out-of-pile test and weight change, irradiation effect on oxidation rate and activation energy, surface condition, etc. will be evaluated in PIE. (author)

  15. Effect of friction on oxidative graphite intercalation and high-quality graphene formation.

    Seiler, Steffen; Halbig, Christian E; Grote, Fabian; Rietsch, Philipp; Börrnert, Felix; Kaiser, Ute; Meyer, Bernd; Eigler, Siegfried

    2018-02-26

    Oxidative wet-chemical delamination of graphene from graphite is expected to become a scalable production method. However, the formation process of the intermediate stage-1 graphite sulfate by sulfuric acid intercalation and its subsequent oxidation are poorly understood and lattice defect formation must be avoided. Here, we demonstrate film formation of micrometer-sized graphene flakes with lattice defects down to 0.02% and visualize the carbon lattice by transmission electron microscopy at atomic resolution. Interestingly, we find that only well-ordered, highly crystalline graphite delaminates into oxo-functionalized graphene, whereas other graphite grades do not form a proper stage-1 intercalate and revert back to graphite upon hydrolysis. Ab initio molecular dynamics simulations show that ideal stacking and electronic oxidation of the graphite layers significantly reduce the friction of the moving sulfuric acid molecules, thereby facilitating intercalation. Furthermore, the evaluation of the stability of oxo-species in graphite sulfate supports an oxidation mechanism that obviates intercalation of the oxidant.

  16. Oxidation of PCEA nuclear graphite by low water concentrations in helium

    Contescu, Cristian I., E-mail: ContescuCI@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087 (United States); Mee, Robert W. [Department of Business Analytics and Statistics, University of Tennessee, Knoxville, TN 37996-0525 (United States); Wang, Peng [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087 (United States); Romanova, Anna V.; Burchell, Timothy D. [Department of Business Analytics and Statistics, University of Tennessee, Knoxville, TN 37996-0525 (United States)

    2014-10-15

    Accelerated oxidation tests were performed to determine kinetic parameters of the chronic oxidation reaction (i.e. slow, continuous, and persistent) of PCEA graphite in contact with helium coolant containing low moisture concentrations in high temperature gas-cooled reactors. To the authors’ knowledge such a study has not been done since the detailed analysis of reaction of H-451 graphite with steam (Velasquez, Hightower, Burnette, 1978). Since that H-451 graphite is now unavailable, it is urgently needed to characterize chronic oxidation behavior of new graphite grades that are being considered for use in gas-cooled reactors. The Langmuir–Hinshelwood mechanism of carbon oxidation by water results in a non-linear reaction rate expression, with at least six different parameters. They were determined in accelerated oxidation experiments that covered a large range of temperatures (800–1100 °C), and partial pressures of water (15–850 Pa) and hydrogen (30–150 Pa) and used graphite specimens thin enough (4 mm) in order to avoid diffusion effects. Data analysis employed a statistical method based on multiple likelihood estimation of parameters and simultaneous fitting of non-linear equations. The results show significant material-specific differences between graphite grades PCEA and H-451 which were attributed to microstructural dissimilarity between the two materials. It is concluded that kinetic data cannot be transferred from one graphite grade to another.

  17. Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis

    Aleksandrzak, Malgorzata, E-mail: malgorzata.aleksandrzak@o2.pl; Kukulka, Wojciech; Mijowska, Ewa

    2017-03-15

    Highlights: • Graphitic carbon nitride modified with graphene nanostructures. • Influence of graphene nanostructures size in photocatalytic properties of g-C{sub 3}N{sub 4}. • Improved photocatalysis resulted from up-converted photoluminescence. - Abstract: The study presents a modification of graphitic carbon nitride (g-C{sub 3}N{sub 4}) with graphene oxide (GO) and reduced graphene oxide (rGO) and investigation of photoluminescent and photocatalytic properties. The influence of GO and rGO lateral sizes used for the modification was investigated. The nanomaterials were characterized with atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV–vis spectroscopy (DR-UV-vis) and photoluminescence spectroscopy (PL). PL revealed that pristine graphitic carbon nitride and its nanocomposites with GO and rGO emitted up-converted photoluminescence (UCPL) which could contribute to the improvement of photocatalytic activity of the materials. The photoactivity was evaluated in a process of phenol decomposition under visible light. A hybrid composed of rGO nanoparticles (rGONPs, 4–135 nm) exhibited the highest photoactivity compared to rGO with size of 150 nm–7.2 μm and graphene oxide with the corresponding sizes. The possible reason of the superior photocatalytic activity is the most enhanced UCPL of rGONPs, contributing to the emission of light with higher energy than the incident light, resulting in improved photogeneration of electron-hole pairs.

  18. Non-activated high surface area expanded graphite oxide for supercapacitors

    Vermisoglou, E.C.; Giannakopoulou, T.; Romanos, G.E.; Boukos, N.; Giannouri, M. [Institute of Nanoscience and Nanotechnology “Demokritos”, 153 43 Ag. Paraskevi, Attikis (Greece); Lei, C.; Lekakou, C. [Division of Mechanical, Medical, and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Trapalis, C., E-mail: c.trapalis@inn.demokritos.gr [Institute of Nanoscience and Nanotechnology “Demokritos”, 153 43 Ag. Paraskevi, Attikis (Greece)

    2015-12-15

    Graphical abstract: - Highlights: • One-step exfoliation and reduction of graphite oxide via microwave irradiation. • Effect of pristine graphite (type, flake size) on the microwave expanded material. • Effect of pretreatment and oxidation cycles on the produced expanded material. • Expanded graphene materials with high BET surface areas (940 m{sup 2}/g–2490 m{sup 2}/g). • Non-activated graphene based materials suitable for supercapacitors. - Abstract: Microwave irradiation of graphite oxide constitutes a facile route toward production of reduced graphene oxide, since during this treatment both exfoliation and reduction of graphite oxide occurs. In this work, the effect of pristine graphite (type, size of flakes), pretreatment and oxidation cycles on the finally produced expanded material was examined. All the types of graphite that were tested afforded materials with high BET surface areas ranging from 940 m{sup 2}/g to 2490 m{sup 2}/g, without intervening an activation stage at elevated temperature. SEM and TEM images displayed exfoliated structures, where the flakes were significantly detached and curved. The quality of the reduced graphene oxide sheets was evidenced both by X-ray photoelectron spectroscopy and Raman spectroscopy. The electrode material capacitance was determined via electrochemical impedance spectroscopy and cyclic voltammetry. The materials with PEDOT binder had better performance (∼97 F/g) at low operation rates while those with PVDF binder performed better (∼20 F/g) at higher rates, opening up perspectives for their application in supercapacitors.

  19. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films

    Gao, Wei; Singh, Neelam; Song, Li; Liu, Zheng; Reddy, Arava Leela Mohana; Ci, Lijie; Vajtai, Robert; Zhang, Qing; Wei, Bingqing; Ajayan, Pulickel M.

    2011-08-01

    Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors.

  20. Oxidation of graphites for core support post in air at high temperatures

    Imai, Hisashi; Fujii, Kimio; Kurosawa, Takeshi

    1982-07-01

    Oxidation reactions of candidate graphites for core support post with atmospheric air were studied in a temperature range between 550 0 C and 1000 0 C. The reaction rates, temperature dependence of the rates and distribution of bulk density in the oxidized graphites were measured and the characters obtained were compared between the brand of graphites. On the basis of the experimental results, dimension and strength of the post after corrosion with air, which might be introduced in rupture accident of primary coolant tube, were discussed. In the case of IG-11 graphite, it was proved that the strength of post is still sufficient even 100 hours after the beginning of the accident and that, however, it is necessary to insert more deeply the post against graphite blocks. (author)

  1. Feasibility of monitoring the strength of HTGR core support graphite: Part III

    Morgan, W.C.; Davis, T.J.; Thomas, M.T.

    1983-02-01

    Methods are being developed to monitor, in-situ, the strength changes of graphite core-support components in a High-Temperature Gas-Cooled Reactor (HTGR). The results reported herein pertain to the development of techniques for monitoring the core-support blocks; the PGX graphite used in these studies is the grade used for the core-support blocks of the Fort St. Vrain HTGR, and is coarser-grained than the grades used in our previous investigations. The through-transmission ultrasonic velocity technique, developed for monitoring strength of the core-support posts, is not suitable for use on the core-support blocks. Eddy-current and ultrasonic backscattering techniques have been shown to be capable of measuring the density-depth profile in oxidized PGX and, combined with a correlation of strength versus density, could yield an estimate of the strength-depth profile of in-service HTGR core support blocks. Correlations of strength versus density and other properties, and progress on the development of the eddy-current and ultrasonic backscattering techniques are reported

  2. Verification and validation of the THYTAN code for the graphite oxidation analysis in the HTGR systems

    Shimazaki, Yosuke; Isaka, Kazuyoshi; Nomoto, Yasunobu; Seki, Tomokazu; Ohashi, Hirofumi

    2014-12-01

    The analytical models for the evaluation of graphite oxidation were implemented into the THYTAN code, which employs the mass balance and a node-link computational scheme to evaluate tritium behavior in the High Temperature Gas-cooled Reactor (HTGR) systems for hydrogen production, to analyze the graphite oxidation during the air or water ingress accidents in the HTGR systems. This report describes the analytical models of the THYTAN code in terms of the graphite oxidation analysis and its verification and validation (V and V) results. Mass transfer from the gas mixture in the coolant channel to the graphite surface, diffusion in the graphite, graphite oxidation by air or water, chemical reaction and release from the primary circuit to the containment vessel by a safety valve were modeled to calculate the mass balance in the graphite and the gas mixture in the coolant channel. The computed solutions using the THYTAN code for simple questions were compared to the analytical results by a hand calculation to verify the algorithms for each implemented analytical model. A representation of the graphite oxidation experimental was analyzed using the THYTAN code, and the results were compared to the experimental data and the computed solutions using the GRACE code, which was used for the safety analysis of the High Temperature Engineering Test Reactor (HTTR), in regard to corrosion depth of graphite and oxygen concentration at the outlet of the test section to validate the analytical models of the THYTAN code. The comparison of THYTAN code results with the analytical solutions, experimental data and the GRACE code results showed the good agreement. (author)

  3. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    Windes, Willaim [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kane, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  4. Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solution.

    Ji, Liangliang; Chen, Wei; Xu, Zhaoyi; Zheng, Shourong; Zhu, Dongqiang

    2013-01-01

    Graphenes are an emerging class of carbon nanomaterials whose adsorption properties toward organic compounds have not been well understood. In the present study, graphene nanosheets were prepared by reoxidation and abrupt heating of graphite oxide, which was prepared by sequential chemical oxidation of commercial nonporous graphite powder. Adsorption properties of three aromatic compounds (naphthalene, 2-naphthol, and 1-naphthylamine) and one pharmaceutical compound (tylosin) on graphene nanosheets and graphite oxide were examined to explore the potential of these two adsorbents for the removal of organic contaminants from aqueous solutions. Compared with the literature data of adsorption on carbon nanotubes, adsorption of bulky, flexible tylosin on graphene nanosheets exhibited markedly faster adsorption kinetics, which can be attributed to their opened-up layer structure. Graphene nanosheets and graphite oxide showed similar sequences of adsorption affinity: 1-naphthylamine > 2-naphthol > tylosin > naphthalene (with much larger differences observed on graphite oxide). It was proposed that the strong adsorption of the three aromatic compounds was mainly due to π-π electron donor-acceptor interactions with the graphitic surfaces of adsorbents. Additionally, Lewis acid-base interaction was likely an important factor contributing to the strong adsorption of 1-naphthylamine and tylosin, especially for the O-functionality-abundant graphite oxide. After being normalized on the basis of adsorbent surface area, adsorption affinities of all four tested adsorbates on graphene nanosheets were very close to those on nonporous graphite powder, reflecting complete accessibility of the adsorbent surface area in adsorption. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors

    Drewniak, Sabina; Muzyka, Roksana; Stolarczyk, Agnieszka; Pustelny, Tadeusz; Kotyczka-Morańska, Michalina; Setkiewicz, Maciej

    2016-01-01

    The paper presents the results of investigations on resistance structures based on graphite oxide (GRO) and graphene oxide (rGO). The subject matter of the investigations was thaw the sensitivity of the tested structures was affected by hydrogen, nitrogen dioxide and carbon dioxide. The experiments were performed at a temperature range from 30 °C to 150 °C in two carrier gases: nitrogen and synthetic air. The measurements were also aimed at characterization of the graphite oxide and graphene oxide. In our measurements we used (among others) techniques such as: Atomic Force Microscopy (AFM); Scanning Electron Microscopy (SEM); Raman Spectroscopy (RS); Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Microscopy (XPS). The data resulting from the characterizations of graphite oxide and graphene oxide have made it possible to interpret the obtained results from the point of view of physicochemical changes occurring in these structures. PMID:26784198

  6. Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors.

    Drewniak, Sabina; Muzyka, Roksana; Stolarczyk, Agnieszka; Pustelny, Tadeusz; Kotyczka-Morańska, Michalina; Setkiewicz, Maciej

    2016-01-15

    The paper presents the results of investigations on resistance structures based on graphite oxide (GRO) and graphene oxide (rGO). The subject matter of the investigations was thaw the sensitivity of the tested structures was affected by hydrogen, nitrogen dioxide and carbon dioxide. The experiments were performed at a temperature range from 30 °C to 150 °C in two carrier gases: nitrogen and synthetic air. The measurements were also aimed at characterization of the graphite oxide and graphene oxide. In our measurements we used (among others) techniques such as: Atomic Force Microscopy (AFM); Scanning Electron Microscopy (SEM); Raman Spectroscopy (RS); Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Microscopy (XPS). The data resulting from the characterizations of graphite oxide and graphene oxide have made it possible to interpret the obtained results from the point of view of physicochemical changes occurring in these structures.

  7. Effects of porosity and temperature on oxidation behavior in air of selected nuclear graphites

    Chen Dongyue; Li Zhengcao; Miao Wei; Zhang Zhengjun

    2012-01-01

    Nuclear graphite endures gas oxidation in High Temperature Gas-cooled Reactor (HTGR), which may threaten the safety of reactor. To study the oxidation behavior of nuclear graphite, weight loss curve is usually measured through Thermo Gravimetric Analysis (TGA) method. In this work, three brands of nuclear graphite for HTGR (i.e., HSM-SC, IG-11, and NBG-18) are oxidized under 873 and 1073 K in open air, and their weight loss curves are obtained. The acceleration of oxidizing rate is observed for both HSM-SC and IG-11, and is attributed to the large porosity increase during oxidation process. For HSM-SC, the porosity increase comes from preferential binder oxidation, and thus its binder quality shall be improved to obtain better oxidation resistance. Temperature effects on oxidation for HSM-SC are also studied, which shows that oxidizing gas tends to be exhausted at graphite surface at high temperature instead of penetrate into the interior of bulk. (author)

  8. Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes.

    Xue, Yudong; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-09-01

    Alkaline electrochemical advanced oxidation processes for chromium oxidation and Cr-contaminated waste disposal were reported in this study. The highly graphitized multi-walled carbon nanotubes g-MWCNTs modified electrode was prepared for the in-situ electrochemical generation of HO 2 - . RRDE test results illustrated that g-MWCNTs exhibited much higher two-electron oxygen reduction activity than other nanocarbon materials with peak current density of 1.24 mA cm -2 , %HO 2 - of 77.0% and onset potential of -0.15 V (vs. Hg/HgO). It was originated from the highly graphitized structure and good electrical conductivity as illustrated from the Raman, XRD and EIS characterizations, respectively. Large amount of reactive oxygen species (HO 2 - and ·OH) were in-situ electro-generated from the two-electron oxygen reduction and chromium-induced alkaline electro-Fenton-like reaction. The oxidation of Cr(III) was efficiently achieved within 90 min and the conversion ratio maintained more than 95% of the original value after stability test, offering an efficient and green approach for the utilization of Cr-containing wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. CFD investigating the air ingress accident for a HTGR simulation of graphite corrosion oxidation

    Ferng, Y.M.; Chi, C.W.

    2012-01-01

    Highlights: ► A CFD model is proposed to investigate graphite oxidation corrosion in the HTR-10. ► A postulated air ingress accident is assumed in this paper. ► Air ingress flowrate is the predicted result, instead of the preset one. ► O 2 would react with graphite on pebble surface, causing the graphite corrosion. ► No fuel exposure is predicted to be occurred under the air ingress accident. - Abstract: Through a compressible multi-component CFD model, this paper investigates the characteristics of graphite oxidation corrosion in the HTR-10 core under the postulated accident of gas duct rupture. In this accident, air in the steam generator cavity would enter into the core after pressure equilibrium is achieved between the core and the cavity, which is also called as the air ingress accident. Oxygen in the air would react with graphite on pebble surface, subsequently resulting in oxidation corrosion and challenging fuel integrity. In this paper, characteristics of graphite oxidation corrosion during the air ingress accident can be reasonably captured, including distributions of graphite corrosion amount on the different cross-sections, time histories of local corrosion amount at the monitoring points and overall corrosion amount in the core, respectively. Based on the transient simulation results, the corrosion pattern and its corrosion rate would approach to the steady-state conditions as the accident continuously progresses. The total amount of graphite corrosion during a 3-day accident time is predicted to be about 31 kg with the predicted asymptotic corrosion rate. This predicted value is less than that from the previous work of Gao and Shi.

  10. In situ polymerization of highly dispersed polypyrrole on reduced graphite oxide for dopamine detection.

    Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2013-12-15

    A composite consisting of reduced graphite oxide and highly dispersed polypyrrole nanospheres was synthesized by a straightforward technique, by in situ chemical oxidative polymerization. The novel polypyrrole nanospheres can prevent the aggregation of reduced graphite oxide sheets by electrostatic repulsive interaction, and enhance their electrochemical properties in the nano-molar measurement of dopamine in biological systems with a linear range of 1-8000 nM and a detection limit as low as 0.3 nM. © 2013 Elsevier B.V. All rights reserved.

  11. Preparation and characterization of aminated graphite oxide for CO2 capture

    Zhao Yunxia; Ding Huiling; Zhong Qin

    2012-01-01

    Adsorption with solid sorbents is one of the most promising options for postcombustion carbon dioxide (CO 2 ) capture. In this study, aminated graphite oxide used for CO 2 adsorption was synthesized, based on the intercalation reaction of graphite oxide (GO) with amines, including ethylenediamine (EDA), diethylenetriamine (DETA) and triethylene tetramine (TETA). The structural information, surface chemistry and thermal behavior of the adsorbent samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), transmission electron microscope (TEM), elemental analysis, particle size analysis, nitrogen adsorption as well as differential thermal and thermogravimetric analysis (DSC-TGA). CO 2 capture was investigated by dynamic adsorption experiments with N 2 -CO 2 mixed gases at 30 °C. The three kinds of graphite oxide samples modified by excess EDA, DETA and TETA showed similar adsorption behaviors seen from their breakthrough curves. Among them, the sample aminated by EDA exhibited the highest adsorption capacity with the longest breakthrough time of CO 2 . Before saturation, its adsorption capacity was up to 53.62 mg CO 2 /g sample. In addition, graphite oxide samples modified by different amount of EDA (EDA/GO raw ratio 10 wt%, 50 wt% and 100 wt%) were prepared in the ethanol. Their CO 2 adsorption performance was investigated. The experimental results demonstrated that graphite oxide with 50 wt% EDA had the largest adsorption capacity 46.55 mg CO 2 /g sample.

  12. Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide.

    Cao, Jianyun; He, Pei; Mohammed, Mahdi A; Zhao, Xin; Young, Robert J; Derby, Brian; Kinloch, Ian A; Dryfe, Robert A W

    2017-12-06

    Conventional chemical oxidation routes for the production of graphene oxide (GO), such as the Hummers' method, suffer from environmental and safety issues due to their use of hazardous and explosive chemicals. These issues are addressed by electrochemical oxidation methods, but such approaches typically have a low yield due to inhomogeneous oxidation. Herein we report a two-step electrochemical intercalation and oxidation approach to produce GO on the large laboratory scale (tens of grams) comprising (1) forming a stage 1 graphite intercalation compound (GIC) in concentrated sulfuric acid and (2) oxidizing and exfoliating the stage 1 GIC in an aqueous solution of 0.1 M ammonium sulfate. This two-step approach leads to GO with a high yield (>70 wt %), good quality (>90%, monolayer), and reasonable oxygen content (17.7 at. %). Moreover, the as-produced GO can be subsequently deeply reduced (3.2 at. % oxygen; C/O ratio 30.2) to yield highly conductive (54 600 S m -1 ) reduced GO. Electrochemical capacitors based on the reduced GO showed an ultrahigh rate capability of up to 10 V s -1 due to this high conductivity.

  13. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    Saravanan, Gengan, E-mail: saravanan3che@gmail.com [Central University of Tamil Nadu, Department of Chemistry, Thiruvarur, 610101 (India); Mohan, Subramanian, E-mail: sanjnamohan@yahoo.com [EMFT Division, CSIR-Central Electrochemical Research Institute, Tamilnadu, Karaikudi 630 006 (India)

    2016-11-15

    Graphical abstract: RGO/Nano Pt: This study explore the electrocatalytic oxidation performance of reduced graphite oxide (RGO) anchored with nano Pt. This graphene composite reveal superior electrooxidation performance that is associated with the flexible RGO matrix and the uniform distribution of Pt particles, which enhances surface area, fast electron transfer, uniform particle size distribution; consequently, the RGO matrix provides more stability to Pt particles during electrooxidation process. Display Omitted - Highlights: • Greener electrochemical method applied to prepare well-dispersed Pt-rGO. • Pt-rGO large surface area excellent charge transfer better catalytic activity. • Low-cost highly efficient carbon-based electrodes for direct formic acid fuel cell. • rGO an excellent support to anchor Pt nanoparticles on its surface. • Pt-rGO distinctly enhanced current density towards formic acid electrooxidation. - Abstract: Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. {sup 13}C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp{sup 2} carbon and does not contain any oxygenated carbon and the carbonyl

  14. The effect of oxidizing atmosphere on strength loss in HTGR graphites

    Heiser, J.H.; Finfrock, C.C.; Lees, B.S.

    1983-01-01

    This paper reports on studies involving various reactor grade graphites and the possible mechanisms leading to strength loss differences. Compressive and tensile specimens of six reactor grade graphites were oxidized. The compressive or tensile strengths were then determined using a Timus-Olsen Universal testing machine following ASTM standard test specifications. Two possible mechanisms are proposed to explain the differences in strength loss given the same mass loss but different oxidants. One mechanism has the impurity iron located primarily in the filler particles and the second mechanism arranges the iron either uniformly throughout the binder or inhomogeneously dispersed in large pockets in the binder

  15. Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material

    Alexander G. Bannov

    2017-02-01

    Full Text Available Graphite oxide has been investigated as a possible room-temperature chemiresistive sensor of ammonia in a gas phase. Graphite oxide was synthesized from high purity graphite using the modified Hummers method. The graphite oxide sample was investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Sensing properties were tested in a wide range of ammonia concentrations in air (10–1000 ppm and under different relative humidity levels (3%–65%. It was concluded that the graphite oxide–based sensor possessed a good response to NH3 in dry synthetic air (ΔR/R0 ranged from 2.5% to 7.4% for concentrations of 100–500 ppm and 3% relative humidity with negligible cross-sensitivity towards H2 and CH4. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing the ambient relative humidity led to an increase of the sensor response. The highest response of 22.2% for 100 ppm of ammonia was achieved at a 65% relative humidity level.

  16. Manufacture of nano graphite oxides derived from aqueous glucose solutions and in-situ synthesis of magnetite–graphite oxide composites

    Liu, Xiang, E-mail: liuxiang@ahut.edu.cn; Zhao, Tiantian; Liu, Pengpeng; Cui, Ping, E-mail: cokecp@sohu.com; Hu, Peng

    2015-03-01

    A “bottom up” approach of manufacturing graphite oxides (GOs) derived from aqueous glucose solutions by virtue of an environmentally-friendly process and the way of in-situ synthesizing magnetite–GOs composites are described in this work in detail. The dehydrations among glucose molecules under hydrothermal condition result in the initial carbon quantum dots and ultimate GOs. The structural information of the GOs is obtained by the infrared, ultraviolet–visible and X-ray photoelectron spectra. The magnetite–GOs composites were obtained by a one-pot method under the same hydrothermal conditions as the one of preparing GOs. The composites perform high activities in catalytic degradation of Rhodamine B in the presence of hydrogen peroxides without extra heating or pH adjusting. Both the GOs and the magnetite–GOs composites are also assured by measurements of transmission electron microscope and X-ray powder diffraction. - Highlights: • Graphite oxides are made from aqueous glucose solutions by hydrothermal reaction. • A way of in-situ synthesizing composites of magnetite–graphite oxides is depicted. • The composites perform high activities in catalytic degradation of Rhodamine B.

  17. Non-activated high surface area expanded graphite oxide for supercapacitors

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G. E.; Boukos, N.; Giannouri, M.; Lei, C.; Lekakou, C.; Trapalis, C.

    2015-12-01

    Microwave irradiation of graphite oxide constitutes a facile route toward production of reduced graphene oxide, since during this treatment both exfoliation and reduction of graphite oxide occurs. In this work, the effect of pristine graphite (type, size of flakes), pretreatment and oxidation cycles on the finally produced expanded material was examined. All the types of graphite that were tested afforded materials with high BET surface areas ranging from 940 m2/g to 2490 m2/g, without intervening an activation stage at elevated temperature. SEM and TEM images displayed exfoliated structures, where the flakes were significantly detached and curved. The quality of the reduced graphene oxide sheets was evidenced both by X-ray photoelectron spectroscopy and Raman spectroscopy. The electrode material capacitance was determined via electrochemical impedance spectroscopy and cyclic voltammetry. The materials with PEDOT binder had better performance (∼97 F/g) at low operation rates while those with PVDF binder performed better (∼20 F/g) at higher rates, opening up perspectives for their application in supercapacitors.

  18. Safety implications of a graphite oxidation accident in the compact ignition tokamak device

    Merrill, B.J.; O'Brien, M.H.

    1989-01-01

    This paper addresses the possible safety consequences of an air ingress accident for the Compact Ignition Tokamak (CIT) device. An experimental program was undertaken to determine oxidation rates of four nuclear grade graphites in air at temperatures ranging from 800 to 1800 C and flow velocities from 3 to 7 m/s. On the basis of these test results, an analytic model was developed to assess the extent of first wall/divertor protective tile oxidation and the amount of energy released from this oxidation. For CIT, a significant restriction to vacuum vessel air inflow will be provided by the air seals and walls of the surrounding test cells. Under these conditions, the graphite oxidation reaction inside the vacuum vessel will become oxygen starved within minutes of the onset of this event. Since significant oxidation rates were not achieved, the heat release did not elevate structural temperatures to levels of concern with regard to activated material release. 7 refs., 9 figs

  19. Evaluation of the oxidation behavior and strength of the graphite components in the VHTR, (1)

    Eto, Motokuni; Kurosawa, Takeshi; Nomura, Shinzo; Imai, Hisashi

    1987-04-01

    Oxidation experiments have been carried out mainly on a fine-grained isotropic graphite, IG-110, at temperatures between 1173 and 1473 K in a water vapor/helium mixture. In most cases water vapor concentration was 0.65 vol% and helium pressure, 1 atm. Reaction rate and burn-off profile were measured using cylindrical specimens. On the basis of the experimental data the oxidation behavior of fuel block and core support post under the condition of the VHTR operation was estimated using the first-order or Langmuir-Hinshelwood equation with regard to water vapor concentration. Strength and stress-strain relationship of the graphite components with burn-off profiles estimated above were analyzed on the basis of the model for stress-strain relationship and strength of graphite specimens with density gradients. The estimation indicated that the integrity of the components would be maintained during normal reactor operation. (author)

  20. Fracture behavior of nuclear graphites under tensile impact loading

    Ugachi, Hirokazu; Ishiyama, Shintaro; Eto, Motokuni

    1994-01-01

    Impact tensile strength test was performed with two kinds of HTTR graphites, fine grained isotropic graphite, IG-11 and coarse grained near isotropic graphite, PGX and deformation and fracture behavior under the strain rate of over 100s -1 was measured and the following results were derived: (1) Tensile strength for IG-11 graphite does not depend on the strain rate less than 1 s -1 , but over 1 s -1 , tensile strength for IG-11 graphite increase larger than that measured under 1 s -1 . At the strain rate more than 100 s -1 , remarkable decrease of tensile strength for IG-11 graphite was found. Tensile strength of PGX graphite does not depend on the strain rate less than 1 s -1 , but beyond this value, the sharp tensile strength decrease occurs. (2) Under 100 s -1 , fracture strain for both graphites increase with increase of strain rate and over 100 s -1 , drastic increase of fracture strain for IG-11 graphite was found. (3) At the part of gage length, volume of specimen increase with increase of tensile loading level and strain rate. (4) Poisson's ratio for both graphites decrease with increase of tensile loading level and strain rate. (5) Remarkable change of stress-strain curve for both graphites under 100 s -1 was not found, but over 100 s -1 , the slope of these curve for IG-11 graphite decrease drastically. (author)

  1. Revisiting the effects of organic solvents on the thermal reduction of graphite oxide

    Barroso-Bujans, Fabienne; Fierro, José Luis G.; Alegría, Angel; Colmenero, Juan

    2011-01-01

    Highlights: ► Retention of organic solvent on graphite oxide interlayer space. ► Decreasing exfoliation temperature. ► Close link between structure and thermal behavior of solvent treated graphite oxide. ► Restacking inhibition of thermally reduced graphite oxide sheets. ► Changes in kinetic mechanisms of thermal reduction. - Abstract: Treatment of graphite oxide (GO) with organic solvents via sorption from either liquid or gas phase, and subsequent desorption, induces profound changes in the layered GO structure: loss of stacking order, retention of trace amounts of solvents and decreasing decomposition temperature. This study presents new evidences of the effect of organic solvents on the thermal reduction of GO by means of thermogravimetric analysis, X-ray diffraction and X-ray photoelectron spectroscopy. The results reveal a relative higher decrease of the oxygen amounts in solvent-treated GO as compared to untreated GO and the restacking inhibition of the thermally reduced GO sheets upon slow heating. The kinetic experiments evidence changes occurring in the reduction mechanisms of the solvent-treated GO, which support the close link between GO structure and thermal properties.

  2. Oriented Arrays of Graphene in a Polymer Matrix by in situ Reduction of Graphite Oxide Nanosheets

    Ansari, Seema; Kelarakis, Antonios; Estevez, Luis; Giannelis, Emmanuel P.

    2010-01-01

    Graphite oxide-Nafion hybrids with a high degree of alignment are cast from aqueous solution in the absence of any external field and reduced in situ by exposure to hydrazine to produce graphene-Nafion hybrids. Dramatic enhancement of electrical

  3. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.

    Sun, Yige; Tang, Jie; Zhang, Kun; Yuan, Jinshi; Li, Jing; Zhu, Da-Ming; Ozawa, Kiyoshi; Qin, Lu-Chang

    2017-02-16

    Hydrazine-reduced graphite oxide and graphene oxide were synthesized to compare their performances as anode materials in lithium-ion batteries and sodium-ion batteries. Reduced graphite oxide inherits the layer structure of graphite, with an average spacing between neighboring layers (d-spacing) of 0.374 nm; this exceeds the d-spacing of graphite (0.335 nm). The larger d-spacing provides wider channels for transporting lithium ions and sodium ions in the material. We showed that reduced graphite oxide as an anode in lithium-ion batteries can reach a specific capacity of 917 mA h g -1 , which is about three times of 372 mA h g -1 , the value expected for the LiC 6 structures on the electrode. This increase is consistent with the wider d-spacing, which enhances lithium intercalation and de-intercalation on the electrodes. The electrochemical performance of the lithium-ion batteries and sodium-ion batteries with reduced graphite oxide anodes show a noticeable improvement compared to those with reduced graphene oxide anodes. This improvement indicates that reduced graphite oxide, with larger interlayer spacing, has fewer defects and is thus more stable. In summary, we found that reduced graphite oxide may be a more favorable form of graphene for the fabrication of electrodes for lithium-ion and sodium-ion batteries and other energy storage devices.

  4. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  5. Nondestructive testing on graphite structures for high temperature engineering test reactor (HTTR)

    Ishihara, Masahiro; Kambe, Mamoru; Tsuji, Nobumasa.

    1994-01-01

    The application of ultrasonic (for internal defects) and eddy current testing (for surface defects) were investigated on the structures of nuclear-grade IG-110 and PGX graphite for the HTTR. The equipment were developed in order to detect the specific configuration of graphite blocks and the testing conditions were defined as the practical testing methods. The established testing methods are being used for the acceptance tests of graphite structures in the HTTR. (author)

  6. Carbon nanostructures reduced from graphite oxide as electrode materials for supercapacitors

    Yurii M. Shulga

    2015-03-01

    Full Text Available In this review we present information about obtaining and properties of carbon nanomaterials (graphite oxide, grapheme oxide, reduced graphene oxide, which are used as electrodes for supercapacitors (SC. This review describes methods of obtaining graphite oxide, followed by separation of graphene oxide and reducing graphene oxide by thermal, photochemical and chemical methods. Information on the composition and concentration of functional groups in graphene oxide and the elemental composition is described in detail. Results of the analysis of еру physical, electrochemical, thermal and optical properties of the graphene oxide and its derivatives are shown. The ratio of oxygen-containing functional groups was estimated by XPS. The presence of partial surface reduction is found. Hydroge-containing functional groups are characterized by IR spectroscopy. Method of estimating the size of graphene crystallites by Raman spectroscopy is shown. Mass loss upon heating is analyzed by thermogravimetry. The gassing of graphene oxide at thermal and photochemical reduction is studied by mass spectrometry. The difference between the abovementioned reduction methods is clearly demonstrated by the difference in the composition of the evolved gases. Also the chemical method of graphene oxide reduction with hydrazine is described. Review considers the literature data which illustrate the most interesting, from the Authors׳ point of view, aspects of that field of research.

  7. Exfoliation approach for preparing high conductive reduced graphite oxide and its application in natural rubber composites

    Wipatkrut, Pattharaporn [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Poompradub, Sirilux, E-mail: sirilux.p@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Center for Petroleum, Petrochemical and Advanced Material, Chulalongkorn University, Bangkok 10330 (Thailand)

    2017-04-15

    Highlights: • Graphite waste was exfoliated by oxidation and chemical and thermal reduction. • The obtained graphene-T was a single layer sheet with a high electrical conductivity. • Graphene-T incorporation at 5 phr improved the electrical conductivity of NR. • Graphene-T incorporation at 5–25 phr improved the mechanical properties of NR. - Abstract: High conductivity reduced graphite oxide (RGO) was prepared by exfoliation of graphite waste from the metal smelting industry. To improve the surface properties of the RGO, the graphite oxide obtained based on Hummers’ method was reduced by L-ascorbic acid to give RGOV, which was then subjected to thermal reduction to obtain RGOT. The residual oxygen-containing groups in RGOV were almost completely removed by the thermal reduction and the conjugated graphene networks were restored in RGOT. The effect of the RGOT content in natural rubber (NR) on the cure, electrical and mechanical properties of the NR-RGOT (NG) composites was evaluated. The electrical conductivity of NR was increased by the inclusion of RGOT at a percolation threshold of 5 phr, with an electrical conductivity of 8.71 × 10{sup −6} S/m. The mechanical properties, i.e., the modulus, tensile strength and hardness, of NG were comparable with those of conductive carbon black filled NR ones.

  8. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    Yun, Jumi; Lee, Dae Hoon; Im, Ji Sun; Kim, Hyung-Il

    2012-01-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: ► High performance of transdermal drug delivery system with an easy control of voltage. ► Improved thermal response of hydrogel by graphite oxide incorporation. ► Efficient micro heater fabricated by a joule heating method.

  9. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    Yun, Jumi [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Dae Hoon [Environment Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of); Im, Ji Sun [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-08-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: Black-Right-Pointing-Pointer High performance of transdermal drug delivery system with an easy control of voltage. Black-Right-Pointing-Pointer Improved thermal response of hydrogel by graphite oxide incorporation. Black-Right-Pointing-Pointer Efficient micro heater fabricated by a joule heating method.

  10. Ex situ integration of iron oxide nanoparticles onto the exfoliated expanded graphite flakes in water suspension

    Jović Nataša

    2014-01-01

    Full Text Available Hybrid structures composed of exfoliated expanded graphite (EG and iron oxide nanocrystals have been produced by an ex situ process. The iron oxide nanoparticles coated with meso-2,3-dimercaptosuccinic acid (DMSA, or poly(acrylic acid (PAA were integrated onto the exfoliated EG flakes by mixing their aqueous suspensions at room temperature under support of 1-ethyl-3-(3-dimethylaminopropylcarbodiimide (EDC and N-hydroxysuccin-nimide (NHS. EG flakes have been used both, naked and functionalized with branched polyethylenimine (PEI. Complete integration of two constituents has been achieved and mainteined stable for more than 12 months. No preferential spatial distribution of anchoring sites for attachement of iron oxide nanoparticles has been observed, regardless EG flakes have been used naked or functionalized with PEI molecules. The structural and physico-chemical characteristics of the exfoliated expanded graphite and its hybrids nanostructures has been investigated by SEM, TEM, FTIR and Raman techniques. [Projekat Ministarstva nauke Republike Srbije, br. 45015

  11. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air

    Huang, Yongle; Bai, Shuxin; Zhang, Hong; Ye, Yicong

    2015-01-01

    Highlights: • Continuous and dense Ir coatings were prepared on graphite by electrodepostion. • The purification of the as-prepared Ir coating was higher than about 99.98%. • The Ir/Re/C specimen kept integrity without significant failures after oxidation. • The average oxidation rate of the Ir coating was about 0.219 mg/(cm 2 min). • Penetrating holes at gains boundaries resulted in the failure of the Ir coating. - Abstract: Continuous and dense iridium coatings were prepared on the rhenium coated graphite specimens by electrodeposition. The iridium/rhenium coated graphite (Ir/Re/C) specimens were oxidized at elevated temperatures in stagnated air for 3600 s. The purification of the as-prepared Ir coating was higher than about 99.98% with the main impurity elements Si, Al, Fe and Ru. After oxidation, the Ir/Re/C specimens kept integrity without significant failures and the average oxidation rate was about 0.219 mg/(cm 2 min). Pores were found at the grain boundaries and concentrated to penetrating holes with the growth of Ir grains, which resulted in disastrous failures of the Ir coating

  12. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air

    Huang, Yongle; Bai, Shuxin, E-mail: NUDT_MSE_501@163.com; Zhang, Hong; Ye, Yicong

    2015-02-15

    Highlights: • Continuous and dense Ir coatings were prepared on graphite by electrodepostion. • The purification of the as-prepared Ir coating was higher than about 99.98%. • The Ir/Re/C specimen kept integrity without significant failures after oxidation. • The average oxidation rate of the Ir coating was about 0.219 mg/(cm{sup 2} min). • Penetrating holes at gains boundaries resulted in the failure of the Ir coating. - Abstract: Continuous and dense iridium coatings were prepared on the rhenium coated graphite specimens by electrodeposition. The iridium/rhenium coated graphite (Ir/Re/C) specimens were oxidized at elevated temperatures in stagnated air for 3600 s. The purification of the as-prepared Ir coating was higher than about 99.98% with the main impurity elements Si, Al, Fe and Ru. After oxidation, the Ir/Re/C specimens kept integrity without significant failures and the average oxidation rate was about 0.219 mg/(cm{sup 2} min). Pores were found at the grain boundaries and concentrated to penetrating holes with the growth of Ir grains, which resulted in disastrous failures of the Ir coating.

  13. Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications

    Morimoto, Naoki; Kubo, Takuya; Nishina, Yuta

    2016-02-01

    Graphene oxide (GO) is widely recognized as a promising material in a variety of fields, but its structure and composition has yet to be fully controlled. We have developed general strategies to control the oxidation degree of graphene-like materials via two methods: oxidation of graphite by KMnO4 in H2SO4 (oGO), and reduction of highly oxidized GO by hydrazine (rGO). Even though the oxygen content may be the same, oGO and rGO have different properties, for example the adsorption ability, oxidation ability, and electron conductivity. These differences in property arise from the difference in the underlying graphitic structure and the type of defect present. Our results can be used as a guideline for the production of tailor-made graphitic carbons. As an example, we show that rGO with 23.1 wt% oxygen showed the best performance as an electrode of an electric double-layer capacitor.

  14. Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications.

    Morimoto, Naoki; Kubo, Takuya; Nishina, Yuta

    2016-02-25

    Graphene oxide (GO) is widely recognized as a promising material in a variety of fields, but its structure and composition has yet to be fully controlled. We have developed general strategies to control the oxidation degree of graphene-like materials via two methods: oxidation of graphite by KMnO4 in H2SO4 (oGO), and reduction of highly oxidized GO by hydrazine (rGO). Even though the oxygen content may be the same, oGO and rGO have different properties, for example the adsorption ability, oxidation ability, and electron conductivity. These differences in property arise from the difference in the underlying graphitic structure and the type of defect present. Our results can be used as a guideline for the production of tailor-made graphitic carbons. As an example, we show that rGO with 23.1 wt% oxygen showed the best performance as an electrode of an electric double-layer capacitor.

  15. Thermal oxidation of nuclear graphite: A large scale waste treatment option

    Jones, Abbie N.; Marsden, Barry J.

    2017-01-01

    This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400–1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700–800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000–1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput. PMID:28793326

  16. Thermal oxidation of nuclear graphite: A large scale waste treatment option.

    Alex Theodosiou

    Full Text Available This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF. Particulate samples of Magnox Reactor Pile Grade-A (PGA graphite, were oxidised in both air and 60% O2, over the temperature range 400-1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700-800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000-1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput.

  17. Study on practical of eddy current testing of core and core support graphite components in HTTR

    Ishihara, Masahiro; Iyoku, Tatsuo; Ooka, Norikazu; Shindo, Yoshihisa; Kawae, Hidetoshi; Hayashi, Motomitsu; Kambe, Mamoru; Takahashi, Masaaki; Ide, Akira.

    1994-01-01

    Core and core support graphite components in the HTTR (High Temperature Engineering Test Reactor) are mainly made of nuclear-grade IG-110 and PGX graphites. Nondestructive inspection with Eddy Current Testing (ECT) is planned to be applied to these components. The method of ECT has been already established for metallic components, however, cannot be applied directly to the graphite ones, because the characteristics of graphite are quite different in micro-structure from those of metals. Therefore, ECT method and condition were studied for the application of the ECT to the graphite components. This paper describes the study on practical method and conditions of ECT for above mentioned graphite structures. (author)

  18. Thermal cyclic oxidation behavior of the developed compositionally gradient graphite material of SiC/C in air environment

    Nakano, Junichi; Fujii, Kimio; Shindo, Masami

    1993-08-01

    For the developed compositionally gradient graphite material composed of surface SiC coating layer, middle SiC/C layer and graphite matrix, the thermal cyclic oxidation test was performed together with two kinds of the SiC coated graphite materials in air environment. It was made clear that the developed material exhibited high performance under severe thermal cyclic condition independent of the morphology of middle SiC/C layers and had the longer time or the more cycle margins from crack initiation to failure for surface SiC coating layer compared with the SiC coated graphite materials. (author)

  19. Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite

    Radoń, Adrian; Włodarczyk, Patryk; Łukowiec, Dariusz

    2018-05-01

    The article presents the influence of reduction by hydrogen in statu nascendi and modification by hydrogen peroxide on the structure and electrical conductivity of electrochemically exfoliated graphite. It was confirmed that the electrochemical exfoliation can be used to produce oxidized nanographite with an average number of 25 graphene layers. The modified electrochemical exfoliated graphite and reduced electrochemical exfoliated graphite were characterized by high thermal stability, what was associated with removing of labile oxygen-containing groups. The presence of oxygen-containing groups was confirmed using Fourier-transform infrared spectroscopy. Influence of chemical modification by hydrogen and hydrogen peroxide on the electrical conductivity was determined in wide frequency (0.1 Hz-10 kHz) and temperature range (-50 °C-100 °C). Material modified by hydrogen peroxide (0.29 mS/cm at 0 °C) had the lowest electrical conductivity. This can be associated with oxidation of unstable functional groups and was also confirmed by analysis of Raman spectra. The removal of oxygen-containing functional groups by hydrogen in statu nascendi resulted in a 1000-fold increase in the electrical conductivity compared to the electrochemical exfoliated graphite.

  20. Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons.

    Bhavna S Paratala

    Full Text Available The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation of trace amounts of Mn(2+ ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet show that confinement (encapsulation or intercalation of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents.

  1. A study of the relationship between microstructure and oxidation effects in nuclear graphite at very high temperatures

    Lo, I.-Hsuan; Tzelepi, Athanasia; Patterson, Eann A.; Yeh, Tsung-Kuang

    2018-04-01

    Graphite is used in the cores of gas-cooled reactors as both the neutron moderator and a structural material, and traditional and novel graphite materials are being studied worldwide for applications in Generation IV reactors. In this study, the oxidation characteristics of petroleum-based IG-110 and pitch-based IG-430 graphite pellets in helium and air environments at temperatures ranging from 700 to 1600 °C were investigated. The oxidation rates and activation energies were determined based on mass loss measurements in a series of oxidation tests. The surface morphology was characterized by scanning electron microscopy. Although the thermal oxidation mechanism was previously considered to be the same for all temperatures higher than 1000 °C, the significant increases in oxidation rate observed at very high temperatures suggest that the oxidation behavior of the selected graphite materials at temperatures higher than 1200 °C is different. This work demonstrates that changes in surface morphology and in oxidation rate of the filler particles in the graphite materials are more prominent at temperatures above 1200 °C. Furthermore, possible intrinsic factors contributing to the oxidation of the two graphite materials at different temperature ranges are discussed taking account of the dominant role played by temperature.

  2. Effect of graphite loading on the electrical and mechanical properties of Poly (Ethylene Oxide)/Poly (Vinyl Chloride) polymer films

    Hajar, M. D. S.; Supri, A. G.; Hanif, M. P. M.; Yazid, M. I. M.

    2017-10-01

    In this study, films consisting of a blend of poly (ethylene oxide)/poly (vinyl chloride) (PEO/PVC) and a conductive filler, graphite were prepared and characterized for their mechanical and electrical properties. Solid polymer blend films based on PEO/PVC (50/50 wt%/wt%) with different graphite loading were prepared by using solution casting technique. Electrical conductivity results discovered the conductivity increased with increasing of filler loading. However, increasing amount of graphite loading led to a decreased in tensile strength and young’s modulus of PEO/PVC/Graphite polymer films. The dispersion of graphite and mechanism of conductive path in the polymer films were also investigated by scanning electron microscopy (SEM). The morphology of the PEO/PVC/Graphite polymer films shows that agglomeration occurred to complete the connection of conductive path, thus improving the conductivity behavior of the polymer films.

  3. Study of the oxidation process of disperse Fe-C containing waste in order to obtain graphite intercalation compounds

    Володимир Олександрович Маслов

    2016-11-01

    Full Text Available Graphite processing into intercalation compounds followed by thermoshock heating is known in literature. The result is an ultra-light dispersed graphite (thermographenit used in lots of industries. Graphite intercalation compounds are formed as a result of the introduction of atomic and molecular layers of different chemical particles between the layers of graphite plates. The object of this work is to obtain a new material by intercalation of graphite followed by thermoshock heating, which could be used for products protecting biological and technical facilities from electromagnetic and thermal radiation. In the present work the parameters of oxidation and of graphite thermoshock expansion in order to obtain graphite intercalation compounds and thermographenit were investigated. The experiments were performed under laboratory non-isothermal conditions. Graphite GAK-2 obtained from metallurgical wastes was used. First the fraction of +0,16 mm with the ash content of 0,3% was extracted by scattering. The oxidation of graphite was carried out by potassium bichromate dissolved in concentrated sulphuric acid. The original sample of graphite was mixed with finely grounded potassium bichromate. Then this mass was poured over with 98% concentrated sulphuric acid when being actively stirred and kept. Then the capacitance for oxidation was filled with distilled water. Decantation was carried out until pH=7 in the waste water was got. Separation of the oxidized graphite from the main mass of water was carried out by means of a suction filter until pH=7 was got. Experiments were performed at different ratios of potassium bichromate, sulphuric acid and graphite. The optimum ratio of the components (sulphuric acid : (dichromate of potash : (graphite = 2,8 : 0,15 : 1 was found. The oxidation time was 4–5 minutes. The oxidized graphite turned into thermographenit with bulk density of 2,7–9,5 kg/m3.upon subsequent heating up to 1000oC within the regime of

  4. Graphite oxide/β-Ni(OH)2 composites for application in supercapacitors

    Singh, Arvinder; Chandra, Amreesh

    2013-06-01

    Graphite oxide/β-Ni(OH)2 composites have been investigated as electrode material in supercapacitors. Phase formation of electrode material is investigated using diffraction measurements. Particle shape-size studies show deposition of β-Ni(OH)2 nanoparticles on graphite oxide (GO) sheets. Electrochemical performance of GO/β-Ni(OH)2 composite in supercapacitors is discussed based on the analysis of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge studies. Excellent energy density of ˜53 Wh/kg in 1M Na2SO4 aqueous electrolyte is reported at power density of ˜1364W/kg. The significance of results is discussed in the paper.

  5. Zinc (hydr)oxide/graphite oxide/AuNPs composites: role of surface features in H₂S reactive adsorption.

    Giannakoudakis, Dimitrios A; Bandosz, Teresa J

    2014-12-15

    Zinc hydroxide/graphite oxide/AuNPs composites with various levels of complexity were synthesized using an in situ precipitation method. Then they were used as H2S adsorbents in visible light. The materials' surfaces were characterized before and after H2S adsorption by various physical and chemical methods (XRD, FTIR, thermal analysis, potentiometric titration, adsorption of nitrogen and SEM/EDX). Significant differences in surface features and synergistic effects were found depending on the materials' composition. Addition of graphite oxide and the deposition of gold nanoparticles resulted in a marked increase in the adsorption capacity in comparison with that on the zinc hydroxide and zinc hydroxide/AuNP. Addition of AuNPs to zinc hydroxide led to a crystalline ZnO/AuNP composite while the zinc hydroxide/graphite oxide/AuNP composite was amorphous. The ZnOH/GO/AuNPs composite exhibited the greatest H2S adsorption capacity due to the increased number of OH terminal groups and the conductive properties of GO that facilitated the electron transfer and consequently the formation of superoxide ions promoting oxidation of hydrogen sulfide. AuNPs present in the composite increased the conductivity, helped with electron transfer to oxygen, and prevented the fast recombination of the electrons and holes. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Oriented Arrays of Graphene in a Polymer Matrix by in situ Reduction of Graphite Oxide Nanosheets

    Ansari, Seema

    2010-01-18

    Graphite oxide-Nafion hybrids with a high degree of alignment are cast from aqueous solution in the absence of any external field and reduced in situ by exposure to hydrazine to produce graphene-Nafion hybrids. Dramatic enhancement of electrical conductivity indicates sufficient accessibility of the inorganic nanosheets to the reducing agent, through the nanochannels formed by the polymeric ionic domains. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode

    Yu Lin; Duan Jizhou; Zhao Wei; Huang Yanliang; Hou Baorong

    2011-01-01

    Highlights: → The sulphate-reducing bacteria (SRB) have the ability to catalyze the hydrogen evolution and oxidation on pyrolytic graphite electrode. → The SRB biofilm decreases the overpotential and electron transfer resistance by the CV and EIS detection. → The SRB biofilm can transfer electrons to the 0.24 V polarized pyrolytic graphite electrode and the maximum current is 0.035 mA, which is attributed to SRB catalyzed hydrogen oxidation. → The SRB biofilm also can obtain electron from the -0.61 V polarized PGE to catalyze the hydrogen evolution. - Abstract: Hydrogenase, an important electroactive enzyme of sulphate-reducing bacteria (SRB), has been discovered having the capacity to connect its activity to solid electrodes by catalyzing hydrogen evolution and oxidation. However, little attention has been paid to similar electroactive characteristics of SRB. In this study, the electroactivities of pyrolytic graphite electrode (PGE) coated with SRB biofilm were investigated. Two corresponding redox peaks were observed by cyclic voltammetry detection, which were related to the hydrogen evolution and oxidation. Moreover, the overpotential for the reactions decreased by about 0.2 V in the presence of the SRB biofilm. When the PGE coated with the SRB biofilm was polarized at 0.24 V (vs. SHE), an oxidation current related to the hydrogen oxidation was found. The SRB biofilm was able to obtain electrons from the -0.61 V (vs. SHE) polarized PGE to form hydrogen, and the electron transfer resistance also decreased with the formation of SRB biofilm, as measured by the non-destructive electrochemical impendence spectroscopy detection. It was concluded that the hydrogen evolution and oxidation was an important way for the electron transfer between SRB biofilm and solid electrode in anaerobic environment.

  8. Self-propagating solar light reduction of graphite oxide in water

    Todorova, N.; Giannakopoulou, T.; Boukos, N.; Vermisoglou, E. [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece); Lekakou, C. [Division of Mechanical, Medical, and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom); Trapalis, C., E-mail: c.trapalis@inn.demokritos.gr [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece)

    2017-01-01

    Highlights: • Graphite oxide was partially reduced by solar light irradiation in water media. • No addition of catalysts nor reductive agent were used for the reduction. • Specific capacitance increased stepwise with increase of irradiation time. • Self-propagating reduction of graphene oxide by solar light is suggested. - Abstract: Graphite Oxide (GtO) is commonly used as an intermediate material for preparation of graphene in the form of reduced graphene oxide (rGO). Being a semiconductor with tunable band gap rGO is often coupled with various photocatalysts to enhance their visible light activity. The behavior of such rGO-based composites could be affected after prolonged exposure to solar light. In the present work, the alteration of the GtO properties under solar light irradiation is investigated. Water dispersions of GtO manufactured by oxidation of natural graphite via Hummers method were irradiated into solar light simulator for different periods of time without addition of catalysts or reductive agent. The FT-IR analysis of the treated dispersions revealed gradual reduction of the GtO with the increase of the irradiation time. The XRD, FT-IR and XPS analyses of the obtained solid materials confirmed the transition of GtO to rGO under solar light irradiation. The reduction of the GtO was also manifested by the CV measurements that revealed stepwise increase of the specific capacitance connected with the restoration of the sp{sup 2} domains. Photothermal self-propagating reduction of graphene oxide in aqueous media under solar light irradiation is suggested as a possible mechanism. The self-photoreduction of GtO utilizing solar light provides a green, sustainable route towards preparation of reduced graphene oxide. However, the instability of the GtO and partially reduced GO under irradiation should be considered when choosing the field of its application.

  9. Effects of reaction temperature and inlet oxidizing gas flow rate on IG-110 graphite oxidation used in HTR-PM

    Sun Ximing; Dong Yujie; Zhou Yangping; Shi Lei; Sun Yuliang; Zhang Zuoyi; Li Zhengcao

    2017-01-01

    The oxidation behavior of a selected nuclear graphite (IG-110) used in Pebble-bed Module High Temperature gas-cooled Reactor was investigated under the condition of air ingress accident. The oblate rectangular specimen was oxidized by oxidant gas with oxygen mole fraction of 20% and flow rates of 125–500 ml/min at temperature of 400–1200°C. Experiment results indicate that the oxidation behavior can also be classified into three regimes according to temperature. The regime I at 400–550°C has lower apparent activation energies of 75.57–138.59 kJ/mol when the gas flow rate is 125–500 ml/min. In the regime II at 600–900°C, the oxidation rate restricted by the oxygen supply to graphite is almost stable with the increase of temperature. In the regime III above 900°C, the oxidation rate increases obviously with the increase of temperature.With the increase of inlet gas flow from 125 to 500 ml/min, the apparent activation energy in regime I is increased and the stableness of oxidation rate in regime II is reduced. (author)

  10. Effects of the Air Flow Rate on The Oxidation of NBG-18 and 25 Nuclear Graphite Grades

    Chi, Se-Hwan; Kim, Gen-Chan; Jang, Joon-Hee

    2007-01-01

    For a VHTR, graphite oxidation is regarded as a critical phenomenon for degrading the integrity of graphite components under normal or abnormal conditions. The oxidation of a graphite core component can occur by air which may permeate into the primary coolant operation and/or by impurities contained in the He coolant, or by air ingress during a severe accident. It is well known that the oxidation properties of a graphite are highly dependent on the source of raw materials, impurities, microstructures (crystallites, pore structure), and on the processing and environmental parameters, such as the forming methods, the coolant type, moisture and impurity content, temperature, flow rate and the oxygen potential of the coolants. A lot of work has been performed on the oxidation of graphite since the 1960s, and, for example, in the case of the temperature, a widely accepted oxidation model on the effects of a temperature has already been developed. However, in the case of the flow rate, even for its expected effects in a VHTR, for example, as to the expected changes in the bypass flow (10-20 %) during an operation, no systematic works have been performed. In this respect, as a preliminary study, the effects of an air flow rate on the oxidation of NBG-18 and 25 nuclear graphite were investigated

  11. Graphitic carbon nitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid

    Zhang, Hanqiang; Huang, Qitong; Huang, Yihong; Li, Feiming; Zhang, Wuxiang; Wei, Chan; Chen, Jianhua; Dai, Pingwang; Huang, Lizhang; Huang, Zhouyi; Kang, Lianping; Hu, Shirong; Hao, Aiyou

    2014-01-01

    Graphical abstract: Schematic drawing of electrochemical oxidize AA, DA and UA on graphitic carbon nitride nanosheets-graphene oxide composite modified electrode. - Highlights: • Synthesize g-C 3 N 4 , GO and CNNS-GO composite. • CNNS-GO composite was the first time for simultaneous determination of AA, DA and UA. • CNNS-GO/GCE displays fantastic selectivity and sensitivity for AA, DA and UA. • CNNS-GO/GCE was applied to detect real sample with satisfactory results. - Abstract: Graphitic carbon nitride nanosheets with a graphite-like structure have strong covalent bonds between carbon and nitride atoms, and nitrogen atoms in the carbon architecture can accelerate the electron transfer and enhance electrical properties effectually. The graphitic carbon nitride nanosheets-graphene oxide composite was synthesized. And the electrochemical performance of the composite was investigated by cyclic voltammetry and differential pulse voltammetry ulteriorly. Due to the synergistic effects of layer-by-layer structures by π-π stacking or charge-transfer interactions, graphitic carbon nitride nanosheets-graphene oxide composite can improved conductivity, electro-catalytic and selective oxidation performance. The proposed graphitic carbon nitride nanosheets-graphene oxide composite modified electrode was employed for simultaneous determination of ascorbic acid, dopamine and uric acid in their mixture solution, it exhibited distinguished sensitivity, wide linear range and low detection limit. Moreover, the modified electrode was applied to detect urine and dopamine injection sample, and then the samples were spiked with certain concentration of three substances with satisfactory recovery results

  12. Electrodeposition of Manganese-Nickel Oxide Films on a Graphite Sheet for Electrochemical Capacitor Applications

    Hae-Min Lee

    2014-01-01

    Full Text Available Manganese-nickel (Mn-Ni oxide films were electrodeposited on a graphite sheet in a bath consisting of manganese acetate and nickel chloride, and the structural, morphological, and electrochemical properties of these films were investigated. The electrodeposited Mn-Ni oxide films had porous structures covered with nanofibers. The X-ray diffractometer pattern revealed the presence of separate manganese oxide (g-MnO2 and nickel oxide (NiO in the films. The electrodeposited Mn-Ni oxide electrode exhibited a specific capacitance of 424 F/g in Na2SO4 electrolyte. This electrode maintained 86% of its initial specific capacitance over 2000 cycles of the charge-discharge operation, showing good cycling stability.

  13. Structures and electrochemical performances of pyrolized carbons from graphite oxides for electric double-layer capacitor

    Kim, Ick-Jun; Yang, Sunhye; Jeon, Min-Je; Moon, Seong-In; Kim, Hyun-Soo; Lee, Yoon-Pyo; An, Kye-Hyeok; Lee, Young-Hee

    The structural features and the electrochemical performances of pyrolized needle cokes from oxidized cokes are examined and compared with those of KOH-activated needle coke. The structure of needle coke is changed to a single phase of graphite oxide after oxidation treatment with an acidic solution having an NaClO 3/needle coke composition ratio of above 7.5, and the inter-layer distance of the oxidized needle coke is expanded to 6.9 Å with increasing oxygen content. After heating at 200 °C, the oxidized needle coke is reduced to a graphite structure with an inter-layer distance of 3.6 Å. By contrast, a change in the inter-layer distance in KOH-activated needle coke is not observed. An intercalation of pyrolized needle coke, observed on first charge, occurs at 1.0 V. This value is lower than that of KOH-activation needle coke. A capacitor using pyrolized needle coke exhibits a lower internal resistance of 0.57 Ω in 1 kHz, and a larger capacitance per weight and volume of 30.3 F g -1 and 26.9 F ml -1, in the two-electrode system over the potential range 0-2.5 V compared with those of a capacitor using KOH-activation of needle coke. This better electrochemical performance is attributed to a distorted graphene layer structure derived from the process of the inter-layer expansion and shrinkage.

  14. Acoustic emission from polycrystalline graphites

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  15. The characteristics of TiC and oxidation resistance and mechanical properties of TiC coated graphite under corrosive environment

    Yoda, Shinichi; Oku, Tatsuo; Ioka, Ikuo; Umekawa, Shokichi.

    1982-07-01

    Core region of the Very High Temperature Gas Cooled Reactor (VHTR) consists mainly of polycrystalline graphite whose mechanical properties degradated by corrosion resulting from such impurities as O 2 , H 2 O, and CO 2 in coolant He gas. Mechanical properties and oxidation resistance of TiC coated graphite under corrosive condition were examined in order to evaluate the effects of TiC coating on preventing the graphite from its degradation in service condition of the VHTR. Characteristics of TiC coating was also examined using EPMA. Holding the specimen at 1373 K for 6 hr produced strong interface between TiC coating and the graphite, however, microcracks on TiC coating was observed, the origin of which is ascribed to mismatch in thermal expansion between TiC coating and the graphite. Oxidation rate of TiC coated graphite was one-thirds of that of uncoated graphite, which demonstrated that TiC coating on the graphite improved the oxidation resistance of the graphite. However, debonding of TiC coating layer at the interface was observed after heating for 3 to 4 hr in the oxidation condition. Changes in Young's modulus of TiC coated graphite were a half of that of uncoated graphite. Flexural strength of TiC coated graphite remained at the original value up to about 4 hr oxidation, therafter it decreased abruptly as was the trend of uncoated graphite. It is concluded that TiC coating on graphite materials is very effective in improving oxidation resistance and suppressing degradation of mechanical properties of the graphite. (author)

  16. Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications

    Hansora, D. P.; Shimpi, N. G.; Mishra, S.

    2015-12-01

    This work represents a state-of-the-art technique developed for the preparation of graphene from graphite-metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300-1400 cm-1) and (1500-1600 cm-1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.

  17. Determination of boron in graphite by a wet oxidation decomposition/curcumin photometric method

    Watanabe, Kazuo; Toida, Yukio

    1995-01-01

    The wet oxidation decomposition of graphite materials has been studied for the accurate determination of boron using a curcumin photometric method. A graphite sample of 0.5 g was completely decomposed with a mixture of 5 ml of sulfuric acid, 3 ml of perchloric acid, 0.5 ml of nitric acid and 5 ml of phosphoric acid in a silica 100 ml Erlenmeyer flask fitted with an air condenser at 200degC. Any excess of perchloric and nitric acids in the solution was removed by heating on a hot plate at 150degC. Boron was distilled with methanol, and then recovered in 10 ml of 0.2 M sodium hydroxide. The solution was evaporated to dryness. To the residue were added curcumin-acetic acid and sulfuric-acetic acid. The mixture was diluted with ethanol, and the absorbance at 555 nm was measured. The addition of 5 ml of phosphoric acid proved to be effective to prevent any volatilization loss of boron during decomposition of the graphite sample and evaporation of the resulting solution. The relative standard deviation was 4-8% for samples with 2 μg g -1 levels of boron. The results on CRMs JAERI-G5 and G6 were in good agreement with the certified values. (author)

  18. Nickel Oxide and Nickel Co-doped Graphitic Carbon Nitride Nanocomposites and its Octylphenol Sensing Application

    Gong, Wanyun

    2015-11-16

    Nickel oxide and nickel co-doped graphitic carbon nitride (NiO-Ni-GCN) nanocomposites were successfully prepared by thermal treatment of melamine and NiCl2 6H2O. NiO-Ni-GCN nanocomposites showed superior electrochemical catalytic activity for the oxidation of octylphenol to pure GCN. A detection method of octylphenol in environmental water samples was developed based at NiO-Ni-GCN nanocomposites modified electrode under infrared light irradiation. Differential pulse voltammetry was used as the analytic technique of octylphenol, exhibiting stable and specific concentration-dependent oxidation signal in the presence of octylphenol in the range of 10nM to 1μM and 1μM to 50μM, with a detection limit of 3.3nM (3S/N). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nickel Oxide and Nickel Co-doped Graphitic Carbon Nitride Nanocomposites and its Octylphenol Sensing Application

    Gong, Wanyun; Zou, Jing; Zhang, Sheng; Zhou, Xin; Jiang, Jizhou

    2015-01-01

    Nickel oxide and nickel co-doped graphitic carbon nitride (NiO-Ni-GCN) nanocomposites were successfully prepared by thermal treatment of melamine and NiCl2 6H2O. NiO-Ni-GCN nanocomposites showed superior electrochemical catalytic activity for the oxidation of octylphenol to pure GCN. A detection method of octylphenol in environmental water samples was developed based at NiO-Ni-GCN nanocomposites modified electrode under infrared light irradiation. Differential pulse voltammetry was used as the analytic technique of octylphenol, exhibiting stable and specific concentration-dependent oxidation signal in the presence of octylphenol in the range of 10nM to 1μM and 1μM to 50μM, with a detection limit of 3.3nM (3S/N). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface

    Li, Le [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Zeng, Zhong [Safety Environment Quality Surveillance and Inspection Research Institute of CNPC Chuanqing Drilling & Exploration Corporation, Chengdu 618300 (China); Zou, Huawei, E-mail: hwzou@163.com [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Liang, Mei, E-mail: liangmeiww@163.com [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China)

    2015-08-20

    Highlights: • Functional graphite oxide with amine-rich surface was prepared and characterized. • Kinetic parameters were calculated by Kissinger method and autocatalytic model. • The incorporation of GO and DGO brings in an effect of inhibition on curing. • The inhibition effect weakens for its good compatibility and catalytic effect of DGO. - Abstract: Functional graphite oxide (DGO) with amine-rich surface was successfully prepared through the amidation reaction and characterized by X-ray diffraction analyses (XRD), Fourier transform infrared spectra (FTIR) and Raman spectra. The effects of functional graphite oxide on the curing kinetics of epoxy (EP) were investigated by means of differential scanning calorimetry (DSC). The curing kinetic parameters of EP, EP/graphite oxide (GO) and EP/functional graphite oxide were obtained. There was not much difference in total heat of reaction ΔH and peak temperature T{sub p} with the incorporation of GO or DGO. However, the activation energy, E{sub a}, and the overall order of reaction m + n were enhanced. Comprehensive kinetic analyses indicated that the incorporation of GO sheets brought in an effect of inhibition on curing process. While the inhibition effect weaken when the GO is modified with amine-rich surface. The possible curing mechanism and reaction pathways were proposed to provide a reasonable explanation.

  1. Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface

    Li, Le; Zeng, Zhong; Zou, Huawei; Liang, Mei

    2015-01-01

    Highlights: • Functional graphite oxide with amine-rich surface was prepared and characterized. • Kinetic parameters were calculated by Kissinger method and autocatalytic model. • The incorporation of GO and DGO brings in an effect of inhibition on curing. • The inhibition effect weakens for its good compatibility and catalytic effect of DGO. - Abstract: Functional graphite oxide (DGO) with amine-rich surface was successfully prepared through the amidation reaction and characterized by X-ray diffraction analyses (XRD), Fourier transform infrared spectra (FTIR) and Raman spectra. The effects of functional graphite oxide on the curing kinetics of epoxy (EP) were investigated by means of differential scanning calorimetry (DSC). The curing kinetic parameters of EP, EP/graphite oxide (GO) and EP/functional graphite oxide were obtained. There was not much difference in total heat of reaction ΔH and peak temperature T p with the incorporation of GO or DGO. However, the activation energy, E a , and the overall order of reaction m + n were enhanced. Comprehensive kinetic analyses indicated that the incorporation of GO sheets brought in an effect of inhibition on curing process. While the inhibition effect weaken when the GO is modified with amine-rich surface. The possible curing mechanism and reaction pathways were proposed to provide a reasonable explanation

  2. Kinetic investigation of vanadium (V)/(IV) redox couple on electrochemically oxidized graphite electrodes

    Wang, Wenjun; Wei, Zengfu; Su, Wei; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei; Zeng, Chaoliu

    2016-01-01

    Highlights: • The VO_2"+/VO"2"+ redox reaction of the electrode could be facilitated to some extent with the increasing anodic corrosion. • A real reaction kinetic equation for the oxidation of VO"2"+ on the electrochemically oxidized electrode has been firstly obtained. • The establishment of the kinetic equation is conducive to predict polarization behaviors of the electrodes in engineering application. - Abstract: The morphology, surface composition, wettability and the kinetic parameters of the electrochemically oxidized graphite electrodes obtained under different anodic polarization conditions have been examined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurements, steady-state polarization and cyclic voltammetry (CV) tests, with an attempt to investigate the inherent correlation between the physicochemical properties and the kinetic characteristics for carbon electrodes used in an all-vanadium redox flow battery (VRFB). When the anodic polarization potential raises up to 1.8 V vs. SCE, the anodic corrosion of the graphite might happen and a large number of oxygen-containing functional groups generate. The VO_2"+/VO"2"+ redox reaction can be facilitated and the reaction reversibility tends to become better with the increasing anodic potential, possibly owing to the increased surface oxides and the resulting improved wettability of the electrode. Based on this, a real reaction kinetic equation for the oxidation of VO"2"+ has been obtained on the electrode polarized at 1.8 V vs. SCE and it can be also well used to predict the polarization behavior of the oxidized electrode in vanadium (IV) acidic solutions.

  3. Solvation of graphite oxide in water-methanol binary polar solvents

    You, Shujie; Yu, Junchun; Sundqvist, Bertil; Talyzin, Alexandr V. [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden)

    2012-12-15

    The phase transition between two solvated phases was studied by DSC for graphite oxide (GO) powders immersed in water-methanol mixtures of various compositions. GO forms solid solvates with two different compositions when immersed in methanol. Reversible phase transition between two solvate states due to insertion/desertion of methanol monolayer occurs upon temperature variations. The temperature point and the enthalpy ({Delta}H) of the phase transition are maximal for pure methanol and decrease linearly with increase of water fraction up to 30%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite

    Cai Dongyu; Yusoh, Kamal; Song Mo

    2009-01-01

    Significant reinforcement of polyurethane (PU) using graphite oxide nanoplatelets (GONPs) is reported. Morphologic study shows that, due to the formation of chemical bonding, there is a strong interaction between the GONPs and the hard segment of the PU, which allows effective load transfer. The GONPs can prevent the formation of crystalline hard segments due to their two-dimensional structure. With the incorporation of 4.4 wt% of GONPs, the Young's modulus and hardness of the PU are significantly increased by ∼900% and ∼327%, respectively. The resultant high resistance to scratching indicates promise for application of these composite materials in surface coating.

  5. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  6. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas.

    Poh, Hwee Ling; Šimek, Petr; Sofer, Zdeněk; Pumera, Martin

    2013-06-25

    Doping of graphene with heteroatoms is an effective way to tailor its properties. Here we describe a simple and scalable method of doping graphene lattice with sulfur atoms during the thermal exfoliation process of graphite oxides. The graphite oxides were first prepared by Staudenmaier, Hofmann, and Hummers methods followed by treatments in hydrogen sulfide, sulfur dioxide, or carbon disulfide. The doped materials were characterized by scanning electron microscopy, high-resolution X-ray photoelectron spectroscopy, combustible elemental analysis, and Raman spectroscopy. The ζ-potential and conductivity of sulfur-doped graphenes were also investigated in this paper. It was found that the level of doping is more dramatically influenced by the type of graphite oxide used rather than the type of sulfur-containing gas used during exfoliation. Resulting sulfur-doped graphenes act as metal-free electrocatalysts for an oxygen reduction reaction.

  7. A graphite oxide (GO)-based remote readable tamper evident seal

    Cattaneo, A; Marchi, A N; Farrar, C R; Mascareñas, D D L; Bossert, J A; Gupta, G; Mohite, A; Dumont, J H; Purdy, G M; Guzman, C; Haaker, A; Miller, K A

    2015-01-01

    This paper presents a prototype of a remotely readable graphite oxide (GO) paper-based tamper evident seal. The proposed device combines the tunable electrical properties offered by reduced graphite oxide (RGO) with a compressive sampling scheme. The benefit of using RGO as a tamper evident seal material is the sensitivity of its electrical properties to the common mechanisms adopted to defeat tamper-evident seals. RGO’s electrical properties vary upon local stress or cracks induced by mechanical action (e.g., produced by shimming or lifting attacks). Further, modification of the seal’s electrical properties can result from the incidence of other defeat mechanisms, such as temperature changes, solvent treatment and steam application. The electrical tunability of RGO enables the engraving of a circuit on the area of the tamper evident seal intended to be exposed to malicious attacks. The operation of the tamper evident seal, as well as its remote communication functionality, is supervised by a microcontroller unit (MCU). The MCU uses the RGO-engraved circuitry to physically implement a compressive sampling acquisition procedure. The compressive sampling scheme provides the seal with self-authentication and self-state-of-health awareness capabilities. The prototype shows potential for use in low-power, embedded, remote-operation non-proliferation security related applications. (paper)

  8. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.

  9. A Graphite Oxide Paper Polymer Electrolyte for Direct Methanol Fuel Cells

    Ravi Kumar

    2011-01-01

    Full Text Available A flow directed assembly of graphite oxide solution was used in the formation of free-standing graphene oxide paper of approximate thickness of 100 μm. The GO papers were characterised by XRD and SEM. Electrochemical characterization of the GO paper membrane electrode assembly revealed proton conductivities of 4.1 × 10−2 S cm−1 to 8.2 × 10−2 S cm−1 at temperatures of 25–90°C. A direct methanol fuel cell, at 60°C, gave a peak power density of 8 mW cm−2 at a current density of 35 mA cm−2.

  10. Evaluation of the iPLEX® ADME PGx Pro Panel and allele frequencies of pharmacogenetic markers in Danes

    Jensen, Line; Børsting, Claus; Dalhoff, Kim

    2016-01-01

    of this study was to perform a technical evaluation of the iPlex® ADME PGx Pro Panel by genotyping 50 unrelated Danes and estimate preliminary genotype frequencies among Danes. DESIGN AND METHODS: The investigations were performed by the use of PCR, single base extension (SBE) and Matrix Assisted Laser...

  11. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  12. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Song, Hoon Sub [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Park, Moon Gyu [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Croiset, Eric, E-mail: ecroiset@uwaterloo.ca [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Chen, Zhongwei [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Nam, Sung Chan; Ryu, Ho-Jung [Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Yi, Kwang Bok, E-mail: cosy32@cnu.ac.kr [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of)

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H{sub 2}S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H{sub 2}S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H{sub 2}S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H{sub 2} and CO{sub 2} on H{sub 2}S adsorption was also investigated. The presence of hydrogen in the H{sub 2}S stream had a positive effect on the removal of H{sub 2}S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn{sup 2+}) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO{sub 2}) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H{sub 2}S and CO{sub 2}.

  13. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H2S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H2S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H2S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H2 and CO2 on H2S adsorption was also investigated. The presence of hydrogen in the H2S stream had a positive effect on the removal of H2S since it allows a reducing environment for Znsbnd O and Znsbnd S bonds, leading to more active sites (Zn2+) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO2) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H2S and CO2.

  14. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-01-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H 2 S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H 2 S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H 2 S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H 2 and CO 2 on H 2 S adsorption was also investigated. The presence of hydrogen in the H 2 S stream had a positive effect on the removal of H 2 S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn 2+ ) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO 2 ) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H 2 S and CO 2 .

  15. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide

    Praus, Petr; Svoboda, Ladislav; Ritz, Michal; Troppová, Ivana; Šihor, Marcel; Kočí, Kamila

    2017-01-01

    Graphitic carbon nitride (g-C_3N_4) was synthetized by condensation of melamine at the temperatures of 400–700 °C in air for 2 h and resulting products were characterized and finally tested for the photocatalytic decomposition of nitrous oxide. The characterization methods were elemental analysis, UV–Vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Fourier transform infrared (FTIR) and Raman spectroscopy, measurement of specific surface area (SSA), X-ray powder diffraction (XRD), scanning (SEM) and transmission (TEM) electron microscopy. The XRD patterns, FTIR and Raman spectra proved the presence of g-C_3N_4 at above 550 °C but the optimal synthesis temperature of 600–650 °C was found. Under these conditions graphitic carbon nitride of the overall empirical composition of C_6N_9H_2 was formed. At lower temperatures g-C_3N_4 with a higher content of hydrogen was formed but at higher temperatures g-C_3N_4 was decomposed. At the temperatures above 650 °C, its exfoliation was observed. The photocatalytic experiments showed that the activity of all the samples synthetized at 400–700 °C was very similar, that is, within the range of experimental error (5 %). The total conversion of N_2O reached about 43 % after 14 h. - Highlights: • Graphitic carbon nitride (g-C_3N_4) was thermally synthetized from melamine in the range of 400–700 °C. • The optimal temperature was determined at 600–650 °C. • All synthesis products were properly characterized by physico-chemical methods. • Exfoliation of g-C_3N_4 at above 600 °C was observed. • g-C_3N_4 was used for the photocatalytic decomposition of N_2O.

  16. Searching for magnetism in hydrogenated graphene: Using highly hydrogenated graphene prepared via birch reduction of graphite oxides

    Eng, A.Y.S.; Poh, H. L.; Šaněk, F.; Maryško, Miroslav; Matějková, Stanislava; Šofer, Z.; Pumera, M.

    2013-01-01

    Roč. 7, č. 7 (2013), s. 5930-5939 ISSN 1936-0851 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 ; RVO:61388963 Keywords : hydrogenated graphene * graphane * graphite oxide * ferromagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UOCHB-X) Impact factor: 12.033, year: 2013

  17. Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion

    Wierzbicki, Mateusz; Jaworski, Slawomir; Kutwin, Marta

    2017-01-01

    The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug...... that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment....

  18. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition

    D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.

    2012-05-01

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e

  19. In situ emulsion cationic polymerization of isoprene onto the surface of graphite oxide sheets

    Pazat, Alice [Ingénierie des Matériaux Polymères, IMP, CNRS UMR 5223, Université Claude Bernard Lyon 1 and INSA de Lyon, 15 boulevard Latarjet, 69122 Villeurbanne cedex (France); Laboratoire de Recherches et de Contrôle du Caoutchouc et des Plastiques, LRCCP, 60 rue Auber, 94408 Vitry-sur-Seine cedex (France); Beyou, Emmanuel, E-mail: beyou@univ-lyon1.fr [Ingénierie des Matériaux Polymères, IMP, CNRS UMR 5223, Université Claude Bernard Lyon 1 and INSA de Lyon, 15 boulevard Latarjet, 69122 Villeurbanne cedex (France); Barrès, Claire [Ingénierie des Matériaux Polymères, IMP, CNRS UMR 5223, Université Claude Bernard Lyon 1 and INSA de Lyon, 15 boulevard Latarjet, 69122 Villeurbanne cedex (France); Bruno, Florence; Janin, Claude [Laboratoire de Recherches et de Contrôle du Caoutchouc et des Plastiques, LRCCP, 60 rue Auber, 94408 Vitry-sur-Seine cedex (France)

    2017-02-28

    Highlights: • Graphite oxide sheets were functionalized by polyisoprene in a two steps procedure. • The polyisoprene chains were grafted onto functionalized GO sheets by the grafting through technique. • A polyisoprene weight content of 50% was calculated from TGA measurements. • A decrease of the air permeability coefficient of 27% for the vulcanized PI composites has been reached. - Abstract: Grafting of polymers onto graphite oxide sheets (GO) has been widely studied in recent years due to the numerous applications of GO-based composites. Herein, polyisoprene (PI) chains were anchored on the surface of GO by in situ cationic polymerization using a “grafting through” approach with allyltrimethoxysilane-modified GO (GO-ATMS). First, the functionalization of GO sheets through the hydrolysis-condensation of allyltrimethoxysilane (ATMS) molecules was qualitatively evidenced by infra-red spectroscopy and X-ray photoelectron spectrometry and a weight content of 4% grafted ATMS was calculated from thermogravimetric analysis. Then, isoprene was in situ polymerized through a one-pot cationic mechanism by using a highly water-dispersible Lewis acid surfactant combined catalyst. For comparison, it was shown that the cationic polymerization of isoprene in presence of un-functionalized GO sheets led to a polyisoprene weight content on the solid filler divided by 3 compared to GO-ATMS. Finally, the compounding of the modified GO/PI composites was performed at a processing temperature of 80 °C with 2 phr and 15 phr loadings and it was shown a decrease of the air permeability coefficient of 27% for the vulcanizates with 15 phr loading.

  20. In situ emulsion cationic polymerization of isoprene onto the surface of graphite oxide sheets

    Pazat, Alice; Beyou, Emmanuel; Barrès, Claire; Bruno, Florence; Janin, Claude

    2017-01-01

    Highlights: • Graphite oxide sheets were functionalized by polyisoprene in a two steps procedure. • The polyisoprene chains were grafted onto functionalized GO sheets by the grafting through technique. • A polyisoprene weight content of 50% was calculated from TGA measurements. • A decrease of the air permeability coefficient of 27% for the vulcanized PI composites has been reached. - Abstract: Grafting of polymers onto graphite oxide sheets (GO) has been widely studied in recent years due to the numerous applications of GO-based composites. Herein, polyisoprene (PI) chains were anchored on the surface of GO by in situ cationic polymerization using a “grafting through” approach with allyltrimethoxysilane-modified GO (GO-ATMS). First, the functionalization of GO sheets through the hydrolysis-condensation of allyltrimethoxysilane (ATMS) molecules was qualitatively evidenced by infra-red spectroscopy and X-ray photoelectron spectrometry and a weight content of 4% grafted ATMS was calculated from thermogravimetric analysis. Then, isoprene was in situ polymerized through a one-pot cationic mechanism by using a highly water-dispersible Lewis acid surfactant combined catalyst. For comparison, it was shown that the cationic polymerization of isoprene in presence of un-functionalized GO sheets led to a polyisoprene weight content on the solid filler divided by 3 compared to GO-ATMS. Finally, the compounding of the modified GO/PI composites was performed at a processing temperature of 80 °C with 2 phr and 15 phr loadings and it was shown a decrease of the air permeability coefficient of 27% for the vulcanizates with 15 phr loading.

  1. The electrochemical oxidation of organic waste and activated graphite by Ag2+ in nitric acid: a literature study

    Van Alsenoy, V.; Rahier, A.

    1996-08-01

    Organic wastes and activated moderator graphite can be processed by means of combustion, but the incineration of organic waste poses emission problems. The Belgian Nuclear Research Centre SCK-CEN has experience with the treatment of organic wastes. Moreover, the treatment of radioactive graphite will be required since the BR-1 reactor is moderated with 492 tons of graphite. The strong oxidising properties of Ag 2+ are already used in the chemical and nuclear industry to destroy organic waste. We aim to apply the process on radioactive graphite, organic resins and effluents. The reaction mechanisms will be studied, taking into account the thermodynamic and kinetic properties of the different reactions involved. As a first step, this document gives a literature study of the electrochemical oxidation using Ag 2+ . This document presents a thorough literature study, and shows that the oxidative properties of the Ag 2+ ion, which can easily be formed in nitric acid by means of electrolysis, make it an ideal candidate to oxidize organic molecules into carbon dioxide and water on a perfectly well controlled manner. The process has already been used to destroy explosives and toxic organic waste in the nuclear and chemical industry. Chemical, thermodynamic and kinetic aspects of some of the reactions involved are already known and described, other reaction mechanisms are still unknown. On the basis of the information collected so far, the Research and Development group of the Radioactive Waste and Cleanup unit has proposed to start a research programme to define, test, demonstrate and finally apply a safe process for the treatment of radioactive organic material and graphite by electrochemical oxidation using Ag 2+ . Available data confirm that the oxidation of organic material can be carried out safely, leading to the formation of water and carbon dioxide

  2. The electrochemical oxidation of organic waste and activated graphite by Ag{sup 2+} in nitric acid: a literature study

    Van Alsenoy, V.; Rahier, A.

    1996-08-01

    Organic wastes and activated moderator graphite can be processed by means of combustion, but the incineration of organic waste poses emission problems. The Belgian Nuclear Research Centre SCK-CEN has experience with the treatment of organic wastes. Moreover, the treatment of radioactive graphite will be required since the BR-1 reactor is moderated with 492 tons of graphite. The strong oxidising properties of Ag{sup 2+} are already used in the chemical and nuclear industry to destroy organic waste. We aim to apply the process on radioactive graphite, organic resins and effluents. The reaction mechanisms will be studied, taking into account the thermodynamic and kinetic properties of the different reactions involved. As a first step, this document gives a literature study of the electrochemical oxidation using Ag{sup 2+}. This document presents a thorough literature study, and shows that the oxidative properties of the Ag{sup 2+} ion, which can easily be formed in nitric acid by means of electrolysis, make it an ideal candidate to oxidize organic molecules into carbon dioxide and water on a perfectly well controlled manner. The process has already been used to destroy explosives and toxic organic waste in the nuclear and chemical industry. Chemical, thermodynamic and kinetic aspects of some of the reactions involved are already known and described, other reaction mechanisms are still unknown. On the basis of the information collected so far, the Research and Development group of the Radioactive Waste and Cleanup unit has proposed to start a research programme to define, test, demonstrate and finally apply a safe process for the treatment of radioactive organic material and graphite by electrochemical oxidation using Ag{sup 2+}. Available data confirm that the oxidation of organic material can be carried out safely, leading to the formation of water and carbon dioxide.

  3. Adsorption and decomposition of dimethyl methylphosphonate (DMMP) on expanded graphite/metal oxides

    Hung, Wei-Che; Wang, Je-Chuang; Wu, Kuo-Hui

    2018-06-01

    Composites based on expanded graphite (EG) and metal oxides (MOs) were prepared by an explosive combustion and blending method. A metal oxide (Ag2O, CuO or ZnO)-containing phase was employed as a component with reactive functionality, which was supported on EG as a component with adsorptive functionality. The physical properties of the EG/MO composites were examined using SEM and FTIR spectroscopy, the results of which indicated that the MOs were incorporated in the EG matrix after impregnation. Solid state magic angle spinning (MAS) 1H, 31P and cross polarization (CP) MAS 13C NMR studies of the EG/MO composites were performed after adsorption of dimethyl methylphosphonate (DMMP). The FTIR and NMR data showed that the initial uptake occurred through both molecular and reactive adsorption. Molecular adsorption occurred by van der Waals interaction of M(Zn, Cu, Ag)⋯Odbnd P and hydrogen-bond formation to isolated hydroxyl groups. Reactive chemisorption appeared to occur through interaction with both Lewis acid sites and active oxygen species present on the MO surface. The FTIR and NMR results exhibited a trend of reactivity towards DMMP in the order Ag2O > ZnO > CuO, which indicated stronger interaction between the Lewis acid sites and the phosphoryl O atom of DMMP for Ag2O as compared with ZnO and CuO, with concomitant formation of surface-coordinated DMMP and bridge-bonded Osbnd Psbnd O phosphorus oxide species.

  4. Preparation and characterization of expanded graphite/metal oxides for antimicrobial application.

    Hung, Wei-Che; Wu, Kuo-Hui; Lyu, Dong-Yi; Cheng, Ken-Fa; Huang, Wen-Chien

    2017-06-01

    Composite materials based on expanded graphite (EG) and metal oxide (MO) particles was prepared by an explosive combustion and blending method. The objective of the study was to develop EG impregnated with metal oxide particulates (Ag 2 O, CuO and ZnO) and evaluate the level of protection the materials conferred against biological agents. The physical properties of the EG/MO composites were examined using SEM, EDX and XRD spectroscopy, and the results indicated that the MO particles were incorporated into the EG matrix after impregnation. The antimicrobial activities of the EG/MO composites against Gram-positive bacteria, Gram-negative bacteria and Bacillus anthracis were investigated using zone of inhibition, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and plate-counting methods. EG/Ag 2 O exhibited a stronger antibacterial activity than EG/CuO and EG/ZnO, with a MIC of 0.3mg/mL and a MBC of 0.5mg/mL. To the best of our knowledge, few studies have demonstrated that EG/MO composites can inhibit the growth of Bacillus anthracis-adhered cells, thus preventing the process of biofilm formation. Nanoscale metal oxides display enhanced reactive properties toward bacteria due to their high surface area, large number of highly reactive edges, corner defect sites and high surface to volume ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Brazing graphite to graphite

    Peterson, G.R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of graphite

  6. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide

    Praus, Petr, E-mail: petr.praus@vsb.cz [Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Department of Chemistry, Faculty of Metallurgy and Materials Engineering, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Svoboda, Ladislav [Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Department of Chemistry, Faculty of Metallurgy and Materials Engineering, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Ritz, Michal [Department of Chemistry, Faculty of Metallurgy and Materials Engineering, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Troppová, Ivana; Šihor, Marcel; Kočí, Kamila [Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic)

    2017-06-01

    Graphitic carbon nitride (g-C{sub 3}N{sub 4}) was synthetized by condensation of melamine at the temperatures of 400–700 °C in air for 2 h and resulting products were characterized and finally tested for the photocatalytic decomposition of nitrous oxide. The characterization methods were elemental analysis, UV–Vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Fourier transform infrared (FTIR) and Raman spectroscopy, measurement of specific surface area (SSA), X-ray powder diffraction (XRD), scanning (SEM) and transmission (TEM) electron microscopy. The XRD patterns, FTIR and Raman spectra proved the presence of g-C{sub 3}N{sub 4} at above 550 °C but the optimal synthesis temperature of 600–650 °C was found. Under these conditions graphitic carbon nitride of the overall empirical composition of C{sub 6}N{sub 9}H{sub 2} was formed. At lower temperatures g-C{sub 3}N{sub 4} with a higher content of hydrogen was formed but at higher temperatures g-C{sub 3}N{sub 4} was decomposed. At the temperatures above 650 °C, its exfoliation was observed. The photocatalytic experiments showed that the activity of all the samples synthetized at 400–700 °C was very similar, that is, within the range of experimental error (5 %). The total conversion of N{sub 2}O reached about 43 % after 14 h. - Highlights: • Graphitic carbon nitride (g-C{sub 3}N{sub 4}) was thermally synthetized from melamine in the range of 400–700 °C. • The optimal temperature was determined at 600–650 °C. • All synthesis products were properly characterized by physico-chemical methods. • Exfoliation of g-C{sub 3}N{sub 4} at above 600 °C was observed. • g-C{sub 3}N{sub 4} was used for the photocatalytic decomposition of N{sub 2}O.

  7. Effect of biomass concentration on methane oxidation activity using mature compost and graphite granules as substrata.

    Xie, S; O'Dwyer, T; Freguia, S; Pikaar, I; Clarke, W P

    2016-10-01

    Reported methane oxidation activity (MOA) varies widely for common landfill cover materials. Variation is expected due to differences in surface area, the composition of the substratum and culturing conditions. MOA per methanotrophic cell has been calculated in the study of natural systems such as lake sediments to examine the inherent conditions for methanotrophic activity. In this study, biomass normalised MOA (i.e., MOA per methanotophic cell) was measured on stabilised compost, a commonly used cover in landfills, and on graphite granules, an inert substratum widely used in microbial electrosynthesis studies. After initially enriching methanotrophs on both substrata, biomass normalised MOA was quantified under excess oxygen and limiting methane conditions in 160ml serum vials on both substrata and blends of the substrata. Biomass concentration was measured using the bicinchoninic acid assay for microbial protein. The biomass normalised MOA was consistent across all compost-to-graphite granules blends, but varied with time, reflecting the growth phase of the microorganisms. The biomass normalised MOA ranged from 0.069±0.006μmol CH4/mg dry biomass/h during active growth, to 0.024±0.001μmol CH4/mg dry biomass/h for established biofilms regardless of the substrata employed, indicating the substrata were equally effective in terms of inherent composition. The correlation of MOA with biomass is consistent with studies on methanotrophic activity in natural systems, but biomass normalised MOA varies by over 5 orders of magnitude between studies. This is partially due to different methods being used to quantify biomass, such as pmoA gene quantification and the culture dependent Most Probable Number method, but also indicates that long term exposure of materials to a supply of methane in an aerobic environment, as can occur in natural systems, leads to the enrichment and adaptation of types suitable for those conditions. Copyright © 2016 Elsevier Ltd. All rights

  8. Graphite surface topography induced by Ta cluster impact and oxidative etching

    Reimann, C.T.; Olsson, L.; Erlandsson, R.; Henkel, M.; Urbassek, H.M.

    1998-01-01

    Freshly cleaved highly oriented pyrolytic graphite (HOPG), when baked in air at ∝630 C, forms one-monolayer(ML)-deep circular pits due to oxidation initiated at surface defect sites. We found that the areal density and depths of these pits could be modulated by deliberately introducing surface and sub-surface defects by energetic ion bombardment prior to baking. Bombardment by 555-eV/atom Ta 1 + , Ta 2 + , Ta 4 + , or Ta 9 + , always enhanced the areal density of etch pits, but only bombardment by Ta 4 + , or Ta 9 + significantly enhanced the depths of the pits. We performed molecular dynamics simulations of Ta n cluster bombardment of HOPG (n = 1, 2, 4, and 9) with the aim of characterizing the damage structures induced by the bombardment and correlating them with the experimental data. For Ta 9 + , the simulations showed a high level of damage extending from the surface down to nine MLs, in agreement with the most probable etch pit depth observed. For other cluster species, predicted etch pit depths were deeper than the observed ones. Annealing or steric requirements for initiating oxidation may account for some of the differences between simulations and experimental results. (orig.)

  9. Effect of chemical heterogeneity on photoluminescence of graphite oxide treated with S-/N-containing modifiers

    Ebrahim, Amani M.; Rodríguez-Castellón, Enrique; Montenegro, José María; Bandosz, Teresa J.

    2015-03-01

    Graphite oxide (GO) obtained using Hummers method was modified by hydrothermal treatment either with sulfanilic acid or polystyrene (3-ammonium) sulfonate at 100 °C or 85 °C, respectively. Both modifiers contain sulfur in the oxidized forms and nitrogen in the reduced forms. The materials were characterized using FTIR, XPS, thermal analysis, potentiometric titration and SEM. Their photoluminescent properties and their alteration with an addition of Ag+ were also measured. As a result of these modifications nitrogen was introduced to the graphene layers as amines, imides, amides, and sulfur as sulfones and sulfonic acids. Moreover, the presence of polyaniline was detected. This significantly affected the polarity, acid-base character, and conductivity of the materials. Apparently carboxylic groups of GO were involved in the surface reactions. The modified GOs lost their layered structure and the modifications resulted in the high degree of structural and chemical heterogeneity. Photoluminescence in visible light was recorded and linked to the presence of heteroatoms. For the polystyrene (3-ammonium) sulfonate modified sample addition of Ag+ quenched the photoluminescence at low wavelength showing sensitivity as a possible optical detector. No apparent effect was found for the sulfanilic acid modified sample.

  10. Ruthenium(III) diphenyldithiocarbamate as mediator for the electrocatalytic oxidation of sulfhydryl compounds at graphite electrode

    Nalini, B.; Sriman Narayanan, S.

    1998-01-01

    Ruthenium(III) diphenyldithiocarbamate was used as mediator to modify graphite electrode by abrasive method. The modified electrode was characterized electrochemically by cyclic voltammetry. The electrode was scanned between 0.0 V to +0.8 V. An anodic peak at + 0.39 V and a cathodic peak at +0.24 V have been observed for a scan rate of 100 mV/s. The electrode has been characterized at various scan rate and pHs in 0.1 M KNO 3 solution. Sulfhydryl compounds, cysteine and glutathione, were electro catalytically oxidised at the modified electrode. pH variation was studied to optimize the conditions for their estimation. Linear response for cysteine is in the range of 0.00-15.20 ppm, with a correlation coefficient (r), of 0.9993. The linear range for glutathione is 0.00-30.40 ppm, with a value of 0.999 for r. The electrocatalytic oxidation of both cysteine and glutathione gave reproducible current values with a standard deviation of 0.1686 for 10 repetitive determinations. The stability and reproducibility of the electrode for the determination of cysteine and glutathione were also discussed. The electrocatalytic oxidation of the sulfhydryl compounds were also studied in hydrodynamic environment. (author)

  11. Analysis of the deconvolution of the thermoluminescent curve of the zirconium oxide doped with graphite

    Salas C, P.; Estrada G, R.; Gonzalez M, P.R.; Mendoza A, D.

    2003-01-01

    In this work, we present a mathematical analysis of the behavior of the thermoluminescent curve (Tl) induced by gamma radiation in samples made of zirconium oxide doped with different amounts of graphite. In accordance with the results gamma radiation induces a Tl curve with two maximum of emission localized in the temperatures at 139 and 250 C, the area under the curve is increasing as a function of the time of exposition to the radiation. The analysis of curve deconvolution, in accordance with the theory which indicates that this behavior must be obey a Boltzmann distribution, we found that each one of them has a different growth velocity as the time of exposition increase. In the same way, we observed that after the irradiation was suspended each one of the maximum decrease with different velocity. The behaviour observed in the samples is very interesting because the zirconium oxide has attracted the interest of many research groups, this material has demonstrated to have many applications in thermoluminescent dosimetry and it can be used in the quantification of radiation. (Author)

  12. Coating manganese oxide onto graphite electrodes by immersion for electrochemical capacitors

    Lin, C.-C.; Chen, H.-W.

    2009-01-01

    In this study, manganese oxide was coated on a graphite electrode by immersion. Durations for immersion were varied to control the amount of manganese oxide coated onto the electrode surface. Maximum capacitance of 556 mF cm -2 was obtained in 0.5 M LiCl and with better/superior conditions (immersion time = 80 min and potential scan rate = 10 mV s -1 ). In addition, cyclic voltammograms of the prepared electrode at different potential scan rates exhibited the approximately rectangular and symmetric current-potential characteristics of a capacitor. Furthermore, the chronopotentiometry (CP) charge-discharge curves of the electrode prepared at 80 min of immersion time with a constant current of 1 mA were symmetric and similar isosceles triangles, which demonstrate its high electrochemical reversibility and good stability. Finally, under scanning electron microscope (SEM), the surface of the electrode prepared at 80 min of immersion time and after 1500 cycles of potential cycling revealed that numerously three-dimensional network of macropores appeared on large spherical grains

  13. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties.

    Megawati, Monica; Chua, Chun Kiang; Sofer, Zdenek; Klímová, Kateřina; Pumera, Martin

    2017-06-21

    Graphene, produced via chemical methods, has been widely applied for electrochemical sensing due to its structural and electrochemical properties as well as its ease of production in large quantity. While nitrogen-doped graphenes are widely studied materials, the literature showing an effect of graphene oxide preparation methods on nitrogen quantity and chemical states as well as on defects and, in turn, on electrochemical sensing is non-existent. In this study, the properties of nitrogen-doped graphene materials, prepared via hydrothermal synthesis using graphite oxide produced by various classical methods using permanganate or chlorate oxidants Staudenmaier, Hummers, Hofmann and Brodie oxidation methods, were studied; the resulting nitrogen-doped graphene oxides were labeled as ST-GO, HU-GO, HO-GO and BR-GO, respectively. The electrochemical oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine, nicotinamide adenine nucleotide and DNA free bases, was carried out using cyclic voltammetry and differential pulse voltammetry techniques. The nitrogen content in doped graphene oxides increased in the order ST-GO graphene followed this trend, as shown in the cyclic voltammograms. This is a very important finding that provides insight into the electrocatalytic effect of N-doped graphene. The nitrogen-doped graphene materials exhibited improved sensitivity over bare glassy carbon for ascorbic acid, uric acid and dopamine detection. These studies will enhance our understanding of the effects of graphite oxide precursors on the electrochemical sensing properties of nitrogen-doped graphene materials.

  14. Special graphites; Graphites speciaux

    Leveque, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [French] Ameliorer les proprietes du graphite nucleaire pour empilements et ouvrir de nouveaux domaines d'application au graphite constituent une part importante de l'effort entrepris en commun par le Commissariat a l'Energie Atomique (CEA) et la compagnie PECHINEY. Des procedes nouveaux de fabrication de carbones et graphites speciaux ont ete mis au point: graphite forge, pyrocarbone, graphite de haute densite, agglomeration de poudres de graphite par craquage de gaz naturel, graphites impermeables. Les proprietes physiques de ces produits ainsi que leur reaction avec differents gaz oxydants sont decrites. Les premiers resultats d'irradiation sont aussi donnes. (auteurs)

  15. Enhancing the oxidation resistance of graphite by applying an SiC coat with crack healing at an elevated temperature

    Park, Jae-Won, E-mail: pjw@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeok-Daero, Yuseong-Gu, Daejeon-City (Korea, Republic of); Kim, Eung-Seon; Kim, Jae-Un [Korea Atomic Energy Research Institute, 1045 Daedeok-Daero, Yuseong-Gu, Daejeon-City (Korea, Republic of); Kim, Yootaek [Dept. of Materials Engineering, Kyonggi Universtiy, Suwon (Korea, Republic of); Windes, William E. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2016-08-15

    Highlights: • Ion beam mixed SiC coating was performed on the graphite for the enhanced adhesion. • The SiC coated was cracked at the elevated temperature, confirming the strong bonding, and then was vigorously oxidized leaving only the SiC layer. • For crack healing, CVD crack healing increased by ∼4 times in 20% weight reduction in air at 900 °C as compared to PVD crack healing. - Abstract: The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.

  16. Oxidation kinetics of innovative carbon materials with respect to severe air ingress accidents in HTRs and graphite disposal or processing

    Schloegel, Baerbel

    2010-01-01

    Currently future nuclear reactor concepts of the Fourth Generation (Gen IV) are under development. To some extend they apply with new, innovative materials developed just for this purpose. This thesis work aims at a concept of Generation IV Very High Temperature Reactors (VHTR) in the framework of the European project RAPHAEL (ReActor for Process heat, Hydrogen And ELectricity generation). The concept named ANTARES (AREVA New Technology based on advanced gas-cooled Reactors for Energy Supply) was developed by AEVA NP. It is a helium cooled, graphite moderated modular reactor for electricity and hydrogen production, by providing the necessary process heat due to its high working temperature. Particular attention is given here to oxidation kinetics of newly developed carbon materials (NBG-17) with still unknown but needed information in context of severe air ingress accident in VHTR's. Special interest is paid to the Boudouard reaction, the oxidation of carbon by CO 2 . In case of an air ingress accident, carbon dioxide is produced in the primary reaction of atmospheric oxygen with reflector graphite. From there CO 2 could flow into the reactor core causing further damage by conversion into CO. The purpose of this thesis is to ascertain if and to what degree this could happen. First of all oxidation kinetic data of the Boudouard reaction with NBG-17 is determined by experiments in a thermo gravimetric facility. The measurements are evaluated and converted into a common formula and a Langmuir-Hinshelwood similar oxidation kinetic equation, as input for the computer code REACT/THERMIX. This code is then applied to analyse severe air ingress accidents for several air flow rates. The results are discussed for two accident situations, in which a certain graphite burn off is achieved. All cases show much more damage to the graphite bottom reflector than to the reactor core. Thus the bottom reflector will lose its structural integrity much earlier than the core itself will

  17. Enhancing the oxidation resistance of graphite by applying an SiC coat with crack healing at an elevated temperature

    Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.

    2016-01-01

    Highlights: • Ion beam mixed SiC coating was performed on the graphite for the enhanced adhesion. • The SiC coated was cracked at the elevated temperature, confirming the strong bonding, and then was vigorously oxidized leaving only the SiC layer. • For crack healing, CVD crack healing increased by ∼4 times in 20% weight reduction in air at 900 °C as compared to PVD crack healing. - Abstract: The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.

  18. Enhancing the oxidation resistance of graphite by applying an SiC coat with crack healing at an elevated temperature

    Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.

    2016-08-01

    The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.

  19. Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene.

    Seredych, Mykola; Mabayoje, Oluwaniyi; Bandosz, Teresa J

    2012-01-17

    Composites of zinc(oxy)hydroxide-graphite oxide and of zinc(oxy)hydroxide-graphene were used as adsorbents of hydrogen sulfide under ambient conditions. The initial and exhausted samples were characterized by XRD, FTIR, potentiometric titration, EDX, thermal analysis, and nitrogen adsorption. An increase in the amount of H(2)S adsorbed/oxidized on their surfaces in comparison with that of pure Zn(OH)(2) is linked to the structure of the composite, the relative number of terminal hydroxyls, and the kind of graphene-based phase used. Although terminal groups are activated by a photochemical process, the graphite oxide component owing to the chemical bonds with the zinc(oxy)hydroxide phase and conductive properties helps in electron transfer, leading to more efficient oxygen activation via the formation of superoxide ions. Elemental sulfur, zinc sulfide, sulfite, and sulfate are formed on the surface. The formation of sulfur compounds on the surface of zinc(oxy)hydroxide during the course of the breakthrough experiments and thus Zn(OH)(2)-ZnS heterojunctions can also contribute to the increased surface activity of our materials. The results show the superiority of graphite oxide in the formation of composites owing to its active surface chemistry and the possibility of interface bond formation, leading to an increase in the number of electron-transfer reactions. © 2011 American Chemical Society

  20. Direct electrochemical oxidation of ammonia on graphite as a treatment option for stored source-separated urine.

    Zöllig, Hanspeter; Fritzsche, Cristina; Morgenroth, Eberhard; Udert, Kai M

    2015-02-01

    Electrolysis can be a viable technology for ammonia removal from source-separated urine. Compared to biological nitrogen removal, electrolysis is more robust and is highly amenable to automation, which makes it especially attractive for on-site reactors. In electrolytic wastewater treatment, ammonia is usually removed by indirect oxidation through active chlorine which is produced in-situ at elevated anode potentials. However, the evolution of chlorine can lead to the formation of chlorate, perchlorate, chlorinated organic by-products and chloramines that are toxic. This study focuses on using direct ammonia oxidation on graphite at low anode potentials in order to overcome the formation of toxic by-products. With the aid of cyclic voltammetry, we demonstrated that graphite is active for direct ammonia oxidation without concomitant chlorine formation if the anode potential is between 1.1 and 1.6 V vs. SHE (standard hydrogen electrode). A comparison of potentiostatic bulk electrolysis experiments in synthetic stored urine with and without chloride confirmed that ammonia was removed exclusively by continuous direct oxidation. Direct oxidation required high pH values (pH > 9) because free ammonia was the actual reactant. In real stored urine (pH = 9.0), an ammonia removal rate of 2.9 ± 0.3 gN·m(-2)·d(-1) was achieved and the specific energy demand was 42 Wh·gN(-1) at an anode potential of 1.31 V vs. SHE. The measurements of chlorate and perchlorate as well as selected chlorinated organic by-products confirmed that no chlorinated by-products were formed in real urine. Electrode corrosion through graphite exfoliation was prevented and the surface was not poisoned by intermediate oxidation products. We conclude that direct ammonia oxidation on graphite electrodes is a treatment option for source-separated urine with three major advantages: The formation of chlorinated by-products is prevented, less energy is consumed than in indirect ammonia oxidation and

  1. Dosage of boron traces in graphite, uranium and beryllium oxide; Dosage de traces de bore dans le graphite, l'uranium et l'oxyde de beryllium

    Coursier, J [Ecole Nationale Superieure de Physique et Chimie Industrielles, 75 - Paris (France); Hure, J; Platzer, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.) [French] Le probleme du dosage du bore dans les materiaux servant a la construction de reacteurs nucleaires se pose de la facon suivante: determiner a environ 0,1 ppm pres des quantites de bore de l'ordre de quelques dixiemes de ppm. Nous avons choisit la colorimetrie a la curcumine comme methode de dosage. Pour atteindre les teneurs indiquees, il est necessaire d'effectuer une separation prealable du bore et des materiaux de base, soit par extraction du fluoborate de tetraphenylarsonium dans le cas du dosage de bore dans l'uranium et l'oxyde de beryllium, soit par l'utilisation d'une resine echangeuse de cations dans le cas du graphite. (M.B.)

  2. Facile Synthesis of Nitrogen Doped Graphene Oxide from Graphite Flakes and Powders: A Comparison of Their Surface Chemistry.

    Yokwana, Kholiswa; Ray, Sekhar C; Khenfouch, Mohammad; Kuvarega, Alex T; Mamba, Bhekie B; Mhlanga, Sabelo D; Nxumalo, Edward N

    2018-08-01

    Nitrogen-doped graphene oxide (NGO) nanosheets were prepared via a facile one-pot modified Hummer's approach at low temperatures using graphite powder and flakes as starting materials in the presence of a nitrogen precursor. It was found that the morphology, structure, composition and surface chemistry of the NGO nanosheets depended on the nature of the graphite precursor used. GO nanosheets doped with nitrogen atoms exhibited a unique structure with few thin layers and wrinkled sheets, high porosity and structural defects. NGO sheets made from graphite powder (NGOp) exhibited excellent thermal stability and remarkably high surface area (up to 240.53 m2 ·g-1) compared to NGO sheets made from graphite flakes (NGOf) which degraded at low temperatures and had an average surface area of 24.70 m2 ·g-1. NGOf sheets had a size range of 850 to 2200 nm while NGOp sheets demonstrated obviously small sizes (460-1600 nm) even when exposed to different pH conditions. The NGO nanosheets exhibited negatively charged surfaces in a wide pH range (1 to 12) and were found to be stable above pH 6. In addition, graphite flakes were found to be more suitable for the production of NGO as they produced high N-doping levels (0.65 to 1.29 at.%) compared to graphite powders (0.30 to 0.35 at.%). This study further demonstrates that by adjusting the amount of N source in the host GO, one can tailor its thermal stability, surface morphology, surface chemistry and surface area.

  3. Diffusion of oxygen in nitrogen in the pores of graphite. Preliminary results on the effect of oxidation on diffusivity

    Hewitt, G. F.; Sharratt, E. W.

    1962-10-15

    Preliminary results are reported from an experimental study of the effect of burnoff on the diffusivity of oxygen in nitrogen within the pores of graphite. It is found that the ratio of effective diffusivity to ''free gas'' diffusivity changes about four-fold in the range 0-9% total oxidation. The viscous permeability, B0, increases in almost the same proportion over the same range.

  4. Study of conformation and dynamic of surfactant molecules in graphite oxide via NMR

    Ai, X.Q. [Jiangsu Second Normal University, College of Physics and Electronic Engineering, Nanjing (China); Ma, L.G. [Nanjing Xiaozhuang University, School of Electronic Engineering, Nanjing (China)

    2016-08-15

    The conformation and dynamic of surfactant in graphite oxide (GO) was investigated by solid-state {sup 13}C magic-angle-spinning NMR and {sup 1}H-{sup 13}C cross-polarization/magic-angle-spinning NMR spectra. The conformation ordering of the alkyl chains in the confined system shows strong dependence on its orientation. While the alkyl chains parallel to the GO layer in lateral monolayer arrangement are in gauche conformation in addition to a small amount of all-trans conformation, those with orientation radiating away from the GO in paraffin bilayer arrangement is in all-trans conformation in addition to some gauche conformation even though high-order diffraction peaks appears. NMR results suggest that the least mobile segment is located at the GO-surfactant interface corresponding to the N-methylene group. Further from it, the mobility of the alkyl chain increases. The terminal methyl and N-methyl carbon groups have the highest mobile. The chains in all-trans conformational state are characterized as more rigid than chains with gauche conformation; each segment of the confined alkyl chains with the lateral monolayer arrangement exhibits less mobility as compared to that with the paraffin bilayer arrangement. (orig.)

  5. Enhanced oxidation resistance of SiC coating on Graphite by crack healing at the elevated temperature

    Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yoo-Taek [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Windes, William E. [Idaho National Laboratory, Idaho (United States)

    2015-10-15

    An oxidation protective SiC coating on the graphite components could assist in slowing the oxidation down. However, the irradiation induced dimensional changes in the graphite (shrinkage followed by swelling) can occur, while the SiC CVD coating has been reported to swell even at a low dose neutron irradiation. In this work, functionally gradient electron beam evaporative coating with an ion beam processing was firstly conducted and then SiC coating on the FG coating to the desired thickness is followed. For the crack healing, both the repeated EB-PVD and CVD were performed. Oxidation and thermal cycling tests of the coated specimens were performed and reflected in the process development. In this work, efforts have been paid to heal the cracks in the SiC coated layer on graphite with both EB-PVD and CVD. CVD seems to be more appropriate coating method for crack healing probably due to its excellent crack-line filling capability for high density and high aspect ratio.

  6. Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives: Part 2, chemical-mechanical degradation model

    Purewal, Justin; Wang, John; Graetz, Jason; Soukiazian, Souren; Tataria, Harshad; Verbrugge, Mark W.

    2014-12-01

    Capacity fade is reported for 1.5 Ah Li-ion batteries containing a mixture of Li-Ni-Co-Mn oxide (NCM) + Li-Mn oxide spinel (LMO) as positive electrode material and a graphite negative electrode. The batteries were cycled at a wide range of temperatures (10 °C-46 °C) and discharge currents (0.5C-6.5C). The measured capacity losses were fit to a simple physics-based model which calculates lithium inventory loss from two related mechanisms: (1) mechanical degradation at the graphite anode particle surface caused by diffusion-induced stresses (DIS) and (2) chemical degradation caused by lithium loss to continued growth of the solid-electrolyte interphase (SEI). These two mechanisms are coupled because lithium is consumed through SEI formation on newly exposed crack surfaces. The growth of crack surface area is modeled as a fatigue phenomenon due to the cyclic stresses generated by repeated lithium insertion and de-insertion of graphite particles. This coupled chemical-mechanical degradation model is consistent with the observed capacity loss features for the NCM + LMO/graphite cells.

  7. Low-energy electron observation of graphite and molybdenite crystals. Application to the study of graphite oxidation; Observation au moyen d'electrons de faible energie de cristaux de graphite et de molybdenite. Application a l'etude de l'oxydation du graphite

    David, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The LEED study of cleaved (0001) faces of crystals having a layered structure allowed to investigate flakes free of steps on graphite and molybdenite, to show twinning on natural graphite. By intensity measurements and computation in the case of a kinematical approximation it has been possible to determine an inner potential of 19 eV for graphite and to identify the direction of the Mo-S bond of the surface layer of molybdenite. The oxidation of graphite has been studied by observing changes, in symmetry of the diffraction patterns and by mass spectrometry of the gases evolved during the oxidation. No surface compounds have been detected and the carbon layers appeared to be peeled off one after the other. The oxidation took place at temperatures higher than 520 C under an oxygen pressure of 10{sup -5} torr. (author) [French] L'etude par diffraction des electrons lents des faces (0001) de cristaux ayant une structure en feuillet a permis de mettre en evidence des plages sans gradins sur des clivages de graphite et de molybdenite caracterisees par la symetrie ternaire des diagrammes, de montrer l'existence de macles sur des cristaux de graphite naturel. Un calcul utilisant une approximation cinematique a ete applique aux intensites mesurees des taches de diffraction; il a ete ainsi possible de determiner un potentiel interne de 19 eV pour le graphite et de preciser la direction de la liaison Mo-S du feuillet superficiel de la molybdenite. L'oxydation du graphite a ete etudiee en mettant en relation des changements de symetrie des diagrammes de diffraction avec l'analyse des gaz provenant de la reaction carbone-oxygene. Il a ete montre qu'il n'y avait pas formation de composes de surface et que les couches de carbone etaient enlevees les unes apres les autres. L'oxydation a ete observee sous une pression d'oxygene de 10{sup -5} torr au-dessus de 520 C. (auteur)

  8. Influence of expanded graphite (EG) and graphene oxide (GO) on physical properties of PET based nanocomposites

    Paszkiewicz Sandra; Nachman Małgorzata; Szymczyk Anna; Špitalský Zdeno; Mosnáček Jaroslav; Rosłaniec Zbigniew

    2014-01-01

    This work is the continuation and refinement of already published communications based on PET/EG nanocomposites prepared by in situ polymerization1, 2. In this study, nanocomposites based on poly(ethylene terephthalate) with expanded graphite were compared to those with functionalized graphite sheets (GO). The results suggest that the degree of dispersion of nanoparticles in the PET matrix has important effect on the structure and physical properties of the nanocomposites. The existence of gr...

  9. Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide

    Alexa Schmitz

    2017-11-01

    Full Text Available Metal-fluoride nanoparticles, (MFx-NPs with M = Fe, Co, Pr, Eu, supported on different types of thermally reduced graphite oxide (TRGO were obtained by microwave-assisted thermal decomposition of transition-metal amidinates, (M{MeC[N(iPr]2}n or [M(AMDn] with M = Fe(II, Co(II, Pr(III, and tris(2,2,6,6-tetramethyl-3,5-heptanedionatoeuropium, Eu(dpm3, in the presence of TRGO in the ionic liquid (IL 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]. The crystalline phases of the metal fluorides synthesized in [BMIm][BF4] were identified by powder X-ray diffraction (PXRD to be MF2 for M = Fe, Co and MF3 for M = Eu, Pr. The diameters and size distributions of MFx@TRGO were from (6 ± 2 to (102 ± 41 nm. Energy-dispersive X-ray spectroscopy (EDX and X-ray photoelectron spectroscopy (XPS were used for further characterization of the MFx-NPs. Electrochemical investigations of the FeF2-NPs@TRGO as cathode material for lithium-ion batteries were evaluated by galvanostatic charge/discharge profiles. The results indicate that the FeF2-NPs@TRGO as cathode material can present a specific capacity of 500 mAh/g at a current density of 50 mA/g, including a significant interfacial charge storage contribution. The obtained nanomaterials show a good rate capacity as well (220 mAh/g and 130 mAh/g at a current density of 200 and 500 mA/g, respectively.

  10. Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine

    Li, Yong-Xi; Zhu, Jinhui; Chen, Yu; Zhang, Jinjuan; Wang, Jun; Zhang, Bin; He, Ying; Blau, Werner J.

    2011-05-01

    A soluble graphite oxide (GO) axially substituted gallium phthalocyanine (PcGa) hybrid material (GO-PcGa) was for the first time synthesized by the reaction of tBu4PcGaCl with GO in anhydrous DMSO at 110 °C in the presence of K2CO3. The formation of a Ga-O bond between PcGa and GO has been confirmed by x-ray photoelectron spectroscopy. In contrast to GO, the D and G bands of GO-PcGa in the Raman spectrum are shifted to the lower wavenumbers by Δν = 11 and 18 cm - 1, respectively. At the same level of concentration of 0.1 g l - 1, GO-PcGa exhibit much larger nonlinear optical extinction coefficients and strong optical limiting performance than GO, tBu4PcGaCl and C60 at both 532 and 1064 nm, implying a remarkable accumulation effect as a result of the covalent link between GO and PcGa. GO-PcGa possesses three main mechanisms for the nonlinear optical response—nonlinear light scattering, two-photon absorption and reverse saturable absorption for the 532 nm pulses and nonlinear light scattering for the 1064 nm pulses. tBu4PcGaCl does not make any significant contribution to the optical limiting at 1064 nm, while GO-PcGa has a much greater optical limiting response than GO at this wavelength, this suggesting that the PcGa moiety could certainly play an unknown but important role in the GO-PcGa material system.

  11. Solid state {sup 13}C NMR study on the synthesis of graphite oxide from different graphitic precursors; Estudo atravéS de RMN de {sup 13}C no estado sólido sobre a síntese de oxido de grafite utilizando diferentes precursores grafíticos

    Vieira, Mariana A.; Frasson, Carolina Maria R.; Costa, Tainara Luiza G.; Cipriano, Daniel F.; Schettino Junior, Miguel A.; Cunha, Alfredo G.; Freitas, Jair C.C., E-mail: marianaarpini@hotmail.com [Universidade Federal do Espírito Santo (UFES), Vitória, ES (Brazil). Lab. de Materiais Carbonosos e Cerâmicos

    2017-10-15

    The influence of the structural and microstructural characteristics of graphitic precursors on the production of graphite oxide (GO) is investigated in the present work. Six different graphitic precursors were used to produce GO following a modified Hummers method, namely: natural graphite, commercial lubricant graphite, milled graphite, graphite flakes, high-purity graphite and graphite recycled from Li-ion batteries. The products were characterized by X-ray diffraction (XRD), thermogravimetry, solid-state {sup 13}C nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). {sup 13}C NMR spectra revealed the presence of epoxy, hydroxyl, carbonyl and lactol groups in the synthesized GOs. However, the oxidation degree of each product was found to be dependent on the average crystallite size (Lc) and particle size of the graphitic precursors, with the best GO samples being produced from the milled graphite and the graphite recycled from ion-Li batteries. These results were rationalized in terms of the structural and microstructural differences among the graphitic precursors, as revealed by the XRD patterns and SEM images, evidencing the importance of the correct choice of the precursor aiming the achievement of a well-developed structure for the GO product. (author)

  12. Acceptance test for graphite components and construction status of HTTR

    Iyoku, T.; Ishihara, M.; Maruyama, S.; Shiozawa, S.; Tsuji, N.; Miki, T.

    1996-01-01

    In March, 1991, the Japan Atomic Energy Research Institute (JAERI) started to constructed the High Temperature engineering Test Reactor(HTTR) which is a 30-MW(thermal) helium gas-cooled reactor with a core composed of prismatic graphite blocks piled on the core support graphite structures. Two types of graphite materials are used in the HTTR. One is the garde IG-110, isotropic fine grain graphite, another is the grade PGX, medium-to-fine grained molded graphite. These materials were selected on the basis of the appropriate properties required by the HTTR reactor design. Industry-wide standards for an acceptance test of graphite materials used as main components of a nuclear reactor had not been established. The acceptance standard for graphite components of the HTTR, therefore, was drafted by JAERI and reviewed by specialists outside JAERI. The acceptance standard consists of the material testing, non-destructive examination such as the ultrasonic and eddy current testings, dimensional and visual inspections and assembly test. Ultrasonic and eddy current testings are applied to graphite logs to detect an internal flaw and to graphite components to detect a surface flaw, respectively. The assembly test is performed at the works, prior to their installation in the reactor pressure vessel, to examine fabricating precision of each component and alignment of piled-up structures. The graphite components of the HTTR had been tested on the basis of the acceptance standard. It was confirmed that the graphite manufacturing process was well controlled and high quality graphite components were provided to the HTTR. All graphite components except for the fuel graphite blocks are to be installed in the reactor pressure vessel of the HTTR in September 1995. The paper describes the construction status of the HTTR focusing on the graphite components. The acceptance test results are also presented in this paper. (author). Figs

  13. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes.

    Munuera, J M; Paredes, J I; Villar-Rodil, S; Ayán-Varela, M; Martínez-Alonso, A; Tascón, J M D

    2016-02-07

    Electrolytic--usually referred to as electrochemical--exfoliation of graphite in water under anodic potential holds enormous promise as a simple, green and high-yield method for the mass production of graphene, but currently suffers from several drawbacks that hinder its widespread adoption, one of the most critical being the oxidation and subsequent structural degradation of the carbon lattice that is usually associated with such a production process. To overcome this and other limitations, we introduce and implement the concept of multifunctional electrolytes. The latter are amphiphilic anions (mostly polyaromatic hydrocarbons appended with sulfonate groups) that play different relevant roles as (1) an intercalating electrolyte to trigger exfoliation of graphite into graphene flakes, (2) a dispersant to afford stable aqueous colloidal suspensions of the flakes suitable for further use, (3) a sacrificial agent to prevent graphene oxidation during exfoliation and (4) a linker to promote nanoparticle anchoring on the graphene flakes, yielding functional hybrids. The implementation of this strategy with some selected amphiphiles even furnishes anodically exfoliated graphenes of a quality similar to that of flakes produced by direct, ultrasound- or shear-induced exfoliation of graphite in the liquid phase (i.e., almost oxide- and defect-free). These high quality materials were used for the preparation of catalytically efficient graphene-Pt nanoparticle hybrids, as demonstrated by model reactions (reduction of nitroarenes). The multifunctional performance of these electrolytes is also discussed and rationalized, and a mechanistic picture of their oxidation-preventing ability is proposed. Overall, the present results open the prospect of anodic exfoliation as a competitive method for the production of very high quality graphene flakes.

  14. Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides.

    Mabayoje, Oluwaniyi; Seredych, Mykola; Bandosz, Teresa J

    2012-06-27

    Composites of copper (hydr)oxychlorides with graphite oxide or graphene were synthesized and used as adsorbents of hydrogen sulfide at dynamic conditions at ambient temperatures. The materials were extensively characterized before and after adsorption in order to link their performance to the surface features. X-ray diffraction, FTIR, thermal analysis, TEM, SEM/EDX, and adsorption of nitrogen were used. It was found that the composite with graphene has the most favorable surface features enhancing reactive adsorption of hydrogen sulfide. The presence of moisture in the H2S stream has a positive effect on the removal process owing to the dissociation process. H2S is retained on the surface via a direct replacement of OH groups and via acid-base reactions with the copper (hydr)oxide. Highly dispersed reduced copper species on the surface of the composite with graphene enhance activation of oxygen and cause formation of sulfites and sulfates. Higher conductivity of the graphene phase than that of graphite oxide helps in electron transfer in redox reactions.

  15. A Study of the Oxidation Behaviour of Pile Grade A (PGA) Nuclear Graphite Using Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and X-Ray Tomography (XRT).

    Payne, Liam; Heard, Peter J; Scott, Thomas B

    2015-01-01

    Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK's first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600-1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment.

  16. Japan PGx Data Science Consortium Database: SNPs and HLA genotype data from 2994 Japanese healthy individuals for pharmacogenomics studies.

    Kamitsuji, Shigeo; Matsuda, Takashi; Nishimura, Koichi; Endo, Seiko; Wada, Chisa; Watanabe, Kenji; Hasegawa, Koichi; Hishigaki, Haretsugu; Masuda, Masatoshi; Kuwahara, Yusuke; Tsuritani, Katsuki; Sugiura, Kenkichi; Kubota, Tomoko; Miyoshi, Shinji; Okada, Kinya; Nakazono, Kazuyuki; Sugaya, Yuki; Yang, Woosung; Sawamoto, Taiji; Uchida, Wataru; Shinagawa, Akira; Fujiwara, Tsutomu; Yamada, Hisaharu; Suematsu, Koji; Tsutsui, Naohisa; Kamatani, Naoyuki; Liou, Shyh-Yuh

    2015-06-01

    Japan Pharmacogenomics Data Science Consortium (JPDSC) has assembled a database for conducting pharmacogenomics (PGx) studies in Japanese subjects. The database contains the genotypes of 2.5 million single-nucleotide polymorphisms (SNPs) and 5 human leukocyte antigen loci from 2994 Japanese healthy volunteers, as well as 121 kinds of clinical information, including self-reports, physiological data, hematological data and biochemical data. In this article, the reliability of our data was evaluated by principal component analysis (PCA) and association analysis for hematological and biochemical traits by using genome-wide SNP data. PCA of the SNPs showed that all the samples were collected from the Japanese population and that the samples were separated into two major clusters by birthplace, Okinawa and other than Okinawa, as had been previously reported. Among 87 SNPs that have been reported to be associated with 18 hematological and biochemical traits in genome-wide association studies (GWAS), the associations of 56 SNPs were replicated using our data base. Statistical power simulations showed that the sample size of the JPDSC control database is large enough to detect genetic markers having a relatively strong association even when the case sample size is small. The JPDSC database will be useful as control data for conducting PGx studies to explore genetic markers to improve the safety and efficacy of drugs either during clinical development or in post-marketing.

  17. FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Chang H. Oh; Eung S. Kim

    2009-12-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced

  18. FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

    2011-01-01

    The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  19. Nuclear graphite ageing and turnaround

    Marsden, B.J.; Hall, G.N.; Smart, J.

    2001-01-01

    Graphite moderated reactors are being operated in many countries including, the UK, Russia, Lithuania, Ukraine and Japan. Many of these reactors will operate well into the next century. New designs of High Temperature Graphite Moderated Reactors (HTRS) are being built in China and Japan. The design life of these graphite-moderated reactors is governed by the ageing of the graphite core due to fast neutron damage, and also, in the case of carbon dioxide cooled reactors by the rate of oxidation of the graphite. Nuclear graphites are polycrystalline in nature and it is the irradiation-induced damage to the individual graphite crystals that determines the material property changes with age. The life of a graphite component in a nuclear reactor can be related to the graphite irradiation induced dimensional changes. Graphites typically shrink with age, until a point is reached where the shrinkage stops and the graphite starts to swell. This change from shrinkage to swelling is known as ''turnaround''. It is well known that pre-oxidising graphite specimens caused ''turnaround'' to be delayed, thus extending the life of the graphite, and hence the life of the reactor. However, there was no satisfactory explanation of this behaviour. This paper presents a numerical crystal based model of dimensional change in graphite, which explains the delay in ''turnaround'' in the pre-oxidised specimens irradiated in a fast neutron flux, in terms of crystal accommodation and orientation and change in compliance due to radiolytic oxidation. (author)

  20. Excimer laser assisted very fast exfoliation and reduction of graphite oxide at room temperature under air ambient for Supercapacitors electrode

    Malek Hosseini, S. M. B.; Baizaee, S. M.; Naderi, Hamid Reza; Dare Kordi, Ali

    2018-01-01

    Excimer laser was used for reduction and exfoliation of graphite oxide (GO) at room temperature under air ambient. The prepared excimer laser reduced graphite oxide (XLRGO) is characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption (BET method), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption techniques for surface, structural functional groups and band gap analysis. Electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) and continues cyclic voltammetry (CCV) in 0.5 M Na2SO4 as electrolyte. Electrochemical investigations revealed that XLRGO electrode has enhanced supercapacitive performance including specific capacitance of 299 F/g at a scan rate of 2 mV/s. Furthermore, CCV measurement showed that XLRGO electrode kept 97.8% of its initial capacitance/capacity after 4000 cycles. The obtained results from electrochemical investigations confirm that the reduction of GO by using an excimer laser produces high-quality graphene for supercapacitor applications without the need for additional operations.

  1. Graphite oxide-mediated synthesis of porous CeO2 quadrangular prisms and their high-efficiency adsorptive performance

    Chang, Ling; Wang, Fengxian; Xie, Dong; Zhang, Jun; Du, Gaohui

    2013-01-01

    Graphical abstract: - Highlights: • Porous CeO 2 quadrangular prisms have been prepared via graphite oxide-mediated synthesis. • Dual-pore hierarchical systems are formed with the pore distributions around 4 nm and 30 nm. • Porous CeO 2 exhibits a rapid adsorption to Rhodamine B with a removal efficiency of ∼99%. • Porous CeO 2 retains the same performances in different pH solutions. - Abstract: We report a graphite oxide-mediated approach for synthesizing porous CeO 2 through a facile hydrothermal process followed by thermal annealing in air. The phase structure, morphology, microstructure and porosity of the products have been revealed by a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N 2 adsorption. The as-prepared CeO 2 products show well-defined quadrangular prism morphology, and they are composed of interconnected nanoparticles with diameters around 30–100 nm. In particular, the dual-pore hierarchical systems are created in the CeO 2 quadrangular prisms with the pore distributions around 4 nm and 30 nm. The dye sorption capacity of the porous CeO 2 is investigated, which exhibits a rapid adsorption to rhodamine B with a high removal efficiency of ∼99%. Moreover, the CeO 2 absorbent retains the same performances in different pH solutions

  2. Influence of expanded graphite (EG and graphene oxide (GO on physical properties of PET based nanocomposites

    Paszkiewicz Sandra

    2014-12-01

    Full Text Available This work is the continuation and refinement of already published communications based on PET/EG nanocomposites prepared by in situ polymerization1, 2. In this study, nanocomposites based on poly(ethylene terephthalate with expanded graphite were compared to those with functionalized graphite sheets (GO. The results suggest that the degree of dispersion of nanoparticles in the PET matrix has important effect on the structure and physical properties of the nanocomposites. The existence of graphene sheets nanoparticles enhances the crystallization rate of PET. It has been confirmed that in situ polymerization is the effective method for preparation nanocomposites which can avoid the agglomeration of nanoparticles in polymer matrices and improve the interfacial interaction between nanofiller and polymer matrix. The obtained results have shown also that due to the presence of functional groups on GO surface the interactions with PET matrix can be stronger than in the case of exfoliated graphene (EG and matrix.

  3. Reference materials for nondestructive assay of special nuclear material. Volume 1. Uranium oxide plus graphite powder

    Sprinkle, J.K.; Likes, R.N.; Parker, J.L.; Smith, H.A.

    1983-10-01

    This manual describes the fabrication of reference materials for use in gamma-ray-based nondestructive assay of low-density uranium-bearing samples. The sample containers are 2-l bottles. The reference materials consist of small amounts of UO 2 spread throughout a graphite matrix. The 235 U content ranges from 0 to 100 g. The manual also describes the far-field assay procedure used with low-resolution detectors

  4. A general strategy toward graphitized carbon coating on iron oxides as advanced anodes for lithium-ion batteries.

    Ding, Chunyan; Zhou, Weiwei; Wang, Bin; Li, Xin; Wang, Dong; Zhang, Yong; Wen, Guangwu

    2017-08-25

    Integration of carbon materials with benign iron oxides is blazing a trail in constructing high-performance anodes for lithium-ion batteries (LIBs). In this paper, a unique general, simple, and controllable strategy is developed toward in situ uniform coating of iron oxide nanostructures with graphitized carbon (GrC) layers. The basic synthetic procedure only involves a simple dip-coating process for the loading of Ni-containing seeds and a subsequent Ni-catalyzed chemical vapor deposition (CVD) process for the growth of GrC layers. More importantly, the CVD treatment is conducted at a quite low temperature (450 °C) and with extremely facile liquid carbon sources consisting of ethylene glycol (EG) and ethanol (EA). The GrC content of the resulting hybrids can be controllably regulated by altering the amount of carbon sources. The electrochemical results reveal remarkable performance enhancements of iron oxide@GrC hybrids compared with pristine iron oxides in terms of high specific capacity, excellent rate and cycling performance. This can be attributed to the network-like GrC coating, which can improve not only the electronic conductivity but also the structural integrity of iron oxides. Moreover, the lithium storage performance of samples with different GrC contents is measured, manifesting that optimized electrochemical property can be achieved with appropriate carbon content. Additionally, the superiority of GrC coating is demonstrated by the advanced performance of iron oxide@GrC compared with its corresponding counterpart, i.e., iron oxides with amorphous carbon (AmC) coating. All these results indicate the as-proposed protocol of GrC coating may pave the way for iron oxides to be promising anodes for LIBs.

  5. Effect of PGX, a novel functional fibre supplement, on subjective ratings of appetite in overweight and obese women consuming a 3-day structured, low-calorie diet.

    Kacinik, V; Lyon, M; Purnama, M; Reimer, R A; Gahler, R; Green, T J; Wood, S

    2011-12-12

    Dietary factors that help control perceived hunger might improve adherence to calorie-reduced diets. The objective of the study was to investigate the effect of supplementing a three-day, low-calorie diet with PolyGlycopleX (PGX), a highly viscous fibre, on subjective ratings of appetite compared with a placebo. In a double-blind crossover design with a 3-week washout, 45 women (aged 38±9 years, body mass index 29.9±2.8 kg m(-2)) were randomised to consume a 1000-kcal per day diet for 3 days, supplemented with 5 g of PGX or placebo at each of breakfast, lunch and dinner. Subjective appetite was assessed using 100 mm visual analogue scales that were completed daily before, between and after consumption of meals. Thirty-five women completed the study. Consumption of PGX compared with placebo led to significantly lower mean area under the curve for hunger on day 3 (440.4 versus 375.4; P=0.048), prospective consumption on day 3 (471.0 versus 401.8; P=0.017) and the overall 3-day average (468.6 versus 420.2; P=0.026). More specifically, on day 3 PGX significantly reduced total appetite, hunger, desire to eat and prospective consumption for 2.5 and 4.5 h after lunch and before dinner times, with hunger also being reduced 2.5 h after dinner (P<0.05). The results show that adding 5 g of PGX to meals during consumption of a low-calorie diet reduces subjective ratings of prospective consumption and increases the feelings of satiety, especially during afternoon and evening. This highly viscous polysaccharide may be a useful adjunct to weight-loss interventions involving significant caloric reductions.

  6. Numerical analysis of mass transfer with graphite oxidation in a laminar flow of multi-component gas mixture through a circular tube

    Ogawa, Masuro

    1992-10-01

    In the present paper, mass transfer has been numerically studied in a laminar flow through a circular graphite tube to evaluate graphite corrosion rate and generation rate of carbon monoxide during a pipe rupture accident in a high temperature gas cooled reactor. In the analysis, heterogeneous (graphite oxidation and graphite/carbon dioxide reaction) and homogeneous (carbon monoxide combustion) chemical reactions were dealt in the multi-component gas mixture; helium, oxygen, carbon monoxide and carbon dioxide. Multi-component diffusion coefficients were used in a diffusion term. Mass conservation equations of each gas component, mass conservation equation and momentum conservation equations of the gas mixture were solved by using SIMPLE algorism. Chemical reactions between graphite and oxygen, graphite and carbon dioxide, and carbon monoxide combustion were taken into account in the present numerical analysis. An energy equation for the gas mixture was not solved and temperature was held to be constant in order to understand basic mass transfer characteristics without heat transfer. But, an energy conservation equation for single component gas was added to know heat transfer characteristics without mass transfer. The effects of these chemical reactions on the mass transfer coefficients were quantitatively and qualitatively clarified in the range of 50 to 1000 of inlet Reynolds numbers, 0 to 0.5 of inlet oxygen mass fraction and 800 to 1600degC of temperature. (author)

  7. Electrochemical label-free and sensitive nanobiosensing of DNA hybridization by graphene oxide modified pencil graphite electrode.

    Ahour, F; Shamsi, A

    2017-09-01

    Based on the strong interaction between single-stranded DNA (ss-DNA) and graphene material, we have constructed a novel label-free electrochemical biosensor for rapid and facile detection of short sequences ss-DNA molecules related to hepatitis C virus 1a using graphene oxide modified pencil graphite electrode. The sensing mechanism is based on the superior adsorption of single-stranded DNA to GO over double stranded DNA (ds-DNA). The intrinsic guanine oxidation signal measured by differential pulse voltammetry (DPV) has been used for duplex DNA formation detection. The probe ss-DNA adsorbs onto the surface of GO via the π- π* stacking interactions leading to a strong background guanine oxidation signal. In the presence of complementary target, formation of helix which has weak binding ability to GO induced ds-DNA to release from the electrode surface and significant variation in differential pulse voltammetric response of guanine bases. The results indicated that the oxidation peak current was proportional to the concentration of complementary strand in the range of 0.1 nM-0.5 μM with a detection limit of 4.3 × 10 -11  M. The simple fabricated electrochemical biosensor has high sensitivity, good selectivity, and could be applied as a new platform for a range of target molecules in future. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Visible-light induced photocatalysis of AgCl@Ag/titanate nanotubes/nitrogen-doped reduced graphite oxide composites

    Pan, Hongfei; Zhao, Xiaona; Fu, Zhanming; Tu, Wenmao; Fang, Pengfei; Zhang, Haining

    2018-06-01

    High recombination rate of photogenerated electron-hole pairs and relatively narrow photoresponsive range of TiO2-based photocatalysts are the remaining challenges for their practical applications. To address such challenges, photocatalysts consisting of AgCl covered Ag nanoparticles (AgCl@Ag), titanate nanotubes (TiNT), and nitrogen-doped reduced graphite oxide (rGON) are fabricated through alkaline hydrothermal process, followed by deposition and in situ surface-oxidation of silver nanoparticles. In the synthesized photocatalysts, the titanate nanotubes have average length of about 100 nm with inner diameters of about 5 nm and the size of the formed silver nanoparticles is in the range of 50-100 nm. The synthesized photocatalyst degrades almost all the model organic pollutant Rhodamine B in 35 min and remains 90% of photocatalytic efficiency after 5 degradation cycles under visible light irradiation. Since the oxidant FeCl3 applied for oxidation of surface Ag to AgCl is difficult to be completely removed due to the high adsorption capacity of TiNT and rGON, the effect of reside Fe atoms on photocatalytic activity is evaluated and the results reveal that the residue Fe atom only affect the initial photodegradation performance. Nevertheless, the results demonstrate that the formed composite catalyst is a promising candidate for antibiosis and remediation in aquatic environmental contamination.

  9. Dual-Layer Oxidation-Protective Plasma-Sprayed SiC-ZrB2/Al2O3-Carbon Nanotube Coating on Graphite

    Ariharan, S.; Sengupta, Pradyut; Nisar, Ambreen; Agnihotri, Ankur; Balaji, N.; Aruna, S. T.; Balani, Kantesh

    2017-02-01

    Graphite is used in high-temperature gas-cooled reactors because of its outstanding irradiation performance and corrosion resistance. To restrict its high-temperature (>873 K) oxidation, atmospheric-plasma-sprayed SiC-ZrB2-Al2O3-carbon nanotube (CNT) dual-layer coating was deposited on graphite substrate in this work. The effect of each layer was isolated by processing each component of the coating via spark plasma sintering followed by isothermal kinetic studies. Based on isothermal analysis and the presence of high residual thermal stress in the oxide scale, degradation appeared to be more severe in composites reinforced with CNTs. To avoid the complexity of analysis of composites, the high-temperature activation energy for oxidation was calculated for the single-phase materials only, yielding values of 11.8, 20.5, 43.5, and 4.5 kJ/mol for graphite, SiC, ZrB2, and CNT, respectively, with increased thermal stability for ZrB2 and SiC. These results were then used to evaluate the oxidation rate for the composites analytically. This study has broad implications for wider use of dual-layer (SiC-ZrB2/Al2O3) coatings for protecting graphite crucibles even at temperatures above 1073 K.

  10. Special graphites

    Leveque, P.

    1964-01-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [fr

  11. Graphite furnace atomic absorption spectrometric determination of vanadium after cloud point extraction in the presence of graphene oxide

    López-García, Ignacio; Marín-Hernández, Juan José; Hernández-Córdoba, Manuel

    2018-05-01

    Vanadium (V) and vanadium (IV) in the presence of a small concentration of graphene oxide (0.05 mg mL-1) are quantitatively transferred to the coacervate obtained with Triton X-114 in a cloud point microextraction process. The surfactant-rich phase is directly injected into the graphite atomizer of an atomic absorption spectrometer. Using a 10-mL aliquot sample and 150 μL of a 15% Triton X-114 solution, the enrichment factor for the analyte is 103, which results in a detection limit of 0.02 μg L-1 vanadium. The separation of V(V) and V(IV) using an ion-exchanger allows speciation of the element at low concentrations. Data for seven reference water samples with certified vanadium contents confirm the reliability of the procedure. Several beer samples are also analyzed, those supplied as canned drinks showing low levels of tetravalent vanadium.

  12. Chemical stabilization of graphite surfaces

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  13. Scientific Opinion on the safety of alginate-konjac-xanthan polysaccharide complex (PGX) as a novel food pursuant to Regulation (EC) No 258/97

    Poulsen, Morten

    2017-01-01

    is an off-white granular powder composed of three non-starch polysaccharides: konjac glucomannan, xanthan gum and sodium alginate. The information provided on the composition, the specifications, the batch-to-batch variability and the stability of the NF is sufficient and does not raise safety concerns...... population proposed by the applicant is adults from 18 to 64 years of age. Considering the no observed adverse effect level of 1.8 g/kg body weight (bw) per day in a subchronic toxicity study with PGX and the highest mean and 95th percentile anticipated daily intake of NF from fortified foods, the margin...... of exposure (MoE) is 12 and 6, respectively, whereas the MoE for the NF from food supplements is 9. The Panel concludes that the safety of the novel food, PGX, for the intended uses and use levels as proposed by the applicant, has not been established....

  14. Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries

    Lee, Bichna; Han, Su Chul; Oh, Minhak; Lah, Myoung Soo; Sohn, Kee-Sun; Pyo, Myoungho

    2013-01-01

    SnO 2 /graphene nanocomposites were prepared from graphite oxide (GTO). Sn 2+ precursors were impregnated between graphene layers of GTO and subsequently subjected to thermal treatment to produce nanocomposites consisting of SnO 2 and reduced GTO (SnO 2 /rGTO). When thermally reduced, the pre-aligned nature of graphene layers in GTO produced densely packed and thick graphene stacks, in contrast to graphene layers in the SnO 2 nanocomposites (SnO 2 /rGO) made from thermal reduction of mechanically exfoliated graphene oxide (GO). The surface area and void volume of the SnO 2 /rGTO nanocomposites (280 m 2 g −1 and 0.27 cm 3 g −1 , respectively) were significantly decreased, by comparison with those of the SnO 2 /rGO nanocomposites (390 m 2 g −1 and 0.39 cm 3 g −1 , respectively), which resulted in an enhanced dimensional-stability of SnO 2 during the lithium alloying/dealloying processes. As a result, SnO 2 /rGTO proved to be superior to SnO 2 /rGO as an anode material in lithium ion batteries from the view-point of both reversible charge–discharge (C–D) capacity and cyclability. The simplification of the nanocomposite preparation process (the removal of mechanical exfoliation) is an additional benefit of using GTO as a template

  15. Microwave Deposition of Palladium Catalysts on Graphite Spheres and Reduced Graphene Oxide Sheets for Electrochemical Glucose Sensing.

    Xie, Jian-De; Gu, Siyong; Zhang, Houan

    2017-09-21

    This work outlines a synthetic strategy inducing the microwave-assisted synthesis of palladium (Pd) nanocrystals on a graphite sphere (GS) and reduced graphene oxide (rGO) supports, forming the Pd catalysts for non-enzymatic glucose oxidation reaction (GOR). The pulse microwave approach takes a short period (i.e., 10 min) to fast synthesize Pd nanocrystals onto a carbon support at 150 °C. The selection of carbon support plays a crucial role in affecting Pd particle size and dispersion uniformity. The robust design of Pd-rGO catalyst electrode displays an enhanced electrocatalytic activity and sensitivity toward GOR. The enhanced performance is mainly attributed to the synergetic effect that combines small crystalline size and two-dimensional conductive support, imparting high accessibility to non-enzymatic GOR. The rGO sheets serve as a conductive scaffold, capable of fast conducting electron. The linear plot of current response versus glucose concentration exhibits good correlations within the range of 1-12 mM. The sensitivity of the Pd-rGO catalyst is significantly enhanced by 3.7 times, as compared to the Pd-GS catalyst. Accordingly, the Pd-rGO catalyst electrode can be considered as a potential candidate for non-enzymatic glucose biosensor.

  16. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite; Estudo de filme de grafeno/oxido de grafeno obtido por reducao quimica parcial do oxido de grafite

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H., E-mail: juliagascho@hotmail.com [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2014-07-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  17. Application of ISRM testing methods to fracture toughness testing of graphite

    Hashida, T.; Fukasawa, T.; Takahashi, H.; Ishiyama, S.; Oku, T.

    1987-01-01

    Fracture toughness measurements of nuclear grade graphites, IG11 and PGX, were made by means of AE technique. Tests were conducted on edge-notched round bend bar, edge-notched short bar and round compact tension specimens. These round-shaped specimens used in this study have been proposed for standard fracture toughness tests of rock as a draft of testing standard of International Society for Rock Mechanics (ISRM). Taking the observed nonlinear deformation behavior into account, J-integral approach was utilized to determine the fracture toughness of the graphites. It is shown that the critical J integral determined by AE technique, J iAE , is independent of specimen geometry. Based on this experimental results, the fracture toughness K IC of the graphites was determined from the J iAE values. K IC value of IG11 was 1.04 MPa√m, and 0.77 MPa√m for PGX respectively. Furthermore, the specimen size effect of the fracture toughness determined by the J-integral/AE method is discussed. (author)

  18. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells

    Fu, Yubin, E-mail: ffyybb@ouc.edu.cn; Yu, Jian; Zhang, Yelong; Meng, Yao

    2014-10-30

    Highlights: • MnO{sub 2}/MWCNTs composites anode exhibits faster reaction kinetics. • The surfaces of MnO{sub 2}/MWCNTs composites anode exhibits better wettability. • A BMFC using the modified anode have excellent power output. - Abstract: Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO{sub 2})/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the BMFCs via a direct redox reaction between permanganate ions (MnO{sub 4}{sup −}) and MWCNTs. The results indicate that the MnO{sub 2}/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO{sub 2} (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

  19. Synthesis of TiO2 Nanoparticle and its Application to Graphite Composite Electrode for Hydroxylamine Oxidation

    M. Mazloum-Ardakani

    2013-09-01

    Full Text Available In this work, sol-gel method was used tosynthesize titanium dioxide nanoparticles (TiO2. The TiO2nanoparticles was characterized by Scanning Electron Microscopy (SEM, x-ray diffraction (XRD and BET technique.The TiO2 and coumarin derivative (7-(1,3-dithiolan-2-yl-9, 10-dihydroxy-6H-benzofuro [3,2-c] chromen-6-on were incorporated in a graphite composite electrode. The resulting modified electrode displayed a good electrocatalytic activity for the oxidation of hydroxylamine, which leads to a reduction in its overpotential by more than 520 mV. Differential pulse voltammetry (DPV of hydroxylamine at the modified electrode exhibited a linear dynamic range (between 0.5 and 500.0 µM with a detection limit (3σ of 0.133 μM. The high sensitivity, ease of fabrication and low cost of this modified electrode for the detection of hydroxylamine demonstrate its potential sensing applications.

  20. Laser induced self-propagating reduction and exfoliation of graphite oxide as an electrode material for supercapacitors

    Wang, Dewei; Min, Yonggang; Yu, Youhai; Peng, Bo

    2014-01-01

    Graphical abstract: - Highlights: • Few layers graphene was obtained by laser induced self-propagating reduction. • The process is ultrafast without assistance of any high temperate/vacuum environment. • The as-prepared graphene exhibits excellent electrochemical performance. • The superior capacitive behavior is owing to its unique structures. - Abstract: Focused laser beam induced self-propagating reaction has been developed for fabrication of graphene rapidly and efficiently through simultaneous reduction and exfoliation of graphite oxide (GO) process. This chemical-free approach can realize the reduction and exfoliation at room temperature without assistance of any high temperature/vacuum environment. We found that the small sized spot can trigger an ultrafast and highly thermal transferred process by self-propagating reaction at ambient conditions. Benefiting from its high surface area and unique structure, the laser induced self-propagating reaction reduced graphene (LIG) shows excellent capacitive performance. Considering that the cost-effective and feasible process, this facile technique presented here will not only provide a promising method for production of graphene on an industrial scale, but also put forward the application graphene materials in energy storage and conversion

  1. Preparation and dielectric properties of novel composites based on oxidized styrene-butadienestyrene copolymer and polyaniline modified exfoliated graphite nanoplates

    Lv, Qun-Chen; Li, Ying; Zhong, Zhi-Kui; Wu, Hui-Jun; He, Fu-An; Lam, Kwok-Ho

    2018-05-01

    To improve the dielectric performance of high-dielectric-constant conductive filler/polymer composites, polyaniline was deposited on exfoliated graphite nanoplates (xGNPs) by in-situ polymerization method to form polyaniline (PANI) coated xGNPs (xGNPs@PANI) as the conductive filler for the oxidized styrene-butadienestyrene copolymer (SBS-FH) containing both hydroxyl and formyloxy groups. The results of TEM, SEM, FTIR, TGA, Raman spectrum, XPS, and WAXD showed that PANI had been coated onto the surface of xGNPs successfully. The xGNPs@PANI/SBS-FH composites were prepared by a simple solution-blending method and the homogenous distribution of xGNPs@PANI in the SBS-FH matrix was confirmed by SEM. The presence of xGNPs@PANI was found to significantly improve the dielectric properties of resultant composite compared to the unmodified xGNPs. For example, the xGNPs@PANI/SBS-FH composite near percolation threshold filled with 9.38 vol.% xGNPs@PANI showed a dielectric constant of 56.8 and a dielectric loss factor of 0.51 at 1000 Hz, while the corresponding values of xGNPs (1.19 vol.%)/SBS composite were 15.96 and 2.91 at 1000 Hz, respectively. In addition, the incorporation of xGNPs@PANI into SBS-FH could effectively enhance the thermal conductivity of resultant xGNPs@PANI/SBS-FH composite.

  2. Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation

    Xu, Shipu; Sun, Fengqiang; Yang, Shumin; Pan, Zizhao; Long, Jinfeng; Gu, Fenglong

    2015-01-01

    A new graphene-based composite structure, monolayer-ordered macroporous film composed of a layer of orderly arranged macropores, was reported. As an example, SnO2-reduced graphite oxide monolayer-ordered macroporous film was fabricated on a ceramic tube substrate under the irradiation of ultra-violet light (UV), by taking the latex microsphere two-dimensional colloid crystal as a template. Graphite oxide sheets dispersed in SnSO4 aqueous solution exhibited excellent affinity with template microspheres and were in situ incorporated into the pore walls during UV-induced growth of SnO2. The growing and the as-formed SnO2, just like other photocatalytic semiconductor, could be excited to produce electrons and holes under UV irradiation. Electrons reduced GO and holes adsorbed corresponding negative ions, which changed the properties of the composite film. This film was directly used as gas-sensor and was able to display high sensitivity in detecting ethanol gas. More interestingly, on the basis of SnO2-induced photochemical behaviours, this sensor demonstrated tunable sensitivity when UV irradiation time was controlled during the fabrication process and post in water, respectively. This study provides efficient ways of conducting the in situ fabrication of a semiconductor-reduced graphite oxide film device with uniform surface structure and controllable properties. PMID:25758292

  3. Wiring of Glucose Oxidizing Flavin Adenine Dinucleotide-Dependent Enzymes by Methylene Blue-Modified Third Generation Poly(amidoamine) Dendrimers Attached to Spectroscopic Graphite Electrodes

    Castaing, Victor; Álvarez-Martos, Isabel; Ferapontova, Elena E.

    2016-01-01

    Highlights: • Methylene blue(MB)-labelled 3 G dendrimers electronically wire flavoenzymes to graphite electrodes. • Dendrimer-templated organization of MB improves electron transfer efficiency. • Covalent attachment of dendrimers to graphite provides stability of binding superior to S-Au. • Sugar-oxidizing hexose oxidase can be wired with no loss of FAD and electrocatalytic activity. - Abstract: Electro-enzymatic biotransformation requires an efficient and robust electronic communication between the biomolecules and electrodes, often performed by the relevant electron transfer (ET) mediating systems. Of those, redox-labeled dendrimeric structures, biocompatible and bearing spatially ordered multiple redox centers, represent an advanced alternative to the existing approaches. Here we show that methylene blue (MB)-labeled G3 PAMAM dendrimers covalently attached to the high-surface area spectroscopic graphite (Gr) electrodes form stable and spatially resolved electronic wires, characterized by the heterogeneous ET rate constant of 7.1 ± 0.1 s"−"1; they can be used for electronic wiring of glucose-oxidizing FAD-containing enzymes, such as hexose oxidase (HOX), and further bioelectrocatalysis of glucose oxidation, starting, at pH 7, from -100 mV vs. Ag/AgCl. Thus, dendrimer-templated electronic wires, comprising MB molecules conjugated to the periphery of the PAMAM and anchored to the surface of cost-effective Gr electrodes represent an efficient and robust tool for protein wiring to electrodes for their perspective bioelectronic applications in biosensors and biofuel cells.

  4. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-01-01

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  5. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Jinlong, Lv, E-mail: ljlbuaa@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Tongxiang, Liang; Chen, Wang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  6. Graphene-based materials via benzidine-assisted exfoliation and reduction of graphite oxide and their electrochemical properties

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G.; Boukos, N.; Psycharis, V.; Lei, C.; Lekakou, C.; Petridis, D.; Trapalis, C.

    2017-01-01

    Benzidine, a compound bearing aromatic rings and terminal amino groups, was employed for the intercalation and simultaneous reduction of graphite oxide (GO). The aromatic diamine can be intercalated into GO as follows: (1) by grafting with the epoxy groups of GO, (2) by hydrogen bonding with the oxygen containing groups of GO. Stacking between benzidine aromatic rings and unoxidized domains of GO may occur through π-π interaction. The role of benzidine is influenced by pH conditions and the weight ratio GO/benzidine. Two weight ratios were tested i.e. 1:2 and 1:3. Under strong alkaline conditions through K2CO3 addition (pH ∼10.4-10.6) both intercalation and reduction of GO via amino groups occur, while under strong acidic conditions through HCl addition (pH ∼1.4-2.2) π-π stacking is preferred. When no base or acid is added (pH ∼5.2) and the weight ratio is 1:2, there are indications that reduction and π-π stacking occur, while at a GO/benzidine weight ratio 1:3 intercalation via amino groups and reduction seem to dominate. The aforementioned remarks render benzidine a multifunctional tool towards production of reduced graphene oxide. The effect of pH conditions and the GO/benzidine weight ratio on the quality and the electrochemical properties of the produced graphene-based materials were investigated. Cyclic voltammetry measurements using three-electrode cell and KCl aqueous solution as an electrolyte gave specific capacitance values up to ∼178 F/g. When electric double-layer capacitors (EDLC) were fabricated from these materials, the maximum capacitance in organic electrolyte i.e., tetraethyl ammonium tetrafluoroborate (TEABF4) in polycarbonate (PC) was ∼29 F/g.

  7. Interface polymerization synthesis of conductive polymer/graphite oxide@sulfur composites for high-rate lithium-sulfur batteries

    Wang, Xiwen; Zhang, Zhian; Yan, Xiaolin; Qu, Yaohui; Lai, Yanqing; Li, Jie

    2015-01-01

    Highlights: • A hybrid nanostructure that incorporate the merits of conductive polymer nanorods and graphite oxide sheets. • A novel approach based on interface polymerization for synthesizing CP/GO@S ternary composite. • CP/GO@S ternary composite cathode shows enhanced electrochemical properties compared with CP@S binary composite cathode. • PEDOT/GO@S composite is the material system that have best electrochemical performance in all CP/GO@S ternary composites. - Abstract: The novel ternary composites, conductive polymers (CPs)/graphene oxide (GO)@sulfur composites were successfully synthesized via a facile one-pot route and used as cathode materials for Li-S batteries The poly(3,4-ethylenedioxythiophene) (PEDOT)/GO and polyaniline (PANI)/GO composites were prepared by interface polymerization of monomers on the surface of GO sheets. Then sulfur was in-situ deposited on the CPs/GO composites in same solution. The component and structure of the composites were characterized by XPS, TGA, FTIR, SEM, TEM and electrochemical measurements. In this structure, the CPs nanostructures are believed to serve as a conductive matrix and an adsorbing agent, while the highly conductive GO will physically and chemically confine the sulfur and polysulfide within cathode. The PEDOT/GO@S composites with the sulfur content of 66.2 wt% exhibit a reversible discharge capacity of 800.2 mAh g −1 after 200 cycles at 0.5 C, which is much higher than that of PANI/GO@S composites (599.1 mAh g −1 ) and PANI@S (407.2 mAh g −1 ). Even at a high rate of 4 C, the PEDOT/GO@S composites still retain a high specific capacity of 632.4 mAh g −1

  8. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals

    Dong, Yongqiang; Lin, Jianpeng; Chen, Yingmei; Fu, Fengfu; Chi, Yuwu; Chen, Guonan

    2014-06-01

    Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment.Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of

  9. Mixed graphite cast iron for automotive exhaust component applications

    De-lin Li

    2017-01-01

    Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard speci...

  10. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  11. A pore structure model for the gas transport property changes, initial oxidation rates and cumulative weight loss of AGR moderator graphite

    Johnson, P.A.V.

    1985-09-01

    A quantitative model has been developed for the gas transport property variation, cumulative weight loss and initial oxidation rates of AGR moderator graphite. The model utilises the theory of dynamic moments of the pore structure to calculate the changes in physical properties brought about by radiolytic corrosion taking place within the graphite porosity. In order to account for the behaviour of the initial rate curves, and the weight loss data obtained it is necessary to invoke the presence of a group of cylindrical pore and a group of small slab-shaped pores. The latter are methane depleted. This is in addition to the pore group involved in gas transport which is best represented by cylinders of mean radius 2.13 μm. The model satisfactorily predicts the experimental weight loss data obtained from experiments in the DIDO 6V3 and BFB loops. (author)

  12. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column

    Gong, Ji-Lai, E-mail: jilaigong@gmail.com [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Zhang, Yong-Liang; Jiang, Yan [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Zeng, Guang-Ming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Cui, Zhi-Hui; Liu, Ke; Deng, Can-Hui; Niu, Qiu-Ya; Deng, Jiu-Hua [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Huan, Shuang-Yan [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2015-03-01

    Highlights: • GO-sand was prepared by coating GO on the surface of sand. • Pb(II) and MB were efficiently removed by GO-sand filter in column. • The removal of MB was enhanced with the presence of Pb(II). • GO-sand is low-cost and convenient for its application as packed bed filter. - Abstract: The mixture of several effluents, caused by the improper handling and management of effluents, generated multi-component wastewater containing both metals and dyes, leading to the complicated treatment process. In this study, a continuous adsorption of Pb(II) and methylene blue (MB) has been studied in single and binary solutions by using graphite oxide coated sand (GO-sand) as an adsorbent in a fixed-bed column. GO-sand was analyzed by X-ray photoelectron spectroscopy before and after analyte adsorption. Compared with sand filter, adsorption quantity and capacity for Pb(II) and MB by GO-sand filter were greatly increased. In Pb(II) and MB single solutions, the experimental parameters were investigated in detail including initial concentration, flow rate, bed depth and pH. Exhaustion time decreased with increasing initial concentration and flow rate, and increased with increasing bed depth and pH. In the Pb(II)-MB binary solution, exhaustion time significantly decreased for Pb(II) adsorption, but increased for MB adsorption. The reason was explained that the more favorable adsorption for MB onto the surface of GO-sand than that for Pb(II), which was derived from π–π interaction between MB and GO on sand surface in packed filter. The Yoon–Nelson model was applied at different concentration of Pb(II) and MB to predict the breakthrough curves. The experimental data were well fit with the model indicating that it was suitable for this column design.

  13. Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells

    Ma, Ming; You, Shijie; Gong, Xiaobo; Dai, Ying; Zou, Jinlong; Fu, Honggang

    2015-06-01

    Biofilms from anode heterotrophic bacteria are inevitably formed over cathodic catalytic sites, limiting the performances of single-chamber microbial fuel cells (MFCs). Graphitic carbon (GC) - based nano silver/iron oxide (AgNPs/Fe3O4/GC) composites are prepared from waste pomelo skin and used as antibacterial oxygen reduction catalysts for MFCs. AgNPs and Fe3O4 are introduced in situ into the composites by one-step carbothermal reduction, enhancing their conductivity and catalytic activity. To investigate the effects of Fe species on the antibacterial and catalytic properties, AgNPs/Fe3O4/GC is washed with sulfuric acid (1 mol L-1) for 0.5 h, 1 h, and 5 h and marked as AgNPs/Fe3O4/GC-x (x = 0.5 h, 1 h and 5 h, respectively). A maximum power density of 1712 ± 35 mW m-2 is obtained by AgNPs/Fe3O4/GC-1 h, which declines by 4.12% after 17 cycles. Under catalysis of all AgNP-containing catalysts, oxygen reduction reaction (ORR) proceeds via the 4e- pathway, and no toxic effects to anode microorganisms result from inhibiting the cathodic biofilm overgrowth. With the exception of AgNPs/Fe3O4/GC-5 h, the AgNPs-containing composites exhibit remarkable power output and coulombic efficiency through lowering proton transfer resistance and air-cathode biofouling. This study provides a perspective for the practical application of MFCs using these efficient antibacterial ORR catalysts.

  14. Raman characterization of bulk ferromagnetic nanostructured graphite

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  15. Mixed graphite cast iron for automotive exhaust component applications

    De-lin Li

    2017-11-01

    Full Text Available Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard specification (A1095 has been created for compacted, mixed, and spheroidal graphite silicon-molybdenum iron castings. This paper attempts to outline the latest progress in mixed graphite iron published.

  16. Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode

    Fu, Yongsheng; Zhu, Junwu; Hu, Chong; Wu, Xiaodong; Wang, Xin

    2014-10-01

    An in situ chemical synthetic approach has been designed for the fabrication of a covalently coupled hybrid consisting of graphitic carbon nitride (g-C3N4) with reduced graphene oxide (rGO) with differing g-C3N4/rGO ratio. The epoxy groups of graphene oxide (GO) undergo a nucleophilic substitution reaction with dicyandiamide (C2H4N4) to form the C2H4N4-GO composite via a covalent C-N bond, and then both the in situ polymerization of C2H4N4 and the thermal reduction of GO can be achieved at higher temperatures, forming the covalently coupled g-C3N4-rGO. FT-IR, CP-MAS NMR and XPS analyses, clearly revealed a covalent interaction between the g-C3N4 and rGO sheets. The g-C3N4-rGO exhibits an unprecedented high, stable and reversible capacity of 1525 mA h g-1 at a current density of 100 mA g-1 after 50 cycles. Even at a large current density of 1000 mA g-1, a reversible capacity of 943 mA h g-1 can still be retained. The superior electrochemical performance of g-C3N4-rGO is attributed to the specific characteristics of the unique nanostructure of g-C3N4-rGO and the concerted effects of g-C3N4 and rGO, including covalent interactions between the two moieties, the good conductivity and high special surface area of the nanocomposite, as well as the template effect of the planar amino group of g-C3N4 for the dispersed decoration of Li+ ions.An in situ chemical synthetic approach has been designed for the fabrication of a covalently coupled hybrid consisting of graphitic carbon nitride (g-C3N4) with reduced graphene oxide (rGO) with differing g-C3N4/rGO ratio. The epoxy groups of graphene oxide (GO) undergo a nucleophilic substitution reaction with dicyandiamide (C2H4N4) to form the C2H4N4-GO composite via a covalent C-N bond, and then both the in situ polymerization of C2H4N4 and the thermal reduction of GO can be achieved at higher temperatures, forming the covalently coupled g-C3N4-rGO. FT-IR, CP-MAS NMR and XPS analyses, clearly revealed a covalent interaction between

  17. Artificial graphites

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  18. Neutron study of fast neutron reactor systems by exponential experiments on Harmonie - Graphite program HUG-PHUG - Oxide program PHRIXOS - Uranium program UK

    Desprets, Alain.

    1977-12-01

    Exponential experiments allow to obtain the fundamental characteristics of a lattice (material buckling, reaction rate ratios) more economically than critical experiments. This report describes the experimental techniques and the methods of analysis used for this type of experiments. The results obtained with three programs performed with the source reactor HARMONIE are given: graphite-lattices program (3 U-fueled and 3 Pu-fueled lattices); oxide-fuel program (4 PuO 2 -UO 2 lattices); pure uranium program (one lattice). Some of these lattices were also studied in critical experiments. The coherence of the results obtained by the two types of experiments is established [fr

  19. Characterization of oat beta-glucan and coenzyme Q10-loaded beta-glucan powders generated by the pressurized gas-expanded liquid (PGX) technology.

    Liu, Nian; Couto, Ricardo; Seifried, Bernhard; Moquin, Paul; Delgado, Luis; Temelli, Feral

    2018-04-01

    The physicochemical properties of the oat beta-glucan powder (BG) and coenzyme Q10 (CoQ10)-loaded BG powder (L-BG) produced by the pressurized gas-expanded liquid (PGX) technology were studied. Helium ion microscope, differential scanning calorimeter, X-ray diffractometer, AutoSorb iQ and rheometer were used to determine the particle morphology, thermal properties, crystallinity, surface area and viscosity, respectively. Both BG (7.7μm) and L-BG (6.1μm) were produced as micrometer-scale particles, while CoQ10 nanoparticles (92nm) were adsorbed on the porous structure of L-BG. CoQ10 was successfully loaded onto BG using the PGX process via adsorptive precipitation mainly in its amorphous form. Viscosity of BG and L-BG solutions (0.15%, 0.2%, 0.3% w/v) displayed Newtonian behavior with increasing shear rate but decreased with temperature. Detailed characterization of the physicochemical properties of combination ingredients like L-BG will lead to the development of novel functional food and natural health product applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. One new route to optimize the oxidation resistance of TiC/hastelloy (Ni-based alloy) composites applied for intermediate temperature solid oxide fuel cell interconnect by increasing graphite particle size

    Qi, Qian; Liu, Yan; Wang, Lujie; Zhang, Hui; Huang, Jian; Huang, Zhengren

    2017-09-01

    TiC/hastelloy composites with suitable thermal expansion and excellent electrical conductivity are promising candidates for IT-SOFC interconnect. In this paper, the TiC/hastelloy composites are fabricated by in-situ reactive infiltration, and the oxidation resistance of composites is optimized by increasing graphite particle size. Results show that the increase of graphite particles size from 1 μm to 40 μm reduces TiC particle size from 2.68 μm to 2.22 μm by affecting the formation process of TiC. Moreover, the decrease of TiC particles size accelerates the fast formation of dense and continuous TiO2/Cr2O3 oxide layer, which bring down the mass gain (800 °C/100 h) from 2.03 mg cm-2 to 1.18 mg cm-2. Meanwhile, the coefficient of thermal expansion decreases from 11.15 × 10-6 °C-1 to 10.80 × 10-6 °C-1, and electrical conductivity maintains about 5800 S cm-1 at 800 °C. Therefore, the decrease of graphite particle size is one simple and effective route to optimize the oxidation resistance of composites, and meantime keeps suitable thermal expansion and good electrical conductivity.

  1. Electrolysis of acidic sodium chloride solution with a graphite anode. I. Graphite electrode

    Janssen, L.J.J.; Hoogland, J.G.

    1969-01-01

    A graphite anode evolving Cl from a chloride soln. is slowly oxidized to CO and CO2. This oxidn. causes a change in the characteristics of the electrode in aging, comprising a change of the nature of the graphite surface and an increase of the surface area. It appears that a new graphite electrode

  2. Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation

    Li, Yueh-Feng [Department of Chemical and Materials Engineering, National Central University, Jhongli, 320 Taiwan (China); Chen, Shih-Ming; Lai, Wei-Hao [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, 31040 Taiwan (China); Sheng, Yu-Jane [Department of Chemical Engineering, National Taiwan University, Taipei, 106 Taiwan (China); Tsao, Heng-Kwong [Department of Chemical and Materials Engineering, Department of Physics, National Central University, Jhongli, 320 Taiwan (China)

    2013-08-14

    Superhydrophilic graphite surfaces and water-dispersible graphite colloids are obtained by electrochemical exfoliation with hydrophobic graphite electrodes. Such counterintuitive characteristics are caused by partial oxidation and investigated by examining both graphite electrodes and exfoliated particles after electrolysis. The extent of surface oxidation can be explored through contact angle measurement, scanning electron microscope, electrical sheet resistance, x-ray photoelectron spectroscopy, zeta-potential analyzer, thermogravimetric analysis, UV-visible, and Raman spectroscopy. The degree of wettability of the graphite anode can be altered by the electrolytic current and time. The water contact angle declines generally with increasing the electrolytic current or time. After a sufficient time, the graphite anode becomes superhydrophilic and its hydrophobicity can be recovered by peeling with adhesive tape. This consequence reveals that the anodic graphite is oxidized by oxygen bubbles but the oxidation just occurs at the outer layers of the graphite sheet. Moreover, the characteristics of oxidation revealed by UV peak shift, peak ratio between D and G bands, and negative zeta-potential indicate the presence of graphite oxide on the outer shell of the exfoliated colloids. However, thermogravimetric analysis for the extent of decomposition of oxygen functional groups verifies that the amount of oxygen groups is significantly less than that of graphite oxide prepared via Hummer method. The structure of this partially oxidized graphite may consist of a graphite core covered with an oxidized shell. The properties of the exfoliated colloids are also influenced by pH of the electrolytic solution. As pH is increased, the extent of oxidation descends and the thickness of oxidized shell decreases. Those results reveal that the degree of oxidation of exfoliated nanoparticles can be manipulated simply by controlling pH.

  3. Statistical modeling of static strengths of nuclear graphites with relevance to structural design

    Arai, Taketoshi

    1992-02-01

    Use of graphite materials for structural members poses a problem as to how to take into account of statistical properties of static strength, especially tensile fracture stresses, in component structural design. The present study concerns comprehensive examinations on statistical data base and modelings on nuclear graphites. First, the report provides individual samples and their analyses on strengths of IG-110 and PGX graphites for HTTR components. Those statistical characteristics on other HTGR graphites are also exemplified from the literature. Most of statistical distributions of individual samples are found to be approximately normal. The goodness of fit to normal distributions is more satisfactory with larger sample sizes. Molded and extruded graphites, however, possess a variety of statistical properties depending of samples from different with-in-log locations and/or different orientations. Second, the previous statistical models including the Weibull theory are assessed from the viewpoint of applicability to design procedures. This leads to a conclusion that the Weibull theory and its modified ones are satisfactory only for limited parts of tensile fracture behavior. They are not consistent for whole observations. Only normal statistics are justifiable as practical approaches to discuss specified minimum ultimate strengths as statistical confidence limits for individual samples. Third, the assessment of various statistical models emphasizes the need to develop advanced analytical ones which should involve modeling of microstructural features of actual graphite materials. Improvements of other structural design methodologies are also presented. (author)

  4. Vinylene carbonate and tris(trimethylsilyl) phosphite hybrid additives to improve the electrochemical performance of spinel lithium manganese oxide/graphite cells at 60 °C

    Koo, Bonjae; Lee, Jeongmin; Lee, Yongwon; Kim, Jun Ki; Choi, Nam-Soon

    2015-01-01

    Highlights: •The combination of tris(trimethylsilyl) phosphite and vinylene carbonate improves the electrochemical performance of lithium manganese oxide/graphite cells at 60 °C. •Removal of hydrogen fluoride and water by tris(trimethylsilyl) phosphite suppresses manganese dissolution from lithium manganese oxide. -- Abstract: The organophosphorus compounds tris(trimethylsilyl) phosphite (TMSP) and vinylene carbonate (VC) have been considered for use as functional additives to improve the electrochemical performance of Li 1.1 Mn 1.86 Mg 0.04 O 4 (LMO)/graphite full cells. Our investigation reveals that the combination of VC and TMSP as additives enhances the cycling properties and storage performance of full cells at 60 °C. The unique functions of the TMSP additive in the VC electrolyte are investigated via ex situ X-ray photoelectron spectroscopy (XPS) and 19 F nuclear magnetic resonance (NMR) measurements. The TMSP additive effectively eliminates trace water and hydrogen fluoride (HF) and produces a protective film on the LMO cathode that alleviates manganese dissolution at 60 °C

  5. Synthesis of graphene nanoplatelets from peroxosulfate graphite intercalation compounds

    MELEZHYK A.V.; TKACHEV A.G.

    2014-01-01

    Ultrasonic exfoliation of expanded graphite compound obtained by cold expansion of graphite intercalated with peroxodisulfuric acid was shown to allow the creation of graphene nanoplatelets with thickness of about 5-10 nm. The resulting graphene material contained surface oxide groups. The expanded graphite intercalation compound was exfoliated by ultrasound much easier than thermally expanded graphite. A mechanism for the cleavage of graphite to graphene nanoplatelets is proposed. It include...

  6. A graphite foam reinforced by graphite particles

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  7. Study for the determination of samarium, europium,terbium, dysprosium and yttrium in gadolinium oxide matrix by means of atomic absorption spectrophotometry using a graphite furnace

    Caires, A.C.F.

    1985-01-01

    A study for determination of samarium, europium, terbium, dysprosium and yttrium in a gadolinium oxide matrix by atomic absorption spectrophotometry using a graphite furnace is presented. The best charrring and atomization conditions were estabilished for each element, the most convenient ressonance lines being selected as well. The study was carried out for the mentioned lanthanides both when pure and when in binary mixtures with gadolinium, besides those where all for them were together with gadolinium. The determination limits for pure lanthanides were found to be between 1.3 and 9.6 ng assuming a 20% relative standard deviation as acceptable. The detection limits were in the range 0.51 and 7.5 ng, assuming as positive any answer higher than twofold the standard deviation. (author) [pt

  8. Determination of trace amounts of rare earth elements in samarium, terbium and disprosium oxides by graphite furnace atomic-absorption spectrometry

    Dantas, E.S.K.

    1990-01-01

    A graphite furnace atomic-absorption spectrometry method for the determination of neodymium, europium, terbium, dysprosium and yttrium at trace level in samarium oxide; of samarium, europium, dysprosium, holmium, erbium and yttrium in terbium oxide and of europium, terbium, holmium, erbium and yttrium in dysprosium oxide was established. The best pyrolysis and atomization temperatures were determined for each lanthanide considered. Calibration curves were obtained for the pure elements, for binary mixtures formed by the matrix and each of the lanthanides studied and, finally, for the complex mixtures constituted by the matrix and all the other lanthanide of the group under scrutiny. This study has been carried out to examine the interference of the presence of one lanthanide on the behaviour of the other, since a lack of linearity on the calibration curves has been observed in some cases. Detection and determination limits have been determined as well. The detection limits encountered were within the range 0.002 to 0.3% for different elements. The precision of the method expressed as the relative standard deviation was calculated for each element present in each of the matrices studied. The conclusion arrived at is that the method can be applied for determining the above mentioned lanthanides present in the matrices studied with purity up to 99.50%. (author)

  9. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  10. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  11. A Newly Developed Electrocatalytic Oxidation and Voltammetric Determination of Curcumin at the Surface of PdNp-graphite Electrode by an Aqueous Solution Process with Al3+

    Semiha Çakır

    2015-07-01

    Full Text Available In the first stage, the palladium nanoparticles (PdNps-coated graphite electrode (PdNp/GE has been prepared. Scanning electron microscopy (SEM technique showed that the palladium nanoparticles were uniformly distributed with an average particle diameter of 60–75 nm. And then, a novel-modified electrode has been developed by the physical deposition of Al3+ ions on palladium nanoparticles (PdNps-coated graphite electrode (Al3+/PdNp/GE. This modified electrode was characterized by square-wave voltammetry (SWV, cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS. The sensitivities of PdNp/GE and Al3+/PdNp/GE electrodes were tested with dopamine. Al3+/PdNp/GE exhib¬ited a catalytic activity for curcumin oxidation. The square-wave voltammogram of curcumin in phosphate buffer (pH = 2 gave an anodic peak at 0.56 V. The anodic peak current of curcumin was found to be linearly related to its concentration in the range of 3.0×10-8 M to 6.0×10-7 M with a detection limit of 2.2×10-8 M. It was also found that the novel Al3+/PdNp/GE electrode had the best sensitivity when compared to glassy carbon electrode (GCE, hanging mercury drop electrode (HMDE and glassy carbon electrode electropolymerized with acid chrome blue K (poly-ACBK/GCE, used for the determination of curcumin. The curcumin was detected in marketed spices sample of turmeric powder. Pure turmeric powder had the highest curcumin concentration, averaging 4.317±0.175 % by weight.

  12. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  13. Electrochemical sensing of hydroxylamine using a wax impregnated graphite electrode modified with a nanocomposite consisting of ferric oxide and copper hexacyanoferrate

    Allibai Mohanan, Vinu Mohan; Kacheri Kunnummal, Aswini; Biju, Valsala Madhavan Nair

    2016-01-01

    The authors describe a wax-impregnated graphite electrode modified with ferric oxide (Fe_2O_3) and copper hexacyanoferrate(II), and its application as an electrochemical sensor for hydroxylamine. The presence of Fe_2O_3 nanoparticles enhance the electron transfer kinetics and electrocatalytic activities, and also enlarge the surface area of the modified electrode. As compared to the unmodified electrode, 16.9 and 30.1 fold enhancements in amperometric response was observed for copper hexacyanoferrate(II) and the nanocomposite modified electrodes, respectively. Also, the presence of Fe_2O_3 in the nanocomposite enhances the anodic current response by 1.78 fold when compared to copper hexacyanoferrate(II) alone modified electrode. The electron transfer coefficient, electron transfer rate constant, diffusion coefficient and catalytic rate constant for the electro-oxidation of hydroxylamine were determined. Amperometry performed at a working voltage of 750 mV (vs. Ag/AgCl) revealed a detection range that extends from 0.8 μM to 100 μM, a detection limit of 0.5 μM (at an S/N ratio of 3) and a sensitivity of 0.0924 mA⋅mM"−"1. The modified electrode is remarkably stable and was successfully applied to the determination of hydroxylamine in spiked water samples. (author)

  14. An ultrasensitive electrochemiluminescent immunosensor based on graphene oxide coupled graphite-like carbon nitride and multiwalled carbon nanotubes-gold for the detection of diclofenac.

    Hu, Liuyi; Zheng, Jing; Zhao, Kang; Deng, Anping; Li, Jianguo

    2018-03-15

    In this study, a novel competition-type electrochemiluminescent (ECL) immunosensor for detecting diclofenac (DCF) was fabricated with graphene oxide coupled graphite-like carbon nitride (GO-g-C 3 N 4 ) as signal probe for the first time. The ECL intensity of carboxylated g-C 3 N 4 was significantly enhanced after being combined with graphene oxide (GO) which exhibited excellent charge-transport property. The sensing platform was constructed by multiwalled carbon nanotubes and gold nanoparticles (MWCNTs-AuNPs), which not only provided an effective matrix for immobilizing a large amount of coating antigen but also facilitated the electronic transmission rate to enhance the ECL intensity. Based on the synergistic effect of GO-g-C 3 N 4 and MWCNTs-AuNPs composite, the proposed sensor showed high sensitivity, good stability, and wide linearity for the detection of DCF in the range of 0.005-1000ngmL -1 with a detection limit of 1.7pgmL -1 . Furthermore, the developed immunoassay has been applied to real samples with satisfactory results. Therefore, this work provided a promising method for the detection of DCF and other small molecular compounds in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A Universal Strategy for Hollow Metal Oxide Nanoparticles Encapsulated into B/N Co-Doped Graphitic Nanotubes as High-Performance Lithium-Ion Battery Anodes.

    Tabassum, Hassina; Zou, Ruqiang; Mahmood, Asif; Liang, Zibin; Wang, Qingfei; Zhang, Hao; Gao, Song; Qu, Chong; Guo, Wenhan; Guo, Shaojun

    2018-02-01

    Yolk-shell nanostructures have received great attention for boosting the performance of lithium-ion batteries because of their obvious advantages in solving the problems associated with large volume change, low conductivity, and short diffusion path for Li + ion transport. A universal strategy for making hollow transition metal oxide (TMO) nanoparticles (NPs) encapsulated into B, N co-doped graphitic nanotubes (TMO@BNG (TMO = CoO, Ni 2 O 3 , Mn 3 O 4 ) through combining pyrolysis with an oxidation method is reported herein. The as-made TMO@BNG exhibits the TMO-dependent lithium-ion storage ability, in which CoO@BNG nanotubes exhibit highest lithium-ion storage capacity of 1554 mA h g -1 at the current density of 96 mA g -1 , good rate ability (410 mA h g -1 at 1.75 A g -1 ), and high stability (almost 96% storage capacity retention after 480 cycles). The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Process for purifying graphite

    Clausius, R.A.

    1985-01-01

    A process for purifying graphite comprising: comminuting graphite containing mineral matter to liberate at least a portion of the graphite particles from the mineral matter; mixing the comminuted graphite particles containing mineral matter with water and hydrocarbon oil to form a fluid slurry; separating a water phase containing mineral matter and a hydrocarbon oil phase containing grahite particles; and separating the graphite particles from the hydrocarbon oil to obtain graphite particles reduced in mineral matter. Depending upon the purity of the graphite desired, steps of the process can be repeated one or more times to provide a progressively purer graphite

  17. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  18. Influence of the Surfactant Nature on the Occurrence of Self-Assembly between Rubber Particles and Thermally Reduced Graphite Oxide during the Preparation of Natural Rubber Nanocomposites

    Héctor Aguilar-Bolados

    2015-01-01

    Full Text Available The natural rubber (NR latex consists of polymer particles charged negatively due to the adsorbed phospholipids and proteins molecules. The addition of stable aqueous suspension of thermally reduced graphite oxide (TRGO stabilized by ionic surfactants to NR latex can favor the occurrence of interaction between the stabilized TRGO and NR particles. Herein, the use of two surfactants of different nature, namely, sodium dodecyl sulfate (SDS and dodecyltrimethylammonium bromide (DTAB, for the preparation of (TRGO/NR nanocomposites, is reported. Zeta potential and particle size measurements indicated that the use of DTAB as cationic surfactant results in the flocculation of NR particles and promoted the formation of ion-pair interactions between TRGO and the proteins and/or phospholipids present on the NR surface. This indicates that the use of DTAB can promote a self-assembly phenomenon between TRGO with adsorbed DTAB molecules and NR particles. The occurrence of self-assembly phenomenon allows obtaining homogenous dispersion of TRGO particles in the polymer matrix. The TRGO/NR nanocomposites prepared by the use of DTAB exhibited superior mechanical properties and excellent electrical conductivities reaching values of stress at 500% strain of 3.02 MPa and 10−4 S/cm, respectively.

  19. Enhanced performance of dye-sensitized solar cells with layered structure graphitic carbon nitride and reduced graphene oxide modified TiO2 photoanodes

    Lv, Huiru; Hu, Haihua; Cui, Can; Lin, Ping; Wang, Peng; Wang, Hao; Xu, Lingbo; Pan, Jiaqi; Li, Chaorong

    2017-11-01

    TiO2/reduced graphene oxide (TiO2/rGO) composite has been widely exploited as the photoanode material for high efficient dye-sensitized solar cells (DSSCs). However, the power conversion efficiency (PCE) is limited due to the charge recombination between the rGO and electrolyte. In this paper, we incorporate 5.5 wt% layered structure graphitic carbon nitride (g-C3N4) and 0.25 wt% rGO into TiO2 nanoparticle (NP) film to form a triple-component TiO2/rGO/g-C3N4 (TGC) photoanode for DSSCs. The TGC photoanode significantly increased the dye absorption and thus to improve the light harvesting efficiency. Furthermore, the electrochemical impedance spectroscopy (EIS) analysis of the DSSCs based on TGC photoanode demonstrates that the incorporation of the rGO and g-C3N4 into TiO2 effectively accelerates the electron transfer and reduces the charge recombination. As a result, the DSSCs based on TGC film show PCE of 5.83%, enhanced by 50.1% compared with that of pure TiO2 photoanodes. This result strongly suggests a facile strategy to improve the photovoltaic performance of DSSCs.

  20. Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles

    Karuppiah, Chelladurai; Palanisamy, Selvakumar; Chen, Shen-Ming; Veeramani, Vediyappan; Periakaruppan, Prakash

    2014-01-01

    We have studied the direct electrochemistry of glucose oxidase (GOx) immobilized on electrochemically fabricated graphite nanosheets (GNs) and zinc oxide nanoparticles (ZnO) that were deposited on a screen printed carbon electrode (SPCE). The GNs/ZnO composite was characterized by using scanning electron microscopy and elemental analysis. The GOx immobilized on the modified electrode shows a well-defined redox couple at a formal potential of −0.4 V. The enhanced direct electrochemistry of GOx (compared to electrodes without ZnO or without GNs) indicates a fast electron transfer at this kind of electrode, with a heterogeneous electron transfer rate constant (Ks) of 3.75 s −1 . The fast electron transfer is attributed to the high conductivity and large edge plane defects of GNs and good conductivity of ZnO-NPs. The modified electrode displays a linear response to glucose in concentrations from 0.3 to 4.5 mM, and the sensitivity is 30.07 μA mM −1 cm −2 . The sensor exhibits a high selectivity, good repeatability and reproducibility, and long term stability. (author)

  1. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging.

    Liu, Mengli; Xu, Yuanhong; Niu, Fushuang; Gooding, J Justin; Liu, Jingquan

    2016-04-25

    Carbon quantum dots (CQDs) are attracting tremendous interest owing to their low toxicity, water dispersibility, biocompatibility, optical properties and wide applicability. Herein, CQDs with an average diameter of (4.0 ± 0.2) nm and high crystallinity were produced simply from the electrochemical oxidation of a graphite electrode in alkaline alcohols. The as-formed CQDs dispersion was colourless but the dispersion gradually changed to bright yellow when stored in ambient conditions. Based on UV-Vis absorption, fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM), this colour change appeared to be due to oxygenation of surface species over time. Furthermore, the CQDs were used in specific and sensitive detection of ferric ion (Fe(3+)) with broad linear ranges of 10-200 μM with a low limit of detection of 1.8 μM (S/N = 3). The application of the CQDs for Fe(3+) detection in tap water was demonstrated and the possible mechanism was also discussed. Finally, based on their good characteristics of low cytotoxicity and excellent biocompatibility, the CQDs were successfully applied to cell imaging.

  2. 2D Layered Graphitic Carbon Nitride Sandwiched with Reduced Graphene Oxide as Nanoarchitectured Anode for Highly Stable Lithium-ion Battery

    M Subramaniyam, Chandrasekar; Deshmukh, Kavita A.; Tai, Zhixin; Mahmood, Nasir; Deshmukh, Abhay D.; Goodenough, John B.; Dou, Shi Xue; Liu, Hua Kun

    2017-01-01

    Two dimensional (2D) nanomaterials with high gravimetric capacity and rate capability are a key strategy for the anode of a Li-ion battery, but they still pose a challenge for Li-ion storage due to limited conductivity and an inability to alleviate the volume change upon lithiation and delithiation. In this paper, we report the construction of a 3D architecture anode consisting of exfoliated 2D layered graphitic carbon nitride (g-C_3N_4) and reduced graphene oxide (rGO) nanosheets (CN-rGO) by hydrothermal synthesis. First, bulk g-C_3N_4 is converted to nanosheets to increase the edge density of the inert basal planes since the edges act as active Li-storage sites. This unique 3D architecture, which consists of ultrathin g-C_3N_4 nanosheets sandwiched between conductive rGO networks, exhibits a capacity of 970 mA h g"−"1 after 300 cycles, which is 15 fold higher than the bulk g-C_3N_4. The tuning of the intrinsic structural properties of bulk g-C_3N_4 by this simple bottom-up synthesis has rendered a 3D architectured material (CN-rGO) as an effective negative electrode for high energy storage applications.

  3. Non-enzymatic glucose sensing platform using self assembled cobalt oxide/graphene nanocomposites immobilized graphite modified electrode

    Vivekananth, R.; Babu, R. Suresh; Prasanna, K.

    2018-01-01

    A new strategy to prepare the densely packed cobalt oxide (Co3O4)/graphene nanocomposites by a self-assembly method were adopted in this work. A new non-enzymatic glucose determination has been fabricated by using Co3O4/graphene nanocomposites modified electrode as a sensing material. The nanocom...... of the modified electrode for glucose determination has been evaluated in urine samples....

  4. Synthesis of soluble graphite and graphene.

    Kelly, K F; Billups, W E

    2013-01-15

    Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without

  5. Influence of alcohol additives in the preparation of electrodeposited Pt-Ru catalysts on oxidized graphite cloths

    Sieben, Juan Manuel; Duarte, Marta M.E.; Mayer, Carlos E.

    2011-01-01

    Research highlights: → Pt-Ru catalysts were prepared by potential pulse electrodeposition from solutions containing EtOH or EG at pH 2 and 5. → The catalyst particle size, loading and dispersion were influenced by solution pH and alcohol addition. → The deposits prepared at pH 2 exhibited large irregular agglomerates while those prepared at pH 5 presented smaller globular particles. → Pt-Ru system prepared using EG at pH 5 exhibited the best performance for CH 3 OH oxidation. - Abstract: Carbon supported Pt-Ru catalysts were prepared by multiple cycles of potentiostatic pulses from aqueous diluted chloroplatinic acid and ruthenium chloride solutions in the presence of ethanol or ethylene glycol at pH 2 and 5. SEM images showed that the metallic deposit prepared at pH 2 consisted of large irregular agglomerates, whereas smaller globular particles were obtained at pH 5. In addition, the average particle size was considerably decreased in the presence of the stabilizers. The supported Pt-Ru alloys were tested as catalysts for methanol electro-oxidation in acid media. Electrocatalytic activity measurements indicated that the most active electrode was obtained with ethylene glycol as additive at pH 5.

  6. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  7. Pencil graphite electrodes for improved electrochemical detection of oleuropein by the combination of Natural Deep Eutectic Solvents and graphene oxide.

    Gomez, Federico J V; Spisso, Adrian; Fernanda Silva, María

    2017-11-01

    A novel methodology is presented for the enhanced electrochemical detection of oleuropein in complex plant matrices by Graphene Oxide Pencil Grahite Electrode (GOPGE) in combination with a buffer modified with a Natural Deep Eutectic Solvent, containing 10% (v/v) of Lactic acid, Glucose and H 2 O (LGH). The electrochemical behavior of oleuropein in the modified-working buffer was examined using differential pulse voltammetry. The combination of both modifications, NADES modified buffer and nanomaterial modified electrode, LGH-GOPGE, resulted on a signal enhancement of 5.3 times higher than the bare electrode with unmodified buffer. A calibration curve of oleuropein was performed between 0.10 to 37 μM and a good linearity was obtained with a correlation coefficient of 0.989. Detection and quantification limits of the method were obtained as 30 and 102 nM, respectively. In addition, precision studies indicated that the voltammetric method was sufficiently repeatable, %RSD 0.01 and 3.16 (n = 5) for potential and intensity, respectively. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract prepared by ultrasound-assisted extraction. The results obtained with the proposed electrochemical sensor were compared with Capillary Zone Electrophoresis analysis with satisfactory results. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Facile mechanochemical synthesis of nano SnO2/graphene composite from coarse metallic Sn and graphite oxide: an outstanding anode material for lithium-ion batteries.

    Ye, Fei; Zhao, Bote; Ran, Ran; Shao, Zongping

    2014-04-01

    A facile method for the large-scale synthesis of SnO2 nanocrystal/graphene composites by using coarse metallic Sn particles and cheap graphite oxide (GO) as raw materials is demonstrated. This method uses simple ball milling to realize a mechanochemical reaction between Sn particles and GO. After the reaction, the initial coarse Sn particles with sizes of 3-30 μm are converted to SnO2 nanocrystals (approximately 4 nm) while GO is reduced to graphene. Composite with different grinding times (1 h 20 min, 2 h 20 min or 8 h 20 min, abbreviated to 1, 2 or 8 h below) and raw material ratios (Sn:GO, 1:2, 1:1, 2:1, w/w) are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and transmission electron microscopy. The as-prepared SnO2 /graphene composite with a grinding time of 8 h and raw material ratio of 1:1 forms micrometer-sized architected chips composed of composite sheets, and demonstrates a high tap density of 1.53 g cm(-3). By using such composites as anode material for LIBs, a high specific capacity of 891 mA h g(-1) is achieved even after 50 cycles at 100 mA g(-1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Photocatalytic self-cleaning poly(L-lactide) materials based on a hybrid between nanosized zinc oxide and expanded graphite or fullerene

    Virovska, Daniela [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Paneva, Dilyana, E-mail: panevad@polymer.bas.bg [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Manolova, Nevena [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Rashkov, Iliya, E-mail: rashkov@polymer.bas.bg [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Karashanova, Daniela [Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 109, BG-1113 Sofia (Bulgaria)

    2016-03-01

    New self-cleaning materials of polymer fibers decorated with a hybrid between nanosized zinc oxide and expanded graphite (EG) or fullerene (C{sub 60}) were obtained. The new materials were prepared by applying electrospinning in conjunction with electrospraying. Poly(L-lactide) (PLA) was selected as a biocompatible and (bio)degradable polymer carrier. PLA solution was electrospun in combination with electrospraying of a suspension that contained the ZnO/EG or ZnO/C{sub 60} hybrid. Mats with different content of EG or C{sub 60} were obtained. The new materials were characterized by scanning and transmission electron microscopy (SEM and TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The photocatalytic activity of the materials was evaluated by using model dyes. The formation of a hybrid between ZnO and EG led to enhancement of the photocatalytic activity of the mats at ZnO/EG weight ratios of 90/10 and 85/15. Increase in the photocatalytic activity of the ZnO-containing mats was also achieved by the formation of a hybrid between ZnO and C{sub 60} at a fullerene content of 0.5 and 1.0 wt.% in respect to ZnO weight. The new materials exhibited antibacterial activity as evidenced by the performed studies against Staphylococcus aureus. - Highlights: • New self-cleaning materials are fabricated by electrospinning/electrospraying. • PLA fibers decorated with nanosized ZnO/EG or ZnO/C{sub 60} hybrid are obtained. • Their photocatalytic activity is enhanced as compared to fibers with bare ZnO. • The new materials can be used repeatedly for degradation of MB and RR dyes. • The new self-cleaning materials exhibit antibacterial activity against S. aureus.

  10. Photocatalytic self-cleaning poly(L-lactide) materials based on a hybrid between nanosized zinc oxide and expanded graphite or fullerene

    Virovska, Daniela; Paneva, Dilyana; Manolova, Nevena; Rashkov, Iliya; Karashanova, Daniela

    2016-01-01

    New self-cleaning materials of polymer fibers decorated with a hybrid between nanosized zinc oxide and expanded graphite (EG) or fullerene (C_6_0) were obtained. The new materials were prepared by applying electrospinning in conjunction with electrospraying. Poly(L-lactide) (PLA) was selected as a biocompatible and (bio)degradable polymer carrier. PLA solution was electrospun in combination with electrospraying of a suspension that contained the ZnO/EG or ZnO/C_6_0 hybrid. Mats with different content of EG or C_6_0 were obtained. The new materials were characterized by scanning and transmission electron microscopy (SEM and TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The photocatalytic activity of the materials was evaluated by using model dyes. The formation of a hybrid between ZnO and EG led to enhancement of the photocatalytic activity of the mats at ZnO/EG weight ratios of 90/10 and 85/15. Increase in the photocatalytic activity of the ZnO-containing mats was also achieved by the formation of a hybrid between ZnO and C_6_0 at a fullerene content of 0.5 and 1.0 wt.% in respect to ZnO weight. The new materials exhibited antibacterial activity as evidenced by the performed studies against Staphylococcus aureus. - Highlights: • New self-cleaning materials are fabricated by electrospinning/electrospraying. • PLA fibers decorated with nanosized ZnO/EG or ZnO/C_6_0 hybrid are obtained. • Their photocatalytic activity is enhanced as compared to fibers with bare ZnO. • The new materials can be used repeatedly for degradation of MB and RR dyes. • The new self-cleaning materials exhibit antibacterial activity against S. aureus.

  11. Efficient visible-light photocatalytic oxidation of gaseous NO with graphitic carbon nitride (g–C_3N_4) activated by the alkaline hydrothermal treatment and mechanism analysis

    Nie, Haoyu; Ou, Man; Zhong, Qin; Zhang, Shule; Yu, Lemeng

    2015-01-01

    Highlights: • Various porous g–C_3N_4 samples were obtained by the alkaline hydrothermal treatment. • 0.12CN possesses the largest BET specific surface area and pore volume. • The NO conversion in the presence of 0.12CN reaches 40.4%. • Reasons for the enhanced PCO performance with treated g–C_3N_4 was analyzed. • Further mechanism of the PCO of NO relevant with active species was investigated. - Abstract: In this paper, an enhanced visible-light photocatalytic oxidation (PCO) of NO (∼400 ppm) in the presence of the graphitic carbon nitride (g–C_3N_4) treated by the alkaline hydrothermal treatment is evaluated. Various g–C_3N_4 samples were treated in different concentrations of NaOH solutions and the sample treated in 0.12 mol L"−"1 of NaOH solution possesses the largest BET specific surface area as well as the optimal ability of the PCO of NO. UV–vis diffuse reflection spectra (DRS) and photoluminescence (PL) spectra were also conducted, and the highly improved photocatalytic performance is ascribed to the large specific surface area and high pore volume, which provides more adsorption and active sites, the wide visible-light adsorption edge and the narrow band gap, which is favorable for visible-light activation, as well as the decreased recombination rate of photo-generated electrons and holes, which could contribute to the production of active species. Fluorescence spectra and a trapping experiment were conducted to further the mechanism analysis of the PCO of NO, illustrating that superoxide radicals (·O_2"−) play the dominant role among active species in the PCO of NO.

  12. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    Veronesi, Francesca [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Giavaresi, Gianluca; Fini, Milena [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Department Rizzoli RIT, Via Di Barbiano 1/10, Bologna 40136 (Italy); Longo, Giovanni [CNR Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Ioannidu, Caterina Alexandra; Scotto d' Abusco, Anna [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Superti, Fabiana; Panzini, Gianluca [Dept. of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 Roma (Italy); Misiano, Carlo [Romana Film Sottili, Anzio, Roma (Italy); Palattella, Alberto [Dept. of Clinical Sciences and Translational Medicine, Tor Vergata University, Via Montpellier 1, 00133 Roma (Italy); Selleri, Paolo; Di Girolamo, Nicola [Exotic Animals Clinic, Via S. Giovannini 53, 00137 Roma (Italy); Garbarino, Viola [Dept. of Radiology, S.M. Goretti Hospital, Via G. Reni 2, 04100 Latina (Italy); Politi, Laura [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Scandurra, Roberto, E-mail: roberto.scandurra@uniroma1.it [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy)

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm{sup 2}/μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C{sub gr}, TiC and TiO{sub x}. • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  13. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm 2 /μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C gr , TiC and TiO x . • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  14. Energy evaluations, graphite corrosion in Bugey I

    Brisbois, J.; Fiche, C.

    1967-01-01

    Bugey I presents a problem of radiolytic corrosion of the graphite by the CO 2 under pressure at high temperature. This report aims to evaluate the energy transferred to the gas by a Bugey I core cell, in normal operating conditions. The water, the carbon oxides and the hydrogen formed quantities are deduced as the consumed graphite and methane. Experimental studies are realized in parallel to validate the presented results. (A.L.B.)

  15. Oxidation kinetics of innovative carbon materials with respect to severe air ingress accidents in HTRs and graphite disposal or processing; Oxidationskinetik innovativer Kohlenstoffmaterialien hinsichtlich schwerer Lufteinbruchstoerfaelle in HTR's und Graphitentsorgung oder Aufbereitung

    Schloegel, Baerbel

    2010-07-01

    Currently future nuclear reactor concepts of the Fourth Generation (Gen IV) are under development. To some extend they apply with new, innovative materials developed just for this purpose. This thesis work aims at a concept of Generation IV Very High Temperature Reactors (VHTR) in the framework of the European project RAPHAEL (ReActor for Process heat, Hydrogen And ELectricity generation). The concept named ANTARES (AREVA New Technology based on advanced gas-cooled Reactors for Energy Supply) was developed by AEVA NP. It is a helium cooled, graphite moderated modular reactor for electricity and hydrogen production, by providing the necessary process heat due to its high working temperature. Particular attention is given here to oxidation kinetics of newly developed carbon materials (NBG-17) with still unknown but needed information in context of severe air ingress accident in VHTR's. Special interest is paid to the Boudouard reaction, the oxidation of carbon by CO{sub 2}. In case of an air ingress accident, carbon dioxide is produced in the primary reaction of atmospheric oxygen with reflector graphite. From there CO{sub 2} could flow into the reactor core causing further damage by conversion into CO. The purpose of this thesis is to ascertain if and to what degree this could happen. First of all oxidation kinetic data of the Boudouard reaction with NBG-17 is determined by experiments in a thermo gravimetric facility. The measurements are evaluated and converted into a common formula and a Langmuir-Hinshelwood similar oxidation kinetic equation, as input for the computer code REACT/THERMIX. This code is then applied to analyse severe air ingress accidents for several air flow rates. The results are discussed for two accident situations, in which a certain graphite burn off is achieved. All cases show much more damage to the graphite bottom reflector than to the reactor core. Thus the bottom reflector will lose its structural integrity much earlier than the

  16. Phonon scattering in graphite

    Wagner, P.

    1976-04-01

    Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism

  17. Modeling Fission Product Sorption in Graphite Structures

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  18. Hydrophilization of graphite using plasma above/in a solution

    Hoshino, Shuhei; Kawahara, Kazuma; Takeuchi, Nozomi

    2018-01-01

    A hydrophilization method for graphite is required for applications such as conductive ink. In typical chemical oxidation methods for graphite have the problems of producing many defects in graphite and a large environmental impact. In recent years, the plasma treatment has attracted attention because of the high quality of the treated samples and the low environmental impact. In this study, we proposed an above-solution plasma treatment with a high contact probability of graphite and plasma since graphite accumulates on the solution surface due to its hydrophobicity, which we compared with a so-called solution plasma treatment. Graphite was hydrophilized via reactions with OH radicals generated by the plasma. It was confirmed that hydroxyl and carboxyl groups were modified to the graphite and the dispersibility was improved. The above-solution plasma achieved more energy-efficient hydrophilization than the solution plasma and it was possible to enhance the dispersibility by increasing the plasma-solution contact area.

  19. Low cost sic coated erosion resistant graphite

    Zafar, M.F.; Nicholls, J.R.

    2007-01-01

    The development of materials with unique and improved properties using low cost processes is essential to increase performance and reduce cost of the solid rocket motors. Specifically advancements are needed for boost phase nozzle. As these motors operate at very high pressure and temperatures, the nozzle must survive high thermal stresses with minimal erosion to maintain performance. Currently three material choices are being exploited; which are refractory metals, graphite and carbon-carbon composites. Of these three materials graphite is the most attractive choice because of its low cost, light weight, and easy forming. However graphite is prone to erosion, both chemical and mechanical, which may affect the ballistic conditions and mechanical properties of the nozzle. To minimize this erosion high density graphite is usually preferred; which is again very expensive. Another technique used to minimize the erosion is Pyrolytic Graphite (PG) coating inside the nozzle. However PG coating is prone to cracking and spallation along with very cumbersome deposition process. Another possible methodology to avoid this erosion is to convert the inside surface of the rocket nozzle to Silicon Carbide (SiC), which is very erosion resistant and have much better thermal stability compared to graphite and even PG. Due to its functionally gradient nature such a layer will be very adherent and resistant to spallation. The current research is focused on synthesizing, characterizing and oxidation testing of such a converted SiC layer on commercial grade graphite. (author)

  20. Reactivity of lithium exposed graphite surface

    Harilal, S.S.; Allain, J.P.; Hassanein, A.; Hendricks, M.R.; Nieto-Perez, M.

    2009-01-01

    Lithium as a plasma-facing component has many attractive features in fusion devices. We investigated chemical properties of the lithiated graphite surfaces during deposition using X-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy. In this study we try to address some of the known issues during lithium deposition, viz., the chemical state of lithium on graphite substrate, oxide layer formation mechanisms, Li passivation effects over time, and chemical change during exposure of the sample to ambient air. X-ray photoelectron studies indicate changes in the chemical composition with various thickness of lithium on graphite during deposition. An oxide layer formation is noticed during lithium deposition even though all the experiments were performed in ultrahigh vacuum. The metal oxide is immediately transformed into carbonate when the deposited sample is exposed to air.

  1. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.

    Ghaedi, M; Zeinali, N; Ghaedi, A M; Teimuori, M; Tashkhourian, J

    2014-05-05

    In this study, graphite oxide (GO) nano according to Hummers method was synthesized and subsequently was used for the removal of methylene blue (MB) and brilliant green (BG). The detail information about the structure and physicochemical properties of GO are investigated by different techniques such as XRD and FTIR analysis. The influence of solution pH, initial dye concentration, contact time and adsorbent dosage was examined in batch mode and optimum conditions was set as pH=7.0, 2 mg of GO and 10 min contact time. Employment of equilibrium isotherm models for description of adsorption capacities of GO explore the good efficiency of Langmuir model for the best presentation of experimental data with maximum adsorption capacity of 476.19 and 416.67 for MB and BG dyes in single solution. The analysis of adsorption rate at various stirring times shows that both dyes adsorption followed a pseudo second-order kinetic model with cooperation with interparticle diffusion model. Subsequently, the adsorption data as new combination of artificial neural network was modeled to evaluate and obtain the real conditions for fast and efficient removal of dyes. A three-layer artificial neural network (ANN) model is applicable for accurate prediction of dyes removal percentage from aqueous solution by GO following conduction of 336 experimental data. The network was trained using the obtained experimental data at optimum pH with different GO amount (0.002-0.008 g) and 5-40 mg/L of both dyes over contact time of 0.5-30 min. The ANN model was able to predict the removal efficiency with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) at hidden layer with 10 and 11 neurons for MB and BG dyes, respectively. The minimum mean squared error (MSE) of 0.0012 and coefficient of determination (R(2)) of 0.982 were found for prediction and modeling of MB removal, while the respective value for BG was the

  2. Graphene oxide-TiO2 composite solid phase extraction combined with graphite furnace atomic absorption spectrometry for the speciation of inorganic selenium in water samples.

    Zhang, Yanan; Chen, Beibei; Wu, Shaowei; He, Man; Hu, Bin

    2016-07-01

    In this paper, a method of graphene oxide (GO)-TiO2 composite solid phase extraction followed by graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the speciation of inorganic selenium in environmental waters. The adsorption behavior of inorganic Se(IV) and Se(VI) on the GO-TiO2(1:1) composite was investigated. It was found that Se(IV) was quantitatively retained on the GO-TiO2 composites within a wide pH range of 0.5-10, while Se(VI) was quantitatively adsorbed on GO-TiO2(1:1) composite at pH 0.5-2, and no obvious adsorption of Se(VI) within the pH range of 4-10 was found. By selecting pH 6.0, Se(IV) could be easily determined. After reduction of Se(VI), total Se was determined by the proposed method, and Se(VI) was calculated as the difference between the total Se and Se(IV). The factors affecting the separation/preconcentration of Se(IV) and Se(VI) were studied. Under the optimum conditions, the isothermal adsorption of Se(IV) on the GO-TiO2(1:1) composite fitted Langmuir model; a linear range over 0.1-12ngmL(-1) was obtained. The limit of detection (LOD) and precision of the method for Se(IV) was 0.04ngmL(-1) and 9.4% (cSe(IV)=0.5ngmL(-1), n=7), respectively. In order to verify the accuracy of the method, a standard water sample (GSBZ50031-94) was analyzed, and the determined value was in a good agreement to the certified value. The established method was applied to inorganic Se speciation in environmental water samples and the recovery of 87.4-102% was obtained for the spiked samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Change in properties of graphite on stake of Obninsk NPP

    Virgul'ev, Yu.S.; Gundorov, V.V.; Kalyagina, I.P.; Belinskaya, N.T.; Dolgov, V.V.; Komissarov, O.V.; Stuzhnev, Yu.A.

    1997-01-01

    The results of testing the graphite from the AM-1 reactor masonry at the Obninsk NPP for its operation period are discussed. It is shown that the masonry graphite state after 42 years of the reactor operation remains satisfactory in the most cells inspected. Separate cells requiring a repair resulted from oxidation are characterized by strength decreased by several times. The laws of radiation changes in graphite properties are analyzed. The conclusion on possibility of the further masonry operation is drawn

  4. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic applications and mechanistic study.

    So, Man-Ho; Liu, Yungen; Ho, Chi-Ming; Che, Chi-Ming

    2009-10-05

    Selective oxidation of amines using oxygen as terminal oxidant is an important area in green chemistry. In this work, we describe the use of graphite-supported gold nanoparticles (AuNPs/C) to catalyze aerobic oxidation of cyclic and acyclic benzylic amines to the corresponding imines with moderate-to-excellent substrate conversions (43-100%) and product yields (66-99%) (19 examples). Oxidation of N-substituted 1,2,3,4-tetrahydroisoquinolines in the presence of aqueous NaHCO3 solution gave the corresponding amides in good yields (83-93%) with high selectivity (up to amide/enamide=93:4) (6 examples). The same protocol can be applied to the synthesis of benzimidazoles from the reaction of o-phenylenediamines with benzaldehydes under aerobic conditions (8 examples). By simple centrifugation, AuNPs/C can be recovered and reused for ten consecutive runs for the oxidation of dibenzylamine to N-benzylidene(phenyl)methanamine without significant loss of catalytic activity and selectivity. This protocol "AuNPs/C+O2" can be scaled to the gram scale, and 8.9 g (84 % isolated yield) of 3,4-dihydroisoquinoline can be obtained from the oxidation of 10 g 1,2,3,4-tetrahydroisoquinoline in a one-pot reaction. Based on the results of kinetic studies, radical traps experiment, and Hammett plot, a mechanism involving the hydrogen-transfer reaction from amine to metal and oxidation of M-H is proposed.

  5. Preparation of poly(3,4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode and investigation of over-oxidation conditions for the selective and sensitive determination of uric acid in body fluids

    Özcan, Ali, E-mail: aozcan3@anadolu.edu.tr; İlkbaş, Salih

    2015-09-03

    In this study, we have performed the preparation of over-oxidized poly(3,4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode (Ox-PEDOT-nf/PGE) to develop a selective and sensitive voltammetric uric acid (UA) sensor. It was noted that the over-oxidation potential and time had a prominent effect on the UA response of the Ox-PEDOT-nf/PGE. Characterizations of PEDOT-nf/PGE and Ox-PEDOT-nf/PGE have been performed by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The highest voltammetric response of UA was obtained at pH 2.0. A linear relationship between the concentration of UA and oxidation peak currents was observed in the concentration range of 0.01–20.0 μM. The detection limit (1.3 nM according to S/N = 3) and reproducibility (RSD: 4.6 % for N:10) have also been determined. The effects of different substances on the determination of UA have been investigated. A very high peak separation value of 423 mV was obtained between UA and ascorbic acid which is the major interfering substance for UA. The use of Ox-PEDOT-nf/PGE has been successfully tested in the determination of UA in human blood serum and urine samples for the first time in the literature. - Highlights: • Modification of pencil graphite with over-oxidized PEDOT nanofibers was performed. • The prepared electrodes were used in the voltammetric determination of uric acid. • The over-oxidation potential and time has a prominent effect on the responses. • A very high peak separation (463 mV) was obtained between ascorbic and uric acids. • Analytical application of the electrodes was successfully tested in real samples.

  6. Preparation of poly(3,4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode and investigation of over-oxidation conditions for the selective and sensitive determination of uric acid in body fluids

    Özcan, Ali; İlkbaş, Salih

    2015-01-01

    In this study, we have performed the preparation of over-oxidized poly(3,4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode (Ox-PEDOT-nf/PGE) to develop a selective and sensitive voltammetric uric acid (UA) sensor. It was noted that the over-oxidation potential and time had a prominent effect on the UA response of the Ox-PEDOT-nf/PGE. Characterizations of PEDOT-nf/PGE and Ox-PEDOT-nf/PGE have been performed by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The highest voltammetric response of UA was obtained at pH 2.0. A linear relationship between the concentration of UA and oxidation peak currents was observed in the concentration range of 0.01–20.0 μM. The detection limit (1.3 nM according to S/N = 3) and reproducibility (RSD: 4.6 % for N:10) have also been determined. The effects of different substances on the determination of UA have been investigated. A very high peak separation value of 423 mV was obtained between UA and ascorbic acid which is the major interfering substance for UA. The use of Ox-PEDOT-nf/PGE has been successfully tested in the determination of UA in human blood serum and urine samples for the first time in the literature. - Highlights: • Modification of pencil graphite with over-oxidized PEDOT nanofibers was performed. • The prepared electrodes were used in the voltammetric determination of uric acid. • The over-oxidation potential and time has a prominent effect on the responses. • A very high peak separation (463 mV) was obtained between ascorbic and uric acids. • Analytical application of the electrodes was successfully tested in real samples.

  7. Synthesis of gold nanoparticles on the surface of pyrolytic graphite using penicillin as a stabilizing reagent and the catalytic oxidation of α-naphthylamine

    Song, Y. Z.; Song, Y.; Cheng, Z. P.; Zhou, J. F.; Wei, C.

    2013-01-01

    Electrochemical synthesis of gold nanoparticles on the surface of pyrolytic graphite using penicillin as a stabilizing reagent was proposed. The gold nanoparticles were characterized by scanning electron microscopy, cyclic voltammetry, IR spectra, UV spectra, and powder X-ray diffraction spectra. The electro-chemical catalysis of penicillin for α-naphthylamine was demonstrated.

  8. Structures and Performance of Graphene/Polyimide Composite Graphite Fibers

    LI Na

    2017-09-01

    Full Text Available Dry-wet spinning process was used to gain graphene oxide/polyimide composite fibers, then graphene/polyimide composite carbon and graphite fibers were obtained through carbonized and graphitized. Different graphene oxide contents of the composite carbon and graphite fibers were measured by thermal gravimetric analysis, Raman, mechanical properties, electrical properties,SEM and so on. The results show that when the GO content is 0.3%(mass fraction,the same below, the thermal property of the graphene oxide/polyimide composite fibers is the best. The mechanical and electrical properties are obriously improved by the addition of GO, graphitization degree also increases. When the composite carbon fibers are treated at 2800℃, GO content increases to 2.0%, the thermal conductivity of the composite graphite fibers reaches 435.57W·m-1·K-1 and cross-section structures of carbon fibers are more compact.

  9. Cyclic fatigue of near-isotopic graphite: influence of stress cycle and neutron irradiation

    Price, R.J.

    1977-11-01

    Near-isotropic graphites H-451 and PGX were tested in uniaxial cyclic fatigue, and fatigue life (S-N) curves were generated to a maximum of 10 5 cycles. The stress ratio, R (minimum stress during a cycle divided by maximum stress) ranged from -1 to +0.5. With R = - 1, the homologous stress limits (maximum applied fatigue stress divided by the tensile strength) for 50% specimen survival to 10 5 cycles averaged 0.63 in the axial direction and 0.74 in the radial direction. Corresponding homologous stress limits for 99% specimen survival (99/95 tolerance limits) were 0.48 and 0.53. Higher R-values resulted in longer fatigue lives and increased stress limits. H-451 graphite specimens irradiated with fast neutrons at 1173 to 1263 0 K at fluences of up to 10 26 n/m 2 (equivalent fission fluence) showed fatigue stress limits of about twice the unirradiated levels when the unirradiated tensile strength was used as the basis for normalization

  10. Radical coupling of maleic anhydride onto graphite to fabricate ...

    graphene is oxidation of graphite to graphene oxide (GO) and subsequently modification of GO with modifiers [5,6]. However, oxidation process is performed under harsh condi- tions with different oxidizing agents such ..... Sci. 87 392. [20] Nakajima T, Žemva B and Tressaud A 2000 Advanced inor- ganic fluorides: synthesis ...

  11. A graphite nanoeraser

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...... by conventional techniques, can be removed by direct mechanical wiping using a graphite nanoeraser, thus drastically reducing the amount of contamination. We discuss potential applications of this cleaning procedure....

  12. Graphite core design in UK reactors

    Davies, M.W.

    1996-01-01

    The cores in the first power producing Magnox reactors in the UK were designed with only a limited amount of information available regarding the anisotropic dimensional change behaviour of Pile Grade graphite. As more information was gained it was necessary to make modifications to the design, some minor, some major. As the cores being built became larger, and with the switch to the Advanced Gas-cooled Reactor (AGR) with its much higher power density, additional problems had to be overcome such as increased dimensional change and radiolytic oxidation by the carbon dioxide coolant. For the AGRs a more isotropic graphite was required, with a lower initial open pore volume and higher strength. Gilsocarbon graphite was developed and was selected for all the AGRs built in the UK. Methane bearing coolants are used to limit radiolytic oxidation. (author). 5 figs

  13. Surface coating of graphite pebbles for Korean HCCR TBM

    Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Yun, Young-Hoon, E-mail: yunh2@dsu.ac.kr [Dongshin University, Naju (Korea, Republic of); Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source.

  14. Surface coating of graphite pebbles for Korean HCCR TBM

    Lee, Youngmin; Yun, Young-Hoon; Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon

    2014-01-01

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source

  15. Method for producing dustless graphite spheres from waste graphite fines

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  16. Graphite targets at LAMPF

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  17. Electrochemical treatment of graphite

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electrochemical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment, ECT of graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones with respect to the treatment rate and purity (ronghness) of the surface. A small quantity of sludge (6-8%) under ECT is in highly alkali electrolytes.

  18. Electrochemical treatment of graphite

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electroche-- mical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment ECT graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones this is treatment rate and purity (ronghness) of the surface. A sMall quantity of sludge (6-8%) under ECT is in highly alkali electrolytes

  19. Asymptomatic Intracorneal Graphite Deposits following Graphite Pencil Injury

    Philip, Swetha Sara; John, Deepa; John, Sheeja Susan

    2012-01-01

    Reports of graphite pencil lead injuries to the eye are rare. Although graphite is considered to remain inert in the eye, it has been known to cause severe inflammation and damage to ocular structures. We report a case of a 12-year-old girl with intracorneal graphite foreign bodies following a graphite pencil injury.

  20. Mechanism of spark generation from Japanese toy firework (senko-hanabi). ; Structural-Oxidizing reaction of micro graphite crystals in molten K sub 2 Sn. Senko hanabi no jikkenteki kosatsu. ; Yoyu K sub 2 Sn chu no sekiboku bikessho no kozo teki sanka hanno

    Ito, H. (The University, of Tokyo, Tokyo (Japan))

    1991-12-20

    Considerations were given on the spark generating mechanism of graphite particles in molten salt polysulfide through experiments on Japanese sparklers. The firework composition mixed consisted of two kinds: KNO{sub 3}, S, amorphous carbons, charcoal and lamp black, and K{sub 2}CO{sub 3}, S, charcoal and lamp black. The main constituent in fire balls is molten salt polysulfide. The O{sub 2} generated from combustion oxidizes C and S, whereas the generated K{sub 2}CO{sub 3} reacts with S to produce K{sub 2}Sn. In the KNO{sub 3} system, the calorific power reaches the maximum with lamp black contained at 10-15%. This is thought because the K{sup +} expands the space between the graphite crystal layers making the oxidation to take place more easily into their inner sides. On the one hand, the calorific power reduced with the lamp black at more than 16% would be because the lamp black clogging the crystalline spaces restricting the oxidation. It is thought that condensation and decomposition of micro graphite crystals occur simultaneously in the fire balls. It is also believed that the micro graphite crystals jumped out as a result of gas pressure from inside the crystals generated with the progress of oxidation break off at once because of the resistance of air together with the effect of the K{sup +} in the salt polysulfide (mutual separation of each layer). 9 refs., 6 figs., 1 tab.

  1. Characteristics of first loaded IG-110 graphite in HTTR core

    Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Sawa, Kazuhiro; Hanawa, Satoshi; Ishihara, Masahiro

    2006-10-01

    IG-110 graphite is a fine-grained isotropic and nuclear-grade graphite with excellent resistivity on both irradiation and corrosion and with high strength. The IG-110 graphite is used for the graphite components of High Temperature Engineering Test Reactor (HTTR) such as fuel and control rod guide blocks and support posts. In order to design and fabricate the graphite components in the HTTR, the Japan Atomic Energy Research Institute (the Japan Atomic Energy Agency at present) had established the graphite structural design code and design data on the basis of former research results. After the design code establishment, the IG-110 graphite components were fabricated and loaded in the HTTR core. This report summarized the characteristics of the first loaded IG-110 graphite as basic data for surveillance test, measuring material characteristics changed by neutron irradiation and oxidation. By comparing the design data, it was shown that the first loaded IG-110 graphite had excellent strength properties and enough safety margins to the stress limits in the design code. (author)

  2. Graphite moderator lifecycle behaviour. Proceedings of a specialists meeting

    1996-08-01

    The meeting provided the forum for graphite specialists representing operating and research organizations worldwide to exchange information in the following areas: the status of graphite development; operation and safety procedures for existing and future graphite moderated reactors; graphite testing techniques; review of the experiences gained and data acquired on the influence of neutron irradiation and oxidizing conditions on key graphite properties; and to exchange information useful for decommissioning activities. The participants provided twenty-seven papers on behalf of their countries and respective technical organizations. An open discussion followed each of the presentations. A consistently reoccurring theme throughout the specialists meeting was the noticeable reduction in the number of graphite experts remaining the nuclear power industry. Graphite moderated power reactors have provided a significant contribution to the generation of electricity throughout the past forty years and will continue to be a prominent energy source for the future. Yet, many of the renowned experts in the field of nuclear graphites are nearing the end of their careers without apparent replacement. This, coupled with changes in the focus on nuclear power by some industrialized countries, has prompted the IAEA to initiate an evaluation on the feasibility and interest by Member States of establishing a central archive facility for the storage of data on irradiated graphites. Refs, figs, tabs

  3. Graphite moderator lifecycle behaviour. Proceedings of a specialists meeting

    NONE

    1996-08-01

    The meeting provided the forum for graphite specialists representing operating and research organizations worldwide to exchange information in the following areas: the status of graphite development; operation and safety procedures for existing and future graphite moderated reactors; graphite testing techniques; review of the experiences gained and data acquired on the influence of neutron irradiation and oxidizing conditions on key graphite properties; and to exchange information useful for decommissioning activities. The participants provided twenty-seven papers on behalf of their countries and respective technical organizations. An open discussion followed each of the presentations. A consistently reoccurring theme throughout the specialists meeting was the noticeable reduction in the number of graphite experts remaining the nuclear power industry. Graphite moderated power reactors have provided a significant contribution to the generation of electricity throughout the past forty years and will continue to be a prominent energy source for the future. Yet, many of the renowned experts in the field of nuclear graphites are nearing the end of their careers without apparent replacement. This, coupled with changes in the focus on nuclear power by some industrialized countries, has prompted the IAEA to initiate an evaluation on the feasibility and interest by Member States of establishing a central archive facility for the storage of data on irradiated graphites. Refs, figs, tabs.

  4. Recent developments in graphite

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications

  5. Graphite for fusion energy applications

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  6. Preparation of anode-electrolyte structures using graphite, sodium bicarbonate or citric acid as pore forming agents for application in solid oxide fuel cells

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Guedes, Bruna C.; Pontes, Luiz A.; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Cermets based on Ni supported on YSZ or GDC were prepared for use as anode in direct reform SOFCs. NaHCO3 (Na-Ni-YSZ and Na-Ni-GDC) or citric acid (Ac-Ni-YSZ and Ac-Ni-GDC) were used as pore forming agents (PFAs). The SOFC anode was also prepared using graphite (G-Ni-YSZ and G-Ni-GDC) as PFA for the purposes of comparison. The testing unitary SOFC, planar type, was made by pressing the anode-electrolyte assembly, followed by sintering at 1500 C. After this, LSM (lanthanum and strontium manganite) paint was used for the cathode deposition. The powdered cermets were evaluated in ethanol steam reforming at 650 C. The ethanol conversion was 84% and 32% for cermets Na-Ni-YSZ and G-Ni-YSZ, respectively and the selectivity to H{sub 2} was 32 and 20% for the two cermets, respectively. The Na-Ni-YSZ cermet was ten times more resistant to carbon deposition than the G-Ni-YSZ cermet. SEM micrographs of the anode-electrolyte assembly showed that the use of NaHCO{sub 3} as PFA created a well formed interface between layers with homogeneously distributed pores. In contrast, graphite as PFA formed a loose interface between anode and electrolyte. The performance of the unitary SOFC was evaluated using ethanol, hydrogen or methane as fuel. The cell operated well using any of these fuels; however, they exhibited different electrochemical behavior. (orig.)

  7. A systematic study of acoustic emission from nuclear graphites

    Neighbour, G.B.; McEnaney, B.

    1996-01-01

    Acoustic emission (AE) monitoring has been identified as a possible method to determine internal stresses in nuclear graphites using the Kaiser effect, i.e., on stressing a graphite that has been subject to a prior stress, the onset of AE occurs at the previous peak stress. For three nuclear graphites (PGA, IM1-24 and VNEC), AE was monitored during both monotonic and cyclic loading to failure in tensile, compressive and flexural test modes. For unirradiated graphites, the Kaiser effect was not found in cyclic loading, but a Felicity effect was observed, i.e., the onset of AE occurred below the previously applied peak stress. The Felicity effect was attributed to time-dependent relaxation and recovery processes and was characterized using a new parameter, the Recovery ratio. It was shown that AE can be used to monitor creep strain and creep recovery in graphites at zero load. The AE-time responses from these experiments were fitted to equations similar to those used for creep strain-time at elevated temperatures. The number of AE counts from irradiated graphites were greater than those from unirradiated graphites, subject to similar stresses, due to increases in porosity caused by radiolytic oxidation. A Felicity effect was also observed on cyclic loading of irradiated graphites, but no evidence for a Kaiser effect was found for irradiated graphites loaded monotonically to failure. Thus internal stresses in irradiated graphites could not be measured using AE. This was attributed to relaxation and recovery processes that occur between removing the irradiated graphite from the reactor and AE testing. This work indicated that AE monitoring is not a suitable technique for measuring internal stresses in irradiated graphite. (author). 19 refs, 6 figs, 6 tabs

  8. Nondestructive evaluation of nuclear-grade graphite

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-01

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  9. Surface area-burnoff correlation for the steam--graphite reaction

    Stark, W.A. Jr.; Malinauskas, A.P.

    1977-01-01

    The oxidation of core graphite by steam of air represents a problem area of significant concern in safety analyses for the high temperature gas cooled reactor (HTGR). Core and core-support graphite integrity and strength deteriorate with oxidation of the graphite, and oxidation furthermore could affect the rate of fission product release under upset conditions. Consequently, modeling of core response during steam or air ingress conditions requires an expression for the rate of graphite interaction with those impurities. The steam--graphite reaction in particular is a complex interaction of mass transport within the graphite with chemi-sorption and reaction on accessible surfaces; experimental results from graphite to graphite are highly variable, and the description of the reaction is not yet completely consistent. A simple etch pit model relating surface area to burnoff has been proposed and shown to provide reasonable correlation with experimental data obtained from steam oxidation studies of nuclear grade H-327 graphite. Unaccounted differences between theory and experiment arise at burnoffs exceeding 3 to 5 percent. The model, while not complete nor comprehensive, is consistent with experimental observations of graphite oxidation by O 2 (air), CO 2 , or H 2 O, and could have some utility in safety analysis

  10. Study of hot corrosion of flakes of non purified graphite and of purified graphite

    Boule, Michel

    1967-01-01

    The author reports the study of hot corrosion of the Ticonderoga graphite. He reports the study of the defects of graphite flakes (structure defects due to impurities), the dosing of these impurities, and then their removal by purification. Flakes have then been oxidised by means of a specially designed apparatus. Based on photographs taken by optical and electronic microscopy, the author compares the oxidation features obtained in dry air and in humid air, between purified and non purified flakes. He also reports the study of the evolution of oxidation with respect to the initial rate of impurities, and the study of the evolution of oxidation features in humid air during oxidation. All these comparisons are made while taking the oxidation rate into account [fr

  11. Graphite matrix materials for nuclear waste isolation

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept

  12. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite

    Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D.; Pumera, Martin

    2012-01-01

    Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research. PMID:22826262

  13. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite.

    Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D; Pumera, Martin

    2012-08-07

    Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research.

  14. Carbon-14 Graphitization Chemistry

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  15. Melting temperature of graphite

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  16. Buckling and reaction rate measurements in graphite moderated lattices fuelled with plutonium-uranium oxide clusters at temperatures up to 400 deg. C

    Carter, D.H.; Gibson, M.; King, D.C.; Marshall, J.; Puckett, B.J.; Richards, A.E.; Wass, T.; Wilson, D.J.

    1965-07-01

    The Report describes a series of experiments carried out in SCORPIO I and II on sub-critical graphite moderated lattices fuelled with 21-rod clusters of PuO 2 /UO 2 fuel. Three fuel batches with nominal plutonium: uranium ratios of 0.25%, 0.8% and 1.2% were investigated at temperatures between 20 deg. C and 400 deg. C. Because of the limited amounts of the three fuels, exponential measurements were made in 2-zone stacks, the outer regions of which were loaded with suitably matched 'reference fuel'. Fine structure distributions in the lattice cell were obtained with manganese and indium foils. Pu239/U235 fission ratios were determined both by fission chambers and by fission-product counting techniques. (author)

  17. Buckling and reaction rate measurements in graphite moderated lattices fuelled with plutonium-uranium oxide clusters at temperatures up to 400 deg. C

    Carter, D H; Gibson, M; King, D C; Marshall, J; Puckett, B J; Richards, A E; Wass, T; Wilson, D J [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1965-07-15

    The Report describes a series of experiments carried out in SCORPIO I and II on sub-critical graphite moderated lattices fuelled with 21-rod clusters of PuO{sub 2}/UO{sub 2} fuel. Three fuel batches with nominal plutonium: uranium ratios of 0.25%, 0.8% and 1.2% were investigated at temperatures between 20 deg. C and 400 deg. C. Because of the limited amounts of the three fuels, exponential measurements were made in 2-zone stacks, the outer regions of which were loaded with suitably matched 'reference fuel'. Fine structure distributions in the lattice cell were obtained with manganese and indium foils. Pu239/U235 fission ratios were determined both by fission chambers and by fission-product counting techniques. (author) 14 refs, 30 figs, 18 tabs

  18. Gas storage cylinder formed from a composition containing thermally exfoliated graphite

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2012-01-01

    A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.

  19. Thermogravimetric and Differential Scanning Calorimetric Behavior of Ball-Milled Nuclear Graphite

    Kim, Eung Seon; Kim, Min Hwan; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi Hyun; Cho, Seung Yon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An examination was made to characterize the oxidation behavior of ball-milled nuclear graphite powder through a TG-DSC analysis. With the ball milling time, the BET surface area increased with the reduction of particle size, but decreased with the chemisorptions of O{sub 2} on the activated surface. The enhancement of the oxidation after the ball milling is attributed to both increases in the specific surface area and atomic scale defects in the graphite structure. In a high temperature gas-cooled reactor, nuclear graphite has been widely used as fuel elements, moderator or reflector blocks, and core support structures owing to its excellent moderating power, mechanical properties and machinability. For the same reason, it will be used in a helium cooled ceramic reflector test blanket module for the ITER. Each submodule has a seven-layer breeding zone, including three neutron multiplier layers packed with beryllium pebbles, three lithium ceramic pebbles packed tritium breeder layers, and a reflector layer packed with 1 mm diameter graphite pebbles to reduce the volume of beryllium. The abrasion of graphite structures owing to relative motion or thermal cycle during operation may produce graphite dust. It is expected that graphite dust will be more oxidative than bulk graphite, and thus the oxidation behavior of graphite dust must be examined to analyze the safety of the reactors during an air ingress accident. In this study, the thermal stability of ball-milled graphite powder was investigated using a simultaneous thermogravimeter-differential scanning calorimeter.

  20. Wiring of Glucose Oxidizing Flavin Adenine Dinucleotide-Dependent Enzymes by Methylene Blue-Modified Third Generation Poly(amidoamine) Dendrimers Attached to Spectroscopic Graphite Electrodes

    Castaing, Victor; Álvarez-Martos, Isabel; Ferapontova, Elena

    2016-01-01

    , characterized by the heterogeneous ET rate constant of 7.1 0.1 s1; they can be used for electronic wiring of glucose-oxidizing FAD-containing enzymes, such as hexose oxidase (HOX), and further bioelectrocatalysis of glucose oxidation, starting, at pH 7, from -100 mV vs. Ag/AgCl. Thus, dendrimer...

  1. Analysis of the deconvolution of the thermoluminescent curve of the zirconium oxide doped with graphite; Analisis de la deconvolucion de la curva termoluminiscente del oxido de zirconio dopado con grafito

    Salas C, P. [IMP, 07000 Mexico D.F. (Mexico); Estrada G, R. [Depto. de Fisica y Matematicas, UIA, Unidad Stanta Fe, 01000 Mexico D.F. (Mexico); Gonzalez M, P.R.; Mendoza A, D. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2003-07-01

    In this work, we present a mathematical analysis of the behavior of the thermoluminescent curve (Tl) induced by gamma radiation in samples made of zirconium oxide doped with different amounts of graphite. In accordance with the results gamma radiation induces a Tl curve with two maximum of emission localized in the temperatures at 139 and 250 C, the area under the curve is increasing as a function of the time of exposition to the radiation. The analysis of curve deconvolution, in accordance with the theory which indicates that this behavior must be obey a Boltzmann distribution, we found that each one of them has a different growth velocity as the time of exposition increase. In the same way, we observed that after the irradiation was suspended each one of the maximum decrease with different velocity. The behaviour observed in the samples is very interesting because the zirconium oxide has attracted the interest of many research groups, this material has demonstrated to have many applications in thermoluminescent dosimetry and it can be used in the quantification of radiation. (Author)

  2. Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug

    Karimi-Maleh, Hassan; Bananezhad, Asma; Ganjali, Mohammad R.; Norouzi, Parviz; Sadrnia, Abdolhossein

    2018-05-01

    Didanosine is nucleoside analog reverse transcriptase inhibitors with many side effects such as nausea and vomiting, stomach pain, tingling, burning and numbness and determination of this drug is very important in biological samples. This paper presents a DNA biosensor for determination of didanosine (DDI) in pharmaceutical samples. A pencil graphite electrode modified with conductive materials such as polypyrrole (PPy) and reduced graphene oxide (rGO) (PGE/PPy/rGO) was used for this goal. The double-stranded DNA was successfully immobilized on PGE/PPy/rGO. The PGE/PPy/rGO was characterized by microscopic and electrochemical methods. Then, the interaction of DDI with DNA was identified by decreases in the oxidation currents of guanine and adenine by differential pulse voltammetric (DPV) method. The dynamic range of DDI identified in the range of 0.02-50.0 μM and this electrode provided a low limit of detection (LOD = 8.0 nM) for DDI. The PGE/PPy/rGO loaded with ds-DNA was utilized for the measurement of DDI in real samples and obtained data were compared with HPLC method. The statistical tests such as F-test and t-test were used for confirming ability of PGE/PPy/rGO loaded with ds-DNA for analysis of DDI in real samples.

  3. Analysis of electrochemical disintegration process of graphite matrix

    Tian Lifang; Wen Mingfen; Chen Jing

    2010-01-01

    The electrochemical method with ammonium nitrate as electrolyte was studied to disintegrate the graphite matrix from the simulative fuel elements for high temperature gas-cooled reactor. The influences of process parameters, including salt concentration, system temperature and current density, on the disintegration rate of graphite fragments were investigated in the present work. The experimental results showed that the disintegration rate depended slightly on the temperature and salt concentration. The current density strongly affected the disintegration rate of graphite fragments. Furthermore, the content of introduced oxygen in final graphite fragments was independent of the current density and the concentration of electrolyte. Moreover, the structural evolution of graphite was analyzed based on the microstructural parameters determined by X-ray diffraction profile fitting analysis using MAUD (material analysis using diffraction) before and after the disintegration process. It may safely be concluded that the graphite disintegration can be ascribed to the influences of the intercalation of foreign molecules in between crystal planes and the partial oxidation involved. The disintegration process was described deeply composed of intercalate part and further oxidation part of carbon which effected together to lead to the collapse of graphite crystals.

  4. Immobilization of individual nanotubes in graphitic layers for electrical characterization

    Roy, Debmalya; Tiwari, Neeru; Mukhopadhyay, K; Saxena, A K

    2014-01-01

    A simple route is followed to produce an abundance of individual carbon nanotubes (CNTs) immobilized in graphitic layers to counter the challenge of locating individual CNTs and restrict the lateral displacement of CNTs due to the high electrostatic force exerted by a scanning tunnelling microscope tip for electrical characterization. Graphitic layers are selected for the embedding matrix as graphite and the nanotubes have a similar work function and hence would not perturb the electrical configuration of the nanotube. Solvent mediated exfoliation of graphite layers to insert the nanotubes was preferred over oxidative expansion, as oxidation could perturb the electrical configuration of graphite. During the exfoliation of graphite the optimized amount of nanotubes was introduced into the medium such that an individual nanotube could be immobilized in few-layer graphene followed by precipitation and centrifugation. The dose and the time of sonication were optimized to ensure that damage to the walls of the nanotubes is minimized, although the ultrasonication causes scissoring of the nanotube length. This procedure for immobilizing nanotubes in graphitic layers would be equally applicable for functionalized CNTs as well. The capability of embedding individual nanotubes into a similar work function material in an organic solvent, which could then be transferred onto a substrate by simple drop casting or spin coating methods, has an added advantage in sample preparation for the STM characterization of CNTs. (paper)

  5. Technique for production of graphite-carbon products

    Antonov, A.N.; Bentsianovskaya, I.A.; Filatova, V.A.; Nabokov, V.S.; Nestor, V.P.; Zil' bergleyt, I.M.

    1982-01-01

    The technique for producing carbon-graphite products that includes filtration under a pressure of 0.1-015 MPa (through graphite stock) of an aqueous carbon material with the addition of surfactant, drying, and subsequent thermal treatment, is simplified and made less lengthy. Oxidized graphite is utilized with a prior addition of 1-10% water-soluble organic substance into the suspension -molasses, hemicellulose, sugar or polyacrylamide. A 0.03-1.5% suspension of oxidized graphite is utilized, with a particle size of 0.02-0.1 mkm. Thermal processing is done in a carbon fill, at a rate of 10-20 degrees/hour to 700-800/sup 0/, maintained 2-3 hours.

  6. Recompressed exfoliated graphite articles

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  7. Graphite development for gas-cooled reactors in the USA

    Burchell, T.D.

    1991-01-01

    This document discusses Modular High-Temperature Gas-Cooled Reactor (MHTGR) graphite activities in the USA which currently include the following research and development tasks: coke examination; effects of irradiation; variability of physical properties (mechanical, thermal-physical, and fracture); fatigue behavior, oxidation behavior; NDE techniques; structural design criteria; and carbon-carbon composite control rod clad materials. These tasks support nuclear grade graphite manufacturing technology including nondestructive examination of billets and components. Moreover, data shall be furnished to support design and licensing of graphite components for the MHTGR

  8. Determination of biogenic amines from electrocatalytic responses of graphite electrodes modified with metallic osmium or an osmium oxide-ruthenium cyanide film

    Shajdarova, L.G.; Gedmina, A.V.; Chelnokova, I.A.; Budnikov, G.K.

    2008-01-01

    Particles of osmium or an inorganic polymeric film of osmium oxide-ruthenium cyanide (OsO-RuCN) electrodeposited on glassy carbon (GC) electrocatalyze the oxidation of dopamine (DA), adrenaline (AD), and noradrenaline (NAD). It is found that these biogenic amines are determined with a high sensitivity by oxidation at an electrode with an OsO-RuCN film. Procedures for the voltammetric determination of DA, AD, or NAD at a composite film electrode are developed. The currents of the substrate oxidation are linear functions of the concentrations in the ranges from 5x10 -7 to 1x10 -3 M for DA and from 1x10 -6 to 1x10 -3 M for AD and NAD [ru

  9. Bromine intercalated graphite for lightweight composite conductors

    Amassian, Aram; Patole, Archana

    2017-01-01

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a

  10. Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: an effective binary heterojunction photocatalyst under visible light irradiation.

    Hu, S W; Yang, L W; Tian, Y; Wei, X L; Ding, J W; Zhong, J X; Chu, Paul K

    2014-10-01

    A proof of concept integrating binary p-n heterojunctions into a semiconductor hybrid photocatalyst is demonstrated by non-covalent doping of graphite-like carbon nitride (g-C3N4) with ultrathin GO and MoS2 nanosheets using a facile sonochemical method. In this unique ternary hybrid, the layered MoS2 and GO nanosheets with a large surface area enhance light absorption to generate more photoelectrons. On account of the coupling between MoS2 and GO with g-C3N4, the ternary hybrid possesses binary p-n heterojunctions at the g-C3N4/MoS2 and g-C3N4/GO interfaces. The space charge layers created by the p-n heterojunctions not only enhance photogeneration, but also promote charge separation and transfer of electron-hole pairs. In addition, the ultrathin MoS2 and GO with high mobility act as electron mediators to facilitate separation of photogenerated electron-hole pairs at each p-n heterojunction. As a result, the ternary hybrid photocatalyst exhibits improved photoelectrochemical and photocatalytic activity under visible light irradiation compared to other reference materials. The results provide new insights into the large-scale production of semiconductor photocatalysts. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Cesium diffusion in graphite

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  12. Irradiation Creep in Graphite

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  13. Intercomparison of graphite irradiations

    Hering, H; Perio, P; Seguin, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    While fast neutrons only are effective in damaging graphite, results of irradiations are more or less universally expressed in terms of thermal neutron fluxes. This paper attempts to correlate irradiations made in different reactors, i.e., in fluxes of different spectral compositions. Those attempts are based on comparison of 1) bulk length change and volume expansion, and 2) crystalline properties (e.g., lattice parameter C, magnetic susceptibility, stored energy, etc.). The methods used by various authors for determining the lattice constants of irradiated graphite are discussed. (author)

  14. Graphite-based photovoltaic cells

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  15. A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids

    Makgopa, K

    2015-01-01

    Full Text Available with the XPS Peak 4.1 program and a Shirley function was used to subtract the back- ground. The metal oxide content in the nanohybrid was deter- mined by thermogravimetric analysis (TGA) using an STA Jupiter 449 C (Netzsch) in an Ar/O2 atmosphere at a...

  16. Nickel evaporation in high vacuum and formation of nickel oxide nanoparticles on highly oriented pyrolytic graphite. X-ray photoelectron spectroscopy and atomic force microscopy study

    Franc, Jiří; Bastl, Zdeněk

    2008-01-01

    Roč. 516, č. 18 (2008), s. 6095-6103 ISSN 0040-6090 R&D Projects: GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503 Keywords : nickel oxide nanoparticles * vapour deposition * XPS * AFM Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.884, year: 2008

  17. Electronic properties of graphite

    Schneider, J.

    2010-10-01

    In this thesis, low-temperature magneto-transport (T ∼ 10 mK) and the de Haas-van Alphen effect of both natural graphite and highly oriented pyrolytic graphite (HOPG) are examined. In the first part, low field magneto-transport up to B = 11 T is discussed. A Fourier analysis of the background removed signal shows that the electric transport in graphite is governed by two types of charge carriers, electrons and holes. Their phase and frequency values are in agreement with the predictions of the SWM-model. The SWM-model is confirmed by detailed band structure calculations using the magnetic field Hamiltonian of graphite. The movement of the Fermi at B > 2 T is calculated self-consistently assuming that the sum of the electron and hole concentrations is constant. The second part of the thesis deals with high field magneto-transport of natural graphite in the magnetic field range 0 ≤ B ≤ 28 T. Both spin splitting of magneto-transport features in tilted field configuration and the onset of the charge density wave (CDW) phase for different temperatures with the magnetic field applied normal to the sample plane are discussed. Concerning the Zeeman effect, the SWM calculations including the Fermi energy movement require a g-factor of g* equal to 2.5 ± 0.1 to reproduce the spin spilt features. The measurements of the charge density wave state confirm that its onset magnetic field can be described by a Bardeen-Cooper-Schrieffer (BCS)-type formula. The measurements of the de Haas-van Alphen effect are in agreement with the results of the magneto-transport measurements at low field. (author)

  18. Design Procedure of Graphite Components by ASME HTR Codes

    Kang, Ji-Ho; Jo, Chang Keun

    2016-01-01

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet

  19. Design Procedure of Graphite Components by ASME HTR Codes

    Kang, Ji-Ho; Jo, Chang Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet.

  20. Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite

    Peng, Tiefeng; Liu, Bin; Gao, Xuechao; Luo, Liqun; Sun, Hongjuan

    2018-06-01

    Expandable graphite is widely used as a new functional carbon material, especially as fire-retardant; however, its practical application is limited due to the high expansion temperature. In this work, preparation process of low temperature and highly expandable graphite was studied, using natural flake graphite as raw material and KMnO4/HClO4/NH4NO3 as oxidative intercalations. The structure, morphology, functional groups and thermal properties were characterized during expanding process by Fourier transform infrared spectroscopy (FTIR), Raman spectra, thermo-gravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The analysis showed that by oxidation intercalation, some oxygen-containing groups were grafted on the edge and within the graphite layer. The intercalation reagent entered the graphite layer to increase the interlayer spacing. After expansion, the original flaky expandable graphite was completely transformed into worm-like expanded graphite. The order of graphite intercalation compounds (GICs) was proposed and determined to be 3 for the prepared expandable graphite, based on quantitative XRD peak analysis. Meanwhile, the detailed intercalation mechanisms were also proposed. The comprehensive investigation paved a benchmark for the industrial application of such sulfur-free expanded graphite.

  1. Direct brazing of ceramics, graphite, and refractory metals

    Canonico, D.A.; Cole, N.C.; Slaughter, G.M.

    1976-03-01

    ORNL has been instrumental in the development of brazing filler metals for joining ceramics, graphite, and refractory metals for application at temperatures above 1000 0 C. The philosophy and techniques employed in the development of these alloys are presented. A number of compositions are discussed that have been satisfactorily used to braze ceramics, graphite, and refractory metals without a prior surface treatment. One alloy, Ti--25 percent Cr--21 percent V, has wet and flowed on aluminum oxide and graphite. Further, it has been utilized in making brazes between different combinations of the three subject materials. The excellent flowability of this alloy and alloys from the Ti--Zr--Ge system is evidenced by the presence of filler metal in the minute pores of the graphite and ceramics

  2. Harwell Graphite Calorimeter

    Linacre, J.K.

    1970-01-01

    The calorimeter is of the steady state temperature difference type. It contains a graphite sample supported axially in a graphite outer jacket, the assembly being contained in a thin stainless steel outer can. The temperature of the jacket and the temperature difference between sample and jacket are measured by chromel-alumel thermocouples. The instrument is calibrated by means of an electric heater of low mass positioned on the axis of the sample. The resistance of the heater is known and both current through the heater and the potential across it may be measured. The instrument is filled with nitrogen at a pressure of one half atmosphere at room temperature. The calorimeter has been designed for prolonged operation at temperatures up to 600°C, and dose rates up to 1 Wg -1 , and instruments have been in use for periods in excess of one year

  3. Preparation of nanoporous carbons from graphite nanofibres

    Kim, Byung-Joo [Department of Green Chemistry and Environmental Biotechnology, University of Science and Technology, PO Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Park, Soo-Jin [Department of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2006-09-14

    In this study we manufactured highly porous graphite nanofibres (GNFs) by physical activation in order to develop promising energy storage materials. The activation was performed at activation temperatures in the range of 800-1050 deg. C. The pore structures of the porous GNFs were analysed using N{sub 2}/77 K adsorption isotherms. After the activation, the porous GNFs showed a decrease in diameter and scratches on their surfaces, resulting from surface oxidation and the opening of the graphitic layers, respectively. It was found that the specific surface area of the porous GNFs prepared at 1050 deg. C was more than 2000 m{sup 2} g{sup -1} without loss of their fibre shape or serious increase in electrical resistivity. This result indicates that porous GNFs prepared under optimal conditions can have a much higher specific surface area and are promising materials for energy storage technologies.

  4. Improvement of oxidation resistance in magnesia-graphite material for casting nozzle; Chuzo nozuru yo maguneshia-kokuen zaishitsu no tai sankasei kaizen

    Rikimaru, Yasushi.; Iitsuka, Shoji.; Harada, Tsutomu.; Ando, Hideyuki.; Yamato, Tsugio. [Kurosaki Corp., Fukuoka (Japan). Technical Research Center

    1999-08-01

    As for the alumina black lead quality of the material, it knows that loss grows big caused by CaO from steel and the formation of the low melting point material due to the response with the alumina in the refractories at the time of the Ca-Si management steel cast. Because of this, it was exchanged with the AG quality of the material for the nozzle union department that emphasis could specially cut abrasion and corrosion, and the application of the magnesia black lead quality of the material was examined. Slag caused by the disappearance that black lead on the operating side oxidizes and the permeation of the metal were recognized as the improvement in the corrosion though it was recognized when an actual opportunity checked a ceremony nozzle in the Ca-Si management steel while MG quality of the material was applied to the union part. The decline of the durability due to the disappearance that black lead oxidizes from not forming it was recognized on the operating side in the bone material and the steel the low melting point material layer due to the response with the element because a magnesia was high melting point material when a nozzle was usually used for the steel again. (NEDO)

  5. A standard graphite block

    Ivkovic, M; Zdravkovic, Z; Sotic, O [Department of Reactor Physics and Dynamics, Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1966-04-15

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 {+-}3.1 cm for the following graphite characteristics: density = 1.7 g/cm{sup 3}; boron content = 0.1 ppm; absorption cross section = 3.7 mb.

  6. A standard graphite block

    Ivkovic, M.; Zdravkovic, Z.; Sotic, O.

    1966-04-01

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 ±3.1 cm for the following graphite characteristics: density = 1.7 g/cm 3 ; boron content = 0.1 ppm; absorption cross section = 3.7 mb

  7. Feasibility of monitoring the strength of HTGR core support graphite. Part II

    Morgan, W.C.; Becker, F.L.

    1979-08-01

    The results reported establish the technical feasibility of a method for monitoring the strength of HTGR core support structures in situ. Correlations have been established between the velocity of an ultrasonic pulse and the compressive strength of four different grades of graphite. For some grades of graphite, one or more of the correlations are practically independent of oxidation profile in samples having cylindrical geometry (as in the core support posts). For other grades of graphite, and for other sample geometries, the oxidation-depth profile must be known in order to reliably predict the effect of oxidation on compressive strength

  8. Structural disorder of graphite and implications for graphite thermometry

    Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru

    2018-02-01

    Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  9. Structural disorder of graphite and implications for graphite thermometry

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  10. Bromine intercalated graphite for lightweight composite conductors

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  11. Interaction of boron with graphite: A van der Waals density functional study

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-01-01

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  12. Interaction of boron with graphite: A van der Waals density functional study

    Liu, Juan; Wang, Chen [Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-08-30

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  13. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  14. Analysis of Off Gas From Disintegration Process of Graphite Matrix by Electrochemical Method

    Tian Lifang; Wen Mingfen; Chen Jing

    2010-01-01

    Using electrochemical method with salt solutions as electrolyte, some gaseous substances (off gas) would be generated during the disintegration of graphite from high-temperature gas-cooled reactor fuel elements. The off gas is determined to be composed of H 2 , O 2 , N 2 , CO 2 and NO x by gas chromatography. Only about 1.5% graphite matrix is oxidized to CO 2 . Compared to the direct burning-graphite method, less off gas,especially CO 2 , is generated in the disintegration process of graphite by electrochemical method and the treatment of off gas becomes much easier. (authors)

  15. Improvement of thermal shock resistance of isotropic graphite by Ti-doping

    Lopez-Galilea, I.; Ordas, N.; Garcia-Rosales, C.; Lindig, S.

    2009-01-01

    Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.

  16. Improvement of thermal shock resistance of isotropic graphite by Ti-doping

    Lopez-Galilea, I. [Inmaculada Lopez-Galilea, CEIT and Tecnun (University of Navarra), Po de Manuel Lardizabal, 15 E-20018 San Sebastian (Spain)], E-mail: ilopez@ceit.es; Ordas, N.; Garcia-Rosales, C. [Inmaculada Lopez-Galilea, CEIT and Tecnun (University of Navarra), Po de Manuel Lardizabal, 15 E-20018 San Sebastian (Spain); Lindig, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2009-04-30

    Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.

  17. Fabrication and electrochemical behavior of single-walled carbon nanotube/graphite-based electrode

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Razavi, Taherehsadat; Riahi, Siavash; Rezaei-Zarchi, Saeed; Norouzi, Parviz

    2009-01-01

    An electrochemical method for determining the dihydroxybenzene derivatives on glassy carbon (GC) has been developed. In this method, the performance of a single-walled carbon nanotube (SWCNT)/graphite-based electrode, prepared by mixing SWCNTs and graphite powder, was described. The resulting electrode shows an excellent behavior for redox of 3,4-dihydroxybenzoic acid (DBA). SWCNT/graphite-based electrode presents a significant decrease in the overvoltage for DBA oxidation as well as a dramatic improvement in the reversibility of DBA redox behavior in comparison with graphite-based and glassy carbon (GC) electrodes. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) procedures performed for used SWCNTs

  18. Heat exchanger using graphite foam

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  19. Synthesis and electrochemical properties of KPb{sub 4−x}Ca{sub x}(PO{sub 4}){sub 3} (0 ≤ x ≤ 1.5) for oxidation of cadmium at graphite electrode

    Lahrich, Sara [Univ Hassan 1, Laboratoire de Chimie et Modélisation Mathématique, Faculté Polydisciplinaire, 25000 Khouribga (Morocco); Univ Hassan 1, Laboratoire Sciences des Matériaux, des Milieux et de la Modélisation, Faculté Polydisciplinaire, 25000 Khouribga (Morocco); Manoun, Bouchaib [Univ Hassan 1, Laboratoire Sciences des Matériaux, des Milieux et de la Modélisation, Faculté Polydisciplinaire, 25000 Khouribga (Morocco); El Mhammedi, Moulay Abderrahim, E-mail: elmhammedi@yahoo.fr [Univ Hassan 1, Laboratoire de Chimie et Modélisation Mathématique, Faculté Polydisciplinaire, 25000 Khouribga (Morocco)

    2017-02-15

    Chemically modified carbon paste electrode (CPE) for cadmium (II) analysis has been constructed by mixing KPb{sub 4−x}Ca{sub x}(PO{sub 4}){sub 3} (0 ≤ x ≤ 1.5) (CaLA) and graphite powder. The lacunar apatite was synthesized using solid reaction and characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and Raman spectroscopy. The refinement study was carried out using Rietveld method where the obtained results show a good agreement between the observed and calculated patterns. The detection of cadmium (II) was investigated in acetate buffer (pH 4.5) using differential pulse anodic stripping voltammetry (DPASV). The limit of detection obtained under the optimized experimental conditions was 5.35 × 10{sup −7} mol L{sup −1} with a relative standard deviation of 2.37%. Possible interferences were tested and evaluated in 5.0 × 10{sup −5} mol L{sup −1} cadmium (II) in the presence of other inorganic ions. Finally, the proposed method was successfully applied to determine cadmium (II) in seawater and mussel samples. Hence, the satisfactory results confirm the applicability of this sensor in practical analysis. - Highlights: • Synthesis and characterization of new lacunar apatites KPb{sub 4−x}Ca{sub x}(PO{sub 4}){sub 3} (0 ≤ x ≤ 1.5). • Structural refinement of these compounds using Rietveld method. • A study of Ca doping effect in lacunar apatites for detecting Cd (II). • The electrochemical oxidation of Cd (II) was performed at CaLA-CPE using DPASV. • The proposed method was evaluated to detect cadmium in seawater and mussel samples.

  20. Synthesis and electrochemical properties of KPb_4_−_xCa_x(PO_4)_3 (0 ≤ x ≤ 1.5) for oxidation of cadmium at graphite electrode

    Lahrich, Sara; Manoun, Bouchaib; El Mhammedi, Moulay Abderrahim

    2017-01-01

    Chemically modified carbon paste electrode (CPE) for cadmium (II) analysis has been constructed by mixing KPb_4_−_xCa_x(PO_4)_3 (0 ≤ x ≤ 1.5) (CaLA) and graphite powder. The lacunar apatite was synthesized using solid reaction and characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and Raman spectroscopy. The refinement study was carried out using Rietveld method where the obtained results show a good agreement between the observed and calculated patterns. The detection of cadmium (II) was investigated in acetate buffer (pH 4.5) using differential pulse anodic stripping voltammetry (DPASV). The limit of detection obtained under the optimized experimental conditions was 5.35 × 10"−"7 mol L"−"1 with a relative standard deviation of 2.37%. Possible interferences were tested and evaluated in 5.0 × 10"−"5 mol L"−"1 cadmium (II) in the presence of other inorganic ions. Finally, the proposed method was successfully applied to determine cadmium (II) in seawater and mussel samples. Hence, the satisfactory results confirm the applicability of this sensor in practical analysis. - Highlights: • Synthesis and characterization of new lacunar apatites KPb_4_−_xCa_x(PO_4)_3 (0 ≤ x ≤ 1.5). • Structural refinement of these compounds using Rietveld method. • A study of Ca doping effect in lacunar apatites for detecting Cd (II). • The electrochemical oxidation of Cd (II) was performed at CaLA-CPE using DPASV. • The proposed method was evaluated to detect cadmium in seawater and mussel samples.

  1. Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    Sharif, M., E-mail: Sharif_m@metaleng.iust.ac.i [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Faghihi-Sani, M.A. [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Golestani-Fard, F. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saberi, A. [Tabriz University (Iran, Islamic Republic of); Soltani, Ali Khalife [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-06-18

    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 {sup o}C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite deposition. The coating improved water wettability of graphite and also enhanced the oxidation resistance of graphite flakes significantly. Also the graphite coating showed significant phenolic resin-wettabilty owing to high surface area of such hydrophilic nano composite coating. The importance of graphite coating is explained with emphasis on its potential application in graphite containing refractories.

  2. Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    Sharif, M.; Faghihi-Sani, M.A.; Golestani-Fard, F.; Saberi, A.; Soltani, Ali Khalife

    2010-01-01

    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 o C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite deposition. The coating improved water wettability of graphite and also enhanced the oxidation resistance of graphite flakes significantly. Also the graphite coating showed significant phenolic resin-wettabilty owing to high surface area of such hydrophilic nano composite coating. The importance of graphite coating is explained with emphasis on its potential application in graphite containing refractories.

  3. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  4. Management of UKAEA graphite liabilities

    Wise, M.

    2001-01-01

    The UK Atomic Energy Authority (UKAEA) is responsible for managing its liabilities for redundant research reactors and other active facilities concerned with the development of the UK nuclear technology programme since 1947. These liabilities include irradiated graphite from a variety of different sources including low irradiation temperature reactor graphite (the Windscale Piles 1 and 2, British Energy Pile O and Graphite Low Energy Experimental Pile at Harwell and the Material Testing Reactors at Harwell and Dounreay), advanced gas-cooled reactor graphite (from the Windscale Advanced Gas-cooled Reactor) and graphite from fast reactor systems (neutron shield graphite from the Dounreay Prototype Fast Reactor and Dounreay Fast Reactor). The decommissioning and dismantling of these facilities will give rise to over 6,000 tonnes of graphite requiring disposal. The first graphite will be retrieved from the dismantling of Windscale Pile 1 and the Windscale Advanced Gas-cooled Reactor during the next five years. UKAEA has undertaken extensive studies to consider the best practicable options for disposing of these graphite liabilities in a manner that is safe whilst minimising the associated costs and technical risks. These options include (but are not limited to), disposal as Low Level Waste, incineration, or encapsulation and disposal as Intermediate Level Waste. There are a number of technical issues associated with each of these proposed disposal options; these include Wigner energy, radionuclide inventory determination, encapsulation of graphite dust, galvanic coupling interactions enhancing the corrosion of mild steel and public acceptability. UKAEA is currently developing packaging concepts and designing packaging plants for processing these graphite wastes in consultation with other holders of graphite wastes throughout Europe. 'Letters of Comfort' have been sought from both the Low Level Waste and the Intermediate Level Waste disposal organisations to support the

  5. Graphite in Science and Nuclear Technique

    Zhmurikov, E. I.; Bubnenkov, I. A.; Dremov, V. V.; Samarin, S. I.; Pokrovsky, A. S.; Harkov, D. V.

    2013-01-01

    The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original res...

  6. Corrosion behavior of a positive graphite electrode in vanadium redox flow battery

    Liu Huijun; Xu Qian; Yan Chuanwei; Qiao Yonglian

    2011-01-01

    Graphical abstract: The overpotential for gas evolution on positive graphite electrode decreases due to the functional groups of COOH and C=O introduced on the surface of graphite electrode during corrosion process, which can self-catalyze the oxidation of carbon atoms therefore, accelerates corrosion process. Highlights: → Initial potential for gas evolution is higher than 1.60 V vs SCE. → Factors affecting the graphite corrosion are investigated. → Functional groups of COOH and C=O introduced during corrosion process. → The groups can self-catalyze the oxidation of carbon atoms. - Abstract: The graphite plate is easily suffered from corosion because of CO 2 evolution when it acts as the positive electrode for vanadium redox flow battery. The aim is to obtain the initial potential for gas evolution on a positive graphite electrode in 2 mol dm -3 H 2 SO 4 + 2 mol dm -3 VOSO 4 solution. The effects of polarization potential, operating temperature and polarization time on extent of graphite corrosion are investigated by potentiodynamic and potentiostatic techniques. The surface characteristics of graphite electrode before and after corrosion are examined by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The results show that the gas begins to evolve on the graphite electrode when the anodic polarization potential is higher than 1.60 V vs saturated calomel electrode at 20 deg. C. The CO 2 evolution on the graphite electrode can lead to intergranular corrosion of the graphite when the polarization potential reaches 1.75 V. In addition, the functional groups of COOH and C=O introduced on the surface of graphite electrode during corrosion can catalyze the formation of CO 2 , therefore, accelerates the corrosion rate of graphite electrode.

  7. Recent work on graphite corrosion in dragon HTR

    Wilkinson, V.J.; Parsons, P.D.; Lind, R.

    1976-01-01

    Recent studies are described of graphite corrosion in the Dragon reactor as a consequence of a programme of moisture additions to the helium coolant. The pattern of oxidation was significantly different from that expected from out-of-pile studies. Explanations are suggested in terms of flow and pore structure effects. (orig.) [de

  8. Synthesis of Cu-coated Graphite Powders Using a Chemical Reaction Process

    Jang, Jun-Ho; Park, Hyun-Kuk; Oh, Ik-Hyun [Korea Institute of Industrial Technology (KITECH), Gwangju (Korea, Republic of); Lim, Jae-Won [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-05-15

    In this paper, Cu-coated graphite powders for a low thermal expansion coefficient and a high thermal conductivity are fabricated using a chemical reaction process. The Cu particles adhere to the irregular graphite powders and they homogeneously disperse in the graphite matrix. Cu-coated graphite powders are coarser at approximately 3-4 μm than the initial graphite powders; furthermore, their XRD patterns exhibit a low intensity in the oxide peak with low Zn powder content. For the passivation powders, the transposition solvent content has low values, and the XRD pattern of the oxide peaks is almost non-existent, but the high transposition solvent content does not exhibit a difference to the non-passivation treated powders.

  9. Bioinspired photonic nanoarchitectures from graphitic thin films

    Tamaska, I.; Dobrik, G.; Nemes-Incze, P.; Kertesz, K.; Horvath, E.; Mark, G.I.; Jaszi, T.; Neumann, P.; Horvath, Z.E.; Biro, L.P., E-mail: biro@mfa.kfki.h

    2011-04-01

    Bioinspired, regular, rectangular (with periodicities of 600 nm and 700 nm), and random (with average characteristic distances of 600 nm and 750 nm) two dimensional (2D) photonic nanoarchitectures of 60 nm thickness were produced in graphite by Focused Ion Beam (FIB) nanomachining and subsequent controlled oxidation. The color of the nanoarchitectures was modified by the conformal deposition of 90 nm Al{sub 2}O{sub 3}. The regular patterns generate iridescent colors, while the random ones exhibit a remarkably constant color with the variation of the illumination and viewing conditions.

  10. Bioinspired photonic nanoarchitectures from graphitic thin films

    Tamaska, I.; Dobrik, G.; Nemes-Incze, P.; Kertesz, K.; Horvath, E.; Mark, G.I.; Jaszi, T.; Neumann, P.; Horvath, Z.E.; Biro, L.P.

    2011-01-01

    Bioinspired, regular, rectangular (with periodicities of 600 nm and 700 nm), and random (with average characteristic distances of 600 nm and 750 nm) two dimensional (2D) photonic nanoarchitectures of 60 nm thickness were produced in graphite by Focused Ion Beam (FIB) nanomachining and subsequent controlled oxidation. The color of the nanoarchitectures was modified by the conformal deposition of 90 nm Al 2 O 3 . The regular patterns generate iridescent colors, while the random ones exhibit a remarkably constant color with the variation of the illumination and viewing conditions.

  11. Modification of structural graphite machining

    Lavrenev, M.M.

    1979-01-01

    Studied are machining procedures for structural graphites (GMZ, MG, MG-1, PPG) most widely used in industry, of the article mass being about 50 kg. Presented are dependences necessary for the calculation of cross sections of chip suction tappers and duster pipelines in machine shops for structural graphite machining

  12. Glass-Graphite Composite Materials

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  13. Development of Nanoscale Graphitic Devices and The Transport Characterization

    Gunasekaran, Venugopal

    2011-02-01

    This dissertation describes the development of graphitic based nanoscale devices with its fabrication and transport characterization results. It covers graphite nano-scale stacked-junctions fabricated using focused ion beam (FIB) 3-D etching technique, a single layer graphite layer (graphene) preparation and its electrical transport characterization results and the synthesis and investigation of electrical transport behavior of graphene oxide based thin film devices. The first chapter describes the basic information about the carbon family in detail in which the electronic properties and structure of graphite, graphene and graphene oxide are discussed. In addition, the necessity of developing nanoscale graphitic devices is given. The second chapter explains the experimental techniques used in this research for fabricating nanoscale devices which includes focused ion beam 3-D fabrication procedures, mechanical exfoliation technique and photolithographic methods. In third chapter, we have reported the results on temperature dependence of graphite planar-type structures fabricated along ab-plane. In the fourth and fifth chapters, the fabrication and electrical transport characteristics of large in-plane area graphite planar-type structures (fabricated along ab-plane and c-axis) were discussed and their transport anisotropy properties were investigated briefly. In the sixth chapter, we focused the fabrication of the submicron sized graphite stacked junctions and their electrical transport characterization studies. In which, FIB was used to fabricated the submicron junctions with various in-plane area (with same stack height) are and their transport characteristics were compared. The seventh chapter reports investigation of electrical transport results of nanoscale graphite stacked-junctions in which the temperature dependent transport (R-T) studies, current-voltage measurements for the various in-plane areas and for various stack height samples were analyzed. The

  14. Hypervelocity impacts into graphite

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  15. Hypervelocity impacts into graphite

    Latunde-Dada, S; Cheesman, C; Day, D; Harrison, W; Price, S

    2011-01-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms -1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  16. Study on wear resistance of vanadium alloying compacted/vermicular graphite cast iron

    Park, Yoon Woo

    1987-01-01

    Wear resistance of the Compacted/Vermicular graphite cast irons was studied by changing the vanadium content in the cast irons. The results obtained in this work are summarized as follows. 1. When the same amount of vanadium was added to the flake graphite cast iron, spheroidal graphitecast iron and Compacted/Vermicular graphite cast iron, spheroidal graphite cast iron and Compacted/Vermicular graphite cast iron wear resistance decreased in following sequence, that is, flake graphite cast iron> spheroidal graphite cast iron>Compacted/Vermicular graphite cast iron. 2. Addition of vanadium to the Compacted/Vermicular cast iron leaded to a remarkable increase in hardness because it made the amount of pearlite in matrix increase. 3. Addition of vanadium to the compacted/Vermicular graphite cast iron significantly enhanced wear resistance and the maximum resistance was achieved at about 0.36% vanadium. 4. The maximum amount of wear apppeared at sliding speed of about 1.4m/sec and wear mode was considered to be oxidation abrasion from the observation of wear tracks. (Author)

  17. Chemisputtering of interstellar graphite grains

    Draine, B.T.

    1979-01-01

    The rate of erosion of interstellar graphite grains as a result of chemical reaction with H, N, and O is estimated using the available experiment evidence. It is argued that ''chemical sputtering'' yields for interstellar graphite grains will be much less than unity, contrary to earlier estimates by Barlow and Silk. Chemical sputtering of graphite grains in evolving H II regions is found to be unimportant, except in extremely compact (n/sub H/> or approx. =10 5 cm -3 ) H II regions. Alternative explanations are considered for the apparent weakness of the lambda=2175 A extinction ''bump'' in the direction of several early type stars

  18. Obtention of nuclear grade graphite

    Ferreira, M.L.

    1984-01-01

    The impurity level of natural graphite found in some of the most important mines of the State of Minas Gerais - Brasil is determined. It is also concerned with the development and use of natural graphite in nuclear reactors. Standard methods for chemical and instrumentsal analysis such as Spectrografic Determination by Emission, Spectrografic Determination by X-Rays, Spectrografic Determination by Atomic Asorption, Photometric Determination, and also chemical and physical methods for separation of impurities as well standard method for Estimating the Thermal Neutron Absorption Cross Section of graphite were employed. Some aditionals methods of purification to the ordinary treatment such as the use of metanol and halogens are also described. (Author) [pt

  19. Towards graphene bromide: bromination of graphite oxide

    Jankovský, O.; Šimek, P.; Klimová, K.; Sedmidubský, D.; Matějková, Stanislava; Pumera, M.; Sofer, Z.

    2014-01-01

    Roč. 6, č. 11 (2014), s. 6065-6074 ISSN 2040-3364 Institutional support: RVO:61388963 Keywords : Raman spectroscopy * perspectives * exfoliation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.394, year: 2014

  20. Characterization of Ignalina NPP RBMK Reactors Graphite

    Hacker, P.J.; Neighbour, G.B.; Levinskas, R.; Milcius, D.

    2001-01-01

    The paper concentrates on the investigations of the initial physical properties of graphite used in production of graphite bricks of Ignalina NPP. These graphite bricks are used as nuclear moderator and major core structural components. Graphite bulk density is calculated by mensuration, pore volumes are measured by investigation of helium gas penetration in graphite pore network, the Young's modulus is determined using an ultrasonic time of flight method, the coefficient of thermal expansion is determined using a Netzsch dilatometer 402C, the fractured and machined graphite surfaces are studied using SEM, impurities are investigated qualitatively by EDAX, the degree of graphitization of the material is tested using X-ray diffraction. (author)

  1. Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy

    Mu, Ming; Zhou, Xinjian; Xiao, Qian; Liang, Jun; Huo, Xiaodi

    2012-01-01

    Highlights: ► A TiO 2 /graphite composite coating is produced on Ti alloy by one-step PEO process. ► The TiO 2 /graphite composite coating exhibits excellent self-lubricating behavior. ► The self-lubricating composite coating improves the wear resistance by comparison to the conventional PEO coating. - Abstract: One-step plasma electrolytic oxidation (PEO) process in a graphite-dispersed phosphate electrolyte was used to prepare a graphite-containing oxide composite coating on Ti6Al4V alloy. The composition and microstructure of the oxide coatings produced in the phosphate electrolytes with and without addition of graphite were analyzed by X-ray diffractometer (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The tribological properties of the uncoated Ti6Al4V alloy and oxide coatings were evaluated using a reciprocating ball-on-disk tribometer. Results showed that the graphite-containing oxide composite coating can be successfully produced on Ti6Al4V alloy in the graphite-dispersed phosphate electrolyte using PEO process. The graphite-containing oxide composite coating registered much lower friction coefficient and wear rate than the uncoated Ti6Al4V alloy and the oxide coating without graphite under dry sliding condition, exhibiting excellent self-lubricating property.

  2. Graphite coated PVA fibers as the reinforcement for cementitious composites

    Zhang, Yunhua; Zhang, Zhipeng; Liu, Zhichao

    2018-02-01

    A new preconditioning method was developed to PVA fibers as the reinforcement in cement-based materials. Virgin PVA fibers exhibits limited adhesion to graphite powders due to the presence of oil spots on the surface. Mixing PVA fibers with a moderately concentrated KMnO4-H2SO4 solution can efficiently remove the oil spots by oxidation without creating extra precipitate (MnO2) associated with the reduction reaction. This enhances the coating of graphite powders onto fiber surface and improves the mechanical properties of PVA fiber reinforced concrete (PVA-FRC). Graphite powders yields better fiber distribution in the matrix and reduces the fiber-matrix bonding, which is beneficial in uniformly distributing the stress among embedded fibers and creating steady generation and propagation of tight microcracks. This is evidenced by the significantly enhanced strain hardening behavior and improved flexural strength and toughness.

  3. Graphite in Science and Nuclear Technology

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in the science and technology. Structure and electrical properties, technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry, so author concentrates on actual problems of application and testing of graphite materials in modern science and technology. Translated from chapters 1 of monog...

  4. Mesostructure of graphite composite and its lifetime

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in science and technology. Structure and electrical properties, as so technological aspects of producing of high strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry. Generally, the review relies, on the original results and concentrates on actual problems of application and testing of graphite materials in modern nuclear p...

  5. Graphite surveillance in N Reactor

    Woodruff, E.M.

    1991-09-01

    Graphite dimensional changes in N Reactor during its 24 yr operating history are reviewed. Test irradiation results, block measurements, stack profiles, top of reflector motion monitors, and visual observations of distortion are described. 18 refs., 14 figs., 1 tab

  6. Graphite materials for nuclear reactors

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  7. Graphite and boron carbide composites made by hot-pressing

    Miyazaki, K.; Hagio, T.; Kobayashi, K.

    1981-01-01

    Composites consisting of graphite and boron carbide were made by hot-pressing mixed powders of coke carbon and boron carbide. The change of relative density, mechanical strength and electrical resistivity of the composites and the X-ray parameters of coke carbon were investigated with increase of boron carbide content and hot-pressing temperature. From these experiments, it was found that boron carbide powder has a remarkable effect on sintering and graphitization of coke carbon powder above the hot-pressing temperature of 2000 0 C. At 2200 0 C, electrical resistivity of the composite and d(002) spacing of coke carbon once showed minimum values at about 5 to 10 wt% boron carbide and then increased. The strength of the composite increased with increase of boron carbide content. It was considered that some boron from boron carbide began to diffuse substitutionally into the graphite structure above 2000 0 C and densification and graphitization were promoted with the diffusion of boron. Improvements could be made to the mechanical strength, density, oxidation resistance and manufacturing methods by comparing with the properties and processes of conventional graphites. (author)

  8. Graphite selection for the PBMR reflector

    Marsden, B.J.; Preston, S.D.

    2000-01-01

    A high temperature, direct cycle gas turbine, graphite moderated, helium cooled, pebble-bed reactor (PBMR) is being designed and constructed in South Africa. One of the major components in the PBMR is the graphite reflector, which must be designed to last thirty-five full power years. Fast neutron irradiation changes the dimensions and material properties of reactor graphite, thus for design purposes a suitable graphite database is required. Data on the effect of irradiation on nuclear graphites has been gathered for many years, at considerable financial cost, but unfortunately these graphites are no longer available due to rationalization of the graphite industry and loss of key graphite coke supplies. However, it is possible, using un-irradiated graphite materials properties and knowledge of the particular graphite microstructure, to determine the probable irradiation behaviour. Three types of nuclear graphites are currently being considered for the PBMR reflector: an isostatically moulded, fine grained, high strength graphite and two extruded medium grained graphites of moderately high strength. Although there is some irradiation data available for these graphites, the data does not cover the temperature and dose range required for the PBMR. The available graphites have been examined to determine their microstructure and some of the key material properties are presented. (authors)

  9. Graphite Microstructural Characterization Using Time-Domain and Correlation-Based Ultrasonics

    Spicer, James [Johns Hopkins Univ., Baltimore, MD (United States)

    2017-12-06

    Among techniques that have been used to determine elastic modulus in nuclear graphites, ultrasonic methods have enjoyed wide use and standards using contacting piezoelectric tranducers have been developed to ensure repeatability of these types of measurements. However, the use of couplants and the pressures used to effectively couple transducers to samples can bias measurements and produce results that are not wholly related to the properties of the graphite itself. In this work, we have investigated the use of laser ultrasonic methods for making elastic modulus measurements in nuclear graphites. These methods use laser-based transmitters and receivers to gather data and do not require use of ultrasonic couplants or mechanical contact with the sample. As a result, information directly related to the elastic responses of graphite can be gathered even if the graphite is porous, brittle and compliant. In particular, we have demonstrated the use of laser ultrasonics for the determination of both Young’s modulus and shear modulus in a range of nuclear graphites including those that are being considered for use in future nuclear reactors. These results have been analyzed to assess the contributions of porosity and microcracking to the elastic responses of these graphites. Laser-based methods have also been used to assess the moduli of NBG-18 and IG-110 where samples of each grade were oxidized to produce specific changes in porosity. These data were used to develop new models for the elastic responses of nuclear graphites and these models have been used to infer specific changes in graphite microstructure that occur during oxidation that affect elastic modulus. Specifically, we show how ultrasonic measurements in oxidized graphites are consistent with nano/microscale oxidation processes where basal plane edges react more readily than basal plane surfaces. We have also shown the use of laser-based methods to perform shear-wave birefringence measurements and have shown

  10. Atomization of magnesium, strontium, barium and lead nitrates on surface of graphite atomizers

    Nagdaev, V.K.; Pupyshev, A.A.

    1982-01-01

    Modelling of the processes on graphite surface using differential-thermal analysis and graphite core with identification of decomposition products of magnesium, strontium, barium and lead nitrates by X-ray analysis has shown that carbon promotes the formation of strontium, barium and lead carbonates. The obtained temperatures of strontium and barium carbonate decomposition to oxides agree satisfactorily with calculation ones. Magnesium nitrate does not react with carbon. Formation of strontium and barium carbonates results in considerable slowing down of the process of gaseous oxide dissociation. Lead carbonate is unstable and rapidly decomposes to oxide with subsequent reduction to free metal. Formation of magnesium, strontium and barium free atoms is connected with appearance of gaseous oxides in analytical zone. Oxide and free metal lead are present on graphite surface simultaneously

  11. Stable Carbon Isotope Ratio (δ13C Measurement of Graphite Using EA-IRMS System

    Andrius Garbaras

    2015-06-01

    Full Text Available δ13C values in non-irradiated natural graphite were measured. The measurements were carried out using an elemental analyzer combined with stable isotope ratio mass spectrometer (EA-IRMS. The samples were prepared with ground and non-ground graphite, the part of which was mixed with Mg (ClO42. The best combustion of graphite in the oxidation furnace of the elemental analyzer was achieved when the amount of pulverized graphite ranged from 200 to 490 µg and the mass ratio C:Mg(ClO42 was approximately 1:10. The method for the graphite burning avoiding the isotope fractionation is proposed.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6873

  12. Inverting the diastereoselectivity of the mukaiyama-michael addition with graphite-based catalysts

    Acocella, Maria Rosaria

    2014-02-07

    Here, we show that graphite-based catalysts, mainly graphite oxide (GO) and exfoliated GO, are effective recyclable catalysts for a relevant stereoselective Mukaiyama-Michael addition, outperforming currently available catalysts. Moreover, the graphite-based catalysts described here invert the diastereoselectivity relative to that observed with known catalysts, with the unprecedented large prevalence of the anti diastereoisomer. This inverted diastereoselectivity is increased when the catalyst concentration is reduced and after catalyst recycling. Density functional theory calculations suggest that the selectivity is determined by two types of supramolecular interactions operating between the catalyst and the substrates at the diastereoselectivity- determining transition state, specifically, the π-stacking of b-nitrostyrene with graphite and the van der Waals interaction between the SiMe3 group of the silyl ether and the graphite. © 2013 American Chemical Society.

  13. Carbowaste: treatment and disposal of irradiated graphite and other carbonaceous waste

    Von Lensa, W.; Rizzato, C.; Baginski, K.; Banford, A.W.; Bradbury, D.; Goodwin, J.; Grambow, B.; Grave, M.J.; Jones, A.N.; Laurent, G.; Pina, G.; Vulpius, D.

    2014-01-01

    The European Project on 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (CARBOWASTE)' addressed the retrieval, characterization, treatment, reuse and disposal of irradiated graphite with the following main results: - I-graphite waste features significantly depend on the specific manufacture process, on the operational conditions in the nuclear reactor (neutron dose, atmosphere, temperature etc.) and on radiolytic oxidation leading to partial releases of activation products and precursors during operation. - The neutron activation process generates significant recoil energies breaking pre-existing chemical bonds resulting in dislocations of activation products and new chemical compounds. - Most activation products exist in different chemical forms and at different locations. - I-graphite can be partly purified by thermal and chemical treatment processes leaving more leach-resistant waste products. - Leach tests and preliminary performance analyses show that i-graphite can be safely disposed of in a wide range of disposal systems, after appropriate treatment and/or conditioning. (authors)

  14. Graphite materials testing in the ATR for lifetime management of Magnox reactors

    Grover, S.B.; Metcalfe, M.P.

    2002-01-01

    A major feature of the Magnox gas cooled reactor design is the graphite core, which acts as the moderator but also provides the physical structure for fuel, control rods, instrumentation and coolant gas channels. The lifetime of a graphite core is dependent upon two principal aging processes: irradiation damage and radiolytic oxidation. Irradiation damage from fast neutrons creates lattice defects leading to changes in physical and mechanical properties and the accumulation of stresses. Radiolytic oxidation is caused by the reaction of oxidizing species from the carbon dioxide coolant gas with the graphite, these species being produced by gamma radiation. Radiolytic oxidation reduces the density and hence the moderating capability of the graphite, but also reduces strength affecting the integrity of core components. In order to manage continued operation over the planned lifetimes of their power stations, BNFL needed to extend their database of the effects of these two phenomena on their graphite cores through an irradiation experiment. This paper will discuss the background, purpose, and the processes taken and planned (i.e. post irradiation examination) to ensure meaningful data on the graphite core material is obtained from the irradiation experiment. (author)

  15. Graphite Materials Testing in the ATR for Lifetime Management of Magnox Reactors

    Grover, S.B.; Metcalfe, M.P.

    2002-01-01

    A major feature of the Magnox gas cooled reactor design is the graphite core, which acts as the moderator but also provides the physical structure for fuel, control rods, instrumentation and coolant gas channels. The lifetime of a graphite core is dependent upon two principal aging processes: irradiation damage and radiolytic oxidation. Irradiation damage from fast neutrons creates lattice defects leading to changes in physical and mechanical properties and the accumulation of stresses. Radiolytic oxidation is caused by the reaction of oxidizing species from the carbon dioxide coolant gas with the graphite, these species being produced by gamma radiation. Radiolytic oxidation reduces the density and hence the moderating capability of the graphite, but also reduces strength affecting the integrity of core components. In order to manage continued operation over the planned lifetimes of their power stations, BNFL needed to extend their database of the effects of these two phenomena on the ir graphite cores through an irradiation experiment. This paper will discuss the background, purpose, and the processes taken and planned (i.e. post irradiation examination) to ensure meaningful data on the graphite core material is obtained from the irradiation experiment

  16. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide

    Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang

    2018-05-01

    The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.

  17. Comparison of mechanical and friction properties of composite materials based on AlMg2 containing nano-dimensional particles of crystalline graphite and nanofibers of gamma oxide of aluminum

    Aborkin, A. V.; Babin, D. M.; Soboĺkov, A. V.

    2018-04-01

    The method of mechanical synthesis in a planetary ball mill was used for production of composite powders based on the AlMg2 alloy containing 1 wt. % of nanosized particles of crystalline graphite or γ-Al2O3. The resulting powders are consolidated by the sintering under pressure. Using the methods of X-ray diffraction analysis, scanning and transmission electron microscopy, the structural-phase composition of bulk composite materials was studied. Comparative analysis of the microhardness, the conditional yield stress at compression, and the friction coefficient of bulk composite materials is carried out. It has been found out that the mechanical properties of composites reinforced with γ-Al2O3 nanofibers are higher than when reinforcing with nanoscale particles of crystalline graphite.

  18. The reaction of unirradiated and irradiated nuclear graphites with water vapor in helium

    Imai, Hisashi; Nomura, Shinzo; Kurosawa, Takeshi; Fujii, Kimio; Sasaki, Yasuichi

    1980-10-01

    Nuclear graphites more than 10 brands were oxidized with water vapor in helium and then some selected graphites were irradiated with fast neutron in the Japan Materials Testing Reactor to clarify the effect of radiation damage of graphite on their reaction behaviors. The reaction was carried out under a well defined condition in the temperature range 800 -- 1000 0 C at concentrations of water vapor 0.38 -- 1.30 volume percent in helium flow of total pressure of 1 atm. The chemical reactivity of graphite irradiated at 1000 +- 50 0 C increased linearly with neutron fluence until irradiation of 3.2 x 10 21 n/cm 2 . The activation energy for the reaction was found to decrease with neutron fluence for almost all the graphites, except for a few ones. The order of reaction increased from 0.5 for the unirradiated graphite to 1.0 for the graphite irradiated up to 6.0 x 10 20 n/cm 2 . Experiment was also performed to study a superposed effect between the influence of radiation damage of graphite and the catalytic action of barium on the reaction rate, as well as the effect of catalyser of barium. It was shown that these effects were not superposed upon each other, although barium had a strong catalytic action on the reaction. (author)

  19. Density functional theory investigation of oxygen interaction with boron-doped graphite

    Liu, Juan; Wang, Chen [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Density-functional approach is applied to study the interaction of oxygen with boron-doped graphite. • Adsorption and diffusion of oxygen atoms on boron doped graphite surfaces are studied. • Recombination of oxygen is investigated by ER and LH mechanisms. • Low boron concentration facilitates O{sub 2} formation while high boron loading inhibits the recombination. • The presence of B−B bonds due to boron accumulation makes it impossible for oxygen recombination. - Abstract: Boron inserted as impurity by substitution of carbon atoms in graphite is known to change (improve or deteriorate) oxidation resistance of nuclear graphite, but the reason for both catalytic and inhibiting oxidation is still uncertain. As a first step, this work is more specially devoted to the adsorption and diffusion of oxygen atoms on the surface and related to the problem of oxygen retention on the pure and boron-containing graphite surfaces. Adsorption energies and energy barriers associated to the diffusion for molecular oxygen recombination are calculated in the density functional theory framework. The existence of boron modifies the electronic structure of the surface, which results in an increase of the adsorption energy for O. However, low boron loading makes it easier for the recombination into molecular oxygen. For high boron concentration, it induces a better O retention capability in graphite because the presence of B-B bonds decreases recombination of the adsorbed oxygen atoms. A possible explanation for both catalytic and inhibiting effects of boron in graphite is proposed.

  20. High temperature soldering of graphite

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  1. Experience with graphite in JET

    Pick, M.A.; Celentano, G.; Deksnis, E.; Dietz, K.J.; Shaw, R.; Sonnenberg, K.; Walravens, M.

    1987-01-01

    During the current operational period of JET more than 50% of the internal area of the machine is covered in graphite tiles. This includes the 15 m 2 of carbon tiles installed in the new toroidal limiter, the 40 poloidal belts of graphite tiles covering the U-joints and bellows as well as a two metre high ring (-- 20 m 2 ) or carbon tiles on the inner wall of the Torus. A ring of tiles in the equatorial plane (3 tiles high) consists of carbon-carbon fibre tiles. Test bed results indicated that the fine grained graphite tiles cracked at ∼ 1 kW/cm 2 for 2s of irradiation whereas the carbon-carbon fibre tiles were able to sustain a flux, limited by the irradiation facility, of 3.5 kW for 3s without any damage. The authors report on the generally positive experience they have had had with the installed graphite during the present and previous in-vessel configurations. This includes the physical integrity of the tiles under severe conditions such as high energy run-away electron beams, plasma disruptions and high heat fluxes. They report on the importance of the precise positioning of the inner wall and x-point tiles at the very high power fluxes of JET and the effect of deviations on both graphite and carbon-fibre tiles

  2. Porous (Swiss-Cheese Graphite

    Joseph P. Abrahamson

    2018-05-01

    Full Text Available Porous graphite was prepared without the use of template by rapidly heating the carbonization products from mixtures of anthracene, fluorene, and pyrene with a CO2 laser. Rapid CO2 laser heating at a rate of 1.8 × 106 °C/s vaporizes out the fluorene-pyrene derived pitch while annealing the anthracene coke. The resulting structure is that of graphite with 100 nm spherical pores. The graphitizablity of the porous material is the same as pure anthracene coke. Transmission electron microscopy revealed that the interfaces between graphitic layers and the pore walls are unimpeded. Traditional furnace annealing does not result in the porous structure as the heating rates are too slow to vaporize out the pitch, thereby illustrating the advantage of fast thermal processing. The resultant porous graphite was prelithiated and used as an anode in lithium ion capacitors. The porous graphite when lithiated had a specific capacity of 200 mAh/g at 100 mA/g. The assembled lithium ion capacitor demonstrated an energy density as high as 75 Wh/kg when cycled between 2.2 V and 4.2 V.

  3. Urea-assisted liquid-phase exfoliation of natural graphite into few-layer graphene

    Hou, Dandan; Liu, Qinfu; Wang, Xianshuai; Qiao, Zhichuan; Wu, Yingke; Xu, Bohui; Ding, Shuli

    2018-05-01

    The mass production of graphene with high quality is desirable for its wide applications. Here, we demonstrated a facile method to exfoliate natural graphite into graphene in organic solvent by assisting of urea. The exfoliation of graphite may originate from the "molecular wedge" effect of urea, which can intercalate into the edge of natural graphite, thus facilitating the production of graphene dispersion with a high concentration up to 1.2 mg/mL. The obtained graphene is non-oxidized with negligible defects. Therefore, this approach has great promise in bulk production of graphene with superior quality for a variety of applications.

  4. Application of a micromechanics model to the overall properties of heterogeneous graphite

    Berre, C.; Mummery, P.M.; Marsden, B.J.; Mori, T.; Withers, P.J.

    2008-01-01

    This paper deals with the overall properties of polycrystalline graphite, a material mainly composed of voids and dense inhomogeneities embedded in a less dense matrix. First, we examine the overall average elastic properties and conductivities of such a material. Second, we evaluate the void shape effects on the overall Young's modulus. Finally, we compare the results obtained from the analytical model with experimental data from radiolytic oxidation of graphite

  5. Thermal Pyrolytic Graphite Enhanced Components

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  6. Friction anisotropy in boronated graphite

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  7. Friction anisotropy in boronated graphite

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  8. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.

    Lin, Liangxu; Zhang, Shaowei

    2012-10-21

    We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.

  9. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-01-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtain...

  10. Low temperature chemical processing of graphite-clad nuclear fuels

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  11. Expanded graphite as an intercalation anode material for lithium systems

    Makovička, J.; Sedlaříková, M.; Arenillas, A.; Velická, Jana; Vondrák, Jiří

    2009-01-01

    Roč. 13, č. 9 (2009), s. 1467-1471 ISSN 1432-8488 R&D Projects: GA AV ČR(CZ) KJB208130604; GA MŽP SN/3/171/05; GA ČR(CZ) GA104/06/1471 Institutional research plan: CEZ:AV0Z40320502 Keywords : graphite * anode * mild oxidation CO2 Subject RIV: CA - Inorganic Chemistry Impact factor: 1.821, year: 2009

  12. Thermodynamic Simulation of Equilibrium Composition of Reaction Products at Dehydration of a Technological Channel in a Uranium-Graphite Reactor

    Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.

    2018-01-01

    The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.

  13. Fabrication of Graphene by Cleaving Graphite Chemically

    ZHAO Shu-hua; ZHAO Xiao-ting; FAN Hou-gang; YANG Li-li; ZHANG Yong-jun; YANG Jing-hai

    2011-01-01

    Graphite was chemically cleaved to graphene by Billups Reaction,and the morphologies and microstructures of graphene were characterized by SEM,Raman and AFM.The results show that the graphite was first functionalized by l-iodododecane,which led to the cleavage of the graphene layer in the graphite.The second decoration cleaved the graphite further and graphene was obtained.The heights of the graphene layer were larger than 1 nm due to the organic decoration.

  14. Method of Joining Graphite Fibers to a Substrate

    Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)

    2014-01-01

    A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.

  15. Comparison of frictional forces on graphene and graphite

    Lee, Hyunsoo; Lee, Naesung; Seo, Yongho; Eom, Jonghwa; Lee, SangWook

    2009-01-01

    We report on the frictional force between an SiN tip and graphene/graphite surfaces using lateral force microscopy. The cantilever we have used was made of an SiN membrane and has a low stiffness of 0.006 N m -1 . We prepared graphene flakes on a Si wafer covered with silicon oxides. The frictional force on graphene was smaller than that on the Si oxide and larger than that on graphite (multilayer of graphene). Force spectroscopy was also employed to study the van der Waals force between the graphene and the tip. Judging that the van der Waals force was also in graphite-graphene-silicon oxide order, the friction is suspected to be related to the van der Waals interactions. As the normal force acting on the surface was much weaker than the attractive force, such as the van der Waals force, the friction was independent of the normal force strength. The velocity dependency of the friction showed a logarithmic behavior which was attributed to the thermally activated stick-slip effect.

  16. Photoemission study of K on graphite

    Bennich, P.; Puglia, C.; Brühwiler, P.A.; Nilsson, A.; Sandell, A.; Mårtensson, N.; Rudolf, P.

    1999-01-01

    The physical and electronic structure of the dispersed and (2×2) phases of K/graphite have been characterized by valence and core-level photoemission. Charge transfer from K to graphite is found to occur at all coverages, and includes transfer of charge to the second graphite layer. A rigid band

  17. NMR studies on graphite-methanol system

    El-Akkad, T.M.

    1977-01-01

    The nuclear magnetic relaxation times for protons of methanol on graphite have been studied. The perpendicular and the transversal magnetization as a function of temperature were measured. The results show that the presence of graphite slowed down the methanol movement compared with that in the pure alcohol, and that the methanol molecules are attached to the graphite surface via methyl groups. (author)

  18. THE FIRST DISCOVERY OF PRESOLAR GRAPHITE GRAINS FROM THE HIGHLY REDUCING QINGZHEN (EH3) METEORITE

    Xu, Yuchen; Lin, Yangting; Zhang, Jianchao; Hao, Jialong, E-mail: linyt@mail.iggcas.ac.cn [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2016-07-10

    Presolar graphite grains have been extensively studied, but are limited in carbonaceous chondrites, particularly in Murchison (CM2) and Orgueil (CI1), which sampled materials from the oxidizing regions in the solar nebula. Here, we report the first discovery of presolar graphite grains from the Qingzhen (EH3) enstatite chondrite which formed under a highly reducing condition. Eighteen presolar graphite grains were identified by C-isotope mapping of the low-density fraction (1.75–1.85 g cm{sup 3}) from Qingzhen acid residue. Another 58 graphite spherules were found in different areas of the same sample mount using a scanning electron microscope and were classified into three morphologies, including cauliflower, onion, and cauliflower–onion. The Raman spectra of these spherules vary from ordered, disordered, and glassy to kerogen-like, suggestive of a wide range of thermal metamorphisms. NanoSIMS analysis of the C- and Si-isotopes of these graphite spherules confirmed 23 presolar grains. The other 35 graphite spherules have no significant isotopic anomalies, but they share similar morphologies and Raman spectra with the presolar ones. Another three grains were identified during NanoSIMS analysis. Of all the 44 presolar graphite grains identified, six grains show {sup 28}Si-excesses, suggestive of supernovae origins, and four grains are {sup 12}C- and {sup 29,30}Si-rich, consistent with low-metallicity asymptotic giant branch star origins. Another two graphite spherules have extremely low {sup 12}C/{sup 13}C ratios with marginal solar Si-isotopes. The morphologies, Raman spectra, and C- and Si-isotopic distributions of the presolar graphite grains from the Qingzhen enstatite chondrite are similar to those of the low-density fractions from Murchison carbonaceous chondrites. This study suggests a homogeneous distribution of presolar graphite grains in the solar nebula.

  19. THE FIRST DISCOVERY OF PRESOLAR GRAPHITE GRAINS FROM THE HIGHLY REDUCING QINGZHEN (EH3) METEORITE

    Xu, Yuchen; Lin, Yangting; Zhang, Jianchao; Hao, Jialong

    2016-01-01

    Presolar graphite grains have been extensively studied, but are limited in carbonaceous chondrites, particularly in Murchison (CM2) and Orgueil (CI1), which sampled materials from the oxidizing regions in the solar nebula. Here, we report the first discovery of presolar graphite grains from the Qingzhen (EH3) enstatite chondrite which formed under a highly reducing condition. Eighteen presolar graphite grains were identified by C-isotope mapping of the low-density fraction (1.75–1.85 g cm 3 ) from Qingzhen acid residue. Another 58 graphite spherules were found in different areas of the same sample mount using a scanning electron microscope and were classified into three morphologies, including cauliflower, onion, and cauliflower–onion. The Raman spectra of these spherules vary from ordered, disordered, and glassy to kerogen-like, suggestive of a wide range of thermal metamorphisms. NanoSIMS analysis of the C- and Si-isotopes of these graphite spherules confirmed 23 presolar grains. The other 35 graphite spherules have no significant isotopic anomalies, but they share similar morphologies and Raman spectra with the presolar ones. Another three grains were identified during NanoSIMS analysis. Of all the 44 presolar graphite grains identified, six grains show 28 Si-excesses, suggestive of supernovae origins, and four grains are 12 C- and 29,30 Si-rich, consistent with low-metallicity asymptotic giant branch star origins. Another two graphite spherules have extremely low 12 C/ 13 C ratios with marginal solar Si-isotopes. The morphologies, Raman spectra, and C- and Si-isotopic distributions of the presolar graphite grains from the Qingzhen enstatite chondrite are similar to those of the low-density fractions from Murchison carbonaceous chondrites. This study suggests a homogeneous distribution of presolar graphite grains in the solar nebula.

  20. Superconductivity in graphite intercalation compounds

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  1. Superconductivity in graphite intercalation compounds

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  2. Graphite oral tattoo: case report.

    Moraes, Renata Mendonça; Gouvêa Lima, Gabriela de Morais; Guilhermino, Marinaldo; Vieira, Mayana Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-10-16

    Pigmented oral lesions compose a large number of pathological entities, including exogenous pigmentat oral tattoos, such as amalgam and graphite tattoos. We report a rare case of a graphite tattoo on the palate of a 62-year-old patient with a history of pencil injury, compare it with amalgam tattoos, and determine the prevalence of oral tattoos in our Oral Pathology Service. We also compare the clinical and histological findings of grafite and amalgam tattoos. Oral tattoos affect women more frequently in the region of the alveolar ridge. Graphite tattoos occur in younger patients when compared with the amalgam type. Histologically, amalgam lesions represent impregnation of the reticular fibers of vessels and nerves with silver, whereas in cases of graphite tattoos, this impregnation is not observed, but it is common to observe a granulomatous inflammatory response, less evident in cases of amalgam tattoos. Both types of lesions require no treatment, but in some cases a biopsy may be done to rule out melanocytic lesions.

  3. 'In situ' expanded graphite extinguishant

    Cao Qixin; Shou Yuemei; He Bangrong

    1987-01-01

    This report is concerning the development of the extinguishant for sodium fire and the investigation of its extinguishing property. The experiment result shows that 'in situ' expanded graphite developed by the authors is a kind of extinguishant which extinguishes sodium fire quickly and effectively and has no environment pollution during use and the amount of usage is little

  4. Graphite nanoreinforcements in polymer nanocomposites

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  5. Graphite suspension in carbon dioxide

    Roche, R.

    1965-01-01

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m 3 and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m 2 /g (graphite particles about 1 μ), the powder surface area reaches an asymptotic value of 300 m 2 /g (all the particles less than 0.3 μ). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author) [fr

  6. Characterisation of Chlorine Behavior in French Graphite

    Blondel, A.; Moncoffre, N.; Toulhoat, N.; Bererd, N.; Petit, L.; Laurent, G.; Lamouroux, C.

    2016-01-01

    Chlorine 36 is one of the main radionuclides of concern for French graphite waste disposal. In order to help the understanding of its leaching behaviour under disposal conditions, the respective impact of temperature, irradiation and gas radiolysis on chlorine release in reactor has been studied. Chlorine 36 has been simulated through chlorine 37 ion implantation in virgin nuclear graphite samples. Results show that part of chlorine is highly mobile in graphite in the range of French reactors operating temperatures in relation with graphite structural recovering. Ballistic damage generated by irradiation also promotes chlorine release whereas no clear impact of the coolant gas radiolysis was observed in the absence of graphite radiolytic corrosion. (author)

  7. AGC-2 Graphite Preirradiation Data Package

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  8. Rapid analysis method for the determination of 14C specific activity in irradiated graphite.

    Vidmantas Remeikis

    Full Text Available 14C is one of the limiting radionuclides used in the categorization of radioactive graphite waste; this categorization is crucial in selecting the appropriate graphite treatment/disposal method. We propose a rapid analysis method for 14C specific activity determination in small graphite samples in the 1-100 μg range. The method applies an oxidation procedure to the sample, which extracts 14C from the different carbonaceous matrices in a controlled manner. Because this method enables fast online measurement and 14C specific activity evaluation, it can be especially useful for characterizing 14C in irradiated graphite when dismantling graphite moderator and reflector parts, or when sorting radioactive graphite waste from decommissioned nuclear power plants. The proposed rapid method is based on graphite combustion and the subsequent measurement of both CO2 and 14C, using a commercial elemental analyser and the semiconductor detector, respectively. The method was verified using the liquid scintillation counting (LSC technique. The uncertainty of this rapid method is within the acceptable range for radioactive waste characterization purposes. The 14C specific activity determination procedure proposed in this study takes approximately ten minutes, comparing favorably to the more complicated and time consuming LSC method. This method can be potentially used to radiologically characterize radioactive waste or used in biomedical applications when dealing with the specific activity determination of 14C in the sample.

  9. Rapid analysis method for the determination of 14C specific activity in irradiated graphite.

    Remeikis, Vidmantas; Lagzdina, Elena; Garbaras, Andrius; Gudelis, Arūnas; Garankin, Jevgenij; Plukienė, Rita; Juodis, Laurynas; Duškesas, Grigorijus; Lingis, Danielius; Abdulajev, Vladimir; Plukis, Artūras

    2018-01-01

    14C is one of the limiting radionuclides used in the categorization of radioactive graphite waste; this categorization is crucial in selecting the appropriate graphite treatment/disposal method. We propose a rapid analysis method for 14C specific activity determination in small graphite samples in the 1-100 μg range. The method applies an oxidation procedure to the sample, which extracts 14C from the different carbonaceous matrices in a controlled manner. Because this method enables fast online measurement and 14C specific activity evaluation, it can be especially useful for characterizing 14C in irradiated graphite when dismantling graphite moderator and reflector parts, or when sorting radioactive graphite waste from decommissioned nuclear power plants. The proposed rapid method is based on graphite combustion and the subsequent measurement of both CO2 and 14C, using a commercial elemental analyser and the semiconductor detector, respectively. The method was verified using the liquid scintillation counting (LSC) technique. The uncertainty of this rapid method is within the acceptable range for radioactive waste characterization purposes. The 14C specific activity determination procedure proposed in this study takes approximately ten minutes, comparing favorably to the more complicated and time consuming LSC method. This method can be potentially used to radiologically characterize radioactive waste or used in biomedical applications when dealing with the specific activity determination of 14C in the sample.

  10. Progress in radioactive graphite waste management

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  11. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis of partially graphitic ordered mesoporous carbons with high surface areas

    Gao, Wenjun; Wan, Ying [Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234 (China); Dou, Yuqian; Zhao, Dongyuan [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2011-01-01

    Graphitic carbons with ordered mesostructure and high surface areas (of great interest in applications such as energy storage) have been synthesized by a direct triblock-copolymer-templating method. Pluronic F127 is used as a structure-directing agent, with a low-molecular-weight phenolic resol as a carbon source, ferric oxide as a catalyst, and silica as an additive. Inorganic oxides can be completely eliminated from the carbon. Small-angle XRD and N{sub 2} sorption analysis show that the resultant carbon materials possess an ordered 2D hexagonal mesostructure, uniform bimodal mesopores (about 1.5 and 6 nm), high surface area ({proportional_to}1300 m{sup 2}/g), and large pore volumes ({proportional_to}1.50 cm{sup 3}/g) after low-temperature pyrolysis (900 C). All surface areas come from mesopores. Wide-angle XRD patterns demonstrate that the presence of the ferric oxide catalyst and the silica additive lead to a marked enhancement of graphitic ordering in the framework. Raman spectra provide evidence of the increased content of graphitic sp{sup 2} carbon structures. Transmission electron microscopy images confirm that numerous domains in the ordered mesostructures are composed of characteristic graphitic carbon nanostructures. The evolution of the graphitic structure is dependent on the temperature and the concentrations of the silica additive, and ferric oxide catalyst. Electrochemical measurements performed on this graphitic mesoporous carbon when used as an electrode material for an electrochemical double layer capacitor shows rectangular-shaped cyclic voltammetry curves over a wide range of scan rates, even up to 200 mV/s, with a large capacitance of 155 F/g in KOH electrolyte. This method can be widely applied to the synthesis of graphitized carbon nanostructures. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Graphite structure and magnetic parameters of flake graphite cast iron

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan; Kage, H.

    2017-01-01

    Roč. 442, Nov (2017), s. 397-402 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * graphite structure * pearlite content Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  14. Influence of Particle Size on Properties of Expanded Graphite

    Kurajica, S

    2010-02-01

    Full Text Available Expanded graphite has been applied widely in thermal insulation, adsorption, vibration damping, gasketing, electromagnetic interference shielding etc. It is made by intercalation of natural flake graphite followed by thermal expansion. Intercalation is a process whereby an intercalant material is inserted between the graphene layers of a graphite crystal. Exfoliation, a huge unidirectional expansion of the starting intercalated flakes, occurs when the graphene layers are forced apart by the sudden decomposition and vaporization of the intercalated species by thermal shock. Along with production methodologies, such as the intercalation process and heat treatment, the raw material characteristics, especially particle size, strongly influence the properties of the final product.This report evaluates the influence of the particle size of the raw material on the intercalation and expansion processes and consequently the properties of the exfoliated graphite. Natural crystalline flake graphite with wide particle diameter distribution (between dp = 80 and 425 µm was divided into four size-range portions by sieving. Graphite was intercalated via perchloric acid, glacial acetic acid and potassium dichromate oxidation and intercalation procedure. 5.0 g of graphite, 7.0 g of perchloric acid, 4.0 g of glacial acetic acid and 2.0 g of potassium dichromate were placed in glass reactor. The mixture was stirred with n = 200 min–1 at temperature of 45 °C during 60 min. Then it was filtered and washed with distilled water until pH~6 and dried at 60 °C during 24 h. Expansion was accomplished by thermal shock at 1000 °C for 1 min. The prepared samples were characterized by means of exfoliation volume measurements, simultaneous differential thermal analysis and thermo-gravimetry (DTA/TGA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, BET measurements and scanning electron microscopy (SEM.X-ray diffraction indicated a change of distance

  15. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-03-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy ( μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO4, K2Cr2O7) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO4 and NaClO3.

  16. Graphite moderated 252Cf source

    Sajo B, L.; Barros, H.; Greaves, E. D.; Vega C, H. R.

    2014-08-01

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a 252 Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the 252 Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  17. Fission Product Sorptivity in Graphite

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  18. Graphite for high-temperature reactors

    Hammer, W.; Leushacke, D.F.; Nickel, H.; Theymann, W.

    1976-01-01

    The different graphites necessary for HTRs are being developed, produced and tested within the Federal German ''Development Programme Nuclear Graphite''. Up to now, batches of the following graphite grades have been manufactured and fully characterized by the SIGRI Company to demonstrate reproducibility: pitch coke graphite AS2-500 for the hexagonal fuel elements and exchangeable reflector blocks; special pitch coke graphite ASI2-500 for reflector blocks of the pebble-bed reactor and as back-up material for the hexagonal fuel elements; graphite for core support columns. The material data obtained fulfill most of the requirements under present specifications. Production of large-size blocks for the permanent side reflector and the core support blocks is under way. The test programme covers all areas important for characterizing and judging HTR-graphites. In-pile testing comprises evaluation of the material for irradiation-induced changes of dimensions, mechanical and thermal properties - including behaviour under temperature cycling and creep behaviour - as well as irradiating fuel element segments and blocks. Testing out-of-pile includes: evaluation of corrosion rates and influence of corrosion on strength; strength measurements; including failure criteria. The test programme has been carried out extensively on the AS2-graphite, and the results obtained show that this graphite is suitable as HTGR fuel element graphite. (author)

  19. A safety assessment of the use of graphite in nuclear reactors licensed by the US NRC

    Schweitzer, D.G.; Gurinsky, D.H.; Kaplan, E.; Sastre, C.

    1987-09-01

    This report reviews existing literature and knowledge on graphite burning and on stored energy accumulation and releases in order to assess what role, if any, a stored energy release can have in initiating or contributing to hypothetical graphite burning scenarios in research reactors. It also addresses the question of graphite ignition and self-sustained combustion in the event of a loss-of-coolant accident (LOCA). The conditions necessary to initiate and maintain graphite burning are summarized and discussed. From analyses of existing information it is concluded that only stored energy accumulations and releases below the burning temperature (650 0 C) are pertinent. After reviewing the existing knowledge on stored energy it is possible to show that stored energy releases do not occur spontaneously, and that the maximum stored energy that can be released from any reactor containing graphite is a very small fraction of the energy produced during the first few minutes of a burning incident. The conclusions from these analyses are that the potential to initiate or maintain a graphite burning incident is essentially independent of the stored energy in the graphite, and depends on other factors that are unique for these reactors, research reactors, and for Fort St. Vrain. In order to have self-sustained rapid graphite oxidation in any of these reactors, certain necessary conditions of geometry, temperature, oxygen supply, reaction product removal, and a favorable heat balance must be maintained. There is no new evidence associated with either the Windscale Accident or the Chernobyl Accident that indicates a credible potential for a graphite burning accident in any of the reactors considered in this review

  20. AGC-3 Graphite Preirradiation Data Analysis Report

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  1. Disintegration of graphite matrix from the simulative high temperature gas-cooled reactor fuel element by electrochemical method

    Tian Lifang; Wen Mingfen; Li Linyan; Chen Jing

    2009-01-01

    Electrochemical method with salt as electrolyte has been studied to disintegrate the graphite matrix from the simulative high temperature gas-cooled reactor fuel elements. Ammonium nitrate was experimentally chosen as the appropriate electrolyte. The volume average diameter of disintegrated graphite fragments is about 100 μm and the maximal value is less than 900 μm. After disintegration, the weight of graphite is found to increase by about 20% without the release of a large amount of CO 2 probably owing to the partial oxidation to graphite in electrochemical process. The present work indicates that the improved electrochemical method has the potential to reduce the secondary nuclear waste and is a promising option to disintegrate graphite matrix from high temperature gas-cooled reactor spent fuel elements in the head-end of reprocessing.

  2. Electrochemical Ultracapacitors Using Graphitic Nanostacks

    Marotta, Christopher

    2012-01-01

    Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS

  3. Pyrolytic graphite gauge for measuring heat flux

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  4. Attenuation of thermal neutron through graphite

    Adib, M.; Ismaail, H.; Fathaallah, M.; Abbas, Y.; Habib, N.; Wahba, M.

    2004-01-01

    Calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of graphite temperature and crystalline from for neutron energies from 1 me V< E<10 eV were carried out. Computer programs have been developed which allow calculation for the graphite hexagonal closed-pack structure in its polycrystalline form and pyrolytic one. I The calculated total cross-section for polycrystalline graphite were compared with the experimental values. An overall agreement is indicated between the calculated values and experimental ones. Agreement was also obtained for neutron cross-section measured for oriented pyrolytic graphite at room and liquid nitrogen temperatures. A feasibility study for use of graphite in powdered form as a cold neutron filter is details. The calculated attenuation of thermal neutrons through large mosaic pyrolytic graphite show that such crystals can be used effectively as second order filter of thermal neutron beams and that cooling improve their effectiveness

  5. Characterization of fresh and irradiated domestic nuclear graphite; Karakterizacija neozracenog i ozracenog domaceg nuklearnog grafita

    Marinkovic, S; Suznjevic, C; Bogdanovic, R; Gasic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This report shows results of testing the quality of domestic impregnated graphite IGSP-05, and irradiated domestic graphite IGSP-01 as well as the new methos of characterization based on graphite oxidation by liquid agent. Systematic measurement of domestic impregnated graphite enabled conclusions related to its quality and further improvement. Domestic graphite is relatively well graphitized and its properties are approaching standard nuclear graphite, although it still shows some deficiencies. Important deficiencies are significant inhomogeneity and low density. The applied impregnation procedure did not improve significantly the quality of graphite, probably because the material which was impregnated had fine pores. To avoid this porosity it would be necessary to use material with higher granulation. Soot which was present in some blocks probably worsened the quality of graphite and caused dispersion of the obtained results. First tests of irradiated domestic graphite IGSP-01 showed that its behaviour does not differ from standard nuclear graphite in case of low doses. It is necessary to test its properties in case of higher neutron doses before drawing final conclusions. The new method of graphite oxidation by the N{sub 2}SO{sub 4} - Ag{sub 2}Cr{sub 2}O{sub 7} mixture which is highly sensitive on the existence of structural defects is based on detecting the oxidation rate of graphite by measuring the pressure of released CO{sub 2}. Application of the method for testing the domestic and American graphite showed that irradiation caused drastic changes of oxidation rates and similar behaviour of both graphite types. U ovom izvestaju su prikazani rezultati ispitivanja kvaliteta domaceg impregnisanog grafita IGSP-05, rezultati ispitivanja ozracenog domaceg grafita IGSP-01 i opisana je nova uvedena metoda karakterizacije zasnovana na oksidaciji grafita tecnim agensom. Sistematsko merenje osobina domaceg impregnisanog grafita je omogucilo donosenje zakljucaka o

  6. Dynamics of graphite flake on a liquid

    Miura, K.; Tsuda, D.; Kaneta, Y.; Harada, R.; Ishikawa, M.; Sasaki, N.

    2006-11-01

    One-directional motion, where graphite flakes are driven by a nanotip on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. A transition from quasiperiodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid.

  7. Sealing nuclear graphite with pyrolytic carbon

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-01-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR)

  8. Nanostructured carbon films with oriented graphitic planes

    Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.

    2011-01-01

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.

  9. Production of nuclear graphite in France

    Legendre, P.; Mondet, L.; Arragon, Ph.; Cornuault, P.; Gueron, J.; Hering, H.

    1955-01-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [fr

  10. AC induction field heating of graphite foam

    Klett, James W.; Rios, Orlando; Kisner, Roger

    2017-08-22

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  11. Nuclear graphite for high temperature reactors

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  12. Structural analysis of polycrystalline (graphitized) materials

    Efremenko, M.M.; Kravchik, A.E.; Osmakov, A.S.

    1993-01-01

    Specific features of the structure of polycrystal carbon materials (CM), characterized by high enough degree of structural perfection and different genesis are analyzed. From the viewpoint of fine and supercrystallite structure analysis of the most characteristic groups of graphitized CM: artificial graphites, and natural graphites, as well, has been carried out. It is ascertained that in paracrystal CM a monolayer of hexagonally-bound carbon atoms is the basic element of the structure, and in graphitized CM - a microlayer. The importance of the evaluation of the degree of three-dimensional ordering of the microlayer is shown

  13. Principle design and data of graphite components

    Ishihara, Masahiro; Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Oku, Tatsuo

    2004-01-01

    The High Temperature Engineering Test Reactor (HTTR) constructed by Japan Atomic Energy Research Institute (JAERI) is a graphite-moderated and helium-gas-cooled reactor with prismatic fuel elements of hexagonal blocks. The reactor internal structures of the HTTR are mainly made up of graphite components. As well known, the graphite is a brittle material and there were no available design criteria for brittle materials. Therefore, JAERI had to develop the design criteria taking account of the brittle fracture behavior. In this paper, concept and key specification of the developed graphite design criteria is described, and also an outline of the quality control specified in the design criteria is mentioned

  14. Low temperature vapor phase digestion of graphite

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  15. The Fracture Toughness of Nuclear Graphites Grades

    Burchell, Timothy D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erdman, III, Donald L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Rick R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunter, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hannel, Cara C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    New measurements of graphite mode I critical stress intensity factor, KIc (commonly referred to as the fracture toughness) and the mode II critical shear stress intensity, KIIc, are reported and compared with prior data for KIc and KIIc. The new data are for graphite grades PCEA, IG-110 and 2114. Variations of KIc and acoustic emission (AE) data with graphite texture are reported and discussed. The Codes and Standards applications of fracture toughness, KIc, data are also discussed. A specified minimum value for nuclear graphite KIc is recommended.

  16. Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography

    Kurra, Narendra; Basavaraja, S; Kulkarni, G U [Chemistry and Physics of Materials Unit and DST Unit on Nanoscience, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560 064 (India); Prakash, Gyan; Fisher, Timothy S; Reifenberger, Ronald G, E-mail: kulkarni@jncasr.ac.in, E-mail: reifenbr@purdue.edu [Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States)

    2011-06-17

    Electrochemical oxidation and etching of highly oriented pyrolytic graphite (HOPG) has been achieved using biased atomic force microscopy (AFM) lithography, allowing patterns of varying complexity to be written into the top layers of HOPG. The graphitic oxidation process and the trench geometry after writing were monitored using intermittent contact mode AFM. Electrostatic force microscopy reveals that the isolated mesoscopic islands formed during the AFM lithography process become positively charged, suggesting that they are laterally isolated from the surrounding HOPG substrate. The electrical transport studies of these laterally isolated finite-layer graphitic islands enable detailed characterization of electrical conduction along the c-direction and reveal an unexpected stability of the charged state. Utilizing conducting-atomic force microscopy, the measured I(V) characteristics revealed significant non-linearities. Micro-Raman studies confirm the presence of oxy functional groups formed during the lithography process.

  17. Structural superlubricity of platinum on graphite under ambient conditions: The effects of chemistry and geometry

    Özoǧul, Alper; Ipek, Semran; Durgun, Engin; Baykara, Mehmet Z.

    2017-11-01

    An investigation of the frictional behavior of platinum nanoparticles laterally manipulated on graphite has been conducted to answer the question of whether the recent observation of structural superlubricity under ambient conditions [E. Cihan, S. İpek, E. Durgun, and M. Z. Baykara, Nat. Commun. 7, 12055 (2016)] is exclusively limited to the gold-graphite interface. Platinum nanoparticles have been prepared by e-beam evaporation of a thin film of platinum on graphite, followed by post-deposition annealing. Morphological and structural characterization of the nanoparticles has been performed via scanning electron microscopy and transmission electron microscopy, revealing a crystalline structure with no evidence of oxidation under ambient conditions. Lateral manipulation experiments have been performed via atomic force microscopy under ambient conditions, whereby results indicate the occurrence of structural superlubricity at mesoscopic interfaces of 4000-75 000 nm2, with a noticeably higher magnitude of friction forces when compared with gold nanoparticles of similar contact areas situated on graphite. Ab initio simulations of sliding involving platinum and gold slabs on graphite confirm the experimental observations, whereby the higher magnitude of friction forces is attributed to stronger energy barriers encountered by platinum atoms sliding on graphite, when compared with gold. On the other hand, as predicted by theory, the scaling power between friction force and contact size is found to be independent of the chemical identity of the sliding atoms, but to be determined by the geometric qualities of the interface, as characterized by an average "sharpness score" assigned to the nanoparticles.

  18. Hydrogen storage in graphitic nanofibres

    McCaldin, Simon Roger

    2007-01-01

    There is huge need to develop an alternative to hydrocarbons fuel, which does not produce CO2 or contribute to global warming - 'the hydrogen economy' is such an alternative, however the storage of hydrogen is the key technical barrier that must be overcome. The potential of graphitic nanofibres (GNFs) to be used as materials to allow the solid-state storage of hydrogen has thus been investigated. This has been conducted with a view to further developing the understanding of the mechanism(s) ...

  19. A Nanoporous Carbon/Exfoliated Graphite Composite For Supercapacitor Electrodes

    Rosi, Memoria; Ekaputra, Muhamad P.; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2010-12-01

    Nanoporous carbon was prepared from coconut shells using a simple heating method. The nanoporous carbon is subjected to different treatments: without activation, activation with polyethylene glycol (PEG), and activation with sodium hydroxide (NaOH)-PEG. The exfoliated graphite was synthesized from graphite powder oxidized with zinc acetate (ZnAc) and intercalated with polyvinyl alcohol (PVA) and NaOH. A composite was made by mixing the nanoporous carbon with NaOH-PEG activation, the exfoliated graphite and a binder of PVA solution, grinding the mixture, and annealing it using ultrasonic bath for 1 hour. All of as-synthesized materials were characterized by employing a scanning electron microscope (SEM), a MATLAB's image processing toolbox, and an x-ray diffractometer (XRD). It was confirmed that the composite is crystalline with (002) and (004) orientations. In addition, it was also found that the composite has a high surface area, a high distribution of pore sizes less than 40 nm, and a high porosity (67%). Noting that the pore sizes less than 20 nm are significant for ionic species storage and those in the range of 20 to 40 nm are very accessible for ionic clusters mobility across the pores, the composite is a promising material for the application as supercapacitor electrodes.

  20. Effects of the temperature and the irradiation on the behaviour of chlorine 37 in nuclear graphite: consequences on the mobility of chlorine 36 in irradiated graphites

    Blondel, Antoine

    2013-01-01

    This thesis deals with the studies of the management of irradiated graphite wastes issued from the dismantling of the UNGG French reactors. This work focuses on the behavior of 36 Cl. This radionuclide is mainly issued through the neutron activation of 35 Cl by the reaction 35 Cl(n, γ) 36 Cl, pristine chlorine being an impurity of nuclear graphite, present at the level of some at.ppm. 36 Cl is a long lived radionuclide (about 300,000 years) and is highly soluble in water and mobile in concrete and clay. The solubilization of 36 Cl is controlled by the water accessibility into irradiated graphite pores as well as by factors related to 36 Cl itself such as its chemical speciation and its location within the irradiated graphite. Both speciation and chlorine location should strongly influence its behaviour and need to be taken into account for the choice of liable management options. However, data on radioactive chlorine features are difficult to assess in irradiated graphite and are mainly related to detection sensitivity problems. In this context, we simulated and evaluated the impact of the temperature, the irradiation and the radiolytic oxidation on the chlorine 36 behaviour. In order to simulate the presence of 36 Cl, we implanted 37 Cl into virgin nuclear graphite. Ion implantation has been widely used to study the lattice location, the diffusion and the release of fission and activation products in nuclear materials. Our results on the comparative effects of the temperature and the irradiation show that chlorine occurs in irradiated graphite on temperature and electronic and nuclear irradiation improve this effect. (author)

  1. Nuclear graphite waste management. Proceedings of a technical committee meeting

    2001-05-01

    The purpose of the seminar was to bring together the specialists dealing with various aspects of radioactive graphite waste management to exchange and review information on the decommissioning, characterisation, processing and disposal of irradiated graphite from reactor cores and other graphite waste associated with reactor operation. The seminar covered radioactive graphite characterisation, the effect of irradiation on graphite components, Wigner energy, radioactive graphite waste treatment, conditioning, interim storage and long term disposal options. Individual papers presented at the seminar were indexed separately

  2. Non Destructive Thermal Analysis and In Situ Investigation of Creep Mechanism of Graphite and Ceramic Composites using Phase-sensitive THz Imaging & Nonlinear Resonant Ultrasonic Spectroscopy

    Zhang, XI-Cheng; Redo-Scanchez, Albert

    2012-01-01

    In this project, we conducted a comprehensive study on nuclear graphite properties with terahertz (THz) imaging. Graphite samples from Idaho National Laboratory were carefully imaged by continuous wave (CW) THz. The CW THz imaging of graphite shows that the samples from different billet with different fabricating conditions have different pore size and structure. Based on this result, we then used a phase sensitive THz system to study the graphite properties. In this exploration, various graphite were studied. By imaging nuclear graphite samples in reflection mode at nine different incident polarization angles using THz time-domain spectroscopy, we find that different domain distributions and levels of porosity will introduce polarization dependence in THz reflectivity. Sample with higher density is less porous and has a smaller average domain distribution. As a consequence, it is less polarization-dependent and the polarization-dependent frequency is higher. The results also show that samples oxidized at higher temperatures tend to be more polarization dependent. The graphite from the external billet is more polarization dependent compared to that from the center billet. In addition, we performed laser-based ultrasonic measurements on these graphite samples. The denser, unoxidized samples allow surface acoustic waves to propagate more rapidly than in the samples that had already undergone oxidation. Therefore, for the oxidized samples, the denser samples show less polarization-dependence, higher polarization-dependent frequency, and allow the surface acoustic waves propagate faster.

  3. Analysis of Wigner energy release process in graphite stack of shut-down uranium-graphite reactor

    Bespala, E. V.; Pavliuk, A. O.; Kotlyarevskiy, S. G.

    2015-01-01

    Data, which finding during thermal differential analysis of sampled irradiated graphite are presented. Results of computational modeling of Winger energy release process from irradiated graphite staking are demonstrated. It's shown, that spontaneous combustion of graphite possible only in adiabatic case.

  4. Methodology of characterization of radioactive graphite

    Pina, G.; Rodriguez, M.; Lara, E.; Magro, E.; Gascon, J. L.; Leganes, J. L.

    2014-01-01

    Since the dismantling of Vandellos I, ENRESA has promoted the precise knowledge of the inventory of irradiated graphite (graphite-i) through establishing methodologies for radiological characterization of the vector of radionuclides of interest and their correlations as the primary means of characterization strategy to establish the safer management of this material in its life cycle. (Author)

  5. Significance of primary irradiation creep in graphite

    Erasmus, C

    2013-05-01

    Full Text Available Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux...

  6. Metal/graphite - composites in fusion engineering

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1989-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particularly in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metallic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite used in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapor pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. 4 refs., 13 figs., 1 tab

  7. Metal/graphite - composites in fusion engineering

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1995-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particulary in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metalic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite and in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapour pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. (author)

  8. Untreated Natural Graphite as a Graphene Source for High-Performance Li-Ion Batteries

    María Simón

    2018-03-01

    Full Text Available Graphene nanosheets (GNS are synthesized from untreated natural graphite (NG for use as electroactive materials in Li-ion batteries (LIBs, which avoids the pollution-generating steps of purifying graphite. Through a modified Hummer method and subsequent thermal exfoliation, graphitic oxide and graphene were synthesized and characterized structurally, morphologically and chemically. Untreated natural graphite samples contain 45–50% carbon by weight; the rest is composed of different elements such as aluminium, calcium, iron, silicon and oxygen, which are present as calcium carbonate and silicates of aluminium and iron. Our results confirm that in the GO and GNS synthesized, calcium is removed due to oxidation, though other impurities are maintained because they are not affected by the synthesis. Despite the remaining mineral phases, the energy storage capacity of GNS electrodes is very promising. In addition, an electrochemical comparison between GNS and NG demonstrated that the specific capacity in GNS is higher during the whole cycling process, 770 mA·g−1 at 100th cycle, which is twice that of graphite.

  9. Contribution to the study of the reactivity of graphite with respect to carbon dioxide and air

    Jacquet, M.

    1959-09-01

    The oxidation of nuclear-quality graphite by air and carbon dioxide has been studied at temperatures at which the reaction becomes measurable. These experiments have been carried out on graphites differing in the concentration and nature of their ash, and in their mode of preparation. The reaction velocities measured have been compared in an attempt to correlate these two factors. Ten types of graphite have thus been studied. Since the oxidation reactions are of the type gas-solid, their velocities have also been compared to the BET surface areas of the graphite studied and to the diameter distribution of the pores of this surface. The conclusion is that, even for these low impurity contents, the law relating the reaction velocity to the surface is masked by the impurities which appear to behave as preferential reaction sites. This has been shown by carrying out successive purifications on various types of graphite, which treatment results in an important decrease in the reactivity of all the samples studied. (author) [fr

  10. Effect of graphite target power density on tribological properties of graphite-like carbon films

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  11. Hydrogen storage in graphite nanofibers

    Park, C.; Tan, C.D.; Hidalgo, R.; Baker, R.T.K.; Rodriguez, N.M. [Northeastern Univ., Boston, MA (United States). Chemistry Dept.

    1998-08-01

    Graphite nanofibers (GNF) are a type of material that is produced by the decomposition of carbon containing gases over metal catalyst particles at temperatures around 600 C. These molecularly engineered structures consist of graphene sheets perfectly arranged in a parallel, perpendicular or at angle orientation with respect to the fiber axis. The most important feature of the material is that only edges are exposed. Such an arrangement imparts the material with unique properties for gas adsorption because the evenly separated layers constitute the most ordered set of nanopores that can accommodate an adsorbate in the most efficient manner. In addition, the non-rigid pore walls can also expand so as to accommodate hydrogen in a multilayer conformation. Of the many varieties of structures that can be produced the authors have discovered that when gram quantities of a selected number of GNF are exposed to hydrogen at pressures of {approximately} 2,000 psi, they are capable of adsorbing and storing up to 40 wt% of hydrogen. It is believed that a strong interaction is established between hydrogen and the delocalized p-electrons present in the graphite layers and therefore a new type of chemistry is occurring within these confined structures.

  12. Preparation and investigations of thermal properties of copper oxide ...

    The effects of copper oxide, aluminium oxide and graphite on the thermal and structural properties of the organic ... solar energy, and heat regulation of electronics, biomedical ..... We gratefully acknowledge the financial support provided by.

  13. Methane generated from graphite--tritium interaction

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  14. Chemical sputtering of graphite by H+ ions

    Busharov, N.P.; Gorbatov, E.A.; Gusev, V.M.; Guseva, M.I.; Martynenko, Y.V.

    1976-01-01

    In a study of the sputtering coefficient S for the sputtering of graphite by 10-keV H + ions as a function of the graphite temperature during the bombardment, it is found that at T> or =750degreeC the coefficient S is independent of the target temperature and has an anomalously high value, S=0.085 atom/ion. The high rate of sputtering of graphite by atomic hydrogen ions is shown to be due to chemical sputtering of the graphite, resulting primarily in the formation of CH 4 molecules. At T=1100degreeC, S falls off by a factor of about 3. A model for the chemical sputtering of graphite is proposed

  15. Graphite selection for the FMIT test cell

    Morgan, W.C.

    1982-06-01

    This document provides the basis for procuring a grade of graphite, at minimum cost, having minimum dimensional changes at low irradiation temperatures (nominal range 90 to 140 0 C). In light of those constraints, the author concludes that the most feasible approach is to attempt to reproduce a grade of graphite (TSGBF) which has exhibited a high degree of dimensional stability during low-temperature irradiations and on which irradiation-induced changes in other physical properties have been measured. The effects of differences in raw materials, especially coke morphology, and processing conditions, primarily graphitization temperture are briefly reviewed in terms of the practicality of producing a new grade of graphite with physical properties and irradiation-induced changes which would be very similar to those of TSGBF graphite. The production history and physical properties of TSGBF are also reviewed; no attempt is made, to project changes in dimensions or physical properties under the projected irradiation conditions

  16. Graphitic carbon nitride based nanocomposites: a review

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2014-11-01

    Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.

  17. AGC-2 Graphite Preirradiation Data Analysis Report

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  18. HF/H2O2 treated graphite felt as the positive electrode for vanadium redox flow battery

    He, Zhangxing; Jiang, Yingqiao; Meng, Wei; Jiang, Fengyun; Zhou, Huizhu; Li, Yuehua; Zhu, Jing; Wang, Ling; Dai, Lei

    2017-11-01

    In order to improve the electrochemical performance of the positive graphite felt electrode in vanadium flow redox battery, a novel method is developed to effectively modify the graphite felt by combination of etching of HF and oxidation of H2O2. After the etching of HF for the graphite felt at ambient temperature, abundant oxygen-containing functional groups were further introduced on the surface of graphite felt by hydrothermal treatment using H2O2 as oxidant. Benefiting from the surface etching and introduction of functional groups, mass transfer and electrode process can be improved significantly on the surface of graphite felt. VO2+/VO2+ redox reaction on the graphite felt modified by HF and H2O2 jointly (denote: GF-HF/H2O2) exhibits superior electrochemical kinetics in comparison with the graphite felt modified by single HF or H2O2 treatment. The cell using GF-HF/H2O2 as the positive electrode was assembled and its electrochemical properties were evaluated. The increase of energy efficiency of 4.1% for GF-HF/H2O2 at a current density of 50 mA cm-2 was obtained compared with the pristine graphite felt. The cell using GF-HF/H2O2 also demonstrated higher discharge capacity. Our study revealed that HF/H2O2 treatment is an efficient method to enhance the electrochemical performance of graphite felt, further improving the comprehensive energy storage performance of the vanadium flow redox battery.

  19. Determination of vanadium in sea water by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite

    Shimizu, Tokuo; Sakai, Kaoru

    1981-01-01

    The trace amount of vanadium in sea water was determined by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite. To correct the background absorption, a deuterium lamp with a higher-brilliant thermal cathode was used. The sensitivity for vanadium increased 10 -- 20 fold by the use of the tube coated with pyrolytic graphite, and the utility lifetime of the tube was greatly extended. Vanadium(V) - 4-(2-pyridylazo)resorcinol (PAR) complexes were extracted into chloroform as an ion-pair with benzyldimethyltetradecylammonium (Zephiramine) cation alternatively. The sample of sea water, which was made to 0.1 N in sulfuric acid and 0.1% in hydrogen peroxide, was loaded onto the column of Dowex 1-X 4 resin (SO 4 2- -form). Vanadium was then eluted from the resin with 1 N sulfuric acid-0.1% hydrogen peroxide or 1 N hydrochloric acid-0.1% hydrogen peroxide evaporated to dry. After dissolution of the elute in 0.2 N nitric acid, vanadium was extracted. Secondly, the sample of sea water was adjusted to pH 5.0, and loaded onto the column of Chelex-100 resin. Vanadium was eluted from the resin with 2 N ammonia. The above two methods took much time, but the coprecipitation method was not so and recommended for the determination of vanadium in sea water. Vanadium was coprecipitated with iron(III) hydroxide-hydrous titanium(IV) oxide at pH 6.0. The precipitate was digested with nitric acid-hydrogen peroxide. The solution was diluted to 50 ml with water. The resulting solutions were employed to determine the vanadium concentration by the graphite furnace atomic absorption measurement. The trace amounts of vanadium in various kinds of the coastal sea water were determined by the coprecipitation method. (author)

  20. Studies of mechanical properties and irradiation damage nucleation of HTGR graphites. Final report

    Thrower, P.A.

    1981-05-01

    Since the submission of the last report (COO-2712-6) work has concentrated on the examination of the effects of oxidation on the compressive strengths of graphites doped with iron, vanadium and calcium. The purpose of the investigation was to determine the relative effects of the impurities on the rates of oxidation in air, CO 2 and H 2 O and the resultant reduction in compressive strength

  1. Production technique of vermicular graphite iron cylinder head of vehicle diesel engine

    Zhou Gen

    2008-11-01

    Full Text Available The 25 years’production and application have proved that vermicular graphite iron cylinder heads with vermicularity ≥50% satisfy the machinability and performance demand of diesel engine. The method, in which using cupola-induction furnace duplex melting and pour-over process with rare earth-ferrosilicon or rare earthsilicon compound as vermicularizing alloy plus rare earth-magnesium-ferrosilicon as stirring alloy, is an optimal vermicularizing process for obtaining satisfi ed vermicularity. Using top kiss risers, enlarging kissing areas and expanding covering width and making ingates to freeze earlier are the effective measures to eliminate shrinkage, blowhole and oxide inclusions in the vermicular graphite iron cylinder heads.

  2. Metal modified graphite. An innovative material for systems converting electro-chemical energy; Metallmodifizierter Graphit. Ein innovativer Werkstoff fuer Systeme zur elektrochemischen Energieumwandlung

    Mayer, Peter

    2007-07-23

    The work deals with metal modification of graphite electrodes in a water-acid electrolyte solution. The target is to improve the catalytic properties of graphite electrodes as they are applied in redox storage batteries for storing electric energy. Different carbon and graphite materials were used and coated electro-chemically with different metals. After being coated with metal the graphite and carbon electrodes were investigated in terms of changing their catalytic properties by means of impedance measurements. It was shown, a metal coating without a prior activation with electro-chemical oxidation-reduction cycles only results in a low or zero increase of the catalytic properties. Investigations at the electrode material glass carbon showed, a prior activation of the electrode surface by means of electro-chemical oxidation-reduction cycles decreases the penetration resistance. The activation of the glass carbon surface prior to the surface coating with metal is favourable to the electro-chemical properties of the metal-modified electrode. All carbon types, which were used in this work, could be activated at a different level by means of electro-chemical oxidation-reduction cycles depending on the carbon type. The investigations further showed that the edge levels of the carbon were activated by means of the electro-chemical oxidation-reduction cycles. The metal precipitation favourably occurs at the activated positions. (orig.) [German] Die Arbeit befasst sich mit der Metallmodifizierung von Graphitelektroden in waessriger saurer Elektrolytloesung. Ziel ist es die katalytischen Eigenschaften von Graphitelektroden wie sie in Redoxspeicherbatterien zur Speicherung von elektrischer Energie eingesetzt werden zu verbessern. Fuer die Untersuchungen wurden unterschiedliche Kohlenstoff und Graphitmaterialien eingesetzt, die elektrochemisch mit verschiedenen Metallen belegt wurden. Die Graphit- und Kohlenstoffelektroden wurden nach der Metallbelegung durch

  3. Cobalt nano-sheet supported on graphite modified paper as a binder free electrode for peroxide electrooxidation

    Zhang, Dongming; Cao, Dianxue; Ye, Ke; Yin, Jinling; Cheng, Kui; Wang, Guiling

    2014-01-01

    Graphical abstract: - Highlights: • A novel and binder free Co@graphite/paper electrode is employed for H 2 O 2 electrooxidation. • The obtained Co@graphite/paper electrode exhibits remarkably high catalytic activity and good stability for the electrooxidation of H 2 O 2 . • The high catalytic activity, low cost and environment-friendly make the Co@graphite/paper electrode as a promising anode material in DPPFC. - Abstract: A novel and binder free Co@graphite/paper electrode is prepared by electrodeposition Co nano-sheet on the surface of a graphite layer modified paper substrate. The morphology and phase structure of the Co@graphite/paper electrode are characterized by scanning electron microscopy equipped with energy dispersive X-ray spectrometer, transmission electron microscope and X-ray diffractometer. The catalytic activity of the Co@graphite/paper electrode for H 2 O 2 electrooxidation is investigated by means of cyclic voltammetry and chronoamperometry. The catalyst combines tightly with the paper and exhibits a good stability. The oxidation current density reaches to 580 mA cm −2 in 2 mol dm −3 NaOH and 0.5 mol dm −3 H 2 O 2 at 0.5 V. Besides, we illustrate the reaction mechanization of the H 2 O 2 electrooxidation on the Co film

  4. Channel uranium-graphite reactor mounting

    Polushkin, K.K.; Kuznetsov, A.G.; Zheleznyakov, B.N.

    1981-01-01

    According to theoretical principles of general engineering technology the engineering experience of construction-mounting works at the NPP with channel uranium-graphite reactors is systematized. Main parameters and structural features of the 1000 MW channel uranium-graphite reactors are considered. The succession of mounting operations, premounting equipment and pipelines preparation and mounting works technique are described. The most efficient methods of fitting, welding and machining of reactor elements are recommended. Main problems of technical control service are discussed. A typical netted diagram of main equipment of channel uranium-graphite reactors mounting is given

  5. Interface structure between tetraglyme and graphite

    Minato, Taketoshi; Araki, Yuki; Umeda, Kenichi; Yamanaka, Toshiro; Okazaki, Ken-ichi; Onishi, Hiroshi; Abe, Takeshi; Ogumi, Zempachi

    2017-09-01

    Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed. It is found that tetraglyme stably adsorbs on graphite. Density functional theory calculations supported the adsorption structure. In the liquid phase, there is a layered structure of the molecular distribution with an average distance of 0.60 nm between layers.

  6. Electrochemical tuning of optical properties of graphitic quantum dots

    Ge, Juan; Li, Yan; Zhang, Bo-Ping; Ma, Ning; Wang, Jun; Pu, Chang; Xiang, Ying-Chang

    2015-01-01

    Graphitic quantum dots (GQDs), as a new class of quantum dots, possess unique properties. Among the various reported approaches for their fabrication, electrochemical method possesses numerous advantages compared with others. In particular, the formation process of the GQDs could be precisely controlled by this method through adjusting the electrochemical parameters and environment. In this study, GQDs with multi-color fluorescence (FL) were obtained by this method through tuning only the applied potential window of cycling voltammetry. The luminescence mechanism of those GQDs was discussed and explained by the ultraviolet (UV)–visible, photoluminescence (PL), and photoluminescence excitation (PLE) spectra. The influence of the applied potential window on the PL properties of GQDs and the relationship between the degree of surface oxidation and PL properties were also investigated. - Highlights: • We produced the graphite quantum dots (GQDs) by an electrochemical method. • We changed the applied potentials of cycling voltammetry (CV). • Varying of applied potentials changed surface oxygen-containing groups of GQDs. • Higher surface oxidation degree resulted in the red-shift of PL spectra

  7. Electropolymerization of 3-aminophenol on carbon graphite surface: Electric and morphologic properties

    Franco, Diego L.; Afonso, Andre S.; Vieira, Sabrina N.; Ferreira, Lucas F.; Goncalves, Rafael A.; Brito-Madurro, Ana G.; Madurro, Joao M.

    2008-01-01

    This paper reports the formation of electropolymerized films derived from 3-aminophenol on graphite electrode by cyclic voltammetry, prepared in different pH conditions. With increase of pH values, a shift of the oxidation potential of 3-aminophenol to more cathodic potentials was observed. 3-Aminophenol electrooxidation, in acid and basic media, yielded polymeric films onto graphite surface. In ferrocyanide/ferricyanide solution, the polymer produced in acid medium showed higher electron transfer efficiency. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and FT-IR were used to investigate some properties of the graphite electrode modified with poly(3-aminophenol). Scanning electron microscopy showed that the morphology of the films is strongly dependent on the pH of the electropolymerization medium. FT-IR spectra of polymer films produced for either acid or basic media suggest that the monomer is polymerized by NH 2 group

  8. Electropolymerization of 3-aminophenol on carbon graphite surface: Electric and morphologic properties

    Franco, Diego L.; Afonso, Andre S.; Vieira, Sabrina N.; Ferreira, Lucas F. [Institute of Chemistry, Federal University of Uberlandia, Av. Joao Naves de Avila 2121, 38400-902 Uberlandia (Brazil); Goncalves, Rafael A. [School of Mechanical Engineering, Federal University of Uberlandia, Av. Joao Naves de Avila 2121, 38400-902 Uberlandia (Brazil); Brito-Madurro, Ana G. [Institute of Chemistry, Federal University of Uberlandia, Av. Joao Naves de Avila 2121, 38400-902 Uberlandia (Brazil); Madurro, Joao M. [Institute of Chemistry, Federal University of Uberlandia, Av. Joao Naves de Avila 2121, 38400-902 Uberlandia (Brazil)], E-mail: jmadurro@ufu.br

    2008-02-15

    This paper reports the formation of electropolymerized films derived from 3-aminophenol on graphite electrode by cyclic voltammetry, prepared in different pH conditions. With increase of pH values, a shift of the oxidation potential of 3-aminophenol to more cathodic potentials was observed. 3-Aminophenol electrooxidation, in acid and basic media, yielded polymeric films onto graphite surface. In ferrocyanide/ferricyanide solution, the polymer produced in acid medium showed higher electron transfer efficiency. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and FT-IR were used to investigate some properties of the graphite electrode modified with poly(3-aminophenol). Scanning electron microscopy showed that the morphology of the films is strongly dependent on the pH of the electropolymerization medium. FT-IR spectra of polymer films produced for either acid or basic media suggest that the monomer is polymerized by NH{sub 2} group.

  9. Performance of AC/graphite capacitors at high weight ratios of AC/graphite

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki [Advanced Research Center, Department of Applied Chemistry, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2008-03-01

    The effect of negative to positive electrode materials' weight ratio on the electrochemical performance of both activated carbon (AC)/AC and AC/graphite capacitors has been investigated, especially in the terms of capacity and cycle-ability. The limited capacity charge mode has been proposed to improve the cycle performance of AC/graphite capacitors at high weight ratios of AC/graphite. (author)

  10. Some metal-graphite and metal-ceramic composites for use as high energy brake lining materials

    Bill, R. C.

    1974-01-01

    Materials were studied as candidates for development as potential new aircraft brake lining materials. These families were (1) copper-graphite composites; (2) nickel-graphite composites; (3) copper - rare-earth-oxide (gadolinium oxide (Gd2O3) or lanthanum oxide (La2O3)) composites and copper - rare-earth-oxide (La2O3) - rare-earth-fluoride (lanthanum fluoride (LaF3)) composites; (4) nickel - rare-earth-oxide composites and nickel - rare-earth-oxide - rare-earth-fluoride composites. For comparison purposes, a currently used metal-ceramic composite was also studied. Results showed that the nickel-Gd2O3 and nickel-La2O3-LaF3 composites were comparable or superior in friction and wear performance to the currently used composite and therefore deserve to be considered for further development.

  11. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    Anfimov, S.S.

    2001-01-01

    In this paper an radioactive waste processing of graphite from graphite moderated nuclear reactors at its decommissioning is discussed. Methods of processing of irradiated graphite are presented. It can be concluded that advanced methods for graphite radioactive waste handling are available nowadays. Implementation of these methods will allow to enhance environmental safety of nuclear power that will benefit its progress in the future

  12. A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors

    Gesh, Christopher J.

    2004-01-01

    The Graphite Isotope Ratio Method (GIRM) is a technique used to estimate the total plutonium production in a graphite-moderated reactor. The cumulative plutonium production in that reactor can be accurately determined by measuring neutron irradiation induced isotopic ratio changes in certain impurity elements within the graphite moderator. The method does not require detailed knowledge of a reactor's operating history, although that knowledge can decrease the uncertainty of the production estimate. The basic premise of the Graphite Isotope Ratio Method is that the fluence in non-fuel core components is directly related to the cumulative plutonium production in the nuclear fuel

  13. Electrical Characterization of Graphite/InP Schottky Diodes by I-V-T and C-V Methods

    Tiagulskyi, Stanislav; Yatskiv, Roman; Grym, Jan

    2018-02-01

    A rectifying junction was prepared by casting a drop of colloidal graphite on the surface of an InP substrate. The electrophysical properties of graphite/InP junctions were investigated in a wide temperature range. Temperature-dependent I-V characteristics of the graphite/InP junctions are explained by the thermionic emission mechanism. The Schottky barrier height (SBH) and the ideality factor were found to be 0.9 eV and 1.47, respectively. The large value of the SBH and its weak temperature dependence are explained by lateral homogeneity of the junction, which is related to the structure of the graphite layer. The moderate disagreement between the current-voltage and capacitance-voltage measurements is attributed to the formation of interfacial native oxide film on the InP surface.

  14. Graphite reactor physics; Physique des piles a graphite

    Bacher, P; Cogne, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Noc, B [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The study of graphite-natural uranium power reactor physics, undertaken ten years ago when the Marcoule piles were built, has continued to keep in step with the development of this type of pile. From 1960 onwards the critical facility Marius has been available for a systematic study of the properties of lattices as a function of their pitch, of fuel geometry and of the diameter of cooling channels. This study has covered a very wide field: lattice pitch varying from 19 to 38 cm. uranium rods and tubes of cross-sections from 6 to 35 cm{sup 2}, channels with diameters between 70 and 140 mm. The lattice calculation methods could thus be checked and where necessary adapted. The running of the Marcoule piles and the experiments carried out on them during the last few years have supplied valuable information on the overall evolution of the neutronic properties of the fuel as a function of irradiation. More detailed experiments have also been performed in Marius with plutonium-containing fuels (irradiated or synthetic fuels), and will be undertaken at the beginning of 1965 at high temperature in the critical facility Cesar, which is just being completed at Cadarache. Spent fuel analyses complement these results and help in their interpretation. The thermalization and spectra theories developed in France can thus be verified over the whole valid temperature range. The efficiency of control rods as a function of their dimensions, the materials of which they are made and the lattices surrounding them has been measured in Marius, and the results compared with calculation on the one hand and with the measurements carried out in EDF 1 on the other. Studies on the control proper of graphite piles were concerned essentially with the risks of spatial instability and the means of detecting and controlling them, and with flux distortions caused by the control rods. (authors) [French] Entreprise il y a dix ans a l'occasion de la construction des piles de Marcoule, l'etude de la

  15. Seismic research on graphite reactor core

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  16. Review: BNL Tokamak graphite blanket design concepts

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  17. Immobilization of Rocky Flats Graphite Fines Residue

    Rudisill, T.S.

    1999-01-01

    The development of the immobilization process for graphite fines has proceeded through a series of experimental programs. The experimental procedures and results from each series of experiments are discussed in this report

  18. Optical motion control of maglev graphite.

    Kobayashi, Masayuki; Abe, Jiro

    2012-12-26

    Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.

  19. Study on graphite samples for nuclear usage

    Suarez, J.C.M.; Silva Roseira, M. da

    1994-01-01

    Available as short communication only. The graphite, due to its properties (mechanical strength, thermal conductivity, high-temperature stability, machinability etc.) have many industrial applications, and consequently, an important strategic value. In the nuclear area, it has been used as moderator and reflector of neutrons in the fission process of uranium. The graphite can be produced from many types of carbonaceous materials by a variety of process dominated by the manufactures. This is the reason why there are in the world market a lot of graphite types with different physical and mechanical properties. The present investigation studies some physical characteristics of the graphite samples destined to use in a nuclear reactor. (author). 8 refs, 1 fig, 1 tab

  20. Collective modes in superconducting rhombohedral graphite

    Kauppila, Ville [O.V. Lounasmaa Laboratory, Aalto University (Finland); Hyart, Timo; Heikkilae, Tero [University of Jyvaeskylae (Finland)

    2015-07-01

    Recently it was realized that coupling particles with a Dirac dispersion (such as electrons in graphene) can lead to a topologically protected state with flat band dispersion. Such a state could support superconductivity with unusually high critical temperatures. Perhaps the most promising way to realize such coupling in real materials is in the surface of rhombohedrally stacked graphite. We consider collective excitations (i.e. the Higgs modes) in surface superconducting rhombohedral graphite. We find two amplitude and two phase modes corresponding to the two surfaces of the graphite where the superconductivity lives. We calculate the dispersion of these modes. We also derive the Ginzburg-Landau theory for this material. We show that in superconducting rhombohedral graphite, the collective modes, unlike in conventional BCS superconductors, give a large contribution to thermodynamic properties of the material.