WorldWideScience

Sample records for oxidized glutathione gssg

  1. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells.

    Science.gov (United States)

    Gordillo, Gayle M; Biswas, Ayan; Khanna, Savita; Spieldenner, James M; Pan, Xueliang; Sen, Chandan K

    2016-05-06

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells*

    Science.gov (United States)

    Gordillo, Gayle M.; Biswas, Ayan; Khanna, Savita; Spieldenner, James M.; Pan, Xueliang; Sen, Chandan K.

    2016-01-01

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. PMID:26961872

  3. Enact of Glutathione(GSH/GSSG) Contents of Fermented Ginseng on the γ-irradiated Liver of Mice

    International Nuclear Information System (INIS)

    Ko, In Ho

    2006-01-01

    The radioprotective effects of white and fermented ginseng on liver damage induced by 60 Co γ-ray were investigated. To one group of ICR male mice were given white(150 mg/kg/day for 7 days, orally) and fermented ginseng(150 mg/kg/day for 7 days, orally) before 60 Co γ--ray irradiation. To another group were irradiated by 5 Gy(1.01 Gy/min) dose of 60 Co γ--ray. Contrast group were given with saline(0.1 mL). The levels of reduced(GSH) and oxidized(GSSG) glutathione in liver tissue were measured. In the fermented(150 mg/kg) and white ginseng(150 mg/kg) groups than irradiation group, the GSH levels were significantly increased, but the GSSG levels were significantly decreased. The ratio of GSSG/total GSH was significantly decreased in the fermented(150 mg/kg) and white ginseng(150 mg/kg) groups than irradiation group. In the fermented(150 mg/kg) groups than white ginseng(150 mg/kg) groups the GSH levels were significantly increased. The radioprotective effects of fermented(150 mg/kg) groups than white ginseng(150 mg/kg) groups were increased.

  4. Enact of Glutathione(GSH/GSSG) Contents of Fermented Ginseng on the {gamma}-irradiated Liver of Mice

    Energy Technology Data Exchange (ETDEWEB)

    Ko, In Ho [Dept. of Radiology Technology, Jeju Halla College, Jeju (Korea, Republic of)

    2006-03-15

    The radioprotective effects of white and fermented ginseng on liver damage induced by {sup 60}Co {gamma}-ray were investigated. To one group of ICR male mice were given white(150 mg/kg/day for 7 days, orally) and fermented ginseng(150 mg/kg/day for 7 days, orally) before {sup 60}Co {gamma}--ray irradiation. To another group were irradiated by 5 Gy(1.01 Gy/min) dose of {sup 60}Co {gamma}--ray. Contrast group were given with saline(0.1 mL). The levels of reduced(GSH) and oxidized(GSSG) glutathione in liver tissue were measured. In the fermented(150 mg/kg) and white ginseng(150 mg/kg) groups than irradiation group, the GSH levels were significantly increased, but the GSSG levels were significantly decreased. The ratio of GSSG/total GSH was significantly decreased in the fermented(150 mg/kg) and white ginseng(150 mg/kg) groups than irradiation group. In the fermented(150 mg/kg) groups than white ginseng(150 mg/kg) groups the GSH levels were significantly increased. The radioprotective effects of fermented(150 mg/kg) groups than white ginseng(150 mg/kg) groups were increased.

  5. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe

    Science.gov (United States)

    Liu, Chang-hui; Qi, Feng-pei; Wen, Fu-bin; Long, Li-ping; Liu, Ai-juan; Yang, Rong-hua

    2018-04-01

    Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.

  6. The fairytale of the GSSG/GSH redox potential.

    Science.gov (United States)

    Flohé, Leopold

    2013-05-01

    The term GSSG/GSH redox potential is frequently used to explain redox regulation and other biological processes. The relevance of the GSSG/GSH redox potential as driving force of biological processes is critically discussed. It is recalled that the concentration ratio of GSSG and GSH reflects little else than a steady state, which overwhelmingly results from fast enzymatic processes utilizing, degrading or regenerating GSH. A biological GSSG/GSH redox potential, as calculated by the Nernst equation, is a deduced electrochemical parameter based on direct measurements of GSH and GSSG that are often complicated by poorly substantiated assumptions. It is considered irrelevant to the steering of any biological process. GSH-utilizing enzymes depend on the concentration of GSH, not on [GSH](2), as is predicted by the Nernst equation, and are typically not affected by GSSG. Regulatory processes involving oxidants and GSH are considered to make use of mechanistic principles known for thiol peroxidases which catalyze the oxidation of hydroperoxides by GSH by means of an enzyme substitution mechanism involving only bimolecular reaction steps. The negligibly small rate constants of related spontaneous reactions as compared with enzyme-catalyzed ones underscore the superiority of kinetic parameters over electrochemical or thermodynamic ones for an in-depth understanding of GSH-dependent biological phenomena. At best, the GSSG/GSH potential might be useful as an analytical tool to disclose disturbances in redox metabolism. This article is part of a Special Issue entitled Cellular Functions of Glutathione. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Glutathione oxidation correlates with one-lung ventilation time and PO2/FiO2 ratio during pulmonary lobectomy.

    Science.gov (United States)

    García-de-la-Asunción, José; García-Del-Olmo, Eva; Galan, Genaro; Guijarro, Ricardo; Martí, Francisco; Badenes, Rafael; Perez-Griera, Jaume; Duca, Alejandro; Delgado, Carlos; Carbonell, Jose; Belda, Javier

    2016-09-01

    During lung lobectomy, the operated lung completely collapses with simultaneous hypoxic pulmonary vasoconstriction, followed by expansion and reperfusion. Here, we investigated glutathione oxidation and lipoperoxidation in patients undergoing lung lobectomy, during one-lung ventilation (OLV) and after resuming two-lung ventilation (TLV), and examined the relationship with OLV duration. We performed a single-centre, observational, prospective study in 32 patients undergoing lung lobectomy. Blood samples were collected at five time-points: T0, pre-operatively; T1, during OLV, 5 minutes before resuming TLV; and T2, T3, and T4, respectively, 5, 60, and 180 minutes after resuming TLV. Samples were tested for reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione redox potential, and malondialdehyde (MDA). GSSG and MDA blood levels increased at T1, and increased further at T2. OLV duration directly correlated with marker levels at T1 and T2. Blood levels of GSH and glutathione redox potential decreased at T1-T3. GSSG, oxidized glutathione/total glutathione ratio, and MDA levels were inversely correlated with arterial blood PO2/FiO2 at T1 and T2. During lung lobectomy and OLV, glutathione oxidation, and lipoperoxidation marker blood levels increase, with further increases after resuming TLV. Oxidative stress degree was directly correlated with OLV duration, and inversely correlated with arterial blood PO2/FiO2.

  8. Glutathione--linking cell proliferation to oxidative stress.

    Science.gov (United States)

    Diaz-Vivancos, Pedro; de Simone, Ambra; Kiddle, Guy; Foyer, Christine H

    2015-12-01

    The multifaceted functions of reduced glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) continue to fascinate plants and animal scientists, not least because of the dynamic relationships between GSH and reactive oxygen species (ROS) that underpin reduction/oxidation (redox) regulation and signalling. Here we consider the respective roles of ROS and GSH in the regulation of plant growth, with a particular focus on regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low molecular weight redox buffer that shields nuclear processes against oxidative challenge but also a flexible regulator of genetic and epigenetic functions. The intracellular compartmentalization of GSH during the cell cycle is remarkably consistent in plants and animals. Moreover, measurements of in vivo glutathione redox potentials reveal that the cellular environment is much more reducing than predicted from GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and nuclei of non-dividing plant cells is about -300 mV. This relatively low redox potential maintained even in cells experiencing oxidative stress by a number of mechanisms including vacuolar sequestration of GSSG. We propose that regulated ROS production linked to glutathione-mediated signalling events are the hallmark of viable cells within a changing and challenging environment. The concept that the cell cycle in animals is subject to redox controls is well established but little is known about how ROS and GSH regulate this process in plants. However, it is increasingly likely that redox controls exist in plants, although possibly through different pathways. Moreover, redox-regulated proteins that function in cell cycle checkpoints remain to be identified in plants. While GSH-responsive genes have now been identified, the mechanisms that mediate and regulate protein glutathionylation in plants remain poorly defined. The nuclear GSH pool provides an appropriate redox environment

  9. Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks

    Science.gov (United States)

    Hoffman, D.J.; Heinz, G.H.

    1998-01-01

    Earlier studies reported on the toxicity and related oxidative stress of different forms of Se, including seleno-D,L-methionine, in mallards (Anas platyrhynchos). This study compares the effects of Se (seleno-D,L-methionine) and Hg (methylmercury chloride) separately and in combination. Mallard drakes received one of the following diets: untreated feed (controls), or feed containing 10 ppm Se, 10 ppm Hg, or 10 ppm Se in combination with 10 ppm Hg. After 10 weeks, blood, liver, and brain samples were collected for biochemical assays. The following clinical and biochemical alterations occurred in response to mercury exposure: hematocrit and hemoglobin concentrations decreased; activities of the enzymes glutathione (GSH) peroxidase (plasma and liver), glutathione-S-transferase (liver), and glucose-6-phosphate dehydrogenase (G-6-PDH) (liver and brain) decreased; hepatic oxidized glutathione (GSSG) concentration increased relative to reduced glutathione (GSH); and lipid peroxidation in the brain was evident as detected by increased thiobarbituric reactive substances (TBARS). Effects of Se alone included increased hepatic GSSG reductase activity and brain TBARS concentration. Se in combination with Hg partially or totally alleviated effects of Hg on GSH peroxidase, G-6-PDH, and GSSG. These findings are compared in relation to field observations for diving ducks and other aquatic birds. It is concluded that since both Hg and excess Se can affect thiol status, measurement of associated enzymes in conjunction with thiol status may be a useful bioindicator to discriminate between Hg and Se effects. The ability of Se to restore the activities of G-6-PDH, GSH peroxidase, and glutathione status involved in antioxidative defense mechanisms may be crucial to biological protection from the toxic effects of methyl mercury.

  10. Endoplasmic reticulum transport of glutathione by Sec61 is regulated by Ero1 and Bip

    DEFF Research Database (Denmark)

    Ponsero, Alise J.; Igbaria, Aeid; Darch, Maxwell A.

    2017-01-01

    In the endoplasmic reticulum (ER), Ero1 catalyzes disulfide bond formation and promotes glutathione (GSH) oxidation to GSSG. Since GSSG cannot be reduced in the ER, maintenance of the ER glutathione redox state and levels likely depends on ER glutathione import and GSSG export. We used quantitative...... oxidation through Ero1 reductive activation, which inhibits glutathione import in a negative regulatory loop. During ER stress, transport is activated by UPR-dependent Ero1 induction, and cytosolic glutathione levels increase. Thus, the ER redox poise is tuned by reciprocal control of glutathione import...... by reduction, causing Bip oxidation and inhibition of glutathione transport. Coupling of glutathione ER import to Ero1 activation provides a basis for glutathione ER redox poise maintenance....

  11. Auranofin-induced oxidative stress causes redistribution of the glutathione pool in Taenia crassiceps cysticerci.

    Science.gov (United States)

    Martínez-González, J J; Guevara-Flores, A; Rendón, J L; Arenal, I P Del

    2015-05-01

    Previously, we have studied the effect of the gold-compound auranofin (AF) on both thioredoxin-glutathione reductasa (TGR) activity and viability of Taenia crassiceps cysticerci. It was demonstrated that micromolar concentrations of AF were high enough to fully inhibit TGR and kill the parasites. In this work, the dynamics of changes in the glutathione pool of T. crassiceps cysticerci following the addition of AF, was analyzed. A dose-dependent decrease in the internal glutathione concentration, concomitant with an increase in ROS production was observed. These changes were simultaneous with the formation of glutathione-protein complexes and the export of glutathione disulfide (GSSG) to the culture medium. Incubation of cysticerci in the presence of both AF and N-acetyl cysteine (NAC) prevents all the above changes, maintaining cysticerci viability. By contrast, the presence of both AF and buthionine sulfoximine (BSO) resulted in a potentiation of the effects of the gold compound, jeopardizing cysticerci viability. These results suggest the lethal effect of AF on T. crassiceps cysticerci, observed at micromolar concentrations, can be explained as a consequence of major changes in the glutathione status, which results in a significant increase in the oxidative stress of the parasites. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Glutathione.

    Science.gov (United States)

    Noctor, Graham; Queval, Guillaume; Mhamdi, Amna; Chaouch, Sejir; Foyer, Christine H

    2011-01-01

    Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.

  13. Oxidative stress protection and glutathione metabolism in response to hydrogen peroxide and menadione in riboflavinogenic fungus Ashbya gossypii.

    Science.gov (United States)

    Kavitha, S; Chandra, T S

    2014-11-01

    Ashbya gossypii is a plant pathogen and a natural overproducer of riboflavin and is used for industrial riboflavin production. A few literature reports depict a link between riboflavin overproduction and stress in this fungus. However, the stress protection mechanisms and glutathione metabolism are not much explored in A. gossypii. In the present study, an increase in the activity of catalase and superoxide dismutase was observed in response to hydrogen peroxide and menadione. The lipid peroxide and membrane lipid peroxide levels were increased by H2O2 and menadione, indicating oxidative damage. The glutathione metabolism was altered with a significant increase in oxidized glutathione (GSSG), glutathione peroxidase (GPX), glutathione S transferase (GST), and glutathione reductase (GR) and a decrease in reduced glutathione (GSH) levels in the presence of H2O2 and menadione. Expression of the genes involved in stress mechanism was analyzed in response to the stressors by semiquantitative RT-PCR. The messenger RNA (mRNA) levels of CTT1, SOD1, GSH1, YAP1, and RIB3 were increased by H2O2 and menadione, indicating the effect of stress at the transcriptional level. A preliminary bioinformatics study for the presence of stress response elements (STRE)/Yap response elements (YRE) depicted that the glutathione metabolic genes, stress genes, and the RIB genes hosted either STRE/YRE, which may enable induction of these genes during stress.

  14. Determination of glutathione and glutathione disulfide in biological samples: an in-depth review.

    Science.gov (United States)

    Monostori, Péter; Wittmann, Gyula; Karg, Eszter; Túri, Sándor

    2009-10-15

    Glutathione (GSH) is a thiol-containing tripeptide, which plays central roles in the defence against oxidative damage and in signaling pathways. Upon oxidation, GSH is transformed to glutathione disulfide (GSSG). The concentrations of GSH and GSSG and their molar ratio are indicators of cell functionality and oxidative stress. Assessment of redox homeostasis in various clinical states and medical applications for restoration of the glutathione status are of growing importance. This review is intended to provide a state-of-the-art overview of issues relating to sample pretreatment and choices for the separation and detection of GSH and GSSG. High-performance liquid chromatography, capillary electrophoresis and gas chromatography (as techniques with a separation step) with photometric, fluorimetric, electrochemical and mass spectrometric detection are discussed, stress being laid on novel approaches.

  15. Simultaneous analysis of (13)C-glutathione as its dimeric form GSSG and its precursor [1-(13)C]glycine using liquid chromatography/isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Schierbeek, Henk; Rook, Denise; te Braake, Frans W. J.; Dorst, Kristien Y.; Voortman, Gardi; Godin, Jean-Philippe; Fay, Laurent-Bernard; van Goudoever, Johannes B.

    2009-01-01

    Determination of glutathione kinetics using stable isotopes requires accurate measurement of the tracers and tracees. Previously, the precursor and synthesized product were measured with two separate techniques, liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) and gas

  16. Effects of methylmercury exposure on glutathione metabolism, oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks

    International Nuclear Information System (INIS)

    Kenow, Kevin P.; Hoffman, David J.; Hines, Randy K.; Meyer, Michael W.; Bickham, John W.; Matson, Cole W.; Stebbins, Katie R.; Montagna, Paul; Elfessi, Abdulaziz

    2008-01-01

    We quantified the level of dietary mercury (Hg), delivered as methylmercury chloride (CH 3 HgCl), associated with negative effects on organ and plasma biochemistries related to glutathione (GSH) metabolism and oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks reared from hatch to 105 days. Mercury-associated effects related to oxidative stress and altered glutathione metabolism occurred at 1.2 μg Hg/g and 0.4 μg Hg/g, an ecologically relevant dietary mercury level, but not at 0.08 μg Hg/g. Among the variables that contributed most to dissimilarities in tissue chemistries between control and treatment groups were increased levels of oxidized glutathione (GSSG), GSH peroxidase, and the ratio of GSSG to GSH in brain tissue; increased levels of hepatic GSH; and decreased levels of hepatic glucose-6-phosphate dehydrogenase (G-6-PDH). Our results also suggest that chronic exposure to environmentally relevant dietary Hg levels did not result in statistically significant somatic chromosomal damage in common loon chicks. - Oxidative stress and altered glutathione metabolism were evident in common loon chicks exposed to ≥0.4 μg Hg as CH 3 HgCl per gram wet food intake

  17. Effects of methylmercury exposure on glutathione metabolism, oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks

    Energy Technology Data Exchange (ETDEWEB)

    Kenow, Kevin P. [U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI 54603 (United States)], E-mail: kkenow@usgs.gov; Hoffman, David J. [U.S. Geological Survey, Patuxent Wildlife Research Center, 10300 Baltimore Avenue, Beltsville, MD 20705 (United States)], E-mail: djhoffman@usgs.gov; Hines, Randy K. [U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI 54603 (United States)], E-mail: rkhines@usgs.gov; Meyer, Michael W. [Wisconsin Department of Natural Resources, 107 Sutliff Avenue, Rhinelander, WI 54501 (United States)], E-mail: michael.meyer@dnr.state.wi.us; Bickham, John W. [Center for the Environment and Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907 (United States)], E-mail: bickham@purdue.edu; Matson, Cole W. [Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708 (United States)], E-mail: matson@duke.edu; Stebbins, Katie R. [U.S. Geological Survey, Patuxent Wildlife Research Center, 10300 Baltimore Avenue, Beltsville, MD 20705 (United States); Montagna, Paul [Texas A and M University-Corpus Christi, Harte Research Institute, Corpus Christi, TX (United States)], E-mail: paul.montagna@tamucc.edu; Elfessi, Abdulaziz [University of Wisconsin-La Crosse, La Crosse, WI 54601 (United States)], E-mail: elfessi.abdu@uwlax.edu

    2008-12-15

    We quantified the level of dietary mercury (Hg), delivered as methylmercury chloride (CH{sub 3}HgCl), associated with negative effects on organ and plasma biochemistries related to glutathione (GSH) metabolism and oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks reared from hatch to 105 days. Mercury-associated effects related to oxidative stress and altered glutathione metabolism occurred at 1.2 {mu}g Hg/g and 0.4 {mu}g Hg/g, an ecologically relevant dietary mercury level, but not at 0.08 {mu}g Hg/g. Among the variables that contributed most to dissimilarities in tissue chemistries between control and treatment groups were increased levels of oxidized glutathione (GSSG), GSH peroxidase, and the ratio of GSSG to GSH in brain tissue; increased levels of hepatic GSH; and decreased levels of hepatic glucose-6-phosphate dehydrogenase (G-6-PDH). Our results also suggest that chronic exposure to environmentally relevant dietary Hg levels did not result in statistically significant somatic chromosomal damage in common loon chicks. - Oxidative stress and altered glutathione metabolism were evident in common loon chicks exposed to {>=}0.4 {mu}g Hg as CH{sub 3}HgCl per gram wet food intake.

  18. Cytoplasmic glutathione redox status determines survival upon exposure to the thiol-oxidant 4,4'-dipyridyl disulfide

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Thorsen, Michael; Kielland-Brandt, Morten C

    2007-01-01

    Dipyridyl disulfide (DPS) is a highly reactive thiol oxidant that functions as electron acceptor in thiol-disulfide exchange reactions. DPS is very toxic to yeasts, impairing growth at low micromolar concentrations. The genes TRX2 (thioredoxin), SOD1 (superoxide dismutase), GSH1 (gamma-glutamyl-c......Dipyridyl disulfide (DPS) is a highly reactive thiol oxidant that functions as electron acceptor in thiol-disulfide exchange reactions. DPS is very toxic to yeasts, impairing growth at low micromolar concentrations. The genes TRX2 (thioredoxin), SOD1 (superoxide dismutase), GSH1 (gamma...... antioxidant pools of glutathione (GSH) and thioredoxin are required for resistance to DPS. We found that DPS-sensitive mutants display increases in the disulfide form of GSH (GSSG) during DPS exposure that roughly correlate with their more oxidizing GSH redox potential in the cytosol and their degree of DPS...

  19. Glutathione Redox System in β-Thalassemia/Hb E Patients

    Directory of Open Access Journals (Sweden)

    Ruchaneekorn W. Kalpravidh

    2013-01-01

    Full Text Available β-thalassemia/Hb E is known to cause oxidative stress induced by iron overload. The glutathione system is the major endogenous antioxidant that protects animal cells from oxidative damage. This study aimed to determine the effect of disease state and splenectomy on redox status expressed by whole blood glutathione (GSH/glutathione disulfide (GSSG and also to evaluate glutathione-related responses to oxidation in β-thalassemia/Hb E patients. Twenty-seven normal subjects and 25 β-thalassemia/Hb E patients were recruited and blood was collected. The GSH/GSSG ratio, activities of glutathione-related enzymes, hematological parameters, and serum ferritin levels were determined in individuals. Patients had high iron-induced oxidative stress, shown as significantly increased serum ferritin, a decreased GSH/GSSG ratio, and increased activities of glutathione-related enzymes. Splenectomy increased serum ferritin levels and decreased GSH levels concomitant with unchanged glutathione-related enzyme activities. The redox ratio had a positive correlation with hemoglobin levels and negative correlation with levels of serum ferritin. The glutathione system may be the body’s first-line defense used against oxidative stress and to maintain redox homeostasis in thalassemic patients based on the significant correlations between the GSH/GSSH ratio and degree of anemia or body iron stores.

  20. Determination of Glutathione and Its Redox Status in Isolated Vacuoles of Red Beetroot Cells

    Directory of Open Access Journals (Sweden)

    E.V. Pradedova

    2016-02-01

    Full Text Available The glutathione of the red beetroot vacuoles (Beta vulgaris L. was measured using three well-known methods: the spectrofluorimetric method with orthophthalic aldehyde (OPT; the spectrophotometric method with 5.5'-dithiobis-2-nitrobenzoic acid (DTNB; the high-performance liquid chromatography (HPLC. The content of reduced (GSH and oxidized glutathione (GSSG differed depending on the research method. With OPT the concentration of glutathione was: GSH – 0.059 µmol /mg protein; GSSG – 0.019 µmol/mg protein and total glutathione (GSHtotal – 0.097 µmol/mg protein. In the case of determining with DTNB the concentration of glutathione was: GSH – 0.091 µmol/mg protein; GSSG – 0.031 µmol/mg protein; GSHtotal – 0.153 µmol/mg protein. HPLC-defined concentration of glutathione was lower: GSH – 0.039 µmol/mg protein; GSSG – 0.007 µmol/mg protein; GSHtotal – 0.053 µmol/mg protein. Redox ratio of GSH/GSSG was also dependent on the method of determination: with OPT – 3.11; with DTNB – 2.96 and HPLC – 5.57. Redox ratio of glutathione in vacuoles was much lower than the tissue extracts of red beetroot, which, depending on the method of determination, was: 7.23, 7.16 and 9.22. The results showed the vacuoles of red beetroot parenchyma cells contain glutathione. Despite the low value of the redox ratio GSH/GSSG, in vacuoles the pool of reduced glutathione prevailed over the pool of oxidized glutathione.

  1. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    Science.gov (United States)

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  2. Effects of Oxidized Glutathione, Bovine Serum Albumin, Cysteine and Lycopene on the Quality of Frozen-Thawed Ram Semen

    Directory of Open Access Journals (Sweden)

    O. Uysal

    2007-01-01

    Full Text Available Free radicals are known to be involved in lipid peroxidation as well as DNA and sperm membrane damages that may lead to decreased sperm motility or cell death. The balance between free radical production and their detoxification may be an important factor in sperm survival and function before, during and after cryopreservation. The aim of this study was to determine the effects of the addition of the antioxidants of oxidized glutathione (GSSG, bovine serum albumin (BSA, cysteine and lycopene to freezing media on the post-thawing sperm characteristics, including motility, morphology, acrosome integrity, viability and membrane integrity. A total number of 42 ejaculates were collected using the artifi cial vagina from 4 Akkaraman rams and 10 replicates of the ejaculates were diluted with a Tris-based extender containing additives and no additives as control. GSSG (5 mM, BSA (20 mg/ml, cysteine (10 mM and lycopene (800 μg showed more positive effects than other concentrations of the supplements and controls in protecting sperm characteristics after the freezing-thawing process (P < 0.001. Many aspects of sperm protection, e.g. sperm motility, viability and membrane stabilisation of the sperm cells during relative cryopreservation, are the key factors in determining the preservation of sperm function. The results of this study provide a new approach to the cryopreservation of sperm from rams and related breeds, and thereby contribute to the improvement of these breeds for the world sheep industry.

  3. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  4. Oxidative Stress Markers and Genetic Polymorphisms of Glutathione ...

    African Journals Online (AJOL)

    Hence, we evaluated the serum levels of oxidative stress markers and investigated genetic polymorphisms of glutathione S-transferase associated with autism. Materials and Methods: Forty-two children clinically diagnosed with ASD using the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria and a ...

  5. Glutathione content in sperm cells of infertile men

    Directory of Open Access Journals (Sweden)

    R. V. Fafula

    2017-04-01

    Full Text Available Hyperproduction of reactive oxygen species can damage sperm cells and is considered to be one of the mechanisms of male infertility. Cell protection from the damaging effects of free radicals and lipid peroxidation products is generally determined by the degree of antioxidant protection. Glutathione is non-enzymatic antioxidant which plays an important protective role against oxidative damages and lipid peroxidation. The aim of the present work is to determine the content of reduced and oxidized glutathione in sperm cells of infertile men. Semen samples from 20 fertile men (normozoospermics and 72 infertile patients (12 oligozoospermics, 17 asthenozoospermics, 10 oligoasthenozoosper­mics and 33 leucocytospermic were used. The total, oxidized (GSSG and reduced (GSH glutathione levels were measured spectrophotometrically. The levels of total glutathione were significantly lower in the spermatozoa of patients with oligozoo-, asthenozoo- and oligoasthenozoospermia than in the control. Infertile groups showed significantly decreased values of reduced glutathione in sperm cells vs. fertile men, indicating an alteration of oxidative status. The oxidized glutathione levels in sperm cells of infertile men did not differ from those of normozoospermic men with proven fertility. The GSH/GSSG ratio was significantly decreased in the oligo-, astheno- and oligoasthenozoospermic groups compared to the normozoospermic group. In patients with leucocytospermia the GSH/GSSG ratio was lower but these changes were not significant. In addition, glutathione peroxidase activity in sperm cells was decreased in patients with oligozoo-, astenozoo-, oligoastenozoospermia and with leucocytospermia. The most significant changes in glutathione peroxidase activity were observed in infertile men with leucocytospermia. Decreased GSH/GSSG ratio indicates a decline in redox-potential of the glutathione system in sperm cells of men with decreased fertilizing potential

  6. Glutathione level after long-term occupational elemental mercury exposure

    International Nuclear Information System (INIS)

    Kobal, Alfred Bogomir; Prezelj, Marija; Horvat, Milena; Krsnik, Mladen; Gibicar, Darija; Osredkar, Josko

    2008-01-01

    Many in vitro and in vivo studies have elucidated the interaction of inorganic mercury (Hg) and glutathione. However, human studies are limited. In this study, we investigated the potential effects of remote long-term intermittent occupational elemental Hg vapour (Hg o ) exposure on erythrocyte glutathione levels and some antioxidative enzyme activities in ex-mercury miners in the period after exposure. The study included 49 ex-mercury miners divided into subgroups of 28 still active, Hg o -not-exposed miners and 21 elderly retired miners, and 41 controls, age-matched to the miners subgroup. The control workers were taken from 'mercury-free works'. Reduced glutathione (GSH) and oxidized disulphide glutathione (GSSG) concentrations in haemolysed erythrocytes were determined by capillary electrophoresis, while total glutathione (total GSH) and the GSH/GSSG ratio were calculated from the determined values. Catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in erythrocytes were measured using commercially available reagent kits, while urine Hg (U-Hg) concentrations were determined by cold vapour atomic absorption (CVAAS). No correlation of present U-Hg levels, GSH, GSSG, and antioxidative enzymes with remote occupational biological exposure indices were found. The mean CAT activity in miners and retired miners was significantly higher (p o could be an inductive and additive response to maintain the balance between GSH and antioxidative enzymes in interaction with the Hg body burden accumulated during remote occupational exposure, which does not represent a severely increased oxidative stress

  7. Effect of glutathione aerosol on oxidant-antioxidant imbalance in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Borok, Z; Buhl, R; Grimes, G J; Bokser, A D; Hubbard, R C; Holroyd, K J; Roum, J H; Czerski, D B; Cantin, A M; Crystal, R G

    1991-07-27

    Idiopathic pulmonary fibrosis (IPF) is characterised by alveolar inflammation, exaggerated release of oxidants, and subnormal concentrations of the antioxidant glutathione in respiratory epithelial lining fluid (ELF). Glutathione (600 mg twice daily for 3 days) was given by aerosol to 10 patients with IPF. Total ELF glutathione rose transiently, ELF oxidised glutathione concentrations increased, and there was a decrease in spontaneous superoxide anion release by alveolar macrophages. Thus, glutathione by aerosol could be a means of reversing the oxidant-antioxidant imbalance in IPF.

  8. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency

    International Nuclear Information System (INIS)

    Giordano, Gennaro; Afsharinejad, Zhara; Guizzetti, Marina; Vitalone, Annabella; Kavanagh, Terrance J.; Costa, Lucio G.

    2007-01-01

    Over the past several years evidence has been accumulating from in vivo animal studies, observations in humans, and in vitro studies, that organophosphorus (OP) insecticides may induce oxidative stress. Such effects may contribute to some of the toxic manifestations of OPs, particularly upon chronic or developmental exposures. The aim of this study was to investigate the role of oxidative stress in the neurotoxicity of two commonly used OPs, chlorpyrifos (CPF) and diazinon (DZ), their oxygen analogs (CPO and DZO), and their 'inactive' metabolites (TCP and IMP), in neuronal cells from a genetic model of glutathione deficiency. Cerebellar granule neurons from wild type mice (Gclm +/+) and mice lacking the modifier subunit of glutamate cysteine ligase (Gclm -/-), the first and limiting step in the synthesis of glutathione (GSH), were utilized. The latter display very low levels of GSH and are more susceptible to the toxicity of agents that increase oxidative stress. CPO and DZO were the most cytotoxic compounds, followed by CPF and DZ, while TCP and IMP displayed lower toxicity. Toxicity was significantly higher (10- to 25-fold) in neurons from Gclm (-/-) mice, and was antagonized by various antioxidants. Depletion of GSH from Gclm (+/+) neurons significantly increased their sensitivity to OP toxicity. OPs increased intracellular levels of reactive oxygen species and lipid peroxidation and in both cases the effects were greater in neurons from Gclm (-/-) mice. OPs did not alter intracellular levels of GSH, but significantly increased those of oxidized glutathione (GSSG). Cytotoxicity was not antagonized by cholinergic antagonists, but was decreased by the calcium chelator BAPTA-AM. These studies indicate that cytotoxicity of OPs involves generation of reactive oxygen species and is modulated by intracellular GSH, and suggest that it may involve disturbances in intracellular homeostasis of calcium

  9. Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells.

    Science.gov (United States)

    Wilmer, Martijn J G; de Graaf-Hess, Adriana; Blom, Henk J; Dijkman, Henry B P M; Monnens, Leo A; van den Heuvel, Lambertus P; Levtchenko, Elena N

    2005-11-18

    Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.

  10. Glutathione and its antiaging and antimelanogenic effects

    Directory of Open Access Journals (Sweden)

    Weschawalit S

    2017-04-01

    Full Text Available Sinee Weschawalit,1 Siriwan Thongthip,2 Phanupong Phutrakool,3 Pravit Asawanonda1 1Department of Medicine, Division of Dermatology, 2Chula Clinical Research Center, 3Chula Data Management Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand Background: Previous studies showed that supplementation of reduced form of glutathione (GSH, 500 mg/d has a skin-lightening efficacy in humans. This study was designed to evaluate the influences of both GSH and oxidized form (GSSG, at doses lower than 500 mg/d, on improving skin properties. Patients and methods: A randomized, double-blind, placebo-controlled, parallel, three-arm study was conducted. Healthy female subjects were equally randomized into three groups and took GSH (250 mg/d, GSSG (250 mg/d, or placebo orally for 12 weeks. At each visit at baseline and for 12 weeks, skin features including melanin index, wrinkles, and other relevant biophysical properties were measured. Blood samples were collected for safety monitoring. Results: In generalized estimating equation analyses, melanin index and ultraviolet spots of all sites including face and arm when given GSH and GSSG tended to be lower than placebo. At some sites evaluated, subjects who received GSH showed a significant reduction in wrinkles compared with those taking placebo. A tendency toward increased skin elasticity was observed in GSH and GSSG compared with placebo. There were no serious adverse effects throughout the study. Conclusion: We showed that oral glutathione, 250 mg/d, in both reduced and oxidized forms effectively influences skin properties. Overall, glutathione in both forms are well tolerated. Keywords: glutathione, melanin, pigment, aging, wrinkle, whitening

  11. L-cysteine efflux in erythrocytes as a function of human age: correlation with reduced glutathione and total anti-oxidant potential.

    Science.gov (United States)

    Kumar, Prabhanshu; Maurya, Pawan Kumar

    2013-06-01

    Thiol compounds such as cysteine (Cys) and reduced glutathione (GSH) play an important role in human aging and age-related diseases. In erythrocytes, GSH is synthesized by glutamic acid, cysteine, and glycine, but the rate of GSH synthesis is determined only by the availability of L-cysteine. Cysteine supplementation has been shown to ameliorate several parameters that are known to degenerate during human aging. We have studied L-cysteine efflux in vitro in human erythrocytes as a function of age by suspending cells in solution containing 10 mM L-cysteine for uptake; later cells were re-suspended in phosphate-buffered saline (PBS)-glucose to allow efflux. Change in the free sulfhydryl (-SH) concentration was then measured to calculate the rate of efflux. The GSH/oxidized glutathione (GSSG) ratio was taken as a control to study the oxidation/reduction state of the erythrocyte. The total anti-oxidant potential of plasma was measured in terms of ferric reducing ability of plasma (FRAP) values. We have shown a significant (pL-cysteine in erythrocytes during human aging, and the GSH/GSSG ratio decreases as a function of human age. The decline in L-cysteine efflux during aging correlates with the decrease in GSH and the FRAP value. This finding may help to explain the shift in the redox status and low GSH concentration that might determine the rate of L-cysteine efflux observed in erythrocytes and an important factor in the development of oxidative stress in erythrocytes during aging.

  12. Glutathione reductase: solvent equilibrium and kinetic isotope effects

    International Nuclear Information System (INIS)

    Wong, K.K.; Vanoni, M.A.; Blanchard, J.S.

    1988-01-01

    Glutathione reductase catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). The kinetic mechanism is ping-pong, and we have investigated the rate-limiting nature of proton-transfer steps in the reactions catalyzed by the spinach, yeast, and human erythrocyte glutathione reductases using a combination of alternate substrate and solvent kinetic isotope effects. With NADPH or GSSG as the variable substrate, at a fixed, saturating concentration of the other substrate, solvent kinetic isotope effects were observed on V but not V/K. Plots of Vm vs mole fraction of D 2 O (proton inventories) were linear in both cases for the yeast, spinach, and human erythrocyte enzymes. When solvent kinetic isotope effect studies were performed with DTNB instead of GSSG as an alternate substrate, a solvent kinetic isotope effect of 1.0 was observed. Solvent kinetic isotope effect measurements were also performed on the asymmetric disulfides GSSNB and GSSNP by using human erythrocyte glutathione reductase. The Km values for GSSNB and GSSNP were 70 microM and 13 microM, respectively, and V values were 62 and 57% of the one calculated for GSSG, respectively. Both of these substrates yield solvent kinetic isotope effects greater than 1.0 on both V and V/K and linear proton inventories, indicating that a single proton-transfer step is still rate limiting. These data are discussed in relationship to the chemical mechanism of GSSG reduction and the identity of the proton-transfer step whose rate is sensitive to solvent isotopic composition. Finally, the solvent equilibrium isotope effect measured with yeast glutathione reductase is 4.98, which allows us to calculate a fractionation factor for the thiol moiety of GSH of 0.456

  13. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.)

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Naser A. [University of Aveiro, Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry (Portugal); Singh, Neetu; Singh, Manoj K. [University of Aveiro, Center for Mechanical Technology and Automation (TEMA) and Department of Mechanical Engineering (Portugal); Shah, Zahoor A. [University of Toledo, Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences (United States); Duarte, Armando C.; Pereira, Eduarda; Ahmad, Iqbal, E-mail: ahmadr@ua.pt [University of Aveiro, Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry (Portugal)

    2013-07-15

    Adsorbents based on single-bilayer graphene oxide sheet (hereafter termed 'graphene oxide') are widely used in contaminated environments cleanup which may easily open the avenues for their entry to different environmental compartments, exposure to organisms and their subsequent transfer to human/animal food chain. Considering a common food crop-faba bean (Vicia faba L.) germinating seedlings as a model plant system, this study assesses the V. faba-tolerance to different concentrations (0, 100, 200, 400, 800, and 1600 mg L{sup -1}) of graphene oxide (0.5-5 {mu}m) and evaluates glutathione ({gamma}-glutamyl-cysteinyl-glycine) redox system significance in this context. The results showed significantly increased V. faba sensitivity under three graphene oxide concentrations (in order of impact: 1,600 > 200 > 100 mg graphene oxide L{sup -1}), which was accompanied by decreased glutathione redox (reduced glutathione-to-oxidized glutathione) ratio, reduced glutathione pool, as well as significant and equally elevated activities of glutathione-regenerating (glutathione reductase) and glutathione-metabolizing (glutathione peroxidase; glutathione sulfo-transferase) enzymes. Contrarily, the two graphene oxide concentrations (in order of impact: 800 > 400 graphene oxide mg L{sup -1}) yielded promising results; where, significant improvements in V. faba health status (measured as increased graphene oxide tolerance) were clearly perceptible with increased ratio of the reduced glutathione-to-oxidized glutathione, reduced glutathione pool and glutathione reductase activity but decreased activities of glutathione-metabolizing enzymes. It is inferred that V. faba seedlings-sensitivity and/or tolerance to graphene oxide concentrations depends on both the cellular redox state (reduced glutathione-to-oxidized glutathione ratio) and the reduced glutathione pool which in turn are controlled by a finely tuned modulation of the coordination between glutathione-regenerating and

  14. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.)

    International Nuclear Information System (INIS)

    Anjum, Naser A.; Singh, Neetu; Singh, Manoj K.; Shah, Zahoor A.; Duarte, Armando C.; Pereira, Eduarda; Ahmad, Iqbal

    2013-01-01

    Adsorbents based on single-bilayer graphene oxide sheet (hereafter termed “graphene oxide”) are widely used in contaminated environments cleanup which may easily open the avenues for their entry to different environmental compartments, exposure to organisms and their subsequent transfer to human/animal food chain. Considering a common food crop—faba bean (Vicia faba L.) germinating seedlings as a model plant system, this study assesses the V. faba-tolerance to different concentrations (0, 100, 200, 400, 800, and 1600 mg L −1 ) of graphene oxide (0.5–5 μm) and evaluates glutathione (γ-glutamyl-cysteinyl-glycine) redox system significance in this context. The results showed significantly increased V. faba sensitivity under three graphene oxide concentrations (in order of impact: 1,600 > 200 > 100 mg graphene oxide L −1 ), which was accompanied by decreased glutathione redox (reduced glutathione-to-oxidized glutathione) ratio, reduced glutathione pool, as well as significant and equally elevated activities of glutathione-regenerating (glutathione reductase) and glutathione-metabolizing (glutathione peroxidase; glutathione sulfo-transferase) enzymes. Contrarily, the two graphene oxide concentrations (in order of impact: 800 > 400 graphene oxide mg L −1 ) yielded promising results; where, significant improvements in V. faba health status (measured as increased graphene oxide tolerance) were clearly perceptible with increased ratio of the reduced glutathione-to-oxidized glutathione, reduced glutathione pool and glutathione reductase activity but decreased activities of glutathione-metabolizing enzymes. It is inferred that V. faba seedlings-sensitivity and/or tolerance to graphene oxide concentrations depends on both the cellular redox state (reduced glutathione-to-oxidized glutathione ratio) and the reduced glutathione pool which in turn are controlled by a finely tuned modulation of the coordination between glutathione-regenerating and glutathione

  15. Interactive effects of herbicide and enhanced UV-B on growth, oxidative damage and the ascorbate-glutathione cycle in two Azolla species.

    Science.gov (United States)

    Prasad, Sheo Mohan; Kumar, Sushil; Parihar, Parul; Singh, Rachana

    2016-11-01

    A field experiment was conducted to investigate the impact of alone and combined exposures of herbicide pretilachlor (5, 10 and 20μgml(-1)) and enhanced UV-B radiation (UV-B1; ambient +2.2kJm(-2) day(-1) and UV-B2; ambient +4.4kJm(-2) day(-1)) on growth, oxidative stress and the ascorbate-glutathione (AsA-GSH) cycle in two agronomically important Azolla spp. viz., Azolla microphylla and Azolla pinnata. Decreased relative growth rate (RGR) in both the species under tested stress could be linked to enhanced oxidative stress, thus higher H2O2 accumulation was observed, that in turn might have caused severe damage to lipids and proteins, thereby decreasing membrane stability. The effects were exacerbated when spp. were exposed to combined treatments of enhanced UV-B and pretilachlor. Detoxification of H2O2 is regulated by enzymes/metabolites of AsA-GSH cycle such as ascorbate peroxidase (APX) and glutathione reductase (GR) activity that were found to be stimulated. While, dehydroascorabte reductase (DHAR) activity, and the amount of metabolites: ascorbate (AsA), glutathione (GSH) and ratios of reduced/oxidized AsA (AsA/DHA) and GSH (GSH/GSSG), showed significant reduction with increasing doses of both the stressors, either applied alone or in combination. Glutathione-S-transferase (GST), an enzyme involved in scavenging of xenobiotics, was found to be stimulated under the tested stress. This study suggests that decline in DHAR activity and in AsA/DHA ratio might have led to enhanced H2O2 accumulation, thus decreased RGR was noticed under tested stress in both the species and the effect was more pronounced in A. pinnata. Owing to better performance of AsA-GSH cycle in A. microphylla, this study substantiates the view that A. microphylla is more tolerant than A. pinnata. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice.

    Directory of Open Access Journals (Sweden)

    Juan Wang

    Full Text Available The pathogenesis of dengue virus (DV infection has not been completely defined and change of redox status mediated by depletion of glutathione (GSH in host cell is a common result of viral infection. Our previous study has demonstrated that DV serotype 2 (DV2 infection alters host intracellular GSH levels, and exogenous GSH inhibits viral production by modulating the activity of NF-κB in HepG2 cells. GSH is the most powerful intracellular antioxidant and involved in viral infections. Thus, this study was to investigate whether DV2 infection can induce alteration in redox balance and effect of GSH on the disease in HepG2 xenografts SCID mice. Our results revealed that mice infected with DV2 showed alterations in oxidative stress by increasing the level of malondialdehyde (MDA, an end product of lipid peroxidation, and GSSG/GSH ratio. DV2-infected mice also showed a decrease in the activity of catalase (CAT and total superoxide dismutase (T-SOD in the serum and/or observed organs, especially the liver. Moreover, DV2 infection resulted in elevated serum levels of the cytokines tumor necrosis factor-α and interlukin-6 and obvious histopathological changes in the liver. The administration of exogenous GSH significantly reversed all of the aforementioned pathological changes and prevented significant liver damage. Furthermore, in vitro treatment of HepG2 cells with antioxidants such as GSH inhibited viral entry as well as the production of reactive oxygen species in HepG2 cells. These results suggest that GSH prevents DV2-induced oxidative stress and liver injury in mice by inhibiting proinflammatory cytokine production, and GSH and may be a promising therapeutic agent for prevention of oxidative liver damage during DV infection.

  17. Supramolecular interactions of oxidative stress biomarker glutathione with fluorone black

    Science.gov (United States)

    Hepel, Maria; Stobiecka, Magdalena

    2018-03-01

    Oxidative stress biomarkers, including glutathione (GSH) and related compounds, are involved in a variety of interactions enabling redox potential maintenance in living cells and protection against radicals. Since the oxidative stress is promoting and, in many cases, inducing serious illnesses, monitoring of GSH levels can aid in diagnostics and disease prevention. Herein, we report on the discovery of the formation of a supramolecular ensemble of GSH with fluorone black (9-phenyl fluorone, FB) which is optically active and enables sensitive determination of GSH by resonance elastic light scattering (RELS). We have found that supramolecular interactions of GSH with FB can be probed with spectroscopic, RELS, and electrochemical methods. Our investigations show that RELS intensity for FB solutions increases with GSH concentration while fluorescence emission of FB is not affected, as quenching begins only above 0.8 mM GSH. The UV-Vis difference spectra show a positive peak at 383 nm and a negative peak at 458 nm, indicating a higher-energy absorbing complex in comparison to the non-bonded FB host. Supramolecular interactions of FB with GSH have also been corroborated by electrochemical measurements involving two configurations of FB-GSH ensembles on electrodes: (i) an inverted orientation on Au-coated quartz crystal piezoelectrode (Au@SG-FB), with strong thiolate bonding to gold, and (ii) a non-inverted orientation on glassy carbon electrode (GCE@FB-GS), with weak π-π stacking attachment and efficient charge mediation through the ensemble. The formation of a supramolecular ensemble with hydrogen bonding has also been confirmed by quantum mechanical calculations. The discovery of supramolecular FB-GSH ensemble formation enables elucidating the mechanisms of strong RELS responses, changes in UV-Vis absorption spectra, and the electrochemical reactivity. Also, it provides new insights to the understanding of the efficient charge-transfer in redox potential homeostasis

  18. Higher Mediterranean Diet Quality Scores and Lower Body Mass Index Are Associated with a Less-Oxidized Plasma Glutathione and Cysteine Redox Status in Adults.

    Science.gov (United States)

    Bettermann, Erika L; Hartman, Terryl J; Easley, Kirk A; Ferranti, Erin P; Jones, Dean P; Quyyumi, Arshed A; Vaccarino, Viola; Ziegler, Thomas R; Alvarez, Jessica A

    2018-02-01

    Both systemic redox status and diet quality are associated with risk outcomes in chronic disease. It is not known, however, the extent to which diet quality influences plasma thiol/disulfide redox status. The purpose of this study was to investigate the influence of diet, as measured by diet quality scores and other dietary factors, on systemic thiol/disulfide redox status. We performed a cross-sectional study of 685 working men and women (ages ≥18 y) in Atlanta, GA. Diet was assessed by 3 diet quality scores: the Alternative Healthy Eating Index (AHEI), Dietary Approaches to Stop Hypertension (DASH), and the Mediterranean Diet Score (MDS). We measured concentrations of plasma glutathione (GSH), cysteine, their associated oxidized forms [glutathione disulfide (GSSG) and cystine (CySS), respectively], and their redox potentials (EhGSSG and EhCySS) to determine thiol/disulfide redox status. Linear regression modeling was performed to assess relations between diet and plasma redox after adjustment for age, body mass index (BMI), sex, race, and history of chronic disease. MDS was positively associated with plasma GSH (β = 0.02; 95% CI: 0.003, 0.03) and total GSH (GSH + GSSG) (β = 0.02; 95% CI: 0.003, 0.03), and inversely associated with the CySS:GSH ratio (β = -0.02; 95% CI: -0.04, -0.004). There were significant independent associations between individual MDS components (dairy, vegetables, fish, and monounsaturated fat intake) and varying plasma redox indexes (P indexes and other diet factors of interest were not significantly correlated with plasma thiol and disulfide redox measures. Adherence to the Mediterranean diet was significantly associated with a favorable plasma thiol/disulfide redox profile, independent of BMI, in a generally healthy working adult population. Although longitudinal studies are warranted, these findings contribute to the feasibility of targeting a Mediterranean diet to improve plasma redox status.

  19. Inhibition of acetaminophen oxidation by cimetidine and the effects on glutathione and activated sulphate synthesis rates

    DEFF Research Database (Denmark)

    Dalhoff, K; Poulsen, H E

    1993-01-01

    inhibition of cytochrome P-450 drug oxidation by cimetidine in isolated rat hepatocytes. The synthesis rates of glutathione and PAPS were determined simultaneously by an established method based on trapping of radioactivity (35S) in the prelabelled glutathione and PAPS pools. Preincubation of the hepatocytes...

  20. Oxidative Stress Markers and Genetic Polymorphisms of Glutathione ...

    African Journals Online (AJOL)

    2017-10-26

    Oct 26, 2017 ... stress such as asthma, lung cancer, and type 2 diabetes mellitus.[11-13]. Although ... epigenetic, and environmental factors. Little is known ..... glutathione Stransferase genes increase risk of prostate cancer biochemical ...

  1. Supramolecular interactions of oxidative stress biomarker glutathione with fluorone black.

    Science.gov (United States)

    Hepel, Maria; Stobiecka, Magdalena

    2018-03-05

    Oxidative stress biomarkers, including glutathione (GSH) and related compounds, are involved in a variety of interactions enabling redox potential maintenance in living cells and protection against radicals. Since the oxidative stress is promoting and, in many cases, inducing serious illnesses, monitoring of GSH levels can aid in diagnostics and disease prevention. Herein, we report on the discovery of the formation of a supramolecular ensemble of GSH with fluorone black (9-phenyl fluorone, FB) which is optically active and enables sensitive determination of GSH by resonance elastic light scattering (RELS). We have found that supramolecular interactions of GSH with FB can be probed with spectroscopic, RELS, and electrochemical methods. Our investigations show that RELS intensity for FB solutions increases with GSH concentration while fluorescence emission of FB is not affected, as quenching begins only above 0.8mM GSH. The UV-Vis difference spectra show a positive peak at 383nm and a negative peak at 458nm, indicating a higher-energy absorbing complex in comparison to the non-bonded FB host. Supramolecular interactions of FB with GSH have also been corroborated by electrochemical measurements involving two configurations of FB-GSH ensembles on electrodes: (i) an inverted orientation on Au-coated quartz crystal piezoelectrode (Au@SG-FB), with strong thiolate bonding to gold, and (ii) a non-inverted orientation on glassy carbon electrode (GCE@FB-GS), with weak π-π stacking attachment and efficient charge mediation through the ensemble. The formation of a supramolecular ensemble with hydrogen bonding has also been confirmed by quantum mechanical calculations. The discovery of supramolecular FB-GSH ensemble formation enables elucidating the mechanisms of strong RELS responses, changes in UV-Vis absorption spectra, and the electrochemical reactivity. Also, it provides new insights to the understanding of the efficient charge-transfer in redox potential homeostasis

  2. Effect of an aqueous extract of Cucurbita ficifolia Bouché on the glutathione redox cycle in mice with STZ-induced diabetes.

    Science.gov (United States)

    Díaz-Flores, M; Angeles-Mejia, S; Baiza-Gutman, L A; Medina-Navarro, R; Hernández-Saavedra, D; Ortega-Camarillo, C; Roman-Ramos, R; Cruz, M; Alarcon-Aguilar, F J

    2012-10-31

    Cucurbita ficifolia is used in Mexican traditional medicine as an anti-diabetic and anti-inflammatory agent and its actions can be mediated by antioxidant mechanisms. Disturbance in the homeostasis of glutathione has been implicated in the etiology and progression of diabetes mellitus and its complications. It was evaluated, the effect of an aqueous extract of Cucurbita ficifolia on glycemia, plasma lipid peroxidation; as well as levels of reduced (GSH) and oxidized (GSSG) glutathione and activities of enzymes involved in glutathione redox cycle: glutathione peroxidase (GPx) and glutathione reductase (GR) in liver, pancreas, kidney and heart homogenates of streptozotocin-induced diabetic mice. Increased blood glucose and lipid peroxidation, together with decreased of GSH concentration, GSH/GSSG ratio and its redox potential (E(h)), and enhanced activity of GPx and GR in liver, pancreas and kidney were the salient features observed in diabetic mice. Administration of the aqueous extract of Cucurbita ficifolia to diabetic mice for 30 days, used at a dose of 200 mg/kg, resulted in a significant reduction in glycemia, polydipsia, hyperphagia and plasma lipid peroxidation. Moreover, GSH was increased in liver, pancreas and kidney, and GSSG was reduced in liver, pancreas and heart, therefore GSH/GSSG ratio and its E(h) were restored. Also, the activities involved in the glutathione cycle were decreased, reaching similar values to controls. An aqueous extract of Cucurbita ficifolia with hypoglycemic action, improve GSH redox state, increasing glutathione pool, GSH, GSH/GSSG ratio and its E(h), mechanism that can explain, at least in part, its antioxidant properties, supporting its use as an alternative treatment for the control of diabetes mellitus, and prevent the induction of complications by oxidative stress. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Exposure to polybrominated diphenyl ethers (PBDEs): Changes in thyroid, vitamin A, glutathione homeostasis, and oxidative stress in American kestrels (Falco sparverius)

    Science.gov (United States)

    Fernie, K.J.; Shutt, J.L.; Mayne, G.; Hoffman, D.; Letcher, R.J.; Drouillard, K.G.; Ritchie, I.J.

    2005-01-01

    Polybrominated diphenyl ethers (PBDEs), a class of additive flame retardants, are temporally increasing in wildlife tissues and capable of disrupting normal endocrine function. We determined whether in ovo and post-hatch exposure of captive American kestrels (Falco sparverius) to environmentally relevant PBDEs alter thyroid, retinol, and oxidative stress measures. Control eggs were injected with safflower oil and subsequent nestlings fed the same vehicle; dosed eggs received PBDE congeners (BDE-47, -99, -100, -153), which mainly comprise the Penta-BDE commercial mixture, dissolved in safflower oil at concentrations (1500 ng/g total [Sigma] PBDEs) approximating those in Great Lakes gull eggs. Nestlings hatching from dosed eggs were orally exposed for 29 days to variable Sigma PBDE concentrations that are similar to levels reported in tissues of Great Lakes trout (100 ng/g). Treatment kestrels had lower plasma thyroxine (T-4), plasma retinol, and hepatic retinol and retinyl palmitate concentrations, but unaltered triiodothyronine (T-3) concentrations and thyroid glandular structure. BDE-47, -100, and -99 were negatively associated with plasma T-4, plasma retinol (BDE-100, -99) and hepatic retinol (BDE-47). Despite an antioxidant-rich diet, PBDE exposure induced hepatic oxidative stress, particularly in females, with an increased hepatic GSSG:GSH ratio, a marginal increase in lipid peroxidation, and increased oxidized glutathione. Positive associations were found between concentrations of BDE-183 and thiols and, in males, between BDE-99 and reduced GSH, but a negative association occurred between BDE-99 and TBARS. Subsequently, concentrations of PBDE congeners in wild birds may alter thyroid hormone and vitamin A concentrations, glutathione metabolism and oxidative stress.

  4. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury

    International Nuclear Information System (INIS)

    Hernandez-Montes, Eva; Pollard, Susan E.; Vauzour, David; Jofre-Montseny, Laia; Rota, Cristina; Rimbach, Gerald; Weinberg, Peter D.; Spencer, Jeremy P.E.

    2006-01-01

    Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of γ-glutamylcysteine synthetase-heavy subunit (γ-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis

  5. Timing of developmental reduction in epithelial glutathione redox potential is associated with increased epithelial proliferation in the immature murine intestine.

    Science.gov (United States)

    Reid, Graham K; Berardinelli, Andrew J; Ray, Laurie; Jackson, Arena R; Neish, Andrew S; Hansen, Jason M; Denning, Patricia W

    2017-08-01

    BackgroundThe intracellular redox potential of the glutathione (GSH)/glutathione disulfide (GSSG) couple regulates cellular processes. In vitro studies indicate that a reduced GSH/GSSG redox potential favors proliferation, whereas a more oxidized redox potential favors differentiation. Intestinal growth depends upon an appropriate balance between the two. However, how the ontogeny of intestinal epithelial cellular (IEC) GSH/GSSG redox regulates these processes in the developing intestine has not been fully characterized in vivo.MethodsOntogeny of intestinal GSH redox potential and growth were measured in neonatal mice.ResultsWe show that IEC GSH/GSSG redox potential becomes increasingly reduced (primarily driven by increased GSH concentration) over the first 3 weeks of life. Increased intracellular GSH has been shown to drive proliferation through increased poly-ADP-ribose polymerase (PARP) activity. We show that increasing IEC poly-ADP-ribose chains can be measured over the first 3 weeks of life, indicating an increase in IEC PARP activity. These changes are accompanied by increased intestinal growth and IEC proliferation as assessed by villus height/crypt depth, intestinal length, and Ki67 staining.ConclusionUnderstanding how IEC GSH/GSSG redox potential is developmentally regulated may provide insight into how premature human intestinal redox states can be manipulated to optimize intestinal growth and adaptation.

  6. The trypanocidal benznidazole promotes adaptive response to oxidative injury: Involvement of the nuclear factor-erythroid 2-related factor-2 (Nrf2) and multidrug resistance associated protein 2 (MRP2)

    International Nuclear Information System (INIS)

    Rigalli, Juan Pablo; Perdomo, Virginia Gabriela; Ciriaci, Nadia; Francés, Daniel Eleazar Antonio; Ronco, María Teresa; Bataille, Amy Michele; Ghanem, Carolina Inés; Ruiz, María Laura; Manautou, José Enrique; Catania, Viviana Alicia

    2016-01-01

    Oxidative stress is a frequent cause underlying drug-induced hepatotoxicity. Benznidazole (BZL) is the only trypanocidal agent available for treatment of Chagas disease in endemic areas. Its use is associated with side effects, including increases in biomarkers of hepatotoxicity. However, BZL potential to cause oxidative stress has been poorly investigated. Here, we evaluated the effect of a pharmacologically relevant BZL concentration (200 μM) at different time points on redox status and the counteracting mechanisms in the human hepatic cell line HepG2. BZL increased reactive oxygen species (ROS) after 1 and 3 h of exposure, returning to normality at 24 h. Additionally, BZL increased glutathione peroxidase activity at 12 h and the oxidized glutathione/total glutathione (GSSG/GSSG + GSH) ratio that reached a peak at 24 h. Thus, an enhanced detoxification of peroxide and GSSG formation could account for ROS normalization. GSSG/GSSG + GSH returned to control values at 48 h. Expression of the multidrug resistance-associated protein 2 (MRP2) and GSSG efflux via MRP2 were induced by BZL at 24 and 48 h, explaining normalization of GSSG/GSSG + GSH. BZL activated the nuclear erythroid 2-related factor 2 (Nrf2), already shown to modulate MRP2 expression in response to oxidative stress. Nrf2 participation was confirmed using Nrf2-knockout mice in which MRP2 mRNA expression was not affected by BZL. In summary, we demonstrated a ROS increase by BZL in HepG2 cells and a glutathione peroxidase- and MRP2 driven counteracting mechanism, being Nrf2 a key modulator of this response. Our results could explain hepatic alterations associated with BZL therapy. - Highlights: • BZL triggers a redox imbalance in the human hepatic cell line HepG2. • Concomitantly BZL triggers compensatory mechanisms to alleviate the redox injury. • Response mechanisms comprise an enhanced glutathione peroxidase and MRP2 activity. • Transcription factor Nrf2 plays a key role orchestrating

  7. The trypanocidal benznidazole promotes adaptive response to oxidative injury: Involvement of the nuclear factor-erythroid 2-related factor-2 (Nrf2) and multidrug resistance associated protein 2 (MRP2)

    Energy Technology Data Exchange (ETDEWEB)

    Rigalli, Juan Pablo [Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg (Germany); Perdomo, Virginia Gabriela; Ciriaci, Nadia; Francés, Daniel Eleazar Antonio; Ronco, María Teresa [Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Bataille, Amy Michele [University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, CT (United States); Ghanem, Carolina Inés [Institute of Pharmacological Investigations (ININFA-CONICET), University of Buenos Aires, Buenos Aires (Argentina); Ruiz, María Laura [Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Manautou, José Enrique [University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, CT (United States); Catania, Viviana Alicia, E-mail: vcatania@fbioyf.unr.edu.ar [Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina)

    2016-08-01

    Oxidative stress is a frequent cause underlying drug-induced hepatotoxicity. Benznidazole (BZL) is the only trypanocidal agent available for treatment of Chagas disease in endemic areas. Its use is associated with side effects, including increases in biomarkers of hepatotoxicity. However, BZL potential to cause oxidative stress has been poorly investigated. Here, we evaluated the effect of a pharmacologically relevant BZL concentration (200 μM) at different time points on redox status and the counteracting mechanisms in the human hepatic cell line HepG2. BZL increased reactive oxygen species (ROS) after 1 and 3 h of exposure, returning to normality at 24 h. Additionally, BZL increased glutathione peroxidase activity at 12 h and the oxidized glutathione/total glutathione (GSSG/GSSG + GSH) ratio that reached a peak at 24 h. Thus, an enhanced detoxification of peroxide and GSSG formation could account for ROS normalization. GSSG/GSSG + GSH returned to control values at 48 h. Expression of the multidrug resistance-associated protein 2 (MRP2) and GSSG efflux via MRP2 were induced by BZL at 24 and 48 h, explaining normalization of GSSG/GSSG + GSH. BZL activated the nuclear erythroid 2-related factor 2 (Nrf2), already shown to modulate MRP2 expression in response to oxidative stress. Nrf2 participation was confirmed using Nrf2-knockout mice in which MRP2 mRNA expression was not affected by BZL. In summary, we demonstrated a ROS increase by BZL in HepG2 cells and a glutathione peroxidase- and MRP2 driven counteracting mechanism, being Nrf2 a key modulator of this response. Our results could explain hepatic alterations associated with BZL therapy. - Highlights: • BZL triggers a redox imbalance in the human hepatic cell line HepG2. • Concomitantly BZL triggers compensatory mechanisms to alleviate the redox injury. • Response mechanisms comprise an enhanced glutathione peroxidase and MRP2 activity. • Transcription factor Nrf2 plays a key role orchestrating

  8. 1-Methyl-4-phenylpyridinium-induced alterations of glutathione status in immortalized rat dopaminergic neurons

    International Nuclear Information System (INIS)

    Drechsel, Derek A.; Liang, L.-P.; Patel, Manisha

    2007-01-01

    Decreased glutathione levels associated with increased oxidative stress are a hallmark of numerous neurodegenerative diseases, including Parkinson's disease. GSH is an important molecule that serves as an anti-oxidant and is also a major determinant of cellular redox environment. Previous studies have demonstrated that neurotoxins can cause changes in reduced and oxidized GSH levels; however, information regarding steady state levels remains unexplored. The goal of this study was to characterize changes in cellular GSH levels and its regulatory enzymes in a dopaminergic cell line (N27) following treatment with the Parkinsonian toxin, 1-methyl-4-phenylpyridinium (MPP + ). Cellular GSH levels were initially significantly decreased 12 h after treatment, but subsequently recovered to values greater than controls by 24 h. However, oxidized glutathione (GSSG) levels were increased 24 h following treatment, concomitant with a decrease in GSH/GSSG ratio prior to cell death. In accordance with these changes, ROS levels were also increased, confirming the presence of oxidative stress. Decreased enzymatic activities of glutathione reductase and glutamate-cysteine ligase by 20-25% were observed at early time points and partly account for changes in GSH levels after MPP + exposure. Additionally, glutathione peroxidase activity was increased 24 h following treatment. MPP + treatment was not associated with increased efflux of glutathione to the medium. These data further elucidate the mechanisms underlying GSH depletion in response to the Parkinsonian toxin, MPP +

  9. DIP and DIP + 2 as glutathione oxidants and radiation sensitizers in cultured Chinese hamster cells

    International Nuclear Information System (INIS)

    Harris, J.W.; Power, J.A.; Kosower, N.S.; Kosower, E.M.

    1975-01-01

    Two diamide analogues, diazene dicarboxylic acid bis (N'-methyl-piperazide) or DIP, and its bis-N'-methyl iodide salt, or DIP + 2, were tested for their ability to penetrate cultured Chinese hamster cells and oxidize intracellular glutathione. DIP penetrated the cells at a reasonable rate at 18 0 C, 160 nmoles being required to oxidize the endogenous glutathione of 2 x 10 6 cells, but it penetrated very slowly at 0 0 C. DIP + 2 did not effectively oxidize glutathione in Chinese hamster cells, possibly because it did not enter the cels. DIP became toxic after about 10 min of exposure, but its toxicity could be moderated by using anoxic conditions. DIP, but not DIP + 2, sensitized anoxic Chinese hamster cells to X-radiation by a factor of 1.5, an effect that was due entirely to removal of the shoulder from the survival curve. (author)

  10. OXIDATIVE MODIFICATION OF PROTEINS AND GLUTATHIONE SYSTEM IN ADIPOCYTES UNDER DIABETES

    Directory of Open Access Journals (Sweden)

    Ye. V. Shakhristova

    2014-01-01

    Full Text Available Currently, diabetes ranks third in relation to medical and social significance after cardiovascular diseases and cancer and is the leading cause of blindness; it greatly increases the risk of myocardial infarction, coronary heart disease, nephropathy and hypertension in patients with this disorder; therefore clinical and experimental studies aimed at investigation of diabetes emergence and development mechanisms are urgent.The aim of the study was to investigate the status of oxidative modification of proteins and glutathionedependent antioxidant defense system in adipocytes of rats with alloxan diabetes under conditions of oxidative stress.Material and methods. Development of type 1 diabetes was induced in rats by alloxan administration (90 mg/kg of body mass. Adipocytes were obtained from epididymal adipose tissue of rats. The level of carbonyl derivatives of proteins, oxidized tryptophan, bityrosine, general, reduced, oxygenated and protein-bound glutathione, as well as glutathione peroxidase activity in adipocytes of rats was determined.Results. In adipocytes of rats with alloxan diabetes, concentration of carbonyl derivatives of proteins, bityrosine and oxidized tryptophan increased on the background of redox-potential of glutathione system and glutathione peroxidase activity decrease.Conclusion. The obtained data indicate the activation of free-radical oxidation of proteins and reduction of antioxidant defense under conditions of oxidative stress in the adipose tissue of rats with alloxan diabetes; this process plays an important role in pathogenesis of diabetes and its complications development.

  11. Glutathione oxidation in response to intracellular H2O2: Key but overlapping roles for dehydroascorbate reductases.

    Science.gov (United States)

    Rahantaniaina, Marie-Sylviane; Li, Shengchun; Chatel-Innocenti, Gilles; Tuzet, Andrée; Mhamdi, Amna; Vanacker, Hélène; Noctor, Graham

    2017-08-03

    Glutathione is a pivotal molecule in oxidative stress, during which it is potentially oxidized by several pathways linked to H 2 O 2 detoxification. We have investigated the response and functional importance of 3 potential routes for glutathione oxidation pathways mediated by glutathione S-transferases (GST), glutaredoxin-dependent peroxiredoxins (PRXII), and dehydroascorbate reductases (DHAR) in Arabidopsis during oxidative stress. Loss-of-function gstU8, gstU24, gstF8, prxIIE and prxIIF mutants as well as double gstU8 gstU24, gstU8 gstF8, gstU24 gstF8, prxIIE prxIIF mutants were obtained. No mutant lines showed marked changes in their phenotype and glutathione profiles in comparison to the wild-type plants in either optimal conditions or oxidative stress triggered by catalase inhibition. By contrast, multiple loss of DHAR functions markedly decreased glutathione oxidation triggered by catalase deficiency. To assess whether this effect was mediated directly by loss of DHAR enzyme activity, or more indirectly by upregulation of other enzymes involved in glutathione and ascorbate recycling, we measured expression of glutathione reductase (GR) and expression and activity of monodehydroascorbate reductases (MDHAR). No evidence was obtained that either GRs or MDHARs were upregulated in plants lacking DHAR function. Hence, interplay between different DHARs appears to be necessary to couple ascorbate and glutathione pools and to allow glutathione-related signaling during enhanced H 2 O 2 metabolism.

  12. Less Stress : Oxidative stress and glutathione kinetics in preterm infants

    NARCIS (Netherlands)

    D. Rook (Denise)

    2013-01-01

    textabstractDue to immature antioxidant defenses, preterm infants are at susceptible to oxidative stress, which is associated with bronchopulmonary dysplasia, retinopathy of prematurity and periventricular leukomalacia. The general aim of this thesis was to study oxidative stress in preterm infants

  13. Role of glutathione in affecting the radiosensitivity of molecular and cellular systems

    International Nuclear Information System (INIS)

    Simone, G.; Tamba, M.; Quintiliani, M.

    1983-01-01

    It has previously been shown that radioinduced organic radicals can be repaired by hydrogen donation from glutathione (GSH) and this repair is in competition with oxygen (damage fixation). In this paper the influence of exogenous glutathione on the radiation response of the enzyme alcoholdehydrogenase (YADH), DNA in vitro, and E. coli B/r cells has been investigated. GSH is observed to protect YADH essentially by free radical scavenging mechanisms in both presence or absence of oxygen. The same mechanism seems operate in the radioprotection afforded by GSH to DNA in vitro. E. coli B/r cells are protected at higher extent by GSH than its oxidized form (GSSG); the possibility that GSH penetrate into bacterial cells more easily that GSSG can explain their different behaviour. None of the three systems studied has provided definitive support for the occurrence of the hydrogen donation reaction in the radioprotective mechanisms of GSH versus biomolecules and bacterial cells. (orig.)

  14. Degree of glutathione deficiency and redox imbalance depend on subtype of mitochondrial disease and clinical status.

    Directory of Open Access Journals (Sweden)

    Gregory M Enns

    Full Text Available Mitochondrial disorders are associated with decreased energy production and redox imbalance. Glutathione plays a central role in redox signaling and protecting cells from oxidative damage. In order to understand the consequences of mitochondrial dysfunction on in vivo redox status, and to determine how this varies by mitochondrial disease subtype and clinical severity, we used a sensitive tandem mass spectrometry assay to precisely quantify whole blood reduced (GSH and oxidized (GSSG glutathione levels in a large cohort of mitochondrial disorder patients. Glutathione redox potential was calculated using the Nernst equation. Compared to healthy controls (n = 59, mitochondrial disease patients (n = 58 as a group showed significant redox imbalance (redox potential -251 mV ± 9.7, p<0.0001 with an increased level of oxidation by ∼ 9 mV compared to controls (-260 mV ± 6.4. Underlying this abnormality were significantly lower whole blood GSH levels (p = 0.0008 and GSH/GSSG ratio (p = 0.0002, and significantly higher GSSG levels (p<0.0001 in mitochondrial disease patients compared to controls. Redox potential was significantly more oxidized in all mitochondrial disease subgroups including Leigh syndrome (n = 15, electron transport chain abnormalities (n = 10, mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (n = 8, mtDNA deletion syndrome (n = 7, mtDNA depletion syndrome (n = 7, and miscellaneous other mitochondrial disorders (n = 11. Patients hospitalized in metabolic crisis (n = 7 showed the greatest degree of redox imbalance at -242 mV ± 7. Peripheral whole blood GSH and GSSG levels are promising biomarkers of mitochondrial dysfunction, and may give insights into the contribution of oxidative stress to the pathophysiology of the various mitochondrial disorders. In particular, evaluation of redox potential may be useful in monitoring of clinical status or response to redox-modulating therapies in clinical trials.

  15. Glutathione system participation in thoracic aneurysms from patients with Marfan syndrome.

    Science.gov (United States)

    Zúñiga-Muñoz, Alejandra María; Pérez-Torres, Israel; Guarner-Lans, Verónica; Núñez-Garrido, Elías; Velázquez Espejel, Rodrigo; Huesca-Gómez, Claudia; Gamboa-Ávila, Ricardo; Soto, María Elena

    2017-05-01

    Aortic dilatation in Marfan syndrome (MFS) is progressive. It is associated with oxidative stress and endothelial dysfunction that contribute to the early acute dissection of the vessel and can result in rupture of the aorta and sudden death. We evaluated the participation of the glutathione (GSH) system, which could be involved in the mechanisms that promote the formation and progression of the aortic aneurysms in MFS patients. Aortic aneurysm tissue was obtained during chest surgery from eight control subjects and 14 MFS patients. Spectrophotometrical determination of activity of glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), lipid peroxidation (LPO) index, carbonylation, total antioxidant capacity (TAC), and concentration of reduced and oxidized glutathione (GSH and GSSG respectively), was performed in the homogenate from aortic aneurysm tissue. LPO index, carbonylation, TGF-β1, and GR activity were increased in MFS patients (p < 0.04), while TAC, GSH/GSSG ratio, GPx, and GST activity were significantly decreased (p < 0.04). The depletion of GSH, in spite of the elevated activity of GR, not only diminished the activity of GSH-depend GST and GPx, but increased LPO, carbonylation and decreased TAC. These changes could promote the structural and functional alterations in the thoracic aorta of MFS patients.

  16. Acrolein toxicity involves oxidative stress caused by glutathione depletion in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kwolek-Mirek, M; Bednarska, S; Bartosz, G; Biliński, T

    2009-08-01

    Exposure of yeast cells to allyl alcohol results in intracellular production of acrolein. The toxicity of so formed acrolein involves oxidative stress, as (1) strains deficient in antioxidant defense are hypersensitive to allyl alcohol, (2) exposure to allyl alcohol increases the level of thiobarbituric-acid-reactive substances and decreases glutathione level in the cells, (3) hypoxic and anoxic atmosphere and antioxidants protect against allyl alcohol toxicity, and (4) allyl alcohol causes activation of Yap1p. No increased formation of reactive oxygen species was detected in cells exposed to allyl alcohol, so oxidative stress is due to depletion of cellular thiols and thus alteration in the redox state of yeast cells.

  17. The Comparison of One-Session Intensive Aerobic Exercise Effects on Glutathione Redox State of Red Blood Cells in Professional, Recreational Athletes and Nonathletes

    Directory of Open Access Journals (Sweden)

    Farnaz Seifi-Skishahr

    2015-04-01

    Full Text Available Background & objectives: The “redox” state represents the oxidation/reduction potential within the cell in a way that more “redox” is the marker of health, while the more oxidized reflects predisposition to diseases. Different types of exercise training may change the thiol/disulfide ratio of redox couples such as glutathione and represent a shift in redox balance. This study was assessed the influence of high-intensity aerobic exercise on glutathione redox state in red blood cells in professional, recreational athletes and nonathletes.   Methods: Ten voluntary well trained (WT, moderately trained (MT and untrained men subjectswere randomly selected for this semi-experimental study (mean ages of 21.10±1.72 21.70±1.88 and 20.10±1.44, respectively. Blood samples were collected before, immediately, 10 min and 30 min after acute aerobic exercise with 75%VO2max. The levels of reduced glutathione (GSH, oxidized glutathione (GSSG and (GSH/GSSG in red blood cells (RBCs as well as serum levels of cortisol and creatine kinase (CK were measured.   Results: The results showed reduction, elevation and no changes in RBCs GSH/GSSG ratio in UT, MT and WT groups, respectively. The lowest levels of GSH/GSSG ratio in RBCs and the highest one were detected in the WT and MT groups, respectively. The serum levels of cortisol and creatine kinase were increased following the exercise in three groups.   Conclusion: It is concluded that acute aerobic exercise with high intensity does not change redox balance in well trained subjects, however it is capable to shift redox balance towards more reducing environment in moderately trained subjects and also to more oxidizing one in untrained subjects.

  18. The partial pressure of oxygen affects biomarkers of oxidative stress in cultured rainbow trout (Oncorhynchus mykiss) hepatocytes.

    Science.gov (United States)

    Finne, E F; Olsvik, P A; Berntssen, M H G; Hylland, K; Tollefsen, K E

    2008-09-01

    Oxidative stress, the imbalance between production of reactive oxygen species and the cellular detoxification of these reactive compounds, is believed to be involved in the pathology of various diseases. Several biomarkers for oxidative stress have been proposed to serve as tools in toxicological and ecotoxicological research. Not only may exposure to various pro-oxidants create conditions of cellular oxidative stress, but hyperoxic conditions may also increase the production of reactive oxygen species. The objective of the current study was to determine the extent to which differences in oxygen partial pressure would affect biomarkers of oxidative stress in a primary culture of hepatocytes from rainbow trout (Oncorhynchus mykiss). Membrane integrity, metabolic activity, levels of total and oxidized glutathione (tGSH/GSSG) was determined, as well as mRNA expression levels of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), gamma-glutamyl-cystein synthetase (GCS) and thioredoxin (TRX). The results show that different biomarkers of oxidative stress are affected when the cell culture is exposed to atmospheric oxygen, and that changes such as increased GSSG content and induction of GSSG-R and GSH-Px can be reduced by culturing the cells under lower oxygen tension. Oxygen tension may thus influence results of in vitro based cell research and is particularly important when assessing parameters in the antioxidant defence system. Further research is needed to establish the magnitude of this effect in different cellular systems.

  19. Oxidative-stress detoxification and signalling in cyanobacteria: the crucial glutathione synthesis pathway supports the production of ergothioneine and ophthalmate.

    Science.gov (United States)

    Narainsamy, Kinsley; Farci, Sandrine; Braun, Emilie; Junot, Christophe; Cassier-Chauvat, Corinne; Chauvat, Franck

    2016-04-01

    Using genetics and metabolomics we investigated the synthesis (gshA and gshB genes) and catabolism (ggt) of the conserved antioxidant glutathione in the model cyanobacterium Synechocystis PCC6803. These three genes are crucial to Synechocystis, in agreement with the proposed invention of glutathione by ancient cyanobacteria to protect themselves against the toxicity of oxygen they produced through photosynthesis. Consistent with their indispensability, gshA and gshB also operate in the production of another antioxidant, ergothioneine, as well as of the glutathione analogues ophthalmate and norophthalmate. Furthermore, we show that glutathione, ophthalmate and norophthalmate are accumulated in cells stressed by glucose, and that the two glutathione-dependent glyoxalase enzymes operate in the protection against glucose and its catabolite methylglyoxal. These findings are interesting because ophthalmate and norophthalmate were observed only in mammals so far, where ophthalmate is regarded as a biomarker of glutathione depletion. Instead, our data suggest that ophthalmate and norophthalmate are stress-induced markers of cysteine depletion triggered by its accelerated incorporation into glutathione, to face its increased demand for detoxification purposes. Hence, Synechocystis is an attractive model for the analysis of the role of glutathione, ergothioneine, ophthalmate and norophthalmate, in signalling and detoxification of oxidants and metabolic by-products. © 2015 John Wiley & Sons Ltd.

  20. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways.

    Science.gov (United States)

    Mhamdi, Amna; Hager, Jutta; Chaouch, Sejir; Queval, Guillaume; Han, Yi; Taconnat, Ludivine; Saindrenan, Patrick; Gouia, Houda; Issakidis-Bourguet, Emmanuelle; Renou, Jean-Pierre; Noctor, Graham

    2010-07-01

    Glutathione is a major cellular thiol that is maintained in the reduced state by glutathione reductase (GR), which is encoded by two genes in Arabidopsis (Arabidopsis thaliana; GR1 and GR2). This study addressed the role of GR1 in hydrogen peroxide (H(2)O(2)) responses through a combined genetic, transcriptomic, and redox profiling approach. To identify the potential role of changes in glutathione status in H(2)O(2) signaling, gr1 mutants, which show a constitutive increase in oxidized glutathione (GSSG), were compared with a catalase-deficient background (cat2), in which GSSG accumulation is conditionally driven by H(2)O(2). Parallel transcriptomics analysis of gr1 and cat2 identified overlapping gene expression profiles that in both lines were dependent on growth daylength. Overlapping genes included phytohormone-associated genes, in particular implicating glutathione oxidation state in the regulation of jasmonic acid signaling. Direct analysis of H(2)O(2)-glutathione interactions in cat2 gr1 double mutants established that GR1-dependent glutathione status is required for multiple responses to increased H(2)O(2) availability, including limitation of lesion formation, accumulation of salicylic acid, induction of pathogenesis-related genes, and signaling through jasmonic acid pathways. Modulation of these responses in cat2 gr1 was linked to dramatic GSSG accumulation and modified expression of specific glutaredoxins and glutathione S-transferases, but there is little or no evidence of generalized oxidative stress or changes in thioredoxin-associated gene expression. We conclude that GR1 plays a crucial role in daylength-dependent redox signaling and that this function cannot be replaced by the second Arabidopsis GR gene or by thiol systems such as the thioredoxin system.

  1. Toll-Like Receptor 4 Reduces Oxidative Injury via Glutathione Activity in Sheep

    Directory of Open Access Journals (Sweden)

    Shoulong Deng

    2016-01-01

    Full Text Available Toll-like receptor 4 (TLR4 is an important sensor of Gram-negative bacteria and can trigger activation of the innate immune system. Increased activation of TLR4 can lead to the induction of oxidative stress. Herein, the pathway whereby TLR4 affects antioxidant activity was studied. In TLR4-overexpressing sheep, TLR4 expression was found to be related to the integration copy number when monocytes were challenged with lipopolysaccharide (LPS. Consequently, production of malondialdehyde (MDA was increased, which could increase the activation of prooxidative stress enzymes. Meanwhile, activation of an antioxidative enzyme, glutathione peroxidase (GSH-Px, was increased. Real-time PCR showed that expression of activating protein-1 (AP-1 and the antioxidative-related genes was increased. By contrast, the expression levels of superoxide dismutase 1 (SOD1 and catalase (CAT were reduced. In transgenic sheep, glutathione (GSH levels were dramatically reduced. Furthermore, transgenic sheep were intradermally injected with LPS in each ear. The amounts of inflammatory infiltrates were correlated with the number of TLR4 copies that were integrated in the genome. Additionally, the translation of γ-glutamylcysteine synthetase (γ-GCS was increased. Our findings indicated that overexpression of TLR4 in sheep could ameliorate oxidative injury through GSH secretion that was induced by LPS stimulation. Furthermore, TLR4 promoted γ-GCS translation through the AP-1 pathway, which was essential for GSH synthesis.

  2. Oxidative actions of hydrogen peroxide in human gingival and oral periosteal fibroblasts: Responses to glutathione and nicotine, relevant to healing in a redox environment

    Directory of Open Access Journals (Sweden)

    Federico Tinti

    2014-01-01

    Conclusion: Oxidative stress mediated by H2O2 was overcome by glutathione and recurred when nicotine was added, suggestive of a pro- oxidant role for nicotine. Androgen biomarkers are a sensitive index of oxidative stress which affects wound healing.

  3. Differential roles of tau class glutathione S-transferases in oxidative stress

    DEFF Research Database (Denmark)

    Kilili, Kimiti G; Atanassova, Neli; Vardanyan, Alla

    2004-01-01

    The plant glutathione S-transferase BI-GST has been identified as a potent inhibitor of Bax lethality in yeast, a phenotype associated with oxidative stress and disruption of mitochondrial functions. Screening of a tomato two-hybrid library for BI-GST interacting proteins identified five homologous...... Tau class GSTs, which readily form heterodimers between them and BI-GST. All six LeGSTUs were found to be able to protect yeast cells from prooxidant-induced cell death. The efficiency of each LeGSTU was prooxidant-specific, indicating a different role for each LeGSTU in the oxidative stress......-response mechanism. The prooxidant protective effect of all six proteins was suppressed in the absence of YAP1, a transcription factor that regulates hydroperoxide homeostasis in Saccharomyces cerevisiae, suggesting a role for the LeGSTUs in the context of the YAP1-dependent stress-responsive machinery...

  4. Glutathione delays varies as-tocopherol oxidation and subsequent lipid peroxidation in rat liver microsomes

    International Nuclear Information System (INIS)

    Robey, S.; Mavis, R.

    1986-01-01

    A method has been developed for in vitro trace radiolabeling of rat liver microsomes with 3 H-α-tocopherol (αT*) which allows virtually complete oxidation of the αT* under oxidizing conditions. The supernatant of a 16,000 xg centrifugation of homogenized rat liver, containing the cytosolic rat liver vitamin E (VE) transfer protein, was incubated with an ethanolic solution of αT* for 10 minutes at 37 0 C. Labeled microsomes were collected in the washed 100,000 xg pellet. Microsomes were then incubated with 30 μM Fe 2+ in an NADPH-generating system, and both production of malondialdehyde (MDA) (a product of lipid peroxidation) and oxidation of αT* were monitored over a time course in the presence and absence of glutathione (GSH). The results indicate virtually complete oxidation of αT* precedes significant membrane lipid peroxidation, and that addition of 5 mM GSH delays both αT* oxidation and subsequent MDA production. This suggests that the previously observed VE-dependent heat labile inhibition of microsomal lipid peroxidation by GSH involves maintaining membrane levels of α-tocopherol

  5. Depression of biliary glutathione excretion by chronic ethanol feeding in the rat

    International Nuclear Information System (INIS)

    Vendemiale, G.; Jayatilleke, E.; Shaw, S.; Lieber, C.S.

    1984-01-01

    The effects of chronic alcohol feeding on biliary glutathione excretion were studied in rats pair fed diets containing either ethanol (36% of total energy) or isocaloric carbohydrate for 4-6 weeks. An exteriorized biliary-duodenal fistula was established and total glutathione (GSH) and oxidized glutathione (GSSG) were measured. A significant decrease was observed in rats fed alcohol chronically compared to their pair fed controls in the biliary excretion of GSH (55.7 +/- 37.0 vs 243.1 +/- 29.0 μg/ml bile, p 35 -L-methionine incorporation into hepatic and biliary GSH was unchanged or even increased after chronic ethanol feeding. 22 references, 4 figures

  6. Differential substrate behaviours of ethylene oxide and propylene oxide towards human glutathione transferase theta hGSTT1-1.

    Science.gov (United States)

    Thier, R; Wiebel, F A; Bolt, H M

    1999-11-01

    The transformation of ethylene oxide (EO), propylene oxide (PO) and 1-butylene oxide (1-BuO) by human glutathione transferase theta (hGSTT1-1) was studied comparatively using 'conjugator' (GSTT1 + individuals) erythrocyte lysates. The relative sequence of velocity of enzymic transformation was PO > EO > 1-BuO. The faster transformation of PO compared to EO was corroborated in studies with human and rat GSTT1-1 (hGSTT1-1 and rGSTT1-1, respectively) expressed by Salmonella typhimurium TA1535. This sequence of reactivities of homologous epoxides towards GSTT1-1 contrasts to the sequence observed in homologous alkyl halides (methyl bromide, MBr; ethyl bromide, EtBr; n-propyl bromide, PrBr) where the relative sequence MeBr > EtBr > PrBr is observed. The higher reactivity towards GSTT1-1 of propylene oxide compared to ethylene oxide is consistent with a higher chemical reactivity. This is corroborated by experimental data of acid-catalysed hydrolysis of a number of aliphatic epoxides, including ethylene oxide and propylene oxide and consistent with semi-empirical molecular orbital modelings.

  7. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase

    International Nuclear Information System (INIS)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Jaeschke, Hartmut

    2014-01-01

    Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300 mg/kg) caused severe liver injury in male mice but 69–77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in the mitochondria at 4 h, and 2.5 and 3.3 fold higher in the total liver at 4 h and 6 h, respectively. This faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6 h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4 h post-APAP, it was 3.1 fold lower at 6 h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. Conclusion: The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery. - Highlights: • Female mice are less susceptible to acetaminophen overdose than males. • GSH depletion and protein adduct formation are similar in both genders. • Recovery of hepatic GSH levels is faster in females and correlates with Gclc. • Reduced oxidant stress in females leads to reduced JNK activation. • JNK activation and mitochondrial translocation are critical

  8. Beneficial effects of oral pure caffeine on oxidative stress

    Directory of Open Access Journals (Sweden)

    Daniela Metro

    2017-12-01

    Full Text Available Ingestion of coffee (which is a mixture of over 1000 hydrosoluble substances is known to protect from type-2 diabetes mellitus and its complications, and other chronic disorders associated with increased oxidative damage in blood and tissues. This protection is generally attributed to polyphenols and melanoidins. Very few studies were conducted on the amelioration of classic blood markers of oxidative stress induced after a few days of caffeine administration, but results vary.To assess whether caffeine per se could account for antioxidant properties of coffee in the short-term, we tested the ability of pure caffeine ingestion (5 mg/kg body weight/day in two daily doses for seven consecutive days to improve plasma levels of six biochemical indices in healthy male volunteers (n = 15. These indices were total antioxidant capacity (TAC, glutathione (GSH, oxidized glutathione (GSSG, GSH to GSSG ratio, lipid hydroperoxides (LOOH and malondialdehyde (MDA.We found that all indices changed significantly (P < .05 or < .01 in a favourable manner, ranging from −41% for GSSG to −70% for LHP levels, and +106% for GSH levels to +249% for the GSG/GSSG ratio. Changes of any given index were uniform across subjects, with no outliers.We conclude that caffeine has unequivocal, consistent antioxidant properties. Keyword: Oxidative stress, Coffee, Caffeine, Lipid peroxidation, Gluthathione, Malondialdehyde

  9. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells.

    Science.gov (United States)

    Ahwach, Salma Makhoul; Thomas, Melanie; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2015-08-01

    Reactive oxygen species are associated with cardiovascular disease, diabetes, and atherosclerosis, yet the use of antioxidants in clinical trials has been ineffective at improving outcomes. In endothelial cells, high-dextrose-induced oxidative stress and endoplasmic reticulum stress promote endothelial dysfunction leading to the recruitment and activation of peripheral blood lymphocytes and the breakdown of barrier function. Ebselen, a glutathione peroxidase 1 (GPX1) mimic, has been shown to improve β-cell function in diabetes and prevent atherosclerosis. To determine if ebselen inhibits both oxidative stress and endoplasmic reticulum (ER) stress in endothelial cells, we examined its effects in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) with and without high-dextrose. Oxidative stress and ER stress were measured by 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence and ER stress alkaline phosphatase assays, respectively. GPX1 over-expression and knockdown were performed by transfecting cells with a GPX1 expression construct or a GPX1-specific siRNA, respectively. Ebselen inhibited dextrose-induced oxidative stress but not ER stress in both HUVEC and HCAEC. Ebselen also had no effect on tunicamycin-induced ER stress in HCAEC. Furthermore, augmentation of GPX1 activity directly by sodium selenite supplementation or transfection of a GPX1 expression plasmid decreased dextrose-induced oxidative stress but not ER stress, while GPX1 knockout enhanced oxidative stress but had no effect on ER stress. These results suggest that ebselen targets only oxidative stress but not ER stress. Copyright © 2015. Published by Elsevier Inc.

  10. Effects of Combined Low Glutathione with Mild Oxidative and Low Phosphorus Stress on the Metabolism of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Atsushi Fukushima

    2017-08-01

    Full Text Available Plants possess highly sensitive mechanisms that monitor environmental stress levels for a dose-dependent fine-tuning of their growth and development. Differences in plant responses to severe and mild abiotic stresses have been recognized. Although many studies have revealed that glutathione can contribute to plant tolerance to various environmental stresses, little is known about the relationship between glutathione and mild abiotic stress, especially the effect of stress-induced altered glutathione levels on the metabolism. Here, we applied a systems biology approach to identify key pathways involved in the gene-to-metabolite networks perturbed by low glutathione content under mild abiotic stress in Arabidopsis thaliana. We used glutathione synthesis mutants (cad2-1 and pad2-1 and plants overexpressing the gene encoding γ-glutamylcysteine synthetase, the first enzyme of the glutathione biosynthetic pathway. The plants were exposed to two mild stress conditions—oxidative stress elicited by methyl viologen and stress induced by the limited availability of phosphate. We observed that the mutants and transgenic plants showed similar shoot growth as that of the wild-type plants under mild abiotic stress. We then selected the synthesis mutants and performed multi-platform metabolomics and microarray experiments to evaluate the possible effects on the overall metabolome and the transcriptome. As a common oxidative stress response, several flavonoids that we assessed showed overaccumulation, whereas the mild phosphate stress resulted in increased levels of specific kaempferol- and quercetin-glycosides. Remarkably, in addition to a significant increased level of sugar, osmolytes, and lipids as mild oxidative stress-responsive metabolites, short-chain aliphatic glucosinolates over-accumulated in the mutants, whereas the level of long-chain aliphatic glucosinolates and specific lipids decreased. Coordinated gene expressions related to glucosinolate and

  11. Intestinal glutathione: determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility

    International Nuclear Information System (INIS)

    Aw, Tak Yee

    2005-01-01

    The intestine is a primary site of nutrient absorption and a critical defense barrier against dietary-derived mutagens, carcinogens, and oxidants. Accumulation of oxidants like peroxidized lipids in the gut lumen can contribute to impairment of mucosal metabolic pathways, enterocyte dysfunction independent of cell injury, and development of gut pathologies, such as inflammation and cancer. Despite this recognition, we know little of the pathways of intestinal transport, metabolism, and luminal disposition of dietary peroxides in vivo or of the underlying mechanisms of lipid peroxide-induced genesis of intestinal disease processes. This chapter summarizes our current understanding of the determinants of intestinal absorption and metabolism of peroxidized lipids. I will review experimental evidence from our laboratory and others (Table 1) supporting the pivotal role that glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) play in mucosal transport and metabolism of lipid hydroperoxides and how reductant availability can be compromised under chronic stress such as hypoxia, and the influence of GSH on oxidative susceptibility, and redox contribution to genesis of gut disorders. The discussion is pertinent to understanding dietary lipid peroxides and GSH redox balance in intestinal physiology and pathophysiology and the significance of luminal GSH in preserving the integrity of the intestinal epithelium

  12. Glutathione aerosol suppresses lung epithelial surface inflammatory cell-derived oxidants in cystic fibrosis.

    Science.gov (United States)

    Roum, J H; Borok, Z; McElvaney, N G; Grimes, G J; Bokser, A D; Buhl, R; Crystal, R G

    1999-07-01

    Cystic fibrosis (CF) is characterized by accumulation of activated neutrophils and macrophages on the respiratory epithelial surface (RES); these cells release toxic oxidants, which contribute to the marked epithelial derangements seen in CF. These deleterious consequences are magnified, since reduced glutathione (GSH), an antioxidant present in high concentrations in normal respiratory epithelial lining fluid (ELF), is deficient in CF ELF. To evaluate the feasibility of increasing ELF GSH levels and enhancing RES antioxidant protection, GSH aerosol was delivered (600 mg twice daily for 3 days) to seven patients with CF. ELF total, reduced, and oxidized GSH increased (P < 0.05, all compared with before GSH therapy), suggesting adequate RES delivery and utilization of GSH. Phorbol 12-myristate 13-acetate-stimulated superoxide anion (O2-.) release by ELF inflammatory cells decreased after GSH therapy (P < 0.002). This paralleled observations that GSH added in vitro to CF ELF inflammatory cells suppressed O2-. release (P < 0.001). No adverse effects were noted during treatment. Together, these observations demonstrate the feasibility of using GSH aerosol to restore RES oxidant-antioxidant balance in CF and support the rationale for further clinical evaluation.

  13. Low Nourishment of Vitamin C Induces Glutathione Depletion and Oxidative Stress in Healthy Young Adults.

    Science.gov (United States)

    Waly, Mostafa I; Al-Attabi, Zahir; Guizani, Nejib

    2015-09-01

    The present study was conducted to assess the status of vitamin C among healthy young adults in relation to serum antioxidant parameters [glutathione (GSH), thiols, and total antioxidant capacity, (TAC)], and oxidative stress markers [malondialdehyde (MDA), and nitrites plus nitrates (NN)]. A prospective study included 200 young adults, and their dietary intake was assessed by using food diaries. Fasting plasma vitamin C, serum levels of GSH, thiols, TAC, MDA, and NN were measured using biochemical assays. It was observed that 38% of the enrolled subjects, n=76, had an adequate dietary intake of vitamin C (ADI group). Meanwhile, 62%, n=124, had a low dietary intake of vitamin C (LDI group) as compared to the recommended dietary allowances. The fasting plasma level of vitamin C was significantly higher in the ADI group as compared to the LDI group. Oxidative stress in the sera of the LDI group was evidenced by depletion of GSH, low thiols levels, impairment of TAC, an elevation of MDA, and increased NN. In the ADI group, positive correlations were found between plasma vitamin C and serum antioxidant parameters (GSH, thiols, and TAC). Meanwhile, the plasma vitamin C was negatively correlated with serum MDA and NN levels. This study reveals a significant increase of oxidative stress status and reduced antioxidant capacity in sera from healthy young adults with low intake of the dietary antioxidant, vitamin C.

  14. Enhanced depletion of glutathione and increased liver oxidative damage in aflatoxin-fed mice infected with Plasmodium berghei

    DEFF Research Database (Denmark)

    Ankrah, N A; Sittie, A; Addo, P G

    1995-01-01

    levels accompanied by a significant increase in serum cholinesterase and liver malonic dialdehyde levels in the mice fed aflatoxin compared with those in the control group. The results suggested that malaria parasites can enhance depletion of host glutathione and oxidative damage of the liver in mice fed...

  15. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Kumar, Sudhir; Siddiqui, Huma; Patil, Govil; Ashquin, Mohd; Ahmad, Iqbal

    2010-10-09

    Though, oxidative stress has been implicated in silica nanoparticles induced toxicity both in vitro and in vivo, but no similarities exist regarding dose-response relationship. This discrepancy may, partly, be due to associated impurities of trace metals that may present in varying amounts. Here, cytotoxicity and oxidative stress parameters of two sizes (10 nm and 80 nm) of pure silica nanoparticles was determined in human lung epithelial cells (A549 cells). Both sizes of silica nanoparticles induced dose-dependent cytotoxicity as measured by MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and lactate dehydrogenase (LDH) assays. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of reactive oxygen species (ROS) generation, and membrane lipid peroxidation (LPO). However, both sizes of silica nanoparticles had little effect on intracellular glutathione (GSH) level and the activities of glutathione metabolizing enzymes; glutathione reductase (GR) and glutathione peroxidase (GPx). Buthionine-[S,R]-sulfoximine (BSO) plus silica nanoparticles did not result in significant GSH depletion than that caused by BSO alone nor N-acetyl cysteine (NAC) afforded significant protection from ROS and LPO induced by silica nanoparticles. The rather unaltered level of GSH is also supported by finding no appreciable alteration in the level of GR and GPx. Our data suggest that the silica nanoparticles exert toxicity in A549 cells through the oxidant generation (ROS and LPO) rather than the depletion of GSH. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Expression of inducible nitric oxide synthase in endotoxemic rat hepatocytes is dependent on the cellular glutathione status

    NARCIS (Netherlands)

    Vos, TA; van Goor, H; Tuyt, L; de Jager-Krikken, A; Leuvenink, R; Kuipers, F; Jansen, PLM; Moshage, H

    The inducible nitric oxide synthase (iNOS) promoter contains nuclear factor kappa B (NF-kappa B) binding sites. NF-kappa B activation is determined, in part, by the intracellular redox status, The aim of this study was to determine the importance of the cellular glutathione status in relation to

  17. Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate–Glutathione Cycle

    Science.gov (United States)

    Tripathi, Durgesh K.; Mishra, Rohit K.; Singh, Swati; Singh, Samiksha; Vishwakarma, Kanchan; Sharma, Shivesh; Singh, Vijay P.; Singh, Prashant K.; Prasad, Sheo M.; Dubey, Nawal K.; Pandey, Avinash C.; Sahi, Shivendra; Chauhan, Devendra K.

    2017-01-01

    The present study investigates ameliorative effects of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings, which coincided with reduced photosynthetic efficiency (Fv/Fm and qP), due to increased accumulation of zinc (Zn) in xylem and phloem saps. However, SNP supplementation partially mitigated the ZnONPs-mediated toxicity through the modulation of photosynthetic activity and Zn accumulation in xylem and phloem saps. Further, the results reveal that ZnONPs treatments enhanced levels of hydrogen peroxide and lipid peroxidation (as malondialdehyde; MDA) due to severely inhibited activities of the following ascorbate–glutatione cycle (AsA–GSH) enzymes: ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase, and its associated metabolites ascorbate and glutathione. In contrast to this, the addition of SNP together with ZnONPs maintained the cellular functioning of the AsA–GSH cycle properly, hence lesser damage was noticed in comparison to ZnONPs treatments alone. The protective effect of SNP against ZnONPs toxicity on fresh weight (growth) can be reversed by 2-(4carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, and thus suggesting that NO released from SNP ameliorates ZnONPs toxicity. Overall, the results of the present study have shown the role of NO in the reducing of ZnONPs toxicity through the regulation of accumulation of Zn as well as the functioning of the AsA–GSH cycle. PMID:28220127

  18. Cooperative functions of manganese and thiol redox system against oxidative stress in human spermatozoa

    Directory of Open Access Journals (Sweden)

    Amrit Kaur Bansal

    2009-01-01

    Full Text Available Aims: In this study, the effects of 0.1 mM Mn 2+ on thiol components (total thiols [TSH], glutathione reduced [GSH], glutathione oxidized [GSSG] and redox ratio [GSH/ GSSG] have been determined in human spermatozoa. Settings and Design: The subjects of the study were healthy males having more than 75% motility and 80 x 10 6 sperms/mL. Materials and Methods: Fresh semen was suspended in phosphate-buffered saline (PBS (pH 7.2 and this suspension was divided into eight equal fractions. All fractions, control (containing PBS and experimental (treated/untreated with [ferrous ascorbate, FeAA - 200 FeSO 4 μM, 1000 μM ascorbic acid, nicotine (0.5 mM and FeAA + nicotine], supplemented/unsupplemented with Mn 2+ [0.1 mM], were incubated for 2 h at 378C. These fractions were assessed for determining the thiol components. Statistical Analysis: The data were statistically analyzed by Students " t" test. Results and Conclusions: Ferrous ascorbate, nicotine and ferrous ascorbate + nicotine induced oxidative stress and decreased GSH and redox ratio (GSH/GSSG ratio but increased the TSH and GSSG levels. Mn 2+ supplementation improved TSH, GSH and redox ratio (GSH/GSSG but decreased the GSSG level under normal and oxidative stress conditions. Thiol groups serve as defense mechanisms of sperm cells to fight against oxidative stress induced by stress inducers such as ferrous ascorbate, nicotine and their combination (ferrous ascorbate + nicotine. In addition, Mn 2+ supplementation maintains the thiol level by reducing oxidative stress.

  19. Effects of cisplatin on lipid peroxidation and the glutathione redox status in the liver of male rats: The protective role of selenium

    Directory of Open Access Journals (Sweden)

    Trbojević Ivana S.

    2010-01-01

    Full Text Available The role of oxidative stress in cisplatin (CP toxicity and its prevention by pretreatment with selenium (Se was investigated. Male Wistar albino rats were injected with a single dose of cisplatin (7.5 mg CP/kg b.m., i.p. and selenium (6 mg Se/kg b.m, as Na2SeO3, i.p. alone or in combination. The results suggest that CP intoxication induces oxidative stress and alters the glutathione redox status: reduced glutathione (GSH, oxidized glutathione (GSSG and the GSH/GSSG ratio (GSH RI, resulting in increased lipid peroxidation (LPO in rat liver. The pretreatment with selenium prior to CP treatment showed a protective effect against the toxic influence of CP on peroxidation of the membrane lipids and an altering of the glutathione redox status in the liver of rats. From our results we conclude that selenium functions as a potent antioxidant and suggest that it can control CP-induced hepatotoxicity in rats.

  20. A role for glutathione, independent of oxidative stress, in the developmental toxicity of methanol

    International Nuclear Information System (INIS)

    Siu, Michelle T.; Shapiro, Aaron M.; Wiley, Michael J.; Wells, Peter G.

    2013-01-01

    Oxidative stress and reactive oxygen species (ROS) have been implicated in the teratogenicity of methanol (MeOH) in rodents, both in vivo and in embryo culture. We explored the ROS hypothesis further in vivo in pregnant C57BL/6J mice. Following maternal treatment with a teratogenic dose of MeOH, 4 g/kg via intraperitoneal (ip) injection on gestational day (GD) 12, there was no increase 6 h later in embryonic ROS formation, measured by 2′,7′-dichlorodihydrofluorescin diacetate (DCFH-DA) fluorescence, despite an increase observed with the positive control ethanol (EtOH), nor was there an increase in embryonic oxidatively damaged DNA, quantified as 8-oxo-2′-deoxyguanosine (8-oxodG) formation. MeOH teratogenicity (primarily ophthalmic anomalies, cleft palate) also was not altered by pre- and post-treatment with varying doses of the free radical spin trapping agent alpha-phenyl-N-tert-butylnitrone (PBN). In contrast, pretreatment with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, depleted maternal hepatic and embryonic GSH, and enhanced some new anomalies (micrognathia, agnathia, short snout, fused digits, cleft lip, low set ears), but not the most common teratogenic effects of MeOH (ophthalmic anomalies, cleft palate) in this strain. These results suggest that ROS did not contribute to the teratogenic effects of MeOH in this in vivo mouse model, in contrast to results in embryo culture from our laboratory, and that the protective effect of GSH in this model may arise from its role as a cofactor for formaldehyde dehydrogenase in the detoxification of formaldehyde. - Highlights: • In vivo, a free radical scavenger did not block methanol (MeOH) teratogenesis. • MeOH did not increase embryonic reactive oxygen species formation or DNA oxidation. • MeOH teratogenesis was enhanced by glutathione (GSH) depletion. • GSH may protect as the cofactor for formaldehyde dehydrogenase (ADH3). • Formaldehyde may be a ROS

  1. A role for glutathione, independent of oxidative stress, in the developmental toxicity of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Siu, Michelle T.; Shapiro, Aaron M. [Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario (Canada); Wiley, Michael J. [Division of Anatomy, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Wells, Peter G., E-mail: pg.wells@utoronto.ca [Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario (Canada); Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada)

    2013-12-15

    Oxidative stress and reactive oxygen species (ROS) have been implicated in the teratogenicity of methanol (MeOH) in rodents, both in vivo and in embryo culture. We explored the ROS hypothesis further in vivo in pregnant C57BL/6J mice. Following maternal treatment with a teratogenic dose of MeOH, 4 g/kg via intraperitoneal (ip) injection on gestational day (GD) 12, there was no increase 6 h later in embryonic ROS formation, measured by 2′,7′-dichlorodihydrofluorescin diacetate (DCFH-DA) fluorescence, despite an increase observed with the positive control ethanol (EtOH), nor was there an increase in embryonic oxidatively damaged DNA, quantified as 8-oxo-2′-deoxyguanosine (8-oxodG) formation. MeOH teratogenicity (primarily ophthalmic anomalies, cleft palate) also was not altered by pre- and post-treatment with varying doses of the free radical spin trapping agent alpha-phenyl-N-tert-butylnitrone (PBN). In contrast, pretreatment with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, depleted maternal hepatic and embryonic GSH, and enhanced some new anomalies (micrognathia, agnathia, short snout, fused digits, cleft lip, low set ears), but not the most common teratogenic effects of MeOH (ophthalmic anomalies, cleft palate) in this strain. These results suggest that ROS did not contribute to the teratogenic effects of MeOH in this in vivo mouse model, in contrast to results in embryo culture from our laboratory, and that the protective effect of GSH in this model may arise from its role as a cofactor for formaldehyde dehydrogenase in the detoxification of formaldehyde. - Highlights: • In vivo, a free radical scavenger did not block methanol (MeOH) teratogenesis. • MeOH did not increase embryonic reactive oxygen species formation or DNA oxidation. • MeOH teratogenesis was enhanced by glutathione (GSH) depletion. • GSH may protect as the cofactor for formaldehyde dehydrogenase (ADH3). • Formaldehyde may be a ROS

  2. Fatigue and Oxidative Stress in Children Undergoing Leukemia Treatment.

    Science.gov (United States)

    Rodgers, Cheryl; Sanborn, Chelse; Taylor, Olga; Gundy, Patricia; Pasvogel, Alice; Moore, Ida M Ki; Hockenberry, Marilyn J

    2016-10-01

    Fatigue is a frequent and distressing symptom in children undergoing leukemia treatment; however, little is known about factors influencing this symptom. Antioxidants such as glutathione can decrease symptom severity in adult oncology patients, but no study has evaluated antioxidants' effects on symptoms in pediatric oncology patients. This study describes fatigue patterns and associations of fatigue with antioxidants represented by reduced glutathione (GSH) and the reduced/oxidized glutathione (GSH/GSSG) ratio among children receiving leukemia treatment. A repeated measures design assessed fatigue and antioxidants among 38 children from two large U.S. cancer centers. Fatigue was assessed among school-age children and by parent proxy among young children. Antioxidants (GSH and GSH/GSSG ratio) were assessed from cerebrospinal fluid at four phases during leukemia treatment. Young children had a steady decline of fatigue from the end of induction treatment through the continuation phase of treatment, but no significant changes were noted among the school-age children. Mean antioxidant scores varied slightly over time; however, the GSH/GSSG ratios in these children were significantly lower than the normal ratio. Mean GSH/GSSG ratios significantly correlated to fatigue scores of the school-age children during early phases of treatment. Children with low mean GSH/GSSG ratios demonstrated oxidative stress. The low ratios noted early in therapy were significantly correlated with higher fatigue scores during induction and postinduction treatment phases. This finding suggests that increased oxidative stress during the more intensive phases of therapy may explain the experience of fatigue children report. © The Author(s) 2016.

  3. Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers

    International Nuclear Information System (INIS)

    Kasperczyk, Sławomir; Dobrakowski, Michał; Kasperczyk, Janusz; Ostałowska, Alina; Zalejska-Fiolka, Jolanta; Birkner, Ewa

    2014-01-01

    The aim of this study was to determine whether beta-carotene administration reduces oxidative stress and influences antioxidant, mainly glutathione-related, defense systems in workers chronically exposed to lead. The population consisted of two randomly divided groups of healthy male volunteers exposed to lead. Workers in the first group (reference group) were not administered any antioxidants, while workers in the second group (CAR group) were treated orally with 10 mg of beta-carotene once a day for 12 weeks. Biochemical analysis included measuring markers of lead-exposure and oxidative stress in addition to the levels and activities of selected antioxidants. After treatment, levels of malondialdehyde, lipid hydroperoxides and lipofuscin significantly decreased compared with the reference group. However, the level of glutathione significantly increased compared with the baseline. Treatment with beta-carotene also resulted in significantly decreased glutathione peroxidase activity compared with the reference group, while the activities of other glutathione-related enzymes and of superoxide dismutase were not significantly changed. However, the activities of glucose-6-phosphate dehydrogenase and catalase, as well as the level of alpha-tocopherol, were significantly higher after treatment compared with the baseline. Despite controversy over the antioxidant properties of beta-carotene in vivo, our findings showed reduced oxidative stress after beta-carotene supplementation in chronic lead poisoning. - Highlights: • Beta-carotene reduces oxidative stress in lead-exposed workers. • Beta-carotene elevates glutathione level in lead-exposed workers. • Beta-carotene administration could be beneficial in lead poisoning

  4. Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Kasperczyk, Sławomir, E-mail: kaslav@mp.pl [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Dobrakowski, Michał [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Kasperczyk, Janusz [Dept. of Environmental Medicine and Epidemiology, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Ostałowska, Alina; Zalejska-Fiolka, Jolanta; Birkner, Ewa [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland)

    2014-10-01

    The aim of this study was to determine whether beta-carotene administration reduces oxidative stress and influences antioxidant, mainly glutathione-related, defense systems in workers chronically exposed to lead. The population consisted of two randomly divided groups of healthy male volunteers exposed to lead. Workers in the first group (reference group) were not administered any antioxidants, while workers in the second group (CAR group) were treated orally with 10 mg of beta-carotene once a day for 12 weeks. Biochemical analysis included measuring markers of lead-exposure and oxidative stress in addition to the levels and activities of selected antioxidants. After treatment, levels of malondialdehyde, lipid hydroperoxides and lipofuscin significantly decreased compared with the reference group. However, the level of glutathione significantly increased compared with the baseline. Treatment with beta-carotene also resulted in significantly decreased glutathione peroxidase activity compared with the reference group, while the activities of other glutathione-related enzymes and of superoxide dismutase were not significantly changed. However, the activities of glucose-6-phosphate dehydrogenase and catalase, as well as the level of alpha-tocopherol, were significantly higher after treatment compared with the baseline. Despite controversy over the antioxidant properties of beta-carotene in vivo, our findings showed reduced oxidative stress after beta-carotene supplementation in chronic lead poisoning. - Highlights: • Beta-carotene reduces oxidative stress in lead-exposed workers. • Beta-carotene elevates glutathione level in lead-exposed workers. • Beta-carotene administration could be beneficial in lead poisoning.

  5. An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands.

    Science.gov (United States)

    Weisel, Tamara; Baum, Matthias; Eisenbrand, Gerhard; Dietrich, Helmut; Will, Frank; Stockis, Jean-Pierre; Kulling, Sabine; Rüfer, Corinna; Johannes, Christian; Janzowski, Christine

    2006-04-01

    Oxidative cell damage is involved in the pathogenesis of atherosclerosis, cancer, diabetes and other diseases. Uptake of fruit juice with especially high content of antioxidant flavonoids/polyphenols, might reduce oxidative cell damage. Therefore, an intervention study was performed with a red mixed berry juice [trolox equivalent antioxidative capacity (TEAC): 19.1 mmol/L trolox] and a corresponding polyphenol-depleted juice (polyphenols largely removed, TEAC 2.4 mmol/L trolox), serving as control. After a 3-week run-in period, 18 male probands daily consumed 700 mL juice, and 9 consumed control juice, in a 4-week intervention, followed by a 3-week wash-out. Samples were collected weekly to analyze DNA damage (comet assay), lipid peroxidation (plasma malondialdehyde: HPLC/fluorescence; urinary isoprostanes: GC-MS), blood glutathione (photometrically), DNA-binding activity of nuclear factor-kappaB (ELISA) and plasma carotenoid/alpha-tocopherol levels (HPLC-DAD). During intervention with the fruit juice, a decrease of oxidative DNA damage (p<5x10(-4)) and an increase of reduced glutathione (p<5x10(-4)) and of glutathione status (p<0.05) were observed, which returned to the run-in levels in the subsequent wash-out phase. The other biomarkers were not significantly modulated by the juice supplement. Intervention with the control juice did not result in reduction of oxidative damage. In conclusion, the fruit juice clearly reduces oxidative cell damage in healthy probands.

  6. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

    Science.gov (United States)

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun

    2015-02-01

    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH.

  7. Oxidative status, in vitro iron-induced lipid oxidation and superoxide dismutase, catalase and glutathione peroxidase activities in rhea meat.

    Science.gov (United States)

    Terevinto, A; Ramos, A; Castroman, G; Cabrera, M C; Saadoun, A

    2010-04-01

    Rhea (Rhea americana) muscles Obturatorius medialis (OM) Iliotibialis lateralis (IL) and Iliofibularis (I), obtained from farmed animals, were evaluated regarding their oxidative/antioxidant status. The mean level of thiobarbituric acid reactive substances (TBARS) expressed as malonaldehyde (MDA) content was of 0.84 mg MDA/kg wet tissue for the three muscles. TBARS level was significantly higher in IL than OM and I, with the two latter showing similar levels. The mean level of carbonyl proteins expressed as dinitrophenylhydrazine (DNPH) was 1.59 nmol DNPH mg(-1). Carbonyl protein levels were significantly different (POM>I). Iron-induced TBARS generation was not significantly different between the three muscles at any time, nor for each muscle during the 5 h of the experiment. Superoxide dismutase activity in IL muscle was significantly higher (P<0.05) than in I muscle. However, the difference between IL and OM muscles was not significant. The differences between the three muscles became not significant when the results were expressed by mg of protein contained in the extract, instead by g of wet tissue. No differences were found for catalase (micromol of discomposed H(2)O(2) min(-1) g(-1) wet tissue or by mg of protein contained in the extract) and glutathione peroxidase (micromol ol of oxidized NADPH min(-1) g(-1) of wet tissue or by mg of protein contained in the extract) activities between the three muscles. 2009 Elsevier Ltd. All rights reserved.

  8. Quantum Mechanical/Molecular Mechanical Free Energy Simulations of the Glutathione S-Transferase (M1-1) Reaction with Phenanthrene 9,10-Oxide

    NARCIS (Netherlands)

    Ridder, L.; Rietjens, I.M.C.M.; Vervoort, J.J.M.; Mulholland, A.J.

    2002-01-01

    Glutathione S-transferases (GSTs) play an important role in the detoxification of xenobiotics in mammals. They catalyze the conjugation of glutathione to a wide range of electrophilic compounds. Phenanthrene 9,10-oxide is a model substrate for GSTs, representing an important group of epoxide

  9. Impact of uranium (U) on the cellular glutathione pool and resultant consequences for the redox status of U.

    Science.gov (United States)

    Viehweger, Katrin; Geipel, Gerhard; Bernhard, Gert

    2011-12-01

    Uranium (U) as a redox-active heavy metal can cause various redox imbalances in plant cells. Measurements of the cellular glutathione/glutathione disulfide (GSH/GSSG) by HPLC after cellular U contact revealed an interference with this essential redox couple. The GSH content remained unaffected by 10 μM U whereas the GSSG level immediately increased. In contrast, higher U concentrations (50 μM) drastically raised both forms. Using the Nernst equation, it was possible to calculate the half-cell reduction potential of 2GSH/GSSG. In case of lower U contents the cellular redox environment shifted towards more oxidizing conditions whereas the opposite effect was obtained by higher U contents. This indicates that U contact causes a consumption of reduced redox equivalents. Artificial depletion of GSH by chlorodinitrobenzene and measuring the cellular reducing capacity by tetrazolium salt reduction underlined the strong requirement of reduced redox equivalents. An additional element of cellular U detoxification mechanisms is the complex formation between the heavy metal and carboxylic functionalities of GSH. Because two GSH molecules catalyze electron transfers each with one electron forming a dimer (GSSG) two UO(2) (2+) are reduced to each UO(2) (+) by unbound redox sensitive sulfhydryl moieties. UO(2) (+) subsequently disproportionates to UO(2) (2+) and U(4+). This explains that in vitro experiments revealed a reduction to U(IV) of only around 33% of initial U(VI). Cellular U(IV) was transiently detected with the highest level after 2 h of U contact. Hence, it can be proposed that these reducing processes are an important element of defense reactions induced by this heavy metal.

  10. Inhibition of Glutathione and Thioredoxin Metabolism Enhances Sensitivity to Perifosine in Head and Neck Cancer Cells

    Directory of Open Access Journals (Sweden)

    Andrean L. Simons

    2009-01-01

    Full Text Available The hypothesis that the Akt inhibitor, perifosine (PER, combined with inhibitors of glutathione (GSH and thioredoxin (Trx metabolism will induce cytotoxicity via metabolic oxidative stress in human head and neck cancer (HNSCC cells was tested. PER induced increases in glutathione disulfide (%GSSG in FaDu, Cal-27, and SCC-25 HNSCCs as well as causing significant clonogenic cell killing in FaDu and Cal-27, which was suppressed by simultaneous treatment with N-acetylcysteine (NAC. An inhibitor of GSH synthesis, buthionine sulfoximine (BSO, sensitized Cal-27 and SCC-25 cells to PER-induced clonogenic killing as well as decreased total GSH and increased %GSSG. Additionally, inhibition of thioredoxin reductase activity (TrxRed with auranofin (AUR was able to induce PER sensitization in SCC-25 cells that were initially refractory to PER. These results support the conclusion that PER induces oxidative stress and clonogenic killing in HNSCC cells that is enhanced with inhibitors of GSH and Trx metabolism.

  11. Glutathione preservation during storage of rat lenses in optisol-GS and castor oil.

    Science.gov (United States)

    Holm, Thomas; Brøgger-Jensen, Martin Rocho; Johnson, Leif; Kessel, Line

    2013-01-01

    Glutathione concentration in the lens decreases in aging and cataractous lenses, providing a marker for tissue condition. Experimental procedures requiring unfrozen lenses from donor banks rely on transportation in storage medium, affecting lens homeostasis and alterations in glutathione levels. The aim of the study was to examine the effects of Optisol-GS and castor oil on lens condition, determined from their ability to maintain glutathione concentrations. Rat lenses were stored in the two types of storage media at varying time intervals up to 3 days. Glutathione concentration was afterwards determined in an enzymatic detection assay, specific for both reduced and oxidized forms. Lenses removed immediately after death exhibited a glutathione concentration of 4.70±0.29 mM. In vitro stored lenses in Optisol-GS lost glutathione quickly, ending with a concentration of 0.60±0.34 mM after 3 days while castor oil stored lenses exhibited a slower decline and ended at 3 times the concentration. A group of lenses were additionally stored under post mortem conditions within the host for 6 hours before its removal. Total glutathione after 6 hours was similar to that of lenses removed immediately after death, but with altered GSH and GSSG concentrations. Subsequent storage of these lenses in media showed changes similar to those in the first series of experiments, albeit to a lesser degree. It was determined that storage in Optisol-GS resulted in a higher loss of glutathione than lenses stored in castor oil. Storage for more than 12 hours reduced glutathione to half its original concentration, and was considered unusable after 24 hours.

  12. Glutathione preservation during storage of rat lenses in optisol-GS and castor oil.

    Directory of Open Access Journals (Sweden)

    Thomas Holm

    Full Text Available BACKGROUND: Glutathione concentration in the lens decreases in aging and cataractous lenses, providing a marker for tissue condition. Experimental procedures requiring unfrozen lenses from donor banks rely on transportation in storage medium, affecting lens homeostasis and alterations in glutathione levels. The aim of the study was to examine the effects of Optisol-GS and castor oil on lens condition, determined from their ability to maintain glutathione concentrations. METHODOLOGY/PRINCIPAL FINDINGS: Rat lenses were stored in the two types of storage media at varying time intervals up to 3 days. Glutathione concentration was afterwards determined in an enzymatic detection assay, specific for both reduced and oxidized forms. Lenses removed immediately after death exhibited a glutathione concentration of 4.70±0.29 mM. In vitro stored lenses in Optisol-GS lost glutathione quickly, ending with a concentration of 0.60±0.34 mM after 3 days while castor oil stored lenses exhibited a slower decline and ended at 3 times the concentration. A group of lenses were additionally stored under post mortem conditions within the host for 6 hours before its removal. Total glutathione after 6 hours was similar to that of lenses removed immediately after death, but with altered GSH and GSSG concentrations. Subsequent storage of these lenses in media showed changes similar to those in the first series of experiments, albeit to a lesser degree. CONCLUSIONS/SIGNIFICANCE: It was determined that storage in Optisol-GS resulted in a higher loss of glutathione than lenses stored in castor oil. Storage for more than 12 hours reduced glutathione to half its original concentration, and was considered unusable after 24 hours.

  13. S-Nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide.

    Science.gov (United States)

    Balazy, M; Kaminski, P M; Mao, K; Tan, J; Wolin, M S

    1998-11-27

    Peroxynitrite (ONOO-) has been shown in studies on vascular relaxation and guanylate cyclase activation to react with glutathione (GSH), generating an intermediate product that promotes a time-dependent production of nitric oxide (NO). In this study, reactions of ONOO- with GSH produced a new substance, which was characterized by liquid chromatography, ultraviolet spectroscopy, and electrospray tandem mass spectrometry. The mass spectrometric data provided evidence that the product of this reaction was S-nitroglutathione (GSNO2) and that S-nitrosoglutathione (GSNO) was not a detectable product of this reaction. Further evidence was obtained by comparison of the spectral and chromatographic properties with synthetic standards prepared by reaction of GSH with nitrosonium or nitronium borofluorates. Both the synthetic and ONOO-/GSH-derived GSNO2 generated a protonated ion, GSNO2H+, at m/z 353, which was unusually resistant to decomposition under collision activation, and no fragmentation was observed at collision energy of 25 eV. In contrast, an ion at m/z 337 (GSNOH+), generated from the synthetic GSNO, readily fragmented with the abundant loss of NO at 9 eV. Reactions of ONOO- with GSH resulted in the generation of NO, which was detected by the head space/NO-chemiluminescence analyzer method. The generation of NO was inhibited by the presence of glucose and/or CO2 in the buffers employed. Synthetic GSNO2 spontaneously generated NO in a manner that was not significantly altered by glucose or CO2. Thus, ONOO- reacts with GSH to form GSNO2, and GSNO2 decomposes in a manner that generates NO.

  14. Increased salivary oxidative stress parameters in patients with type 2 diabetes: Relation with periodontal disease.

    Science.gov (United States)

    Arana, Carlos; Moreno-Fernández, Ana María; Gómez-Moreno, Gerardo; Morales-Portillo, Cristóbal; Serrano-Olmedo, Isabel; de la Cuesta Mayor, M Carmen; Martín Hernández, Tomás

    2017-05-01

    The aim of this study was to determine whether there are differences in salivary oxidative stress between patients with diabetes mellitus type 2 (DM2) and healthy non-diabetic patients, and whether this oxidative stress is associated with the presence of periodontal disease in diabetic patients. This observational study included 70 patients divided into three groups according to metabolic control levels: 19 non-diabetic patients (control group); 24 patients with good metabolic control (HbA1c7%). The following oxidative stress parameters were measured in all subjects: glutathione peroxidase (GPx), glutathione reductase (GRd), reduced glutathione (GSH) and oxidized glutathione (GSSG). Periodontal health was determined by means of the community periodontal index (CPI) recommended by the WHO. The diabetic group with good metabolic control showed a significant increase in GPx and GRd activity in comparison with the control group (Pperiodontal health. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Synthesis, characterization, and cytotoxicity of glutathione-PEG-iron oxide magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Paula S.; Santos, Marconi C. [Universidade Federal de São Paulo, UNIFESP, Exact and Earth Sciences Department (Brazil); Guzzi Cassago, Carolina Aparecida de [Universidade Estadual de Campinas, UNICAMP, Department of Biochemistry and Tissue Biology, Institute of Biology (Brazil); Bernardes, Juliana S. [National Nanotechnology Laboratory (LNNano), National Center for Energy and Materials (CNPEM) (Brazil); Jesus, Marcelo Bispo de [Universidade Estadual de Campinas, UNICAMP, Department of Biochemistry and Tissue Biology, Institute of Biology (Brazil); Seabra, Amedea B., E-mail: amedea.seabra@ufabc.edu.br [Universidade Federal de São Paulo, UNIFESP, Exact and Earth Sciences Department (Brazil)

    2016-12-15

    Recently, increasing interest is spent on the synthesis of superparamagnetic iron oxide nanoparticles, followed by their characterization and evaluation of cytotoxicity towards tumorigenic cell lines. In this work, magnetite (Fe{sub 3}O{sub 4}) nanoparticles were synthesized by the polyol method and coated with polyethylene glycol (PEG) and glutathione (GSH), leading to the formation of PEG-Fe{sub 3}O{sub 4} and GSH-PEG-Fe{sub 3}O{sub 4} nanoparticles. The nanoparticles were characterized by state-of-the-art techniques: dynamic light scattering (DLS), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and superconducting quantum interference device (SQUID) magnetic measurements. PEG-Fe{sub 3}O{sub 4} and GSH-PEG-Fe{sub 3}O{sub 4} nanoparticles have crystallite sizes of 10 and 5 nm, respectively, indicating compression in crystalline lattice upon addition of GSH on the nanoparticle surface. Both nanoparticles presented superparamagnetic behavior at room temperature, and AFM images revealed the regular spherical shape of the nanomaterials and the absence of particle aggregation. The average hydrodynamic sizes of PEG-Fe{sub 3}O{sub 4} and GSH-PEG-Fe{sub 3}O{sub 4} nanoparticles were 69 ± 37 and 124 nm ± 75 nm, respectively. The cytotoxicity of both nanoparticles was screened towards human prostatic carcinoma cells (PC-3). The results demonstrated a decrease in PC-3 viability upon treatment with PEG-Fe{sub 3}O{sub 4} or GSH-PEG-Fe{sub 3}O{sub 4} nanoparticles in a concentration-dependent manner. However, the cytotoxicity was not time-dependent. Due to the superparamagnetic behavior of PEG-Fe{sub 3}O{sub 4} or GSH-PEG-Fe{sub 3}O{sub 4} nanoparticles, upon the application of an external magnetic field, those nanoparticles can be guided to the target site yielding local toxic effects to tumor cells with minimal side effects to normal tissues, highlighting the promising uses of iron oxide nanoparticles in

  16. Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Anna T Tillmann

    Full Text Available The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen and oxygen species following phagocytosis by host immune cells. In response to these toxins, this fungus activates potent anti-stress responses that include scavenging of reactive nitrosative and oxidative species via the glutathione system. Here we examine the differential roles of two glutathione recycling enzymes in redox homeostasis, stress adaptation and virulence in C. albicans: glutathione reductase (Glr1 and the S-nitrosoglutathione reductase (GSNOR, Fdh3. We show that the NADPH-dependent Glr1 recycles GSSG to GSH, is induced in response to oxidative stress and is required for resistance to macrophage killing. GLR1 deletion increases the sensitivity of C. albicans cells to H2O2, but not to formaldehyde or NO. In contrast, Fdh3 detoxifies GSNO to GSSG and NH3, and FDH3 inactivation delays NO adaptation and increases NO sensitivity. C. albicans fdh3⎔ cells are also sensitive to formaldehyde, suggesting that Fdh3 also contributes to formaldehyde detoxification. FDH3 is induced in response to nitrosative, oxidative and formaldehyde stress, and fdh3Δ cells are more sensitive to killing by macrophages. Both Glr1 and Fdh3 contribute to virulence in the Galleria mellonella and mouse models of systemic infection. We conclude that Glr1 and Fdh3 play differential roles during the adaptation of C. albicans cells to oxidative, nitrosative and formaldehyde stress, and hence during the colonisation of the host. Our findings emphasise the importance of the glutathione system and the maintenance of intracellular redox homeostasis in this major pathogen.

  17. Role of glutathione metabolism status in the definition of some cellular parameters and oxidative stress tolerance of Saccharomyces cerevisiae cells growing as biofilms.

    Science.gov (United States)

    Gales, Grégoire; Penninckx, Michel; Block, Jean-Claude; Leroy, Pierre

    2008-08-01

    The resistance of Saccharomyces cerevisiae to oxidative stress (H(2)O(2) and Cd(2+)) was compared in biofilms and planktonic cells, with the help of yeast mutants deleted of genes related to glutathione metabolism and oxidative stress. Biofilm-forming cells were found predominantly in the G1 stage of the cell cycle. This might explain their higher tolerance to oxidative stress and the young replicative age of these cells in an old culture. The reduced glutathione status of S. cerevisiae was affected by the growth phase and apparently plays an important role in oxidative stress tolerance in cells growing as a biofilm.

  18. Purification and properties of glutathione reductase from liver of the anoxia-tolerant turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Willmore, William G; Storey, Kenneth B

    2007-03-01

    Glutathione reductase (GR) is a homodimeric flavoprotein that catalyzes the reduction of oxidized glutathione (GSSG) using NADPH as a cofactor. The enzyme is a major component of cellular defense mechanisms against oxidative injury. In this study, GR was purified from the liver of the anoxia-tolerant turtle, Trachemys scripta elegans. The overall fold purifications were 13.3- and 12.1-fold with final specific activities of 5.5 and 1.44 U/mg of protein for control and anoxic turtle GR, respectively. SDS-PAGE of purified turtle liver GR showed a single protein band at approximately 55 kDa. Reverse phase HPLC of turtle GR revealed a single peak that had the same retention time as yeast GR. No new isoform of GR was detected in liver of T. s. elegans during anoxia. The K (m) values of turtle GR for GSSG and NADPH was 44.6 and 6.82 microM, respectively, suggesting a substantially higher affinity of turtle GR toward GSSG than most other vertebrates. Unlike other human GR, NADP(+ )did not inhibit turtle GR activity. The activation energy of turtle GR, calculated from the slope of the Arrhenius plot, was 32.2 +/- 2.64 kJ/mol. Turtle GR had high activity under a broad pH range (having activity between pHs 4 and 10; optimal activity at pH 6.5) and the enzyme maintains activity under the pH drop that occurs under anoxic conditions. The high affinity of turtle GR suggests that turtles have high redox buffering capacity of tissues to protect against oxidative stress encountered during anoxia/reoxygenation.

  19. Swimming training induces liver adaptations to oxidative stress and insulin sensitivity in rats submitted to high-fat diet.

    Science.gov (United States)

    Zacarias, Aline Cruz; Barbosa, Maria Andrea; Guerra-Sá, Renata; De Castro, Uberdan Guilherme Mendes; Bezerra, Frank Silva; de Lima, Wanderson Geraldo; Cardoso, Leonardo M; Santos, Robson Augusto Souza Dos; Campagnole-Santos, Maria José; Alzamora, Andréia Carvalho

    2017-11-01

    Oxidative stress, physical inactivity and high-fat (FAT) diets are associated with hepatic disorders such as metabolic syndrome (MS). The therapeutic effects of physical training (PT) were evaluated in rats with MS induced by FAT diet for 13 weeks, on oxidative stress and insulin signaling in the liver, during the last 6 weeks. FAT-sedentary (SED) rats increased body mass, retroperitoneal fat, mean arterial pressure (MAP) and heart rate (HR), and total cholesterol, serum alanine aminotransferase, glucose and insulin. Livers of FAT-SED rats increased superoxide dismutase activity, thiobarbituric acid-reactive substances, protein carbonyl and oxidized glutathione (GSSG); and decreased catalase activity, reduced glutathione/GSSG ratio, and the mRNA expression of insulin receptor substrate 1 (IRS-1) and serine/threonine kinase 2. FAT-PT rats improved in fitness and reduced their body mass, retroperitoneal fat, and glucose, insulin, total cholesterol, MAP and HR; and their livers increased superoxide dismutase and catalase activities, the reduced glutathione/GSSG ratio and the expression of peroxisome proliferator-activated receptor gamma and insulin receptor compared to FAT-SED rats. These findings indicated adaptive responses to PT by restoring the oxidative balance and insulin signaling in the liver and certain biometric and biochemical parameters as well as MAP in MS rats.

  20. Salicylic acid-induced glutathione status in tomato crop and resistance to root-knot nematode, Meloidogyne incognita (Kofoid & White Chitwood

    Directory of Open Access Journals (Sweden)

    Hari C. Meher

    2011-10-01

    Full Text Available Salicylic acid-(SA is a plant defense stimulator. Exogenous application of SA might influence the status of glutathione-(GSH. GSH activates and SA alters the expression of defense genes to modulate plant resistance against pathogens. The fate of GSH in a crop following SA treatment is largely unknown. The SA-induced profiles of free reduced-, free oxidized-(GSSG and protein bound-(PSSG glutathione in tomato crop following foliar treatment of transplant at 5.0-10.0 μg mL–1 were measured by liquid chromatography. Resistance to root-knot nematode, Meloidogyne incognita damaging tomato and crop performance were also evaluated. SA treatment at 5.0-10.0 μg mL–1 to tomato transplants increased GSH, GSSG and PSSG in plant leaf and root, more so in leaf, during crop growth and development. As the fruits ripened, GSH and PSSG increased and GSSG declined. SA reduced the root infection by M. incognita, nematode reproduction and thus, improved the resistance of tomato var. Pusa Ruby, but reduced crop growth and redox status. SA at 5.0 μg mL–1 improved yield and fruit quality. The study firstly linked SA with activation of glutathione metabolism and provided an additional dimension to the mechanism of induced resistance against obligate nematode pathogen. SA increased glutathione status in tomato crop, imparted resistance against M. incognita, augmented crop yield and functional food quality. SA can be applied at 5.0 μg mL–1 for metabolic engineering of tomato at transplanting to combine host-plant resistance and health benefits in formulating a strategic nematode management decision.

  1. Exogenous Spermidine Alleviates Low Temperature Injury in Mung Bean (Vigna radiata L. Seedlings by Modulating Ascorbate-Glutathione and Glyoxalase Pathway

    Directory of Open Access Journals (Sweden)

    Kamrun Nahar

    2015-12-01

    Full Text Available The role of exogenous spermidine (Spd in alleviating low temperature (LT stress in mung bean (Vigna radiata L. cv. BARI Mung-3 seedlings has been investigated. Low temperature stress modulated the non-enzymatic and enzymatic components of ascorbate-glutathione (AsA-GSH cycle, increased H2O2 content and lipid peroxidation, which indicate oxidative damage of seedlings. Low temperature reduced the leaf relative water content (RWC and destroyed leaf chlorophyll, which inhibited seedlings growth. Exogenous pretreatment of Spd in LT-affected seedlings significantly increased the contents of non-enzymatic antioxidants of AsA-GSH cycle, which include AsA and GSH. Exogenous Spd decreased dehydroascorbate (DHA, increased AsA/DHA ratio, decreased glutathione disulfide (GSSG and increased GSH/GSSG ratio under LT stress. Activities of AsA-GSH cycle enzymes such as ascorbate peroxidase (APX, monodehydroascorbate reductase (MDHAR, dehydroascorbate reductase (DHAR and glutathione reductase (GR increased after Spd pretreatment in LT affected seedlings. Thus, the oxidative stress was reduced. Protective effects of Spd are also reflected from reduction of methylglyoxal (MG toxicity by improving glyoxalase cycle components, and by maintaining osmoregulation, water status and improved seedlings growth. The present study reveals the vital roles of AsA-GSH and glyoxalase cycle in alleviating LT injury.

  2. Glutathione-assisted synthesis of star-shaped zinc oxide nanostructures and their photoluminescence behavior

    International Nuclear Information System (INIS)

    Kavita; Singh, Karamjit; Kumar, Sunil; Bhatti, H.S.

    2014-01-01

    Star-shaped ZnO nanostructures have been synthesized by facile chemical co-precipitation method in the presence of glutathione. Glutathione, a reducing agent, shape modifier and an entirely benign antioxidant; acts as a capping agent in the present study. The powder X-ray diffraction patterns indicate that the novel star-shaped ZnO nanostructures exhibit hexagonal structure. Fourier transform infra-red spectroscopic studies confirmed the anchoring of glutathione on ZnO nanocrystals. Transmission electron microscopy and field emission scanning electron microscopy revealed the star and cube-shaped shaped morphology of the glutathione modified nanocrystals. Optical characterization of synthesized nanocrystals has been done by UV–vis absorption spectroscopy and steady state photoluminescence spectroscopy. Recorded Photoluminescence spectra confirm the multi-chromatic photoluminescence behavior of the synthesized nanostructures. - Highlights: • Morphology has been investigated as a function of capping agent concentration. • Comparison between capped and uncapped ZnO nanoparticles has been examined. • Diffraction scans show the crystalline wurtzite structure of synthesized product. • Recorded PL spectra show the multichromatic behavior of synthesized nanostructures

  3. Inhibition of rat, mouse, and human glutathione S-transferase by eugenol and its oxidation products

    NARCIS (Netherlands)

    Rompelberg, C.J.M.; Ploemen, J.H.T.M.; Jespersen, S.; Greef, J. van der; Verhagen, H.; Bladeren, P.J. van

    1996-01-01

    The irreversible and reversible inhibition of glutathione S-transferases (GSTs) by eugenol was studied in rat, mouse and man. Using liver cytosol of human, rat and mouse, species differences were found in the rate of irreversible inhibition of GSTs by eugenol in the presence of the enzyme

  4. JS-K, a glutathione/glutathione S-transferase-activated nitric oxide releasing prodrug inhibits androgen receptor and WNT-signaling in prostate cancer cells.

    Science.gov (United States)

    Laschak, Martin; Spindler, Klaus-Dieter; Schrader, Andres J; Hessenauer, Andrea; Streicher, Wolfgang; Schrader, Mark; Cronauer, Marcus V

    2012-03-30

    Nitric oxide (NO) and its oxidative reaction products have been repeatedly shown to block steroid receptor function via nitrosation of zinc finger structures in the DNA-binding domain (DBD). In consequence NO-donors could be of special interest for the treatment of deregulated androgen receptor(AR)-signaling in castration resistant prostate cancer (CRPC). Prostate cancer (PCa) cells were treated with JS-K, a diazeniumdiolate derivate capable of generating large amounts of intracellular NO following activation by glutathione S-transferase. Generation of NO was determined indirectly by the detection of nitrate in tissue culture medium or by immunodetection of nitrotyrosine in the cytoplasm. Effects of JS-K on intracellular AR-levels were determined by western blotting. AR-dimerization was analyzed by mammalian two hybrid assay, nuclear translocation of the AR was visualized in PCa cells transfected with a green fluorescent AR-Eos fusion protein using fluorescence microscopy. Modulation of AR- and WNT-signalling by JS-K was investigated using reporter gene assays. Tumor cell proliferation following JS-K treatment was measured by MTT-Assay. The NO-releasing compound JS-K was shown to inhibit AR-mediated reporter gene activity in 22Rv1 CRPC cells. Inhibition of AR signaling was neither due to an inhibition of nuclear import nor to a reduction in AR-dimerization. In contrast to previously tested NO-donors, JS-K was able to reduce the intracellular concentration of functional AR. This could be attributed to the generation of extremely high intracellular levels of the free radical NO as demonstrated indirectly by high levels of nitrotyrosine in JS-K treated cells. Moreover, JS-K diminished WNT-signaling in AR-positive 22Rv1 cells. In line with these observations, castration resistant 22Rv1 cells were found to be more susceptible to the growth inhibitory effects of JS-K than the androgen dependent LNCaP which do not exhibit an active WNT-signaling pathway. Our results

  5. Overexpression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli

    International Nuclear Information System (INIS)

    Yoon, Ho-Sung; Lee, In-Ae; Lee, Hyoshin; Lee, Byung-Hyun; Jo, Jinki

    2005-01-01

    Glutathione reductase (GR) plays an essential role in a cell's defense against reactive oxygen metabolites by sustaining the reduced status of an important antioxidant glutathione. We constructed a recombinant plasmid based on the expression vector pET-18a that overexpresses a eukaryotic GR from Brassica campestris (BcGR) in Escherichia coli. For comparative analyses, E. coli GR (EcGR) was also subcloned in the same manner. The transformed E. coli with the recombinant constructs accumulated a high level of GR transcripts upon IPTG induction. Also, Western blot analysis showed overproduction of the BcGR protein in a soluble fraction of the transformed E. coli extract. When treated with oxidative stress generating reagents such as paraquat, salicylic acid, and cadmium, the BcGR overproducing E. coli exhibited a higher level of growth and survival rate than the control E. coli strain, but it was not as high as the E. coli strain transformed with the inducible EcGR. The translated amino acid sequences of BcGR and EcGR share 37.3% identity but all the functionally known important residues are conserved. It appears that eukaryotic BcGR functions in a prokaryotic system by providing protection against oxidative damages in E. coli

  6. Severity of anxiety- but not depression- is associated with oxidative stress in Major Depressive Disorder.

    Science.gov (United States)

    Steenkamp, Lisa R; Hough, Christina M; Reus, Victor I; Jain, Felipe A; Epel, Elissa S; James, S Jill; Morford, Alexandra E; Mellon, Synthia H; Wolkowitz, Owen M; Lindqvist, Daniel

    2017-09-01

    Oxidative stress is implicated in both depression and anxiety, but it is currently unclear whether this relates to syndromal diagnoses or trans-diagnostic dimensional symptoms. We examined the relationship between oxidative stress and severity of depression and anxiety symptoms in individuals with Major Depressive Disorder (MDD). Plasma oxidative stress markers F2-isoprostanes and oxidized glutathione (GSSG), and the antioxidant reduced glutathione (GSH), were assessed in 69 physically healthy, medication-free MDD subjects. Symptoms of anxiety and depression were assessed using the Hamilton Anxiety (HAM-A) and Hamilton Depression (HAM-D) Rating Scales. Total HAM-A and HAM-D scores, along with "core" anxiety and depression subscales, and individual HAM-D items "psychic anxiety" and "depressed mood," were related to oxidative stress markers. Analyses controlled for age, sex, BMI, and smoking. Total HAM-A ratings were positively associated with F2-isoprostanes (β=.26, p=.042) and GSSG (β=.25, p=.049), but not GSH (β=.05, p=.711). Core anxiety severity was positively associated with F2-isoprostanes (β=.34, p=.012) and GSSG, although this did not reach significance (β=.24, p=.074). None of the biological markers were significantly associated with total HAM-D or core depression ratings (all p>.13). Subjects scoring high on "psychic anxiety" had elevated F2-isoprostanes (p=.030) and GSSG (p=.020). This was not seen with "depressed mood" scores (all p>.12). We assessed peripheral oxidative markers, but their relationship to the brain is unclear. Oxidative stress is more closely related to anxiety than depression symptoms in MDD. This highlights the importance of relating oxidative stress to specific symptoms and could provide new insights into the biological correlates of affective disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Measurement of glutathione-protein mixed disulfides

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1984-01-01

    The development of a sensitive and highly specific assay for the presence of mixed disulfides between protein thiol groups and endogenous thiols has been undertaken. Previous investigations on the concentrations of glutathione (GSH), glutathione disulfide (GSSG) and protein glutathione mixed disulfides (ProSSG) have been of limited usefulness because of the poor specificity of the assays used. Our assay for these forms of glutathione is based on high performance liquid chromatography (HPLC) and is an extension of an earlier method. After perchloric acid precipitation, the protein sample is washed with an organic solvent to fully denature the protein. Up to a 10-fold increase in GSH released from fetal bovine serum (FBS) protein has been found when the protein precipitate is washed with ethanol rather than ether, as earlier suggested. Similar effects have been observed with an as yet unidentified thiol which elutes in the chromatography system with a retention volume similar to cysteine

  8. Behaviour of glutathione in the cornea epithelium of cattle and rabbits under the influence of infrared radiation

    International Nuclear Information System (INIS)

    Scharsich, G.

    1978-01-01

    After creating a keratitis photoelectrica by means of a mercury/quartz analysis lamp, the concentration of GSH (glutathion, reduced) and GSSG (glutathion, oxidised) in the cornea epithelium of cattle and of rabbits at different times after irradiation was determined. The question of whether ultraviolet radiation considerably influences the GSH/GSSG quotient before the keratitis photoelectrica is fully formed morphologically, could be answered as follows: There is no considerable change in the GSH/GSSG quotient during the first 7-10 hours after the irradiation. Then, when there is, also morphologically, a keratitis photoelectrica, the GSH/GSSG quotient is doubled. The linkage of the GSH/GSSG system and hexosephosphatshunt via the NADP/NADPH system leads us to the conclusion that irradiation does not cause any direct changes in the GSH/GSSG system. Only when the cornea epithelium visably disintegrates an increased reduction of the glutathion occurs, like in several other damaging influences. Thus the found increase of the GSH/GSSG quotient 7-10 hours after ultraviolet irradiation might be unspecific. (orig./AJ) [de

  9. Glycine Increases Insulin Sensitivity and Glutathione Biosynthesis and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mohammed El-Hafidi

    2018-01-01

    Full Text Available Oxidative stress and redox status play a central role in the link between insulin resistance (IR and lipotoxicity in metabolic syndrome. This mechanistic link may involve alterations in the glutathione redox state. We examined the effect of glycine supplementation to diet on glutathione biosynthesis, oxidative stress, IR, and insulin cell signaling in liver from sucrose-fed (SF rats characterized by IR and oxidative stress. Our hypothesis is that the correction of glutathione levels by glycine treatment leads to reduced oxidative stress, a mechanism associated with improved insulin signaling and IR. Glycine treatment decreases the levels of oxidative stress markers in liver from SF rats and increases the concentrations of glutathione (GSH and γ-glutamylcysteine and the amount of γ-glutamylcysteine synthetase (γ-GCS, a key enzyme of GSH biosynthesis in liver from SF rats. In liver from SF rats, glycine also decreases the insulin-induced phosphorylation of insulin receptor substrate-1 (ISR-1 in serine residue and increases the phosphorylation of insulin receptor β-subunit (IR-β in tyrosine residue. Thus, supplementing diets with glycine to correct GSH deficiency and to reduce oxidative stress provides significant metabolic benefits to SF rats by improving insulin sensitivity.

  10. Gene expression, glutathione status and indicators of hepatic oxidative stress in laughing gull (Larus atricilla) hatchlings exposed to methylmercury

    Science.gov (United States)

    Jenko, Kathryn; Karouna-Renier, Natalie K.; Hoffman, David J.

    2012-01-01

    Despite extensive studies of methylmercury (MeHg) toxicity in birds, molecular effects on birds are poorly characterized. To improve our understanding of toxicity pathways and identify novel indicators of avian exposure to Hg, the authors investigated genomic changes, glutathione status, and oxidative status indicators in liver from laughing gull (Larus atricilla) hatchlings that were exposed in ovo to MeHg (0.05–1.6 µg/g). Genes involved in the transsulfuration pathway, iron transport and storage, thyroid-hormone related processes, and cellular respiration were identified by suppression subtractive hybridization as differentially expressed. Quantitative polymerase chain reaction (qPCR) identified statistically significant effects of Hg on cytochrome C oxidase subunits I and II, transferrin, and methionine adenosyltransferase RNA expression. Glutathione-S-transferase activity and protein-bound sulfhydryl levels decreased, whereas glucose-6-phosphate dehydrogenase activity increased dose-dependently. Total sulfhydryl concentrations were significantly lower at 0.4 µg/g Hg than in controls. T ogether, these endpoints provided some evidence of compensatory effects, but little indication of oxidative damage at the tested doses, and suggest that sequestration of Hg through various pathways may be important for minimizing toxicity in laughing gulls. This is the first study to describe the genomic response of an avian species to Hg. Laughing gulls are among the less sensitive avian species with regard to Hg toxicity, and their ability to prevent hepatic oxidative stress may be important for surviving levels of MeHg exposures at which other species succumb.

  11. Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis

    NARCIS (Netherlands)

    Lutgendorff, Femke; Trulsson, Lena M.; van Minnen, L. Paul; Rijkers, Ger T.; Timmerman, Harro M.; Franzen, Lennart E.; Gooszen, Hein G.; Akkermans, Louis M. A.; Soderholm, Johan D.; Sandstrom, Per A.

    2008-01-01

    Factors determining severity of acute pancreatitis (AP) are poorly understood. Oxidative stress causes acinar cell injury and contributes to the severity, whereas prophylactic probiotics ameliorate experimental pancreatitis. Our objective was to study how probiotics affect oxidative stress,

  12. Infusion of Hibiscus sabdariffa L. Modulates Oxidative Stress in Patients with Marfan Syndrome

    Science.gov (United States)

    Soto, María Elena; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Duran-Hernández, Erendira Janet; Pérez-Torres, Israel

    2016-01-01

    Marfan syndrome (MFS) is associated with progressive aortic dilatation, endothelial dysfunction, and oxidative stress that contribute to the early acute dissection of the vessel and can end up in rupture of the aorta and sudden death. Many studies have described that the organic acids from Hibiscus sabdariffa Linne (HSL) calyces increase cellular antioxidant capacity and decrease oxidative stress. Here we evaluate if the antioxidant properties of HSL infusion improve oxidative stress in MFS patients. Activities of extra cellular super oxide dismutase (ECSOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GSSG-R), glutathione (GSH), lipid peroxidation (LPO) index, total antioxidant capacity (TAC), and ascorbic acid were determined in plasma from MFS patients. Values before and after 3 months of the treatment with 2% HSL infusion were compared in control and MFS subjects. After treatment, there was a significant decrease in ECSOD (p = 0.03), EGPx (p = 0.04), GST (p = 0.03), GSH (p = 0.01), and TAC and ascorbic acid (p = 0.02) but GSSG-R activity (p = 0.04) and LPO (p = 0.02) were increased in MFS patients in comparison to patients receiving the HSL treatment and C subjects. Therefore, the infusion of HSL calyces has antioxidant properties that allow an increase in antioxidant capacity of both the enzymatic and nonenzymatic systems, in the plasma of the MSF patients. PMID:27413258

  13. Infusion of Hibiscus sabdariffa L. Modulates Oxidative Stress in Patients with Marfan Syndrome.

    Science.gov (United States)

    Soto, María Elena; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Duran-Hernández, Erendira Janet; Pérez-Torres, Israel

    2016-01-01

    Marfan syndrome (MFS) is associated with progressive aortic dilatation, endothelial dysfunction, and oxidative stress that contribute to the early acute dissection of the vessel and can end up in rupture of the aorta and sudden death. Many studies have described that the organic acids from Hibiscus sabdariffa Linne (HSL) calyces increase cellular antioxidant capacity and decrease oxidative stress. Here we evaluate if the antioxidant properties of HSL infusion improve oxidative stress in MFS patients. Activities of extra cellular super oxide dismutase (ECSOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GSSG-R), glutathione (GSH), lipid peroxidation (LPO) index, total antioxidant capacity (TAC), and ascorbic acid were determined in plasma from MFS patients. Values before and after 3 months of the treatment with 2% HSL infusion were compared in control and MFS subjects. After treatment, there was a significant decrease in ECSOD (p = 0.03), EGPx (p = 0.04), GST (p = 0.03), GSH (p = 0.01), and TAC and ascorbic acid (p = 0.02) but GSSG-R activity (p = 0.04) and LPO (p = 0.02) were increased in MFS patients in comparison to patients receiving the HSL treatment and C subjects. Therefore, the infusion of HSL calyces has antioxidant properties that allow an increase in antioxidant capacity of both the enzymatic and nonenzymatic systems, in the plasma of the MSF patients.

  14. Protection of myocytes against free radical-induced damage by accelerated turnover of the glutathione redox cycle

    NARCIS (Netherlands)

    Le, C. T.; Hollaar, L.; van der Valk, E. J.; Franken, N. A.; van Ravels, F. J.; Wondergem, J.; van der Laarse, A.

    1995-01-01

    The primary defence mechanism of myocytes against peroxides and peroxide-derived peroxyl and alkoxyl radicals is the glutathione redox cycle. The purpose of the present study was to increase the turnover rate of this cycle by stimulating the glutathione peroxidase catalysed reaction (2GSH-->GSSG),

  15. Differential transcription of cytochrome P450s and glutathione S transferases in DDT-susceptible and resistant Drosophila melanogaster strains in response to DDT and oxidative stress

    Science.gov (United States)

    Metabolic DDT resistance in Drosophila melanogaster has previously been associated with constitutive over-transcription of cytochrome P450s. Increased P450 activity has also been associated with increased oxidative stress. In contrast, over-transcription of glutathione S transferases (GSTs) has been...

  16. Roles of sedentary aging and lifelong physical activity on exchange of glutathione across exercising human skeletal muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Cabo, Helena

    2014-01-01

    Reactive oxygen species (ROS) are important signaling molecules with regulatory functions, and in young and adult organisms, the formation of ROS is increased during skeletal muscle contractions. However, ROS can be deleterious to cells when not sufficiently counterbalanced by the antioxidant sys...... underlying skeletal muscle and vascular dysfunction with sedentary aging. Lifelong physical activity up-regulates antioxidant systems which may be one of the mechanisms underlying the lack of exercise-induced increase in GSSG....... system. Aging is associated with accumulation of oxidative damage to lipids, DNA and proteins. Given the pro-oxidant effect of skeletal muscle contractions, this effect of age could be a result of excessive ROS formation. We evaluated the effect of acute exercise on changes in blood redox state across...... the leg of young (23±1 years) and older (66±2 years) sedentary humans by measuring the whole blood concentration of the reduced (GSH) and oxidized (GSSG) form of the antioxidant glutathione. To assess the role of physical activity, lifelong physically active older subjects (62±2 years) were included...

  17. Adrenergic regulation during acute hepatic infection with Entamoeba histolytica in the hamster: involvement of oxidative stress, Nrf2 and NF-KappaB

    Directory of Open Access Journals (Sweden)

    Aldaba-Muruato Liseth Rubi

    2017-01-01

    Full Text Available Oxidative stress and transcriptional pathways of nuclear factor erythroid 2-related factor 2 (Nrf2 and nuclear factor kappa-B (NF-κB are critically involved in the etiopathology of amebic liver abscess (ALA. In this work, we studied the relationship between the adrenergic nervous system and ALA in the hamster. ALA was visible at 12 h of infection. While 6-hydroxidopamine (6-OHDA decreased infection, propranolol (β-adrenergic blocker treatment was associated with less extensive liver damage, and phentolamine treatment (α-adrenergic blocker significantly reduced ALA compared to 6-OHDA and propranolol. Serum enzymatic activities of alanine aminotransferase (ALT and γ-glutamyl transpeptidase (γ-GTP were increased at 12 h post-infection. Chemical denervation and α and β-adrenergic blockers decreased ALT to normal levels, while 6-OHDA and propranolol showed a trend to decrease γ-GTP but phentolamine significantly reduced γ-GTP. Amebic infection increased oxidized glutathione (GSSG and decreased both reduced glutathione (GSH and the GSH/GSSG ratio. Propranolol and 6-OHDA showed a tendency to decrease GSSG. However, GSH, GSSG and GSH/GSSG returned to normal levels with phentolamine. Furthermore, amebic infection increased pNF-κB and interleukin-1β (IL-1β, and showed a tendency to decrease hemoxigenase-1 (HO-1, but not Nrf2. Chemical denervation showed a trend to decrease pNF-κB and IL-1β, and neither Nrf2 nor HO-1 increased significantly. In addition, NF-κB and IL-1β were attenuated by propranolol and phentolamine treatments, although phentolamine showed significant overexpression of Nrf2 and HO-1. This suggests that the adrenergic system may be involved in oxidative stress and in modulation of the Nrf2 and NF-κB pathways during ALA development.

  18. Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems

    Science.gov (United States)

    Nahar, Kamrun; Hasanuzzaman, Mirza; Alam, Md. Mahabub; Fujita, Masayuki

    2015-01-01

    Drought is considered one of the most acute environmental stresses presently affecting agriculture. We studied the role of exogenous glutathione (GSH) in conferring drought stress tolerance in mung bean (Vigna radiata L. cv. Binamoog-1) seedlings by examining the antioxidant defence and methylglyoxal (MG) detoxification systems and physiological features. Six-day-old seedlings were exposed to drought stress (−0.7 MPa), induced by polyethylene glycol alone and in combination with GSH (1 mM) for 24 and 48 h. Drought stress decreased seedling dry weight and leaf area; resulted in oxidative stress as evidenced by histochemical detection of hydrogen peroxide (H2O2) and O2⋅− in the leaves; increased lipid peroxidation (malondialdehyde), reactive oxygen species like H2O2 content and O2⋅− generation rate and lipoxygenase activity; and increased the MG level. Drought decreased leaf succulence, leaf chlorophyll and relative water content (RWC); increased proline (Pro); decreased ascorbate (AsA); increased endogenous GSH and glutathione disulfide (GSSG) content; decreased the GSH/GSSG ratio; increased ascorbate peroxidase and glutathione S-transferase activities; and decreased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase. The activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) increased due to drought stress. In contrast to drought stress alone, exogenous GSH enhanced most of the components of the antioxidant and glyoxalase systems in drought-affected mung bean seedlings at 24 h, but GSH did not significantly affect AsA, Pro, RWC, leaf succulence and the activities of Gly I and DHAR after 48 h of stress. Thus, exogenous GSH supplementation with drought significantly enhanced the antioxidant components and successively reduced oxidative damage, and GSH up-regulated the glyoxalase system and reduced MG toxicity, which played a significant role in improving the physiological features and drought

  19. JS-K, a glutathione S-transferase-activated nitric oxide donor with antineoplastic activity in malignant gliomas.

    Science.gov (United States)

    Weyerbrock, Astrid; Osterberg, Nadja; Psarras, Nikolaos; Baumer, Brunhilde; Kogias, Evangelos; Werres, Anna; Bette, Stefanie; Saavedra, Joseph E; Keefer, Larry K; Papazoglou, Anna

    2012-02-01

    Glutathione S-transferases (GSTs) control multidrug resistance and are upregulated in many cancers, including malignant gliomas. The diazeniumdiolate JS-K generates nitric oxide (NO) on enzymatic activation by glutathione and GST, showing promising NO-based anticancer efficacy. To evaluate the role of NO-based antitumor therapy with JS-K in U87 gliomas in vitro and in vivo. U87 glioma cells and primary glioblastoma cell lines were exposed to JS-K and a variety of inhibitors to study cell death by necrosis, apoptosis, and other mechanisms. GST expression was evaluated by immunocytochemistry, polymerase chain reaction, and Western blot, and NO release from JS-K was studied with a NO assay. The growth-inhibitory effect of JS-K was studied in a U87 xenograft model in vivo. Dose-dependent inhibition of cell proliferation was observed in human U87 glioma cells and primary glioblastoma cells in vitro. Cell death was partially induced by caspase-dependent apoptosis, which could be blocked by Z-VAD-FMK and Q-VD-OPH. Inhibition of GST by sulfasalazine, cGMP inhibition by ODQ, and MEK1/2 inhibition by UO126 attenuated the antiproliferative effect of JS-K, suggesting the involvement of various intracellular death signaling pathways. Response to JS-K correlated with mRNA and protein expression of GST and the amount of NO released by the glioma cells. Growth of U87 xenografts was reduced significantly, with immunohistochemical evidence for increased necrosis and apoptosis and reduced proliferation. Our data show for the first time the potent antiproliferative effect of JS-K in gliomas in vitro and in vivo. These findings warrant further investigation of this novel NO-releasing prodrug in gliomas.

  20. Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alshamsan, Aws

    2017-04-01

    There are very few studies regarding the biological activity of cobalt-based nanoparticles (NPs) and, therefore, the possible mechanism behind the biological response of cobalt NPs has not been fully explored. The present study was designed to explore the potential mechanisms of the cytotoxicity of cobalt NPs in human breast cancer (MCF-7) cells. The shape and size of cobalt NPs were characterized by scanning and transmission electron microscopy (SEM and TEM). The crystallinity of NPs was determined by X-ray diffraction (XRD). The dissolution of NPs was measured in phosphate-buffered saline (PBS) and culture media by atomic absorption spectroscopy (AAS). Cytotoxicity parameters, such as [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT), neutral red uptake (NRU), and lactate dehydrogenase (LDH) release suggested that cobalt NPs were toxic to MCF-7 cells in a dose-dependent manner (50-200μg/ml). Cobalt NPs also significantly induced reactive oxygen species (ROS) generation, lipid peroxidation (LPO), mitochondrial outer membrane potential loss (MOMP), and activity of caspase-3 enzymes in MCF-7 cells. Moreover, cobalt NPs decreased intracellular antioxidant glutathione (GSH) molecules. The exogenous supply of antioxidant N-acetyl cysteine in cobalt NP-treated cells restored the cellular GSH level and prevented cytotoxicity that was also confirmed by microscopy. Similarly, the addition of buthionine-[S, R]-sulfoximine, which interferes with GSH biosynthesis, potentiated cobalt NP-mediated toxicity. Our data suggested that low solubility cobalt NPs could exert toxicity in MCF-7 cells mainly through cobalt NP dissolution to Co 2+ . Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The importance of Arabidopsis glutathione peroxidase 8 for protecting Arabidopsis plant and E. coli cells against oxidative stress.

    Science.gov (United States)

    Gaber, Ahmed

    2014-01-01

    Glutathione peroxidases (GPXs) are major family of the reactive oxygen species (ROS) scavenging enzymes. Recently, database analysis of the Arabidopsis genome revealed a new open-reading frame, thus increasing the total number of AtGPX gene family to eight (AtGPX1-8). The effect of plant hormones like; i. e. salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), indoleacetic acid (IAA), and mannitol on the expression of the genes confirm that the AtGPX genes family is regulated by multiple signaling pathways. The survival rate of AtGPX8 knockout plants (KO8) was significantly decreased under heat stress compared with the wild type. Moreover, the content of malondialdehyde (MDA) and protein oxidation was significantly increased in the KO8 plant cells under heat stress. Results indicating that the deficiency of AtGPX8 accelerates the progression of oxidative stress in KO8 plants. On the other hand, the overexpression of AtGPX8 in E. coli cells enhance the growth of the recombinant enzyme on media supplemented with 0.2 mM cumene hydroperoxide, 0.3 mM H 2O 2 or 600 mM NaCl.

  2. Effects of intracellular chelatable iron and oxidative stress on transcription of classical cellular glutathione peroxidase gene in murine erythroleukemia cells

    International Nuclear Information System (INIS)

    Fuchs, O.

    1997-01-01

    The effect of intracellular chelatable iron levels and of oxidative stress on nuclear classical cellular glutathione peroxidase (GSHPx-1) RNA nascent chain elongation (run-on transcription) and on the stability of cytoplasmic GSHPx-1 mRNA was investigated in murine erythroleukemia (MEL) cells. The amount in the intracellular low molecular mass iron pool was changed by incubation of MEL cells transformed by Friend virus with iron donors or iron chelators. Transcription in vitro in isolated nuclei from treated cells showed that the treatment with chelators (desferrioxamine (DFO), pyridoxal isonicotinoyl hydrazone) decrease the rate of nuclear GSHPx-1 RNA nascent chain elongation in both un-induced and with 5 mmol hexamethylenebisacetamide to erythroid differentiation induced MEL cells. Iron donors (diferric transferrin,, Fe-PIH or their combination) and t-butyl hydroperoxide (t-BuOOH) had the opposite effect on GSHPx-1 gene transcription in run-on experiments. On the other hand, 50 μmol DFO or 2.5 μmol t-BuOOH did not change the stability of cytoplasmic GSHPx-1 mRNA in both un-induced and induced MEL cells treated with 5 μmol actinomycin D and with or without these agents for 9 h. These findings indicate that iron and oxidative stress play their role at the transcriptional level of GSHPx-1 gene expression. (author)

  3. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain

    International Nuclear Information System (INIS)

    Stringari, James; Nunes, Adriana K.C.; Franco, Jeferson L.; Bohrer, Denise; Garcia, Solange C.; Dafre, Alcir L.; Milatovic, Dejan; Souza, Diogo O.; Rocha, Joao B.T.; Aschner, Michael; Farina, Marcelo

    2008-01-01

    birth. Even though the cerebral mercury concentration decreased to nearly basal levels at postnatal day 21, GSH levels, GPx and GR activities remained decreased in MeHg-exposed mice, indicating that prenatal exposure to MeHg affects the cerebral GSH antioxidant systems by inducing biochemical alterations that endure even when mercury tissue levels decrease and become indistinguishable from those noted in pups born to control dams. This study is the first to show that prenatal exposure to MeHg disrupts the postnatal development of the glutathione antioxidant system in the mouse brain, pointing to an additional molecular mechanism by which MeHg induces pro-oxidative damage in the developing CNS. Moreover, our experimental observation corroborates previous reports on the permanent functional deficits observed after prenatal MeHg exposure

  4. Reduced glutathione and glutathione disulfide in the blood of glucose-6-phosphate dehydrogenase-deficient newborns.

    Science.gov (United States)

    Gong, Zhen-Hua; Tian, Guo-Li; Huang, Qi-Wei; Wang, Yan-Min; Xu, Hong-Ping

    2017-07-20

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is commonly detected during mass screening for neonatal disease. We developed a method to measure reduced glutathione (GSH) and glutathione disulfide (GSSG) using tandem mass spectrometry (MS/MS) for detecting G6PD deficiency. The concentration of GSH and the GSH/GSSG ratio in newborn dry-blood-spot (DBS) screening and in blood plus sodium citrate for test confirmation were examined by MS/MS using labeled glycine as an internal standard. G6PD-deficient newborns had a lower GSH content (242.9 ± 15.9 μmol/L)and GSH/GSSG ratio (14.9 ± 7.2) than neonatal controls (370.0 ± 53.2 μmol/L and 46.7 ± 19.6, respectively). Although the results showed a significance of P blood measured using MS/MS on the first day of sample preparation are consistent with G6PD activity and are helpful for diagnosing G6PD deficiency.

  5. Glutathione synthesis and homeostasis in isolated type II alveolar cells

    International Nuclear Information System (INIS)

    Saito, K.; Warshaw, J.B.; Prough, R.A.

    1986-01-01

    After isolation of Type II cells from neonatal rat lung, the glutathione (GSH) levels in these cells were greatly depressed. The total glutathione content could be increased 5-fold within 12-24 h by incubating the cells in media containing sulfur amino acids. Similarly, the activity of γ-glutamyltranspeptidase was low immediately after isolation, but was increased 2-fold during the first 24 h culture. Addition of either GSH or GSSG to the culture media increased the GSH content of Type II cells 2-2.5-fold. Buthionine sulfoximine and NaF prevented this replenishment of GSH during 24 h culture. When the rates of de novo synthesis of GSH and GSSG from 35 S-cysteine were measured, the amounts of newly formed GSH decreased to 80% in the presence of GSH or GSSG. This suggests that exogenous GSH/GSSG can be taken up by the Type II cells to replenish the intracellular pool of GSH. Methionine was not as effective as cysteine in the synthesis of GSH. These results suggest that GSH levels in the isolated Type II cell can be maintained by de novo synthesis or uptake of exogenous GSH. Most of the GSH synthesized from cysteine, however, was excreted into the media of the cultured cells indicative of a potential role for the type II cell in export of the non-protein thiol

  6. In vivo (1)H MRS study of potential associations between glutathione, oxidative stress and anhedonia in major depressive disorder.

    Science.gov (United States)

    Lapidus, Kyle A B; Gabbay, Vilma; Mao, Xiangling; Johnson, Amy; Murrough, James W; Mathew, Sanjay J; Shungu, Dikoma C

    2014-05-21

    Inflammation and oxidative stress are important mechanisms that have been implicated in the pathophysiology of major depressive disorder (MDD). Glutathione (GSH) is the most abundant antioxidant in human tissue, and a key index of antioxidant capacity and, hence, of oxidative stress. The aims of this investigation were to examine possible relationships between occipital GSH and dimensional measures of depressive symptom severity, including anhedonia - the reduced capacity to experience pleasure - and fatigue. We hypothesized that the magnitude of anhedonia and fatigue will be negatively correlated with occipital GSH levels in subjects with MDD and healthy controls (HC). Data for eleven adults with MDD and ten age- and sex-matched HC subjects were included in this secondary analysis of data from a previously published study. In vivo levels of GSH in a 3cm×3cm×2cm voxel of occipital cortex were obtained by proton magnetic resonance spectroscopy ((1)H MRS) on a 3T MR system, using the standard J-edited spin-echo difference technique. Anhedonia was assessed by combining interest items from depression and fatigue rating scales, and fatigue by use of the multidimensional fatigue inventory. Across the full sample of participants, anhedonia severity and occipital GSH levels were negatively correlated (r=-0.55, p=0.01). No associations were found between fatigue severity and GSH in this sample. These preliminary findings are potentially consistent with a pathophysiological role for GSH and oxidative stress in anhedonia and MDD. Larger studies in anhedonic depressed patients are indicated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. OXIDATIVE MODIFICATION OF PROTEINS AND GLUTATHIONE SYSTEM IN ADIPOCYTES UNDER DIABETES

    OpenAIRE

    Ye. V. Shakhristova; Ye. A. Stepovaya; V. V. Ivanov; O. L. Nosareva; N. V. Ryazantseva; V. V. Novitsky

    2014-01-01

    Currently, diabetes ranks third in relation to medical and social significance after cardiovascular diseases and cancer and is the leading cause of blindness; it greatly increases the risk of myocardial infarction, coronary heart disease, nephropathy and hypertension in patients with this disorder; therefore clinical and experimental studies aimed at investigation of diabetes emergence and development mechanisms are urgent.The aim of the study was to investigate the status of oxidative modifi...

  8. Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats.

    Directory of Open Access Journals (Sweden)

    Dirleise Colle

    Full Text Available Huntington's disease (HD is an autosomal dominantly inherited neurodegenerative disease characterized by symptoms attributable to the death of striatal and cortical neurons. The molecular mechanisms mediating neuronal death in HD involve oxidative stress and mitochondrial dysfunction. Administration of 3-nitropropionic acid (3-NP, an irreversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, in rodents has been proposed as a useful experimental model of HD. This study evaluated the effects of probucol, a lipid-lowering agent with anti-inflammatory and antioxidant properties, on the biochemical parameters related to oxidative stress, as well as on the behavioral parameters related to motor function in an in vivo HD model based on 3-NP intoxication in rats. Animals were treated with 3.5 mg/kg of probucol in drinking water daily for 2 months and, subsequently, received 3-NP (25 mg/kg i.p. once a day for 6 days. At the end of the treatments, 3-NP-treated animals showed a significant decrease in body weight, which corresponded with impairment on motor ability, inhibition of mitochondrial complex II activity and oxidative stress in the striatum. Probucol, which did not rescue complex II inhibition, protected against behavioral and striatal biochemical changes induced by 3-NP, attenuating 3-NP-induced motor impairments and striatal oxidative stress. Importantly, probucol was able to increase activity of glutathione peroxidase (GPx, an enzyme important in mediating the detoxification of peroxides in the central nervous system. The major finding of this study was that probucol protected against 3-NP-induced behavioral and striatal biochemical changes without affecting 3-NP-induced mitochondrial complex II inhibition, indicating that long-term probucol treatment resulted in an increased resistance against neurotoxic events (i.e., increased oxidative damage secondary to mitochondrial dysfunction. These data appeared to be of great

  9. Differential activation of diverse glutathione transferases of Clonorchis sinensis in response to the host bile and oxidative stressors.

    Directory of Open Access Journals (Sweden)

    Young-An Bae

    Full Text Available BACKGROUND: Clonorchis sinensis causes chronic cumulative infections in the human hepatobiliary tract and is intimately associated with cholangiocarcinoma. Approximately 35 million people are infected and 600 million people are at risk of infections worldwide. C. sinensis excretory-secretory products (ESP constitute the first-line effector system affecting the host-parasite interrelationship by interacting with bile fluids and ductal epithelium. However, the secretory behavior of C. sinensis in an environment close to natural host conditions is unclear. C. sinensis differs from Fasciola hepatica in migration to, and maturation in, the hepatic bile duct, implying that protein profile of the ESP of these two trematodes might be different from each other. METHODOLOGY/PRINCIPAL FINDINGS: We conducted systemic approaches to analyze the C. sinensis ESP proteome and the biological reactivity of C. sinensis glutathione transferases (GSTs, such as global expression patterns and induction profiles under oxidative stress and host bile. When we observed ex host excretion behavior of C. sinensis in the presence of 10% host bile, the global proteome pattern was not significantly altered, but the amount of secretory proteins was increased by approximately 3.5-fold. Bioactive molecules secreted by C. sinensis revealed universal/unique features in relation to its intraluminal hydrophobic residing niche. A total of 38 protein spots identified abundantly included enzymes involved in glucose metabolism (11 spots, 28.9% and diverse-classes of glutathione transferases (GSTs; 10 spots, 26.3%. Cathepsin L/F (four spots, 10.5% and transporter molecules (three spots, 7.9% were also recognized. The universal secretory proteins found in other parasites, such as several enzymes involved in glucose metabolism and oxygen transporters, were commonly detected. C. sinensis secreted less cysteine proteases and fatty acid binding proteins compared to other tissue-invading or

  10. Differential Activation of Diverse Glutathione Transferases of Clonorchis sinensis in Response to the Host Bile and Oxidative Stressors

    Science.gov (United States)

    Bae, Young-An; Ahn, Do-Whan; Lee, Eung-Goo; Kim, Seon-Hee; Cai, Guo-Bin; Kang, Insug; Sohn, Woon-Mok; Kong, Yoon

    2013-01-01

    Background Clonorchis sinensis causes chronic cumulative infections in the human hepatobiliary tract and is intimately associated with cholangiocarcinoma. Approximately 35 million people are infected and 600 million people are at risk of infections worldwide. C. sinensis excretory-secretory products (ESP) constitute the first-line effector system affecting the host-parasite interrelationship by interacting with bile fluids and ductal epithelium. However, the secretory behavior of C. sinensis in an environment close to natural host conditions is unclear. C. sinensis differs from Fasciola hepatica in migration to, and maturation in, the hepatic bile duct, implying that protein profile of the ESP of these two trematodes might be different from each other. Methodology/Principal Findings We conducted systemic approaches to analyze the C. sinensis ESP proteome and the biological reactivity of C. sinensis glutathione transferases (GSTs), such as global expression patterns and induction profiles under oxidative stress and host bile. When we observed ex host excretion behavior of C. sinensis in the presence of 10% host bile, the global proteome pattern was not significantly altered, but the amount of secretory proteins was increased by approximately 3.5-fold. Bioactive molecules secreted by C. sinensis revealed universal/unique features in relation to its intraluminal hydrophobic residing niche. A total of 38 protein spots identified abundantly included enzymes involved in glucose metabolism (11 spots, 28.9%) and diverse-classes of glutathione transferases (GSTs; 10 spots, 26.3%). Cathepsin L/F (four spots, 10.5%) and transporter molecules (three spots, 7.9%) were also recognized. The universal secretory proteins found in other parasites, such as several enzymes involved in glucose metabolism and oxygen transporters, were commonly detected. C. sinensis secreted less cysteine proteases and fatty acid binding proteins compared to other tissue-invading or intravascular

  11. Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles

    Science.gov (United States)

    2012-01-01

    Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO2, CeO2, SiO2, and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO2 and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO2 and CeO2. We also noted pronounced cytotoxicity for three out of four additional SiO2 nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO2 nanoparticles tested and for one of the supplementary SiO2 nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO2 nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn2+ with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn2+ could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO2 nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum. PMID:22303956

  12. Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases

    Directory of Open Access Journals (Sweden)

    Vasconcelos Vítor

    2010-09-01

    Full Text Available Abstract Background Cytosolic glutathione transferases (cGST are a large group of ubiquitous enzymes involved in detoxification and are well known for their undesired side effects during chemotherapy. In this work we have performed thorough phylogenetic analyses to understand the various aspects of the evolution and functional diversification of cGSTs. Furthermore, we assessed plausible correlations between gene duplication and substrate specificity of gene paralogs in humans and selected species, notably in mammalian enzymes and their natural substrates. Results We present a molecular phylogeny of cytosolic GSTs that shows that several classes of cGSTs are more ubiquitous and thus have an older ancestry than previously thought. Furthermore, we found that positive selection is implicated in the diversification of cGSTs. The number of duplicate genes per class is generally higher for groups of enzymes that metabolize products of oxidative damage. Conclusions 1 Protection against oxidative stress seems to be the major driver of positive selection in mammalian cGSTs, explaining the overall expansion pattern of this subfamily; 2 Given the functional redundancy of GSTs that metabolize xenobiotic chemicals, we would expect the loss of gene duplicates, but by contrast we observed a gene expansion of this family, which likely has been favored by: i the diversification of endogenous substrates; ii differential tissue expression; and iii increased specificity for a particular molecule; 3 The increased availability of sequence data from diversified taxa is likely to continue to improve our understanding of the early origin of the different cGST classes.

  13. Avocado oil induces long-term alleviation of oxidative damage in kidney mitochondria from type 2 diabetic rats by improving glutathione status.

    Science.gov (United States)

    Ortiz-Avila, Omar; Figueroa-García, María Del Consuelo; García-Berumen, Claudia Isabel; Calderón-Cortés, Elizabeth; Mejía-Barajas, Jorge A; Rodriguez-Orozco, Alain R; Mejía-Zepeda, Ricardo; Saavedra-Molina, Alfredo; Cortés-Rojo, Christian

    2017-04-01

    Hyperglycemia and mitochondrial ROS overproduction have been identified as key factors involved in the development of diabetic nephropathy. This has encouraged the search for strategies decreasing glucose levels and long-term improvement of redox status of glutathione, the main antioxidant counteracting mitochondrial damage. Previously, we have shown that avocado oil improves redox status of glutathione in liver and brain mitochondria from streptozotocin-induced diabetic rats; however, the long-term effects of avocado oil and its hypoglycemic effect cannot be evaluated because this model displays low survival and insulin depletion. Therefore, we tested during 1 year the effects of avocado oil on glycemia, ROS levels, lipid peroxidation and glutathione status in kidney mitochondria from type 2 diabetic Goto-Kakizaki rats. Diabetic rats exhibited glycemia of 120-186 mg/dL the first 9 months with a further increase to 250-300 mg/dL. Avocado oil decreased hyperglycemia at intermediate levels between diabetic and control rats. Diabetic rats displayed augmented lipid peroxidation and depletion of reduced glutathione throughout the study, while increased ROS generation was observed at the 3rd and 12th months along with diminished content of total glutathione at the 6th and 12th months. Avocado oil ameliorated all these defects and augmented the mitochondrial content of oleic acid. The beneficial effects of avocado oil are discussed in terms of the hypoglycemic effect of oleic acid and the probable dependence of glutathione transport on lipid peroxidation and thiol oxidation of mitochondrial carriers.

  14. Short-term exercise worsens cardiac oxidative stress and fibrosis in 8-month-old db/db mice by depleting cardiac glutathione.

    Science.gov (United States)

    Laher, Ismail; Beam, Julianne; Botta, Amy; Barendregt, Rebekah; Sulistyoningrum, Dian; Devlin, Angela; Rheault, Mark; Ghosh, Sanjoy

    2013-01-01

    Moderate exercise improves cardiac antioxidant status in young humans and animals with Type-2 diabetes (T2D). Given that both diabetes and advancing age synergistically decrease antioxidant expression in most tissues, it is unclear whether exercise can upregulate cardiac antioxidants in chronic animal models of T2D. To this end, 8-month-old T2D and normoglycemic mice were exercised for 3 weeks, and cardiac redox status was evaluated. As expected, moderate exercise increased cardiac antioxidants and attenuated oxidative damage in normoglycemic mice. In contrast, similar exercise protocol in 8-month-old db/db mice worsened cardiac oxidative damage, which was associated with a specific dysregulation of glutathione (GSH) homeostasis. Expression of enzymes for GSH biosynthesis [γ-glutamylcysteine synthase, glutathione reductase] as well as for GSH-mediated detoxification (glutathione peroxidase, glutathione-S-transferase) was lower, while toxic metabolites dependent on GSH for clearance (4-hydroxynonenal) were increased in exercised diabetic mice hearts. To validate GSH loss as an important factor for such aggravated damage, daily administration of GSH restored cardiac GSH levels in exercised diabetic mice. Such supplementation attenuated both oxidative damage and fibrotic changes in the myocardium. Expression of transforming growth factor beta (TGF-β) and its regulated genes which are responsible for such profibrotic changes were also attenuated with GSH supplementation. These novel findings in a long-term T2D animal model demonstrate that short-term exercise by itself can deplete cardiac GSH and aggravate cardiac oxidative stress. As GSH administration conferred protection in 8-month-old diabetic mice undergoing exercise, supplementation with GSH-enhancing agents may be beneficial in elderly diabetic patients undergoing exercise.

  15. Correction of glutathione metabolism in the liver of albino rats affected by low radiation doses

    International Nuclear Information System (INIS)

    Moiseenok, A.G.; Slyshenkov, V.S.; Khomich, T.I.; Zimatkina, T.I.; Kanunnikova, N.P.

    1997-01-01

    The levels of total glutathione GSH, GSSG and the activities of glutathione reductase and glutathione peroxidase were studied in the liver of adult albino rats subjected to 3-fold external γ-irradiation throughout 2 weeks at the overall dose of 0.75 Gy after 15 h, 2 and 5 days from the last irradiation. Some animals were injected intraperitoneally with the pantothenate containing complex > 3 times on days 1-3 before the irradiation. The radiation related decrease of GSH, GSH/GSSG and the total glutathione level was prevented by the prophylactic administration of the complex and probably at the expense of the activation of the G-SH biosynthesis and/or transport in the liver by the CoA biosynthetic precursor. (author)

  16. Oxidative stress biomarkers in amniotic fluid of pregnant women with hypothyroidism.

    Science.gov (United States)

    Novakovic, Tanja R; Dolicanin, Zana C; Djordjevic, Natasa Z

    2017-11-15

    Hypothyroidism in pregnancy is the serious state that may lead to fetal morbidity and mortality. Oxidative stress biomarkers in the amniotic fluid can provide important information on the health, development and maturation of the fetus during pregnancy. In this study, we examined whether maternal hypothyroidism contributes to increased oxidative stress biomarkers in the amniotic fluid during the first trimester of pregnancy. The study was conducted on healthy pregnant women and pregnant women with hypothyroidism (gestational age: 16-18 weeks). Oxidative stress biomarkers, such as superoxide anion (O 2 •- ), hydrogen peroxide (H 2 O 2 ), nitric oxide (NO), peroxynitrite (ONOO - ), lipid peroxide (LPO), reduced glutathione (GSH) and oxidized glutathione (GSSG) were assayed in the amniotic fluid. The results of this study indicated that concentrations of O 2 •- and NO are significantly higher, while the concentration of H 2 O 2 is significantly lower in the amniotic fluid of pregnant women with hypothyroidism in comparison to healthy pregnant women. There were no differences in concentrations of LPO, GSH and GSSG among tested groups. Also, we found that amniotic fluid concentration of O 2 •- is negatively correlated with the body weight and Apgar score values of the newborns. These results suggest that pregnancy hypothyroidism is characterized by the amniotic fluid oxidative stress. Incorporation of the oxidative stress biomarkers measurement in the amniotic fluid may be of clinical importance in the management of pregnancy hypothyroidism.

  17. Glutathione peroxidase-1 gene (GPX1) variants, oxidative stress and risk of kidney complications in people with type 1 diabetes.

    Science.gov (United States)

    Mohammedi, Kamel; Patente, Thiago A; Bellili-Muñoz, Naima; Driss, Fathi; Le Nagard, Hervé; Fumeron, Frédéric; Roussel, Ronan; Hadjadj, Samy; Corrêa-Giannella, Maria Lúcia; Marre, Michel; Velho, Gilberto

    2016-02-01

    Glutathione peroxidase (GPX) is a class of antioxidant enzymes that catalyze the reduction of hydrogen peroxide to water. GPX1 is the most abundant isoform and is expressed in all kidney cells. Isoprostane and advanced oxidation protein products (AOPP) were identified as markers of oxidative stress in patients with kidney disease. We investigated associations of GPX1 genotypes with kidney complications, and with plasma concentrations of isoprostane and AOPP in type 1 diabetic patients. Four SNPs in the GPX1 gene region were genotyped in SURGENE (n=340; 10-year follow-up); GENEDIAB (n=461) and GENESIS (n=584) cohorts of type 1 diabetic patients. Subsets of GENEDIAB (n=237) and GENESIS (n=466) participants were followed up for 9 and 5years, respectively. Plasma concentrations of isoprostane and AOPP were measured at baseline in GENEDIAB. Hazard ratios (HR) were estimated for incidence of kidney complications. In SURGENE, 98 renal events (new cases of microalbuminuria or progression to more severe stage of diabetic nephropathy) occurred during follow-up. The minor T-allele of rs3448 was associated with the incidence of renal events (HR 1.81, 95% CI 1.16-2.84, p=0.008). In GENESIS/GENEDIAB pooled study, end stage renal disease (ESRD) occurred during follow-up in 52 individuals. The same variant was associated with the incidence of ESRD (HR 3.34, 95% CI, 1.69-6.98, p=0.0004). The variant was also associated with higher plasma isoprostane concentration in GENEDIAB cohort: 2.02±0.12 (TT+CT) vs 1.75±0.13 (CC) ng/mL (p=0.009), and with higher plasma AOPP in the subset of participants with the baseline history of ESRD (TT+CT 67±6 vs CC 48±6μmol/L, p=0.006). The minor T-allele of rs3448 was associated with kidney complications (incidences of microalbuminuria, renal events and ESRD) in patients with type 1 diabetes. The risk allele was associated with higher plasma concentrations of isoprostane and AOPP. Our results are consistent with the implication of GPX1 in the

  18. Epoxidation of the methamphetamine pyrolysis product, trans-phenylpropene, to trans-phenylpropylene oxide by CYP enzymes and stereoselective glutathione adduct formation

    International Nuclear Information System (INIS)

    Sanga, Madhu; Younis, Islam R.; Tirumalai, Padma S.; Bland, Tina M.; Banaszewska, Monica; Konat, Gregory W.; Tracy, Timothy S.; Gannett, Peter M.; Callery, Patrick S.

    2006-01-01

    Pyrolytic products of smoked methamphetamine hydrochloride are well established. Among the various degradation products formed, trans-phenylpropene (trans-β-methylstyrene) is structurally similar to styrene analogues known to be bioactivated by CYP enzymes. In human liver microsomes, trans-phenylpropene was converted to the epoxide trans-phenylpropylene oxide (trans-2-methyl-3-phenyloxirane) and cinnamyl alcohol. Incubation of trans-phenylpropene with microsomes in the presence of enzyme-specific P450 enzyme inhibitors indicated the involvement of CYP2E1, CYP1A2, and CYP3A4 enzymes. Both (R,R)-phenylpropylene oxide and (S,S)-phenylpropylene oxide were formed in human liver microsomal preparations. Enantiomers of trans-phenylpropylene oxide were stereoselectively and regioselectively conjugated in a Phase II drug metabolism reaction catalyzed by human liver cytosolic enzymes consisting of conjugation with glutathione. The structure of the phenylpropylene oxide-glutathione adduct is consistent with nucleophilic ring-opening by attack at the benzylic carbon. Exposure of cultured C6 glial cells to (S,S)-phenylpropylene oxide produced a cytotoxic response in a concentration-dependent manner based on cell degeneration and death

  19. DHEA supplementation to dexamethasone-treated rabbits alleviates oxidative stress in kidney-cortex and attenuates albuminuria.

    Science.gov (United States)

    Kiersztan, Anna; Trojan, Nina; Tempes, Aleksandra; Nalepa, Paweł; Sitek, Joanna; Winiarska, Katarzyna; Usarek, Michał

    2017-11-01

    Our recent study has shown that dehydroepiandrosterone (DHEA) administered to rabbits partially ameliorated several dexamethasone (dexP) effects on hepatic and renal gluconeogenesis, insulin resistance and plasma lipid disorders. In the current investigation, we present the data on DHEA protective action against dexP-induced oxidative stress and albuminuria in rabbits. Four groups of adult male rabbits were used in the in vivo experiment: (1) control, (2) dexP-treated, (3) DHEA-treated and (4) both dexP- and DHEA-treated. Administration of dexP resulted in accelerated generation of renal hydroxyl free radicals (HFR) and malondialdehyde (MDA), accompanied by diminished superoxide dismutase (SOD) and catalase activities and a dramatic rise in urinary albumin/creatinine ratio. Treatment with DHEA markedly reduced dexP-induced oxidative stress in kidney-cortex due to a decline in NADPH oxidase activity and enhancement of catalase activity. Moreover, DHEA effectively attenuated dexP-evoked albuminuria. Surprisingly, dexP-treated rabbits exhibited elevation of GSH/GSSG ratio, accompanied by a decrease in glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities as well as an increase in glucose-6-phosphate dehydrogenase (G6PDH) activity. Treatment with DHEA resulted in a decline in GSH/GSSG ratio and glutathione reductase (GR) activity, accompanied by an elevation of GPx activity. Interestingly, rabbits treated with both dexP and DHEA remained the control values of GSH/GSSG ratio. As the co-administration of DHEA with dexP resulted in (i) reduction of oxidative stress in kidney-cortex, (ii) attenuation of albuminuria and (iii) normalization of glutathione redox state, DHEA might limit several undesirable renal side effects during chronic GC treatment of patients suffering from allergies, asthma, rheumatoid arthritis and lupus. Moreover, its supplementation might be particularly beneficial for the therapy of patients with glucocorticoid-induced diabetes

  20. Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing.

    Science.gov (United States)

    Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati

    2013-06-01

    The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Oxidative stress induced in PCB 126-exposed northern leopard frogs, Rana pipiens

    Science.gov (United States)

    Huang, Y.-W.; Hoffman, D.J.; Karasov, W.H.

    2007-01-01

    Northern leopard frogs Rana pipiens exposed to PCB 126 (3,3',4,4',5-pentachlorobiphenyl) were examined for hepatic oxidative stress. In a dose-response study, northern leopard frogs were injected intraperitoneally with either PCB 126 in corn oil (0.2, 0.7, 2.3, or 7.8 mg/kg body weight) or corn oil alone. In a time-course study, frogs received 7.8 mg/kg or corn oil alone, and were examined at 1, 2, 3, and 4 wk after dosing. Hepatic concentrations of reduced glutathione (GSH), thiobarbituric acid-reactive substances (TBARS), and total sulfhydryls (total SH), as well as activities of glutathione peroxidase (GSH-P), GSSG reductase (GSSG-R), glucose-6-phosphate dehydrogenase (G-6-PDH), and glutathione S-transferase (GSH-S-T) were measured. In the dose-response experiment, few effects were apparent 1 wk after dosing. In the time-course experiment, significant changes were observed in the 7.8-mg/kg group at 2 wk or more posttreatment. Hepatic concentrations of GSH and TBARS were higher than in corresponding controls at wk 3 and 4; the activities of GSSG-R and GSH-S-T were higher than in controls at wk 2 and 4; and the activity of G-6-PDH was increased at wk 2 and 4. These data collectively indicate that altered glutathione metabolism and oxidative stress occurred and were indicative of both toxicity and induction of protective mechanisms in frogs exposed to PCB. A similar delay in response was reported in fish and may relate to lower metabolic rate and physiological reactions in ectothermic vertebrates

  2. Oxidative stress induced in PCB 126-exposed northern leopard frogs, Rana pipiens.

    Science.gov (United States)

    Huang, Yue-wern; Hoffman, David J; Karasov, William H

    2007-04-15

    Northern leopard frogs Rana pipiens exposed to PCB 126 (3,3',4,4',5-pentachlorobiphenyl) were examined for hepatic oxidative stress. In a dose-response study, northern leopard frogs were injected intraperitoneally with either PCB 126 in corn oil (0.2, 0.7, 2.3, or 7.8 mg/kg body weight) or corn oil alone. In a time-course study, frogs received 7.8 mg/kg or corn oil alone, and were examined at 1, 2, 3, and 4 wk after dosing. Hepatic concentrations of reduced glutathione (GSH), thiobarbituric acid-reactive substances (TBARS), and total sulfhydryls (total SH), as well as activities of glutathione peroxidase (GSH-P), GSSG reductase (GSSG-R), glucose-6-phosphate dehydrogenase (G-6-PDH), and glutathione S-transferase (GSH-S-T) were measured. In the dose-response experiment, few effects were apparent 1 wk after dosing. In the time-course experiment, significant changes were observed in the 7.8-mg/kg group at 2 wk or more posttreatment. Hepatic concentrations of GSH and TBARS were higher than in corresponding controls at wk 3 and 4; the activities of GSSG-R and GSH-S-T were higher than in controls at wk 2 and 4; and the activity of G-6-PDH was increased at wk 2 and 4. These data collectively indicate that altered glutathione metabolism and oxidative stress occurred and were indicative of both toxicity and induction of protective mechanisms in frogs exposed to PCB. A similar delay in response was reported in fish and may relate to lower metabolic rate and physiological reactions in ectothermic vertebrates.

  3. Quantitative measurements of oxidative stress in mouse skin induced by X-ray irradiation

    International Nuclear Information System (INIS)

    Chi, Cuiping; Tanaka, Ryoko; Okuda, Yohei; Ikota, Nobuo; Ozawa, Toshihiko; Anzai, Kazunori; Yamamoto, Haruhiko; Urano, Shiro

    2005-01-01

    To find efficient methods to evaluate oxidative stress in mouse skin caused by X-ray irradiation, several markers and methodologies were examined. Hairless mice were irradiated with 50 Gy X-rays and skin homogenates or skin strips were prepared. Lipid peroxidation was measured using the skin homogenate as the level of thiobarbituric acid reactive substances. The level of lipid peroxidation increased with time after irradiation and was twice that of the control at 78 h. Electron spin resonance (ESR) spectra of skin strips showed a clear signal for the ascorbyl radical, which increased with time after irradiation in a manner similar to that of lipid peroxidation. To measure levels of glutathione (GSH) and its oxidized forms (GSSG) simultaneously, two high performance liquid chromatography (HPLC) methods, sample derivatization with 1-fluoro-2,4-dinitrobenzene and detection with a UV detector (method A) and no derivatization and detection with an electrochemical detector (method B), were compared and the latter was found to be better. No significant change was observed within 24 h after irradiation in the levels of GSH and GSSG measured by method B. The GSH/GSSG ratio may be a less sensitive parameter for the evaluation of acute oxidative stress caused by X-ray irradiation in the skin. Monitoring the ascorbyl radical seems to be a good way to evaluate oxidative stress in skin in vivo. (author)

  4. Oxidative stress is increased in sarcopenia and associated with cardiovascular disease risk in sarcopenic obesity.

    Science.gov (United States)

    Bellanti, Francesco; Romano, Antonino D; Lo Buglio, Aurelio; Castriotta, Valeria; Guglielmi, Giuseppe; Greco, Antonio; Serviddio, Gaetano; Vendemiale, Gianluigi

    2018-03-01

    To define whether circulating markers of oxidative stress correlate with sarcopenia in terms of glutathione balance and oxidative protein damage, and whether these biomarkers are associated with risk of cardiovascular disease (CVD). Population-based cross-sectional study. 115 out of 347 elderly subjects were classified as non-sarcopenic non-obese (NS-NO), sarcopenic non-obese (S-NO), non-sarcopenic obese (NS-O), and sarcopenic obese (S-O). Sarcopenia was defined as a relative skeletal muscle mass index (RASM) 27 for men or >38 for women. The CVD risk was estimated by the carotid intima-media thickness (IMT) and the Framingham score. Blood reduced glutathione (GSH), oxidized glutathione (GSSG), plasma malondialdehyde-(MDA) and 4-hydroxy-2,3-nonenal-(HNE) protein adducts were analyzed. Significantly greater blood GSSG/GSH ratio and plasma MDA/HNE protein adducts were observed in sarcopenic than in non-sarcopenic patients. A logistic regression model showed a close relationship between serum HNE and MDA adducts and sarcopenia (OR=1.133, 95% CI 1.057-1.215, and OR=1.592, 95% CI 1.015-1.991, respectively). Linear and logistic regression analysis evidenced strong associations between the IMT or the Framingham CVD risk category and blood GSSG/GSH or serum HNE protein adducts in the S-O group. Circulating markers of oxidative stress are increased in sarcopenia and related to CVD risk in sarcopenic obesity, suggesting that redox balance analysis would be a useful part of a multidimensional evaluation in aging. Further research is encouraged to support interventional strategies to correct redox imbalance, which might contribute to the prevention or at least limitation of sarcopenia and its co-morbidities. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Role of glutathione redox cycle and catalase in defense against oxidative stress induced by endosulfan in adrenocortical cells of rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Dorval, J.; Hontela, A.

    2003-01-01

    The role of antioxidants in maintaining the functional integrity of adrenocortical cells during in vitro exposure to endosulfan, an organochlorine pesticide, was investigated in rainbow trout (Oncorhynchus mykiss). Aminotriazole (ATA), an inhibitor of catalase (CAT), L-buthionine sulfoximine (L-BSO), an inhibitor of glutathione (GSH) synthesis, and N-acetyl cysteine (NAC), a glutathione precursor, were used to investigate the role of CAT and GSH redox cycle in protection against the adrenal toxicity of endosulfan, a pesticide that impairs cell viability (LC 50 366 μM) and cortisol secretion (EC 50 19 μM) in a concentration-related manner. Pretreatment with ATA and L-BSO enhanced the toxicity of endosulfan (LC 50 and EC 50 , respectively, 302 and 2.6 μM with ATA, 346 and 3.1 μM with L-BSO), while pretreatment with NAC had no significant effect on cell viability and increased the EC 50 of endosulfan to 51 μM. CAT activity was significantly reduced following exposure to endosulfan when cells were pretreated with ATA. Pretreatment with L-BSO significantly decreased glutathione peroxidase (GPx) activity and reduced glutathione (GSH) levels in a concentration-related manner following exposure to endosulfan, while GSH levels were significantly higher in NAC pretreated cells compared to untreated cells. Finally, pretreatment with ATA and L-BSO increased, while pretreatment with NAC decreased, lipid hydroperoxides (LOOH) levels. CAT, GPx, and GSH were identified as important antioxidants in maintaining the function and integrity of rainbow trout adrenocortical cells and ATA, L-BSO, and NAC were identified as effective modulators of CAT and GSH redox cycle. Moreover, this study suggests that the glutathione redox cycle may be more efficient than catalase in protecting adrenocortical cells against endosulfan-induced oxidative stress

  6. Neither artificial light at night, anthropogenic noise nor distance from roads are associated with oxidative status of nestlings in an urban population of songbirds.

    Science.gov (United States)

    Casasole, Giulia; Raap, Thomas; Costantini, David; AbdElgawad, Hamada; Asard, Han; Pinxten, Rianne; Eens, Marcel

    2017-08-01

    Increasing urbanization is responsible for road-related pollutants and causes an unprecedented increase in light and noise pollution, with potential detrimental effects for individual animals, communities and ecosystems. These stressors rarely act in isolation but studies dissecting the effects of these multiple stressors are lacking. Moreover, studies on urban stressors have mainly focused on adults, while exposure in early-life may be detrimental but is largely ignored. To fill this important knowledge gap, we studied if artificial light at night, anthropogenic noise and road-related pollution (using distance from roads as a proxy) explain variation in oxidative status in great tit nestlings (Parus major) in an urban population. Artificial light at night, anthropogenic noise and distance from roads were not associated with variation of the nine studied metrics of oxidative status (superoxide dismutase-SOD-, glutathione peroxidase-GPX, catalase-CAT-, non-enzymatic total antioxidant capacity-TAC-, reduced glutathione-GSH-, oxidized glutathione-GSSG-, ratio GSH/GSSG, protein carbonyls and thiobarbituric acid reactive substances-TBARS). Interestingly, for all oxidative status metrics, we found that there was more variation in oxidative status among individuals of the same nest compared to between different nests. We also showed an increase in protein carbonyls and a decrease of the ratio GSH/GSSG as the day advanced, and an increase of GPX when weather conditions deteriorated. Our study suggests that anthropogenic noise, artificial light at night and road-related pollution are not the most important sources of variation in oxidative status in great tit nestlings. It also highlights the importance of considering bleeding time and weather conditions in studies with free-living animals. Copyright © 2017. Published by Elsevier Inc.

  7. Mice Deficient in Both Mn Superoxide Dismutase and Glutathione Peroxidase-1 Have Increased Oxidative Damage and a Greater Incidence of Pathology but No Reduction in Longevity

    Science.gov (United States)

    Zhang, Yiqiang; Ikeno, Yuji; Qi, Wenbo; Chaudhuri, Asish; Li, Yan; Bokov, Alex; Thorpe, Suzanne R.; Baynes, John W.; Epstein, Charles; Richardson, Arlan

    2009-01-01

    To test the impact of increased mitochondrial oxidative stress as a mechanism underlying aging and age-related pathologies, we generated mice with a combined deficiency in two mitochondrial-localized antioxidant enzymes, Mn superoxide dismutase (MnSOD) and glutathione peroxidase-1 (Gpx-1). We compared life span, pathology, and oxidative damage in Gpx1−/−, Sod2+/−Gpx1+/−, Sod2+/−Gpx1−/−, and wild-type control mice. Oxidative damage was elevated in Sod2+/−Gpx1−/− mice, as shown by increased DNA oxidation in liver and skeletal muscle and increased protein oxidation in brain. Surprisingly, Sod2+/−Gpx1−/− mice showed no reduction in life span, despite increased levels of oxidative damage. Consistent with the important role for oxidative stress in tumorigenesis during aging, the incidence of neoplasms was significantly increased in the older Sod2+/−Gpx1−/− mice (28–30 months). Thus, these data do not support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice and do not support the oxidative stress theory of aging. PMID:19776219

  8. Extracellular redox state: refining the definition of oxidative stress in aging.

    Science.gov (United States)

    Jones, Dean P

    2006-01-01

    Oxidative stress in aging can result from an imbalance of prooxidants and antioxidants with excessive, destructive free radical chemistry. Thiol systems are important in the control of these processes, both by protecting against damage and serving in redox signaling mechanisms to sense danger and repair the damage. Studies by a number of research groups in collaboration with the Emory Clinical Biomarkers Laboratory show that the redox state of the central tissue antioxidant, glutathione (GSH), can be measured in human plasma and provides a quantitative systemic indicator of oxidative stress. Plasma GSH/GSSG redox in humans becomes oxidized with age, in response to chemotherapy, as a consequence of cigarette smoking, and in association with common age-related diseases (e.g., type 2 diabetes, cardiovascular disease). However, the GSH/GSSG redox is not equilibrated with the larger plasma cysteine/cystine (Cys/CySS) pool, and the Cys/CySS redox varies with age in a pattern that is distinct from that of GSH/GSSG redox. Furthermore, in vitro studies show that variation in Cys/CySS redox over the range found in vivo affects signaling pathways, which control cell proliferation and oxidant-induced apoptosis. The results point to the conclusion that free radical scavenging antioxidants are of increased importance when thiol/disulfide redox states are oxidized. Because thiol/disulfide redox states, per se, function in redox signaling and control as well as antioxidant protection, GSH/GSSG and Cys/CySS redox states may provide central parameters to link environmental influences and progression of changes associated with aging.

  9. Mangifera indica L. (Vimang) protection against serum oxidative stress in elderly humans.

    Science.gov (United States)

    Pardo-Andreu, Gilberto L; Philip, Sarah J; Riaño, Annia; Sánchez, Carlos; Viada, Carmen; Núñez-Sellés, Alberto J; Delgado, René

    2006-01-01

    We searched for the protective effect of a natural extract from stem bark of Mangifera indica L. extract (Vimang) on age-related oxidative stress. Healthy subjects were classified in two groups, elderly (>65 years) and young group (Vimang tablets, 300 mg each, before meals) for 60 days. Serum concentration of lipid peroxides, serum peroxidation potential, extracellular superoxide dismutase activity (EC-SOD), glutathione status (GSH, GSSG, GSSG/GSH ratio)) and total antioxidant status (TAS) were determined before (both experimental groups) and 15, 30, and 60 days after treatment (only elderly group). We confirmed the existence of an age-associated oxidative stress in human serum as documented by an age-related increase in serum lipoperoxides and GSSG and a decrease in serum antioxidant capacity and EC-SOD activity. Vimang tablet supplementation increased EC-SOD activity (p Vimang tablets prevent age-associated oxidative stress in elderly humans, which could retard the onset of age-associated disease, improving the quality of life for elderly persons.

  10. The role of BCL-2 and glutathione in an antioxidant pathway to prevent radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Vlachaki, Maria T.; Meyn, Raymond E.

    1997-01-01

    Objective: The expression of the bcl-2 gene has been associated with resistance to radiation induced apoptosis. There is evidence that the bcl-2 protein acts in the antioxidant pathways to block the effects of reactive oxygen spieces that mediate apoptosis possibly by increasing the levels of intracellular glutathione. Our hypothesis is that pretreatment of radiation-sensitive cells, known to lack bcl-2 expression, with antioxidants will reduce radiation-induced apoptosis. For this purpose, the apoptotic response to radiation and the intracellular levels of glutathione were tested before and after pretreatment with antioxidants in two murine lymphoma cell lines, a radiation resistant-bcl-2 expressing (Ly-ar) line and a radiation sensitive (Ly-as) line. Methods and Materials: Ly-ar and Ly-as cells were irradiated at 0,1,2,3 and 4 hours before collection. The intracellular levels of reduced (GSH) and oxidized (GSSG) glutathione were determined by the use of the fluorescent dye ophthalaldehyde. Ly-as cells were pretreated with dihydrolipoic acid and lipoamide for 1 hour before irradiation. Apoptosis response was measured by the DNA fragmentation assay. The radiation dose was 2.5 Gy. Results: After irradiation, the apoptotic rate of Ly-ar and Ly-as cells is 11-19% and 66-87% respectively. Ly-ar cells have higher intracellular GSH and GSSG levels compared to Ly-as cells by 69.9% and 91.9% respectively and the GSH/GSSG ratio in Ly-ar and Ly-as cells is 17.09 and 15.09 respectively (a difference of 13.25%). GSH levels do not change during the first three hours after irradiation; however there is a 46% reduction at four hours after irradiation, a time at which the Ly-as cells have already fragmented their DNA. Pretreatment of cells with dihydrolipoic acid or lipoamide at concentrations of 4mM and 2mM respectively was toxic and resulted in cell death in the absence of irradiation. Conclusions: GSH and GSSG levels are elevated in radiation-resistant murine lymphoma cells

  11. Thermodynamics of the oxidation-reduction reaction {2 glutathionered(aq) + NADPox(aq)=glutathioneox(aq) + NADPred(aq)}

    International Nuclear Information System (INIS)

    Tewari, Yadu B.; Goldberg, Robert N.

    2003-01-01

    Microcalorimetry, spectrophotometry, and high-performance liquid chromatography (h.p.l.c.) have been used to conduct a thermodynamic investigation of the glutathione reductase catalyzed reaction {2 glutathione red (aq) + NADP ox (aq)=glutathione ox (aq) + NADP red (aq)}. The reaction involves the breaking of a disulfide bond and is of particular importance because of the role glutathione red plays in the repair of enzymes. The measured values of the apparent equilibrium constant K ' for this reaction ranged from 0.5 to 69 and were measured over a range of temperature (288.15 K to 303.15 K), pH (6.58 to 8.68), and ionic strength I m (0.091 mol · kg -1 to 0.90 mol · kg -1 ). The results of the equilibrium and calorimetric measurements were analyzed in terms of a chemical equilibrium model that accounts for the multiplicity of ionic states of the reactants and products. These calculations led to values of thermodynamic quantities at T=298.15 K and I m =0 for a chemical reference reaction that involves specific ionic forms. Thus, for the reaction {2 glutathione red - (aq) + NADP ox 3- (aq)=glutathione ox 2- (aq) + NADP red 4- (aq) + H + (aq)}, the equilibrium constant K=(6.5±4.4)·10 -11 , the standard molar enthalpy of reaction Δ r H o m =(6.9±3.0) kJ · mol -1 , the standard molar Gibbs free energy change Δ r G o m =(58.1±1.7) kJ · mol -1 , and the standard molar entropy change Δ r S o m =-(172±12) J · K -1 · mol -1 . Under approximately physiological conditions (T=311.15 K, pH=7.0, and I m =0.25 mol · kg -1 the apparent equilibrium constant K ' ∼0.013. The results of the several studies of this reaction from the literature have also been examined and analyzed using the chemical equilibrium model. It was found that much of the literature is in agreement with the results of this study. Use of our results together with a value from the literature for the standard electromotive force E o for the NADP redox reaction leads to E o =0.166 V (T=298.15 K and I

  12. p,p'-DDT induces testicular oxidative stress-induced apoptosis in adult rats.

    Science.gov (United States)

    Marouani, Neila; Hallegue, Dorsaf; Sakly, Mohsen; Benkhalifa, Moncef; Ben Rhouma, Khémais; Tebourbi, Olfa

    2017-05-26

    The 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT) is a known persistent organic pollutant and male reproductive toxicant. The present study is designed to test the hypothesis that oxidative stress mediates p,p'-DDT-induced apoptosis in testis. Male Wistar rats received an intraperitoneal (ip) injection of the pesticide at doses of 50 and 100mg/kg for 10 consecutive days. The oxidative stress was evaluated by biomarkers such lipid peroxidation (LPO) and metallothioneins (MTs) levels. Antioxidant enzymes activities was assessed by determination of superoxide dismutase (SOD), catalase (CAT) and hydrogen peroxide (H 2 O 2 ) production. In addition, glutathione-dependent enzymes and reducing power in testis was evaluated by glutathione peroxidase (Gpx), glutathione reductase (GR), glutathione S-transferase (GST) activities and reduced and oxidized glutathione (GSH - GSSG) levels. Apoptosis was evaluated by DNA fragmentation detected by agarose gel electrophoresis. Germinal cells apoptosis and the apoptotic index was assessed through the TUNEL assay. After 10 days of treatment, an increase in LPO level and H 2 O 2 production occurred, while MTs level, SOD and CAT activities were decreased. Also, the Gpx, GR, GST, and GSH activities were decreased, whereas GSSG activity was increased. Testicular tissues of treated rats showed pronounced degradation of the DNA into oligonucleotides as seen in the typical electrophoretic DNA ladder pattern. Intense apoptosis was observed in germinal cells of DDT-exposed rats. In addition, the apoptotic index was significantly increased in testis of DDT-treated rats. These results clearly suggest that DDT sub-acute treatment causes oxidative stress in rat testis leading to apoptosis.

  13. Quantitative detection of nitroxyl upon trapping with glutathione and labeling with a specific fluorogenic reagent.

    Science.gov (United States)

    Johnson, Gail M; Chozinski, Tyler J; Salmon, Debra J; Moghaddam, Alan D; Chen, Hsin Chih; Miranda, Katrina M

    2013-10-01

    Donors of nitroxyl (HNO) have shown promise for treatment of stroke, heart failure, alcoholism and cancer. However, comparing the pharmacological capacities of various donors is difficult without first quantifying the amount of HNO released from each donor. Detection and quantitation of HNO has been complicated by the rapid self-consumption of HNO through irreversible dimerization, poor selectivity of trapping agents against other nitrogen oxides, and/or low sensitivity towards HNO. Here, an assay is described for the trapping of HNO by glutathione (GSH) followed by labeling of GSH with the fluorogenic agent, naphthalene-2,3-dicarboxaldehyde (NDA), and subsequent quantitation by fluorescence difference. The newly developed assay was used to validate the pH-dependence of HNO release from isopropylamine NONOate (IPA/NO), which is a dual donor of HNO and NO at physiological pH. Furthermore, varied assay conditions were utilized to suggest the ratios of the products of the reaction of GSH with HNO. At intracellular concentrations of GSH, the disulfide (GSSG) was the major product, but significant concentrations of glutathione sulfinamide (GS(O)NH₂) were also detected. This suggests that GS(O)NH₂, which is a selective biomarker of HNO, may be produced in concentrations that are amenable to in vivo analysis. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Nrf2-mediated antioxidant response by ethanolic extract of Sida cordifolia provides protection against alcohol-induced oxidative stress in liver by upregulation of glutathione metabolism.

    Science.gov (United States)

    Rejitha, S; Prathibha, P; Indira, M

    2015-03-01

    Objective The study aimed to evaluate the antioxidant property of ethanolic extract of Sida cordifolia (SAE) on alcohol-induced oxidative stress and to elucidate its mechanism of action. Methods Male albino rats of the Sprague-Dawley strain were grouped into four: (1) control, (2) alcohol (4 g/kg body weight), (3) SAE (50 mg/100 g body weight), and (4) alcohol (4 g/kg body weight) + SAE (50 mg/100 g body weight). Alcohol and SAE were given orally each day by gastric intubation. The duration of treatment was 90 days. Results The activities of toxicity markers in liver and serum increased significantly in alcohol-treated rats and to a lesser extent in the group administered SAE + alcohol. The activity of alcohol dehydrogenase and the reactive oxygen species level were increased significantly in alcohol-treated rats but attenuated in the SAE co-administered group. Oxidative stress was increased in alcohol-treated rats as evidenced by the lowered activities of antioxidant enzymes, decreased level of reduced glutathione (GSH), increased lipid peroxidation products, and decreased expression of γ-glutamyl cysteine synthase in liver. The co-administration of SAE with alcohol almost reversed these changes. The activity of glutathione-S-transferase and translocation of Nrf2 from cytosol to nucleus in the liver was increased in both the alcohol and alcohol + SAE groups, but the maximum changes were observed in the latter group. Discussion The SAE most likely elicits its antioxidant potential by reducing oxidative stress, enhancing the translocation of Nrf2 to nucleus and thereby regulating glutathione metabolism, leading to enhanced GSH content.

  15. One-electron oxidation of diclofenac by human cytochrome P450s as a potential bioactivation mechanism for formation of 2'-(glutathion-S-yl)-deschloro-diclofenac.

    Science.gov (United States)

    Boerma, Jan Simon; Vermeulen, Nico P E; Commandeur, Jan N M

    2014-01-25

    Reactive metabolites have been suggested to play a role in the idiosyncratic hepatotoxicity observed with diclofenac (DF). By structural identification of the GSH conjugates formed after P450-catalyzed bioactivation of DF, it was shown that three types of reactive intermediates were formed: p-benzoquinone imines, o-imine methide and arene-oxide. Recently, detection of 2'-(glutathion-S-yl)-deschloro-diclofenac (DDF-SG), resulting from chlorine substitution, suggested the existence of a fourth type of P450-dependent reactive intermediate whose inactivation by GSH is completely dependent on presence of glutathione S-transferase. In this study, fourteen recombinant cytochrome P450s and three flavin-containing monooxygenases were tested for their ability to produce oxidative DF metabolites and their corresponding GSH conjugates. Concerning the hydroxymetabolites and their GSH conjugates, results were consistent with previous studies. Unexpectedly, all tested recombinant P450s were able to form DDF-SG to almost similar extent. DDF-SG formation was found to be partially independent of NADPH and even occurred by heat-inactivated P450. However, product formation was fully dependent on both GSH and glutathione-S-transferase P1-1. DDF-SG formation was also observed in reactions with horseradish peroxidase in absence of hydrogen peroxide. Because DDF-SG was not formed by free iron, it appears that DF can be bioactivated by iron in hemeproteins. This was confirmed by DDF-SG formation by other hemeproteins such as hemoglobin. As a mechanism, we propose that DF is subject to heme-dependent one-electron oxidation. The resulting nitrogen radical cation, which might activate the chlorines of DF, then undergoes a GST-catalyzed nucleophilic aromatic substitution reaction in which the chlorine atom of the DF moiety is replaced by GSH. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Effect of Pistacia Atlantica Extract on Glutathione Peroxidase Tissue Levels and Total Oxidative Capacity of Liver and Plasma Lipid Profile of Rats

    Directory of Open Access Journals (Sweden)

    Parvin Farzanegi

    2013-11-01

    Full Text Available Background: Exercise causes increased oxygen consumption, leaving cells exposed to oxidative stress. Antioxidants may have a protective effect by inhibiting lipid peroxidation. Thus, this study aims to examine the effect of Pistacia atlantica extract on glutathione peroxidase levels and total oxidative capacity of liver and plasma lipid profile of rats. Materials and Methods: In this experimental study, 28 female rats’ weight 155.8±2.7 grams were randomly and equally divided into 4 groups of exercise-saline, control-saline, exercise-mastic, and control-mastic. The exercise groups exercised for 8 weeks (5 days per week, 60 minutes daily, 25 meters per minute, on a zero degree slope. The rats received equal volumes of mastic and saline orally for 4 weeks. Blood and tissue samples were taken 72 hours after the last exercise session. Data were analyzed using one-way variance analysis (ANOVA.Results: Consumption of Pistacia atlantica extract together with endurance exercising for 8 weeks did not significantly affect glutathione peroxidase concentration, total oxidative capacity, LDL, triglyceride, or cholesterol, but significantly reduced HDL (p=0.002.Conclusion: Results showed that antioxidant and lipid profile levels were not affected by consumption of supplements and endurance exercising. However, further studies are required to assess the long term effects of this herbal extract.

  17. Comparative study of the oxidation behavior of sulfur-containing amino acids and glutathione by electrochemistry-mass spectrometry in the presence and absence of cisplatin.

    Science.gov (United States)

    Zabel, Robert; Weber, Günther

    2016-02-01

    Small sulfur-containing compounds are involved in several important biochemical processes, including-but not limited to-redox regulation and drug conjugation/detoxification. While methods for stable redox pairs of such compounds (thiols/disulfides) are available, analytical data on more labile and short-lived redox intermediates are scarce, due to highly challenging analytical requirements. In this study, we employ the direct combination of reagentless electrochemical oxidation and mass spectrometric (EC-MS) identification for monitoring oxidation reactions of cysteine, N-acetylcysteine, methionine, and glutathione under simulated physiological conditions (pH 7.4, 37 °C). For the first time, all theoretically expected redox intermediates-with only one exception-are detected simultaneously and in situ, including sulfenic, sulfinic, and sulfonic acids, disulfides, thiosulfinates, thiosulfonates, and sulfoxides. By monitoring the time/potential-dependent interconversion of sulfur species, mechanistic oxidation routes are confirmed and new reactions detected, e.g., sulfenamide formation due to reaction with ammonia from the buffer. Furthermore, our results demonstrate a highly significant impact of cisplatin on the redox reactivity of sulfur species. Namely, the amount of thiol oxidation to sulfonic acid via sulfenic and sulfinic acid intermediates is diminished for glutathione in the presence of cisplatin in favor of the disulfide formation, while for N-acetylcysteine the contrary applies. N-acetylcysteine is the only ligand which displays enhanced oxidation currents upon cisplatin addition, accompanied by increased levels of thiosulfinate and thiosulfonate species. This is traced back to thiol reactivity and highlights the important role of sulfenic acid intermediates, which may function as a switch between different oxidation routes.

  18. Roles of catalase and glutathione peroxidase in the tolerance of a pulmonate gastropod to anoxia and reoxygenation.

    Science.gov (United States)

    Welker, Alexis F; Moreira, Daniel C; Hermes-Lima, Marcelo

    2016-07-01

    Humans and most mammals suffer severe damage when exposed to ischemia and reperfusion episodes due to an overproduction of reactive oxygen species (ROS). In contrast, several hypoxia/anoxia-tolerant animals survive very similar situations. We evaluated herein the redox metabolism in the anoxia-tolerant land snail Helix aspersa after catalase inhibition by 3-amino-1,2,4-triazole (ATZ) injection during a cycle of wide and abrupt change in oxygen availability. The exposure to anoxia for 5 h caused a change of only one of several parameters related to free radical metabolism: a rise in selenium-dependent glutathione peroxidase (Se-GPX) activity in muscle of both saline- and ATZ-injected animals (by 1.9- and 1.8-fold, respectively). Catalase suppression had no effect in animals under normoxia or anoxia. However, during reoxygenation catalase suppression kept high levels of muscle Se-GPX activity (twofold higher than in saline-injected snails up to 30 min reoxygenation) and induced the increase in hepatopancreas SOD activity (by 22 %), indicating higher levels of ROS in both organs than in saline-injected animals. Additionally, catalase-suppressed snails showed 12 % higher levels of carbonyl protein-a sign of mild oxidative stress-in muscle during reoxygenation than those animals with intact catalase. No changes were observed in glutathione parameters (GSH, GSSG and GSSG:GSH ratio), TBARS, and GST activity in any of the experimental groups, in both organs. These results indicate that catalase inhibition inflicts changes in the free radical metabolism during reoxygenation, prompting a stress-response that is a reorganization in other enzymatic antioxidant defenses to minimize alterations in the redox homeostasis in land snails.

  19. Oxidative stress in the hydrocoral Millepora alcicornis exposed to CO2-driven seawater acidification

    Science.gov (United States)

    Luz, Débora Camacho; Zebral, Yuri Dornelles; Klein, Roberta Daniele; Marques, Joseane Aparecida; Marangoni, Laura Fernandes de Barros; Pereira, Cristiano Macedo; Duarte, Gustavo Adolpho Santos; Pires, Débora de Oliveira; Castro, Clovis Barreira e.; Calderon, Emiliano Nicolas; Bianchini, Adalto

    2018-06-01

    Global impacts are affecting negatively coral reefs' health worldwide. Ocean acidification associated with the increasing CO2 partial pressure in the atmosphere can potentially induce oxidative stress with consequent cellular damage in corals and hydrocorals. In the present study, parameters related to oxidative status were evaluated in the hydrocoral Millepora alcicornis exposed to three different levels of seawater acidification using a mesocosm system. CO2-driven acidification of seawater was performed until reaching 0.3, 0.6 and 0.9 pH units below the current pH of seawater pumped from the coral reef adjacent to the mesocosm. Therefore, treatments corresponded to control (pH 8.1), mild (pH 7.8), intermediate (pH 7.5) and severe (pH 7.2) seawater acidification. After 0, 16 and 30 d of exposure, hydrocorals were collected and the following parameters were analyzed in the holobiont: antioxidant capacity against peroxyl radicals (ACAP), total glutathione (GSHt) concentration, reduced (GSH) and oxidized (GSSG) glutathione ratio (GSH/GSSG), lipid peroxidation (LPO) and protein carbonyl group (PC) levels. ACAP was increased in hydrocorals after 16 d of exposure to intermediate levels of seawater acidification. GSHt and GSH/GSSG did not change over the experimental period. LPO was increased at any level of seawater acidification, while PC content was increased in hydrocorals exposed to intermediate and severe seawater acidification for 30 d. These findings indicate that the antioxidant defense system of M. alcicornis is capable of coping with acidic conditions for a short period of time (16 d). Additionally, they clearly show that a long-term (30 d) exposure to seawater acidification induces oxidative stress with consequent oxidative damage to lipids and proteins, which could compromise hydrocoral health.

  20. Oxidative stress in elite athletes training at moderate altitude and at sea level.

    Science.gov (United States)

    León-López, Josefa; Calderón-Soto, Carmen; Pérez-Sánchez, Matías; Feriche, Belén; Iglesias, Xavier; Chaverri, Diego; Rodréguez, Ferran A

    2018-03-24

    Using a controlled parallel group longitudinal trial design, we investigated the effects of different training interventions on the prooxidant/antioxidant status of elite athletes: living and training at moderate altitude for 3 (Hi-Hi3) and 4 weeks (Hi-Hi), and for 4 weeks too, living high and training high and low (Hi-HiLo) and living and training at sea level (Lo-Lo). From 61 swimmers, 54 completed the study. Nitrites, carbonyls, and lipid peroxidation (LPO) levels were assessed in plasma. Enzymatic antioxidants glutathione peroxidase (GPx) and glutathione reductase (GRd), and non-enzymatic antioxidants total glutathione (GST), reduced glutathione (GSH) and oxidized glutathione (GSSG) were analysed in the erythrocyte fraction. At the end of the intervention, nitrites levels were similar in all altitude groups but higher than in the Lo-Lo controls (P = .02). Hi-HiLo had greater GPx activity than Hi-Hi and Hi-Hi3 during most of the intervention (P ≤ .001). GRd activity was higher in Lo-Lo than in Hi-Hi at the end of the training camp (P ≤ .001). All groups showed increased levels of LPO, except Lo-Lo, and carbonyls at the end of the study (P ≤ .001). Training at altitude for 3 or 4 weeks drives oxidative stress leading to cellular damage mainly by worsening the antioxidant capacities. The GSSG/GSH ratio appears to be related to perceived exertion and fatigue. The stronger antioxidant defence showed by the Hi-HiLo group suggests an inverse relationship between redox alterations and performance. Further studies are required to investigate the role of oxidative stress in acclimatization, performance, and health.

  1. Analysis of glutathione in supernatants and lysates of a human proximal tubular cell line from perfusion culture upon intoxication with cadmium chloride by HPLC and LC-ESI-MS

    NARCIS (Netherlands)

    Hahn, Hans; Huck, Christian W; Rainer, Matthias; Najam-ul-Haq, Muhammad; Bakry, Rania; Abberger, Thomas; Jennings, Paul; Pfaller, Walter; Bonn, Günther K

    A simple and highly effective reversed-phase (RP) high-performance liquid chromatography (HPLC) method is described for analysing glutathione (GSH) and glutathione disulfide (GSSG) in out-flowing supernatants and lysates of perfusion cell cultures of human kidney cells (HK-2 cells) continuously

  2. Oxidative stress markers and genetic polymorphisms of glutathione S-transferase T1, M1, and P1 in a subset of children with autism spectrum disorder in Lagos, Nigeria.

    Science.gov (United States)

    Oshodi, Y; Ojewunmi, O; Oshodi, T A; Ijarogbe, G T; Ogun, O C; Aina, O F; Lesi, Fea

    2017-09-01

    The role of oxidative stress has been identified in the development of autism spectrum disorder (ASD), and polymorphisms of glutathione S-transferase have been associated with some diseases linked to oxidative stress. Hence, we evaluated the serum levels of oxidative stress markers and investigated genetic polymorphisms of glutathione S-transferase associated with autism. Forty-two children clinically diagnosed with ASD using the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria and a clinical interview were included in the study. Twenty-three age-matched controls without any known genetic/developmental disorder were also recruited. Oxidative stress markers along with the genetic polymorphisms of glutathione S-transferase were determined. Reduced glutathione in ASD patients was significantly lower than the control (P = 0.008), whereas other oxidative stress markers measured were not significantly different in both the control and case populations. The frequencies of GSTT1 and GSTM1 null genotypes were lower among the controls compared with the cases, however, no association risk was observed. The observed risk of carrying Val/Val genotype among the cases was approximately six times that of the controls. Individuals with ASD showed a significant diminished level of reduced glutathione, however, the distribution of GSTT1, GSTM1, and GSTP1 polymorphisms was not found to be associated with autism in this study population.

  3. Exposure of rat hippocampal astrocytes to Ziram increases oxidative stress.

    Science.gov (United States)

    Matei, Ann-Marie; Trombetta, Louis D

    2016-04-01

    Pesticides have been shown in several studies to be the leading candidates of environmental toxins and may contribute to the pathogenesis of several neurodegenerative diseases. Ziram (zinc-bis(dimethyldithiocarbamate)) is an agricultural dithiocarbamate fungicide that is used to treat a variety of plant diseases. In spite of their generally acknowledged low toxicity, dithiocarbamates are known to cause a wide range of neurobehavioral effects as well as neuropathological changes in the brain. Astrocytes play a key role in normal brain physiology and in the pathology of the nervous system. This investigation studied the effects of 1.0 µM Ziram on rat hippocampal astrocytes. The thiobarbituric acid reactive substance assay performed showed a significant increase in malondialdehyde, a product of lipid peroxidation, in the Ziram-treated cells. Biochemical analysis also revealed a significant increase in the induction of 70 kDa heat shock and heme oxygenase 1 stress proteins. In addition, an increase of glutathione peroxidase (GPx) and a significant increase in oxidized glutathione (GSSG) were observed in the Ziram-treated cells. The ratio GSH to GSSG calculated from the treated cells was also decreased. Light and transmission electron microscopy supported the biochemical findings in Ziram-treated astrocytes. This data suggest that the cytotoxic effects observed with Ziram treatments may be related to the increase of oxidative stress. © The Author(s) 2013.

  4. Novel method for measurement of glutathione kinetics in neonates using liquid chromatography coupled to isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Schierbeek, Henk; te Braake, Frans; Godin, Jean-Philippe; Fay, Laurent-Bernard; van Goudoever, Johannes B.

    2007-01-01

    A novel analytical method using liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) was developed for measuring the fractional synthesis rate (FSR) of glutathione (GSH) in neonates after infusion of [1-(13)C]-glycine as a tracer. After transformation of GSH into GSSG, its

  5. Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha.

    Science.gov (United States)

    Wu, Shan; Ren, Jun

    2006-02-13

    Diabetes mellitus leads to thiamine deficiency and multiple organ damage including diabetic neuropathy. This study was designed to examine the effect of benfotiamine, a lipophilic derivative of thiamine, on streptozotocin (STZ)-induced cerebral oxidative stress. Adult male FVB mice were made diabetic with a single injection of STZ (200 mg/kg, i.p.). Fourteen days later, control and diabetic (fasting blood glucose >13.9 mM) mice received benfotiamine (100 mg/kg/day, i.p.) for 14 days. Oxidative stress and protein damage were evaluated by glutathione/glutathione disulfide (GSH/GSSG) assay and protein carbonyl formation, respectively. Pro-oxidative or pro-inflammatory factors including advanced glycation end-product (AGE), tissue factor and tumor necrosis factor-alpha (TNF-alpha) were evaluated by immunoblot analysis. Four weeks STZ treatment led to hyperglycemia, enhanced cerebral oxidative stress (reduced GSH/GSSG ratio), elevated TNF-alpha and AGE levels without changes in protein carbonyl or tissue factor. Benfotiamine alleviated diabetes-induced cerebral oxidative stress without affecting levels of AGE, protein carbonyl, tissue factor and TNF-alpha. Collectively, our results indicated benfotiamine may antagonize diabetes-induced cerebral oxidative stress through a mechanism unrelated to AGE, tissue factor and TNF-alpha.

  6. Docosahexaenoic (DHA modulates phospholipid-hydroperoxide glutathione peroxidase (Gpx4 gene expression to ensure self-protection from oxidative damage in hippocampal cells

    Directory of Open Access Journals (Sweden)

    Veronica eCasañas-Sanchez

    2015-07-01

    Full Text Available Docosahexaenoic acid (DHA, 22:6n-3 is a unique polyunsaturated fatty acid particularly abundant in nerve cell membrane phospholipids. DHA is a pleiotropic molecule that, not only modulates the physicochemical properties and architecture of neuronal plasma membrane, but it is also involved in multiple facets of neuronal biology, from regulation of synaptic function to neuroprotection and modulation of gene expression. As a highly unsaturated fatty acid due to the presence of six double bonds, DHA is susceptible for oxidation, especially in the highly pro-oxidant environment of brain parenchyma. We have recently reported the ability of DHA to regulate the transcriptional program controlling neuronal antioxidant defenses in a hippocampal cell line, especially the glutathione/glutaredoxin system. Within this antioxidant system, DHA was particularly efficient in triggering the upregulation of Gpx4 gene, which encodes for the nuclear, cytosolic and mitochondrial isoforms of phospholipid-hydroperoxide glutathione peroxidase (PH-GPx/GPx4, the main enzyme protecting cell membranes against lipid peroxidation and capable to reduce oxidized phospholipids in situ. We show here that this novel property of DHA is also significant in the hippocampus of wild-type mice and APP/PS1 transgenic mice, a familial model of Alzheimer’s disease. By doing this, DHA stimulates a mechanism to self-protect from oxidative damage even in the neuronal scenario of high aerobic metabolism and in the presence of elevated levels of transition metals, which inevitably favor the generation of reactive oxygen species. Noticeably, DHA also upregulated a novel Gpx4 splicing variant, harboring part of the first intronic region, which according to the ‘sentinel RNA hypothesis’ would expand the ability of Gpx4 (and DHA to provide neuronal antioxidant defense independently of conventional nuclear splicing in cellular compartments, like dendritic zones, located away from nuclear

  7. Room air versus carbon dioxide pneumoperitoneum: effects on oxidative state, apoptosis and histology of splanchnic organs.

    Science.gov (United States)

    Ypsilantis, Petros; Lambropoulou, Maria; Tentes, Ioannis; Chryssidou, Maria; Georgantas, Themistoklis; Simopoulos, Constantinos

    2016-04-01

    Although CO2 is the insufflation gas of choice in laparoscopic procedures, room air is usually used in natural orifice transluminal endoscopic surgery. The aim of the present study was to compare the safety of room air versus CO2 pneumoperitoneum in terms of their effect on the oxidative state, apoptosis and tissue injury of splanchnic organs. Eighteen Wistar rats were assigned to three groups (n = 6 per group) and were subjected to 8 mm Hg room air (group Pne-Air) or CO2 pneumoperitoneum (group Pne-CO2) or sham operation for 60 min. Forty-five minutes postdeflation, tissue samples were excised from the liver, stomach, ileum and kidneys for reduced glutathione-to-glutathione disulfide (GSH/GSSG) ratio, caspase-8 and caspase-3 and hypoxia-inducible factor-1α (HIF-1α) immunohistochemical assessment and histopathologic examination. GSH/GSSG ratio substantially declined in both pneumoperitoneum groups. No change was noted in HIF-1α expression. Mild upregulation of caspase-8 and caspase-3 was noted in both pneumoperitoneum groups being less pronounced in group Pne-Air. Histopathologic score was increased in all organs studied, but the stomach, in both pneumoperitoneum groups. Pneumoperitoneum established by either room air or CO2 induced substantial oxidative stress, mild apoptosis and mild tissue injury in splanchnic organs. While air pneumoperitoneum conferred a less pronounced apoptotic effect, the oxidative state and histopathologic profile of splanchnic organs did not differ between insufflation gases.

  8. Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation.

    Science.gov (United States)

    Xu, Peng-Xin; Wang, Shao-Wei; Yu, Xiao-Lin; Su, Ya-Jing; Wang, Teng; Zhou, Wei-Wei; Zhang, He; Wang, Yu-Jiong; Liu, Rui-Tian

    2014-05-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles in the brain. Aβ aggregation is closely associated with neurotoxicity, oxidative stress, and neuronal inflammation. The soluble Aβ oligomers are believed to be the most neurotoxic form among all forms of Aβ aggregates. We have previously reported a polyphenol compound rutin that could inhibit Aβ aggregation and cytotoxicity, attenuate oxidative stress, and decrease the production of nitric oxide and proinflammatory cytokines in vitro. In the current study, we investigated the effect of rutin on APPswe/PS1dE9 transgenic mice. Results demonstrated that orally administered rutin significantly attenuated memory deficits in AD transgenic mice, decreased oligomeric Aβ level, increased super oxide dismutase (SOD) activity and glutathione (GSH)/glutathione disulfide (GSSG) ratio, reduced GSSG and malondialdehyde (MDA) levels, downregulated microgliosis and astrocytosis, and decreased interleukin (IL)-1β and IL-6 levels in the brain. These results indicated that rutin is a promising agent for AD treatment because of its antioxidant, anti-inflammatory, and reducing Aβ oligomer activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Pro-oxidant effects in the brain of rats concurrently exposed to uranium and stress

    International Nuclear Information System (INIS)

    Linares, Victoria; Sanchez, Domenec J.; Belles, Montserrat; Albina, Luisa; Gomez, Mercedes; Domingo, Jose L.

    2007-01-01

    Metal toxicity may be associated with increased rates of reactive oxygen species (ROS) generation within the central nervous system (CNS). Although the kidney is the main target organ for uranium (U) toxicity, this metal can also accumulate in brain. In this study, we investigated the modifications on endogenous antioxidant capacity and oxidative damage in several areas of the brain of U-exposed rats. Eight groups of adult male rats received uranyl acetate dihydrate (UAD) in the drinking water at 0, 10, 20, and 40 mg/kg/day for 3 months. Animals in four groups were concurrently subjected to restraint stress during 2 h/day throughout the study. At the end of the experimental period, cortex, hippocampus and cerebellum were removed and processed to examine the following stress markers: reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS), as well as U concentrations. The results show that U significantly accumulated in hippocampus, cerebellum and cortex after 3 months of exposure. Moreover, UAD exposure promoted oxidative stress in these cerebral tissues. In cortex and cerebellum, TBARS levels were positively correlated with the U content, while in cerebellum GSSG and GSH levels were positively and negatively correlated, respectively, with U concentrations. In hippocampus, CAT and SOD activities were positively correlated with U concentration. The present results suggest that chronic oral exposure to UAD can cause progressive perturbations on physiological brain levels of oxidative stress markers. Although at the current UAD doses restraint scarcely showed additional adverse effects, its potential influence should not be underrated

  10. Determination of glutaredoxin enzyme activity and protein S-glutathionylation using fluorescent eosin-glutathione.

    Science.gov (United States)

    Coppo, Lucia; Montano, Sergio J; Padilla, Alicia C; Holmgren, Arne

    2016-04-15

    Glutaredoxins catalyze glutathione-dependent disulfide oxidoreductions, particularly reduction of glutathione (GSH)-protein mixed disulfides. Mammalian glutaredoxins are present in the cytosol/nucleus as Grx1 or in mitochondria as Grx2a. Here we describe di-eosin-glutathione disulfide (Di-E-GSSG) as a new tool to study glutaredoxin (Grx) activity. Di-E-GSSG has almost no fluorescence in its disulfide form due to self-quenching, whereas the reduced form (E-GSH) has a large fluorescence emission at 545 nm after excitation at 520 nm. Di-E-GSSG was a very poor substrate for glutathione reductase, but we discovered that the molecule was an excellent substrate for glutaredoxin in a coupled assay system with GSH, nicotinamide adenine dinucleotide phosphate (NADPH), and glutathione reductase or with lipoamide, NADH, and lipoamide dehydrogenase. In addition, Di-E-GSSG was used to glutathionylate the free SH group of bovine serum albumin (BSA), yielding eosin-glutathionylated BSA (E-GS-BSA) readily observed in ultraviolet (UV) light. E-GS-BSA also displayed a quenched fluorescence, and its Grx-catalyzed reduction could be followed by the formation of E-GSH by fluorescence emission using microtiter plates. This way of measuring Grx activity provided an ultrasensitive method that detected Grx1 and Grx2 at picomolar levels. Human Grx1 was readily quantified in 40 μl of plasma and determined to be 680 ± 208 pM in healthy controls. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Copper increases the ability of 6-hydroxydopamine to generate oxidative stress and the ability of ascorbate and glutathione to potentiate this effect: potential implications in Parkinson's disease.

    Science.gov (United States)

    Cruces-Sande, Antón; Méndez-Álvarez, Estefanía; Soto-Otero, Ramón

    2017-06-01

    Copper is an essential metal for the function of many proteins related to important cellular reactions and also involved in the synaptic transmission. Although there are several mechanisms involved in copper homeostasis, a dysregulation in this process can result in serious neurological consequences, including degeneration of dopaminergic neurons. 6-Hydroxydopamine is a dopaminergic neurotoxin mainly used in experimental models of Parkinson's disease, whose neurotoxicity has been related to its ability to generate free radicals. In this study, we examined the effects induced by copper on 6-OHDA autoxidation. Our data show that both Cu + and Cu 2+ caused an increase in • OH production by 6-OHDA autoxidation, which was accompanied by an increase in the rate of both p-quinone formation and H 2 O 2 accumulation. The presence of ascorbate greatly enhanced this process by establishing a redox cycle which regenerates 6-OHDA from its p-quinone. However, the presence of glutathione did not change significantly the copper-induced effects. We observed that copper is able to potentiate the ability of 6-OHDA to cause both lipid peroxidation and protein oxidation, with the latter including a reduction in free-thiol content and an increase in carbonyl content. Ascorbate also increases the lipid peroxidation induced by the action of copper and 6-OHDA. Glutathione protects against the copper-induced lipid peroxidation, but does not reduce its potential to oxidize free thiols. These results clearly demonstrate the potential of copper to increase the capacity of 6-OHDA to generate oxidative stress and the ability of ascorbate to enhance this potential, which may contribute to the destruction of dopaminergic neurons. © 2017 International Society for Neurochemistry.

  12. Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells

    International Nuclear Information System (INIS)

    Hohnholt, Michaela C.; Dringen, Ralf

    2011-01-01

    Magnetic iron oxide nanoparticles (IONP) are currently used for various neurobiological applications. To investigate the consequences of a treatment of brain cells with such particles, we have applied dimercaptosuccinate (DMSA)-coated IONP that had an average hydrodynamic diameter of 60 nm to oligodendroglial OLN-93 cells. After exposure to 4 mM iron applied as DMSA–IONP, these cells increased their total specific iron content within 8 h 600-fold from 7 to 4,200 nmol/mg cellular protein. The strong iron accumulation was accompanied by a change in cell morphology, although the cell viability was not compromized. DMSA–IONP treatment caused a concentration-dependent increase in the iron-dependent formation of reactive oxygen species and a decrease in the specific content of the cellular antioxidative tripeptide glutathione. During a 16 h recovery phase in IONP-free culture medium following exposure to DMSA–IONP, OLN-93 cells maintained their high iron content and replenished their cellular glutathione content. These data demonstrate that viable OLN-93 cells have a remarkable potential to deal successfully with the consequences of an accumulation of large amounts of iron after exposure to DMSA–IONP.

  13. Dietary supplementation with apple juice concentrate alleviates the compensatory increase in glutathione synthase transcription and activity that accompanies dietary- and genetically-induced oxidative stress.

    Science.gov (United States)

    Tchantchou, F; Graves, M; Ortiz, D; Rogers, E; Shea, T B

    2004-01-01

    Increased oxidative stress, which can arise from dietary, environmental and/or genetic sources, contributes to the decline in cognitive performance during normal aging and in neurodegenerative conditions such as Alzheimer's disease. Supplementation with fruits and vegetables that are high in antioxidant potential can compensate for dietary and/or genetic deficiencies that promote increased oxidative stress. We have recently demonstrated that apple juice concentrate (AJC) prevents the increase in oxidative damage to brain tissue and decline in cognitive performance observed when transgenic mice lacking apolipoprotein E (ApoE-/-) are maintained on a vitamin-deficient diet and challenged with excess iron (included in the diet as a pro-oxidant). However, the mechanism by which AJC provided neuroprotection was not conclusively determined. Herein, we demonstrate that supplementation with AJC also prevents the compensatory increases in glutathione synthase transcription and activity that otherwise accompany maintenance of ApoE-/- mice on this vitamin-free diet in the presence of iron. Inclusion of the equivalent composition and concentration of sugars of AJC did not prevent these increases. These findings provide further evidence that the antioxidant potential of AJC can compensate for dietary and genetic deficiencies that otherwise promote neurodegeneration.

  14. H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures.

    Science.gov (United States)

    Liu, Tao; Hu, Xiaohui; Zhang, Jiao; Zhang, Junheng; Du, Qingjie; Li, Jianming

    2018-02-15

    Low temperature is a crucial factor influencing plant growth and development. The chlorophyll precursor, 5-aminolevulinic acid (ALA) is widely used to improve plant cold tolerance. However, the interaction between H 2 O 2 and cellular redox signaling involved in ALA-induced resistance to low temperature stress in plants remains largely unknown. Here, the roles of ALA in perceiving and regulating low temperature-induced oxidative stress in tomato plants, together with the roles of H 2 O 2 and cellular redox states, were characterized. Low concentrations (10-25 mg·L - 1 ) of ALA enhanced low temperature-induced oxidative stress tolerance of tomato seedlings. The most effective concentration was 25 mg·L - 1 , which markedly increased the ratio of reduced glutathione and ascorbate (GSH and AsA), and enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Furthermore, gene expression of respiratory burst oxidase homolog1 and H 2 O 2 content were upregulated with ALA treatment under normal conditions. Treatment with exogenous H 2 O 2 , GSH, and AsA also induced plant tolerance to oxidative stress at low temperatures, while inhibition of GSH and AsA syntheses significantly decreased H 2 O 2 -induced oxidative stress tolerance. Meanwhile, scavenging or inhibition of H 2 O 2 production weakened, but did not eliminate, GSH- or AsA- induced tomato plant tolerance to oxidative stress at low temperatures. Appropriate concentrations of ALA alleviated the low temperature-induced oxidative stress in tomato plants via an antioxidant system. The most effective concentration was 25 mg·L - 1 . The results showed that H 2 O 2 induced by exogenous ALA under normal conditions is crucial and may be the initial step for perception and signaling transmission, which then improves the ratio of GSH and AsA. GSH and AsA may then interact with H 2 O 2 signaling, resulting in enhanced antioxidant capacity

  15. Clonorchis sinensis omega-class glutathione transferases play major roles in the protection of the reproductive system during maturation and the response to oxidative stress.

    Science.gov (United States)

    Kim, Jeong-Geun; Ahn, Chun-Seob; Kim, Seon-Hee; Bae, Young-An; Kwon, Na-Young; Kang, Insug; Yang, Hyun-Jong; Sohn, Woon-Mok; Kong, Yoon

    2016-06-13

    Clonorchis sinensis causes a major food-borne helminthic infection. This species locates in mammalian hepatobiliary ducts, where oxidative stressors and hydrophobic substances are profuse. To adapt to the hostile micromilieu and to ensure its long-term survival, the parasite continuously produces a diverse repertoire of antioxidant enzymes including several species of glutathione transferases (GSTs). Helminth GSTs play pertinent roles during sequestration of harmful xenobiotics since most helminths lack the cytochrome P-450 detoxifying enzyme. We isolated and analyzed the biochemical properties of two omega-class GSTs of C. sinensis (CsGSTo1 and CsGSTo2). We observed spatiotemporal expression patterns in accordance with the maturation of the worm's reproductive system. Possible biological protective roles of CsGSTos in these organs under oxidative stress were investigated. The full-length cDNAs of CsGSTo1 and 2 constituted 965 bp and 1,061 bp with open reading frames of 737 bp (246 amino acids) and 669 bp (223 amino acids). They harbored characteristic N-terminal thioredoxin-like and C-terminal α-helical domains. A cysteine residue, which constituted omega-class specific active site, and the glutathione-binding amino acids, were recognized in appropriate positions. They shared 44 % sequence identity with each other and 14.8-44.8 % with orthologues/homologues from other organisms. Bacterially expressed recombinant proteins (rCsGSTo1 and 2) exhibited dehydroascorbate reductase (DHAR) and thioltransferase activities. DHAR activity was higher than thioltransferase activity. They showed weak canonical GST activity toward 1-chloro-2,4-dinitrobenzene. S-hexylglutathione potently and competitively inhibited the active-site at nanomolar concentrations (0.63 and 0.58 nM for rCsGSTo1 and 2). Interestingly, rCsGSTos exhibited high enzyme activity toward mu- and theta-class GST specific substrate, 4-nitrobenzyl chloride. Expression of CsGSTo transcripts and proteins

  16. Chronic aspartame intake causes changes in the trans-sulphuration pathway, glutathione depletion and liver damage in mice

    Directory of Open Access Journals (Sweden)

    Isabela Finamor

    2017-04-01

    Full Text Available No-caloric sweeteners, such as aspartame, are widely used in various food and beverages to prevent the increasing rates of obesity and diabetes mellitus, acting as tools in helping control caloric intake. Aspartame is metabolized to phenylalanine, aspartic acid, and methanol. Our aim was to study the effect of chronic administration of aspartame on glutathione redox status and on the trans-sulphuration pathway in mouse liver. Mice were divided into three groups: control; treated daily with aspartame for 90 days; and treated with aspartame plus N-acetylcysteine (NAC. Chronic administration of aspartame increased plasma alanine aminotransferase (ALT and aspartate aminotransferase activities and caused liver injury as well as marked decreased hepatic levels of reduced glutathione (GSH, oxidized glutathione (GSSG, γ-glutamylcysteine ​​(γ-GC, and most metabolites of the trans-sulphuration pathway, such as cysteine, S-adenosylmethionine (SAM, and S-adenosylhomocysteine ​​(SAH. Aspartame also triggered a decrease in mRNA and protein levels of the catalytic subunit of glutamate cysteine ligase (GCLc and cystathionine γ-lyase, and in protein levels of methionine adenosyltransferase 1A and 2A. N-acetylcysteine prevented the aspartame-induced liver injury and the increase in plasma ALT activity as well as the decrease in GSH, γ-GC, cysteine, SAM and SAH levels and GCLc protein levels. In conclusion, chronic administration of aspartame caused marked hepatic GSH depletion, which should be ascribed to GCLc down-regulation and decreased cysteine levels. Aspartame triggered blockade of the trans-sulphuration pathway at two steps, cystathionine γ-lyase and methionine adenosyltransferases. NAC restored glutathione levels as well as the impairment of the trans-sulphuration pathway.

  17. Chronic aspartame intake causes changes in the trans-sulphuration pathway, glutathione depletion and liver damage in mice.

    Science.gov (United States)

    Finamor, Isabela; Pérez, Salvador; Bressan, Caroline A; Brenner, Carlos E; Rius-Pérez, Sergio; Brittes, Patricia C; Cheiran, Gabriele; Rocha, Maria I; da Veiga, Marcelo; Sastre, Juan; Pavanato, Maria A

    2017-04-01

    No-caloric sweeteners, such as aspartame, are widely used in various food and beverages to prevent the increasing rates of obesity and diabetes mellitus, acting as tools in helping control caloric intake. Aspartame is metabolized to phenylalanine, aspartic acid, and methanol. Our aim was to study the effect of chronic administration of aspartame on glutathione redox status and on the trans-sulphuration pathway in mouse liver. Mice were divided into three groups: control; treated daily with aspartame for 90 days; and treated with aspartame plus N-acetylcysteine (NAC). Chronic administration of aspartame increased plasma alanine aminotransferase (ALT) and aspartate aminotransferase activities and caused liver injury as well as marked decreased hepatic levels of reduced glutathione (GSH), oxidized glutathione (GSSG), γ-glutamylcysteine ​​(γ-GC), and most metabolites of the trans-sulphuration pathway, such as cysteine, S-adenosylmethionine (SAM), and S-adenosylhomocysteine ​​(SAH). Aspartame also triggered a decrease in mRNA and protein levels of the catalytic subunit of glutamate cysteine ligase (GCLc) and cystathionine γ-lyase, and in protein levels of methionine adenosyltransferase 1A and 2A. N-acetylcysteine prevented the aspartame-induced liver injury and the increase in plasma ALT activity as well as the decrease in GSH, γ-GC, cysteine, SAM and SAH levels and GCLc protein levels. In conclusion, chronic administration of aspartame caused marked hepatic GSH depletion, which should be ascribed to GCLc down-regulation and decreased cysteine levels. Aspartame triggered blockade of the trans-sulphuration pathway at two steps, cystathionine γ-lyase and methionine adenosyltransferases. NAC restored glutathione levels as well as the impairment of the trans-sulphuration pathway. Copyright © 2017. Published by Elsevier B.V.

  18. Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis

    International Nuclear Information System (INIS)

    Leterrier, Marina; Airaki, Morad; Palma, José M.; Chaki, Mounira; Barroso, Juan B.; Corpas, Francisco J.

    2012-01-01

    Environmental contamination by arsenic constitutes a problem in many countries, and its accumulation in food crops may pose health complications for humans. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved at various levels in the mechanism of responding to environmental stress in higher plants. Using Arabidopsis seedlings exposed to different arsenate concentrations, physiological and biochemical parameters were analyzed to determine the status of ROS and RNS metabolisms. Arsenate provoked a significant reduction in growth parameters and an increase in lipid oxidation. These changes were accompanied by an alteration in antioxidative enzymes and the nitric oxide (NO) metabolism, with a significant increase in NO content, S-nitrosoglutathione reductase (GSNOR) activity and protein tyrosine nitration as well as a concomitant reduction in glutathione and S-nitrosoglutathione (GSNO) content. Our results indicate that 500 μM arsenate (AsV) causes nitro-oxidative stress in Arabidopsis, being the glutathione reductase and the GSNOR activities clearly affected. - Highlights: ► In Arabidopsis, arsenate provokes damages in the membrane integrity of root cells. ► As induces an oxidative stress according to an increase in lipid oxidation. ► NO content and protein tyrosine nitration increases under arsenate stress. ► Arsenate provokes a reduction of GSH, GSSG and GSNO content. ► Arsenate induces a nitro-oxidative stress in Arabidopsis. - Arsenic stress affects nitric oxide (NO) and glutathione (GSH) metabolism which provokes a nitro-oxidative stress.

  19. Oxidative damage mediated iNOS and UCP-2 upregulation in rat brain after sub-acute cyanide exposure: dose and time-dependent effects.

    Science.gov (United States)

    Bhattacharya, Rahul; Singh, Poonam; John, Jebin Jacob; Gujar, Niranjan L

    2018-04-03

    Cyanide-induced chemical hypoxia is responsible for pronounced oxidative damage in the central nervous system. The disruption of mitochondrial oxidative metabolism has been associated with upregulation of uncoupling proteins (UCPs). The present study addresses the dose- and time-dependent effect of sub-acute cyanide exposure on various non-enzymatic and enzymatic oxidative stress markers and their correlation with inducible-nitric oxide synthase (iNOS) and uncoupling protein-2 (UCP-2) expression. Animals received (oral) triple distilled water (vehicle control), 0.25 LD50 potassium cyanide (KCN) or 0.50 LD50 KCN daily for 21 d. Animals were sacrificed on 7, 14 and 21 d post-exposure to measure serum cyanide and nitrite, and brain malondialdehyde (MDA), reduced glutathione (GSH), glutathione disulfide (GSSG), cytochrome c oxidase (CCO), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CA) levels, together with iNOS and UCP-2 expression, and DNA damage. The study revealed that a dose- and time-dependent increase in cyanide concentration was accompanied by corresponding CCO inhibition and elevated MDA levels. Decrease in GSH levels was not followed by reciprocal change in GSSG levels. Diminution of SOD, GPx, GR and CA activity was congruent with elevated nitrite levels and upregulation of iNOS and UCP-2 expression, without any DNA damage. It was concluded that long-term cyanide exposure caused oxidative stress, accompanied by upregulation of iNOS. The upregulation of UCP-2 further sensitized the cells to cyanide and accentuated the oxidative stress, which was independent of DNA damage.

  20. Molecular identification and functional delineation of a glutathione reductase homolog from disk abalone (Haliotis discus discus): Insights as a potent player in host antioxidant defense.

    Science.gov (United States)

    Herath, H M L P B; Wickramasinghe, P D S U; Bathige, S D N K; Jayasooriya, R G P T; Kim, Gi-Young; Park, Myoung Ae; Kim, Chul; Lee, Jehee

    2017-01-01

    Glutathione reductase (GSR) is an enzyme that catalyzes the biochemical conversion of oxidized glutathione (GSSG) into the reduced form (GSH). Since the ratio between the two forms of glutathione (GSH/GSSG) is important for the optimal function of GSH to act as an antioxidant against H 2 O 2 , the contribution of GSR as an enzymatic regulatory agent to maintain the proper ratio is essential. Abalones are marine mollusks that frequently encounter environmental factors that can trigger the overproduction of reactive oxygen species (ROS) such as H 2 O 2 . Therefore, we conducted the current study to reveal the molecular and functional properties of a GSR homolog in the disk abalone, Haliotis discus discus. The identified cDNA sequence (2325 bp) has a 1356 bp long open reading frame (ORF), coding for a 909 bp long amino acid sequence, which harbors a pyridine nucleotide-disulfide oxidoreductase domain (171-246 aa), a pyridine nucleotide-disulfide oxidoreductase dimerization domain, and a NAD(P)(+)-binding Rossmann fold superfamily signature domain. Four functional residues: the FAD binding site, glutathione binding site, NADPH binding motif, and assembly domain were identified to be conserved among the other species. The recombinant abalone GSR (rAbGSR) exhibited detectable activity in a standard glutathione reductase activity assay. The optimum pH and optimal temperature for the reaction were found to be 7.0 and 50 °C, respectively, while the ionic strength of the medium had no effect. The enzymatic reaction was vastly inhibited by Cu +2 and Cd +2 ions. A considerable effect of cellular protection was detected with a disk diffusion assay conducted with rAbGSR. Moreover, an MTT assay and flow cytometry confirmed the significance of the protective role of rAbGSR in cell function. Furthermore, AbGSR was found to be ubiquitously distributed in different types of abalone tissues. AbGSR mRNA expression was significantly upregulated in response to three immune challenges

  1. Study on the Antiradiation role of Melatonin: An investigation on Induced Oxidative Stress Mice by Radiomimetic Drug Cyclophosphamide

    Energy Technology Data Exchange (ETDEWEB)

    Manda, K.; Bhatia, A. L.

    2004-07-01

    Clinical studies have demonstrated an altered pineal function in cancer patients. Owing to the document antineoplastic activity of the pineal gland, these anomalies could have a prognostic significance. This study was carried out to monitor the effect of higher blood levels of melatonin, the most important pineal hormone, which could be applied in relation to the response to chemotherapy in human neoplasms. Cyclophosphamide is a commonly used chemotherapeutic drug and well-known mutagen and clastogen. It is an alkylating agent, producing highly active carbonium ion, which the extremely electron-rich area of the nucleic acids and proteins. The present study aimed to investigate the protective effect of melatonin against cyclophosphamide induced oxidative stress in mice tissues. Lipid perioxidation. Reduced glutathione (GSH), Glutathione disulphide (GSSG), Glutathione peroxidase (GSH-Px) and serum phosphatase level taken as endpoints. Twenty days oral administration with melatonin (0.25 mg/Kg body weight) followed by an acute treatment with cyclophosphamide (75 mg/kg b. w.) inhibited the radiomimetic drug-induced augmented level of lipid peroxidation, Blood GSSG and acid phosphatase. Cyclophosphamide induced depletion in the level of GSH, GSH-Px and alkaline phosphatase is ameliorated significantly by melatonin administration. The findings support the results showing melatonin as a free radical scavenger, and singlet oxygen quencher. Results clearly indicate the antioxidative properties of melatonin against the radiomimetic drug which could be effectively used selectively for the protection of normal tissue during chemotherapy. (Author) 34 refs.

  2. Study on the Antiradiation role of Melatonin: An investigation on Induced Oxidative Stress Mice by Radiomimetic Drug Cyclophosphamide

    International Nuclear Information System (INIS)

    Manda, K.; Bhatia, A. L.

    2004-01-01

    Clinical studies have demonstrated an altered pineal function in cancer patients. Owing to the document antineoplastic activity of the pineal gland, these anomalies could have a prognostic significance. This study was carried out to monitor the effect of higher blood levels of melatonin, the most important pineal hormone, which could be applied in relation to the response to chemotherapy in human neoplasms. Cyclophosphamide is a commonly used chemotherapeutic drug and well-known mutagen and clastogen. It is an alkylating agent, producing highly active carbonium ion, which the extremely electron-rich area of the nucleic acids and proteins. The present study aimed to investigate the protective effect of melatonin against cyclophosphamide induced oxidative stress in mice tissues. Lipid perioxidation. Reduced glutathione (GSH), Glutathione disulphide (GSSG), Glutathione peroxidase (GSH-Px) and serum phosphatase level taken as endpoints. Twenty days oral administration with melatonin (0.25 mg/Kg body weight) followed by an acute treatment with cyclophosphamide (75 mg/kg b. w.) inhibited the radiomimetic drug-induced augmented level of lipid peroxidation, Blood GSSG and acid phosphatase. Cyclophosphamide induced depletion in the level of GSH, GSH-Px and alkaline phosphatase is ameliorated significantly by melatonin administration. The findings support the results showing melatonin as a free radical scavenger, and singlet oxygen quencher. Results clearly indicate the antioxidative properties of melatonin against the radiomimetic drug which could be effectively used selectively for the protection of normal tissue during chemotherapy. (Author) 34 refs

  3. Effects of melatonin on spinal cord injury-induced oxidative damage in mice testis.

    Science.gov (United States)

    Yuan, X-C; Wang, P; Li, H-W; Wu, Q-B; Zhang, X-Y; Li, B-W; Xiu, R-J

    2017-09-01

    This study evaluated the effects of melatonin on spinal cord injury (SCI)-induced oxidative damage in testes. Adult male C57BL/6 mice were randomly divided into sham-, SCI- or melatonin (10 mg/kg, i.p.)-treated SCI groups. To induce SCI, a standard weight-drop method that induced a contusion injury at T10 was used. After 1 week, testicular blood flow velocity was measured using the Laser Doppler Line Scanner. Malondialdehyde (MDA), glutathione (GSH), oxidised glutathione (GSSG) and myeloperoxidase (MPO) were measured in testis homogenates. Microvascular permeability of the testes to Evan's Blue was examined by spectrophotometric and fluorescence microscopic quantitation. The tight junction protein zonula occludens-1 (ZO-1) and occludin in testes were assessed by immunoblot analysis. Melatonin increased the reduced blood flow and decreased SCI-induced permeability of capillaries. MDA levels and MPO activity were elevated in the SCI group compared with shams, which was reversed by melatonin. In contrast, SCI-induced reductions in GSH/GSSG ratio were restored by melatonin. Decreased expression of ZO-1 and occludin was observed, which was attenuated by melatonin. Overall, melatonin treatment protects the testes against oxidative stress damage caused by SCI. © 2016 Blackwell Verlag GmbH.

  4. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.

    Science.gov (United States)

    Harris, Craig; Shuster, Daniel Z; Roman Gomez, Rosaicela; Sant, Karilyn E; Reed, Matthew S; Pohl, Jan; Hansen, Jason M

    2013-10-01

    Developmental signals that control growth and differentiation are regulated by environmental factors that generate reactive oxygen species (ROS) and alter steady-state redox environments in tissues and fluids. Protein thiols are selectively oxidized and reduced in distinct spatial and temporal patterns in conjunction with changes in glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) redox potentials (E(h)) to regulate developmental signaling. The purpose of this study was to measure compartment-specific thiol redox status in cultured organogenesis-stage rat conceptuses and to evaluate the impact of thiol oxidation on the redox proteome. The visceral yolk sac (VYS) has the highest initial (0 h) total intracellular GSH (GSH+2GSSG) concentration (5.5 mM) and the lowest Eh (-223 mV) as determined by HPLC analysis. Total embryo (EMB) GSH concentrations ranged lower (3.2 mM) and were only slightly more oxidized than the VYS. Total GSH concentrations in yolk sac fluid (YSF) and amniotic fluid (AF) are >500-fold lower than in tissues and are highly oxidized (YSF E(h)=-121 mV and AF E(h)=-49 mV). Steady-state total Cys concentrations (Cys+2CySS) were significantly lower than GSH in tissues but were otherwise equal in VYS and EMB near 0.5 mM. On gestational day 11, total GSH and Cys concentrations in EMB and VYS increase significantly over the 6h time course while E(h) remains relatively constant. The Eh (GSH/GSSG) in YSF and AF become more reduced over time while E(h) (Cys/CySS) become more oxidized. Addition of L-buthionine-S,R-sulfoximine (BS0) to selectively inhibit GSH synthesis and mimic the effects of some GSH-depleting environmental chemicals significantly decreased VYS and EMB GSH and Cys concentrations and increased Eh over the 6h exposure period, showing a greater overall oxidation. In the YSF, BSO caused a significant increase in total Cys concentrations to 1.7 mM but did not significantly change the E(h) for Cys/CySS. A significant net

  5. Glutathione in plants: an integrated overview.

    Science.gov (United States)

    Noctor, Graham; Mhamdi, Amna; Chaouch, Sejir; Han, Yi; Neukermans, Jenny; Marquez-Garcia, Belen; Queval, Guillaume; Foyer, Christine H

    2012-02-01

    Plants cannot survive without glutathione (γ-glutamylcysteinylglycine) or γ-glutamylcysteine-containing homologues. The reasons why this small molecule is indispensable are not fully understood, but it can be inferred that glutathione has functions in plant development that cannot be performed by other thiols or antioxidants. The known functions of glutathione include roles in biosynthetic pathways, detoxification, antioxidant biochemistry and redox homeostasis. Glutathione can interact in multiple ways with proteins through thiol-disulphide exchange and related processes. Its strategic position between oxidants such as reactive oxygen species and cellular reductants makes the glutathione system perfectly configured for signalling functions. Recent years have witnessed considerable progress in understanding glutathione synthesis, degradation and transport, particularly in relation to cellular redox homeostasis and related signalling under optimal and stress conditions. Here we outline the key recent advances and discuss how alterations in glutathione status, such as those observed during stress, may participate in signal transduction cascades. The discussion highlights some of the issues surrounding the regulation of glutathione contents, the control of glutathione redox potential, and how the functions of glutathione and other thiols are integrated to fine-tune photorespiratory and respiratory metabolism and to modulate phytohormone signalling pathways through appropriate modification of sensitive protein cysteine residues. © 2011 Blackwell Publishing Ltd.

  6. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols

    Science.gov (United States)

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-03-01

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity

  7. Oxidative stress response of Forster's terns (Sterna forsteri) and Caspian terns (Hydroprogne caspia) to mercury and selenium bioaccumulation in liver, kidney, and brain

    Science.gov (United States)

    Hoffman, David J.; Eagles-Smith, Collin A.; Ackerman, Joshua T.; Adelsbach, Terrence L.; Stebbins, Katherine R.

    2011-01-01

    Bioindicators of oxidative stress were examined in prebreeding and breeding adult and chick Forster's terns (Sterna forsteri) and in prebreeding adult Caspian terns (Hydroprogne caspia) in San Francisco Bay, California. Highest total mercury (THg) concentrations (mean±standard error;μg/g dry wt) in liver (17.7±1.7), kidney (20.5±1.9), and brain (3.0±0.3) occurred in breeding adult Forster's terns. The THg concentrations in liver were significantly correlated with hepatic depletion of reduced glutathione (GSH), increased oxidized glutathione (GSSG):GSH ratio, and decreased hepatic gamma-glutamyl transferase (GGT) activity in adults of both tern species. Prefledging Forster's tern chicks with one-fourth the hepatic THg concentration of breeding adults exhibited effects similar to adults. Total mercury-related renal GSSG increased in adults and chicks. In brains of prebreeding adults, THg was correlated with a small increase in glucose-6-phosphate dehydrogenase (G-6-PDH) activity, suggestive of a compensatory response. Brain THg concentrations were highest in breeding adult Forster's terns and brain tissue exhibited increased lipid peroxidation as thiobarbituric acid-reactive substances, loss of protein bound thiols (PBSH), and decreased activity of antioxidant enzymes, GSSG reductase (GSSGrd), and G-6-PDH. In brains of Forster's tern chicks there was a decrease in total reduced thiols and PBSH. Multiple indicator responses also pointed to greater oxidative stress in breeding Forster's terns relative to prebreeding terns, attributable to the physiological stress of reproduction. Some biondicators also were related to age and species, including thiol concentrations. Enzymes GGT, G-6-PDH, and GSSGred activities were related to species. Our results indicate that THg concentrations induced oxidative stress in terns, and suggest that histopathological, immunological, and behavioral effects may occur in terns as reported in other species.

  8. Biochemical parameters as biomarkers for the early recognition of environmental pollution on Scots pine trees. II. The antioxidative metabolites ascorbic acid, glutathione, {alpha}-tocopherol and the enzymes superoxide dismutase and glutathione reductase

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H.; Haertling, S. [UFZ Centre for Environmental Research Leipzig-Halle, Halle (Germany). Dept. of Soil Sciences

    2001-10-01

    Field investigations with Scots pine trees (Pinus sylvestris L.) were performed in eastern Germany, where ambient SO{sub 2}, NO{sub x} and O{sub 3} concentrations differed significantly in 1992-99 at three sites, namely Neuglobsow (yearly mean SO{sub 2} in 1992: 9 {mu}g m{sup -3}), Taura (yearly mean SO{sub 2} in 1992: 54 {mu}g m{sup -3}) and Roesa (yearly mean SO{sub 2} in 1992: 73 {mu}g m{sup -3}). To investigate the effects of SO{sub 2}, NO{sub x} and O{sub 3} on antioxidants (superoxide dismutase, ascorbic acid, glutathione, glutathione reductase, {alpha}-tocopherol) and pigments including chlorophyll fluorescence as well as visible damage symptoms in the form of needle yellowing and tip necroses, needles of the 1st and 2nd age class from young and mature trees were collected at the sites every October. Eight years after the start of the field study in 1992, the ambient SO{sub 2} concentrations had decreased significantly at Neuglobsow (yearly mean SO{sub 2} in 1999: 4 {mu}g m{sup -3}), Taura (yearly mean SO{sub 2} in 1999: 5 {mu}g m{sup -3}) and Roesa (yearly mean SO{sub 2} in 1999: 5 {mu}g m{sup -3}). NO{sub x} and O{sub 3} differed less at the three sites and showed no temporal variations. Whole needle glutathione continuously decreased, although concentrations were higher in needles of the 1st and 2nd age class from the polluted sites Taura and Roesa than the unpolluted site Neuglobsow. The activities of glutathione reductase exhibited the same site-related differences and temporal variations and were correlated with concentrations of oxidized glutathione (GSSG). In contrast, the activities of the enzyme superoxide dismutase and the concentrations of whole needle ascorbic acid remained unchanged over the period. Only at the end of the investigation period did the concentrations of oxidized ascorbic acid (dehydroascorbate) increase in six-month-old needles at the polluted sites Taura and Roesa. Despite the clear decreases in SO{sub 2}, the visible symptoms

  9. Effect of the Combination of Gelam Honey and Ginger on Oxidative Stress and Metabolic Profile in Streptozotocin-Induced Diabetic Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Nur Fathiah Abdul Sani

    2014-01-01

    Full Text Available Diabetic complications occur as a result of increased reactive oxygen species (ROS due to long term hyperglycaemia. Honey and ginger have been shown to exhibit antioxidant activity which can scavenge ROS. The main aim of this study was to evaluate the antioxidant and antidiabetic effects of gelam honey, ginger, and their combination. Sprague-Dawley rats were divided into 2 major groups which consisted of diabetic and nondiabetic rats. Diabetes was induced with streptozotocin intramuscularly (55 mg/kg body weight. Each group was further divided into 4 smaller groups according to the supplements administered: distilled water, honey (2 g/kg body weight, ginger (60 mg/kg body weight, and honey + ginger. Body weight and glucose levels were recorded weekly, while blood from the orbital sinus was obtained after 3 weeks of supplementation for the estimation of metabolic profile: glucose, triglyceride (TG, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, reduced glutathione (GSH: oxidized glutathione (GSSG, and malondialdehyde (MDA. The combination of gelam honey and ginger did not show hypoglycaemic potential; however, the combination treatment reduced significantly (P<0.05 SOD and CAT activities as well as MDA level, while GSH level and GSH/GSSG ratio were significantly elevated (P<0.05 in STZ-induced diabetic rats compared to diabetic control rats.

  10. Effect of the Combination of Gelam Honey and Ginger on Oxidative Stress and Metabolic Profile in Streptozotocin-Induced Diabetic Sprague-Dawley Rats

    Science.gov (United States)

    Abdul Sani, Nur Fathiah; Belani, Levin Kesu; Pui Sin, Chong; Abdul Rahman, Siti Nor Amilah; Zar Chi, Thent; Makpol, Suzana; Yusof, Yasmin Anum Mohd

    2014-01-01

    Diabetic complications occur as a result of increased reactive oxygen species (ROS) due to long term hyperglycaemia. Honey and ginger have been shown to exhibit antioxidant activity which can scavenge ROS. The main aim of this study was to evaluate the antioxidant and antidiabetic effects of gelam honey, ginger, and their combination. Sprague-Dawley rats were divided into 2 major groups which consisted of diabetic and nondiabetic rats. Diabetes was induced with streptozotocin intramuscularly (55 mg/kg body weight). Each group was further divided into 4 smaller groups according to the supplements administered: distilled water, honey (2 g/kg body weight), ginger (60 mg/kg body weight), and honey + ginger. Body weight and glucose levels were recorded weekly, while blood from the orbital sinus was obtained after 3 weeks of supplementation for the estimation of metabolic profile: glucose, triglyceride (TG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH): oxidized glutathione (GSSG), and malondialdehyde (MDA). The combination of gelam honey and ginger did not show hypoglycaemic potential; however, the combination treatment reduced significantly (P < 0.05) SOD and CAT activities as well as MDA level, while GSH level and GSH/GSSG ratio were significantly elevated (P < 0.05) in STZ-induced diabetic rats compared to diabetic control rats. PMID:24822178

  11. Overlapping protective roles for glutathione transferase gene family members in chemical and oxidative stress response in Agrobacterium tumefaciens.

    Science.gov (United States)

    Skopelitou, Katholiki; Muleta, Abdi W; Pavli, Ourania; Skaracis, Georgios N; Flemetakis, Emmanouil; Papageorgiou, Anastassios C; Labrou, Nikolaos E

    2012-03-01

    In the present work, we describe the characterisation of the glutathione transferase (GST) gene family from Agrobacterium tumefaciens C58. A genome survey revealed the presence of eight GST-like proteins in A. tumefaciens (AtuGSTs). Comparison by multiple sequence alignment generated a dendrogram revealing the phylogenetic relationships of AtuGSTs-like proteins. The beta and theta classes identified in other bacterial species are represented by five members in A. tumefaciens C58. In addition, there are three "orphan" sequences that do not fit into any previously recognised GST classes. The eight GST-like genes were cloned, expressed in Escherichia coli and their substrate specificity was determined towards 17 different substrates. The results showed that AtuGSTs catalyse a broad range of reactions, with different members of the family exhibiting quite varied substrate specificity. The 3D structures of AtuGSTs were predicted using molecular modelling. The use of comparative sequence and structural analysis of the AtuGST isoenzymes allowed us to identify local sequence and structural characteristics between different GST isoenzymes and classes. Gene expression profiling was conducted under normal culture conditions as well as under abiotic stress conditions (addition of xenobiotics, osmotic stress and cold and heat shock) to induce and monitor early stress-response mechanisms. The results reveal the constitutive expression of GSTs in A. tumefaciens and a modulation of GST activity after treatments, indicating that AtuGSTs presumably participate in a wide range of functions, many of which are important in counteracting stress conditions. These functions may be relevant to maintaining cellular homeostasis as well as in the direct detoxification of toxic compounds.

  12. l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway.

    Science.gov (United States)

    Liang, Mingcai; Wang, Zhengxuan; Li, Hui; Cai, Liang; Pan, Jianghao; He, Hongjuan; Wu, Qiong; Tang, Yinzhao; Ma, Jiapei; Yang, Lin

    2018-05-01

    Arginine is a conditionally essential amino acid. To elucidate the influence of l-arginine on the activation of endogenous antioxidant defence, male Wistar rats were orally administered daily with l-arginine at different levels of 25, 50, 100 mg/100 g body weight. After 7 and 14 days feeding, the antioxidative capacities and glutathione (GSH) contents in the plasma and in the liver were uniformly enhanced with the increasing consumption of l-arginine, whereas the oxidative stress was effectively suppressed by l-arginine treatment. After 14 days feeding, the mRNA levels and protein expressions of Keap1 and Cul3 were gradually reduced by increasing l-arginine intake, resulting that the nuclear factor Nrf2 was activated. Upon activation of Nrf2, the expressions of antioxidant responsive element (ARE)-dependent genes and proteins (GCLC, GCLM, GS, GR, GST, GPx, CAT, SOD, NQO1, HO-1) were up-regulated by l-arginine feeding, indicating an upward trend in antioxidant capacity uniformly with the increasing consumption of l-arginine. The present study demonstrates that the supplementation of l-arginine stimulates GSH synthesis and activates Nrf2 pathway, leading to the up-regulation of ARE-driven antioxidant expressions via Nrf2-Keap1 pathway. Results suggest the availability of l-arginine is a critical factor to suppress oxidative stress and induce an endogenous antioxidant response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Iyer, Smita S; Ramirez, Allan M; Ritzenthaler, Jeffrey D; Torres-Gonzalez, Edilson; Roser-Page, Susanne; Mora, Ana L; Brigham, Kenneth L; Jones, Dean P; Roman, Jesse; Rojas, Mauricio

    2009-01-01

    Several lines of evidence indicate that depletion of glutathione (GSH), a critical thiol antioxidant, is associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, GSH synthesis depends on the amino acid cysteine (Cys), and relatively little is known about the regulation of Cys in fibrosis. Cys and its disulfide, cystine (CySS), constitute the most abundant low-molecular weight thiol/disulfide redox couple in the plasma, and the Cys/CySS redox state (E(h) Cys/CySS) is oxidized in association with age and smoking, known risk factors for IPF. Furthermore, oxidized E(h) Cys/CySS in the culture media of lung fibroblasts stimulates proliferation and expression of transitional matrix components. The present study was undertaken to determine whether bleomycin-induced lung fibrosis is associated with a decrease in Cys and/or an oxidation of the Cys/CySS redox state and to determine whether these changes were associated with changes in E(h) GSH/glutathione disulfide (GSSG). We observed distinct effects on plasma GSH and Cys redox systems during the progression of bleomycin-induced lung injury. Plasma E(h) GSH/GSSG was selectively oxidized during the proinflammatory phase, whereas oxidation of E(h) Cys/CySS occurred at the fibrotic phase. In the epithelial lining fluid, oxidation of E(h) Cys/CySS was due to decreased food intake. Thus the data show that decreased precursor availability and enhanced oxidation of Cys each contribute to the oxidation of extracellular Cys/CySS redox state in bleomycin-induced lung fibrosis.

  14. A preliminary exploration of the potential of Eugenia uvalha Cambess juice intake to counter oxidative stress.

    Science.gov (United States)

    Lopes, J M M; Lage, N N; Guerra, J F C; Silva, M; Bonomo, L F; Paulino, A H S; Regis, A L R S; Pedrosa, M L; Silva, M E

    2018-03-01

    The ability of foods to aid in the prevention of chronic metabolic diseases, has recently become an area of increased interest. In addition, there is growing interest in exploring the benefits of consuming underutilized fruits as alternatives to commercially available fruits. Eugenia uvalha Cambess (uvaia) is a native fruit of Brazil with great market and phytotherapy potential. The present study was conducted to investigate the effects of uvaia juice (UJ) on the levels of protein carbonyls (PCO) and antioxidant enzymes in the livers of rats fed a high-fat diet. Thirty-two female rats were randomly assigned to four groups. The rats were fed either a standard diet (group C) or a high-fat diet (group HF). In addition, groups CUJ and HFUJ were treated with UJ (2mL/day) administered via gavage for 8weeks. In our study, UJ displayed high antioxidant activity (135.14±9.74 GAE/100g). Administration of UJ caused a significantly reduced concentration of rat liver PCO (47.4%), which was associated with a 29% increase in catalase activity. A significant increase in the concentration of oxidized glutathione (GSSG) (15.04±5.08nmol/ml) and a reduction in the reduced glutathione/oxidized glutathione ratio (GSH/GSSG) (11.30±2.68) were found in the HF group, whilst these changes were not observed in the HFUJ group (a result similar to that of group C). Our results demonstrate that UJ decreases oxidative damage by improving antioxidant efficiency and attenuating oxidative damage to proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Corneal endothelial glutathione after photodynamic change

    International Nuclear Information System (INIS)

    Hull, D.S.; Riley, M.V.; Csukas, S.; Green, K.

    1982-01-01

    Rabbit corneal endothelial cells perfused with 5 X 10(-6)M rose bengal and exposed to incandescent light demonstrated no alteration of either total of or percent oxidized glutathione after 1 hr. Addition of 5400 U/ml catalase to the perfusing solution had no effect on total glutathione levels but caused a marked reduction in percent oxidized glutathione in corneas exposed to light as well as in those not exposed to light. Substitution of sucrose for glucose in the perfusing solution had no effect on total or percent oxidized glutathione. Perfusion of rabbit corneal endothelium with 0.5 mM chlorpromazine and exposure to ultraviolet (UV) light resulted in no change in total glutathione content. A marked reduction in percent oxidized glutathione occurred, however, in corneas perfused with 0.5 mM chlorpromazine both in the presence and absence of UV light. It is concluded that photodynamically induced swelling of corneas is not the result of a failure of the glutathione redox system

  16. Endothelial glutathione-S-transferase A4-4 protects against oxidative stress and modulates iNOS expression through NF-κB translocation

    International Nuclear Information System (INIS)

    Yang Yongzhen; Yang Yusong; Xu Ya; Lick, Scott D.; Awasthi, Yogesh C.; Boor, Paul J.

    2008-01-01

    Our recent work in endothelial cells and human atherosclerotic plaque showed that overexpression of glutathione-S-tranferases (GSTs) in endothelium protects against oxidative damage from aldehydes such as 4-HNE. Nuclear factor (NF)-κB plays a crucial role during inflammation and immune responses by regulating the expression of inducible genes such as inducible nitric oxide synthase (iNOS). 4-HNE induces apoptosis and affects NF-κB mediated gene expression, but conflicting results on 4-HNE's effect on NF-κB have been reported. We compared the effect of 4-HNE on iNOS and the NF-κB pathway in control mouse pancreatic islet endothelial (MS1) cells and those transfected with mGSTA4, a α-class GST with highest activity toward 4-HNE. When treated with 4-HNE, mGSTA4-transfected cells showed significant upregulation of iNOS and nitric oxide (NO) through (NF)-κB (p65) translocation in comparison with wild-type or vector-transfected cells. Immunohistochemical studies of early human plaques showed lower 4-HNE content and upregulation of iNOS, which we take to indicate that GSTA4-4 induction acts as an enzymatic defense against high levels of 4-HNE, since 4-HNE accumulated in more advanced plaques, when detoxification and exocytotic mechanisms are likely to be overwhelmed. These studies suggest that GSTA4-4 may play an important defensive role against atherogenesis through detoxification of 4-HNE and upregulation of iNOS

  17. Concomitant ingestion of lactic acid bacteria and black tea synergistically enhances flavonoid bioavailability and attenuates d-galactose-induced oxidative stress in mice via modulating glutathione antioxidant system.

    Science.gov (United States)

    Zhao, Danyue; Shah, Nagendra P

    2016-12-01

    Black tea (BT) has been positively linked to improved redox status, while its efficacy is limited due to the low bioavailability of BT flavonoids. In addition to the direct antioxidant activity, flavonoids regulate redox balance via inducing endogenous antioxidants, particularly glutathione (GSH) and GSH-dependent antioxidant enzymes. This work first examined the effect of lactic acid bacteria (LAB) and BT alone or in combination on flavonoid bioavailability and metabolism; next, the effect of LAB-fermented BT diet in attenuating oxidative stress in mice and the underlying mechanisms were studied. Phenolic profiles of plasma, urine and feces from healthy mice consuming plain yogurt, BT milk (BTM) or BT yogurt (BTY) were acquired using LC-MS/MS. Plasma antioxidant capacity, lipid peroxidation level, content of nonprotein thiols and expression of GSH-related antioxidant enzymes and Nrf2 were examined in d-galactose-treated mice. Total flavonoid content in plasma following a single dose of BTY attained 0.657 μmol/l, increased by 50% compared with the BTM group. Increased excretion of phenolic metabolite and hippuric acid in urine and feces indicated enhanced metabolism of flavonoids in BTY-fed mice. In the second study, 8-week concomitant LAB-BT treatment of oxidatively stressed mice effectively restored plasma antioxidant capacity and GSH levels, and mitigated lipid peroxidation, which were associated with significant induction of GSH-dependent antioxidant enzymes and nuclear accumulation of Nrf2. Our results demonstrated the effect of LAB fermentation in enhancing BT flavonoid bioavailability in vivo. The synergistic antioxidant efficacy of LAB-BT diet implied its therapeutic potential in enhancing antioxidant defenses and protecting organisms from oxidative damage. Copyright © 2016. Published by Elsevier Inc.

  18. Astro research fellowship: the role of bcl-2 and glutathione in an antioxidant pathway to prevent radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Vlachaki, Maria T.; Meyn, Raymond E.

    1998-01-01

    Purpose: The expression of the bcl-2 proto-oncogene has been associated with resistance to radiation-induced apoptosis. There is evidence that the bcl-2 protein acts in an antioxidant pathway to block the effects of reactive oxygen species that mediate apoptosis possibly by increasing the levels of intracellular glutathione. Our hypothesis is that pretreatment of radiation-sensitive cells, known to lack bcl-2 expression, with antioxidants will reduce radiation-induced apoptosis. For this purpose, the apoptotic response to radiation and the intracellular levels of GSH were tested before and after pretreatment with antioxidants in two murine lymphoma cell lines, a radiation-resistant, bcl-2- expressing (LY-ar) line and a radiation-sensitive, non-bcl-2-expressing (LY-as) line. Methods and Materials: LY-ar and LY-as cells were irradiated at 0,1,2,3, and 4 hours before collection. The intracellular levels of reduced (GSH) and oxidized (GSSG) glutathione were determined by the use of the fluorescent dye o-phthalaldehyde. LY-as cells were treated with GSH ethyl-ester for 1 and 2 hours after irradiation. Apoptotic response was measured by the DNA fragmentation assay. The radiation dose was 2.5 Gy. Results: After irradiation, the apoptotic rate of LY-ar and LY-as cells was 10-20% and 50-70% respectively. LY-ar cells had higher intracellular GSH and GSSG levels compared to LY-as cells by 69.9% and 91.9% respectively and the GSH/GSSG ratio in LY-ar and LY-as cells was 15.09 and 17.09 respectively. GSH levels did not change during the first 2 hours after irradiation; however, there was a 49% and 84% reduction at 3 and 4 hours after irradiation, respectively, times at which the LY-as cells have already fragmented their DNA. Treatment of LY-as cells with GSH ethyl-ester at a concentration of 7 mM for 1 and 2 hours resulted in 70% and 231% increases in the intracellular GSH levels respectively. Treatment of LY-as cells with GSH ethyl-ester for 1 and 2 hours also conferred a 25

  19. Apoptosis and telomeres shortening related to HIV-1 induced oxidative stress in an astrocytoma cell line

    Directory of Open Access Journals (Sweden)

    Mollace Vincenzo

    2009-05-01

    Full Text Available Abstract Background Oxidative stress plays a key role in the neuropathogenesis of Human Immunodeficiency Virus-1 (HIV-1 infection causing apoptosis of astroglia cells and neurons. Recent data have shown that oxidative stress is also responsible for the acceleration of human fibroblast telomere shortening in vitro. In the present study we analyzed the potential relations occurring between free radicals formation and telomere length during HIV-1 mediated astroglial death. Results To this end, U373 human astrocytoma cells have been directly exposed to X4-using HIV-1IIIB strain, for 1, 3 or 5 days and treated (where requested with N-acetylcysteine (NAC, a cysteine donor involved in the synthesis of glutathione (GSH, a cellular antioxidant and apoptosis has been evaluated by FACS analysis. Quantitative-FISH (Q-FISH has been employed for studying the telomere length while intracellular reduced/oxidized glutathione (GSH/GSSG ratio has been determined by High-Performance Liquid Chromatography (HPLC. Incubation of U373 with HIV-1IIIB led to significant induction of cellular apoptosis that was reduced in the presence of 1 mM NAC. Moreover, NAC improved the GSH/GSSG, a sensitive indicator of oxidative stress, that significantly decreased after HIV-1IIIB exposure in U373. Analysis of telomere length in HIV-1 exposed U373 showed a statistically significant telomere shortening, that was completely reverted in NAC-treated U373. Conclusion Our results support the role of HIV-1-mediated oxidative stress in astrocytic death and the importance of antioxidant compounds in preventing these cellular damages. Moreover, these data indicate that the telomere structure, target for oxidative damage, could be the key sensor of cell apoptosis induced by oxidative stress after HIV infection.

  20. Analysis of MTHFR, CBS, Glutathione, Taurine, and Hydrogen Sulfide Levels in Retinas of Hyperhomocysteinemic Mice.

    Science.gov (United States)

    Cui, Xuezhi; Navneet, Soumya; Wang, Jing; Roon, Penny; Chen, Wei; Xian, Ming; Smith, Sylvia B

    2017-04-01

    Hyperhomocysteinemia (Hhcy) is implicated in certain retinal neurovascular diseases, although whether it is causative remains uncertain. In isolated ganglion cells (GCs), mild Hhcy induces profound death, whereas retinal phenotypes in Hhcy mice caused by mutations in remethylation (methylene tetrahydrofolatereductase [Mthfr+/-]) or transsulfuration pathways (cystathionine β-synthase [Cbs+/-]) demonstrate mild GC loss and mild vasculopathy. The current work investigated compensation in vivo of one pathway for the other, and, because the transsulfuration pathway yields cysteine necessary for formation of glutathione (GSH), taurine, and hydrogen sulfide (H2S), they were analyzed also. Retinas isolated from wild-type (WT), Mthfr+/-, and Cbs+/- mice (12 and 22 weeks) were analyzed for methylene tetrahydrofolate reductase (MTHFR), cystathionine-β-synthase (CBS), and cystathionase (CTH) RNA/protein levels. Retinas were evaluated for levels of reduced:oxidized GSH (GSH:GSSG), Slc7a11 (xCT), taurine, taurine transporter (TAUT), and H2S. Aside from decreased CBS RNA/protein levels in Cbs+/- retinas, there were minimal alterations in remethylation/transsulfuration pathways in the two mutant mice strains. Glutathione and taurine levels in Mthfr+/- and Cbs+/- retinas were similar to WT, which may be due to robust levels of xCT and TAUT in mutant retinas. Interestingly, levels of H2S were markedly increased in retinas of Mthfr+/- and Cbs+/- mice compared with WT. Ganglion cell loss and vasculopathy observed in Mthfr+/- and Cbs+/- mouse retinas may be milder than expected, not because of compensatory increases of enzymes in remethylation/transsulfuration pathways, but because downstream transsulfuration pathway products GSH, taurine, and H2S are maintained at robust levels. Elevation of H2S is particularly intriguing owing to neuroprotective properties reported for this gasotransmitter.

  1. N-tert-butylmethanimine N-oxide is an efficient spin-trapping probe for EPR analysis of glutathione thiyl radical

    Science.gov (United States)

    Scott, Melanie J.; Billiar, Timothy R.; Stoyanovsky, Detcho A.

    2016-01-01

    The electron spin resonance (EPR) spin-trapping technique allows detection of radical species with nanosecond half-lives. This technique is based on the high rates of addition of radicals to nitrones or nitroso compounds (spin traps; STs). The paramagnetic nitroxides (spin-adducts) formed as a result of reactions between STs and radical species are relatively stable compounds whose EPR spectra represent “structural fingerprints” of the parent radical species. Herein we report a novel protocol for the synthesis of N-tert-butylmethanimine N-oxide (EBN), which is the simplest nitrone containing an α-H and a tertiary α′-C atom. We present EPR spin-trapping proof that: (i) EBN is an efficient probe for the analysis of glutathione thiyl radical (GS•); (ii) β-cyclodextrins increase the kinetic stability of the spin-adduct EBN/•SG; and (iii) in aqueous solutions, EBN does not react with superoxide anion radical (O2−•) to form EBN/•OOH to any significant extent. The data presented complement previous studies within the context of synthetic accessibility to EBN and efficient spin-trapping analysis of GS•. PMID:27941944

  2. Oxidative Stress and Modulatory effects of the root extract of Phlogacanthus tubiflorus on the activity of Glutathione-S-Transferase in Hydrogen Peroxide treated Lymphocyte

    Directory of Open Access Journals (Sweden)

    Ramteke A

    2012-04-01

    Full Text Available Glutathione-S-transferase is one of the important enzyme systems that plays vital role in decomposition of lipid hydro-peroxides formed due to oxidative stress. In the present study GST activity increased in the lymphocytes treated with increasing concentration of H2O2, and decrease in the levels of GSH was observed. For similar treatment conditions LDH activity and MDA levels increased significantly leading to decrease in the cell viability. Treatment of lymphocytes with the root extract of Phlogacanthus tubiflorus (PTE resulted in dose dependent decline in the GST activity and rise in GSH levels. LDH activity and MDA levels also declined that led to the increase of cell viability. Lymphocytes pre-treated with the PTE followed by H2O2 (0.1 and 1% treatment, decline in the activity of GST and increase in GSH levels was observed. Also we have observed decline in the activity of LDH and MDA levels in the lymphocytes for both 0.1 and 1% of H2O2 though the magnitude of change was higher in the lymphocytes pre-treated with the PTE followed with 1% of H2O2 treatment. Significant increase in the cell viability for similar conditions was also observed. These findings suggest protective function of the root extracts might be through modulation of GST activity and levels of GSH and might find application in Chemomodulation in future.

  3. Melatonin Treatment Reduces Oxidative Damage and Normalizes Plasma Pro-Inflammatory Cytokines in Patients Suffering from Charcot-Marie-Tooth Neuropathy: A Pilot Study in Three Children.

    Science.gov (United States)

    Chahbouni, Mariam; López, María Del Señor; Molina-Carballo, Antonio; de Haro, Tomás; Muñoz-Hoyos, Antonio; Fernández-Ortiz, Marisol; Guerra-Librero, Ana; Acuña-Castroviejo, Darío

    2017-10-14

    Charcot-Marie-Tooth neuropathy (CMT) is a motor and sensory neuropathy comprising a heterogeneous group of inherited diseases. The CMT1A phenotype is predominant in the 70% of CMT patients, with nerve conduction velocity reduction and hypertrophic demyelination. These patients have elevated oxidative stress and chronic inflammation. Currently, there is no effective cure for CMT; herein, we investigated whether melatonin treatment may reduce the inflammatory and oxidative damage in CMT1A patients. Three patients, aged 8-10 years, were treated with melatonin (60 mg at 21:00 h plus 10 mg at 09:00 h), and plasma levels of lipid peroxidation (LPO), nitrites (NOx), IL-1β, IL-2, IL-6, TNF-α, INF-γ, oxidized to reduced glutathione (GSSG/GSH) ratio, and the activities of superoxide dismutase (SOD), glutathione-S transferase (GST), glutathione peroxidase (GPx), and reductase (GRd), were determined in erythrocytes at 3 and 6 months of treatment. Healthy age- and sex-matched subjects were used as controls. The results showed increased activities of SOD, GST, GPx, and GRd in CMT1A patients, which were reduced at 3 and 6 months of treatment. The GSSG/GSH ratio significantly increased in the patients, returning to control values after melatonin treatment. The inflammatory process was confirmed by the elevation of all proinflammatory cytokines measured, which were also normalized by melatonin. LPO and NOx, which also were elevated in the patients, were normalized by melatonin. The results document beneficial effects of the use of melatonin in CMT1A patients to reduce the hyperoxidative and inflammatory condition, which may correlate with a reduction of the degenerative process.

  4. Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield.

    Science.gov (United States)

    Vivancos, Pedro Diaz; Dong, Yingping; Ziegler, Kerstin; Markovic, Jelena; Pallardó, Federico V; Pellny, Till K; Verrier, Paul J; Foyer, Christine H

    2010-12-01

    Cellular redox homeostasis and signalling are important in progression of the eukaryotic cell cycle. In animals, the low-molecular-weight thiol tripeptide glutathione (GSH) is recruited into the nucleus early in the cell proliferation cycle. To determine whether a similar process occurs in plants, we studied cell proliferation in Arabidopsis thaliana. We show that GSH co-localizes with nuclear DNA during the proliferation of A. thaliana cells in culture. Moreover, GSH localization in the nucleus was observed in dividing pericycle cells of the lateral root meristem. There was pronounced accumulation of GSH in the nucleus at points in the growth cycle at which a high percentage of the cells were in G(1) phase, as identified by flow cytometry and marker transcripts. Recruitment of GSH into the nucleus led to a high abundance of GSH in the nucleus (GSHn) and severe depletion of the cytoplasmic GSH pool (GSHc). Sequestration of GSH in the nucleus was accompanied by significant decreases in transcripts associated with oxidative signalling and stress tolerance, and an increase in the abundance of hydrogen peroxide, an effect that was enhanced when the dividing cells were treated with salicylic acid. Total cellular GSH and the abundance of GSH1 and GSH2 transcripts increased after the initial recruitment of GSH into the nucleus. We conclude that GSH recruitment into the nucleus during cell proliferation has a profound effect on the whole-cell redox state. High GSHn levels trigger redox adjustments in the cytoplasm, favouring decreased oxidative signalling and enhanced GSH synthesis. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.

  5. Increased Zn/Glutathione Levels and Higher Superoxide Dismutase-1 Activity as Biomarkers of Oxidative Stress in Women with Long-Term Dental Amalgam Fillings: Correlation between Mercury/Aluminium Levels (in Hair) and Antioxidant Systems in Plasma

    Science.gov (United States)

    Cabaña-Muñoz, María Eugenia; Parmigiani-Izquierdo, José María; Bravo-González, Luis Alberto; Kyung, Hee-Moon; Merino, José Joaquín

    2015-01-01

    Background The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. Objectives To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. Materials and Methods 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). Findings Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. Conclusions Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity. PMID:26076368

  6. Methylation of arsenic by recombinant human wild-type arsenic (+ 3 oxidation state) methyltransferase and its methionine 287 threonine (M287T) polymorph: Role of glutathione

    International Nuclear Information System (INIS)

    Ding, Lan; Saunders, R. Jesse; Drobná, Zuzana; Walton, Felecia S.; Xun, Pencheng; Thomas, David J.; Stýblo, Miroslav

    2012-01-01

    Arsenic (+ 3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the pathway for methylation of arsenicals. A common polymorphism in the AS3MT gene that replaces a threonyl residue in position 287 with a methionyl residue (AS3MT/M287T) occurs at a frequency of about 10% among populations worldwide. Here, we compared catalytic properties of recombinant human wild-type (wt) AS3MT and AS3MT/M287T in reaction mixtures containing S-adenosylmethionine, arsenite (iAs III ) or methylarsonous acid (MAs III ) as substrates and endogenous or synthetic reductants, including glutathione (GSH), a thioredoxin reductase (TR)/thioredoxin (Trx)/NADPH reducing system, or tris (2-carboxyethyl) phosphine hydrochloride (TCEP). With either TR/Trx/NADPH or TCEP, wtAS3MT or AS3MT/M287T catalyzed conversion of iAs III to MAs III , methylarsonic acid (MAs V ), dimethylarsinous acid (DMAs III ), and dimethylarsinic acid (DMAs V ); MAs III was converted to DMAs III and DMAs V . Although neither enzyme required GSH to support methylation of iAs III or MAs III , addition of 1 mM GSH decreased K m and increased V max estimates for either substrate in reaction mixtures containing TR/Trx/NADPH. Without GSH, V max and K m values were significantly lower for AS3MT/M287T than for wtAS3MT. In the presence of 1 mM GSH, significantly more DMAs III was produced from iAs III in reactions catalyzed by the M287T variant than in wtAS3MT-catalyzed reactions. Thus, 1 mM GSH modulates AS3MT activity, increasing both methylation rates and yield of DMAs III . AS3MT genotype exemplified by differences in regulation of wtAS3MT and AS3MT/M287T-catalyzed reactions by GSH may contribute to differences in the phenotype for arsenic methylation and, ultimately, to differences in the disease susceptibility in individuals chronically exposed to inorganic arsenic. -- Highlights: ► Human AS3MT and AS3MT(M287T) require a dithiol reductant for optimal activity. ► Both enzymes methylate arsenite to tri- and

  7. Differential Responses to Blood Pressure and Oxidative Stress in Streptozotocin-Induced Diabetic Wistar-Kyoto Rats and Spontaneously Hypertensive Rats: Effects of Antioxidant (Honey) Treatment

    Science.gov (United States)

    Erejuwa, Omotayo O.; Sulaiman, Siti A.; Wahab, Mohd Suhaimi Ab; Sirajudeen, Kuttulebbai N. S.; Salleh, Md Salzihan Md; Gurtu, Sunil

    2011-01-01

    Oxidative stress is implicated in the pathogenesis and/or complications of hypertension and/or diabetes mellitus. A combination of these disorders increases the risk of developing cardiovascular events. This study investigated the effects of streptozotocin (60 mg/kg; ip)-induced diabetes on blood pressure, oxidative stress and effects of honey on these parameters in the kidneys of streptozotocin-induced diabetic Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Diabetic WKY and SHR were randomized into four groups and received distilled water (0.5 mL) and honey (1.0 g/kg) orally once daily for three weeks. Control SHR had reduced malondialdehyde (MDA) and increased systolic blood pressure (SBP), catalase (CAT) activity, and total antioxidant status (TAS). SBP, activities of glutathione peroxidase (GPx) and glutathione reductase (GR) were elevated while TAS was reduced in diabetic WKY. In contrast, SBP, TAS, activities of GPx and GR were reduced in diabetic SHR. Antioxidant (honey) treatment further reduced SBP in diabetic SHR but not in diabetic WKY. It also increased TAS, GSH, reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, activities of GPx and GR in diabetic SHR. These data suggest that differences in types, severity, and complications of diseases as well as strains may influence responses to blood pressure and oxidative stress. PMID:21673929

  8. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

    Science.gov (United States)

    Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo

    2002-06-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.

  9. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress

    International Nuclear Information System (INIS)

    Kaur, Parvinder; Aschner, Michael; Syversen, Tore

    2007-01-01

    Certain discrete areas of the CNS exhibit enhanced sensitivity towards MeHg. To determine whether GSH is responsible for this particular sensitivity, we investigated its role in MeHg-induced oxidative insult in primary neuronal and astroglial cell cultures of both cerebellar and cortical origins. For this purpose, ROS and GSH were measured with the fluorescent indicators, CMH 2 DCFDA and MCB. Cell associated-MeHg was measured with 14 C-radiolabeled MeHg. The intracellular GSH content was modified by pretreatment with NAC or DEM. For each of the dependent variables (ROS, GSH, and MTT), there was an overall significant effect of cellular origin, MeHg and pretreatment in all the cell cultures. A trend towards significant interaction between origin x MeHg x pretreatment was observed only for the dependent variable, ROS (astrocytes p = 0.056; neurons p = 0.000). For GSH, a significant interaction between origin x MeHg was observed only in astrocytes (p = 0.030). The cerebellar cell cultures were more vulnerable (astrocytes mean = 223.77; neurons mean = 138.06) to ROS than the cortical cell cultures (astrocytes mean = 125.18; neurons mean 107.91) for each of the tested treatments. The cell associated-MeHg increased when treated with DEM, and the cerebellar cultures varied significantly from the cortical cultures. Non-significant interactions between origin x MeHg x pretreatment for GSH did not explain the significant interactions responsible for the increased amount of ROS produced in these cultures. In summary, although GSH modulation influences MeHg-induced toxicity, the difference in the content of GSH in cortical and cerebellar cultures fails to account for the increased ROS production in cerebellar cultures. Hence, different approaches for the future studies regarding the mechanisms behind selectivity of MeHg have been discussed

  10. Effect of supplementation with methionine and different fat sources on the glutathione redox system of growing chickens.

    Science.gov (United States)

    Németh, Katalin; Mézes, M; Gaál, T; Bartos, A; Balogh, K; Husvéth, F

    2004-01-01

    The effect of supplementary methionine and fats of different saturation levels on the glutathione redox system of growing broiler cockerels was studied. The diet of three groups of chicks was supplemented with corn germ oil, beef tallow and fish oil at the levels of 30 g/kg and 50 g/kg of feed, respectively. The diet of further three groups was supplemented with methionine (5 g/kg of feed) in addition to the different fat sources. Control chicks were fed with a compound feed without methionine and fat supplementation. Reduced glutathione (GSH) and glutathione disulphide (GSSG) content as well as glutathione peroxidase activity in the liver were determined and GSH/GSSG ratio was calculated at day old and then at one and three weeks of age. Our results indicate that supplementary methionine stimulates both the synthesis of the glutathione redox system and glutathione peroxidase activity in growing chickens in the first period of postnatal life, when the risk of lipid peroxidation is high due to feeding unsaturated fats in the diet.

  11. Silymarin protects PBMC against B(a)P induced toxicity by replenishing redox status and modulating glutathione metabolizing enzymes-An in vitro study

    International Nuclear Information System (INIS)

    Kiruthiga, P.V.; Pandian, S. Karutha; Devi, K. Pandima

    2010-01-01

    PAHs are a ubiquitous class of environmental contaminants that have a large number of hazardous consequences on human health. An important prototype of PAHs, B(a)P, is notable for being the first chemical carcinogen to be discovered and the one classified by EPA as a probable human carcinogen. It undergoes metabolic activation to QD, which generate ROS by redox cycling system in the body and oxidatively damage the macromolecules. Hence, a variety of antioxidants have been tested as possible protectors against B(a)P toxicity. Silymarin is one such compound, which has high human acceptance, used clinically and consumed as dietary supplement around the world for its strong anti-oxidant efficacy. Silymarin was employed as an alternative approach for treating B(a)P induced damage and oxidative stress in PBMC, with an emphasis to provide the molecular basis for the effect of silymarin against B(a)P induced toxicity. PBMC cells exposed to either benzopyrene (1 μM) or silymarin (2.4 mg/ml) or both was monitored for toxicity by assessing LPO, PO, redox status (GSH/GSSG ratio), glutathione metabolizing enzymes GR and GPx and antioxidant enzymes CAT and SOD. This study also investigated the protective effect of silymarin against B(a)P induced biochemical alteration at the molecular level by FT-IR spectroscopy. Our findings were quite striking that silymarin possesses substantial protective effect against B(a)P induced oxidative stress and biochemical changes by restoring redox status, modulating glutathione metabolizing enzymes, hindering the formation of protein oxidation products, inhibiting LPO and further reducing ROS mediated damages by changing the level of antioxidant enzymes. The results suggest that silymarin exhibits multiple protections and it should be considered as a potential protective agent for environmental contaminant induced immunotoxicity.

  12. The antioxidant master glutathione and periodontal health

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Bains

    2015-01-01

    Full Text Available Glutathione, considered to be the master antioxidant (AO, is the most-important redox regulator that controls inflammatory processes, and thus damage to the periodontium. Periodontitis patients have reduced total AO capacity in whole saliva, and lower concentrations of reduced glutathione (GSH in serum and gingival crevicular fluid, and periodontal therapy restores the redox balance. Therapeutic considerations for the adjunctive use of glutathione in management of periodontitis, in limiting the tissue damage associated with oxidative stress, and enhancing wound healing cannot be underestimated, but need to be evaluated further through multi-centered randomized controlled trials.

  13. Kale Extract Increases Glutathione Levels in V79 Cells, but Does not Protect Them against Acute Toxicity Induced by Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Paula B. Andrade

    2012-05-01

    Full Text Available This study aims to evaluate the antioxidant potential of extracts of Brassica oleracea L. var. acephala DC. (kale and several materials of Pieris brassicae L., a common pest of Brassica cultures using a cellular model with hamster lung fibroblast (V79 cells under quiescent conditions and subjected to H2O2-induced oxidative stress. Cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay and glutathione was determined by the 5,5'-dithiobis(2-nitrobenzoic acid (DTNB-oxidized glutathione (GSSG reductase recycling assay. The phenolic composition of the extracts was also established by HPLC-DAD. They presented acylated and non acylated flavonoid glycosides, some of them sulfated, and hydroxycinnamic acyl gentiobiosides. All extracts were cytotoxic by themselves at high concentrations and failed to protect V79 cells against H2O2 acute toxicity. No relationship between phenolic composition and cytotoxicity of the extracts was found. Rather, a significant increase in glutathione was observed in cells exposed to kale extract, which contained the highest amount and variety of flavonoids. It can be concluded that although flavonoids-rich extracts have the ability to increase cellular antioxidant defenses, the use of extracts of kale and P. brassicae materials by pharmaceutical or food industries, may constitute an insult to health, especially to debilitated individuals, if high doses are consumed.

  14. Cyclic voltammetric study of the redox system of glutathione using the disulfide bond reductant tris(2-carboxyethyl)phosphine

    Czech Academy of Sciences Publication Activity Database

    Kizek, René; Vacek, Jan; Trnková, L.; Jelen, František

    2004-01-01

    Roč. 63, 1-2 (2004), s. 19-24 ISSN 1567-5394 R&D Projects: GA AV ČR IAA1163201; GA ČR GA203/02/0422 Institutional research plan: CEZ:AV0Z5004920 Keywords : voltammetry * hanging mercury drop electrode (HMDE) * glutathione (GSH, GSSG) Subject RIV: BO - Biophysics Impact factor: 2.261, year: 2004

  15. Role of selenium toxicity and oxidative stress in aquatic birds

    Science.gov (United States)

    Hoffman, D.J.

    2002-01-01

    Adverse effects of selenium (Se) in wild aquatic birds have been documented as a consequence of pollution of the aquatic environment by subsurface agricultural drainwater and other sources. These effects include mortality, impaired reproduction with teratogenesis, reduced growth, histopathological lesions and alterations in hepatic glutathione metabolism. A review is provided, relating adverse biological effects of Se in aquatic birds to altered glutathione metabolism and oxidative stress. Laboratory studies, mainly with an organic form of Se, selenomethionine, have revealed oxidative stress in different stages of the mallard (Anas platyrhynchos) life cycle. As dietary and tissue concentrations of Se increase, increases in plasma and hepatic GSH peroxidase activities occur, followed by dose-dependent increases in the ratio of hepatic oxidized to reduced glutathione (GSSG:GSH) and ultimately hepatic lipid peroxidation measured as an increase in thiobarbituric acid reactive substances (TBARS). One or more of these oxidative effects were associated with teratogenesis (4.6 ppm wet weight Se in eggs), reduced growth in ducklings (15 ppm Se in liver), diminished immune function (5 ppm Se in liver) and histopathological lesions (29 ppm Se in liver) in adults. Manifestations of Serelated effects on glutathione metabolism were also apparent in field studies in seven species of aquatic birds. Reduced growth and possibly immune function but increased liver:body weight and hepatic GSSG:GSH ratios were apparent in American avocet (Recurvirostra americana) hatchlings from eggs containing 9 ppm Se. In blacknecked stilts (Himantopus mexicanus), which contained somewhat lower Se concentrations, a decrease in hepatic GSH was apparent with few other effects. In adult American coots (Fulica americana), signs of Se toxicosis included emaciation, abnormal feather loss and histopathological lesions. Mean liver concentrations of 28 ppm Se (ww) in the coots were associated with elevated

  16. Glutathione Metabolism and Parkinson’s Disease

    OpenAIRE

    Smeyne, Michelle; Smeyne, Richard Jay

    2013-01-01

    It has been established that oxidative stress, defined as the condition when the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson’s disease. Glutathione is a ubiquitous thiol tripeptide that acts alone, or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals and peroxynitrites. In this review, we examine the synthesis, metabolism and functional interactions of glutathione, and discuss how...

  17. Haemoglobin adducts of acrylonitrile and ethylene oxide in acrylonitrile workers, dependent on polymorphisms of the glutathione transferases GSTT1 and GSTM1.

    Science.gov (United States)

    Thier, R; Lewalter, J; Kempkes, M; Selinski, S; Brüning, T; Bolt, H M

    1999-01-01

    Fifty-nine persons with industrial handling of low levels of acrylonitrile (AN) were studied. As part of a medical surveillance programme an extended haemoglobin adduct monitoring [N-(cyanoethyl)valine, CEV; N-(methyl)valine. MV: N-(hydroxyethyl)valine, HEV] was performed. Moreover, the genetic states of the polymorphic glutathione transferases GSTM1 and GSTT1 were assayed by polymerase chain reaction (PCR). Repetitive analyses of CEV and MV in subsequent years resulted in comparable values (means, 59.8 and 70.3 microg CEV/1 blood; 6.7 and 6.7 microg MV/1 blood). Hence, the industrial AN exposures were well below current official standards. Monitoring the haemoglobin adduct CEV appears as a suitable means of biomonitoring and medical surveillance under such exposure conditions. There was also no apparent correlation between the CEV and HEV or CEV and MV adduct levels. The MV and HEV values observed represented background levels, which apparently are not related to any occupational chemical exposure. There was no consistent effect of the genetic GSTM1 or GSTT1 state on CEV adduct levels induced by acrylonitrile exposure. Therefore, neither GSTM1 nor GSTT1 appears as a major AN metabolizing isoenzyme in humans. The low and physiological background levels of MV were also not influenced by the genetic GSTM1 state, but the MV adduct levels tended to be higher in GSTT1- individuals compared to GSTT1 + persons. With respect to the background levels of HEV adducts observed, there was no major influence of the GSTM1 state, but GST- individuals displayed adduct levels that were about 1/3 higher than those of GSTT1 + individuals. The coincidence with known differences in rates of background sister chromatid exchange between GSTT1- and GSTT1 + persons suggests that the lower ethylene oxide (EO) detoxification rate in GSTT1- persons, indicated by elevated blood protein hydroxyethyl adduct levels, leads to an increased genotoxic effect of the physiological EO background.

  18. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C. [Bose Institute, Department of Chemistry, Kolkata, West Bengal (India)

    2008-03-15

    Arsenic, one of the most harmful metalloids, is ubiquitous in the environment. The present study has been carried out to investigate the protective role of a triterpenoid saponin, arjunolic acid (AA) against arsenic-induced cardiac oxidative damage. In the study, NaAsO{sub 2} was chosen as the source of arsenic. The free radical scavenging activity and the effect of AA on the intracellular antioxidant power were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of NaAsO{sub 2} at a dose of 10 mg/kg body weight for 2 days caused significant accumulation of arsenic in cardiac tissues of the experimental mice in association with the reduction in cardiac antioxidant enzymes activities, namely superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase. Arsenic intoxication also decreased the cardiac glutathione (GSH) and total thiol contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products and protein carbonyl content. Treatment with AA at a dose of 20 mg/kg body weight for 4 days prior to NaAsO{sub 2} intoxication protected the cardiac tissue from arsenic-induced oxidative impairment. In addition to oxidative stress, arsenic administration increased total cholesterol level as well as the reduced high-density lipoprotein cholesterol level in the sera of the experimental mice. AA pretreatment, however, could prevent this hyperlipidemia. Histological studies on the ultrastructural changes in cardiac tissue supported the protective activity of AA also. Combining all, results suggest that AA could protect cardiac tissues against arsenic-induced oxidative stress probably due to its antioxidant property. (orig.)

  19. Impaired glutathione synthesis in schizophrenia

    DEFF Research Database (Denmark)

    Gysin, René; Kraftsik, Rudolf; Sandell, Julie

    2007-01-01

    Schizophrenia is a complex multifactorial brain disorder with a genetic component. Convergent evidence has implicated oxidative stress and glutathione (GSH) deficits in the pathogenesis of this disease. The aim of the present study was to test whether schizophrenia is associated with a deficit...... of GSH synthesis. Cultured skin fibroblasts from schizophrenia patients and control subjects were challenged with oxidative stress, and parameters of the rate-limiting enzyme for the GSH synthesis, the glutamate cysteine ligase (GCL), were measured. Stressed cells of patients had a 26% (P = 0.......002) decreased GCL activity as compared with controls. This reduction correlated with a 29% (P schizophrenia in two...

  20. Time-dependent effect of p-Aminophenol (PAP) toxicity in renal slices and development of oxidative stress

    International Nuclear Information System (INIS)

    Harmon, R. Christopher; Terneus, Marcus V.; Kiningham, Kinsley K.; Valentovic, Monica

    2005-01-01

    p-Aminophenol (PAP), a metabolite of acetaminophen, is nephrotoxic. This study investigated PAP-mediated changes as a function of time that occur prior to loss of membrane integrity. Experiments further evaluated the development of oxidative stress by PAP. Renal slices from male Fischer 344 (F344) rats (N = 4-6) were exposed to 0.1, 0.25, and 0.5 mM PAP for 15-120 min under oxygen and constant shaking at 37 o C. Pyruvate-stimulated gluconeogenesis, adenine nucleotide levels, and total glutathione (GSH) levels were diminished in a concentration- and time-dependent manner prior to detection of a rise in lactate dehydrogenase (LDH) leakage. Glutathione disulfide (GSSG) levels were increased by PAP suggesting the induction of oxidative stress. Western blot analysis confirmed a rise in 4-hydroxynonenal (4-HNE)-adducted proteins in tissues exposed to 0.1 and 0.25 mM PAP for 90 min. The appearance of 4-HNE-adducted proteins at the 0.1 mM concentration of PAP occurred prior to development of increased LDH leakage. Pretreatment with 1 mM glutathione (GSH) for 30 min only partially reduced PAP toxicity as LDH values were less severely depleted relative to tissues not pretreated with GSH. In contrast, pretreatment for 15 min with 2 mM ascorbic acid completely protected against PAP toxicity. Further studies showed that ascorbic acid pretreatment prevented PAP-mediated depletion of GSH. In summary, PAP rapidly depletes GSH and adenine nucleotides and inhibits gluconeogenesis prior to a rise in LDH leakage. PAP induces oxidative stress as indicated by an increase in GSSG and 4-HNE-adducted proteins. Ascorbic acid pretreatment prevents PAP toxicity by maintaining GSH status

  1. Protective Effects of Rooibos (Aspalathus linearis and/or Red Palm Oil (Elaeis guineensis Supplementation on tert-Butyl Hydroperoxide-Induced Oxidative Hepatotoxicity in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Olawale R. Ajuwon

    2013-01-01

    Full Text Available The possible protective effects of an aqueous rooibos extract (Aspalathus linearis, red palm oil (RPO (Elaeis guineensis, or their combination on tert-butyl-hydroperoxide-(t-BHP-induced oxidative hepatotoxicity in Wistar rats were investigated. tert-butyl hydroperoxide caused a significant (P<0.05 elevation in conjugated dienes (CD and malondialdehyde (MDA levels, significantly (P<0.05 decreased reduced glutathione (GSH and GSH : GSSG ratio, and induced varying changes in activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase in the blood and liver. This apparent oxidative injury was associated with histopathological changes in liver architecture and elevated levels of serum alanine aminotransferase (ALT, aspartate aminotransferase (AST, and lactate dehydrogenase (LDH. Supplementation with rooibos, RPO, or their combination significantly (P<0.05 decreased CD and MDA levels in the liver and reduced serum level of ALT, AST, and LDH. Likewise, changes observed in the activities of antioxidant enzymes and impairment in redox status in the erythrocytes and liver were reversed. The observed protective effects when rooibos and RPO were supplemented concomitantly were neither additive nor synergistic. Our results suggested that rooibos and RPO, either supplemented alone or combined, are capable of alleviating t-BHP-induced oxidative hepatotoxicity, and the mechanism of this protection may involve inhibition of lipid peroxidation and modulation of antioxidants enzymes and glutathione status.

  2. Methylation of arsenic by recombinant human wild-type arsenic (+ 3 oxidation state) methyltransferase and its methionine 287 threonine (M287T) polymorph: Role of glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lan; Saunders, R. Jesse; Drobná, Zuzana; Walton, Felecia S.; Xun, Pencheng [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Thomas, David J. [Pharmacokinetics Branch, Mail Drop B 143-01, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 109 Alexander Drive Research Triangle Park, NC 27711 (United States); Stýblo, Miroslav, E-mail: styblo@med.unc.edu [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States)

    2012-10-01

    Arsenic (+ 3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the pathway for methylation of arsenicals. A common polymorphism in the AS3MT gene that replaces a threonyl residue in position 287 with a methionyl residue (AS3MT/M287T) occurs at a frequency of about 10% among populations worldwide. Here, we compared catalytic properties of recombinant human wild-type (wt) AS3MT and AS3MT/M287T in reaction mixtures containing S-adenosylmethionine, arsenite (iAs{sup III}) or methylarsonous acid (MAs{sup III}) as substrates and endogenous or synthetic reductants, including glutathione (GSH), a thioredoxin reductase (TR)/thioredoxin (Trx)/NADPH reducing system, or tris (2-carboxyethyl) phosphine hydrochloride (TCEP). With either TR/Trx/NADPH or TCEP, wtAS3MT or AS3MT/M287T catalyzed conversion of iAs{sup III} to MAs{sup III}, methylarsonic acid (MAs{sup V}), dimethylarsinous acid (DMAs{sup III}), and dimethylarsinic acid (DMAs{sup V}); MAs{sup III} was converted to DMAs{sup III} and DMAs{sup V}. Although neither enzyme required GSH to support methylation of iAs{sup III} or MAs{sup III}, addition of 1 mM GSH decreased K{sub m} and increased V{sub max} estimates for either substrate in reaction mixtures containing TR/Trx/NADPH. Without GSH, V{sub max} and K{sub m} values were significantly lower for AS3MT/M287T than for wtAS3MT. In the presence of 1 mM GSH, significantly more DMAs{sup III} was produced from iAs{sup III} in reactions catalyzed by the M287T variant than in wtAS3MT-catalyzed reactions. Thus, 1 mM GSH modulates AS3MT activity, increasing both methylation rates and yield of DMAs{sup III}. AS3MT genotype exemplified by differences in regulation of wtAS3MT and AS3MT/M287T-catalyzed reactions by GSH may contribute to differences in the phenotype for arsenic methylation and, ultimately, to differences in the disease susceptibility in individuals chronically exposed to inorganic arsenic. -- Highlights: ► Human AS3MT and AS3MT(M287T) require a dithiol

  3. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    Science.gov (United States)

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  4. Bursopentin (BP5 protects dendritic cells from lipopolysaccharide-induced oxidative stress for immunosuppression.

    Directory of Open Access Journals (Sweden)

    Tao Qin

    Full Text Available Dendritic cells (DCs play a vital role in the regulation of immune-mediated inflammatory diseases. Thus, DCs have been regarded as a major target for the development of immunomodulators. However, oxidative stress could disturb inflammatory regulation in DCs. Here, we examined the effect of bursopentine (BP5, a novel pentapeptide isolated from chicken bursa of fabricius, on the protection of DCs against oxidative stress for immunosuppression. BP5 showed potent protective effects against the lipopolysaccharide (LPS-induced oxidative stress in DCs, including nitric oxide, reactive oxygen species and lipid peroxidation. Furthermore, BP5 elevated the level of cellular reductive status through increasing the reduced glutathione (GSH and the GSH/GSSG ratio. Concomitant with these, the activities of several antioxidative redox enzymes, including glutathione peroxidase (GPx, catalase (CAT and superoxide dismutase (SOD, were obviously enhanced. BP5 also suppressed submucosal DC maturation in the LPS-stimulated intestinal epithelial cells (ECs/DCs coculture system. Finally, we found that heme oxygenase 1 (HO-1 was remarkably upregulated by BP5 in the LPS-induced DCs, and played an important role in the suppression of oxidative stress and DC maturation. These results suggested that BP5 could protect the LPS-activated DCs against oxidative stress and have potential applications in DC-related inflammatory responses.

  5. Methionine sulfoximine supplementation enhances productivity in GS-CHOK1SV cell lines through glutathione biosynthesis.

    Science.gov (United States)

    Feary, Marc; Racher, Andrew J; Young, Robert J; Smales, C Mark

    2017-01-01

    In Lonza Biologics' GS Gene Expression System™, recombinant protein-producing GS-CHOK1SV cell lines are generated by transfection with an expression vector encoding both GS and the protein product genes followed by selection in MSX and glutamine-free medium. MSX is required to inhibit endogenous CHOK1SV GS, and in effect create a glutamine auxotrophy in the host that can be complemented by the expression vector encoded GS in selected cell lines. However, MSX is not a specific inhibitor of GS as it also inhibits the activity of GCL (a key enzyme in the glutathione biosynthesis pathway) to a similar extent. Glutathione species (GSH and GSSG) have been shown to provide both oxidizing and reducing equivalents to ER-resident oxidoreductases, raising the possibility that selection for transfectants with increased GCL expression could result in the isolation of GS-CHOKISV cell lines with improved capacity for recombinant protein production. In this study we have begun to address the relationship between MSX supplementation, the amount of intracellular GCL subunit and mAb production from a panel of GS-CHOK1SV cell lines. We then evaluated the influence of reduced GCL activity on batch culture of an industrially relevant mAb-producing GS-CHOK1SV cell line. To the best of our knowledge, this paper describes for the first time the change in expression of GCL subunits and recombinant mAb production in these cell lines with the degree of MSX supplementation in routine subculture. Our data also shows that partial inhibition of GCL activity in medium containing 75 µM MSX increases mAb productivity, and its more specific inhibitor BSO used at a concentration of 80 µM in medium increases the specific rate of mAb production eight-fold and the concentration in harvest medium by two-fold. These findings support a link between the inhibition of glutathione biosynthesis and recombinant protein production in industrially relevant systems and provide a process-driven method for

  6. Glutathione S-transferase Mu 2-transduced mesenchymal stem cells ameliorated anti-glomerular basement membrane antibody-induced glomerulonephritis by inhibiting oxidation and inflammation.

    Science.gov (United States)

    Li, Yajuan; Yan, Mei; Yang, Jichen; Raman, Indu; Du, Yong; Min, Soyoun; Fang, Xiangdong; Mohan, Chandra; Li, Quan-Zhen

    2014-01-30

    Oxidative stress is implicated in tissue inflammation, and plays an important role in the pathogenesis of immune-mediated nephritis. Using the anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM-GN) mouse model, we found that increased expression of glutathione S-transferase Mu 2 (GSTM2) was related to reduced renal damage caused by anti-GBM antibodies. Furthermore, mesenchymal stem cell (MSC)-based therapy has shed light on the treatment of immune-mediated kidney diseases. The aim of this study was to investigate if MSCs could be utilized as vehicles to deliver the GSTM2 gene product into the kidney and to evaluate its potential therapeutic effect on anti-GBM-GN. The human GSTM2 gene (hGSTM2) was transduced into mouse bone marrow-derived MSCs via a lentivirus vector to create a stable cell line (hGSTM2-MSC). The cultured hGSTM2-MSCs were treated with 0.5 mM H2O2, and apoptotic cells were measured by terminal dUTP nick-end labeling (TUNEL) assay. The 129/svj mice, which were challenged with anti-GBM antibodies, were injected with 10⁶ hGSTM2-MSCs via the tail vein. Expression of hGSTM2 and inflammatory cytokines in the kidney was assayed by quantitative PCR and western blotting. Renal function of mice was evaluated by monitoring proteinuria and levels of blood urea nitrogen (BUN), and renal pathological changes were analyzed by histochemistry. Immunohistochemical analysis was performed to measure inflammatory cell infiltration and renal cell apoptosis. MSCs transduced with hGSTM2 exhibited similar growth and differentiation properties to MSCs. hGSTM2-MSCs persistently expressed hGSTM2 and resisted H2O2-induced apoptosis. Upon injection into 129/svj mice, hGSTM2-MSCs migrated to the kidney and expressed hGSTM2. The anti-GBM-GN mice treated with hGSTM2-MSCs exhibited reduced proteinuria and BUN (58% and 59% reduction, respectively) and ameliorated renal pathological damage, compared with control mice. Mice injected with hGSTM2-MSCs showed

  7. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain

    Directory of Open Access Journals (Sweden)

    Debora Coimbra-Costa

    2017-08-01

    Full Text Available Acute hypoxia increases the formation of reactive oxygen species (ROS in the brain. However, the effect of reoxygenation, unavoidable to achieve full recovery of the hypoxic organ, has not been clearly established. The aim of the present study was to evaluate the effects of exposition to acute severe respiratory hypoxia followed by reoxygenation on the evolution of oxidative stress and apoptosis in the brain. We investigated the effect of in vivo acute severe normobaric hypoxia (rats exposed to 7% O2 for 6 h and reoxygenation in normoxia (21% O2 for 24 h or 48 h on oxidative stress markers, the antioxidant system and apoptosis in the brain. After respiratory hypoxia we found increased levels of HIF-1α expression, lipid peroxidation, protein oxidation and nitric oxide in brain extracts. Antioxidant defence systems such as superoxide dismutase (SOD, reduced glutathione (GSH and glutathione peroxidase (GPx and the reduced/oxidized glutathione (GSH/GSSG ratio were significantly decreased in the brain. After 24 h of reoxygenation, oxidative stress parameters and the anti-oxidant system returned to control values. Regarding the apoptosis parameters, acute hypoxia increased cytochrome c, AIF and caspase 3 activity in the brain. The apoptotic effect is greatest after 24 h of reoxygenation. Immunohistochemistry suggests that CA3 and dentate gyrus in the hippocampus seem more susceptible to hypoxia than the cortex. Severe acute hypoxia increases oxidative damage, which in turn could activate apoptotic mechanisms. Our work is the first to demonstrate that after 24 h of reoxygenation oxidative stress is attenuated, while apoptosis is maintained mainly in the hippocampus, which may, in fact, be the cause of impaired brain function. Keywords: Antioxidants, Apoptosis, Normobaric hypoxia, Oxidative stress, Reoxygenation

  8. Attenuation of oxidative stress and inflammation by gravinol in high glucose-exposed renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Kim, You Jung; Kim, Young Ae; Yokozawa, Takako

    2010-01-01

    Gravinol, a proanthocyanidin from grape seeds, has polyphenolic properties with powerful anti-oxidative effects. Although, increasing evidence strongly suggests that polyphenolic antioxidants suppress diabetic nephropathy that is causally associated with oxidative stress and inflammation, gravinol's protective action against diabetic nephropathy has not been fully explored to date. In the current study, we investigated the protective action of gravinol against oxidative stress and inflammation using the experimental diabetic nephropathy cell model, high glucose-exposed renal tubular epithelial cells. To elucidate the underlying actions of gravinol, several oxidative and inflammatory markers were estimated. Included are measurements of lipid peroxidation, total reactive species (RS), superoxide (·O 2 ), nitric oxide (NO·), and peroxynitrite (ONOO - ), as well as nuclear factor-kappa B (NF-κB) nuclear translocation. Results indicate that gravinol had a potent inhibitory action against lipid peroxidation, total RS, ·O 2 , NO·, ONOO - , the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio and more importantly, against NF-κB nuclear translocation. We propose that gravinol's strong protective effect against high glucose-induced renal tubular epithelial cell damage attenuates diabetic nephropathy by suppressing oxidative stress and inflammation.

  9. Relación de glutatión reducido/oxidado (GSH/GSSG en ratas diabéticas tratadas con maca (Lepidium meyenii walp

    Directory of Open Access Journals (Sweden)

    Ruth Cisneros

    2011-04-01

    Full Text Available Introducción: La diabetes mellitus y sus complicaciones representan un problema de salud pública. La hiperglucemia desencadena efectos bioquímicos dañinos para el organismo, como el estrés oxidativo y el proceso inflamatorio crónico, por lo que el uso de plantas medicinales con elevada capacidad antioxidante, como Lepidium meyenii Walp (maca, es una alternativa en el tratamiento de esta patología. Objetivo: Determinar si la ingestión de harina de maca mejora la relación glutatión reducido/oxidado (GSH/GSSG en ratas diabéticas. Diseño: Experimental. Institución: Centro de Investigación de Bioquímica y Nutrición, Facultad de Medicina, UNMSM, Lima, Perú. Material biológico: Harina de maca amarilla y ratas albinas Holtzman machos adultas. Intervenciones: Se utilizó 24 ratas, a los cuales se les indujo la diabetes con estreptozotocina (STZ 40 mg/kg de masa corporal y que fueron distribuidas aleatoriamente en cuatro grupos, de seis animales cada uno: control (CO, glibenclamida (GL 10 mg/kg de masa corporal, maca 4 g/día (M4 y maca 6 g/día (M6; el experimento duró 40 días. Se evaluó la glicemia, masa corporal y, al final del experimento, se determinó los niveles de GSH y GSSG en plasma y homogenizado de hígado. Principales medidas de resultados: Masa corporal, glicemia, GSH y GSSG en plasma y homogenizado de hígado. Resultados: A nivel plasmático, el glutatión circulante estuvo favorecido para la forma reducida. Los valores de la relación GSH/GSSG en los grupos tratados con maca estuvieron alrededor de 190, significativamente mayor al grupo CO. Conclusiones: La administración de harina de maca amarilla a ratas diabéticas incrementó la relación GSH/GSSG a nivel plasmático, contribuyendo a mejorar su estado redox.

  10. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum

    Directory of Open Access Journals (Sweden)

    Rosa M López-Pedrajas

    2015-07-01

    Full Text Available Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB, considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p. for 18 days. Reduced and oxidized forms of glutathione (GSH and GSSG, glutathione peroxidase (GPx activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68 and GFAP expression were determined.Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations.Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction.

  11. Novel interaction of diethyldithiocarbamate with the glutathione/glutathione peroxidase system

    International Nuclear Information System (INIS)

    Kumar, K.S.; Sancho, A.M.; Weiss, J.F.

    1986-01-01

    Diethyldithiocarbamate (DDC) exhibits a variety of pharmacologic activities, including both radioprotective and sensitizing properties. Since the glutathione/glutathione peroxidase system may be a significant factor in determining radiation sensitivity, the potential mechanisms of action of DDC in relation to this system were examined in vitro. The interaction of DDC with reduced glutathione (GSH) was tested using a simple system based on the reduction of cytochrome c. When DDC (0.005 mM) was incubated with GSH (0.5 mM), the reduction of cytochrome c was eightfold greater than that expected from an additive effect of DDC and GSH. GSH could be replaced by oxidized glutathione and glutathione reductase. Cytochrome c reduced by DDC was oxidized by mitochondria. The interaction of DDC with both the hexosemonophosphate shunt pathway and the mitochondrial respiratory chain suggests the possibility of linking these two pathways through DDC. Oxidation of DDC by peroxide and reversal by GSH indicated that the drug can engage in a cyclic reaction with peroxide and GSH. This was confirmed when DDC was used in the assay system for glutathione peroxidase (GSHPx) without GSHPx. DDC at a concentration of 0.25 mM was more active than 0.01 unit of pure GSHPx in eliminating peroxide, and much more active than the other sulfhydryl compounds tested. These studies indicate that DDC can supplement GSHPx activity or substitute for it in detoxifying peroxides, and suggests a unique role in the chemical modification of radiation sensitivity

  12. Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash

    Energy Technology Data Exchange (ETDEWEB)

    Marchini, T.; Magnani, N.D. [Cátedra de Química General e Inorgánica, Instituto de Bioquímica y Medicina Molecular (IBIMOL UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Paz, M.L. [Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Vanasco, V. [Cátedra de Química General e Inorgánica, Instituto de Bioquímica y Medicina Molecular (IBIMOL UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Tasat, D. [CESyMA, Facultad de Ciencia Tecnología, Universidad Nacional de General San Martín, Martín de Irigoyen 3100, 1650 San Martín, Buenos Aires (Argentina); González Maglio, D.H. [Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); and others

    2014-01-15

    It is suggested that systemic oxidative stress and inflammation play a central role in the onset and progression of cardiovascular diseases associated with the exposure to particulate matter (PM). The aim of this work was to evaluate the time changes of systemic markers of oxidative stress and inflammation, after an acute exposure to Residual Oil Fly Ash (ROFA). Female Swiss mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight) or saline solution, and plasma levels of oxidative damage markers [thiobarbituric acid reactive substances (TBARSs) and protein carbonyls], antioxidant status [reduced (GSH) and oxidized (GSSG) glutathione, ascorbic acid levels, and superoxide dismutase (SOD) activity], cytokines levels, and intravascular leukocyte activation were evaluated after 1, 3 or 5 h of exposure. Oxidative damage to lipids and decreased GSH/GSSG ratio were observed in ROFA-exposed mice as early as 1 h. Afterwards, increased protein oxidation, decreased ascorbic acid content and SOD activity were found in this group at 3 h. The onset of an adaptive response was observed at 5 h after the ROFA exposure, as indicated by decreased TBARS plasma content and increased SOD activity. The observed increase in oxidative damage to plasma macromolecules, together with systemic antioxidants depletion, may be a consequence of a systemic inflammatory response triggered by the ROFA exposure, since increased TNF-α and IL-6 plasma levels and polymorphonuclear leukocytes activation was found at every evaluated time point. These findings contribute to the understanding of the increase in cardiovascular morbidity and mortality, in association with environmental PM inhalation. - Highlights: • An acute exposure to ROFA triggers the occurrence of systemic oxidative stress. • Changes in plasmatic oxidative stress markers appear as early as 1 h after exposure. • ROFA induces proinflammatory cytokines release and intravascular leukocyte activation. • PMN

  13. Role of cellular antioxidants (glutathione and ascorbic acid) in the growth and development of wild carrot suspension cultures

    International Nuclear Information System (INIS)

    Earnshaw, B.A.

    1986-01-01

    Determinations of endogenous glutathione (GSH), glutathione disulfide (GSSG), ascorbic acid (AA) and dehydroascorbic acid (DHA) in proliferating and developing wild carrot cultures showed that lower levels of GSH and AA were associated with developing cultures. The GSSG and DHA levels did not account for the changes in the levels of antioxidants between proliferating and developing cultures. Studies were designed to test an observed auxin (2,4-Dichlorophenoxyacetic acid, 2,4-D)-antioxidant association. Two fractions (embryo and less developed) were obtained by screening developed cultures which were previously grown in the presence of 14 C-2, 4-D. The embryo fraction had a lower concentration of 14 C than the less developed fraction, supporting the association, since the two fractions showed this relationship with respect to GSH and AA concentrations. Determinations of GSH and AA levels of cells grown in various concentrations of 2,4-D showed the association, decreases in the 2,4-D concentration correlated with decreases in the GSH and AA concentrations. The existence of a respiratory pathway involving GSSG reductase, DHA reductase, and AA oxidase was investigated to test whether inhibition of AA oxidase by 2,4-D could explain the auxin-antioxidant association; however, AA oxidase activity was not detected

  14. Comparison of plasma malondialdehyde, glutathione, glutathione peroxidase, hydroxyproline and selenium levels in patients with vitiligo and healthy controls

    Directory of Open Access Journals (Sweden)

    Ozturk I

    2008-01-01

    Full Text Available Background: The etiology and pathophysiologic mechanism of vitiligo are still unclear. The relationship between increased oxidative stress due to the accumulation of radicals and reactive oxygen species and the associated changes in blood and epidermal component of vitiliginous skin have been reported many times. We investigated the possible changes of plasma malondialdehyde, glutathione, selenium, hydroxyproline and glutathione peroxidase activity levels in patients with vitiligo in order to evaluate the relationship between oxidative stress and etiopathogenesis of vitiligo. Materials and Methods: Plasma malondialdehyde, glutathione, hydroxyproline and glutathione peroxidase activity levels were measured by spectrophotometric methods, and HPLC was used for measurement of selenium concentrations. Results: Our results showed increased malondialdehyde, hydroxyproline and glutathione peroxidase activity levels in plasma of vitiligo group ( P < 0.05. Conclusion: Support of antioxidant system via nonenzymatic antioxidant compounds and antioxidant enzymes may be useful to prevent of melanocyte degeneration which occur due to oxidative damage in vitiligo.

  15. Dietary fish oil replacement with palm or poultry oil increases fillet oxidative stability and decreases liver glutathione peroxidase activity in barramundi (Lates calcarifer).

    Science.gov (United States)

    Wan Ahmad, Wan A R; Stone, David A J; Schuller, Kathryn A

    2013-12-01

    Complete dietary fish oil replacement with palm or poultry oil in barramundi (Lates calcarifer) had no detrimental effects on growth or hepatosomatic index of juvenile fish up to an average size of ~50 g. However, it significantly decreased the omega-3 (n-3) long-chain polyunsaturated fatty acid content of the fish muscle (fillet) lipids. This was particularly true for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) which are recognised for their health beneficial effects in the human diet. As a result of their decreased EPA and DHA content, the peroxidation index of the muscle lipids was also decreased. This was associated with increased simulated retail storage shelf life as indicated by decreased thiobarbituric acid reactive substances in muscle samples from fish fed the palm or poultry oil-based diets. Concomitantly, glutathione peroxidase (GPx) activity, but not glutathione S-transferase (GST) activity or reduced glutathione concentration, was significantly reduced in the liver of barramundi fed the palm or poultry oil-based diets as compared with the fish fed the fish oil-based diet. Furthermore, GPx and GST activity were very low in muscle, much lower than in gastrointestinal tract, liver or swim bladder. Therefore, we propose that liver GPx activity may be a good predictor of fillet shelf life in barramundi and other fish species.

  16. Application of photocatalytic cadmium sulfide nanoparticles to detection of enzymatic activities of glucose oxidase and glutathione reductase using oxidation of 3,3′,5,5′-tetramethylbenzidine

    Energy Technology Data Exchange (ETDEWEB)

    Grinyte, Ruta; Garai-Ibabe, Gaizka; Saa, Laura; Pavlov, Valeri, E-mail: vpavlov@cicbiomagune.es

    2015-06-30

    Highlights: • The light-powered nanosensor fabricated by enzymatic reactions was reported. • The sensor use energy of photons for oxidation of chromogenic enzymatic substrates. • Enzymatic assays for glucose oxidase and glutathione reductase were developed. - Abstract: It was found out that semiconductor CdS nanoparticles (NPs) are able to catalyze photooxidation of the well known chromogenic enzymatic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) by oxygen. The photocatalytical oxidation of TMB does not require hydrogen peroxide and its rate is directly proportional to the quantity of CdS NPs produced in situ through the interaction of Cd{sup 2+} and S{sup 2−} ions in an aqueous medium. This phenomenon was applied to development of colorimetric sensitive assays for glucose oxidase and glutathione reductase based on enzymatic generation of CdS NPs acting as light-powered catalysts. Sensitivity of the developed chromogenic assays was of the same order of magnitude or even better than that of relevant fluorogenic assays. The present approach opens the possibility for the design of simple and sensitive colorimetric assays for a number of enzymes using inexpensive and available TMB as a universal chromogenic compound.

  17. Effects of glutathione s-transferase (GST) M1 and T1 polymorphisms on antioxidant vitamins and oxidative stress-related parameters in Korean subclinical hypertensive subjects after kale juice (Brassica oleracea acephala) supplementation.

    Science.gov (United States)

    Lee, Hye-Jin; Han, Jeong-Hwa; Park, Yoo Kyoung; Kang, Myung-Hee

    2018-04-01

    Glutathione s-transferase ( GST ) is involved in the formation of a multigene family comprising phase II detoxification enzymes, involved in the detoxification of reactive oxygen species. This study evaluated whether daily supplementation with kale juice could modulate levels of plasma antioxidant vitamins and oxidative stress-related parameters. We further examined whether this modulation was affected by combined GSTM1 and T1 polymorphisms. Totally, 84 subclinical hypertensive patients having systolic blood pressure (BP) over 130 mmHg or diastolic BP over 85 mmHg, received 300 mL of kale juice daily for 6 weeks. Blood samples were drawn before start of study and after completion of 6 weeks. After supplementation, we observed significant decrease in DNA damage and increase in erythrocyte catalase activity in all genotypes. Plasma level of vitamin C was significantly increased in the wild/null and double null genotypes. The plasma levels of β-carotene, erythrocyte glutathione peroxidase activity, and nitric oxide were increased only in the wild/null genotype after kale juice supplementation. The effect of kale juice was significantly greater in the GSTM1 null genotype and wild/null genotype groups, suggesting possibility of personalized nutritional prescriptions based on personal genetics.

  18. Mitochondrial Swelling Induced by Glutathione

    Science.gov (United States)

    Lehninger, Albert L.; Schneider, Marion

    1959-01-01

    Reduced glutathione, in concentrations approximating those occurring in intact rat liver, causes swelling of rat liver mitochondria in vitro which is different in kinetics and extent from that yielded by L-thyroxine. The effect is also given by cysteine, which is more active, and reduced coenzyme A, but not by L-ascorbate, cystine, or oxidized glutathione. The optimum pH is 6.5, whereas thyroxine-induced swelling is optimal at pH 7.5. The GSH-induced swelling is not inhibited by DNP or dicumarol, nor by high concentrations of sucrose, serum albumin, or polyvinylpyrrolidone, in contrast to thyroxine-induced swelling. ATP inhibits the GSH swelling, but ADP and AMP are ineffective. Mn-+ is a very potent inhibitor, but Mg++ is ineffective. Ethylenediaminetetraacetate is also an effective inhibitor of GSH-induced swelling. The respiratory inhibitors amytal and antimycin A do not inhibit the swelling action of GSH, but cyanide does; these findings are consistent with the view that the oxidation-reduction state of the respiratory chain between cytochrome c and oxygen is a determinant of GSH-induced swelling. Reversal of GSH-induced swelling by osmotic means or by ATP in KCl media could not be observed. Large losses of nucleotides and protein occur during the swelling by GSH, suggesting that the action is irreversible. The characteristically drastic swelling action of GSH could be prevented if L-thyroxine was also present in the medium. PMID:13630941

  19. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro.

    Directory of Open Access Journals (Sweden)

    Irundika H K Dias

    Full Text Available The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 (. - by the nicotinamide adenine dinucleotide (NADPH oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2, a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH/oxidised glutathione (GSSG ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC, and modifier (GCLM subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 (. - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis.

  20. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro.

    Science.gov (United States)

    Dias, Irundika H K; Chapple, Ian L C; Milward, Mike; Grant, Melissa M; Hill, Eric; Brown, James; Griffiths, Helen R

    2013-01-01

    The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 (. -) by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 (. -) production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis.

  1. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress.

    Science.gov (United States)

    Long, Yue; Dong, Xin; Yuan, Yawei; Huang, Jinqiang; Song, Jiangang; Sun, Yumin; Lu, Zhijie; Yang, Liqun; Yu, Weifeng

    2015-07-01

    The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPC(c) (14:0), glycine and succinic acid and decreased levels of l-valine, PC(b) (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress.

  2. Oxidative stress mediated toxicity of TiO2 nanoparticles after a concentration and time dependent exposure of the aquatic macrophyte Hydrilla verticillata.

    Science.gov (United States)

    Spengler, Annette; Wanninger, Lena; Pflugmacher, Stephan

    2017-09-01

    The present study focused on oxidative stress effects in the aquatic macrophyte Hydrilla verticillata after exposure to titanium dioxide nanoparticles (TiO 2 -NPs). Experiments were conducted with different TiO 2 -NPs and concentrations (0.1 mg/L and 10 mg/L) in a time-dependent manner (0 h, 24 h, 48 h, 96 h, 168 h). To assess various levels of the oxidative stress response in H. verticillata, the level of hydrogen peroxide (H 2 O 2 ), the ratio of reduced to oxidized glutathione (GSH/GSSG), and activities of the antioxidative enzymes catalase (CAT) and glutathione reductase (GR) were evaluated. Study results imply oxidative stress effects after TiO 2 -NP exposure as adaptations in plant metabolism became apparent to counteract increased ROS formation. All TiO 2 -NPs caused elevated activities of the enzymes CAT and GR. Moreover, decreased ratios of GSH/GSSG indicated an activation of GSH-dependent pathways counteracting ROS formation. Plants exposed to a bulk-sized control revealed a size-dependent influence on the antioxidative stress response. As H 2 O 2 level increases were solely detected after exposure to 10 mg/L TiO 2 -NPs and nano-exposed plants showed normalization in its antioxidative stress response after 168h of exposure, it can be suggested that macrophytes are able to cope with currently predicted low-level exposures to TiO 2 -NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Incomplete Glutathione Puzzle: Just Guessing at Numbers and Figures?

    Science.gov (United States)

    Deponte, Marcel

    2017-11-20

    Glutathione metabolism is comparable to a jigsaw puzzle with too many pieces. It is supposed to comprise (i) the reduction of disulfides, hydroperoxides, sulfenic acids, and nitrosothiols, (ii) the detoxification of aldehydes, xenobiotics, and heavy metals, and (iii) the synthesis of eicosanoids, steroids, and iron-sulfur clusters. In addition, glutathione affects oxidative protein folding and redox signaling. Here, I try to provide an overview on the relevance of glutathione-dependent pathways with an emphasis on quantitative data. Recent Advances: Intracellular redox measurements reveal that the cytosol, the nucleus, and mitochondria contain very little glutathione disulfide and that oxidative challenges are rapidly counterbalanced. Genetic approaches suggest that iron metabolism is the centerpiece of the glutathione puzzle in yeast. Furthermore, recent biochemical studies provide novel insights on glutathione transport processes and uncoupling mechanisms. Which parts of the glutathione puzzle are most relevant? Does this explain the high intracellular concentrations of reduced glutathione? How can iron-sulfur cluster biogenesis, oxidative protein folding, or redox signaling occur at high glutathione concentrations? Answers to these questions not only seem to depend on the organism, cell type, and subcellular compartment but also on different ideologies among researchers. A rational approach to compare the relevance of glutathione-dependent pathways is to combine genetic and quantitative kinetic data. However, there are still many missing pieces and too little is known about the compartment-specific repertoire and concentration of numerous metabolites, substrates, enzymes, and transporters as well as rate constants and enzyme kinetic patterns. Gathering this information might require the development of novel tools but is crucial to address potential kinetic competitions and to decipher uncoupling mechanisms to solve the glutathione puzzle. Antioxid. Redox Signal

  4. Membrane accessibility of glutathione

    DEFF Research Database (Denmark)

    Garcia, Almudena; Eljack, N., D.; Sani, ND

    2015-01-01

    Regulation of the ion pumping activity of the Na(+),K(+)-ATPase is crucial to the survival of animal cells. Recent evidence has suggested that the activity of the enzyme could be controlled by glutathionylation of cysteine residue 45 of the β-subunit. Crystal structures so far available indicate...... that this cysteine is in a transmembrane domain of the protein. Here we have analysed via fluorescence and NMR spectroscopy as well as molecular dynamics simulations whether glutathione is able to penetrate into the interior of a lipid membrane. No evidence for any penetration of glutathione into the membrane...

  5. Screening for oxidative damage by engineered nanomaterials: a comparative evaluation of FRAS and DCFH

    Science.gov (United States)

    Pal, Anoop K.; Hsieh, Shu-Feng; Khatri, Madhu; Isaacs, Jacqueline A.; Demokritou, Philip; Gaines, Peter; Schmidt, Daniel F.; Rogers, Eugene J.; Bello, Dhimiter

    2014-02-01

    Several acellular assays are routinely used to measure oxidative stress elicited by engineered nanomaterials (ENMs), yet little comparative evaluations of such methods exist. This study compares for the first time the performance of the dichlorofluorescein (DCFH) assay which measures reactive oxygen species (ROS) generation, to that of the ferric-reducing ability of serum (FRAS) assay, which measures biological oxidant damage in serum. A diverse set of 28 commercially important and extensively characterized ENMs were tested on both the assays. Intracellular oxidative stress was also assessed on a representative subset of seven ENMs in THP-1 (phorbol 12-myristate 13-acetate matured human monocytes) cells. Associations between assay responses and ENM physicochemical properties were assessed via correlation and regression analysis. DCFH correlated strongly with FRAS after dose normalization for mass ( R 2 = 0.78) and surface area ( R 2 = 0.68). Only 10/28 ENMs were positive in DCFH versus 21/28 in FRAS. Both assays were strongly associated with specific surface area and transition metal content. Qualitatively, a similar response ranking was observed for acellular FRAS and intracellular reduced:oxidized glutathione ratio (GSH:GSSG) in cells. Quantitatively, weak correlation was found between intracellular GSSG and FRAS or DCFH ( R 2 < 0.25) even after calculating effective dose to cells. The FRAS assay was more sensitive than DCFH, especially for ENMs with low to moderate oxidative damage potential, and may serve as a more biologically relevant substitute for acellular ROS measurements of ENMs. Further in vitro and in vivo validations of FRAS against other toxicological endpoints with larger datasets are recommended.

  6. E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke.

    Science.gov (United States)

    Taylor, Mark; Carr, Tony; Oke, Oluwatobiloba; Jaunky, Tomasz; Breheny, Damien; Lowe, Frazer; Gaça, Marianna

    2016-07-01

    Tobacco smoking is a risk factor for various diseases. The underlying cellular mechanisms are not fully characterized, but include oxidative stress, apoptosis, and necrosis. Electronic-cigarettes (e-cigarettes) have emerged as an alternative to and a possible means to reduce harm from tobacco smoking. E-cigarette vapor contains significantly lower levels of toxicants than cigarette smoke, but standardized methods to assess cellular responses to exposure are not well established. We investigated whether an in vitro model of the airway epithelium (human bronchial epithelial cells) and commercially available assays could differentiate cellular stress responses to aqueous aerosol extracts (AqE) generated from cigarette smoke and e-cigarette aerosols. After exposure to AqE concentrations of 0.063-0.500 puffs/mL, we measured the intracellular glutathione ratio (GSH:GSSG), intracellular generation of oxidant species, and activation of the nuclear factor erythroid-related factor 2 (Nrf2)-controlled antioxidant response elements (ARE) to characterize oxidative stress. Apoptotic and necrotic responses were characterized by increases in caspase 3/7 activity and reductions in viable cell protease activities. Concentration-dependent responses indicative of oxidative stress were obtained for all endpoints following exposure to cigarette smoke AqE: intracellular generation of oxidant species increased by up to 83%, GSH:GSSG reduced by 98.6% and transcriptional activation of ARE increased by up to 335%. Caspase 3/7 activity was increased by up to 37% and the viable cell population declined by up to 76%. No cellular stress responses were detected following exposure to e-cigarette AqE. The methods used were suitably sensitive to be employed for comparative studies of tobacco and nicotine products.

  7. Uranyl complexes of glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Marzotto, A [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi

    1977-01-01

    Dioxouranium(VI) complexes of the tripeptide glutathione having different molar ratios were prepared and studied by IR, PMR, electronic absorption and circular dichroism spectra. The results indicate that coordination occurs at the carboxylato groups, acting as monodentate ligands, whereas no significant interaction with the amino and sulfhydrylic groups takes place.

  8. Modification of oxidative status in Plasmodium berghei-infected erythrocytes by E-2-chloro-8-methyl-3-[(4'-methoxy-1'-indanoyl-2'-methyliden]-quinoline compared to chloroquine

    Directory of Open Access Journals (Sweden)

    Juan Rodrigues

    2009-09-01

    Full Text Available E-2-chloro-8-methyl-3-[(4'-methoxy-1'-indanoyl-2'-methyliden]-quinoline (IQ is a new quinoline derivative which has been reported as a haemoglobin degradation and ß-haematin formation inhibitor. The haemoglobin proteolysis induced by Plasmodium parasites represents a source of amino acids and haeme, leading to oxidative stress in infected cells. In this paper, we evaluated oxidative status in Plasmodium berghei-infected erythrocytes in the presence of IQ using chloroquine (CQ as a control. After haemolysis, superoxide dismutase (SOD, catalase, glutathione cycle and NADPH + H+-dependent dehydrogenase enzyme activities were investigated. Lipid peroxidation was also assayed to evaluate lipid damage. The results showed that the overall activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were significantly diminished by IQ (by 53.5% and 100%, respectively. Glutathione peroxidase activity was also lowered (31% in conjunction with a higher GSSG/GSH ratio. As a compensatory response, overall SOD activity increased and lipid peroxidation decreased, protecting the cells from the haemolysis caused by the infection. CQ shared most of the effects showed by IQ; however it was able to inhibit the activity of isocitrate dehydrogenase and glutathione-S-transferase. In conclusion, IQ could be a candidate for further studies in malaria research interfering with the oxidative status in Plasmodium berghei infection.

  9. EROD activity, chromosomal damage, and oxidative stress in response to contaminants exposure in tree swallow (Tachycineta bicolor) nestlings from Great Lakes Areas of Concern

    Science.gov (United States)

    Custer, Thomas W.; Custer, Christine M.; Dummer, Paul; Bigorgne, Emilie; Oziolor, Elias; Karouna-Renier, Natalie K.; Schultz, Sandra; Erickson, Richard A.; Aagaard, Kevin; Matson, Cole W.

    2017-01-01

    Tree swallow, Tachycineta bicolor, nestlings were collected from 60 sites in the Great Lakes, which included multiple sites within 27 Areas of Concern (AOCs) and six sites not listed as AOCs from 2010 to 2014. Nestlings, approximately 12 days-of-age, were evaluated for ethoxyresorufin-O-dealkylase (EROD) activity, chromosomal damage, and six measures of oxidative stress. Data on each of these biomarkers were divided into four equal numbered groups from the highest to lowest values and the groups were compared to contaminant concentrations using multivariate analysis. Contaminant concentrations, from the same nestlings, included polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), and 17 elements. Alkylated polycyclic aromatic hydrocarbons (aPAHs) and parent PAHs (pPAHs) were measured in pooled nestling dietary samples. Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and pesticides were measured in sibling eggs. Concentrations of aPAHs, pPAHs, chlordane, dieldrin, heptachlor, and PCBs, in that order, were the major contributors to the significant differences between the lowest and highest EROD activities; PFCs, PBDEs, the remaining pesticides, and all elements were of secondary importance. The four categories of chromosomal damage did not separate out well based on the contaminants measured. Concentrations of aPAHs, pPAHs, heptachlor, PCBs, chlordane, and dieldrin were the major contributors to the significant differences between the lowest and highest activities of two oxidative stress measures, total sulfhydryl (TSH) activity and protein bound sulfhydryl (PBSH) activity. The four categories of thiobarbituric acid reacting substances (TBARS), oxidized glutathione (GSSG), reduced glutathione (GSH), and the ratio of GSSG/GSH did not separate well based on the contaminants measured.

  10. Oxidative Stress in Dilated Cardiomyopathy Caused by MYBPC3 Mutation

    Directory of Open Access Journals (Sweden)

    Thomas L. Lynch

    2015-01-01

    Full Text Available Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C. However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM expressing a homozygous MYBPC3 mutation (cMyBP-C(t/t was used, compared to wild-type (WT mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure.

  11. Selol, an organic selenium donor, prevents lipopolysaccharide-induced oxidative stress and inflammatory reaction in the rat brain.

    Science.gov (United States)

    Dominiak, Agnieszka; Wilkaniec, Anna; Jęśko, Henryk; Czapski, Grzegorz A; Lenkiewicz, Anna M; Kurek, Eliza; Wroczyński, Piotr; Adamczyk, Agata

    2017-09-01

    Neuroinflammation and oxidative stress are key intertwined pathological factors in many neurological, particularly neurodegenerative diseases, such as Alzheimer's and Parkinson's disorders as well as autism. The present study was conducted to evaluate the protective effects of Selol, an organic selenium donor, against lipopolysaccharide (LPS)-mediated inflammation in rat brain. The results demonstrated that the peripheral administration of LPS in a dose of 100 μg/kg b.w. evoked typical pathological reaction known as systemic inflammatory response. Moreover, we observed elevated blood levels of thiobarbituric acid-reactive substances (TBARS), a marker of oxidative stress, as well as increased concentration of tumor necrosis factor-α (TNF-α) in LPS-treated animals. Selol significantly prevented these LPS-evoked changes. Subsequently, Selol protected against LPS-induced up-regulation of proinflammatory cytokines (Tnfa, Ifng, Il6) in rat brain cortex. The molecular mechanisms through which Selol prevented the neuroinflammation were associated with the inhibition of oxidized glutathione (GSSG) accumulation and with an increase of glutathione-associated enzymes: glutathione peroxidase (Se-GPx), glutathione reductase (GR) as well as thioredoxin reductase (TrxR) activity and expression. Finally, we observed that Selol administration effectively protected against LPS-induced changes in the expression of brain-derived neurotrophic factor (Bdnf). In conclusion, our studies indicated that Selol effectively protects against LPS-induced neuroinflammation by inhibiting pro-inflammatory cytokine release, by boosting antioxidant systems, and by augmenting BDNF level. Therefore, Selol could be a multi-potent and effective drug useful in the treatment and prevention of brain disorders associated with neuroinflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Assessment of DNA damage and oxidative stress induced by radiation in Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Exposure of eukaryotic cells to ionizing radiation results in the immediate formation of free radicals and the occurrence of oxidative cell damage. Recently International Commission on Radiological Protection (ICRP) requires the effect data of ionizing radiation on non-human biota for the radiological protection of the environment. Based on their radioecological properties and their important role in the soil ecosystem, earthworms have been identified by the ICRP as one of the reference animals and plants (RAPs) to be used in environmental radiation protection. The investigation shows that oxidative stress is closely related to the exposed dose of radiation in the environment. To evaluate oxidative stress by ionizing radiation in the earthworm, we performed several experiments. The comet assay is known as a measurement which is one of the best techniques in assessing the DNA damage by oxidative stress. The SOD is a key enzyme in protecting cells against oxidative stress. An increase in the level of antioxidant enzyme such as SOD indicated that the exposure to radiation caused stress responses. Glutathione oxidation is considered as a maker for detection of reactive oxygen species (ROS). The GSSG levels increased progressively with increased exposure dose of ionizing radiation, which suggested a dose-dependent ROS generation.

  13. Thiol-Disulfide Exchange between Glutaredoxin and Glutathione

    DEFF Research Database (Denmark)

    Iversen, Rasmus; Andersen, Peter Anders; Jensen, Kristine Steen

    2010-01-01

    Glutaredoxins are ubiquitous thiol-disulfide oxidoreductases which catalyze the reduction of glutathione-protein mixed disulfides. Belonging to the thioredoxin family, they contain a conserved active site CXXC motif. The N-proximal active site cysteine can form a mixed disulfide with glutathione ...... has been replaced with serine. The exchange reaction between the reduced protein and oxidized glutathione leading to formation of the mixed disulfide could readily be monitored by isothermal titration calorimetry (ITC) due to the enthalpic contributions from the noncovalent interactions...

  14. Acute Pre-/Post-Treatment with 8th Day SOD-Like Supreme (a Free Radical Scavenging Health Product Protects against Oxidant-Induced Injury in Cultured Cardiomyocytes and Hepatocytes In Vitro as Well as in Mouse Myocardium and Liver In Vivo

    Directory of Open Access Journals (Sweden)

    Pou Kuan Leong

    2017-04-01

    Full Text Available 8th Day superoxide dismutase (SOD-Like Supreme (SOD-Like Supreme, a free radical scavenging health product is an antioxidant-enriched fermentation preparation with free radical scavenging properties. In the present study, the cellular/tissue protective actions of SOD-Like Supreme against menadione toxicity in cultured H9c2 cardiomyocytes and in AML12 hepatocytes as well as oxidant-induced injury in the mouse myocardium and liver were investigated. SOD-Like Supreme was found to possess potent free radical scavenging activity in vitro as assessed by an oxygen radical absorbance capacity assay. Incubation with SOD-Like Supreme (0.5–3% (v/v was shown to protect against menadione-induced toxicity in H9c2 and AML12 cells, as evidenced by increases in cell viability. The ability of SOD-Like Supreme to protect against menadione cytotoxicity was associated with an elevation in the cellular reduced glutathione (GSH/oxidized glutathione (GSSG ratio in menadione-challenged cells. Consistent with the cell-based studies, pre-/post-treatment with SOD-Like Supreme (0.69 and 2.06 mL/kg, three intermittent doses per day for two consecutive days was found to protect against isoproterenol-induced myocardial injury and carbon tetrachloride hepatotoxicity in mice. The cardio/hepatoprotection afforded by SOD-Like Supreme was also paralleled by increases in myocardial/hepatic mitochondrial GSH/GSSG ratios in the SOD-Like Supreme-treated/oxidant-challenged mice. In conclusion, incubation/treatment with SOD-Like Supreme was found to protect against oxidant-induced injury in vitro and in vivo, presumably by virtue of its free radical scavenging activity.

  15. Simultaneous determination of reduced and oxidized glutathione in tissues by a novel liquid chromatography-mass spectrometry method: application in an inhalation study of Cd nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Bláhová, L.; Kohoutek, J.; Lebedová, J.; Bláha, L.; Večeřa, Zbyněk; Buchtová, Marcela; Míšek, Ivan; Hilscherová, K.

    2014-01-01

    Roč. 406, č. 24 (2014), s. 5867-5876 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GAP503/11/2315 Institutional support: RVO:68081715 ; RVO:67985904 Keywords : LC MS/MS * nanoparticle * cadmium oxide Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 3.436, year: 2014

  16. Mechanism-based biomarker gene sets for glutathione depletion-related hepatotoxicity in rats

    International Nuclear Information System (INIS)

    Gao Weihua; Mizukawa, Yumiko; Nakatsu, Noriyuki; Minowa, Yosuke; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2010-01-01

    Chemical-induced glutathione depletion is thought to be caused by two types of toxicological mechanisms: PHO-type glutathione depletion [glutathione conjugated with chemicals such as phorone (PHO) or diethyl maleate (DEM)], and BSO-type glutathione depletion [i.e., glutathione synthesis inhibited by chemicals such as L-buthionine-sulfoximine (BSO)]. In order to identify mechanism-based biomarker gene sets for glutathione depletion in rat liver, male SD rats were treated with various chemicals including PHO (40, 120 and 400 mg/kg), DEM (80, 240 and 800 mg/kg), BSO (150, 450 and 1500 mg/kg), and bromobenzene (BBZ, 10, 100 and 300 mg/kg). Liver samples were taken 3, 6, 9 and 24 h after administration and examined for hepatic glutathione content, physiological and pathological changes, and gene expression changes using Affymetrix GeneChip Arrays. To identify differentially expressed probe sets in response to glutathione depletion, we focused on the following two courses of events for the two types of mechanisms of glutathione depletion: a) gene expression changes occurring simultaneously in response to glutathione depletion, and b) gene expression changes after glutathione was depleted. The gene expression profiles of the identified probe sets for the two types of glutathione depletion differed markedly at times during and after glutathione depletion, whereas Srxn1 was markedly increased for both types as glutathione was depleted, suggesting that Srxn1 is a key molecule in oxidative stress related to glutathione. The extracted probe sets were refined and verified using various compounds including 13 additional positive or negative compounds, and they established two useful marker sets. One contained three probe sets (Akr7a3, Trib3 and Gstp1) that could detect conjugation-type glutathione depletors any time within 24 h after dosing, and the other contained 14 probe sets that could detect glutathione depletors by any mechanism. These two sets, with appropriate scoring

  17. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Elise R Hondorp

    2004-11-01

    Full Text Available In nature, Escherichia coli are exposed to harsh and non-ideal growth environments-nutrients may be limiting, and cells are often challenged by oxidative stress. For E. coli cells confronting these realities, there appears to be a link between oxidative stress, methionine availability, and the enzyme that catalyzes the final step of methionine biosynthesis, cobalamin-independent methionine synthase (MetE. We found that E. coli cells subjected to transient oxidative stress during growth in minimal medium develop a methionine auxotrophy, which can be traced to an effect on MetE. Further experiments demonstrated that the purified enzyme is inactivated by oxidized glutathione (GSSG at a rate that correlates with protein oxidation. The unique site of oxidation was identified by selectively cleaving N-terminally to each reduced cysteine and analyzing the results by liquid chromatography mass spectrometry. Stoichiometric glutathionylation of MetE by GSSG occurs at cysteine 645, which is strategically located at the entrance to the active site. Direct evidence of MetE oxidation in vivo was obtained from thiol-trapping experiments in two different E. coli strains that contain highly oxidizing cytoplasmic environments. Moreover, MetE is completely oxidized in wild-type E. coli treated with the thiol-oxidizing agent diamide; reduced enzyme reappears just prior to the cells resuming normal growth. We argue that for E. coli experiencing oxidizing conditions in minimal medium, MetE is readily inactivated, resulting in cellular methionine limitation. Glutathionylation of the protein provides a strategy to modulate in vivo activity of the enzyme while protecting the active site from further damage, in an easily reversible manner. While glutathionylation of proteins is a fairly common mode of redox regulation in eukaryotes, very few proteins in E. coli are known to be modified in this manner. Our results are complementary to the independent findings of Leichert

  18. Involvement of catalase in the protective benefits of metformin in mice with oxidative liver injury.

    Science.gov (United States)

    Dai, Jie; Liu, Mingwei; Ai, Qing; Lin, Ling; Wu, Kunwei; Deng, Xinyu; Jing, Yuping; Jia, Mengying; Wan, Jingyuan; Zhang, Li

    2014-06-05

    Metformin is a commonly used anti-diabetic drug with AMP-activated protein kinase (AMPK)-dependent hypoglycemic activities. Recent studies have revealed its anti-inflammatory and anti-oxidative properties. In the present study, the anti-oxidative potential of metformin and its potential mechanisms were investigated in a mouse model with carbon tetrachloride (CCl₂)-induced severe oxidative liver injury. Our results showed that treatment with metformin significantly attenuated CCl₂-induced elevation of serum aminotransferases and hepatic histological abnormalities. The alleviated liver injury was associated with decreased hepatic contents of oxidized glutathione (GSSG) and malondialdehyde (MDA). In addition, metformin treatment dose-dependently enhanced the activities of catalase (CAT) and decreased CCl₄-induced elevation of hepatic H₂O₂ levels, but it had no obvious effects on the protein level of CAT. We also found that metformin increased the level of phosphorylated AMP-activated protein kinase (AMPK), but treatment with AMPK activator AICAR had no obvious effects on CAT activity. A molecular docking analysis indicated that metformin might interact with CAT via hydrogen bonds. These data suggested that metformin effectively alleviated CCl₄-induced oxidative liver injury in mice and these hepatoprotective effects might be associated with CAT. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. No evidence of oxidative stress after a triathlon race in highly trained competitors.

    Science.gov (United States)

    Margaritis, I; Tessier, F; Richard, M J; Marconnet, P

    1997-04-01

    Long distance triathlons, due to the large amounts of oxygen uptake they cause, may lead to the generation of reactive oxygen species, and consequently to oxidative stress and damage. We sought to verify this hypothesis. Twelve of the 18 male triathletes who participated in the study took part in a long distance triathlon, the others did not. The prerace blood samples were drawn 48 h before the race and repeatedly until the fourth day of recovery. The myoglobin concentrations increased immediately after the race. The concentrations of methemoglobin, disulfide glutathione (GSSG), and thiobarbituric reactive substances did not significantly change after the race. Although the race induced an inflammatory response, evidenced by the variations in neopterin concentrations and leukocyte counts, there was no consecutive oxidative stress. The basal GSH values were correlated significantly with cycling training volume (r = 0.55) and VO2max (r = 0.53). Muscle damage can occur without evidence of oxidative stress or oxidative damage. We conclude that the magnitude of the antioxidant defense system enhancement depends on training loads. Because of their training status, the triathletes did not suffer from oxidative damage after they finished the long distance triathlon race.

  20. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    Science.gov (United States)

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  1. Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes.

    Directory of Open Access Journals (Sweden)

    Vittoria Buccigrossi

    Full Text Available Rotavirus (RV infection causes watery diarrhea via multiple mechanisms, primarily chloride secretion in intestinal epithelial cell. The chloride secretion largely depends on non-structural protein 4 (NSP4 enterotoxic activity in human enterocytes through mechanisms that have not been defined. Redox imbalance is a common event in cells infected by viruses, but the role of oxidative stress in RV infection is unknown. RV SA11 induced chloride secretion in association with an increase in reactive oxygen species (ROS in Caco-2 cells. The ratio between reduced (GSH and oxidized (GSSG glutathione was decreased by RV. The same effects were observed when purified NSP4 was added to Caco-2 cells. N-acetylcysteine (NAC, a potent antioxidant, strongly inhibited the increase in ROS and GSH imbalance. These results suggest a link between oxidative stress and RV-induced diarrhea. Because Saccharomyces boulardii (Sb has been effectively used to treat RV diarrhea, we tested its effects on RV-infected cells. Sb supernatant prevented RV-induced oxidative stress and strongly inhibited chloride secretion in Caco-2 cells. These results were confirmed in an organ culture model using human intestinal biopsies, demonstrating that chloride secretion induced by RV-NSP4 is oxidative stress-dependent and is inhibited by Sb, which produces soluble metabolites that prevent oxidative stress. The results of this study provide novel insights into RV-induced diarrhea and the efficacy of probiotics.

  2. Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes.

    Science.gov (United States)

    Buccigrossi, Vittoria; Laudiero, Gabriella; Russo, Carla; Miele, Erasmo; Sofia, Morena; Monini, Marina; Ruggeri, Franco Maria; Guarino, Alfredo

    2014-01-01

    Rotavirus (RV) infection causes watery diarrhea via multiple mechanisms, primarily chloride secretion in intestinal epithelial cell. The chloride secretion largely depends on non-structural protein 4 (NSP4) enterotoxic activity in human enterocytes through mechanisms that have not been defined. Redox imbalance is a common event in cells infected by viruses, but the role of oxidative stress in RV infection is unknown. RV SA11 induced chloride secretion in association with an increase in reactive oxygen species (ROS) in Caco-2 cells. The ratio between reduced (GSH) and oxidized (GSSG) glutathione was decreased by RV. The same effects were observed when purified NSP4 was added to Caco-2 cells. N-acetylcysteine (NAC), a potent antioxidant, strongly inhibited the increase in ROS and GSH imbalance. These results suggest a link between oxidative stress and RV-induced diarrhea. Because Saccharomyces boulardii (Sb) has been effectively used to treat RV diarrhea, we tested its effects on RV-infected cells. Sb supernatant prevented RV-induced oxidative stress and strongly inhibited chloride secretion in Caco-2 cells. These results were confirmed in an organ culture model using human intestinal biopsies, demonstrating that chloride secretion induced by RV-NSP4 is oxidative stress-dependent and is inhibited by Sb, which produces soluble metabolites that prevent oxidative stress. The results of this study provide novel insights into RV-induced diarrhea and the efficacy of probiotics.

  3. The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo.

    Science.gov (United States)

    Pereira, Claudia V; Nadanaciva, Sashi; Oliveira, Paulo J; Will, Yvonne

    2012-02-01

    Nowadays the 'redox hypothesis' is based on the fact that thiol/disulfide couples such as glutathione (GSH/GSSG), cysteine (Cys/CySS) and thioredoxin ((Trx-(SH)2/Trx-SS)) are functionally organized in redox circuits controlled by glutathione pools, thioredoxins and other control nodes, and they are not in equilibrium relative to each other. Although ROS can be important intermediates of cellular signaling pathways, disturbances in the normal cellular redox can result in widespread damage to several cell components. Moreover, oxidative stress has been linked to a variety of age-related diseases. In recent years, oxidative stress has also been identified to contribute to drug-induced liver, heart, renal and brain toxicity. This review provides an overview of current in vitro and in vivo methods that can be deployed throughout the drug discovery process. In addition, animal models and noninvasive biomarkers are described. Reducing post-market drug withdrawals is essential for all pharmaceutical companies in a time of increased patient welfare and tight budgets. Predictive screens positioned early in the drug discovery process will help to reduce such liabilities. Although new and more efficient assays and models are being developed, the hunt for biomarkers and noninvasive techniques is still in progress.

  4. Do glutathione levels decline in aging human brain?

    Science.gov (United States)

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  6. Oxidative stress (glutathionylation and Na,K-ATPase activity in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carsten Juel

    Full Text Available Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation on the Na,K-ATPase in rat skeletal muscle membranes.Immunoprecipitation with an anti-glutathione antibody and subsequent immunodetection of Na,K-ATPase protein subunits demonstrated 9.0±1.3% and 4.1±1.0% glutathionylation of the α isoforms in oxidative and glycolytic skeletal muscle, respectively. In oxidative muscle, 20.0±6.1% of the β1 units were glutathionylated, whereas 14.8±2.8% of the β2-subunits appear to be glutathionylated in glycolytic muscle. Treatment with the reducing agent dithiothreitol (DTT, 1 mM increased the in vitro maximal Na,K-ATPase activity by 19% (P<0.05 in membranes from glycolytic muscle. Oxidized glutathione (GSSG, 0-10 mM increased the in vitro glutathionylation level detected with antibodies, and decreased the in vitro maximal Na,K-ATPase activity in a dose-dependent manner, and with a larger effect in oxidative compared to glycolytic skeletal muscle.This study demonstrates the existence of basal glutathionylation of both the α and the β units of rat skeletal muscle Na,K-ATPase. In addition, the study suggests a negative correlation between glutathionylation levels and maximal Na,K-ATPase activity.Glutathionylation likely contributes to the complex regulation of Na,K-ATPase function in skeletal muscle. Especially, glutathionylation induced by oxidative stress may have a role in Na,K-ATPase regulation during prolonged muscle activity.

  7. Role of glutathione in tolerance to arsenite in Salvinia molesta, an aquatic fern

    Directory of Open Access Journals (Sweden)

    Adinan Alves da Silva

    2017-09-01

    Full Text Available ABSTRACT In many plant species, tolerance to toxic metals is highly dependent on glutathione, an essential metabolite for cellular detoxification. We evaluated the responses of glutathione metabolism to arsenite (AsIII in Salvinia molesta, an aquatic fern that has unexplored phytoremediation potential. Plants were exposed to different AsIII concentrations in nutrient solution for 24 h. AsIII caused cell membrane damage to submerged leaves, indicating oxidative stress. There was an increase in the glutathione content and ϒ-glutamylcysteine synthetase enzyme activity in the submerged and floating leaves. The glutathione peroxidase and glutathione sulfotransferase enzymes also showed increased activity in both plant parts, whereas glutathione reductase only showed increased activity in the submerged leaves. These findings suggest an important role for glutathione in the protection of S. molesta against the toxic effects of AsIII, with more effective tolerance responses in the floating leaves.

  8. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity

    International Nuclear Information System (INIS)

    Ramachandran, Anup; Lebofsky, Margitta; Weinman, Steven A.; Jaeschke, Hartmut

    2011-01-01

    Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/-) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200 mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870 ± 180 U/L) and centrilobular necrosis at 6 h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/- mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. Conclusions: the impaired defense against mitochondrial superoxide formation in SOD2+/- mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.

  9. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    Science.gov (United States)

    Machi, Jacqueline Freire; Dias, Danielle da Silva; Freitas, Sarah Cristina; de Moraes, Oscar Albuquerque; da Silva, Maikon Barbosa; Cruz, Paula Lázara; Mostarda, Cristiano; Salemi, Vera M C; Morris, Mariana; De Angelis, Kátia; Irigoyen, Maria-Cláudia

    2016-01-01

    Objective The aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX). Methods Female Wistar rats (3 or 22 months old) were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal). After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma. Results Aging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index) were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG) was reduced in young ovariectomized, old controls, and old ovariectomized groups when compared with young controls, indicating an increased oxidative stress. A negative correlation was found between GSH/GSSG and tumor necrosis factor-α (r=−0.6, P<0.003). Correlations were found between interleukin-6 with adipose tissue (r=0.5, P<0.009) and vagal tonus (r=−0.7, P<0.0002); and among myocardial performance index with interleukin-6 (r=0.65, P<0.0002), sympathetic tonus (r=0.55, P<0.006), and physical capacity (r=−0.55, P<0.003). The findings in this trial showed that ovariectomy aggravated the impairment of cardiac and functional effects of aging in female rats, probably associated with exacerbated autonomic dysfunction

  10. Age-dependent oxidation of extracellular cysteine/cystine redox state (Eh(Cys/CySS)) in mouse lung fibroblasts is mediated by a decline in Slc7a11 expression.

    Science.gov (United States)

    Zheng, Yuxuan; Ritzenthaler, Jeffrey D; Burke, Tom J; Otero, Javier; Roman, Jesse; Watson, Walter H

    2018-04-01

    Aging is associated with progressive oxidation of the extracellular environment. The redox state of human plasma, defined by the concentrations of cysteine (Cys) and cystine (CySS), becomes more oxidized as we age. Recently, we showed that fibroblasts isolated from the lungs of young and old mice retain this differential phenotype; old cells produce and maintain a more oxidizing extracellular redox potential (E h (Cys/CySS)) than young cells. Microarray analysis identified down-regulation of Slc7a11, the light subunit of the CySS/glutamate transporter, as a potential mediator of age-related oxidation in these cells. The purpose of the present study was to investigate the mechanistic link between Slc7a11 expression and extracellular E h (Cys/CySS). Sulforaphane treatment or overexpression of Slc7a11 was used to increase Slc7a11 in lung fibroblasts from old mice, and sulfasalazine treatment or siRNA-mediated knock down was used to decrease Slc7a11 in young fibroblasts. Slc7a11 mRNA levels were measured by real-time PCR, Slc7a11 activity was determined by measuring the rate of glutamate release, Cys, CySS, glutathione (GSH) and its disulfide (GSSG) were measured by HPLC, and E h (Cys/CySS) was calculated from the Nernst equation. The results showed that both E h (Cys/CySS) and E h (GSH/GSSG) were more oxidized in the conditioned media of old cells than in young cells. Up-regulation of Slc7a11 via overexpression or sulforaphane treatment restored extracellular E h (Cys/CySS) in cultures of old cells, whereas down-regulation reproduced the oxidizing E h (Cys/CySS) in young cells. Only sulforaphane treatment was able to increase total GSH and restore E h (GSH/GSSG), whereas overexpression, knock down and sulfasalazine had no effect on these parameters. In addition, inhibition of GSH synthesis with buthionine sulfoximine had no effect on the ability of cells to restore their extracellular redox potential in response to an oxidative challenge. In conclusion, our study

  11. Oxidative stress and inflammation response following aerobic exercise: role of ethnicity.

    Science.gov (United States)

    McKenzie, M J; Goldfarb, A; Garten, R S; Vervaecke, L

    2014-09-01

    African-Americans are at a significantly greater risk for developing several diseases and conditions. These conditions often have underlying oxidative stress mechanisms. Therefore the purpose of this investigation was to ascertain the post-exercise oxidative response to a single bout of aerobic exercise in African-American and Caucasian college-age females. A total of 10 African-American and 10 Caucasian females completed the study. Each subject had her VO2 max measured while exercising on a treadmill. A week later, each subject returned to the laboratory and performed a 30-min run at 70% of her VO2max. Blood samples were taken immediately prior to and following exercise for analysis. Lipid hydroperoxides, protein carbonyls, malondialdehyde, xanthine oxidase, glutathione in the reduced (GSH) and oxidized (GSSG) forms, TNFα and interleukin 6 were measured from blood taken before and after exercise. Significance was set at p≤0.05 a priori. Xanthine oxidase was the only measure that did not significantly increase following exercise. All other markers showed a significant elevation in response to the exercise bout with no difference between groups except that the Caucasian group had significantly higher malondialdehyde post-exercise compared to the African-American group. This cohort of college-age African-American and Caucasian females showed little difference in their response to a single 30-min run at 70% of their max in the markers of oxidative stress within the blood. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Glutathione and Mitochondria

    Directory of Open Access Journals (Sweden)

    Vicent eRibas

    2014-07-01

    Full Text Available Glutathione (GSH is the main nonprotein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes. While synthesized exclusively in the cytosol from its constituent amino acids, GSH is distributed in different compartments, including mitochondria where its concentration in the matrix equals that of the cytosol. This feature and its negative charge at physiological pH imply the existence of specific carriers to import GSH from the cytosol to the mitochondrial matrix, where it plays a key role in defense against respiration-induced reactive oxygen species and in the detoxification of lipid hydroperoxides and electrophiles. Moreover, as mitochondria play a central strategic role in the activation and mode of cell death, mitochondrial GSH has been shown to critically regulate the level of sensitization to secondary hits that induce mitochondrial membrane permeabilization and release of proteins confined in the intermembrane space that once in the cytosol engage the molecular machinery of cell death. In this review, we summarize recent data on the regulation of mitochondrial GSH and its role in cell death and prevalent human diseases, such as cancer, fatty liver disease and Alzheimer’s disease.

  13. Glutathione, Glutaredoxins, and Iron.

    Science.gov (United States)

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  14. Taurine, glutathione and bioenergetics

    DEFF Research Database (Denmark)

    Hansen, Svend Høime; Grunnet, Niels

    2013-01-01

    the mitochondrial inner-membrane. The very high concentration of taurine in oxidative tissue has recently led to discussions on the role of taurine in the mitochondria, e.g. with taurine acting as a pH buffer in the mitochondrial matrix. A very important consequence of the slightly alkaline pH is the fact...... to be independent of the matrix pH. Finally a simplified model for mitochondrial oxidation is presented with introduction of GSH as redox buffer to stabilise the electrical gradient, and taurine as pH buffer stabilising the pH gradient, but simultaneously establishing the equilibrium between the NADH/NAD(+) redox...

  15. In vitro glutathione peroxidase mimicry of ebselen is linked to its oxidation of critical thiols on key cerebral suphydryl proteins - A novel component of its GPx-mimic antioxidant mechanism emerging from its thiol-modulated toxicology and pharmacology.

    Science.gov (United States)

    Kade, I J; Balogun, B D; Rocha, J B T

    2013-10-25

    The antioxidant mechanism of ebselen in rats brain is largely linked with its glutathione peroxidase (GPx) rather than its peroxiredoxin mimicry ability. However, the precise molecular dynamics between the GPx-mimicry of ebselen and thiol utilization is yet to be fully clarified and thus still open. Herein, we investigated the influence of dithiothreitol (DTT) on the antioxidant action of ebselen against oxidant-induced cerebral lipid peroxidation and deoxyribose degradation. Furthermore, the critical inhibitory concentrations of ebselen on the activities of sulphydryl enzymes such as cerebral sodium pump, δ-aminolevulinic acid dehydratase (δ-ALAD) and lactate dehydrogenase (LDH) were also investigated. We observe that ebselen (at ≥42 μM) markedly inhibited lipid peroxidation in the presence and absence of DTT, whereas it inhibited deoxyribose degradation only in the presence of DTT. Furthermore, under in vitro conditions, ebselen inhibited the thiol containing enzymes; cerebral sodium pump (at ≥40 μM), δ-ALAD (≥10 μM) and LDH (≥1 μM) which were either prevented or reversed by DTT. However, the inhibition of the activities of these sulphydryl proteins in diabetic animals was prevented by ebselen. Summarily, it is apparent that the effective in vitro inhibitory doses of ebselen on the activity of the sulphydryl proteins are far less than its antioxidant doses. In addition, the presence of DTT is evidently a critical requirement for ebselen to effect its antioxidant action against deoxyribose degeradation and not lipid peroxidation. Consequently, we conclude that ebselen possibly utilizes available thiols on sulphydryl proteins to effect its GPx mimicry antioxidant action against lipid peroxidation in rat brain homogenate. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. The influence of zinc(II) on thioredoxin/glutathione disulfide exchange: QM/MM studies to explore how zinc(II) accelerates exchange in higher dielectric environments.

    Science.gov (United States)

    Kurian, Roby; Bruce, Mitchell R M; Bruce, Alice E; Amar, François G

    2015-08-01

    QM/MM studies were performed to explore the energetics of exchange reactions of glutathione disulfide (GSSG) and the active site of thioredoxin [Cys32-Gly33-Pro34-Cys35] with and without zinc(II), in vacuum and solvated models. The activation energy for exchange, in the absence of zinc, is 29.7 kcal mol(-1) for the solvated model. This is 3.3 kcal mol(-1) higher than the activation energy for exchange in the gas phase, due to ground state stabilization of the active site Cys-32 thiolate in a polar environment. In the presence of zinc, the activation energy for exchange is 4.9 kcal mol(-1) lower than in the absence of zinc (solvated models). The decrease in activation energy is attributed to stabilization of the charge-separated transition state, which has a 4-centered, cyclic arrangement of Zn-S-S-S with an estimated dipole moment of 4.2 D. A difference of 4.9 kcal mol(-1) in activation energy would translate to an increase in rate by a factor of about 4000 for zinc-assisted thiol-disulfide exchange. The calculations are consistent with previously reported experimental results, which indicate that metal-thiolate, disulfide exchange rates increase as a function of solvent dielectric. This trend is opposite to that observed for the influence of the dielectric environment on the rate of thiol-disulfide exchange in the absence of metal. The results suggest a dynamic role for zinc in thiol-disulfide exchange reactions, involving accessible cysteine sites on proteins, which may contribute to redox regulation and mechanistic pathways during oxidative stress.

  17. Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice.

    Science.gov (United States)

    Vida, Carmen; de Toda, Irene Martínez; Cruces, Julia; Garrido, Antonio; Gonzalez-Sanchez, Mónica; De la Fuente, Mónica

    2017-08-01

    The age-related changes in the immune functions (immunosenescence) may be mediated by an increase of oxidative stress and damage affecting leukocytes. Although the "oxidation-inflammation" theory of aging proposes that phagocytes are the main immune cells contributing to "oxi-inflamm-aging", this idea has not been corroborated. The aim of this work was to characterize the age-related changes in several parameters of oxidative stress and immune function, as well as in lipofuscin accumulation ("a hallmark of aging"), in both total peritoneal leukocyte population and isolated peritoneal macrophages. Adult, mature, old and long-lived mice (7, 13, 18 and 30 months of age, respectively) were used. The xanthine oxidase (XO) activity-expression, basal levels of superoxide anion and ROS, catalase activity, oxidized (GSSG) and reduced (GSH) glutathione content and lipofuscin levels, as well as both phagocytosis and digestion capacity were evaluated. The results showed an age-related increase of oxidative stress and lipofuscin accumulation in murine peritoneal leukocytes, but especially in macrophages. Macrophages from old mice showed lower antioxidant defenses (catalase activity and GSH levels), higher oxidizing compounds (XO activity/expression and superoxide, ROS and GSSG levels) and lipofuscin levels, together with an impaired macrophage functions, in comparison to adults. In contrast, long-lived mice showed in their peritoneal leukocytes, and especially in macrophages, a well-preserved redox state and maintenance of their immune functions, all which could account for their high longevity. Interestingly, macrophages showed higher XO activity and lipofuscin accumulation than lymphocytes in all the ages analyzed. Our results support that macrophages play a central role in the chronic oxidative stress associated with aging, and the fact that phagocytes are key cells contributing to immunosenescence and "oxi-inflamm-aging". Moreover, the determination of oxidative stress and

  18. Different roles of glutathione in copper and zinc chelation in Brassica napus roots.

    Science.gov (United States)

    Zlobin, Ilya E; Kartashov, Alexander V; Shpakovski, George V

    2017-09-01

    We investigated the specific features of copper and zinc excess action on the roots of canola (Brassica napus L.) plants. Copper rapidly accumulated in canola root cells and reached saturation during several hours of treatment, whereas the root zinc content increased relatively slowly. Excessive copper and zinc entry inside the cell resulted in significant cell damage, as evidenced by alterations in plasmalemma permeability and decreases in cellular enzymatic activity. Zinc excess specifically damaged root hair cells, which correlated with a pronounced elevation of their labile zinc level. In vitro, we showed that reduced glutathione (GSH) readily reacted with copper ions to form complexes with blocked sulfhydryl groups. In contrast, zinc ions were ineffective as glutathione blockers, and glutathione molecules did not lose their specific chemical activity in the presence of Zn 2+ ions. The effect of copper and zinc excess on the glutathione pool in canola root cells was analysed by a combination of biochemical determination of total and oxidized glutathione contents and fluorescent staining of free reduced glutathione with monochlorobimane dye. Excess copper led to dose-dependent diminution of free reduced glutathione contents in the root cells, which could not be explained by the loss of total cellular glutathione or its oxidation. In contrast, we observed little effect of much higher intracellular zinc concentrations on the free reduced glutathione content. We concluded that GSH plays an important role in copper excess, but not zinc excess chelation, in canola root cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. [The activity of glutathione antioxidant system at melaksen and valdoxan action under experimental hyperthyroidism in rats].

    Science.gov (United States)

    Gorbenko, M V; Popova, T N; Shul'gin, K K; Popov, S S

    2013-01-01

    Investigation of glutathione antioxidant system activity and diene conjugates content in rats liver and blood serum at the influence of melaksen and valdoxan under experimental hyperthyroidism (EG) has been revealed. It has been established that the activities of glutathione reductase (GR), glutathione peroxidase (GP) and glutathione transferase (GT), growing at pathological conditions, change to the side of control value at these substunces introduction. Reduced glutathione content (GSH) at melaxen and valdoxan action increased compared with values under the pathology, that, obviously, could be associated with a reduction of its spending on the detoxication of free radical oxidation (FRO) toxic products. Diene conjugates level in rats liver and blood serum, increasing at experimental hyperthyroidism conditions, under introduction of melatonin level correcting drugs, also approached to the control meaning. Results of the study indicate on positive effect of melaxen and valdoxan on free radical homeostasis, that appears to be accompanied by decrease of load on the glutathione antioxidant system in comparison with the pathology.

  20. Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies.

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Srinivas Bharath, Muchukunte Mukunda

    2014-01-03

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases.

  1. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kowalec, Piotr; Grynberg, Marcin; Pająk, Beata; Socha, Anna; Winiarska, Katarzyna; Fronk, Jan; Kurlandzka, Anna

    2015-09-01

    Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Impairment of Several Immune Functions and Redox State in Blood Cells of Alzheimer’s Disease Patients. Relevant Role of Neutrophils in Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Carmen Vida

    2018-01-01

    glutathione (GSSG/GSH ratio, and GSSG and malondialdehyde contents], and (2 the higher release of basal pro-inflammatory cytokines (IL-6 and TNF-α found in AD patients. Because the immune system parameters studied are markers of health and rate of aging, our results supported an accelerated immunosenescence in AD patients. We suggest the assessment of oxidative stress and function parameters in peripheral blood cells as well as in isolated neutrophils and mononuclear cells, respectively, as possible markers of AD progression.

  3. Active biomonitoring of a subtropical river using glutathione-S ...

    African Journals Online (AJOL)

    Active biomonitoring of a subtropical river using glutathione-S-transferase (GST) and heat shock proteins (HSP 70) in. Oreochromis niloticusas surrogate biomarkers of metal contamination. Victor Kurauone Muposhi1, Beaven Utete1*, Idah Sithole-Niang2 and Stanley Mukangenyama2. 1Wildlife Ecology and Conservation, ...

  4. Fighting Oxidative Stress: Increased Resistance of Male Rat Cerebellum at Weaning Induced by Low Omega 6/Omega 3 Ratio in a Protein-Deficient Diet.

    Science.gov (United States)

    Augusto, Ricielle Lopes; Isaac, Alinny Rosendo; Silva-Júnior, Ivanildo Inácio da; Santana, David Filipe de; Ferreira, Diorginis José Soares; Lagranha, Claudia Jacques; Gonçalves-Pimentel, Catarina; Rodrigues, Marcelo Cairrão Araujo; Andrade-da-Costa, Belmira Lara da Silveira

    2017-02-01

    The cerebellum is vulnerable to malnutrition effects. Notwithstanding, it is able to incorporate higher amount of docosahexaenoic acid (DHA) than the cerebral cortex (Cx) when low n-6/n-3 fatty acid ratio is present in a multideficient diet. Considering importance of DHA for brain redox balance, we hypothesize that this cerebellum feature improves its antioxidant status compared to the Cx. A chronic malnutrition status was induced on dams before mating and kept until weaning or adulthood (offspring). A group nutritionally rehabilitated from weaning was also analyzed. Morphometric parameters, total-superoxide dismutase (t-SOD) and catalase activities, lipoperoxidation (LP), nitric oxide (NO), reduced (GSH) and oxidized (GSSG) glutathione, reactive oxygen species (ROS), and reduced nicotinamide adenine dinucleotide/phosphate levels were assessed. Both ROS and LP levels were increased (∼53 %) in the Cx of malnourished young animals while the opposite was seen in the cerebellum (72 and 20 % of the control, respectively). Consistently, lower (∼35 %) and higher t-SOD (∼153 %) and catalase (CAT) (∼38 %) activities were respectively detected in the Cx and cerebellum compared to the control. In malnourished adult animals, redox balance was maintained in the cerebellum and recovered in the Cx (lower ROS and LP levels and higher GSH/GSSG ratio). NO production was impaired by malnutrition at either age, mainly in the cerebellum. The findings suggest that despite a multinutrient deficiency and a modified structural development, a low dietary n-6/n-3 ratio favors early antioxidant resources in the male cerebellum and indicates an important role of astrocytes in the redox balance recovery of Cx in adulthood.

  5. Prolonged fasting increases glutathione biosynthesis in postweaned northern elephant seals

    Science.gov (United States)

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Forman, Henry Jay; Crocker, Daniel E.; Ortiz, Rudy M.

    2011-01-01

    SUMMARY Northern elephant seals experience prolonged periods of absolute food and water deprivation (fasting) while breeding, molting or weaning. The postweaning fast in elephant seals is characterized by increases in the renin–angiotensin system, expression of the oxidant-producing protein Nox4, and NADPH oxidase activity; however, these increases are not correlated with increased oxidative damage or inflammation. Glutathione (GSH) is a potent reductant and a cofactor for glutathione peroxidases (GPx), glutathione-S transferases (GST) and 1-cys peroxiredoxin (PrxVI) and thus contributes to the removal of hydroperoxides, preventing oxidative damage. The effects of prolonged food deprivation on the GSH system are not well described in mammals. To test our hypothesis that GSH biosynthesis increases with fasting in postweaned elephant seals, we measured circulating and muscle GSH content at the early and late phases of the postweaning fast in elephant seals along with the activity/protein content of glutamate-cysteine ligase [GCL; catalytic (GCLc) and modulatory (GCLm) subunits], γ-glutamyl transpeptidase (GGT), glutathione disulphide reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), GST and PrxVI, as well as plasma changes in γ-glutamyl amino acids, glutamate and glutamine. GSH increased two- to four-fold with fasting along with a 40–50% increase in the content of GCLm and GCLc, a 75% increase in GGT activity, a two- to 2.5-fold increase in GR, G6PDH and GST activities and a 30% increase in PrxVI content. Plasma γ-glutamyl glutamine, γ-glutamyl isoleucine and γ-glutamyl methionine also increased with fasting whereas glutamate and glutamine decreased. Results indicate that GSH biosynthesis increases with fasting and that GSH contributes to counteracting hydroperoxide production, preventing oxidative damage in fasting seals. PMID:21430206

  6. Anti-oxidative effects of Rooibos tea (Aspalathus linearis on immobilization-induced oxidative stress in rat brain.

    Directory of Open Access Journals (Sweden)

    In-Sun Hong

    Full Text Available Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea's ability to (i reverse the increase in stress-related metabolites (5-HIAA and FFA, (ii prevent lipid peroxidation (LPO, (iii restore stress-induced protein degradation (PD, (iv regulate glutathione metabolism (GSH and GSH/GSSG ratio, and (v modulate changes in the activities of antioxidant enzymes (SOD and CAT.

  7. CHANGES IN THE GLUTATHIONE SYSTEM IN P19 EMBRYONAL CARCINOMA CELLS UNDER HYPOXIC CONDITIONS

    Directory of Open Access Journals (Sweden)

    D. S. Orlov

    2015-01-01

    Full Text Available Introduction. According to modern perceptions, tumor growth, along with oxidative stress formation, is accompanied by hypoxia. Nowadays studying the regulation of cellular molecular system functioning by conformational changes in proteins appears to be a topical issue. Research goal was to evaluate the state of the glutathione system and the level of protein glutathionylation in P19 embryonal carcinoma (EC cells under hypoxic conditions.Material and methods. P19 EC cells (mouse embryonal carcinoma cultured under normoxic and hypox-ic conditions served the research material.The concentration of total, oxidized, reduced and protein-bound glutathione, the reduced to oxidized thiol ratio as well as glutathione peroxidase and glutathione reductase activity were determined by spectropho-tometry.Results. Glutathione imbalance was accompanied by a decrease in P19 EC cell redox status under hypox-ic conditions against the backdrop of a rise in protein-bound glutathione.Conclusions. As a result of the conducted study oxidative stress formation was identified when modeling hypoxia in P19 embryonal carcinoma cells. The rise in the concentration of protein-bound glutathione may indicate the role of protein glutathionylation in regulation of P19 cell metabolism and functions un-der hypoxia. 

  8. Glutathione-dependent responses of plants to drought: a review

    Directory of Open Access Journals (Sweden)

    Mateusz Labudda

    2014-02-01

    Full Text Available Water is a renewable resource. However, with the human population growth, economic development and improved living standards, the world’s supply of fresh water is steadily decreasing and consequently water resources for agricultural production are limited and diminishing. Water deficiency is a significant problem in agriculture and increasing efforts are currently being made to understand plant tolerance mechanisms and to develop new tools (especially molecular that could underpin plant breeding and cultivation. However, the biochemical and molecular mechanisms of plant water deficit tolerance are not fully understood, and the data available is incomplete. Here, we review the significance of glutathione and its related enzymes in plant responses to drought. Firstly, the roles of reduced glutathione and reduced/oxidized glutathione ratio, are discussed, followed by an extensive discussion of glutathione related enzymes, which play an important role in plant responses to drought. Special attention is given to the S-glutathionylation of proteins, which is involved in cell metabolism regulation and redox signaling in photosynthetic organisms subjected to abiotic stress. The review concludes with a brief overview of future perspectives for the involvement of glutathione and related enzymes in drought stress responses.

  9. Effects of graded exercise-induced dehydration and rehydration on circulatory markers of oxidative stress across the resting and exercising human leg.

    Science.gov (United States)

    Laitano, Orlando; Kalsi, Kameljit Kaur; Pearson, James; Lotlikar, Makra; Reischak-Oliveira, Alvaro; González-Alonso, José

    2012-05-01

    Exercise in the heat enhances oxidative stress markers in the human circulation, but the contribution of active skeletal muscle and the influence of hydration status remain unknown. To address this question, we measured leg exchange of glutathione (GSH), glutathione disulfide (GSSG), superoxide dismutase activity (SOD) and isoprostanes in seven males at rest and during submaximal one-legged knee extensor exercise in the following four conditions: (1) control euhydration (0% reduction in body mass), (2) mild-dehydration (2%), (3) moderate-dehydration (3.5%), (4) rehydration (0%). In all resting and control exercise conditions, a net GSH uptake was observed across the leg. In contrast, a significant leg release of GSH into the circulation (-354 ± 221 μmol/min, P exercise with moderate-dehydration, which was still present following full rehydration (-206 ± 122 μmol/min, P exercise, mild and moderate-dehydration decreased both femoral venous erythrocyte SOD activity (195 ± 6 vs. 180 ± 5 U/L, P release GSH into the circulation under moderate dehydration and subsequent rehydration, possibly to enhance the antioxidant defense.

  10. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise.

    Science.gov (United States)

    Leite, Jaqueline Santos Moreira; Raizel, Raquel; Hypólito, Thaís Menezes; Rosa, Thiago Dos Santos; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    In this study we investigated the chronic effects of oral l-glutamine and l-alanine supplementation, either in their free or dipeptide form, on glutamine-glutathione (GLN-GSH) axis and cytoprotection mediated by HSP-27 in rats submitted to resistance exercise (RE). Forty Wistar rats were distributed into 5 groups: sedentary; trained (CTRL); and trained supplemented with l-alanyl-l-glutamine, l-glutamine and l-alanine in their free form (GLN+ALA), or free l-alanine (ALA). All trained animals were submitted to a 6-week ladder-climbing protocol. Supplementations were offered in a 4% drinking water solution for 21 days prior to euthanasia. Plasma glutamine, creatine kinase (CK), myoglobin (MYO), and erythrocyte concentration of reduced GSH and glutathione disulfide (GSSG) were measured. In tibialis anterior skeletal muscle, GLN-GSH axis, thiobarbituric acid reactive substances (TBARS), and the expression of heat shock factor 1 (HSF-1), 27-kDa heat shock protein (HSP-27), and glutamine synthetase were determined. In CRTL animals, high-intensity RE reduced muscle glutamine levels and increased GSSG/GSH rate and TBARS, as well as augmented plasma CK and MYO levels. Conversely, l-glutamine-supplemented animals showed an increase in plasma and muscle levels of glutamine, with a reduction in GSSG/GSH rate, TBARS, and CK. Free l-alanine administration increased plasma glutamine concentration and lowered muscle TBARS. HSF-1 and HSP-27 were high in all supplemented groups when compared with CTRL (p alanine, in both a free or dipeptide form, improve the GLN-GSH axis and promote cytoprotective effects in rats submitted to high-intensity RE training.

  11. Glutathione treatment of hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Dalhoff, K; Ranek, L; Mantoni, M

    1992-01-01

    This prospective study was undertaken to substantiate observations that glutathione (GSH) inhibits or reverses tumor growth in humans with hepatocellular carcinoma (HCC), a neoplasm with an extremely poor prognosis. Eight patients with biopsy-proven HCC not amenable to surgery were given 5 g of GSH...

  12. Effects of soybean isoflavone on intestinal antioxidant capacity and cytokines in young piglets fed oxidized fish oil.

    Science.gov (United States)

    Huang, Lin; Ma, Xian-Yong; Jiang, Zong-Yong; Hu, You-Jun; Zheng, Chun-Tian; Yang, Xue-Fen; Wang, Li; Gao, Kai-Guo

    To investigate the effect of glycitein, a synthetic soybean isoflavone (ISF), on the intestinal antioxidant capacity, morphology, and cytokine content in young piglets fed oxidized fish oil, 72 4-d-old male piglets were assigned to three treatments. The control group was fed a basal diet containing fresh fish oil, and the other two groups received the same diet except for the substitution with the same dosage of oxidized fish oil alone or with ISF (oxidized fish oil plus ISF). After 21 d of feeding, supplementation of oxidized fish oil increased the levels of malondialdehyde (MDA), oxidized glutathione (GSSG), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), nuclear factor κ B (NF-κB), inducible nitric oxide synthase (iNOS), NO, and Caspase-3 in jejunal mucosa, and decreased the villous height in duodenum and the levels of secretory immunoglobulin A (sIgA) and IL-4 in the jejunal mucosa compared with supplementation with fresh oil. The addition of oxidized fish oil plus ISF partially alleviated this negative effect. The addition of oxidized fish oil plus ISF increased the villous height and levels of sIgA and IL-4 in jejunal mucosa, but decreased the levels of IL-1β and IL-2 in jejunal mucosa (Poil. Collectively, these results show that dietary supplementation of ISF could partly alleviate the negative effect of oxidized fish oil by improving the intestinal morphology as well as the antioxidant capacity and immune function in young piglets.

  13. The Dynamics of Glutathione Species and Ophthalmate Concentrations in Plasma from the VX2 Rabbit Model of Secondary Liver Tumors

    Directory of Open Access Journals (Sweden)

    R. Abbas

    2011-01-01

    Full Text Available Purpose. Available tumor markers have low sensitivity/specificity for the diagnosis of liver tumors. The present study was designed to evaluate the oxidoreductive status of the liver as surrogates of tumor subsistence and growth. Methods. Glutathione species (GSH:GSSG, ophthalmate (OA concentrations, and their turnover were measured in plasma of rabbits (n=6 in their healthy state and in the state of tumor growth after implantation of the VX2 carcinoma in their liver. Tumors were allowed to grow for a period of 14 days when rabbits were sacrificed. Livers were removed and cysteine concentration was measured in liver tissue. Results. Tumor growth was found in 100% of the rabbits. Concentration and labeling of GSH/GSSG were similar in experimental animals before and after tumor implantation and to sham animals. In contrast, OA concentration increased significantly in experimental animals after tumor implantation when compared to same animals prior to tumor implantation and to sham animals (P<.05. The concentration of cysteine, a precursor of GSH, was found to be significantly lower in the liver tissue adjacent to the tumor (P<.05. Conclusion. Disturbances in the oxidoreductive state of livers appear to be a surrogate of early tumor growth.

  14. Ballet dancers cardiorespiratory, oxidative and muscle damage responses to classes and rehearsals.

    Science.gov (United States)

    Rodrigues-Krause, Josianne; Krause, Mauricio; Cunha, Giovani Dos Santos; Perin, Diana; Martins, Jocelito B; Alberton, Cristine Lima; Schaun, Maximiliano I; De Bittencourt, Paulo Ivo Homem; Reischak-Oliveira, Alvaro

    2014-01-01

    This study aimed to describe and compare ballet dancers' cardiorespiratory responses, muscle damage and oxidative stress levels during a ballet class (practice of isolated ballet exercises performed with barre/hand-rail support and across-the-floor movements to improve technical skills) and rehearsal (practice of ballet choreography involving technical-artistic skills to improve dancers' performance for shows). The 12 advanced female ballet dancers undertook three exercise sessions: maximum effort test, class and rehearsal. Heart rate (HR) and oxygen consumption (VO2) were continuously measured. Lactate was determined before 15 min and after class and rehearsal. Blood was sampled pre, post and 48 h after class and rehearsal for creatine kinase (CK), lipid peroxides (LPO) and glutathione analysis (GSSG/GSH). Class was of lower intensity than rehearsal as shown by VO2, HR and lactate values: VO2 (mL.kg(-1).min(-1)): 14.5±2.1 vs. 19.1±1.7 (p Ballet dancers' muscle damage and oxidative stress responses seem not to be dependent on exercise intensity based on VO2 responses.

  15. Glutathione role in gallium induced toxicity

    African Journals Online (AJOL)

    Asim

    2012-01-26

    GSH) present in tissues. It is very important and interesting to study the reaction of gallium nitrate and glutathione as biomarker of glutathione role in detoxification and conjugation in whole blood components (plasma and ...

  16. Expression of Glutathione Peroxidase and Glutathione Reductase and Level of Free Radical Processes under Toxic Hepatitis in Rats

    Directory of Open Access Journals (Sweden)

    Igor Y. Iskusnykh

    2013-01-01

    Full Text Available Correlation between intensity of free radical processes estimated by biochemiluminesce parameters, content of lipoperoxidation products, and changes of glutathione peroxidase (GP, EC 1.11.1.9 and glutathione reductase (GR, EC 1.6.4.2 activities at rats liver injury, after 12, 36, 70, 96, 110, and 125 hours & tetrachloromethane administration have been investigated. The histological examination of the liver sections of rats showed that prominent hepatocytes with marked vacuolisation and inflammatory cells which were arranged around the necrotic tissue are more at 96 h after exposure to CCl4. Moreover maximum increase in GR and GP activities, 2.1 and 2.5 times, respectively, was observed at 96 h after exposure to CCl4, what coincided with the maximum of free radical oxidation processes. Using a combination of reverse transcription and real-time polymerase chain reaction, expression of the glutathione peroxidase and glutathione reductase genes (Gpx1 and Gsr was analyzed by the determination of their respective mRNAs in the rat liver tissue under toxic hepatitis conditions. The analyses of Gpx1 and Gsr expression revealed that the transcript levels increased in 2.5- and 3.0-folds, respectively. Western blot analysis revealed that the amounts of hepatic Gpx1 and Gsr proteins increased considerably after CCl4 administration. It can be proposed that the overexpression of these enzymes could be a mechanism of enhancement of hepatocytes tolerance to oxidative stress.

  17. Exposure to lead in water and cysteine non-oxidative metabolism in Pelophylax ridibundus tissues

    International Nuclear Information System (INIS)

    Kaczor, Marta; Sura, Piotr; Bronowicka-Adamska, Patrycja; Wróbel, Maria

    2013-01-01

    Chronic, low-level exposure to metals is an increasing global problem. Lead is an environmentally persistent toxin that causes many lead-related pathologies, directly affects tissues and cellular components or exerts an effect of the generation of reactive oxygen species causing a diminished level of available sulfhydryl antioxidant reserves. Cysteine is one of substrates in the synthesis of glutathione – the most important cellular antioxidant, and it may also undergo non-oxidative desulfuration that produces compounds containing sulfane sulfur atoms. The aim of the experiment was to examine changes of the non-oxidative metabolism of cysteine and the levels of cysteine and glutathione in the kidneys, heart, brain, liver and muscle of Marsh frogs (Pelophylax ridibundus) exposed to 28 mg/L Pb(NO 3 ) 2 for 10 days. The activities of sulfurtransferases, enzymes related to the sulfane sulfur metabolism – 3-mercaptopyruvate sulfurtransfearse, γ-cystathionase and rhodanese – were detected in tissue homogenates. The activity of sulfurtransferases was much higher in the kidneys of frogs exposed to lead in comparison to control frogs, not exposed to lead. The level of sulfane sulfur remained unchanged. Similarly, the total level of cysteine did not change significantly. The total levels of glutathione and the cysteine/cystine and GSH/GSSG ratios were elevated. Thus, it seems that the exposure to lead intensified the metabolism of sulfane sulfur and glutathione synthesis in the kidneys. The results presented in this work not only confirm the participation of GSH in the detoxification of lead ions and/or products appearing in response to their presence, such as reactive oxygen species, but also indicate the involvement of sulfane sulfur and rhodanese in this process (e.g. brain). As long as the expression of enzymatic proteins (rhodanese, MPST and CST) is not examined, no answer will be provided to the question whether changes in their activity are due to differences

  18. Exposure to lead in water and cysteine non-oxidative metabolism in Pelophylax ridibundus tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kaczor, Marta [Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Sura, Piotr [Department of Human Developmental Biology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Bronowicka-Adamska, Patrycja [Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Wrobel, Maria, E-mail: mbwrobel@cyf-kr.edu.pl [Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland)

    2013-02-15

    Chronic, low-level exposure to metals is an increasing global problem. Lead is an environmentally persistent toxin that causes many lead-related pathologies, directly affects tissues and cellular components or exerts an effect of the generation of reactive oxygen species causing a diminished level of available sulfhydryl antioxidant reserves. Cysteine is one of substrates in the synthesis of glutathione - the most important cellular antioxidant, and it may also undergo non-oxidative desulfuration that produces compounds containing sulfane sulfur atoms. The aim of the experiment was to examine changes of the non-oxidative metabolism of cysteine and the levels of cysteine and glutathione in the kidneys, heart, brain, liver and muscle of Marsh frogs (Pelophylax ridibundus) exposed to 28 mg/L Pb(NO{sub 3}){sub 2} for 10 days. The activities of sulfurtransferases, enzymes related to the sulfane sulfur metabolism - 3-mercaptopyruvate sulfurtransfearse, {gamma}-cystathionase and rhodanese - were detected in tissue homogenates. The activity of sulfurtransferases was much higher in the kidneys of frogs exposed to lead in comparison to control frogs, not exposed to lead. The level of sulfane sulfur remained unchanged. Similarly, the total level of cysteine did not change significantly. The total levels of glutathione and the cysteine/cystine and GSH/GSSG ratios were elevated. Thus, it seems that the exposure to lead intensified the metabolism of sulfane sulfur and glutathione synthesis in the kidneys. The results presented in this work not only confirm the participation of GSH in the detoxification of lead ions and/or products appearing in response to their presence, such as reactive oxygen species, but also indicate the involvement of sulfane sulfur and rhodanese in this process (e.g. brain). As long as the expression of enzymatic proteins (rhodanese, MPST and CST) is not examined, no answer will be provided to the question whether changes in their activity are due to

  19. Antioxidantes, atividade física e estresse oxidativo em mulheres idosas Antioxidants, physical activity and oxidative stress in older women

    Directory of Open Access Journals (Sweden)

    José Rubens Rebelatto

    2008-02-01

    (CVD. METHOD: Two groups (S and C of women, with age ranging from 60 to 80 years old, were observed. Both groups took part in a physical activity program for 58 weeks, three times a week, for about 50 to 55 minutes each session. The diet of group S (n=36 was daily supplemented with 330 ml of a functional antioxidant beverage, FuncionaTM; Group C (n=32 ingested water and was used as Control. As oxidative stress indicators, the plasmatic concentrations of reduced (GSH and oxidized (GSSG glutathione were determined; the molar GSH/GSSG ratio was calculated, and the oxidative damage in lipids and proteins was evaluated. The physical and cardiovascular conditions were evaluated through routine anthropometric parameters (weight, stature and BMI and blood pressure. RESULTS: Group C presented significant increases of oxidative stress, reduction in the blood pressure and in the indicators of cardiovascular risks. Group S presented significant reduction of the oxidative stress and increment of the cardiovascular gains. Significance concerning the ergogenic effects has not been identified. CONCLUSION: Our data suggest that regular exercise in older women can improve physical and cardiovascular conditions. Moreover, daily intake of functional antioxidant supplement can minimize harmful effects of the reactive oxygen species.

  20. Labor Augmentation with Oxytocin Decreases Glutathione Level

    Directory of Open Access Journals (Sweden)

    Naomi Schneid-Kofman

    2009-01-01

    Full Text Available Objective. To compare oxidative stress following spontaneous vaginal delivery with that induced by Oxytocin augmented delivery. Methods. 98 women recruited prior to labor. 57 delivered spontaneously, while 41 received Oxytocin for augmentation of labor. Complicated deliveries and high-risk pregnancies were excluded. Informed consent was documented. Arterial cord blood gases, levels of Hematocrit, Hemoglobin, and Bilirubin were studied. Glutathione (GSH concentration was measured by a spectroscopic method. Plasma and red blood cell (RBC levels of Malondialdehyde indicated lipid peroxidation. RBC uptake of phenol red denoted cell penetrability. SPSS data analysis was used. Results. Cord blood GSH was significantly lower in the Oxytocin group (2.3±0.55 mM versus 2.55±0.55 mM, =.01. No differences were found in plasma or RBC levels of MDA or in uptake of Phenol red between the groups. Conclusion. Lower GSH levels following Oxytocin augmentation indicate an oxidative stress, though selected measures of oxidative stress demonstrate no cell damage.

  1. Gas stunning with CO2 affected meat color, lipid peroxidation, oxidative stress, and gene expression of mitogen-activated protein kinases, glutathione S-transferases, and Cu/Zn-superoxide dismutase in the skeletal muscles of broilers.

    Science.gov (United States)

    Xu, Lei; Zhang, Haijun; Yue, Hongyuan; Wu, Shugeng; Yang, Haiming; Wang, Zhiyue; Qi, Guanghai

    2018-01-01

    Meat color and lipid peroxidation are important traits related to meat quality. CO 2 concentration is a critical factor that can affect meat quality in the commercial use of gas stunning (GS). However, the effect and mechanism of CO 2 stunning on meat color and lipid peroxidation during long-term storage remain poorly studied. We aimed to study the effects of GS methods, especially CO 2 concentration, on meat color and meat lipid peroxidation in broilers during long-term storage at 4 °C and to explore the potential mechanism of meat color change via lipid peroxidation and the inner lipid peroxide scavenging system. Eighteen broilers were sacrificed after exposure to one of the following gas mixtures for 90 s: 40% CO 2  + 21% O 2  + 39% N 2 (G40%), 79% CO 2  + 21% O 2 (G79%), or no stunning (0% CO 2 , control). Meat color, serum variables, enzyme activities, and the gene expression of mitogen-activated protein kinase ( MAPK ), nuclear factor-erythroid 2-related factor 2 ( Nrf2 ), glutathione S-transferase ( GST ) and superoxide dismutase ( SOD ) were determined. The concentrations of serum triiodothyronine (T3, P  = 0.03) and the ratio of serum free triiodothyronine/free thyroxine (FT3/FT4, P  meat and the TBARS 3 d in thigh meat ( P  meat ( r  = - 0.63, P  meat and in the thigh meat ( r  = - 0.57, P  = 0.01; and r  = - 0.53, P  = 0.03 respectively). Compared with the control group, Lightness (L*) 1 d ( P =  0.03) and L* 9 d ( P meat of both the G40% and G79% groups. The values of yellowness (b*) 3 d ( P =  0.01), b* 6 d ( P meat were lower in both the G40% and G79% groups than in the control group. In the breast muscle, the mRNA levels of c-Jun N-terminal kinase 2 ( JNK2, P  = 0.03), GSTT1 ( P  = 0.04), and SOD1 ( P  = 0.05) were decreased, and the mRNA levels of JNK1 ( P  = 0.07), Nrf2 ( P  = 0.09), and GSTA3 ( P  = 0.06) were slightly lower in both the G40% and G79% groups

  2. [Alternative nutrition and glutathione levels].

    Science.gov (United States)

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Brtková, A; Magálová, T; Barteková, S

    1999-08-30

    Low protein quality and quantity is reported to be a possible risk of alternative nutrition. Pulses contain 18-41% of methionine in relation to reference protein, moreover, its content in cereals is by one half lower. Therefore vegetarians and vegans may have an insufficient intake of sulphur-containing amino acids that may subsequently affect glutathione values (precursors of its synthesis). In groups of adults on an alternative diet--lactoovovegetarians (n = 47) and vegans (n = 44) aged 19-62 years with average duration on a vegetarian or vegan diet of 7.6 and 4.9 years, respectively, glutathione levels (GSH) were measured in erythrocytes (spectrophotometrically), as well as the activity of GSH-dependent enzymes. As nutritional control (n = 42) served an average sample of omnivores selected from a group of 489 examined, apparently healthy subjects of the same age range living in the same region. One to low protein intake (56% of RDA) exclusively of plant origin significantly lower levels of total proteins were observed in vegans with a 16% frequency of hypoproteinaemia (vs 0% in omnivores). In comparison to omnivores a significantly lower glutathione level was found (4.28 +/- 0.12 vs 4.84 +/- 0.14 mumol/g Hb, P vegan diet also in adult age.

  3. Metal ion release from metallothioneins: proteolysis as an alternative to oxidation.

    Science.gov (United States)

    Peroza, Estevão A; dos Santos Cabral, Augusto; Wan, Xiaoqiong; Freisinger, Eva

    2013-09-01

    Metallothioneins (MTs) are among others involved in the cellular regulation of essential Zn(II) and Cu(I) ions. However, the high binding affinity of these proteins requires additional factors to promote metal ion release under physiological conditions. The mechanisms and efficiencies of these processes leave many open questions. We report here a comprehensive analysis of the Zn(II)-release properties of various MTs with special focus on members of the four main subfamilies of plant MTs. Zn(II) competition experiments with the metal ion chelator 4-(2-pyridylazo)resorcinol (PAR) in the presence of the cellular redox pair glutathione (GSH)/glutathione disulfide (GSSG) show that plant MTs from the subfamilies MT1, MT2, and MT3 are remarkably more affected by oxidative stress than those from the Ec subfamily and the well-characterized human MT2 form. In addition, we evaluated proteolytic digestion with trypsin and proteinase K as an alternative mechanism for selective promotion of metal ion release from MTs. Also here the observed percentage of liberated metal ions depends strongly on the MT form evaluated. Closer evaluation of the data additionally allowed deducing the thermodynamic and kinetic properties of the Zn(II) release processes. The Cu(I)-form of chickpea MT2 was used to exemplify that both oxidation and proteolysis are also effective ways to increase the transfer of copper ions to other molecules. Zn(II) release experiments with the individual metal-binding domains of Ec-1 from wheat grain reveal distinct differences from the full-length protein. This triggers the question about the roles of the long cysteine-free peptide stretches typical for plant MTs.

  4. Influence of extra-cellular and intra-cellular acting thiol oxidants on the 45calcium uptake by the islets of Langerhans of the rat

    International Nuclear Information System (INIS)

    Haegele, R.G.

    1981-01-01

    The glucose-stimulated calcium uptake by the islets of Langerhans is dependent on the intra-cellular GSH/GSSG ratios. The inhibition of calcium uptake is not the consequence of a direct oxidation of membrane-fixed thiol groups. In contrast, direct oxidation of extra cellular thiols leads to an increase in calcium uptake when intra-cellular oxidation is simultaneously prevented. Since this effect only occurs at high intra-cellular GSH/GSSG ratios it can be assumed that the redox state of extra-cellular thiols is dependent on the redox state of the intra-cellular GSH/GSSG ratios. These findings support the theory that the oxidation of extra-cellular thiols by thiol oxidants leads to an increase in calcium uptake and that the extent of uptake is higher, the more the redox state of the extra-cellular thiols tends towards the reduced state prior to oxidation. (orig./MG) [de

  5. Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells

    International Nuclear Information System (INIS)

    Morales, Albert; Miranda, Merce; Sanchez-Reyes, Alberto; Biete, Alberto; Fernandez-Checa, Jose C.

    1998-01-01

    Purpose: Since reactive oxygen species (ROS) act as mediators of radiation-induced cellular damage, the aim of our studies was to determine the effects of ionizing radiation on the regulation of hepatocellular reduced glutathione (GSH), survival and integrity of nuclear and mitochondrial DNA (mtDNA) in human hepatoblastoma cells (Hep G2) depleted of GSH prior to radiation. Methods and Materials: GSH, oxidized glutathione (GSSG), and generation of ROS were determined in irradiated (50-500 cGy) Hep G2 cells. Clonogenic survival, nuclear DNA fragmentation, and integrity of mtDNA were assessed in cells depleted of GSH prior to radiation. Results: Radiation of Hep G2 cells (50-400 cGy) resulted in a dose-dependent generation of ROS, an effect accompanied by a decrease of reduced GSH, ranging from a 15% decrease for 50 cGy to a 25% decrease for 400 cGy and decreased GSH/GSSG from a ratio of 17 to a ratio of 7 for controls and from 16 to 6 for diethyl maleate (DEM)-treated cells. Depletion of GSH prior to radiation accentuated the increase of ROS by 40-50%. The depletion of GSH by radiation was apparent in different subcellular sites, being particularly significant in mitochondria. Furthermore, depletion of nuclear GSH to 50-60% of initial values prior to irradiation (400 cGy) resulted in DNA fragmentation and apoptosis. Consequently, the survival of Hep G2 to radiation was reduced from 25% of cells not depleted of GSH to 10% of GSH-depleted cells. Fitting the survival rate of cells as a function of GSH using a theoretical model confirmed cellular GSH as a key factor in determining intrinsic sensitivity of Hep G2 cells to radiation. mtDNA displayed an increased susceptibility to the radiation-induced loss of integrity compared to nuclear DNA, an effect that was potentiated by GSH depletion in mitochondria (10-15% intact mtDNA in GSH-depleted cells vs. 25-30% of repleted cells). Conclusion: GSH plays a critical protective role in maintaining nuclear and mtDNA functional

  6. Changes of reduced glutathion, glutathion reductase, and glutathione peroxidase after radiation in guinea pigs

    International Nuclear Information System (INIS)

    Erden, M.; Bor, N.M.

    1984-01-01

    In this series of experiments the protective action of reduced glutathion due to ionizing radiation has been studied. In the experimental group 18 guinea pigs were exposed to successive radiations of 150 rad 3 or 4 days apart. Total dose given amounted to 750 rad which is the LD50 for guinea pigs. Blood samples were taken 30 min after each exposure. The control series were sham radiated but otherwise treated identically. The cells of the removed blood samples were separated by centrifugation and were subjected to the reduced glutathion stability test. GSSGR, GPer, and LDH enzyme activities were also measured of which the latter served as a marked enzyme. It was found that LDH did not show any alteration after radiation. The reduced glutathion stability test showed a consistent but minor reduction (P greater than 0.05), in the experimental group. GSSGR enzyme activity on the other hand was reduced significantly (from 176.48 +/- 11.32 to 41.34 +/- 1.17 IU/ml of packed erythrocytes, P less than 0.001) in the same group. GPer activity showed a consistent but minor elevation during the early phase of the experimental group. It was later increased significantly beginning after 600 rad total radiation on the fourth session (P less than 0.050)

  7. ENDURANCE TRAINING AND GLUTATHIONE-DEPENDENT ANTIOXIDANT DEFENSE MECHANISM IN HEART OF THE DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    Mustafa Atalay

    2003-06-01

    Full Text Available Regular physical exercise beneficially influences cardiac antioxidant defenses in normal rats. The aim of this study was to test whether endurance training can strengthen glutathione-dependent antioxidant defense mechanism and decrease lipid peroxidation in heart of the streptozotocin-induced diabetic rats. Redox status of glutathione in blood of diabetic rats in response to training and acute exercise was also examined. Eight weeks of treadmill training increased the endurance in streptozotocin-induced diabetic rats. It did not affect glutathione level in heart tissue at rest and also after exercise. On the other hand, endurance training decreased glutathione peroxidase activity in heart, while glutathione reductase and glutathione S-transferase activities were not affected either by acute exhaustive exercise or endurance training. Reduced and oxidized glutathione levels in blood were not affected by either training or acute exercise. Conjugated dienes levels in heart tissue were increased by acute exhaustive exercise and also 8 weeks treadmill training. Longer duration of exhaustion in trained group may have contributed to the increased conjugated dienes levels in heart after acute exercise. Our results suggest that endurance type exercise may make heart more susceptible to oxidative stress. Therefore it may be wise to combine aerobic exercise with insulin treatment to prevent its adverse effects on antioxidant defense in heart in patients with diabetes mellitus

  8. Hepatic and erythrocytic glutathione peroxidase activity in liver diseases.

    Science.gov (United States)

    Cordero, R; Ortiz, A; Hernández, R; López, V; Gómez, M M; Mena, P

    1996-09-01

    Hepatic and erythrocytic glutathione peroxidase activity, together with malondialdehyde levels, were determined as indicators of peroxidation in 83 patients from whom liver biopsies had been taken for diagnostic purposes. On histological study, the patients were classified into groups as minimal changes (including normal liver), steatosis, alcoholic hepatitis, hepatic cirrhosis, light to moderately active chronic hepatitis, and severe chronic active hepatitis. The glutathione peroxidase activity in erythrocytes showed no significant changes in any liver disease group. In the hepatic study, an increased activity was observed in steatosis with respect to the minimal changes group, this increased activity induced by the toxic agent in the initial stages of the alcoholic hepatic disease declining as the hepatic damage progressed. There was a negative correlation between the levels of hepatic malondialdehyde and hepatic glutathione peroxidase in subjects with minimal changes. This suggested the existence of an oxidative equilibrium in this group. This equilibrium is broken in the liver disease groups as was manifest in a positive correlation between malondialdehyde and glutathione peroxidase activity.

  9. Selenium concentrations and enzyme activities of glutathione metabolism in wild long-tailed ducks and common eiders

    Science.gov (United States)

    Franson, J. Christian; Hoffman, David J.; Flint, Paul L.

    2011-01-01

    The relationships of selenium (Se) concentrations in whole blood with plasma activities of total glutathione peroxidase, Se-dependent glutathione peroxidase, and glutathione reductase were studied in long-tailed ducks (Clangula hyemalis) and common eiders (Somateria mollissima) sampled along the Beaufort Sea coast of Alaska, USA. Blood Se concentrations were >8 μg/g wet weight in both species. Linear regression revealed that the activities of total and Se-dependent glutathione peroxidase were significantly related to Se concentrations only in long-tailed ducks, raising the possibility that these birds were experiencing early oxidative stress.

  10. Grape (Vitis vinifera) extracts protects against radiation-induced oxidative stress in human erythrocyte (RBC)

    International Nuclear Information System (INIS)

    Ghosh, Subhashis

    2016-01-01

    Ionizing radiation (IR) causes oxidative stress through the overwhelming generation of reactive oxygen species (ROS) in the living cells leading further to the oxidative damage to biomolecules. Grapes (Vitis vinifera) contain several bioactive phytochemicals and are the richest source of antioxidant. In this study, we investigated the radioprotective actions of the grape extracts of two different cultivars, including the Thompson seedless (green) and Kishmish chorni (black) in human erythrocytes. Pretreatment with grape extracts attenuates oxidative stress induced by 4 Gy-radiation in human erythrocytes in vitro. These results suggest that grape extract serve as a potential source of natural antioxidants against the IR-induced oxidative stress and also inhibit apoptosis. Furthermore, the protective action of grape depends on the source of extract (seed, skin or pulp) and type of the cultivars. Effects of grape extracts of different cultivars on protein content, Thiobarbituric acid reactive substances (TBARS) level, reduced glutathione (GSH) content and activities of Catalase, Nitrite, GST, GR in human erythrocytes against -radiation exposure at a dose of 4 Gy are investigated. The grape extracts did not appear to alter the viability of human erythrocytes. Exposure of erythrocytes to the -irradiation at a dose of 4 Gy significantly increased the extent of formation of TBARS, while decreased the level of GSH and activities of CAT, GSSG , GST, GR in the erythrocytes as compared to the non-irradiated control counterparts. This was significantly attenuated by the pretreatment with the grape seed extracts (p<0.001) and significantly with the skin extracts (p<0.05) compared to the ionizing radiation exposed group. Moreover, protection offered by the seed extracts was found significantly better than that was offered by the pulp extract of the same cultivar. In conclusion, our results suggested that the grape extracts significantly attenuated IR induced oxidative stress and

  11. Mitochondrial Alterations and Oxidative Stress in an Acute Transient Mouse Model of Muscle Degeneration

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Bharath, Muchukunte Mukunda Srinivas

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  12. Intracellular thiol levels and radioresistance: Studies with glutathione and glutathione mono ethyl ester

    International Nuclear Information System (INIS)

    Astor, M.B.; Meister, A.; Anderson, M.E.

    1987-01-01

    Intracellular thiols such as glutathione (GSH) protect cells against free radicals formed during oxidative metabolism or from exposure to drugs or ionizing radiation. The role of intracellular GSH in the repair of radiation induced free radical damage was studied using GSH or its analog glutathione mono ethyl ester (GEE), which readily penetrates into the cell. Chinese hamster V79 cells with normal GSH levels were afforded equal protection under aerated and hypoxic conditions (DMF = 1.2 OER = 3.7) by both 10 mM GSH and GEE although GEE had raised interacellular GSH levels three-fold. Growth of V79 cells in cysteine free media resulted in undetectable levels of GSH and OER of 2.2 with no change in aerated survival. Restoration of intracellular GSH by 10 mM GEE resulted in an increase of the OER from 2.2. to 3.8 (DMF = 1.7). Only 14% of the intracellular GSH needs to be repleted to give an OER of 3.0. These experiments provide evidence that thiols do play a role in the oxygen effect and are present at levels in excess of what is necessary for maximal radioprotection

  13. Human gastric signet ring carcinoma (KATO-III) cell apoptosis induced by Vitex agnus-castus fruit extract through intracellular oxidative stress.

    Science.gov (United States)

    Ohyama, Kunio; Akaike, Takenori; Imai, Masahiko; Toyoda, Hiroo; Hirobe, Chieko; Bessho, Toshio

    2005-07-01

    We have previously reported that an ethanol extract of the dried ripe fruit of Vitex agnus-castus (Vitex) displays cytotoxic activity against certain kinds of human cancer cell line resulting in the induction of apoptosis. In this paper, we investigate the molecular mechanism of apoptosis induced by Vitex using a human gastric signet ring carcinoma cell line, KATO-III. DNA fragmentation was observed in Vitex-treated KATO-III cells in a time- and dose-dependent manner. DNA fragmentation was accompanied by the following phenomena: elevation in the level of hemeoxygenase-1 protein and thioredoxin reductase mRNA; repression of Mn-superoxide dismutase and catalase mRNAs; release of cytochrome c from mitochondria into the cytosol; activation of caspases-8, -9 and -3; decrease in the level of Bcl-2, Bcl-XL and Bid protein; increase in the level of Bad protein. The intracellular oxidized state, measured using 2',7'-dichlorofluorescin diacetate, increased after Vitex treatment. While the amount of intracellular GSH decreased significantly after treatment with Vitex, the level of GSSG was unaffected. Furthermore, no significant perturbation in the amount of proteins/mRNAs related to glutathione metabolism could be detected. These apoptotic alterations induced by exposure to Vitex were blocked by the presence of an anti-oxidative reagent, N-acetyl-l-cysteine, or the addition of exogenous GSH. Our results demonstrate that intracellular oxidative stress and mitochondrial membrane damage is responsible for Vitex-induced apoptosis, which may be mediated by a diminution of reduced type glutathione within the cell.

  14. Acridone derivative 8a induces oxidative stress-mediated apoptosis in CCRF-CEM leukemia cells: application of metabolomics in mechanistic studies of antitumor agents.

    Directory of Open Access Journals (Sweden)

    Yini Wang

    Full Text Available A new acridone derivative, 2-aminoacetamido-10-(3, 5-dimethoxy-benzyl-9(10H-acridone hydrochloride (named 8a synthesized in our lab shows potent antitumor activity, but the mechanism of action remains unclear. Herein, we report the use of an UPLC/Q-TOF MS metabolomic approach to study the effects of three compounds with structures optimized step-by-step, 9(10H-acridone (A, 10-(3,5-dimethoxybenzyl-9(10H-acridone (I, and 8a, on CCRF-CEM leukemia cells and to shed new light on the probable antitumor mechanism of 8a. Acquired data were processed by principal component analysis (PCA and orthogonal partial least squares discriminant analysis (OPLS-DA to identify potential biomarkers. Comparing 8a-treated CCRF-CEM leukemia cells with vehicle control (DMSO, 23 distinct metabolites involved in five metabolic pathways were identified. Metabolites from glutathione (GSH and glycerophospholipid metabolism were investigated in detail, and results showed that GSH level and the reduced/oxidized glutathione (GSH/GSSG ratio were significantly decreased in 8a-treated cells, while L-cysteinyl-glycine (L-Cys-Gly and glutamate were greatly increased. In glycerophospholipid metabolism, cell membrane components phosphatidylcholines (PCs were decreased in 8a-treated cells, while the oxidative products lysophosphatidylcholines (LPCs were significantly increased. We further found that in 8a-treated cells, the reactive oxygen species (ROS and lipid peroxidation product malondialdehyde (MDA were notably increased, accompanied with decrease of mitochondrial transmembrane potential, release of cytochrome C and activation of caspase-3. Taken together our results suggest that the acridone derivative 8a induces oxidative stress-mediated apoptosis in CCRF-CEM leukemia cells. The UPLC/Q-TOF MS based metabolomic approach provides novel insights into the mechanistic studies of antitumor drugs from a point distinct from traditional biological investigations.

  15. (−)-EPICATECHIN IMPROVES MITOCHONDRIAL RELATED PROTEIN LEVELS AND AMELIORATES OXIDATIVE STRESS IN DYSTROPHIC DELTA SARCOGLYCAN NULL MOUSE STRIATED MUSCLE

    Science.gov (United States)

    Ramirez-Sanchez, Israel; De los Santos, Sergio; Gonzalez-Basurto, Silvia; Canto, Patricia; Mendoza-Lorenzo, Patricia; Palma-Flores, Carlos; Ceballos-Reyes, Guillermo; Villarreal, Francisco; Zentella-Dehesa, Alejandro; Coral-Vazquez, Ramon

    2014-01-01

    Muscular dystrophies (MD) are a group of heterogeneous genetic disorders characterized by progressive striated muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for disease pathogenesis remains unclear. The presence of oxidative stress (OS) is known to contribute to the pathophysiology and severity of the MD. Mitochondrial dysfunction is observed in MD and likely represents an important determinant of increased OS. Experimental antioxidant therapies have been implemented with the aim of protecting against disease progression, but results from clinical trials have been disappointing. In this study, we explored the capacity of the cacao flavonoid (−)-epicatechin (Epi) to mitigate OS by acting as a positive regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac muscles of dystrophic, δ-sarcoglycan (δ-SG) null mice. Wild type or δ-SG null 2.5 month old male mice were treated via oral gavage with either water (control animals) or Epi (1 mg/kg, twice/day) for 2 weeks. Results evidence a significant normalization of total protein carbonylation, recovery of reduced/oxidized glutathione (GSH/GSSG ratio) and enhanced superoxide dismutase 2, catalase and citrate synthase activities with Epi treatment. These effects were accompanied by increases in protein levels for thiolredoxin, glutathione peroxidase, superoxide dismutase 2, catalase and mitochondrial endpoints. Furthermore, we evidence decreases in heart and skeletal muscle fibrosis, accompanied with an improvement in skeletal muscle function with treatment. These results warrant the further investigation of Epi as a potential therapeutic agent to mitigate MD associated muscle degeneration. PMID:25284161

  16. Hepatic glutathione and glutathione S-transferase in selenium deficiency and toxicity in the chick

    International Nuclear Information System (INIS)

    Kim, Y. S.

    1989-01-01

    First, the hepatic activity of GSH-T CDNB was increased only under conditions of severe oxidative stress produced by combined Se- and vitamin E (VE)-deficiency, indicating that VE also affects GSH metabolism. Second, the incorporation of 35 S-methionine into GSH and protein was about 4- and 2-fold higher, respectively, in Se- and VE-deficient chick hepatocytes as compared to controls. Third, chicks injected with the glutathione peroxidase (SeGSHpx) inhibitor, aurothioglucose (AuTG), showed increase hepatic GSH-T CDNB activity and plasma GSH concentration regardless of their Se status. Fourth, the effect of ascorbic acid (AA), on GSH metabolism was studied. Chicks fed 1000 ppm AA showed decreased hepatic GSH concentration compared to chicks fed no AA in a Se- and VE-deficient diet. Fifth, chicks fed excess Se showed increase hepatic activity of GSH-T CDNB and GSH concentration regardless of VE status

  17. A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis.

    Science.gov (United States)

    Gopal, Shubha; Borovok, Ilya; Ofer, Amos; Yanku, Michaela; Cohen, Gerald; Goebel, Werner; Kreft, Jürgen; Aharonowitz, Yair

    2005-06-01

    Glutathione is the predominant low-molecular-weight peptide thiol present in living organisms and plays a key role in protecting cells against oxygen toxicity. Until now, glutathione synthesis was thought to occur solely through the consecutive action of two physically separate enzymes, gamma-glutamylcysteine ligase and glutathione synthetase. In this report we demonstrate that Listeria monocytogenes contains a novel multidomain protein (termed GshF) that carries out complete synthesis of glutathione. Evidence for this comes from experiments which showed that in vitro recombinant GshF directs the formation of glutathione from its constituent amino acids and the in vivo effect of a mutation in GshF that abolishes glutathione synthesis, results in accumulation of the intermediate gamma-glutamylcysteine, and causes hypersensitivity to oxidative agents. We identified GshF orthologs, consisting of a gamma-glutamylcysteine ligase (GshA) domain fused to an ATP-grasp domain, in 20 gram-positive and gram-negative bacteria. Remarkably, 95% of these bacteria are mammalian pathogens. A plausible origin for GshF-dependent glutathione biosynthesis in these bacteria was the recruitment by a GshA ancestor gene of an ATP-grasp gene and the subsequent spread of the fusion gene between mammalian hosts, most likely by horizontal gene transfer.

  18. Nitric oxide and DOPAC-induced cell death: from GSH depletion to mitochondrial energy crisis.

    Science.gov (United States)

    Nunes, Carla; Barbosa, Rui M; Almeida, Leonor; Laranjinha, João

    2011-09-01

    The molecular mechanisms inherent to cell death associated with Parkinson's disease are not clearly understood. Diverse pathways, sequence of events and models have been explored in several studies. Recently, we have proposed an integrative mechanism, encompassing the interaction of nitric oxide (•NO) and a major dopamine metabolite, dihydroxyphenylacetic (DOPAC), leading to a synergistic mitochondrial dysfunction and cell death that may be operative in PD. In this study, we have studied the sequence of events underlying the mechanisms of cell death in PC12 cells exposed to •NO and DOPAC in terms of: a) free radical production; b) modulation by glutathione (GSH); c) energetic status and d) outer membrane mitochondria permeability. Using Electron Paramagnetic Resonance (EPR) it is shown the early production of oxygen free radicals followed by a depletion of GSH reflected by an increase of GSSG/GSH ratio in the cells treated with the mixture of •NO/DOPAC, as compared with the cells individually exposed to each of the stimulus. Glutathione ethyl ester (GSH-EE) and N-acetylcysteine (NAC) may rescue cells from death, increasing GSH content and preventing ATP loss in cells treated with the mixture DOPAC/•NO but failed to exert similar effects in the cells challenged only with •NO. The depletion of GSH is accompanied by a decreased activity of mitochondrial complex I. At a later stage, the concerted action of DOPAC and •NO include a rise in the ratio Bax/Bcl-2, an observation not evident when cells were exposed only to •NO. The results support a free radical-induced pathway leading to cell death involving the concerted action of DOPAC and •NO and the critical role of GSH in maintaining a functional mitochondria. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance

    Directory of Open Access Journals (Sweden)

    Anna E. Maciag

    2013-01-01

    Full Text Available JS-K is a nitric oxide (NO-releasing prodrug of the O2-arylated diazeniumdiolate family that has demonstrated pronounced cytotoxicity and antitumor properties in a variety of cancer models both in vitro and in vivo. The current study of the metabolic actions of JS-K was undertaken to investigate mechanisms of its cytotoxicity. Consistent with model chemical reactions, the activating step in the metabolism of JS-K in the cell is the dearylation of the diazeniumdiolate by glutathione (GSH via a nucleophilic aromatic substitution reaction. The resulting product (CEP/NO anion spontaneously hydrolyzes, releasing two equivalents of NO. The GSH/GSSG redox couple is considered to be the major redox buffer of the cell, helping maintain a reducing environment under basal conditions. We have quantified the effects of JS-K on cellular GSH content, and show that JS-K markedly depletes GSH, due to JS-K's rapid uptake and cascading release of NO and reactive nitrogen species. The depletion of GSH results in alterations in the redox potential of the cellular environment, initiating MAPK stress signaling pathways, and inducing apoptosis. Microarray analysis confirmed signaling gene changes at the transcriptional level and revealed alteration in the expression of several genes crucial for maintenance of cellular redox homeostasis, as well as cell proliferation and survival, including MYC. Pre-treating cells with the known GSH precursor and nucleophilic reducing agent N-acetylcysteine prevented the signaling events that lead to apoptosis. These data indicate that multiplicative depletion of the reduced glutathione pool and deregulation of intracellular redox balance are important initial steps in the mechanism of JS-K's cytotoxic action.

  20. Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity.

    Science.gov (United States)

    Ashraf, Umair; Hussain, Saddam; Anjum, Shakeel Ahmad; Abbas, Farhat; Tanveer, Mohsin; Noor, Mehmood Ali; Tang, Xiangru

    2017-06-01

    Lead (Pb) affects plant growth and its related physio-biochemical functions negatively. The present study investigated the responses of five different fragrant rice cultivars viz., Meixiangzhan (MXZ-2), Xiangyaxiangzhan (XYXZ), Guixiangzhan (GXZ), Basmati-385 (B-385), and Nongxiang-18 (NX-18) to four different Pb concentrations viz., 0, 400, 800 and 1200 μM. Results depicted that Pb toxicity significantly (P rice plants; nonetheless, a significant variation was found in the sensitivity of rice cultivars to Pb toxicity. Soluble sugars increased significantly only at 1200 μM in GXZ and 800 μM in B-385, whilst the maximum reductions in protein contents were observed at 1200 μM Pb for all rice cultivars. Proline contents were reduced for XYXZ and NX-18 at Pb1200 μM. Activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) as well as reduced glutathione (GSH) and oxidized glutathione (GSSG) showed differential behavior among Pb treatments and rice cultivars. Among rice cultivars, GXZ showed better antioxidative defense system under Pb toxicity compared with all other cultivars. For all rice cultivars, the trend for Pb accumulation was recorded as: roots > stems > leaves. Furthermore, significant but negative correlations among Pb uptake and plant height (r = -0.79), tillers per plant (r = -0.91) and plant dry biomass (r = -0.81) were recorded for all rice cultivars whereas the values of translocation factor (TF) from stems to leaves were higher than roots to stems. In sum, Pb reduced the early growth and caused physio-biochemical changes in all rice cultivars, nonetheless, GXZ proved better able to tolerate Pb stress than all other rice cultivars under study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Glutathione, cell proliferation and differentiation | Ashtiani | African ...

    African Journals Online (AJOL)

    All organisms require an equivalent source for living. Reduced glutathione is the most abundant thiol containing protein in mammalian cells and organs. Glutathione was discovered by Hopkins in 1924 who published his findings in JBC. It is a three peptide containing glutamic acid, cystein and glycin and is found in reduced ...

  2. The Genetic Architecture of Murine Glutathione Transferases.

    Directory of Open Access Journals (Sweden)

    Lu Lu

    Full Text Available Glutathione S-transferase (GST genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6 and DBA2/J (D2--the BXD family--was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01 with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes.

  3. Blood selenium concentrations and enzyme activities related to glutathione metabolism in wild emperor geese

    Science.gov (United States)

    Franson, J. Christian; Hoffman, David J.; Schmutz, Joel A.

    2002-01-01

    In 1998, we collected blood samples from 63 emperor geese (Chen canagica) on their breeding grounds on the Yukon-Kuskokwim Delta (YKD) in western Alaska, USA. We studied the relationship between selenium concentrations in whole blood and the activities of glutathione peroxidase and glutathione reductase in plasma. Experimental studies have shown that plasma activities of these enzymes are useful biomarkers of selenium-induced oxidative stress, but little information is available on their relationship to selenium in the blood of wild birds. Adult female emperor geese incubating their eggs in mid-June had a higher mean concentration of selenium in their blood and a greater activity of glutathione peroxidase in their plasma than adult geese or goslings that were sampled during the adult flight feathermolting period in late July and early August. Glutathione peroxidase activity was positively correlated with the concentration of selenium in the blood of emperor geese, and the rate of increase relative to selenium was greater in goslings than in adults. The activity of glutathione reductase was greatest in the plasma of goslings and was greater in molting adults than incubating females but was not significantly correlated with selenium in the blood of adults or goslings. Incubating female emperor geese had high selenium concentrations in their blood, accompanied by increased glutathione peroxidase activity consistent with early oxidative stress. These findings indicate that further study of the effects of selenium exposure, particularly on reproductive success, is warranted in this species.

  4. A regulatory review for products containing glutathione

    Directory of Open Access Journals (Sweden)

    Nur Hidayah Abd Rahim

    2016-01-01

    Full Text Available Glutathione is a potent antioxidant as well as has important role for DNA synthesis and repair, protein synthesis, amino acid transport, and enzyme activation. Besides this, Glutathione products are now mainly selling as whitening agent which are mainly marketing through social media (Facebook and different websites. Information is not available whether glutathione product are following the regulatory guidelines of National Pharmaceutical Control Bureau of Malaysia (NPCB for selling, advertisement and promotion. This review was carried out by extracting information about glutathione from scientific database using PubMed, Cochrane Library and Embase. Analysis of the available information, case example of glutathione products showed that a brand of glutathione (Glutacaps HQ did not show the product's registration number from NPCB, and also did not show the name, address, contact number of the advertiser, and even not found the name of the manufacture. Without providing the above mentioned information, the product is selling and promoting through social media (fb which is not allowed by the NPCB guidelines part 4.14. So far, only two clinical trials were conducted on glutathione supplementation for 4 weeks duration. There was no serious or systematic adverse effects reported in clinical trials. As the two clinic trials resulted contradictory outcomes, further studies needed for conformation of the clinic benefits of glutathione. Otherwise, random use of glutathione may be risk for the health of the people. Besides, the marketer mainly promoting glutathione as the skin whitening beauty product instead of using as health supplement, it may cause additional and serious risk to the users as the manufacturer not providing sufficient information about the product, its registration number, manufacturing company, etc.

  5. Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress

    Science.gov (United States)

    Cassia, Raúl; Nocioni, Macarena; Correa-Aragunde, Natalia; Lamattina, Lorenzo

    2018-01-01

    Here, we review information on how plants face redox imbalance caused by climate change, and focus on the role of nitric oxide (NO) in this response. Life on Earth is possible thanks to greenhouse effect. Without it, temperature on Earth’s surface would be around -19°C, instead of the current average of 14°C. Greenhouse effect is produced by greenhouse gasses (GHG) like water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxides (NxO) and ozone (O3). GHG have natural and anthropogenic origin. However, increasing GHG provokes extreme climate changes such as floods, droughts and heat, which induce reactive oxygen species (ROS) and oxidative stress in plants. The main sources of ROS in stress conditions are: augmented photorespiration, NADPH oxidase (NOX) activity, β-oxidation of fatty acids and disorders in the electron transport chains of mitochondria and chloroplasts. Plants have developed an antioxidant machinery that includes the activity of ROS detoxifying enzymes [e.g., superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), and peroxiredoxin (PRX)], as well as antioxidant molecules such as ascorbic acid (ASC) and glutathione (GSH) that are present in almost all subcellular compartments. CO2 and NO help to maintain the redox equilibrium. Higher CO2 concentrations increase the photosynthesis through the CO2-unsaturated Rubisco activity. But Rubisco photorespiration and NOX activities could also augment ROS production. NO regulate the ROS concentration preserving balance among ROS, GSH, GSNO, and ASC. When ROS are in huge concentration, NO induces transcription and activity of SOD, APX, and CAT. However, when ROS are necessary (e.g., for pathogen resistance), NO may inhibit APX, CAT, and NOX activity by the S-nitrosylation of cysteine residues, favoring cell death. NO also regulates GSH concentration in several ways. NO may react with GSH to form GSNO, the NO cell reservoir and main source of S

  6. Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress.

    Science.gov (United States)

    Cassia, Raúl; Nocioni, Macarena; Correa-Aragunde, Natalia; Lamattina, Lorenzo

    2018-01-01

    Here, we review information on how plants face redox imbalance caused by climate change, and focus on the role of nitric oxide (NO) in this response. Life on Earth is possible thanks to greenhouse effect. Without it, temperature on Earth's surface would be around -19°C, instead of the current average of 14°C. Greenhouse effect is produced by greenhouse gasses (GHG) like water vapor, carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxides (N x O) and ozone (O 3 ). GHG have natural and anthropogenic origin. However, increasing GHG provokes extreme climate changes such as floods, droughts and heat, which induce reactive oxygen species (ROS) and oxidative stress in plants. The main sources of ROS in stress conditions are: augmented photorespiration, NADPH oxidase (NOX) activity, β-oxidation of fatty acids and disorders in the electron transport chains of mitochondria and chloroplasts. Plants have developed an antioxidant machinery that includes the activity of ROS detoxifying enzymes [e.g., superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), and peroxiredoxin (PRX)], as well as antioxidant molecules such as ascorbic acid (ASC) and glutathione (GSH) that are present in almost all subcellular compartments. CO 2 and NO help to maintain the redox equilibrium. Higher CO 2 concentrations increase the photosynthesis through the CO 2 -unsaturated Rubisco activity. But Rubisco photorespiration and NOX activities could also augment ROS production. NO regulate the ROS concentration preserving balance among ROS, GSH, GSNO, and ASC. When ROS are in huge concentration, NO induces transcription and activity of SOD, APX, and CAT. However, when ROS are necessary (e.g., for pathogen resistance), NO may inhibit APX, CAT, and NOX activity by the S-nitrosylation of cysteine residues, favoring cell death. NO also regulates GSH concentration in several ways. NO may react with GSH to form GSNO, the NO cell reservoir and main source of S

  7. Balneotherapy and platelet glutathione metabolism in type II diabetic patients

    Science.gov (United States)

    Ohtsuka, Yoshinori; Yabunaka, Noriyuki; Watanabe, Ichiro; Noro, Hiroshi; Agishi, Yuko

    1996-09-01

    Effects of balneotherapy on platelet glutathione metabolism were investigated in 12 type II (non-insulin-dependent) diabetic patients. Levels of the reduced form of glutathione (GSH) on admission were well correlated with those of fasting plasma glucose (FPG; r=0.692, Pbalneotherapy, the mean level of GSH showed no changes; however, in well-controlled patients (FPG 150 mg/dl), the value decreased ( Pbalneotherapy, the activity increased in 5 patients, decreased in 3 patients and showed no changes (alteration within ±3%) in all the other patients. From these findings in diabetic patients we concluded: (1) platelet GSH synthesis appeared to be induced in response to oxidative stress; (2) lowered GPX activities indicated that the antioxidative defense system was impaired; and (3) platelet glutathione metabolism was partially improved by 4 weeks balneotherapy, an effect thought to be dependent on the control status of plasma glucose levels. It is suggested that balneotherapy is beneficial for patients whose platelet antioxidative defense system is damaged, such as those with diabetes mellitus and coronary heart disease.

  8. Potential involvement of oxygen intermediates and glutathione depletion in UV-induced epidermal cell injury in vitro

    International Nuclear Information System (INIS)

    Hsieh, G.C.; Acosta, D.

    1991-01-01

    Generation of reactive oxygen species (ROS) and depletion of glutathione (GSH) are suggested as the cytotoxic mechanisms for UVB-induced cellular damage. Primary monolayer cultures of epidermal keratinocytes (KCs) prepared from the skin of neonatal rats were irradiated with UVB at levels of 0.25-3.0 J/cm 2 . Cytotoxicity was measured at 3, 6, and 12 hr after UVB radiation. Exposure of KCs to UVB resulted in time- and dose-related toxic responses as determined by plasma membrane integrity, lysosomal function and mitochondrial metabolic activity. Irradiated KCs generated superoxide in a dose-dependent manner when compared to sham-irradiated cells. Superoxide formation, which occurred before and concomitant with cell injury, was decreased by superoxide dismutase (SOD). Cell injury was also significantly prevented by ROS scavengers, SOD and catalase. Pretreatment of cells with endocytosis inhibitors, cytochalasin B and methylamine, suppressed the ability of SOD and catalase to protect keratinocytes from UVB-induced toxicity. Irradiation of cells with UVB caused rapid depletion of GSH to about 30% of unirradiated levels within 15 min. UVB-irradiation led to a rapid transient increase in GSH peroxidase activity, concomitant with a marked decrease in the GSH/GSSG ratio. After 1 hr., while the GSH/GSSG ratio remained low, the GSH peroxidase activity declined below the control levels in UVB-treated epidermal cells. Following extensive GSH depletion in cells preincubated with 0.1 mM buthiomine sulfoximine, KCs became strongly sensitized to the cytotoxic action of UVB. These results indicate that UVB-induced cell injury in cultured KCs may be mediated by ROs and that endogenous GSH may play an important protective role against the cytotoxic action of UVB

  9. The role of Nrf1 and Nrf2 in the regulation of glutathione and redox dynamics in the developing zebrafish embryo

    Directory of Open Access Journals (Sweden)

    Karilyn E. Sant

    2017-10-01

    Full Text Available Redox signaling is important for embryogenesis, guiding pathways that govern processes crucial for embryo patterning, including cell polarization, proliferation, and apoptosis. Exposure to pro-oxidants during this period can be deleterious, resulting in altered physiology, teratogenesis, later-life diseases, or lethality. We previously reported that the glutathione antioxidant defense system becomes increasingly robust, including a doubling of total glutathione and dynamic shifts in the glutathione redox potential at specific stages during embryonic development in the zebrafish, Danio rerio. However, the mechanisms underlying these changes are unclear, as is the effectiveness of the glutathione system in ameliorating oxidative insults to the embryo at different stages. Here, we examine how the glutathione system responds to the model pro-oxidants tert-butylhydroperoxide and tert-butylhydroquinone at different developmental stages, and the role of Nuclear factor erythroid 2-related factor (Nrf proteins in regulating developmental glutathione redox status. Embryos became increasingly sensitive to pro-oxidants after 72 h post-fertilization (hpf, after which the duration of the recovery period for the glutathione redox potential was increased. To determine whether the doubling of glutathione or the dynamic changes in glutathione redox potential are mediated by zebrafish paralogs of Nrf transcription factors, morpholino oligonucleotides were used to knock down translation of Nrf1 and Nrf2 (nrf1a, nrf1b, nrf2a, nrf2b. Knockdown of Nrf1a or Nrf1b perturbed glutathione redox state until 72 hpf. Knockdown of Nrf2 paralogs also perturbed glutathione redox state but did not significantly affect the response of glutathione to pro-oxidants. Nrf1b morphants had decreased gene expression of glutathione synthesis enzymes, while hsp70 increased in Nrf2b morphants. This work demonstrates that despite having a more robust glutathione system, embryos become more

  10. The role of nuclear factor E2-Related factor 2 and uncoupling protein 2 in glutathione metabolism: Evidence from an in vivo gene knockout study

    International Nuclear Information System (INIS)

    Chen, Yanyan; Xu, Yuanyuan; Zheng, Hongzhi; Fu, Jingqi; Hou, Yongyong; Wang, Huihui; Zhang, Qiang; Yamamoto, Masayuki; Pi, Jingbo

    2016-01-01

    Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-double knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. - Highlights: • Nrf2/Ucp2 deficiency leads to alteration of glutathione homeostasis. • Nrf2 regulates expression of genes in glutathione generation and utilization. • Ucp2 affects glutathione metabolism by regulating hepatic efflux of glutathione. • Nrf2 deficiency may not aggravate oxidative stress in Ucp2-deficient mice.

  11. The role of nuclear factor E2-Related factor 2 and uncoupling protein 2 in glutathione metabolism: Evidence from an in vivo gene knockout study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyan [The First Affiliated Hospital, China Medical University, Shenyang, Liaoning (China); The Hamner Institutes for Health Sciences, Research Triangle Park, NC (United States); Xu, Yuanyuan, E-mail: yyxu@cmu.edu.cn [School of Public Health, China Medical University, Shenyang, Liaoning (China); Zheng, Hongzhi [The First Affiliated Hospital, China Medical University, Shenyang, Liaoning (China); The Hamner Institutes for Health Sciences, Research Triangle Park, NC (United States); Fu, Jingqi; Hou, Yongyong; Wang, Huihui [School of Public Health, China Medical University, Shenyang, Liaoning (China); Zhang, Qiang [Rollins School of Public Health, Emory University, Atlanta, GA (United States); Yamamoto, Masayuki [Graduate School of Medicine, Tohoku University, Sendai (Japan); Pi, Jingbo, E-mail: jbpi@cmu.edu.cn [School of Public Health, China Medical University, Shenyang, Liaoning (China); The Hamner Institutes for Health Sciences, Research Triangle Park, NC (United States)

    2016-09-09

    Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-double knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. - Highlights: • Nrf2/Ucp2 deficiency leads to alteration of glutathione homeostasis. • Nrf2 regulates expression of genes in glutathione generation and utilization. • Ucp2 affects glutathione metabolism by regulating hepatic efflux of glutathione. • Nrf2 deficiency may not aggravate oxidative stress in Ucp2-deficient mice.

  12. Swimming training induces liver mitochondrial adaptations to oxidative stress in rats submitted to repeated exhaustive swimming bouts.

    Directory of Open Access Journals (Sweden)

    Frederico D Lima

    Full Text Available BACKGROUND AND AIMS: Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. METHODS: Wistar rats were divided into training (n = 14 and control (n = 14 groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7 and control (n = 7 rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. RESULTS: Trained group showed increased reduced glutathione (GSH content and reduced/oxidized (GSH/GSSG ratio, higher superoxide dismutase (MnSOD activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. CONCLUSIONS: Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance.

  13. RED BLOOD CELL AND WHOLE BLOOD GLUTATHIONE REDOX STATUS IN ENDURANCE-TRAINED MEN FOLLOWING A SKI MARATHON

    Directory of Open Access Journals (Sweden)

    Eve Unt

    2008-09-01

    Full Text Available The aim of the present study was to evaluate the changes in glutathione redox ratio (GSSG·GSH-1 in red blood cells (RBCs and whole blood in well-trained men following a ski marathon. 16 male subjects (27.0 ± 4.7 yrs, 1.81 ± 0.06 m, 77.6 ± 9.6 kg, VO2max 66.2 ± 5.7 ml·kg-1·min-1 were examined before the competition (pre- COMP, after the competition (post-COMP and during an 18-hour recovery period (RECOV. There was a slight decrease in reduced glutathione (GSH in blood and in RBCs in post-COMP. During RECOV, the GSH level in blood was reduced, the GSH level in RBCs was significantly elevated (a statistically significant difference as compared to the pre-COMP level. The post-COMP GSSG·GSH-1 in full blood did not increase significantly, but its increase was statistically significant during the 18-hour recovery period. During the post-COMP and RECOV, the GSSG·GSH-1 in RBCs slightly decreased in comparison with the pre-COMP. Vitamin C concentration in serum increased in post-COMP (49% vs. pre- COMP and decreased to the baseline level during RECOV. In conclusion, our data show that acute exercise slightly increases the GSSG·GSH-1 in whole blood, while GSSG·GSH-1 in RBCs significantly decreases. Thus, exercise-related changes in the non-enzymatic components of the glutathione system (GSSG and GSH in whole blood and RBCs are not identical

  14. The influence of glutathione on the course of radiation sickness with the developed gastrointestinal syndrome and on the effectiveness of parenteral feeding

    International Nuclear Information System (INIS)

    Grozdov, S.P.

    1987-01-01

    Injections of oxidized glutathione (40 mg/kg, 5-7 days) combined with the parenteral nutrition (PN) of rats after local X-irradiation of abdomen (13-14.5 Gy) increased significantly the survival rate, decreased the gastrointestinal syndrome manifestations, and intensified the assimilation of a PF amino acid component. The reduced glutathione had no effect

  15. [Dinitrosyl iron complexes with glutathione recover rats with experimental endometriosis].

    Science.gov (United States)

    Adamian, L V; Burgova, E N; Tkachev, N A; Mikoian, V D; Stepanian, A A; Sonova, M M; Vanin, A F

    2013-01-01

    The effect of binuclear dinitrosyl iron complexes (DNIC) with glutathione on endometrioid tumors in rats with experimental endometriosis has been studied. The latter was induced by an autotransplantation model, where two fragments of endometrium with myometrium (2 x 2 mm) from the left uterine horn was grafted to the inner surface of the anterior abdominal wall. The test animals received intraperitoneal injections of 0.5 ml DNIC-glutathione at the dose of 12.5 micromole per kg daily for 12 days 28 days after operation. The injections resulted in more than a 2-fold decrease in the total volume of both large tumors formed from grafts and small additive tumors formed nearby grafts. The disappearance of the additive tumors was also observed in test animals. The EPR signal with g(av) = 2.03 characteristic of protein bound DNIC with thiol-containing ligands was recorded in livers, graft and additive tumors of test and control animals pointing out intensive generation of nitric oxide in rats with experimental endometriosis. Ribonucleotide reductase activation discovered by doublet the EPR signal at g = 2.0 with 2.3 mT hyperfine structure splitting was found in small tumors. The cytotoxic effect of DNIC-glutathione on endometrioid tumors was suggested to be due to DNIC degradation nearby the tumors induced by iron chelating compounds released from the tumors. The degradation resulted in release of a high amount of nitric oxide molecules and nitrosonium ions from DNICs affecting the tumors by way of the cytotoxic effect.

  16. Association study on glutathione S-transferase omega 1 and 2 and familial ALS

    NARCIS (Netherlands)

    van de Giessen, Elsmarieke; Fogh, Isabella; Gopinath, Sumana; Smith, Bradley; Hu, Xun; Powell, John; Andersen, Peter; Nicholson, Garth; Al Chalabi, Ammar; Shaw, Christopher E.

    2008-01-01

    Glutathione S-transferase omega 1 and 2 (GSTO1 and 2) protect from oxidative stress, a possible pathogenic mechanism underlying the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Significant association of age of onset in Alzheimer's

  17. Acrolein-detoxifying isozymes of glutathione transferase in plants.

    Science.gov (United States)

    Mano, Jun'ichi; Ishibashi, Asami; Muneuchi, Hitoshi; Morita, Chihiro; Sakai, Hiroki; Biswas, Md Sanaullah; Koeduka, Takao; Kitajima, Sakihito

    2017-02-01

    Acrolein is a lipid-derived highly reactive aldehyde, mediating oxidative signal and damage in plants. We found acrolein-scavenging glutathione transferase activity in plants and purified a low K M isozyme from spinach. Various environmental stressors on plants cause the generation of acrolein, a highly toxic aldehyde produced from lipid peroxides, via the promotion of the formation of reactive oxygen species, which oxidize membrane lipids. In mammals, acrolein is scavenged by glutathione transferase (GST; EC 2.5.1.18) isozymes of Alpha, Pi, and Mu classes, but plants lack these GST classes. We detected the acrolein-scavenging GST activity in four species of plants, and purified an isozyme showing this activity from spinach (Spinacia oleracea L.) leaves. The isozyme (GST-Acr), obtained after an affinity chromatography and two ion exchange chromatography steps, showed the K M value for acrolein 93 μM, the smallest value known for acrolein-detoxifying enzymes in plants. Peptide sequence homology search revealed that GST-Acr belongs to the GST Tau, a plant-specific class. The Arabidopsis thaliana GST Tau19, which has the closest sequence similar to spinach GST-Acr, also showed a high catalytic efficiency for acrolein. These results suggest that GST plays as a scavenger for acrolein in plants.

  18. Impact of glutathione-enriched inactive dry yeast preparations on the stability of terpenes during model wine aging

    OpenAIRE

    Rodríguez-Bencomo, Juan José; Andújar-Ortiz, Inmaculada; Moreno-Arribas, M. Victoria; Simó, Carolina; González, Javier; Chana, Antonio; Dávalos, J.Z.; Pozo-Bayón, Mª Ángeles

    2014-01-01

    The impact of the addition of glutathione-enriched Inactive dry yeast preparations (g-IDYs) on the stability of some typical wine terpenes (linalool, α-terpineol, β-citronellol, and nerol) stored under accelerated oxidative conditions was evaluated in model wines. Additionally, the effects of a second type of IDY preparation with a different claim (fermentative nutrient) and the sole addition of commercial glutathione into the model wines were also assessed. Model wines were spiked with the l...

  19. The crucial protective role of glutathione against tienilic acid hepatotoxicity in rats

    International Nuclear Information System (INIS)

    Nishiya, Takayoshi; Mori, Kazuhiko; Hattori, Chiharu; Kai, Kiyonori; Kataoka, Hiroko; Masubuchi, Noriko; Jindo, Toshimasa; Manabe, Sunao

    2008-01-01

    To investigate the hepatotoxic potential of tienilic acid in vivo, we administered a single oral dose of tienilic acid to Sprague-Dawley rats and performed general clinicopathological examinations and hepatic gene expression analysis using Affymetrix microarrays. No change in the serum transaminases was noted at up to 1000 mg/kg, although slight elevation of the serum bile acid and bilirubin, and very mild hepatotoxic changes in morphology were observed. In contrast to the marginal clinicopathological changes, marked upregulation of the genes involved in glutathione biosynthesis [glutathione synthetase and glutamate-cysteine ligase (Gcl)], oxidative stress response [heme oxygenase-1 and NAD(P)H dehydrogenase quinone 1] and phase II drug metabolism (glutathione S-transferase and UDP glycosyltransferase 1A6) were noted after 3 or 6 h post-dosing. The hepatic reduced glutathione level decreased at 3-6 h, and then increased at 24 or 48 h, indicating that the upregulation of NF-E2-related factor 2 (Nrf2)-regulated gene and the late increase in hepatic glutathione are protective responses against the oxidative and/or electrophilic stresses caused by tienilic acid. In a subsequent experiment, tienilic acid in combination with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of Gcl caused marked elevation of serum alanine aminotransferase (ALT) with extensive centrilobular hepatocyte necrosis, whereas BSO alone showed no hepatotoxicity. The elevation of ALT by this combination was observed at the same dose levels of tienilic acid as the upregulation of the Nrf2-regulated genes by tienilic acid alone. In conclusion, these results suggest that the impairment of glutathione biosynthesis may play a critical role in the development of tienilic acid hepatotoxicity through extensive oxidative and/or electrophilic stresses

  20. Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione

    NARCIS (Netherlands)

    Dirven, H.A.A.M.; Ommen, B. van; Bladeren, P.J. van

    1994-01-01

    Alkylating agents can be detoxified by conjugation with glutathione (GSH). One of the physiological significances of this lies in the observation that cancer cells resistant to the cytotoxic effects of alkylating agents have higher levels of GSH and high glutathione S-transferase (GST) activity.

  1. Arabidopsis cotyledon chloroplast biogenesis factor CYO1 uses glutathione as an electron donor and interacts with PSI (A1 and A2) and PSII (CP43 and CP47) subunits.

    Science.gov (United States)

    Muranaka, Atsuko; Watanabe, Shunsuke; Sakamoto, Atsushi; Shimada, Hiroshi

    2012-08-15

    CYO1 is required for thylakoid biogenesis in cotyledons of Arabidopsis thaliana. To elucidate the enzymatic characteristics of CYO1, we analyzed the protein disulfide isomerase (PDI) activity of CYO1 using dieosin glutathione disulfide (Di-E-GSSG) as a substrate. The reductase activity of CYO1 increased as a function of Di-E-GSSG, with an apparent K(m) of 824nM and K(cat) of 0.53min(-1). PDI catalyzes dithiol/disulfide interchange reactions, and the cysteine residues in PDI proteins are very important. To analyze the significance of the cysteine residues for the PDI activity of CYO1, we estimated the kinetic parameters of point-mutated CYO1 proteins. C117S, C124S, C135S, and C156S had higher values for K(m) than did wild-type CYO1. C158S had a similar K(m) but a higher K(cat), and C138S and C161S had similar K(m) values but lower K(cat) values than did wild-type CYO1. These results suggested that the cysteine residues at positions 138 and 161 were important for PDI activity. Low PDI activity of CYO1 was observed when NADPH or NADH was used as an electron donor. However, PDI activity was observed with CYO1 and glutathione, suggesting that glutathione may serve as a reducing agent for CYO1 in vivo. Based on analysis with the split-ubiquitin system, CYO1 interacted with the A1 and A2 subunits of PSI and the CP43 and CP47 subunits of PSII. Thus, CYO1 may accelerate the folding of cysteine residue--containing PSI and PSII subunits by repeatedly breaking and creating disulfide bonds. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Effects of Ionizing Radiation and Glutathione Precursor on Antioxidant Enzyme and Cell Survival in Yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinkyu; Roh, Changhyun; Ryu, Taeho; Park, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Michael A. [Oxiage Cosmeceutical Research Institute, Virginia (United States)

    2013-05-15

    Cells react to such an induced oxidative stress through scavenging the generated reactive oxygen species to reduce oxidative damage. Antioxidant enzymes such as glutathione peroxidase, catalase, and superoxide dismutase are immediately triggered for reactive oxygen species. N-acetyl-L-cysteine (NAC), a precursor of glutathione, is one of the antioxidants. The effect of NAC as an antioxidant and/or a cell rescue agent was investigated in the present study. Glutathione (GSH) is the most abundant intracellular thiol, which involves in antioxidant defense via direct interaction with ROS or via activities of detoxication enzymes like glutathione peroxidases (GPx). NAC flowed in the cell is converted to cysteine by deacetylation, that is supplied to the depleted GSH by oxidative stress. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity such as GPx and alkaline phosphatase. Cell growth and survivorship and transcriptional level of glutathione gene are analyzed in two yeast strains exposed to combined treatment of NAC with gamma-rays. The effect of NAC on cell growth was measured during 72 hours. The cell growth was hampered by higher concentrations of NAC at stationary phase. NAC, however, didn't affect the cell division at the exponential phase. The survival of the cells decreased with radiation dose. The cell viability of the strain W303-1A was reduced significantly at the low dose (10 and 30 Gy). By comparison, the strain W303-1A was more sensitive to radiation with having a half lethal dose (LD{sub 50}) of about 20 Gy. The quantitative RT-PCR analysis showed that the transcriptional expression of antioxidant enzyme gene GPX1 increased after irradiation while the expression of the gene decreased by the combined treatment of NAC with 100 Gy radiation. The present study shows that NAC can directly scavenge ROS against oxidative stress in vivo. In conclusion, NAC can prevent radiation-induced oxidative

  3. Effects of Ionizing Radiation and Glutathione Precursor on Antioxidant Enzyme and Cell Survival in Yeast

    International Nuclear Information System (INIS)

    Kim, Jinkyu; Roh, Changhyun; Ryu, Taeho; Park, Jiyoung; Nili, Michael A.

    2013-01-01

    Cells react to such an induced oxidative stress through scavenging the generated reactive oxygen species to reduce oxidative damage. Antioxidant enzymes such as glutathione peroxidase, catalase, and superoxide dismutase are immediately triggered for reactive oxygen species. N-acetyl-L-cysteine (NAC), a precursor of glutathione, is one of the antioxidants. The effect of NAC as an antioxidant and/or a cell rescue agent was investigated in the present study. Glutathione (GSH) is the most abundant intracellular thiol, which involves in antioxidant defense via direct interaction with ROS or via activities of detoxication enzymes like glutathione peroxidases (GPx). NAC flowed in the cell is converted to cysteine by deacetylation, that is supplied to the depleted GSH by oxidative stress. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity such as GPx and alkaline phosphatase. Cell growth and survivorship and transcriptional level of glutathione gene are analyzed in two yeast strains exposed to combined treatment of NAC with gamma-rays. The effect of NAC on cell growth was measured during 72 hours. The cell growth was hampered by higher concentrations of NAC at stationary phase. NAC, however, didn't affect the cell division at the exponential phase. The survival of the cells decreased with radiation dose. The cell viability of the strain W303-1A was reduced significantly at the low dose (10 and 30 Gy). By comparison, the strain W303-1A was more sensitive to radiation with having a half lethal dose (LD 50 ) of about 20 Gy. The quantitative RT-PCR analysis showed that the transcriptional expression of antioxidant enzyme gene GPX1 increased after irradiation while the expression of the gene decreased by the combined treatment of NAC with 100 Gy radiation. The present study shows that NAC can directly scavenge ROS against oxidative stress in vivo. In conclusion, NAC can prevent radiation-induced oxidative stress by

  4. The glutathione cycle: Glutathione metabolism beyond the γ-glutamyl cycle.

    Science.gov (United States)

    Bachhawat, Anand Kumar; Yadav, Shambhu

    2018-04-17

    Glutathione was discovered in 1888, over 125 years ago. Since then, our understanding of various functions and metabolism of this important molecule has grown over these years. But it is only now, in the last decade, that a somewhat complete picture of its metabolism has emerged. Glutathione metabolism has till now been largely depicted and understood by the γ-glutamyl cycle that was proposed in 1970. However, new findings and knowledge particularly on the transport and degradation of glutathione have revealed that many aspects of the γ-glutamyl cycle are incorrect. Despite this, an integrated critical analysis of the cycle has never been undertaken and this has led to the cycle and its errors perpetuating in the literature. This review takes a careful look at the γ-glutamyl cycle and its shortcomings and presents a "glutathione cycle" that captures the current understanding of glutathione metabolism. © 2018 IUBMB Life, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  5. The Roles of Glutathione Peroxidases during Embryo Development.

    Science.gov (United States)

    Ufer, Christoph; Wang, Chi Chiu

    2011-01-01

    Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency - in contrast to all other GPx family members - leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on

  6. Activation of dihaloalkanes by glutathione conjugation and formation of DNA adducts

    International Nuclear Information System (INIS)

    Guengerich, F.P.; Peterson, L.A.; Cmarik, J.L.; Koga, N.; Inskeep, P.B.

    1987-01-01

    Ethylene dibromide (1,2-dibromoethane, EDB) can be activated to electrophilic species by either oxidative metabolism or conjugation with glutathione. Although conjugation is generally a route of detoxication, in this case it leads to genetic damage. The major DNA adduct has been identified as S-[2-(N 7 -guanyl)ethyl]glutathione, which is believed to arise via half-mustard and episulfonium ion intermediates. The adduct has a half-life of about 70 to 100 hr and does not appear to migrate to other DNA sites. Glutathione-dependent DNA damage by EDB was also demonstrated in human hepatocyte preparations. The possible relevance of this DNA adduct to genetic damage is discussed

  7. Combined Administration of Taurine and Monoisoamyl Dmsa Protects Arsenic Induced Oxidative Injury in Rats

    Directory of Open Access Journals (Sweden)

    Swaran J. S. Flora

    2008-01-01

    Full Text Available Arsenic is a naturally occurring element that is ubiquitously present in the environment. High concentration of naturally occurring arsenic in drinking water is a major health problem in different parts of the world. Despite arsenic being a health hazard and a well documented carcinogen, no safe, effective and specific preventive or therapeutic measures are available. Among various recent strategies adopted, administration of an antioxidant has been reported to be the most effective. The present study was designed to evaluate the therapeutic efficacy of monoisoamyl dimercaptosuccinic acid (MiADMSA, administered either individually or in combination with taurine post chronic arsenic exposure in rats. Arsenic exposed male rats (25 ppm, sodium arsenite in drinking water for 24 weeks were treated with taurine (100 mg/kg, i.p., once daily, monoisoamyl dimercaptosuccinic acid (MiADMSA (50 mg/kg, oral, once daily either individually or in combination for 5 consecutive days. Biochemical variables indicative of oxidative stress along-with arsenic concentration in blood, liver and kidney were measured. Arsenic exposure significantly reduced blood δ-aminolevulinic acid dehydratase (ALAD activity, a key enzyme involved in the heme biosynthesis and enhanced zinc protoporphyrin (ZPP level. Clinical hematological variables like white blood cells (WBC, mean cell hemoglobin (MCH, and mean cell hemoglobin concentration (MCHC showed significant decrease with a significant elevation in platelet (PLT count. These changes were accompanied by significant decrease in superoxide dismutase (SOD activity and increased catalase activity. Arsenic exposure caused a significant decrease in hepatic and renal glutathione (GSH level and an increase in oxidized glutathione (GSSG. These biochemical changes were correlated with an increased uptake of arsenic in blood, liver and kidney. Administration of taurine significantly reduced hepatic oxidative stress however co

  8. Intracellular glutathione status regulates mouse bone marrow monocyte-derived macrophage differentiation and phagocytic activity

    International Nuclear Information System (INIS)

    Kim, Jin-Man; Kim, Hyunsoo; Kwon, Soon Bok; Lee, Soo Young; Chung, Sung-Chang; Jeong, Dae-Won; Min, Byung-Moo

    2004-01-01

    Although a redox shift can regulate the development of cells, including proliferation, differentiation, and survival, the role of the glutathione (GSH) redox status in macrophage differentiation remains unclear. In order to elucidate the role of a redox shift, macrophage-like cells were differentiated from the bone marrow-derived monocytes that were treated with a macrophage colony stimulating factor (M-CSF or CSF-1) for 3 days. The macrophagic cells were characterized by a time-dependent increase in three major symptoms: the number of phagocytic cells, the number of adherent cells, and the mRNA expression of c-fms, a M-CSF receptor that is one of the macrophage-specific markers and mediates development signals. Upon M-CSF-driven macrophage differentiation, the GSH/GSSG ratio was significantly lower on day 1 than that observed on day 0 but was constant on days 1-3. To assess the effect of the GSH-depleted and -repleted status on the differentiation and phagocytosis of the macrophages, GSH depletion by BSO, a specific inhibitor of the de novo GSH synthesis, inhibited the formation of the adherent macrophagic cells by the down-regulation of c-fms, but did not affect the phagocytic activity of the macrophages. To the contrary, GSH repletion by the addition of NAC, which is a GSH precursor, or reduced GSH in media had no effect on macrophage differentiation, and led to a decrease in the phagocytic activity. Furthermore, we observed that there is checkpoint that is capable of releasing from the inhibition of the formation of the adherent macrophagic cells according to GSH depletion by BSO. Summarizing, these results indicate that the intracellular GSH status plays an important role in the differentiation and phagocytosis of macrophages

  9. Changes in glutathione system and lipid peroxidation in rat blood during the first hour after chlorpyrifos exposure

    Directory of Open Access Journals (Sweden)

    V. P. Rosalovsky

    2015-10-01

    Full Text Available Chlorpyrifos (CPF is a highly toxic organophosphate compound, widely used as an active substance of many insecticides. Along with the anticholinesterase action, CPF may affect other biochemical mechanisms, particularly through disrupting pro- and antioxidant balance and inducing free-radical oxidative stress. Origins and occurrence of these phenomena are still not fully understood. The aim of our work was to investigate the effects of chlorpyrifos on key parameters of glutathione system and on lipid peroxidation in rat blood in the time dynamics during one hour after exposure. We found that a single exposure to 50 mg/kg chlorpyrifos caused a linear decrease in butyryl cholinesterase activity, increased activity of glutathione peroxidase and glutathione reductase, alterations in the levels of glutathione, TBA-active products and lipid hydroperoxides during 1 hour after poisoning. The most significant changes in studied parameters were detected at the 15-30th minutes after chlorpyrifos exposure.

  10. Potential of Glutathione Antioxidant in the Hippocampus Repair: Preliminary Study on Bioactive Materials Antiaging of Snakehead Fish (Channa striata in Animal Models of Aging

    Directory of Open Access Journals (Sweden)

    Sunarno Sunarno

    2014-12-01

    Full Text Available Snakehead fish meat contains active ingredients with anti-aging potential that serves as a precursor of glutathione. The ability of glutathione as an antiaging opportunities in the utilization of fish meat, especially snakehead fish. Snakehead fish meat contains several important amino acids, such as glutamine, cysteine​​, and glycine so the potential to be developed for the production of food that is nutritious and healthy. This study examines the essential amino acid composition of the antioxidant glutathione precursors found in snakehead fish from Rawa Pening Central Java to increase glutathione in the body and brain. The results showed that every 100g of snakehead fish meat from Rawa Pening containing glutamine (32.39%, cysteine ​​(6.61%, and glycine (9.69%. Snakehead fish meat extract given at a dose of 30 ml/kg/day in both types of animal models of aging effect on the increase in the content of glutathione and glutathione precursors, both in blood and hippocampus. Increased glutathione precursor of the most high to low, respectively glutamine, glycine, and cysteine​​. Availability of essential amino acids can support increased glutathione in the brain. This is indicated by an increase in glutathione hippocampus in both animal models, both on chronological aging or aging due to oxidative stress, respectively (0.822 and 0.359 mol/g bb compared to control tissue.

  11. Delineation of the Pasteurellaceae-specific GbpA-family of glutathione-binding proteins

    Directory of Open Access Journals (Sweden)

    Vergauwen Bjorn

    2011-11-01

    structure of one of the GbpA family outliers from H. parasuis. Comparisons thereof with the previously determined structure of GbpA in complex with oxidized glutathione reveals the structural basis for the lack of allocrite binding capacity, thereby explaining the outlier behavior. Conclusions Taken together, our studies provide for the first time a collective functional look on a novel, Pasteurellaceae-specific, SBP subfamily of glutathione binding proteins, which we now term GbpA proteins. Our studies strongly implicate GbpA family SBPs in the priming step of ABC-transporter-mediated translocation of useful forms of glutathione across the inner membrane, and rule out a general role for GbpA proteins in heme acquisition.

  12. Effect of Vitamin C on Glutathione Peroxidase Activities in Pregnant ...

    African Journals Online (AJOL)

    Glutathione peroxidase is one of the most important antioxidant enzymes in humans. We studied the relationship between serum glutathione peroxidase activity and vitamin C ingestion during normal pregnancy in women attending antenatal clinic in the University of Ilorin Teaching Hospital, Ilorin. Glutathione peroxidase ...

  13. Mutagenicity of 2-amino-3-methylimidazo[4,5-f]quinoline in colon and liver of Big Blue Rats: role of DNA adducts, strand breaks, DNA repair and oxidative stress

    DEFF Research Database (Denmark)

    Møller, Peter; Wallin, Håkan; Vogel, Ulla

    2002-01-01

    , indicating a higher rate of protein oxidation in the liver following IQ administration. In plasma and erythrocytes there were unaltered levels of oxidized protein, malondialdehyde, and antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, catalase, glutathione reductase) indicating...

  14. Mutagenicity of 2-amino-3-methylimidazo[4,5-f]quinoline in colon and liver of Big Blue rats: role of DNA adducts, strand breaks, DNA repair and oxidative stress

    DEFF Research Database (Denmark)

    Moller, P.; Wallin, H.; Vogel, U.

    2002-01-01

    , indicating a higher rate of protein oxidation in the liver following IQ administration. In plasma and erythrocytes there were unaltered levels of oxidized protein, malondialdehyde, and antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, catalase, glutathione reductase) indicating...

  15. Role of glutathione transport processes in kidney function

    International Nuclear Information System (INIS)

    Lash, Lawrence H.

    2005-01-01

    The kidneys are highly dependent on an adequate supply of glutathione (GSH) to maintain normal function. This is due, in part, to high rates of aerobic metabolism, particularly in the proximal tubules. Additionally, the kidneys are potentially exposed to high concentrations of oxidants and reactive electrophiles. Renal cellular concentrations of GSH are maintained by both intracellular synthesis and transport from outside the cell. Although function of specific carriers has not been definitively demonstrated, it is likely that multiple carriers are responsible for plasma membrane transport of GSH. Data suggest that the organic anion transporters OAT1 and OAT3 and the sodium-dicarboxylate 2 exchanger (SDCT2 or NaDC3) mediate uptake across the basolateral plasma membrane (BLM) and that the organic anion transporting polypeptide OATP1 and at least one of the multidrug resistance proteins mediate efflux across the brush-border plasma membrane (BBM). BLM transport may be used pharmacologically to provide renal proximal tubular cells with exogenous GSH to protect against oxidative stress whereas BBM transport functions physiologically in turnover of cellular GSH. The mitochondrial GSH pool is derived from cytoplasmic GSH by transport into the mitochondrial matrix and is mediated by the dicarboxylate and 2-oxoglutarate exchangers. Maintenance of the mitochondrial GSH pool is critical for cellular and mitochondrial redox homeostasis and is important in determining susceptibility to chemically induced apoptosis. Hence, membrane transport processes are critical to regulation of renal cellular and subcellular GSH pools and are determinants of susceptibility to cytotoxicity induced by oxidants and electrophiles

  16. Glutathione system in Wolfram syndrome 1‑deficient mice.

    Science.gov (United States)

    Porosk, Rando; Kilk, Kalle; Mahlapuu, Riina; Terasmaa, Anton; Soomets, Ursel

    2017-11-01

    Wolfram syndrome 1 (WS) is a rare neurodegenerative disease that is caused by mutations in the Wolfram syndrome 1 (WFS1) gene, which encodes the endoplasmic reticulum (ER) glycoprotein wolframin. The pathophysiology of WS is ER stress, which is generally considered to induce oxidative stress. As WS has a well‑defined monogenetic origin and a model for chronic ER stress, the present study aimed to characterize how glutathione (GSH), a major intracellular antioxidant, was related to the disease and its progression. The concentration of GSH and the activities of reduction/oxidation system enzymes GSH peroxidase and GSH reductase were measured in Wfs1‑deficient mice. The GSH content was lower in most of the studied tissues, and the activities of antioxidative enzymes varied between the heart, kidneys and liver tissues. The results indicated that GSH may be needed for ER stress control; however, chronic ER stress from the genetic syndrome eventually depletes the cellular GSH pool and leads to increased oxidative stress.

  17. Correction of glutathione deficiency in the lower respiratory tract of HIV seropositive individuals by glutathione aerosol treatment.

    Science.gov (United States)

    Holroyd, K J; Buhl, R; Borok, Z; Roum, J H; Bokser, A D; Grimes, G J; Czerski, D; Cantin, A M; Crystal, R G

    1993-10-01

    Concentrations of glutathione, a ubiquitous tripeptide with immune enhancing and antioxidant properties, are decreased in the blood and lung epithelial lining fluid of human immunodeficiency virus (HIV) seropositive individuals. Since the lung is the most common site of infection in those who progress to AIDS it is rational to consider whether it is possible to safely augment glutathione levels in the epithelial lining fluid of HIV seropositive individuals, thus potentially improving local host defence. Purified reduced glutathione was delivered by aerosol to HIV seropositive individuals (n = 14) and the glutathione levels in lung epithelial lining fluid were compared before and at one, two, and three hours after aerosol administration. Before treatment total glutathione concentrations in the epithelial lining fluid were approximately 60% of controls. After three days of twice daily doses each of 600 mg reduced glutathione, total glutathione levels in the epithelial lining fluid increased and remained in the normal range for at least three hours after treatment. Strikingly, even though > 95% of the glutathione in the aerosol was in its reduced form, the percentage of oxidised glutathione in epithelial lining fluid increased from 5% before treatment to about 40% three hours after treatment, probably reflecting the use of glutathione as an antioxidant in vivo. No adverse effects were observed. It is feasible and safe to use aerosolised reduced glutathione to augment the deficient glutathione levels of the lower respiratory tract of HIV seropositive individuals. It is rational to evaluate further the efficacy of this tripeptide in improving host defence in HIV seropositive individuals.

  18. Cellular glutathione prevents cytolethality of monomethylarsonic acid

    International Nuclear Information System (INIS)

    Sakurai, Teruaki; Kojima, Chikara; Ochiai, Masayuki; Ohta, Takami; Sakurai, Masumi H.; Waalkes, Michael P.; Fujiwara, Kitao

    2004-01-01

    Inorganic arsenicals are clearly toxicants and carcinogens in humans. In mammals, including humans, inorganic arsenic often undergoes methylation, forming compounds such as monomethylarsonic acid (MMAs V ) and dimethylarsinic acid (DMAs V ). However, much less information is available on the in vitro toxic potential or mechanisms of these methylated arsenicals, especially MMAs V . We studied the molecular mechanisms of in vitro cytolethality of MMAs V using a rat liver epithelial cell line (TRL 1215). MMAs V was not cytotoxic in TRL 1215 cells even at concentrations exceeding 10 mM, but it became weakly cytotoxic and induced both necrotic and apoptotic cell death when cellular reduced glutathione (GSH) was depleted with the glutathione synthase inhibitor, L-buthionine-[S,R]-sulfoximine (BSO), or the glutathione reductase inhibitor, carmustine. Similar results were observed in the other mammalian cells, such as human skin TIG-112 cells, chimpanzee skin CRT-1609 cells, and mouse metallothionein (MT) positive and MT negative embryonic cells. Ethacrynic acid (EA), an inhibitor of glutathione S-transferase (GST) that catalyses GSH-substrate conjugation, also enhanced the cytolethality of MMAs V , but aminooxyacetic acid (AOAA), an inhibitor of β-lyase that catalyses the final breakdown of GSH-substrate conjugates, had no effect. Both the cellular GSH levels and the cellular GST activity were increased by the exposure to MMAs V in TRL 1215 cells. On the other hand, the addition of exogenous extracellular GSH enhanced the cytolethality of MMAs V , although cellular GSH levels actually prevented the cytolethality of combined MMAs V and exogenous GSH. These findings indicate that human arsenic metabolite MMAs V is not a highly toxic compound in mammalian cells, and the level of cellular GSH is critical to its eventual toxic effects

  19. [Effects of melaxen and valdoxan on the activity of glutathione antioxidant system and NADPH-producing enzymes in rat heart under experimental hyperthyroidism conditions].

    Science.gov (United States)

    Gorbenko, M V; Popova, T N; Shul'gin, K K; Popov, S S

    2013-01-01

    The effects of melaxen and valdoxan on the activity of glutathione antioxidant system and some NADPH-producing enzymes have been studied under conditions of experimental hyperthyroidism in rat heart. Under the action of these drugs, reduced glutathione (GSH) content increased as compared to values observed under the conditions of pathology. It has been established that the activities of glutathione reductase (GR), glutathione peroxidase (GP), glucose-6-phosphate dehydrogenase, and NADP isocitrate dehydrogenase (increased under pathological conditions) change toward the intact control values upon the introduction of both drugs. The influence of melaxen and valdoxan, capable of producing antioxidant effect, leads apparently to the inhibition of free-radical oxidation processes and, as a consequence, the reduction of mobilization degree of the glutathione antioxidant system.

  20. Glutathione: an intracellular and extracellular protective agent in Salmonella typhimurium and Escherichia coli

    International Nuclear Information System (INIS)

    Owens, R.A.

    1986-01-01

    Levels of glutathione, were measured in several aerobically grown strains of Salmonella typhimurium and Escherichia coli. External accumulation of GSH was inhibited by 30 mM NaN 3 . Thus, GSH export may be energy dependent. Greater than 50% of the glutathione detected in the media was in the reduced form. Since the oxidized glutathione in the media could be accounted for by oxidation during aerobic incubation as well as in sample processing, the glutathione was predominantly exported in the reduced form. Extracellular glutathione was detected in log phase cultures of 2 out of 2 E. coli strains and 6 of 8 Salmonella strains tested. Two-dimensional paper chromatography of supernatants from cultures labelled with Na 2 35 SO 4 confirmed the presence of GSH and revealed five other sulfur-containing compounds in the media of Salmonella and E. coli cultures. Since media from cultures of an E. coli GSH - strain contained compounds with identical R/sub f/'s, the five unidentified compounds were not derivatives of GSH. The addition of 26 μM GSH to cultures of TA1534 partially protected the bacteria from the toxic effects of 54 μM N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). When MNNG was preincubated with equimolar GSH, the mutagenicity of the MNNG was neutralized. The addition of micromolar GSH to cultures and E. coli GSH - strain protected the cells from growth inhibition by micromolar concentrations of mercuric chloride, silver nitrate, cisplatin, cadmium chloride, and iodoacetamide. The data presented demonstrate that micromolar concentrations of external GSH can significantly shorten the recovery time of cells after exposure to toxic agents in the environment

  1. H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Hong-Xia Zhang

    2016-12-01

    Full Text Available Background: Hydrogen sulfide (H2S, known as the third endogenous gaseous transmitter, has received increasing attention because of its diverse effects, including angiogenesis, vascular relaxation and myocardial protection.We aimed to investigate the role of H2S in oxidative/nitrative stress and inflammation in acute lung injury (ALI induced by endotoxemia. Methods: Male ICR mice were divided in six groups: (1 Control group; (2 GYY4137treatment group; (3 L-NAME treatment group; (4 lipopolysaccharide (LPS treatment group; (5 LPS with GYY4137 treatment group; and (6 LPS with L-NAME treatment group. The lungs were analysed by histology, NO production in the mouse lungs determined by modified Griess (Sigma-Aldrich reaction, cytokine levels utilizing commercialkits, and protein abundance by Western blotting. Results: GYY4137, a slowly-releasing H2S donor, improved the histopathological changes in the lungs of endotoxemic mice. Treatment with NG-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase (NOS inhibitor, increased anti-oxidant biomarkers such as thetotal antioxidant capacity (T-AOC and theactivities of catalase (CAT and superoxide dismutase (SOD but decreased a marker of peroxynitrite (ONOO- action and 3-nitrotyrosine (3-NT in endotoxemic lung. L-NAME administration also suppressed inflammation in endotoxemic lung, as evidenced by the decreased pulmonary levels of interleukin (IL-6, IL-8, and myeloperoxidase (MPO and the increased level of anti-inflammatory cytokine IL-10. GYY4137 treatment reversed endotoxin-induced oxidative/nitrative stress, as evidenced by a decrease in malondialdehyde (MDA, hydrogenperoxide (H2O2 and 3-NT and an increase in the antioxidant biomarker ratio of reduced/oxidized glutathione(GSH/GSSG ratio and T-AOC, CAT and SOD activity. GYY4137 also attenuated endotoxin-induced lung inflammation. Moreover, treatment with GYY4137 inhibited inducible NOS (iNOS expression and nitric oxide (NO production in the

  2. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state

    Science.gov (United States)

    Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan

    2012-01-01

    Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944

  3. Glutathione-binding site of a bombyx mori theta-class glutathione transferase.

    Directory of Open Access Journals (Sweden)

    M D Tofazzal Hossain

    Full Text Available The glutathione transferase (GST superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy-propane, and 4-nitrophenethyl bromide. Mutagenesis of highly conserved residues in the catalytic site revealed that Glu66 and Ser67 are important for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTT and into the metabolism of exogenous chemical agents.

  4. Identification of quinone imine containing glutathione conjugates of diclofenac in rat bile.

    Science.gov (United States)

    Waldon, Daniel J; Teffera, Yohannes; Colletti, Adria E; Liu, Jingzhou; Zurcher, Danielle; Copeland, Katrina W; Zhao, Zhiyang

    2010-12-20

    High-resolution accurate MS with an LTQ-Orbitrap was used to identify quinone imine metabolites derived from the 5-hydroxy (5-OH) and 4 prime-hydroxy (4'-OH) glutathione conjugates of diclofenac in rat bile. The initial quinone imine metabolites formed by oxidation of diclofenac have been postulated to be reactive intermediates potentially involved in diclofenac-mediated hepatotoxicity; while these metabolites could be formed using in vitro systems, they have never been detected in vivo. This report describes the identification of secondary quinone imine metabolites derived from 5-OH and 4'-OH diclofenac glutathione conjugates in rat bile. To verify the proposed structures, the diclofenac quinone imine GSH conjugate standards were prepared synthetically and enzymatically. The novel metabolite peaks displayed the identical retention times, accurate mass MS/MS spectra, and the fragmentation patterns as the corresponding authentic standards. The formation of these secondary quinone metabolites occurs only under conditions where bile salt homeostasis was experimentally altered. Standard practice in biliary excretion experiments using bile duct-cannulated rats includes infusion of taurocholic acid and/or other bile acids to replace those lost due to continuous collection of bile; for this experiment, the rats received no replacement bile acid infusion. High-resolution accurate mass spectrometry data and comparison with chemically and enzymatically prepared quinone imines of diclofenac glutathione conjugates support the identification of these metabolites. A mechanism for the formation of these reactive quinone imine containing glutathione conjugates of diclofenac is proposed.

  5. Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium

    NARCIS (Netherlands)

    Jozefczak, M.; Bohler, S.; Schat, H.; Horemans, N.; Guisez, Y.; Remans, T.; Vangronsveld, J.; Cuypers, A.

    2015-01-01

    Background and Aims Cadmium (Cd) is a non-essential trace element that elicits oxidative stress. Plants respond to Cd toxicity via increasing their Cd-chelating and antioxidative capacities. They predominantly chelate Cd via glutathione (GSH) and phytochelatins (PCs), while antioxidative defence is

  6. Computational Modeling of the Catalytic Cycle of Glutathione Peroxidase Nanomimic.

    Science.gov (United States)

    Kheirabadi, Ramesh; Izadyar, Mohammad

    2016-12-29

    To elucidate the role of a derivative of ebselen as a mimic of the antioxidant selenoenzyme glutathione peroxidase, density functional theory and solvent-assisted proton exchange (SAPE) were applied to model the reaction mechanism in a catalytic cycle. This mimic plays the role of glutathione peroxidase through a four-step catalytic cycle. The first step is described as the oxidation of 1 in the presence of hydrogen peroxide, while selenoxide is reduced by methanthiol at the second step. In the third step of the reaction, the reduction of selenenylsulfide occurs by methanthiol, and the selenenic acid is dehydrated at the final step. Based on the kinetic parameters, step 4 is the rate-determining step (RDS) of the reaction. The bond strength of the atoms involved in the RDS is discussed with the quantum theory of atoms in molecules (QTAIM). Low value of electron density, ρ(r), and positive Laplacian values are the evidence for the covalent nature of the hydrogen bonds rupture (O 30 -H 31 , O 33 -H 34 ). A change in the sign of the Laplacian, L(r), from the positive value in the reactant to a negative character at the transition state indicates the depletion of the charge density, confirming the N 5 -H 10 and O 11 -Se 1 bond breaking. The analysis of electron location function (ELF) and localized orbital locator (LOL) of the Se 1 -N 5 and Se 1 -O 11 bonds have been done by multi-WFN program. High values of ELF and LOL at the transition state regions between the Se, N, and O atoms display the bond formation. Finally, the main donor-acceptor interaction energies were analyzed using the natural bond orbital analysis for investigation of their stabilization effects on the critical bonds at the RDS.

  7. Decreased insulin secretory response of pancreatic islets during culture in the presence of low glucose is associated with diminished 45Ca2+ net uptake, NADPH/NADP+ and GSH/GSSG ratios

    International Nuclear Information System (INIS)

    Verspohl, E.J.; Kaiser, P.; Wahl, M.; Ammon, H.P.T.

    1988-01-01

    In isolated rat pancreatic islets maintained at a physiologic glucose concentration (5.6 mM) the effect of glucose on parameters which are known to be involved in the insulin secretion coupling such as NADPH, reduced glutathione (GSH), 86 Rb + efflux, and 45 Ca ++ net uptake were investigated. The insulinotropic effect of 16.7 mM glucose was decreased with the period of culturing during the first 14 days being significant after 2 days though in control experiments both protein content and ATP levels per islet were not affected and insulin content was only slightly decreased. Both NADPH and GSH decreased with time of culture. 86 Rb + efflux which is decreased by enhancing the glucose concentration from 3 to 5.6 mM in freshly isolated islets was not affected by culturing whatsoever, even not after 14 days of culture when there was not longer any insulin responsiveness to glucose. The 45 Ca ++ net uptake was decreased during culturing. The data indicate (1) that the diminished glucose-stimulated release of insulin during culturing is not due to cell loss or simple energy disturbances, (2) that more likely it is the result of a diminished 45 Ca ++ net uptake as a consequence of the inability of islet cells to maintain proper NADPH and GSH levels, and (3) that potassium ( 86 Rb + ) efflux may not be related to changes of NADPH and GSH

  8. Subcellular distribution of glutathione and cysteine in cyanobacteria.

    Science.gov (United States)

    Zechmann, Bernd; Tomasić, Ana; Horvat, Lucija; Fulgosi, Hrvoje

    2010-10-01

    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria.

  9. Andrographolide suppresses preadipocytes proliferation through glutathione antioxidant systems abrogation.

    Science.gov (United States)

    Chen, Wei; Su, Hongming; Feng, Lina; Zheng, Xiaodong

    2016-07-01

    Oxidative stress is considered to play a profound role in lipid storage and whole-body energy homeostasis. Inhibition of preadipocytes proliferation by natural products is one of the strategies to prevent obesity. Andrographolide, a small molecule, has been reported to possess versatile bioactivities. However, molecular mechanism underlying the potential effect of andrographolide on preadipocytes proliferation remains obscure. In the present study, 3T3-L1 preadipocytes were employed to determine whether andrographolide could affect the proliferation of preadipocytes. Our results demonstrated andrographolide suppressed 3T3-L1 preadipocytes proliferation. The casual relationship analysis indicated that andrographolide (10 and 20μg/ml) appeared to exert the proliferation inhibitory effect through suppression of glutathione peroxidase 1 (GPX1) activity and depleting GSH by promoting its efflux in 3T3-L1 preadipocytes, which subsequently resulted in 2.06-2.41 fold increase in ROS accumulation. Excessive ROS eruption could account for oxidative damage to mitochondrial membranes as well as ultimately inhibition of cell proliferation. Taken together, our study reveals that suppression of GPX1 and GSH depletion by andrographolide seems to play a critical role in the inhibition of 3T3-L1 preadipocytes proliferation, which might have implication for obesity prevention and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Phytoextraction of toxic metals: a central role for glutathione.

    Science.gov (United States)

    Seth, C S; Remans, T; Keunen, E; Jozefczak, M; Gielen, H; Opdenakker, K; Weyens, N; Vangronsveld, J; Cuypers, A

    2012-02-01

    Phytoextraction has a promising potential as an environmentally friendly clean-up method for soils contaminated with toxic metals. To improve the development of efficient phytoextraction strategies, better knowledge regarding metal uptake, translocation and detoxification in planta is a prerequisite. This review highlights our current understanding on these mechanisms, and their impact on plant growth and health. Special attention is paid to the central role of glutathione (GSH) in this process. Because of the high affinity of metals to thiols and as a precursor for phytochelatins (PCs), GSH is an essential metal chelator. Being an important antioxidant, a direct link between metal detoxification and the oxidative challenge in plants growing on contaminated soils is observed, where GSH could be a key player. In addition, as redox couple, oxidized and reduced GSH transmits specific information, in this way tuning cellular signalling pathways under environmental stress conditions. Possible improvements of phytoextraction could be achieved by using transgenic plants or plant-associated microorganisms. Joined efforts should be made to cope with the challenges faced with phytoextraction in order to successfully implement this technique in the field. © 2011 Blackwell Publishing Ltd.

  11. Role of glutathione in immunity and inflammation in the lung

    Directory of Open Access Journals (Sweden)

    Pietro Ghezzi

    2011-01-01

    Full Text Available Pietro GhezziBrighton and Sussex Medical School, Trafford Centre, Falmer, Brighton, UKAbstract: Reactive oxygen species and thiol antioxidants, including glutathione (GSH, regulate innate immunity at various levels. This review outlines the redox-sensitive steps of the cellular mechanisms implicated in inflammation and host defense against infection, and describes how GSH is not only important as an antioxidant but also as a signaling molecule. There is an extensive literature of the role of GSH in immunity. Most reviews are biased by an oversimplified picture where “bad” free radicals cause all sorts of diseases and “good” antioxidants protect from them and prevent oxidative stress. While this may be the case in certain fields (eg, toxicology, the role of thiols (the topic of this review in immunity certainly requires wearing scientist’s goggles and being prepared to accept a more complex picture. This review aims at describing the role of GSH in the lung in the context of immunity and inflammation. The first part summarizes the history and basic concepts of this picture. The second part focuses on GSH metabolism/levels in pathology, the third on the role of GSH in innate immunity and inflammation, and the fourth gives 4 examples describing the importance of GSH in the response to infections.Keywords: antioxidants, oxidative stress, sepsis, infection, cysteine

  12. Selective electrochemical determination of homocysteine in the presence of cysteine and glutathione

    International Nuclear Information System (INIS)

    Salehzadeh, Hamid; Mokhtari, Banafsheh; Nematollahi, Davood

    2014-01-01

    Graphical abstract: 3,5-Di-tert-buthylcatechol was used for the selective electrochemical determination of homocysteine in the presence of cysteine and glutathione at the glassy carbon and carbon nanotube modified glassy carbon electrode. - Highlights: • Selective electrochemical determination of homocysteine. • Catalytic electron transfer of 3,5-di-tert-buthylcatechol in the presence of homocysteine. • Michael type addition reaction of electrochemically generated 3,5-di-tert-buthyl-o-benzoquinone with glutathione. - Abstract: The electrochemical oxidation of 3,5-di-tert-buthylcatechol in the presence of homocysteine was used for the selective electrochemical determination of homocysteine in the presence of cysteine and glutathione at a glassy carbon and a glassy carbon electrode modified with carbon nanotube. The results revealed that the electrochemically generated 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione exhibits high catalytic activity toward homocysteine oxidation at reduced over-potential and low catalytic activity for oxidation of cysteine. The catalytic activity 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione toward cysteine was suppressed in the presence of 4-N,N-dimethylaminocinnamaldehyde. Contrary to homocysteine and cysteine, the reaction of glutathione with 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione is a substituation reaction. This method exhibits three dynamic linear ranges of 2.5 to 10 μmol L −1 , 10 to 100 μmol L −1 and 100 to 1000 μmol L −1 , and a lower detection limit (3σ) of 0.89 ± 3.53% μmol L −1 for homocysteine

  13. Effect of Nonsurgical Periodontal Therapy on Crevicular Fluid and Serum Glutathione Peroxidase Levels

    Directory of Open Access Journals (Sweden)

    Swati Pradeep Patel

    2012-01-01

    Full Text Available Background: Plasma glutathione peroxidase (eGPx is an important selenium containing antioxidant in human defense against oxidative stress. While crevicular fluid (GCF eGPx levels and its association with periodontal disease is well documented, there is no data on correlation of GCF and serum eGPx levels in chronic periodontitis. Hence this study was undertaken to further probe into the role of oxidative stress in periodontal diseases and effect of nonsurgical periodontal therapy (NSPT by correlating GCF and serum levels of eGPx.

  14. Hepatic Antioxidant, Oxidative Stress And Histopathological ...

    African Journals Online (AJOL)

    Hepatic Antioxidant, Oxidative Stress And Histopathological Changes Induced By Nicotine In A Gender Based Study In Adult Rats. ... Antioxidant status was assessed in liver by measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and ...

  15. The neuronal nitric oxide synthase inhibitor NANT blocks acetaminophen toxicity and protein nitration in freshly isolated hepatocytes.

    Science.gov (United States)

    Banerjee, Sudip; Melnyk, Stepan B; Krager, Kimberly J; Aykin-Burns, Nukhet; Letzig, Lynda G; James, Laura P; Hinson, Jack A

    2015-12-01

    3-Nitrotyrosine (3NT) in liver proteins of mice treated with hepatotoxic doses of acetaminophen (APAP) has been postulated to be causative in toxicity. Nitration is by a reactive nitrogen species formed from nitric oxide (NO). The source of the NO is unclear. iNOS knockout mice were previously found to be equally susceptible to APAP toxicity as wildtype mice and iNOS inhibitors did not decrease toxicity in mice or in hepatocytes. In this work we examined the potential role of nNOS in APAP toxicity in hepatocytes using the specific nNOS inhibitor NANT (10 µM)(N-[(4S)-4-amino-5-[(2-aminoethyl)amino]pentyl]-N'-nitroguanidinetris (trifluoroacetate)). Primary hepatocytes (1 million/ml) from male B6C3F1 mice were incubated with APAP (1mM). Cells were removed and assayed spectrofluorometrically for reactive nitrogen and oxygen species using diaminofluorescein (DAF) and Mitosox red, respectively. Cytotoxicity was determined by LDH release into media. Glutathione (GSH, GSSG), 3NT, GSNO, acetaminophen-cysteine adducts, NAD, and NADH were measured by HPLC. APAP significantly increased cytotoxicity at 1.5-3.0 h. The increase was blocked by NANT. NANT did not alter APAP mediated GSH depletion or acetaminophen-cysteine adducts in proteins which indicated that NANT did not inhibit metabolism. APAP significantly increased spectroflurometric evidence of reactive nitrogen and oxygen formation at 0.5 and 1.0 h, respectively, and increased 3NT and GSNO at 1.5-3.0 h. These increases were blocked by NANT. APAP dramatically increased NADH from 0.5-3.0 h and this increase was blocked by NANT. Also, APAP decreased the Oxygen Consumption Rate (OCR), decreased ATP production, and caused a loss of mitochondrial membrane potential, which were all blocked by NANT. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effect of rosella ( Hibiscus sabdariffa L ) extract on glutathione-S ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of rosella (Hibiscus sabdariffa L) extract on glutathione-S-trasferase (GST) activity and its hepatoprotective effect. Methods: A total of 25 rats were divided randomly into 5 groups (5 rats per group). Group I served as the baseline, group II was the negative control group, while groups III, IV and ...

  17. Antisense Suppression of 2-Cysteine Peroxiredoxin in Arabidopsis Specifically Enhances the Activities and Expression of Enzymes Associated with Ascorbate Metabolism But Not Glutathione Metabolism1

    Science.gov (United States)

    Baier, Margarete; Noctor, Graham; Foyer, Christine H.; Dietz, Karl-Josef

    2000-01-01

    The aim of this study was to characterize the effect of decreased 2-cysteine peroxiredoxin (2-CP) on the leaf anti-oxidative system in Arabidopsis. At three stages of leaf development, two lines of transgenic Arabidopsis mutants with decreased contents of chloroplast 2-CP were compared with wild type and a control line transformed with an empty vector. Glutathione contents and redox state were similar in all plants, and no changes in transcript levels for enzymes involved in glutathione metabolism were observed. Transcript levels for chloroplastic glutathione peroxidase were much lower than those for 2-CP, and both cytosolic and chloroplastic glutathione peroxidase were not increased in the mutants. In contrast, the foliar ascorbate pool was more oxidized in the mutants, although the difference decreased with plant age. The activities of thylakoid and stromal ascorbate peroxidase and particularly monodehydroascorbate reductase were increased as were transcripts for these enzymes. No change in dehydroascorbate reductase activity was observed, and effects on transcript abundance for glutathione reductase, catalase, and superoxide dismutase were slight or absent. The results demonstrate that 2-CP forms an integral part of the anti-oxidant network of chloroplasts and is functionally interconnected with other defense systems. Suppression of 2-CP leads to increased expression of other anti-oxidative genes possibly mediated by increased oxidation state of the leaf ascorbate pool. PMID:11027730

  18. Superoxide radical (O2-) reactivity with respect to glutathione

    International Nuclear Information System (INIS)

    Sekaki, A.; Gardes-Albert, M.; Ferradini, C.

    1984-01-01

    Influence of superoxide radicals formed during gamma irradiation of glutathione in aerated aqueous solutions is examined. Solutions are buffered at pH7 and contain sodium formate for capture of H and OH radicals which are transformed in COO - radicals and then O 2 - radicals. G value of glutathione disparition vs glutathione concentration are given with and without enzyme or catalase. Reaction mechanism are interpreted [fr

  19. A Lipid Transfer Protein Increases the Glutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin.

    Directory of Open Access Journals (Sweden)

    John E McLaughlin

    Full Text Available Fusarium head blight (FHB or scab is one of the most important plant diseases worldwide, affecting wheat, barley and other small grains. Trichothecene mycotoxins such as deoxynivalenol (DON accumulate in the grain, presenting a food safety risk and health hazard to humans and animals. Despite considerable breeding efforts, highly resistant wheat or barley cultivars are not available. We screened an activation tagged Arabidopsis thaliana population for resistance to trichothecin (Tcin, a type B trichothecene in the same class as DON. Here we show that one of the resistant lines identified, trichothecene resistant 1 (trr1 contains a T-DNA insertion upstream of two nonspecific lipid transfer protein (nsLTP genes, AtLTP4.4 and AtLTP4.5. Expression of both nsLTP genes was induced in trr1 over 10-fold relative to wild type. Overexpression of AtLTP4.4 provided greater resistance to Tcin than AtLTP4.5 in Arabidopsis thaliana and in Saccharomyces cerevisiae relative to wild type or vector transformed lines, suggesting a conserved protection mechanism. Tcin treatment increased reactive oxygen species (ROS production in Arabidopsis and ROS stain was associated with the chloroplast, the cell wall and the apoplast. ROS levels were attenuated in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls. Exogenous addition of glutathione and other antioxidants enhanced resistance of Arabidopsis to Tcin while the addition of buthionine sulfoximine, an inhibitor of glutathione synthesis, increased sensitivity, suggesting that resistance was mediated by glutathione. Total glutathione content was significantly higher in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls, highlighting the importance of AtLTP4.4 in maintaining the redox state. These results demonstrate that trichothecenes cause ROS accumulation and overexpression of AtLTP4.4 protects against trichothecene-induced oxidative stress by increasing the glutathione

  20. Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide

    Directory of Open Access Journals (Sweden)

    Carmine Pasquale Cerrato

    2017-06-01

    Full Text Available Previously, we designed and synthesized a library of mitochondrial antioxidative cell-penetrating peptides (mtCPPs superior to the parent peptide, SS31, to protect mitochondria from oxidative damage. A library of antioxidative glutathione analogs called glutathione peptides (UPFs, exceptional in hydroxyl radical elimination compared with glutathione, were also designed and synthesized. Here, a follow-up study is described, investigating the effects of the most promising members from both libraries on reactive oxidative species scavenging ability. None of the peptides influenced cell viability at the concentrations used. Fluorescence microscopy studies showed that the fluorescein-mtCPP1-UPF25 (mtgCPP internalized into cells, and spectrofluorometric analysis determined the presence and extent of peptide into different cell compartments. mtgCPP has superior antioxidative activity compared with mtCPP1 and UPF25 against H2O2 insult, preventing ROS formation by 2- and 3-fold, respectively. Moreover, we neither observed effects on mitochondrial membrane potential nor production of ATP. These data indicate that mtgCPP is targeting mitochondria, protecting them from oxidative damage, while also being present in the cytosol. Our hypothesis is based on a synergistic effect resulting from the fused peptide. The mitochondrial peptide segment is targeting mitochondria, whereas the glutathione analog peptide segment is active in the cytosol, resulting in increased scavenging ability.

  1. Metabolic cooperation of ascorbic acid and glutathione in normal and vitamin C-deficient ODS rats.

    Science.gov (United States)

    Wang, Y; Kashiba, M; Kasahara, E; Tsuchiya, M; Sato, E F; Utsumi, K; Inoue, M

    2001-01-01

    Although the coordination of various antioxidants is important for the protection of organisms from oxidative stress, dynamic aspects of the interaction of endogenous antioxidants in vivo remain to be elucidated. We studied the metabolic coordination of two naturally occurring water-soluble antioxidants, ascorbic acid (AA) and reduced glutathione (GSH), in liver, kidney and plasma of control and scurvy-prone osteogenic disorder Shionogi (ODS) rats that hereditarily lack the ability to synthesize AA. When supplemented with AA, its levels in liver and kidney of ODS rats increased to similar levels of those in control rats. Hepato-renal levels of glutathione were similar with the two animal groups except for the slight increase in its hepatic levels in AA-supplemented ODS rats. Administration of L-buthionine sulfoximine (BSO), a specific inhibitor of GSH synthesis, rapidly decreased the hepato-renal levels of glutathione in a biphasic manner, a rapid phase followed by a slower phase. Kinetic analysis revealed that glutathione turnover was enhanced significantly in liver mitochondria and renal cytosol of ODS rats. Administration of BSO significantly increased AA levels in the liver and kidney of control rats but decreased them in AA-supplemented ODS rats. Kinetic analysis revealed that AA is synthesized by control rat liver by some BSO-enhanced mechanism and the de novo synthesized AA is transferred to the kidney. Such a coordination of the metabolism of GSH and AA in liver and kidney is suppressed in AA-deficient ODS rats. These and other results suggest that the metabolism of AA and GSH forms a compensatory network by which oxidative stress can be decreased.

  2. Glutathione attenuates uranyl toxicity in Lactococcus lactis

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim; Oertel, Jana [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Obeid, M. [Technische Univ. Dresden (Germany); Solioz, M. [Bern Univ. (Switzerland)

    2017-06-01

    We investigated the role of intracellular glutathione (GSH), which in a large number of taxa plays a role in the protection against the toxicity of heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism allowing the study of GSH-dependent uranyl detoxification without interference from additional reactive oxygen species. Microcalorimetric measurements of the metabolic heat showed that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10-150 μM. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH.

  3. Transport of glutathione into the nucleus.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine

    2014-10-01

    The tripeptide thiol glutathione (GSH) is present in the nucleus of plant and animal cells. However, the functions of GSH in the nucleus remain poorly characterised. GSH appears to become sequestered in the nucleus at the early stages of the cell cycle. As part of our search for proteins that may be involved in GSH transport into the nucleus, we studied the functions of the nucleoporin called Alacrima Achalasia aDrenal Insufficiency Neurologic disorder (ALADIN). ALADIN is encoded by the Achalasia-Addisonianism-Alacrimia (AAAS) gene in mammalian cells. Defects in ALADIN promote adrenal disorders and lead to the triple A syndrome in humans. The ALADIN protein localizes to the nuclear envelope in Arabidopsis thaliana and interacts with other components of the nuclear pore complex (NPC). We characterised the functions of the ALADIN protein in an Arabidopsis thaliana T-DNA insertion knockout mutant, which shows slow growth compared to the wild type. Copyright © 2014. Published by Elsevier Inc.

  4. Reduction of intracellular glutathione content and radiosensitivity

    International Nuclear Information System (INIS)

    Vos, O.; Schans, G.P. van der; Roos-Verheij, W.S.D.

    1986-05-01

    The intracellular glutathione (GSH) content in HeLa, CHO and V79 cells was reduced by incubating the cells in growth medium containing buthionine sulfoximine (BSO) or diethyl maleate (DEM). Clonogenicity, single strand DNA breaks (ssb) and double strand DNA breaks (dsb) were used as criteria for radiation induced damage after X- or γ irradiation. In survival experiments DEM gave a slightly larger sensitization although it gave a smaller reduction of the intracellular GSH. In general, sensitization was larger for dsb than for ssb, also the reduction of the OER was generally larger for dsb than for ssb. This may be due to the higher dose rate in case of dsb experiments resulting in a higher rate of radiochemical oxygen consumption. In general, no effect was found on post-irradiation repair of ssb and dsb. (Auth.)

  5. Reduction of intracellular glutathione content and radiosensitivity

    International Nuclear Information System (INIS)

    Vos, O.; Schans, G.P. van der; Roos-Verheij, W.S.D.

    1986-01-01

    The intracellular glutathione (GSH) content of HeLa, CHO and V79 cells was reduced by incubating the cells in growth medium containing buthionine sulphoximine or diethyl maleate (DEM). Clonogenicity, single-strand DNA breaks (ssb) and double-strand DNA breaks (dsb) were used as criteria for radiation-induced damage after X- or γ-irradiation. In survival experiments, DEM gave a slightly larger sensitization although it gave a smaller reduction of the intracellular GSH. In general, sensitization was larger for dsb than for ssb, also the reduction of the o.e.r. was generally larger for dsb than for ssb. This may be due to the higher dose rate in case of dsb experiments resulting in a higher rate of radiochemical oxygen consumption. In general, no effect was found on post-irradiation repair of ssb and dsb. (author)

  6. Misonidazole-glutathione conjugates in CHO cells

    International Nuclear Information System (INIS)

    Varghese, A.J.; Whitmore, G.F.

    1984-01-01

    Misonidazole, after reduction to the hydroxylamine derivative, reacts with glutathione (GSH) under physiological conditions. The reaction product has been identified as a mixture of two isomeric conjugates. When water soluble extracts of CHO cells exposed to misonidazole under hypoxic conditions are subjected to HPLC analysis, misonidazole derivatives, having the same chromatographic properties as the GSH-MISO conjugates, were detected. When CHO cells were incubated with misonidazole in the presence of added GSH, a substantial increase in the amount of the conjugate was detected. When extracts of CHO cells exposed to misonidazole under hypoxia were subsequently exposed to GSH, an increased formation of the conjugate was observed. A rearrangement product of the hydroxylamine derivative of misonidazole is postulated as the reactive intermediate responsible for the formation of the conjugate

  7. Glutathione attenuates uranyl toxicity in Lactococcus lactis

    International Nuclear Information System (INIS)

    Fahmy, Karim; Oertel, Jana; Solioz, M.

    2017-01-01

    We investigated the role of intracellular glutathione (GSH), which in a large number of taxa plays a role in the protection against the toxicity of heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism allowing the study of GSH-dependent uranyl detoxification without interference from additional reactive oxygen species. Microcalorimetric measurements of the metabolic heat showed that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10-150 μM. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH.

  8. Radioimmunoassays for catalase and glutathion peroxidase

    International Nuclear Information System (INIS)

    Baret, A.; Courtiere, A.; Lorry, D.; Puget, K.; Michelson, A.M.

    1982-01-01

    Specific and sensitive radioimmunoassays for human, bovine and rat catalase (CAT) and glutathion Peroxidase (GPX) are described. The obtained values are expressed as enzymatic units per μg of immunoreactive protein. They appear to closely correspond to specific activities of the purified enzymes determined by colorimetric protein-assay. Indeed, the values of the specific activities of purified human CAT is 57.9 k/mg and that of purified rat GPX is 180 units/mg. This result validates the present RIAs and the association of the two techniques allows the determination of a further parameter. In conclusion, RIAs for CAT and GPX can be applied with great specificity and sensitivity to a wide variety of human, rat and bovine medias

  9. Glutathione and its dependent enzymes' modulatory responses to toxic metals and metalloids in fish--a review.

    Science.gov (United States)

    Srikanth, K; Pereira, E; Duarte, A C; Ahmad, I

    2013-04-01

    Toxic metals and metalloid are being rapidly added from multiple pathways to aquatic ecosystem and causing severe threats to inhabiting fauna including fish. Being common in all the type of aquatic ecosystems such as freshwater, marine and brackish water fish are the first to get prone to toxic metals and metalloids. In addition to a number of physiological/biochemical alterations, toxic metals and metalloids cause enhanced generation of varied reactive oxygen species (ROS) ultimately leading to a situation called oxidative stress. However, as an important component of antioxidant defence system in fish, the tripeptide glutathione (GSH) directly or indirectly regulates the scavenging of ROS and their reaction products. Additionally, several other GSH-associated enzymes such as GSH reductase (GR, EC 1.6.4.2), GSH peroxidase (EC 1.11.1.9), and GSH sulfotransferase (glutathione-S-transferase (GST), EC 2.5.1.18) cumulatively protect fish against ROS and their reaction products accrued anomalies under toxic metals and metalloids stress conditions. The current review highlights recent research findings on the modulation of GSH, its redox couple (reduced glutathione/oxidised glutathione), and other GSH-related enzymes (GR, glutathione peroxidase, GST) involved in the detoxification of harmful ROS and their reaction products in toxic metals and metalloids-exposed fish.

  10. Response of Glutathione and Glutathione S-transferase in Rice Seedlings Exposed to Cadmium Stress

    Directory of Open Access Journals (Sweden)

    Chun-hua ZHANG

    2008-03-01

    Full Text Available A hydroponic culture experiment was done to investigate the effect of Cd stress on glutathione content (GSH and glutathione S-transferase (GST, EC 2.5.1.18 activity in rice seedlings. The rice growth was severely inhibited when Cd level in the solution was higher than 10 mg/L. In rice shoots, GSH content and GST activity increased with the increasing Cd level, while in roots, GST was obviously inhibited by Cd treatments. Compared with shoots, the rice roots had higher GSH content and GST activity, indicating the ability of Cd detoxification was much higher in roots than in shoots. There was a significant correlation between Cd level and GSH content or GST activity, suggesting that both parameters may be used as biomarkers of Cd stress in rice.

  11. Compartment specific importance of glutathione during abiotic and biotic stress

    Directory of Open Access Journals (Sweden)

    Bernd eZechmann

    2014-10-01

    Full Text Available The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species, redox signaling, the modulation of defense gene expression and important for the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state of plants through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, Tobacco Mosaic Virus. The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g. glutathione synthesis takes place in chloroplasts and the cytosol. Thus this review will reveal the compartment specific importance of glutathione during abiotic and biotic stress conditions.

  12. 21 CFR 864.7375 - Glutathione reductase assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  13. [Effect of extremely low frequency magnetic field on glutathione in rat muscles].

    Science.gov (United States)

    Ciejka, Elzbieta; Jakubowska, Ewa; Zelechowska, Paulina; Huk-Kolega, Halina; Kowalczyk, Agata; Goraca, Anna

    2014-01-01

    Free radicals (FR) are atoms, molecules or their fragments. Their excess leads to the development of oxidizing stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, and aging of the organism. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic field are the major FR exogenous sources. The low frequency magnetic field is still more commonly applied in the physical therapy. The aim of the presented study was to evaluate the effect of extremely low frequency magnetic field used in the magnetotherapy on the level of total glutathione, oxidized and reduced, and the redox state of the skeletal muscle cells, depending on the duration of exposure to magnetic field. The male rats, weight of 280-300 g, were randomly devided into 3 experimental groups: controls (group I) and treatment groups exposed to extremely low frequency magnetic field (ELF-MF) (group II exposed to 40 Hz, 7 mT for 0.5 h/day for 14 days and group III exposed to 40 Hz, 7 mT for 1 h/day for 14 days). Control rats were kept in a separate room not exposed to extremely low frequency magnetic field. Immediately after the last exposure, part of muscles was taken under pentobarbital anesthesia. Total glutathione, oxidized and reduced, and the redox state in the muscle tissue of animals were determined after exposure to magnetic fields. Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks significantly increased the total glutathione levels in the skeletal muscle compared to the control group (p magnetic therapy plays an important role in the development of adaptive mechanisms responsible for maintaining the oxidation-reduction balance in the body and depends on exposure duration.

  14. Glutathione modulation in cancer treatment: will it work

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Cook, J.A.; DeGraff, W.; Glatstein, E.; Russo, A.

    1989-01-01

    Glutathione (GSH) assumes a pivotal role in numerous cellular functions including bioreductive reactions, maintenance of enzyme activity, amino acid transport, protection from harmful oxidative species, and detoxification of xenobiotics. The importance of GSH in modifying the cellular response to several anti-cancer treatment modalities has become better appreciated with the introduction of agents which can either decrease or elevate GSH levels in cells and tissues. In general, GSH depletion has been demonstrated to further enhance the cytotoxicity of several chemotherapy drugs and nitroimidazole hypoxic cell radiosensitizers. Conversely, GSH elevation affords varying degrees of protection. Whether or not GSH modulating agents will be useful as an adjuvant to selected cancer treatment modalities will depend on whether differential levels of GSH can be achieved in tumor versus normal tissues. Accurate GSH measurements in tumor and normal tissues will be required to adequately use and interpret the results of clinical studies where GSH modulating agents are employed. Precise tumor GSH measurements pose a considerable challenge due to the complicated cellular makeup of tumors.44 references

  15. The Use of Screen-Printed Electrodes in a Proof of Concept Electrochemical Estimation of Homocysteine and Glutathione in the Presence of Cysteine Using Catechol

    Directory of Open Access Journals (Sweden)

    Patricia T. Lee

    2014-06-01

    Full Text Available Screen printed electrodes were employed in a proof of concept determination of homocysteine and glutathione using electrochemically oxidized catechol via a 1,4-Michael addition reaction in the absence and presence of cysteine, and each other. Using cyclic voltammetry, the Michael reaction introduces a new adduct peak which is analytically useful in detecting thiols. The proposed procedure relies on the different rates of reaction of glutathione and homocysteine with oxidized catechol so that at fast voltage scan rates only homocysteine is detected in cyclic voltammetry. At slower scan rates, both glutathione and homocysteine are detected. The combination of the two sets of data provides quantification for homocysteine and glutathione. The presence of cysteine is shown not to interfere provided sufficient high concentrations of catechol are used. Calibration curves were determined for each homocysteine and glutathione detection; where the sensitivities are 0.019 µA·µM−1 and 0.0019 µA·µM−1 and limit of detections are ca. 1.2 µM and 0.11 µM for homocysteine and glutathione, respectively, within the linear range. This work presents results with potential and beneficial use in re-useable and/or disposable point-of-use sensors for biological and medical applications.

  16. Effect of alpha-tocopherol supplementation on renal oxidative stress and Na+/K+ -adenosine triphosphatase in ethanol treated Wistar rats.

    Science.gov (United States)

    Mailankot, Maneesh; Jayalekshmi, H; Chakrabarti, Amit; Alang, Neha; Vasudevan, D M

    2009-07-01

    Ethanol intoxication resulted in high extent of lipid peroxidation, and reduction in antioxidant defenses (decreased GSH, GSH/GSSG ratio, and catalase, SOD and GPx activities) and (Na+/K+)-ATPase activity in kidney. Alpha-tocopherol treatment effectively protected kidney from ethanol induced oxidative challenge and improved renal (Na+/K+)-ATPase activity. Ethanol induced oxidative stress in the kidney and decreased (Na+/K+)-ATPase activity could be reversed by treatment with ascorbic acid.

  17. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in caco-2 cells

    NARCIS (Netherlands)

    Usta, M.; Wortelboer, H.M.; Vervoort, J.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, P.J. van; Cnubben, N.H.P.

    2007-01-01

    Curcumin, an α,β-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional 1H NMR analysis, and

  18. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in Caco-2 cells

    NARCIS (Netherlands)

    Usta, M.; Wortelboer, H.M.; Vervoort, J.J.M.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, van P.J.; Cnubben, N.H.P.

    2007-01-01

    Curcumin, an alpha,beta-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional H-1 NMR

  19. Efficacy of free glutathione and niosomal glutathione in the treatment of acetaminophen-induced hepatotoxicity in cats

    Directory of Open Access Journals (Sweden)

    L.A. Denzoin Vulcano

    2013-06-01

    Full Text Available Acetaminophen (APAP administration results in hepatotoxicity and hematotoxicity in cats. The response to three different treatments against APAP poisoning was evaluated. Free glutathione (GSH (200mg/kg, niosomal GSH (14 mg/kg and free amino acids (180 mg/kg of N-acetylcysteine and 280 mg/kg of methionine were administered to cats that were intoxicated with APAP (a single dose of 150 mg/kg, p.o.. Serum concentration of alanine aminotransferase (ALT along with serum, liver and erythrocyte concentration of GSH and methemoglobin percentage were measured before and 4, 24 and 72 hours after APAP administration. Free GSH (200 mg/kg and niosomal GSH (14 mg/kg were effective in reducing hepatotoxicity and hematotoxicity in cats intoxicated with a dose of 150 mg/kg APAP. We conclude that both types of treatments can protect the liver and haemoglobin against oxidative stress in APAP intoxicated cats. Furthermore, our results showed that treatment with niosomal GSH represents an effective therapeutic approach for APAP poisoning.

  20. Interactions of [alpha,beta]-unsaturated carbonyl compounds with the glutathione-related biotransformation system

    NARCIS (Netherlands)

    Iersel, van M.L.P.S.

    1998-01-01

    Introduction
    Modulation of glutathione-related biotransformation steps may play a role in important phenomena as anticarcinogenicity and multidrug resistance. Glutathione-related biotransformation comprises three main aspects i.e. glutathione, the

  1. Glutathione S - transferases class Pi and Mi and their significance in oncology

    Directory of Open Access Journals (Sweden)

    Zofia Marchewka

    2017-06-01

    Full Text Available In this article the current data, which shows that glutathione S-transferases (GST class Pi and Mi are interesting and promising biomarkers in acute and chronic inflammatory processes as well as in the oncology, were presented based on the review of the latest experimental and clinical studies. The article shows their characteristics, functions and participation (direct - GST Pi, indirect - GST Mi in the regulation of signaling pathways of JNK kinases, which are involved in cell differentiation. Overexpression of glutathione S-transferases class Pi and Mi in many cancer cells plays a key role in cancer treatment, making them resistant to chemotherapy. GST isoenzymes are involved in the metabolism of various types of xenobiotics and endogenous substrates, so their altered expression in cancer tissues as well as in serum and urine could be an important potential marker of the cancer and an indicator of oxidative stress. The study shows the role of glutathione S-transferases in redox homeostasis of tumor cells and in the mechanism of resistance to anticancer drugs.

  2. Glutathione S - transferases class Pi and Mi and their significance in oncology.

    Science.gov (United States)

    Marchewka, Zofia; Piwowar, Agnieszka; Ruzik, Sylwia; Długosz, Anna

    2017-06-19

    In this article the current data, which shows that glutathione S-transferases (GST) class Pi and Mi are interesting and promising biomarkers in acute and chronic inflammatory processes as well as in the oncology, were presented based on the review of the latest experimental and clinical studies. The article shows their characteristics, functions and participation (direct - GST Pi, indirect - GST Mi) in the regulation of signaling pathways of JNK kinases, which are involved in cell differentiation. Overexpression of glutathione S-transferases class Pi and Mi in many cancer cells plays a key role in cancer treatment, making them resistant to chemotherapy. GST isoenzymes are involved in the metabolism of various types of xenobiotics and endogenous substrates, so their altered expression in cancer tissues as well as in serum and urine could be an important potential marker of the cancer and an indicator of oxidative stress. The study shows the role of glutathione S-transferases in redox homeostasis of tumor cells and in the mechanism of resistance to anticancer drugs.

  3. O estresse oxidativo e o exercício físico em indivíduos HIV positivo Oxidative stress and physical exercise in HIV positive individuals

    Directory of Open Access Journals (Sweden)

    Luís Fernando Deresz

    2007-08-01

    efeitos deletérios provocados pelo EO através de melhorias nos níveis das defesas antioxidantes enzimáticas e não enzimáticas.Human immunodeficiency virus (HIV infection is characterized by functional and structural changes related to the immunological system. Moreover, increase in oxidative stress (OS in HIV patients, characterized by a reduction in the glutathione (GSH levels, increases in glutathione disulfide (GSSG, in the ratio GSSG/GSH and in lipid peroxidation, as well as a reduction in antioxidant enzymes - catalase, superoxid dismutase (SOD and gluthatione peroxidase (GPx - is a consequence of the evolution in HIV-infected patients. Higher levels of antioxidant activity are necessary to maintain the immunological system cells redox balance and preserve their function. In an antioxidant depleted state, there is a reduction in the immunological response and an increase in HIV replication. The use of highly active antiretroviral therapy (HAART has improved the clinical evolution of these patients. However, some patients remain showing higher OS and other effects of HAART, such as changes in lipidic and muscle metabolism. Exercise training has been used as a non pharmacological treatment in HIV-infected patients to promote improvements in anthropometrics, aerobic, muscle and psychological outcomes; however, there are insufficient data about the effects of exercise training in OS. This review analyzes the topics related to the oxidative stress in HIV-infected patients and the possible benefits of the physical exercise in the antioxidant capacity. Physical training is a complementary procedure for the patients, with or without use of the HAART, since it improves the cardiorespiratory, muscle, anthropometrics and psychological performance without inducing immunodepression. In relation to oxidative stress, it is inferred, from the data obtained in non-HIV individuals, that the physical training could promote adaptations that minimize the deleterious effect induced

  4. Oxidative stress status, antioxidant metabolism and polypeptide patterns in Juncus maritimus shoots exhibiting differential mercury burdens in Ria de Aveiro coastal lagoon (Portugal).

    Science.gov (United States)

    Anjum, Naser A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2014-05-01

    This study assessed the oxidative stress status, antioxidant metabolism and polypeptide patterns in salt marsh macrophyte Juncus maritimus shoots exhibiting differential mercury burdens in Ria de Aveiro coastal lagoon at reference and the sites with highest, moderate and the lowest mercury contamination. In order to achieve these goals, shoot-mercury burden and the responses of representative oxidative stress indices, and the components of both non-glutathione- and glutathione-based H2O2-metabolizing systems were analyzed and cross-talked with shoot-polypeptide patterns. Compared to the reference site, significant elevations in J. maritimus shoot mercury and the oxidative stress indices such as H2O2, lipid peroxidation, electrolyte leakage and reactive carbonyls were maximum at the site with highest followed by moderate and the lowest mercury contamination. Significantly elevated activity of non-glutathione-based H2O2-metabolizing enzymes such as ascorbate peroxidase and catalase accompanied the studied damage-endpoint responses, whereas the activity of glutathione-based H2O2-scavenging enzymes glutathione peroxidase and glutathione sulfo-transferase was inhibited. Concomitantly, significantly enhanced glutathione reductase activity and the contents of both reduced and oxidized glutathione were perceptible in high mercury-exhibiting shoots. It is inferred that high mercury-accrued elevations in oxidative stress indices were obvious, where non-glutathione-based H2O2-decomposing enzyme system was dominant over the glutathione-based H2O2-scavenging enzyme system. In particular, the glutathione-based H2O2-scavenging system failed to coordinate with elevated glutathione reductase which in turn resulted into increased pool of oxidized glutathione and the ratio of oxidized glutathione-to-reduced glutathione. The substantiation of the studied oxidative stress indices and antioxidant metabolism with approximately 53-kDa polypeptide warrants further studies.

  5. Nucleation behavior of glutathione polymorphs in water

    International Nuclear Information System (INIS)

    Chen, Zhi; Dang, Leping; Li, Shuai; Wei, Hongyuan

    2013-01-01

    Nucleation behavior of glutathione (GSH) polymorphs in water was investigated by experimental method combined with classical nucleation theory. The solubility of α and β forms GSH in water at different temperatures, and the nucleation induction period at various supersaturations and temperatures were determined experimentally. The results show that, in a certain range of supersaturation, the nucleation of β form predominates at relatively higher temperature, while α form will be obtained at lower temperature. The nucleation kinetics parameters of α and β form were then calculated. To understand the crucial role of temperature on crystal forms, “hypothetic” nucleation parameters of β form at 283.15 K were deduced based on extrapolation method. The results show that the interfacial tension, critical free energy, critical nucleus radius and nucleus number of α form are smaller than that of β form in the same condition at 283.15 K, which implies that α form nucleates easier than β form at low temperature. This work may be useful for the control and optimization of GSH crystallization process in industry

  6. Synthesis and structural elucidation of glutathione and N-aceyl-cysteine conjugates of 5-aminosalicylic acid

    DEFF Research Database (Denmark)

    Jensen, J.; Cornett, Claus; Olsen, C. E.

    1993-01-01

    The ability of 5-aminosalicylic acid (5-ASA) to be oxidized to a quinone monoimine compound capable of conjugating with nucleophilic compounds such as N-acetyl-cysteine (NAC) and glutathione (GSH) has been investigated in vitro. Three isomeric conjugates of 5-ASA and NAC as well as three isomeric...... conjugates of 5-ASA and GSH were found to be formed. 5-ASA was initially oxidized by PbO2 in a solution of TRIS-HCl buffer pH 9.3 followed by the in situ addition of N-acetyl-cysteine or glutathione to the oxidized 5-ASA at pH 7.5. The resulting conjugates were N-acetylated at the aromatic amino group...... to investigate whether such conjugates are excreted in the urine from persons treated with 5-ASA. The N-acetyl-cysteine conjugates could be detected by fluorescense, which resulted in low detection limits ranging from 0.02 mug to 0.06 mug per ml corresponding to the transformation of about 0.003% of the daily...

  7. Susceptibility of human head and neck cancer cells to combined inhibition of glutathione and thioredoxin metabolism.

    Directory of Open Access Journals (Sweden)

    Arya Sobhakumari

    Full Text Available Increased glutathione (GSH and thioredoxin (Trx metabolism are mechanisms that are widely implicated in resistance of cancer cells to chemotherapy. The current study determined if simultaneous inhibition of GSH and Trx metabolism enhanced cell killing of human head and neck squamous cell carcinoma (HNSCC cells by a mechanism involving oxidative stress. Inhibition of GSH and Trx metabolism with buthionine sulfoximine (BSO and auranofin (AUR, respectively, induced significant decreases in clonogenic survival compared to either drug alone in FaDu, Cal-27 and SCC-25 HNSCC cells in vitro and in vivo in Cal-27 xenografts. BSO+AUR significantly increased glutathione and thioredoxin oxidation and suppressed peroxiredoxin activity in vitro. Pre-treatment with N-acetylcysteine completely reversed BSO+AUR-induced cell killing in FaDu and Cal-27 cells, while catalase and selenium supplementation only inhibited BSO+AUR-induced cell killing in FaDu cells. BSO+AUR decreased caspase 3/7 activity in HNSCC cells and significantly reduced the viability of both Bax/Bak double knockout (DKO and DKO-Bax reconstituted hematopoietic cells suggesting that necrosis was involved. BSO+AUR also significantly sensitized FaDu, Cal-27, SCC-25 and SQ20B cells to cell killing induced by the EGFR inhibitor Erlotinib in vitro. These results support the conclusion that simultaneous inhibition of GSH and Trx metabolism pathways induces oxidative stress and clonogenic killing in HNSCCs and this strategy may be useful in sensitizing HNSCCs to EGFR inhibitors.

  8. Catalysis of Silver catfish Major Hepatic Glutathione Transferase proceeds via rapid equilibrium sequential random Mechanism

    Directory of Open Access Journals (Sweden)

    Ayodele O. Kolawole

    Full Text Available Fish hepatic glutathione transferases are connected with the elimination of intracellular pollutants and detoxification of organic micro-pollutants in their aquatic ecosystem. The two-substrate steady state kinetic mechanism of Silver catfish (Synodontis eupterus major hepatic glutathione transferases purified to apparent homogeneity was explored. The enzyme was dimeric enzyme with a monomeric size of 25.6 kDa. Initial-velocity studies and Product inhibition patterns by methyl glutathione and chloride with respect to GSH-CDNB; GSH-ρ-nitrophenylacetate; and GSH-Ethacrynic acid all conforms to a rapid equilibrium sequential random Bi Bi kinetic mechanism rather than steady state sequential random Bi Bi kinetic. α was 2.96 ± 0.35 for the model. The pH profile of Vmax/KM (with saturating 1-chloro-2,4-dinitrobenzene and variable GSH concentrations showed apparent pKa value of 6.88 and 9.86. Inhibition studies as a function of inhibitor concentration show that the enzyme is a homodimer and near neutral GST. The enzyme poorly conjugates 4-hydroxylnonenal and cumene hydroperoxide and may not be involved in oxidative stress protection. The seGST is unique and overwhelmingly shows characteristics similar to those of homodimeric class Pi GSTs, as was indicated by its kinetic mechanism, substrate specificity and inhibition studies. The rate- limiting step, probably the product release, of the reaction is viscosity-dependent and is consequential if macro-viscosogen or micro-viscosogen. Keywords: Silver catfish, Glutathione transferase, Steady-state, Kinetic mechanism, Inhibition

  9. Effect of glutathione on arecanut treated normal human buccal fibroblast culture.

    Directory of Open Access Journals (Sweden)

    Saraswathi T

    2006-01-01

    Full Text Available BACKGROUND: Experimental studies have shown arecanut to be a cytotoxic substance with mutagenic and carcinogenic potential. OBJECTIVE: The present study was undertaken to evaluate the effect of glutathione on arecanut treated human buccal fibroblast culture and its potential as a chemopreventive agent. MATERIALS AND METHODS: Fibroblast culture was done in Dulbecco′s Modified Eagle′s Medium MEM supplemented with 10% Fetal Calf Serum (FCS and antibiotic at 370C degrees in an atmosphere of 5% carbon di-oxide and 95% air. The fibroblast cells were subjected to different concentrations of aqueous extracts of raw and boiled arecanut. Fibroblasts were plated in two 24-well culture plates and in each plate, cells were dividt,ednto 2 groups; 600gg microml of reduced glutathione was added to the first group of cells; subsequently, aqueous extracts of raw and boiled arecanut at least and highest concentrations i.e., 20j. microml and 100lg microml were added to the first group of cells in the respective plates whereas the second group served as a control. The morphological alterations and cell survival were assayed at 24, 48, 72, and 96 hours. Results Morphologically, the initial (10 hours attached fibroblast cells were converted from spheroidal shape towards hexagonal and finally to a fully extended spindle shaped configuration. The three morphological types of fibroblasts at 48 hours were F-I, F-II and F-III. Aqueous extract of raw arecanut exhibited significant cytotoxicity (p < .0 001 at all time periods studied, when compared against the control values of untreated fibroblasts. Addition of reduced glutathione to cultures showed a significant (p < 0. 001 reduction in cytotoxicity, as indicated by higher optical density values and morphological reversion to the spindle-shaped configuration. CoCONCLUSION:Addition of glutathione reduced the cytotoxic and morphological alterations of the fibroblasts treated with aqueous extracts of both raw and boiled

  10. Glutathione Transferase from Trichoderma virens Enhances Cadmium Tolerance without Enhancing Its Accumulation in Transgenic Nicotiana tabacum

    Science.gov (United States)

    Dixit, Prachy; Mukherjee, Prasun K.; Ramachandran, V.; Eapen, Susan

    2011-01-01

    Background Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Results Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. Conclusion The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and

  11. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum.

    Directory of Open Access Journals (Sweden)

    Prachy Dixit

    Full Text Available BACKGROUND: Cadmium (Cd is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. RESULTS: Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. CONCLUSION: The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for

  12. Hemoglobin-catalyzed fluorometric method for the determination of glutathione

    Science.gov (United States)

    Wang, Ruiqiang; Tang, Lin; Li, Hua; Wang, Yi; Gou, Rong; Guo, Yuanyuan; Fang, Yudong; Chen, Fengmei

    2016-01-01

    A new spectrofluorometric method for the determination of glutathione based on the reaction catalyzed by hemoglobin was reported. The reaction product gave a highly fluorescent intensity with the excitation and emission wavelengths of 320.0 nm and 413.0 nm, respectively. The optimum experimental conditions were investigated. Results showed that low concentration glutathione enhanced the fluorescence intensity significantly. The line ranges were 1.0 × 10-6-1.0 × 10-5 mol L-1 of glutathione and 6.0 × 10-10 mol L-1-1.0 × 10-8 mol L-1, respectively. The detection limit was calculated to be 1.1 × 10-11 mol L-1. The recovery test by the standard addition method gave values in the range of 90.78%-102.20%. This method was used for the determination of glutathione in synthetic and real samples with satisfactory results.

  13. Glutathione transferase mimics : Micellar catalysis of an enzymic reaction

    NARCIS (Netherlands)

    Lindkvist, Björn; Weinander, Rolf; Engman, Lars; Koetse, Marc; Engberts, Jan B.F.N.; Morgenstern, Ralf

    1997-01-01

    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic

  14. Electrolyte ions and glutathione enzymes as stress markers in ...

    African Journals Online (AJOL)

    Electrolyte ions and glutathione enzymes as stress markers in Argania spinosa subjected to drought stress and recovery. ... By Country · List All Titles · Free To Read Titles This Journal is Open Access. Featuring journals from 32 Countries:.

  15. Inhibition of glutathione S-transferases (GSTs) activity from cowpea ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Inhibition effect of the plant extracts on the GST was studied by spectrophotometric method. The ... of assuring food security in developing countries like ..... studies on African cat fish (Clarias gariepinus) liver glutathione s-.

  16. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    Directory of Open Access Journals (Sweden)

    Machi JF

    2016-03-01

    Full Text Available Jacqueline Freire Machi,1,2 Danielle da Silva Dias,3 Sarah Cristina Freitas,3 Oscar Albuquerque de Moraes,1 Maikon Barbosa da Silva,1 Paula Lázara Cruz,1 Cristiano Mostarda,4 Vera M C Salemi,1 Mariana Morris,2 Kátia De Angelis,3 Maria-Cláudia Irigoyen1 1Hypertension Unit, Heart Institute (InCor, School of Medicine, University of Sao Paulo, São Paulo, Brazil; 2Institute of Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; 3Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE, São Paulo, 4Health Adult and Child, Federal University of Maranhao (UFMA, São Luiz, Maranhão, Brazil Objective: The aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX. Methods: Female Wistar rats (3 or 22 months old were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal. After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma. Results: Aging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG was reduced in young ovariectomized, old controls, and old ovariectomized

  17. Subcellular distribution of glutathione and cysteine in cyanobacteria

    OpenAIRE

    Zechmann, Bernd; Tomašić, Ana; Horvat, Lucija; Fulgosi, Hrvoje

    2010-01-01

    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine,...

  18. The influence of single application of paracetamol and/or N-acetylcysteine on rats in subchronic exposition to trichloroethylene vapours. II. Effect on hepatic glutathione level

    Directory of Open Access Journals (Sweden)

    Danuta Plewka

    2012-09-01

    Full Text Available Background: Feature of modern existing hazards both environmental and occupational is cumulative exposure often leading to unexpected response of the organism resulting, among other things, in interactions with cytochrome P450 system involved in biotransformation of trichloroethylene and paracetamol. Hepatotoxity of paracetamol is closely connected with hepatic glutathione level. „In therapy of acute paracetamol poisoning application of N-acetylcysteine as a factor, which protects GSH level in cells, is recommended.” Materials and method: Tests were performed on rats which were treated with trichloroethylene, paracetamol and/or N-acetylcysteine. In rat liver total level of glutathione was determined i.e. reduced and oxidized form. Results: Paracetamol just after completion of the exposure affected the glutathione level. Trichloroethylene throughout the period of observation stimulated growth of glutathione level in liver. N-acetylcysteine didn’t have any influence on the level of investigated tripeptyde. Conclusions: N-acetylcysteine removes negative effect of paracetamol especially when it’s applied with 2-hour delay. After exposure for trichloethylene immediate application of N-acetylcysteine caused noticeable lowering of glutathione level. Cumulative exposure for three xenobiotics had positive influence for glutathione level in rat liver.

  19. The oxidative hypothesis of senescence

    Directory of Open Access Journals (Sweden)

    Gilca M

    2007-01-01

    Full Text Available The oxidative hypothesis of senescence, since its origin in 1956, has garnered significant evidence and growing support among scientists for the notion that free radicals play an important role in ageing, either as "damaging" molecules or as signaling molecules. Age-increasing oxidative injuries induced by free radicals, higher susceptibility to oxidative stress in short-lived organisms, genetic manipulations that alter both oxidative resistance and longevity and the anti-ageing effect of caloric restriction and intermittent fasting are a few examples of accepted scientific facts that support the oxidative theory of senescence. Though not completely understood due to the complex "network" of redox regulatory systems, the implication of oxidative stress in the ageing process is now well documented. Moreover, it is compatible with other current ageing theories (e.g., those implicating the mitochondrial damage/mitochondrial-lysosomal axis, stress-induced premature senescence, biological "garbage" accumulation, etc. This review is intended to summarize and critically discuss the redox mechanisms involved during the ageing process: sources of oxidant agents in ageing (mitochondrial -electron transport chain, nitric oxide synthase reaction- and non-mitochondrial- Fenton reaction, microsomal cytochrome P450 enzymes, peroxisomal β -oxidation and respiratory burst of phagocytic cells, antioxidant changes in ageing (enzymatic- superoxide dismutase, glutathione-reductase, glutathion peroxidase, catalase- and non-enzymatic glutathione, ascorbate, urate, bilirubine, melatonin, tocopherols, carotenoids, ubiquinol, alteration of oxidative damage repairing mechanisms and the role of free radicals as signaling molecules in ageing.

  20. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  1. Glutathione-deficient Plasmodium berghei parasites exhibit growth delay and nuclear DNA damage.

    Science.gov (United States)

    Padín-Irizarry, Vivian; Colón-Lorenzo, Emilee E; Vega-Rodríguez, Joel; Castro, María Del R; González-Méndez, Ricardo; Ayala-Peña, Sylvette; Serrano, Adelfa E

    2016-06-01

    Plasmodium parasites are exposed to endogenous and exogenous oxidative stress during their complex life cycle. To minimize oxidative damage, the parasites use glutathione (GSH) and thioredoxin (Trx) as primary antioxidants. We previously showed that disruption of the Plasmodium berghei gamma-glutamylcysteine synthetase (pbggcs-ko) or the glutathione reductase (pbgr-ko) genes resulted in a significant reduction of GSH in intraerythrocytic stages, and a defect in growth in the pbggcs-ko parasites. In this report, time course experiments of parasite intraerythrocytic development and morphological studies showed a growth delay during the ring to schizont progression. Morphological analysis shows a significant reduction in size (diameter) of trophozoites and schizonts with increased number of cytoplasmic vacuoles in the pbggcs-ko parasites in comparison to the wild type (WT). Furthermore, the pbggcs-ko mutants exhibited an impaired response to oxidative stress and increased levels of nuclear DNA (nDNA) damage. Reduced GSH levels did not result in mitochondrial DNA (mtDNA) damage or protein carbonylations in neither pbggcs-ko nor pbgr-ko parasites. In addition, the pbggcs-ko mutant parasites showed an increase in mRNA expression of genes involved in oxidative stress detoxification and DNA synthesis, suggesting a potential compensatory mechanism to allow for parasite proliferation. These results reveal that low GSH levels affect parasite development through the impairment of oxidative stress reduction systems and damage to the nDNA. Our studies provide new insights into the role of the GSH antioxidant system in the intraerythrocytic development of Plasmodium parasites, with potential translation into novel pharmacological interventions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Reduced glutathione as a persistence indicator of alien plants of the Amelancheir family

    Directory of Open Access Journals (Sweden)

    L. G. Dolgova

    2009-04-01

    Full Text Available It was proved that glutathione is an important indicator of the vegetation condition and persistence. According to the amount of glutathione the studied mespilus species are adapted to the environmental conditions. Increase of the glutathione amount is caused by some abiotic factors, e.g. temperature. Some differences of the glutathione content may be explained by the plants species patterns.

  3. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2016-02-23

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans' attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.

  4. Hepatocyte Hyperproliferation upon Liver-Specific Co-disruption of Thioredoxin-1, Thioredoxin Reductase-1, and Glutathione Reductase

    Directory of Open Access Journals (Sweden)

    Justin R. Prigge

    2017-06-01

    Full Text Available Energetic nutrients are oxidized to sustain high intracellular NADPH/NADP+ ratios. NADPH-dependent reduction of thioredoxin-1 (Trx1 disulfide and glutathione disulfide by thioredoxin reductase-1 (TrxR1 and glutathione reductase (Gsr, respectively, fuels antioxidant systems and deoxyribonucleotide synthesis. Mouse livers lacking both TrxR1 and Gsr sustain these essential activities using an NADPH-independent methionine-consuming pathway; however, it remains unclear how this reducing power is distributed. Here, we show that liver-specific co-disruption of the genes encoding Trx1, TrxR1, and Gsr (triple-null causes dramatic hepatocyte hyperproliferation. Thus, even in the absence of Trx1, methionine-fueled glutathione production supports hepatocyte S phase deoxyribonucleotide production. Also, Trx1 in the absence of TrxR1 provides a survival advantage to cells under hyperglycemic stress, suggesting that glutathione, likely via glutaredoxins, can reduce Trx1 disulfide in vivo. In triple-null livers like in many cancers, deoxyribonucleotide synthesis places a critical yet relatively low-volume demand on these reductase systems, thereby favoring high hepatocyte turnover over sustained hepatocyte integrity.

  5. The interaction of glutathione S-transferase M1-null variants with tobacco smoke exposure and the development of childhood asthma

    DEFF Research Database (Denmark)

    Rogers, A J; Brasch-Andersen, C; Ionita-Laza, I

    2009-01-01

    BACKGROUND: The glutathione S-transferase M1 (GSTM1)-null variant is a common copy number variant associated with adverse pulmonary outcomes, including asthma and airflow obstruction, with evidence of important gene-by-environment interactions with exposures to oxidative stress. OBJECTIVE: To exp...

  6. Tumor suppressor function of the plasma glutathione peroxidase Gpx3 in colitis-associated carcinoma

    Science.gov (United States)

    Barrett, Caitlyn W.; Ning, Wei; Chen, Xi; Smith, J. Joshua; Washington, Mary K; Hill, Kristina E.; Coburn, Lori A.; Peek, Richard M.; Chaturvedi, Rupesh; Wilson, Keith T.; Burk, Raymond F.; Williams, Christopher S.

    2012-01-01

    The glutathione peroxidases, a family of selenocysteine-containing redox enzymes, play pivotal roles in balancing the signaling, immunomodulatory and deleterious effects of reactive oxygen species (ROS). The glutathione peroxidase GPX3 is the only extracellular member of this family, suggesting it may defend cells against ROS in the extracellular environment. Notably, GPX3 hypermethylation and underexpression occurs commonly in prostate, gastric, cervical, thyroid and colon cancers. We took a reverse genetics approach to investigate whether GPX3 would augment inflammatory colonic tumorigenesis, a process characterized by oxidative stress and inflammation, comparing Gpx3−/− mice established two-stage model of inflammatory colon carcinogenesis. Gpx3-deficient mice exhibited an increased tumor number, though not size, along with a higher degree of dysplasia. Additionally, they exhibited increased inflammation with redistribution towards pro-tumorigenic M2 macrophage subsets, increased proliferation, hyperactive WNT signaling, and increased DNA damage. To determine the impact of acute gene loss in an established colon cancer line, we silenced GPX3 in human Caco2 cells, resulting in increased ROS production, DNA damage and apoptosis in response to oxidative stress, combined with decreased contact-independent growth. Taken together, our results suggested an immunomodulatory role for GPX3 that limits the development of colitis-associated carcinoma. PMID:23221387

  7. Glutathione S-Transferases: Role in Combating Abiotic Stresses Including Arsenic Detoxification in Plants

    Directory of Open Access Journals (Sweden)

    Smita Kumar

    2018-06-01

    Full Text Available Arsenic (As, naturally occurring metalloid and a potential hazardous material, is found in low concentrations in the environment and emerges from natural sources and anthropogenic activities. The presence of As in ground water, which is used for irrigation, is a matter of great concern since it affects crop productivity and contaminates food chain. In plants, As alters various metabolic pathways in cells including the interaction of substrates/enzymes with the sulfhydryl groups of proteins and the replacement of phosphate in ATP for energy. In addition, As stimulates the generation of free radicals and reactive oxygen species (ROS, resulting in oxidative stress. Glutathione S-transferases (GSTs quench reactive molecules with the addition of glutathione (GSH and protect the cell from oxidative damage. GSTs are a multigene family of isozymes, known to catalyze the conjugation of GSH to miscellany of electrophilic and hydrophobic substrates. GSTs have been reported to be associated with plant developmental processes and are responsive to multitude of stressors. In past, several studies suggested involvement of plant GST gene family in As response due to the requirement of sulfur and GSH in the detoxification of this toxic metalloid. This review provides updated information about the role of GSTs in abiotic and biotic stresses with an emphasis on As uptake, metabolism, and detoxification in plants. Further, the genetic manipulations that helped in enhancing the understanding of the function of GSTs in abiotic stress response and heavy metal detoxification has been reviewed.

  8. Glutathione level and its relation to radiation therapy in patients with cancer of uterine cervix

    International Nuclear Information System (INIS)

    Mukundan, H.; Bahadur, A.K.; Kumar, A.; Sardana, S.; Naik, S.L.D.; Ray, A.; Sharma, B.K.

    1999-01-01

    Glutathione functions as an important antioxidant in the destruction of hydrogen peroxide and lipid peroxides by providing substrate for the glutathione peroxidase and also promotes the ascorbic acid. Glutathione plays a vital role in detoxification of xenobiotics, carcinogens, free radicals and maintenance of immune functions. The study was aimed to determine plasma glutathione as well as erythrocyte glutathione and glutathione peroxidase in patients with invasive cervical carcinoma (n=30) before initiation and after completion of radiotherapy and subsequently, at the time of first three monthly follow-up visit. The levels of plasma glutathione, erythrocyte glutathione and glutathione peroxidase activity were found to be lower in all cervical cancer patients as compared to age matched normal control women. The study indicates a change in antioxidant status in relation with the glutathione system among patients with invasive carcinoma of the uterine cervix. This study also demonstrates the effect of radiation therapy on this antioxidant system. (author)

  9. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus

    Science.gov (United States)

    Blossom, Sarah J.; Melnyk, Stepan; Cooney, Craig A.; Gilbert, Kathleen M.; James, S. Jill

    2012-01-01

    Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally-relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity. PMID:22421312

  10. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1

    Directory of Open Access Journals (Sweden)

    Koji Aoyama

    2015-05-01

    Full Text Available Reactive oxygen species (ROS are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions. This review focuses on the antioxidant system’s roles in maintaining redox homeostasis. Especially, glutathione (GSH is the most important thiol-containing molecule, as it functions as a redox buffer, antioxidant, and enzyme cofactor against oxidative stress. In the brain, dysfunction of GSH synthesis leading to GSH depletion exacerbates oxidative stress, which is linked to a pathogenesis of aging-related neurodegenerative diseases. Excitatory amino acid carrier 1 (EAAC1 plays a pivotal role in neuronal GSH synthesis. The regulatory mechanism of EAAC1 is also discussed.

  11. Relationship between oxidizable fatty acid content and level of antioxidant glutathione peroxidases in marine fish

    Science.gov (United States)

    Grim, Jeffrey M.; Hyndman, Kelly A.; Kriska, Tamas; Girotti, Albert W.; Crockett, Elizabeth L.

    2011-01-01

    SUMMARY Biological membranes can be protected from lipid peroxidation by antioxidant enzymes including catalase (CAT) and selenium-dependent glutathione peroxidases 1 and 4 (GPx1 and GPx4). Unlike GPx1, GPx4 can directly detoxify lipid hydroperoxides in membranes without prior action of phospholipase A2. We hypothesized that (1) GPx4 is enhanced in species that contain elevated levels of highly oxidizable polyunsaturated fatty acids (PUFA) and (2) activities of antioxidant enzymes are prioritized to meet species-specific oxidative stresses. In this study we examined (i) activities of the oxidative enzyme citrate synthase (CS) and antioxidant (CAT, GPx1 and GPx4) enzymes, (ii) GPx4 protein expression, and (iii) phospholipid composition in livers of five species of marine fish (Myxine glutinosa, Petromyzon marinus, Squalus acanthias, Fundulus heteroclitus and Myoxocephalus octodecemspinosus) that contain a range of PUFA. GPx4 activity was, on average, 5.8 times higher in F. heteroclitus and S. acanthias than in the other three marine fish species sampled. Similarly, activities of CAT and GPx1 were highest in S. acanthias and F. heteroclitus, respectively. GPx4 activity for all species correlates with membrane unsaturation, as well as oxidative activity as indicated by CS. These data support our hypothesis that GPx4 level in marine fish is a function, at least in part, of high PUFA content in these animals. GPx1 activity was also correlated with membrane unsaturation, indicating that marine species partition resources among glutathione-dependent defenses for protection from the initial oxidative insult (e.g. H2O2) and to repair damaged lipids within biological membranes. PMID:22031739

  12. The Triple Roles of Glutathione for a DNA-Cleaving DNAzyme and Development of a Fluorescent Glutathione/Cu2+-Dependent DNAzyme Sensor for Detection of Cu2+ in Drinking Water.

    Science.gov (United States)

    Wang, Shijin; Liu, Chengcheng; Li, Guiying; Sheng, Yongjie; Sun, Yanhong; Rui, Hongyue; Zhang, Jin; Xu, Jiacui; Jiang, Dazhi

    2017-03-24

    Pistol-like DNAzyme (PLDz) is an oxidative DNA-cleaving catalytic DNA with ascorbic acid as cofactor. Herein, glutathione was induced into the reaction system to maintain reduced ascorbic acid levels for higher efficient cleavage. However, data indicated that glutathione played triple roles in PLDz-catalyzed reactions. Glutathione alone had no effect on PLDz, and showed inhibitory effect on ascorbic acid-induced PLDz catalysis, but exhibited stimulating effect on Cu 2+ -promoted self-cleavage of PLDz. Further analysis of the effect of glutathione/Cu 2+ on PLDz indicated that H 2 O 2 played a key role in PLDz catalysis. Finally, we developed a fluorescent Cu 2+ sensor (PL-Cu 1.0) based on the relationship between glutathione/Cu 2+ and catalytic activity of PLDz. The fluorescent intensity showed a linear response toward the logarithm concentration of Cu 2+ over the range from 80 nM to 30 μM, with a detection limit of 21.1 nM. PL-Cu 1.0 provided only detection of Cu 2+ over other divalent metal ions. Ca 2+ and Mg 2+ could not interfere with Cu 2+ detection even at a 1000-fold concentration. We further applied PL-Cu 1.0 for Cu 2+ detection in tap and bottled water. Water stored in copper taps overnight had relatively high Cu 2+ concentrations, with a maximum 22.3 μM. Trace Cu 2+ (52.2 nM) in deep spring was detected among the tested bottled water. Therefore, PL-Cu 1.0 is feasible to detect Cu 2+ in drinking water, with a practical application.

  13. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    OpenAIRE

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Pollio, Antonino; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues a...

  14. Is the Oxidative Stress Really a Disease?

    Directory of Open Access Journals (Sweden)

    Fogarasi Erzsébet

    2016-03-01

    Full Text Available Oxidative stress is an imbalance between free radicals or other reactive species and the antioxidant activity of the organism. Oxidative stress can induce sever