WorldWideScience

Sample records for oxidized dichloromethane solutions

  1. Catalytic oxidation of dichloromethane over sol-gel oxides supported Pd or Ni

    International Nuclear Information System (INIS)

    Martinez; Leidy Marcela; Montes, Consuelo

    2004-01-01

    Several supported Pd or Ni catalysts were synthesized by the sol-gel method using y-alumina, silica, sulfated zirconium and sulfated titanium as carriers. The resulting catalysts were characterized by XRD and nitrogen adsorption, and evaluated in the catalytic oxidation of dichloromethane. The effect of different parameters were determined, i.e. method of synthesis, temperature and the type of support. The durability of the best catalyst (0,5% Pd impregnated over sulfated titanium) was tested between 300 degrades Celsius and 350 degrades Celsius during 48 h. Under the conditions of this study, impregnated catalysts exhibited higher activity than those prepared by cogelation. Pd loaded catalysts showed higher conversion into CO 2 and HCl. Catalyst activity also increased with increasing temperature. Y-Alumina and sulfated titanium showed good activity but the formation of CO is favored instead of CO 2 . Therefore, bifunctional catalysts, i.e. containing metallic and acid sites appear to be required for the decomposition of methylene chloride into CO 2 and HCI

  2. Aluminium-27 n.m.r. studies of aluminium fluoro complexes in dichloromethane solution: evidence for tetrafluoroaluminate anion

    International Nuclear Information System (INIS)

    Colton, R.; Eller, P.G.

    1989-01-01

    Mixed aluminium chloro/fluoro anions are formed in dichloromethane solution by the interaction of AlCl 3 and [Ph 3 PhCH 2 P] [H 2 F 3 ]. Aluminium-27 n.m.r. studies are restricted to the stoichiometric ranges F/Al from 1:1 to 3:1 and F/Al>8:1. Between these limits rapid precipitation reactions occur. In the fluoride-rich stoichiometric range there is rapid exchange on the n.m.r. time scale between the aluminium fluoro anion and free fluoride, so that a direct identification of the species by the multiplicity of the resonance is not possible. Indirect evidence strongly suggests that the aluminium species is [AlF 4 ] - . In the F/Al stoichiometry range from 1:1 to 3:1 aluminium-27 resonances were observed for all the other possible [AlCl χ F 4-χ ] - species. Studies on the aluminium iodo/fluoro system support the identification of [AlF 4 ] - , but the system is labile and the mixed iodo/fluoro species undergo rapid disproportionation. 12 refs., 1 fig

  3. Catalytic oxidation of chlorinated volatile organic compounds, dichloromethane and perchloroethylene. New knowledge for the industrial CVOC emission abatement

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaeaho, S.

    2013-09-01

    The releases of chlorinated volatile organic compounds (CVOCs) are controlled by strict regulations setting high demands for the abatement systems. Low temperature catalytic oxidation is a viable technology to economically destroy these often refractory emissions. Catalysts applied in the oxidation of CVOCs should be highly active and selective but also maintain a high resistance towards deactivation. In this study, a total of 33 different {gamma}-Al{sub 2}O{sub 3} containing metallic monoliths were studied in dichloromethane (DCM) and 25 of them in perchloroethylene (PCE) oxidation. The active compounds used were Pt, Pd, Rh or V{sub 2}O{sub 5} alone or as mixtures. The catalysts were divided into three different testing sets: industrial, CVOC and research catalysts. ICP-OES, physisorption, chemisorption, XRD, UV-vis DRS, isotopic oxygen exchange, IC, NH{sub 3}-TPD, H{sub 2}-TPR and FESEM-EDS were used to characterise the catalysts. Screening of the industrial catalysts revealed that the addition of V{sub 2}O{sub 5} improved the performance of the catalyst. DCM abatement was easily affected by the addition of VOC or water, but the effect on the PCE oxidation was only minor. Based on these screening tests, a set of CVOC catalysts were developed and installed into an industrial incinerator. The comparison between the laboratory and industrial scale studies showed that DCM oxidation in an industrial incinerator could be predicted relatively well. Instead, PCE was always seen to be oxidised far better in an industrial unit indicating that the transient oxidation conditions are beneficial for the PCE oxidation. Before starting the experiments with research catalysts, the water feed was optimised to 1.5 wt.%. Besides enhancing the HCl yields, water improved the DCM and PCE conversions. In the absence of oxygen, i.e. during destructive adsorption, the presence of water was seen to have an even more pronounced effect on the HCl formation and on the catalysts

  4. From ionic liquid to electrolyte solution: dynamics of 1-N-butyl-3-N-methylimidazolium tetrafluoroborate/dichloromethane mixtures.

    Science.gov (United States)

    Hunger, Johannes; Stoppa, Alexander; Buchner, Richard; Hefter, Glenn

    2008-10-16

    Dielectric spectra have been measured at 25 degrees C for mixtures of the room temperature ionic liquid 1- N-butyl-3- N-methylimidazolium tetrafluoroborate (IL) with dichloromethane (DCM) over the entire composition range at frequencies 0.2 less than or approximately nu/GHz < or = 89. The spectra could be satisfactorily fitted by assuming only two relaxation modes: a Cole-Cole process at lower frequencies and a Debye process at higher frequencies. However, detailed analysis indicated that both spectral features contain additional modes, which could not be resolved due to overlaps. The spectra indicate that the IL appears to retain its chemical character to extraordinarily high levels of dilution ( x IL greater than or approximately 0.5) in DCM. At even higher dilutions ( x IL less than or approximately 0.3), the IL behaves as a conventional but strongly associated electrolyte.

  5. Aqueous polyethylene oxide solutions

    International Nuclear Information System (INIS)

    Breen, J.

    1987-01-01

    A number of aspects concerning the reorientation of polymer, water and ion hydration complexes have been studied in aqueous solution of polyethylene oxide (PEO). The polymer dynamics are investigated by 1 H-PEO and 13 C-PEO nuclear relaxation experiments. 162 refs.; 30 figs.; 19 tabs

  6. Oxidation of Dichloromethane over Pt, Pd, Rh, and V2O5 Catalysts Supported on Al2O3, Al2O3-TiO2 and Al2O3-CeO2

    Czech Academy of Sciences Publication Activity Database

    Pitkäaho, S.; Nevanperä, T.; Matějová, Lenka; Ojala, S.; Keiski, R.L.

    138-139, JUL 17 (2013), s. 33-42 ISSN 0926-3373 Grant - others:ERDF(FI) A30505; ERDF(FI) OLH-2007-02428/Ha-7 Institutional support: RVO:67985858 Keywords : catalytic oxidation * CVOC * dichloromethane Subject RIV: CC - Organic Chemistry Impact factor: 6.007, year: 2013

  7. Ethanol extract and its dichloromethane fraction of Alpinia oxyphylla Miquel exhibited hepatoprotective effects against CCl4-induced oxidative damage in vitro and in vivo with the involvement of Nrf2.

    Science.gov (United States)

    Zhang, Qiao; Hu, Xiaolong; Hui, Fuhai; Song, Qi; Cui, Can; Wang, Changli; Zhao, Qingchun

    2017-07-01

    Alpinia oxyphylla Miq. (A. oxyphylla), as a kind of medicine which also be used as food, is widely used in East Asian for the treatment of dyspepsia, diarrhea, abdominal pain and deficiency cold of spleen and stomach. This study aimed to investigate the protective effects of ethanol extract (EE) and its dichloromethane fraction (DM) of A. oxyphylla, which are rich in phenolic compounds, against CCl 4 -induced hepatic injury in vitro and in vivo. EE, DM and silymarin ameliorated CCl 4 -induced decrease of cell viability and increase of reactive oxygen species (ROS) in HepG2 cells. The CCl 4 -induced changes of glutathione (GSH) and methane dicarboxylic aldehyde (MDA) levels, and the decrease of superoxide dismutase (SOD) and catalase (CAT) activities were all restored with the pretreatment of EE, DM and silymarin. The results in liver injury model in rats showed that EE, DM and silymarin could significant decrease the levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and total bilirubin than the model group. Liver histopathology revealed that EE and DM attenuated the incidence of liver lesions triggered by CCl 4 intoxication. They also effectively relieved CCl 4 -induced oxidative damage. Western blot analysis indicated NF-E2-related factor (Nrf2) pathway played an critical role in the protection of EE and DM against CCl 4 -induced oxidative stress. In conclusion, the extracts from A. oxyphylla might be used as hepatoprotective agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Metrological traceability of holmium oxide solution

    Science.gov (United States)

    Gonçalves, D. E. F.; Gomes, J. F. S.; Alvarenga, A. P. D.; Borges, P. P.; Araujo, T. O.

    2018-03-01

    Holmium oxide solution was prepared as a candidate of certified reference material for spectrophotometer wavelength scale calibration. Here is presented the necessary steps for evaluation of the uncertainty and the establishment of metrological traceability for the production of this material. Preliminary results from the first produced batch are shown.

  9. IRIS Toxicological Review of Dichloromethane (Methylene ...

    Science.gov (United States)

    EPA has finalized the Toxicological Review of Dichloromethane (Methylene Chloride): In support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health. This document presents background information and justification for the Intergrated Risk Information System (IRIS) Summary of the hazard and dose-response assessment of dichloromethane. IRIS Summaries may include oral reference dose (RfD) and inhalation reference concentration (RfC) values for chronic and other exposure durations, and a carcinogencity assessment. Internet/NCEA web site

  10. Surface polish of PLA parts in FDM using dichloromethane vapour

    Directory of Open Access Journals (Sweden)

    Jin Yifan

    2017-01-01

    Full Text Available Fused deposition modelling has become one of the most diffused rapid prototyping techniques, which is widely used to fabricate prototypes. However, further application of this technology is severely limited by poor surface roughness. Thus it is necessary to adopt some operations to improve surface quality. Chemical finishing is typically employed to finish parts in fused deposition modelling (FDM. The purpose of this paper is to decrease the surface roughness for polylactic acid (PLA parts in FDM. The chemical reaction mechanism during the treating process is analysed. Then NaOH solution and dichloromethane vapour are used to treat FDM specimens respectively. A 3D laser microscope has been applied to assess the effects in terms of surface topography and roughness. The experimental results show that treatment using dichloromethane vapour performs much better than NaOH solution. Compared with the untreated group, surface roughness obtained through vapour treatment decreases by 88 per cent. This research has been conducted to provide a better method to treat PLA parts using chemical reagents.

  11. Precipitation of plutonium from acidic solutions using magnesium oxide

    International Nuclear Information System (INIS)

    Jones, S.A.

    1994-01-01

    Magnesium oxide will be used as a neutralizing agent for acidic plutonium-containing solutions. It is expected that as the magnesium oxide dissolves, the pH of the solution will rise, and plutonium will precipitate. The resulting solid will be tested for suitability to storage. The liquid is expected to contain plutonium levels that meet disposal limit requirements

  12. Oxidation reactions of bilirubin in aqueous solutions

    International Nuclear Information System (INIS)

    Mohan, Hari; Gopinathan, C.

    1990-01-01

    The radical cation of bilirubin (BR) has been tentatively identified as a transient intermediate in the reactions of BR with different oxidizing species such as Br 2 - , I 2 - and CH 3 I . OH. The rate constants for these reactions have been determined as 2.4 x 10 9 , l.0 x 10 9 and 2.7 x 10 9 dm 3 mol -1 s -1 , respectively. Biliverdin is likely to be among the stable products formed on oxidation of BR by these oxidizing species. (author)

  13. Chemical solution deposition of functional oxide thin films

    CERN Document Server

    Schneller, Theodor; Kosec, Marija

    2014-01-01

    Chemical Solution Deposition (CSD) is a highly-flexible and inexpensive technique for the fabrication of functional oxide thin films. Featuring nearly 400 illustrations, this text covers all aspects of the technique.

  14. Optimization of process and solution parameters in electrospinning polyethylene oxide

    CSIR Research Space (South Africa)

    Jacobs, V

    2011-11-01

    Full Text Available This paper reports the optimization of electrospinning process and solution parameters using factorial design approach to obtain uniform polyethylene oxide (PEO) nanofibers. The parameters studied were distance between nozzle and collector screen...

  15. [Adaptation of aerobic methylobacteria to dichloromethane degradation].

    Science.gov (United States)

    Torgonskaia, M L; Firsova, Iu E; Doronina, N V; Trotsenko, Iu A

    2007-01-01

    A shortening of the lag phase in dichloromethane (DCM) consumption was observed in the methylobacteria Methylopila helvetica DM6 and Albibacter methylovorans DM10 after prior growth on methanol with the presence of 1.5% NaCI. Neither heat nor acid stress accelerated methylobacterium adaptation to DCM consumption. Sodium azide (1 mM) and potassium cyanide (1 mM) inhibited consumption of DCM by these degraders but not by transconjugants Methylobacterium extorquens AM1, expressing DCM dehalogenase but unable to grow on DCM. This indicates that the degrader strains possess energy-dependent systems of transport of DCM or chloride anions produced during DCM dehalogenation. Inducible proteins were found in the membrane fraction of A. methylovorans DM10 cells adapted to DCM and elevated NaCl concentration.

  16. solution growth and characterization of copper oxide thin films ...

    African Journals Online (AJOL)

    Thin films of copper oxide (CuO) were grown on glass slides by using the solution growth technique. Copper cloride (CuCl ) and potassium telluride (K T O ) were used. Buffer 2 2e 3 solution was used as complexing agent. The solid state properties and optical properties were obtained from characterization done using PYE ...

  17. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    Science.gov (United States)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  18. Removal of ammonia solutions used in catalytic wet oxidation processes.

    Science.gov (United States)

    Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua

    2003-08-01

    Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.

  19. Structure and high-piezoelectricity in lead oxide solid solutions

    NARCIS (Netherlands)

    Noheda, B.

    2002-01-01

    A review of the recent advances in the understanding of piezoelectricity in lead oxide solid solutions is presented, giving special attention to the structural aspects. It has now become clear that the very high electromechanical response in these materials is directly related to the existence of

  20. Chemical solution deposition techniques for epitaxial growth of complex oxides

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Koster, G.; Huijben, Mark; Rijnders, G.

    2015-01-01

    The chemical solution deposition (CSD) process is a wet-chemical process that is employed to fabricate a wide variety of amorphous and crystalline oxide thin films. This chapter describes the typical steps in a CSD process and their influence on the final microstructure and properties of films, and

  1. Radiolysis of dodecane--tributylphosphate and nitrous oxide solutions

    International Nuclear Information System (INIS)

    Razvi, J.

    1978-01-01

    The chemical effects of 60 Co gamma irradiation on the nuclear fuel reprocessing solvents tributylphosphate (TBP) and dodecane were studied. Nitrous oxide, with concentrations in the range 20 mM to 140 mM, was used as the standard for competition kinetics. Solutions of TBP (with electron fractions of 0.025, 0.05, 0.1 and 0.3) in dodecane were irradiated. Primary gaseous products (non-condensible at 77K) in the radiolysis were nitrogen and hydrogen. Liquid products observed were the dimer, dodecanone, dodecanol, and fragmentation products C 5 -C 11 and C 17 -C 20 . Acid products from TBP were dibutylphosphate (DBP) and monobutylphosphate (MBP). All yields were determined both as a function of TBP and nitrous oxide concentrations. Kinetic analysis of nitrogen yields from dodecane--N 2 O radiolysis gave, G(total scavengable primary species) = 6.7 molecules/100 eV. Yields of dodecane liquid products could not be analyzed quantitatively due to the complex spectrum of products. In dodecane--N 2 O solutions, the dimer showed insignificant changes in yields and product distributions, indicating formation of additional dodecyl radicals in the presence of nitrous oxide. In dodecane--TBP mixtures, dimer yields reduced significantly as did the products from carbon--carbon bond cleavage. The addition of nitrous oxide to the binary mixture caused the dimer yield to increase, confirming formation of C 12 H 25 radicals by nitrous oxide reactions

  2. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  3. Synthesis of vanadium oxide powders by evaporative decomposition of solutions

    International Nuclear Information System (INIS)

    Lawton, S.A.; Theby, E.A.

    1995-01-01

    Powders of the vanadium oxides V 2 O 4 , V 6 O 13 , and V 2 O 5 were produced by thermal decomposition of aqueous solutions of vanadyl sulfate hydrate in atmospheres of N 2 , H 2 mixed with N 2 , or air. The composition of the oxide powder was determined by the reactor temperature and gas composition. Residual sulfur concentrations in powders produced by decomposition at 740 C were less than 1 at.%, and these powders consisted of hollow, roughly spherical aggregates of particles less than 1 microm in diameter

  4. Radiation-chemical oxidation of neptunium in perchloric acid solutions

    International Nuclear Information System (INIS)

    Shilov, V.P.; Gusev, Yu.K.; Pikaev, A.K.; Stepanova, E.S.; Krot, N.N.

    1979-01-01

    The γ-radiation effect (at a dose rate of 5x10 16 eV/mlxs) on 1x10 -3 Np(6) and Np(5) perchloric acid solutions is studied. The output of Np(6) loss in aerated 0.001-0.005M HClO 4 solutions was 2.4 ions/100 eV. The output of Np(5) loss in solutions saturated with nitrous oxide was 2.1 ions/100 eV at pH-4. In aerated 0.1-1.0 M HClO 4 solutions in presence of XeO 4 the output of Np(5) loss grows from 6.6 to 13.5 ions/100 eV as (XeO 3 ) 0 increases from 1x10 -3 to 2x10 -2 M. Possible process mechanisms have been proposed

  5. Research of calcium oxide hydration in calcium nitrate solutions

    Directory of Open Access Journals (Sweden)

    M.A. Oliynyk

    2016-09-01

    Full Text Available Mineral fertilizers are one of the important factors of agriculture intensification and increasing of food products quantity. The volume of fertilizers production and its domestic consumption in Ukraine indicate that nitrogen fertilizer using only comes nearer to the required number of science-based. One of the most widespread artificial fertilizers is the calcium nitrate. Aim: The aim is to study and theoretically substantiate the processes occurring in the preparation of suspensions of calcium hydroxide Са(ОН2 in solution of calcium nitrate Ca(NО32. Materials and Methods: The technical calcium oxide (quicklime DSTU BV.2.7-90-99, solutions of calcium nitrate of 15, 20, 25, 30, 35 and 40% Ca(NО32 concentrations were used in the work. The content of lime in the preparation of a suspension in the solution changed (in terms of calcium oxide CaO from 150 g/dm3 to the maximum possible. Each of these solutions saturated at 40°С in lime to maximum concentration. Suitable for use in these experiments and in the technology of calcium nitrate obtaining are considered the solutions (suspensions that within 12 hours did not lose their mobility (transportability. Results: The experimental results show that increasing of the concentration of calcium nitrate in solution within the range 15...40%, the amount of lime that you can put into the solution without loss of transportability decreases. Further increasing of lime quantity in solutions concentrations causes to its solidifying, loss of mobility (transportability. Calculations showed that in the presence of calcium nitrate the solubility of Са(ОН2 is reduced nearly by order that can lead to the formation of calcium oxide CaO the solid phase Са(ОН2 on the surface, which also can form hydrogen bonds with the components of the solution. As the probability of formation of hydrogen bonds in solutions is high, there is a possibility of formation of clusters.

  6. Some reactions of oxidizing radicals with enzymes in aqueous solution

    International Nuclear Information System (INIS)

    Cundall, R.B.; Bisby, R.H.; Hoe, S.T.; Sims, H.E.; Anderson, R.F.

    1979-01-01

    A range of oxidizing radicals including some inorganic radical anions and the superoxide radical, can be generated by radiolysis of aqueous solutions. These radicals are more selective in their reactions with amino acids than the hydroxyl radical. Factors controlling the apparent reactivity of radical anions with proteins, such as free radical equilibria and ion-binding, are described. The superoxide radical inactivates papain by reaction with the cysteine residue. This reaction has been studied in solutions subjected to radiations of varying linear energy transfer. (Auth.)

  7. Electro-oxidation of methanol on copper in alkaline solution

    International Nuclear Information System (INIS)

    Heli, H.; Jafarian, M.; Mahjani, M.G.; Gobal, F.

    2004-01-01

    The electro-oxidation of methanol on copper in alkaline solutions has been studied by the methods of cyclic voltammetry, quasi-steady state polarization and chronoamperometry. It has been found that in the course of an anodic potential sweep the electro-oxidation of methanol follows the formation of Cu III and is catalysed by this species through a mediated electron transfer mechanism. The reaction also continues in the early stages of the reversed cycle until it is stopped by the prohibitively negative potentials. The process is diffusion controlled and the current-time responses follow Cottrellian behavior. The rate constants, turnover frequency, anodic transfer coefficient and the apparent activation energy of the electro-oxidation reaction are reported

  8. Photochemical oxidation: A solution for the mixed waste dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A. [Vulcan Peroxidation Systems, Inc., Tucson, AZ (United States)] [and others

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposed of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.

  9. A Study on the Oxidative-dissolution Leaching of Fission Product Oxides in the carbonate solution

    International Nuclear Information System (INIS)

    Lee, Eil Hee; Kim, Kwang Wook; Lim, Jae Gwan; Chung, Dong Yong; Yang, Han Beom; Joe, Kih Soo; Seo, Heui Seung; Kim, Yeon Hwa; Lee, Se Yoon

    2009-07-01

    This study was carried out to investigate the characteristics of an oxidativedissolution leaching of FP co-dissolved with U in a carbonate solution of Na 2 CO 3 - H 2 O 2 and (NH 4 ) 2 CO 3 -H 2 O 2 , respectively. Simulated FP-oxides which contained 12 components have been added to the solution to examine their oxidative dissolution characteristics. It was found that H 2 O 2 was an effective oxidant to minimize the dissolution of FP in a carbonate solution. In 0.5M Na 2 CO 3 -0.5M H 2 O 2 and 0.5M (NH 4 ) 2 CO 3 -0.5M H 2 O 2 solution, some elements such as Re, Te, Cs and Mo seem to be dissolved together with U. It is revealed that dissolution rates of Re, Te and Cs are high (completely dissolved within 10∼20 minutes) due to their high solubility in Na 2 CO 3 and (NH 4 ) 2 CO 3 solution regardless of the addition of H 2 O 2 , and independent of the concentrations of Na 2 CO 3 and H 2 O 2 . However, Mo was slowly dissolved by an oxidative dissolution with H 2 O 2 . It is found that the most important factor for the oxidative dissolution of FP is the pH of the solution and an effective oxidative dissolution is achieved at a pH between 10∼12 for Na 2 CO 3 and a pH between 9∼10 for (NH 4 ) 2 CO 3 , respectively, in order to minimize the dissolution of FP

  10. Chemical solution route to self-assembled epitaxial oxide nanostructures.

    Science.gov (United States)

    Obradors, X; Puig, T; Gibert, M; Queraltó, A; Zabaleta, J; Mestres, N

    2014-04-07

    Self-assembly of oxides as a bottom-up approach to functional nanostructures goes beyond the conventional nanostructure formation based on lithographic techniques. Particularly, chemical solution deposition (CSD) is an ex situ growth approach very promising for high throughput nanofabrication at low cost. Whereas strain engineering as a strategy to define nanostructures with tight control of size, shape and orientation has been widely used in metals and semiconductors, it has been rarely explored in the emergent field of functional complex oxides. Here we will show that thermodynamic modeling can be very useful to understand the principles controlling the growth of oxide nanostructures by CSD, and some attractive kinetic features will also be presented. The methodology of strain engineering is applied in a high degree of detail to form different sorts of nanostructures (nanodots, nanowires) of the oxide CeO2 with fluorite structure which then is used as a model system to identify the principles controlling self-assembly and self-organization in CSD grown oxides. We also present, more briefly, the application of these ideas to other oxides such as manganites or BaZrO3. We will show that the nucleation and growth steps are essentially understood and manipulated while the kinetic phenomena underlying the evolution of the self-organized networks are still less widely explored, even if very appealing effects have been already observed. Overall, our investigation based on a CSD approach has opened a new strategy towards a general use of self-assembly and self-organization which can now be widely spread to many functional oxide materials.

  11. Studies of the Tc oxidation states in humic acid solutions

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun

    2010-01-01

    The oxidation state is an important aspect of the speciation of Tc in groundwater that contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg L -1 and the Tc (Ⅶ) concentration range is about 10 -8 mol l -1 . The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation methods were carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (IPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (Ⅳ) and Tc (Ⅶ) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentrations are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (Ⅶ) is very stable in the Tc (Ⅶ)-humic acid system during a 350 days experimental period, and the Tc (Ⅳ) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (Ⅶ) in aqueous solutions under anaerobic conditions. That is means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  12. Studies of Tc oxidation states in humic acid solutions

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun

    2011-01-01

    The oxidation state of Tc is an important aspect of the speciation in groundwater which contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg/L and the Tc (VII) concentration is about 10 -8 mol/L. The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation method was carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (TPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (IV) and Tc (VII) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentration are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (VII) is very stable in the Tc (VII)-humic acid system during a 350 days experimental period, and the Tc (IV) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (VII) in aqueous solutions under anaerobic conditions. That means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  13. Stabilization of polymer solutions in the presence of oxidizing agents

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A; Serino, A; Jenkins, D; Lichaa, P M

    1974-01-01

    Many investigators in the field of heavy oil recovery techniques have confirmed the recovery efficiency which, in the miscible displacement method, has utilized polymer solutions as additives to the injection fluids. The viscosity increase of the displacing phase has lowered the mobility ratio with a significant improvement in the sweep efficiency. Recently, others have reported a notable improvement in the recovery of heavy crude by this same method of miscible displacement which causes a mobile fluid bank between the crude and the displacing fluid. There is an intervening oxidation reaction, promoting the in situ formation of surface-active agents on the interface of these 2 fluids. This study describes the effect on degradation of polymer solutions by such oxidizing agents as potassium chromate and potassium permanganate. The degradation of any polymer solution with or without additives is increased materially by an increase in temperature. The presence of NaCl brine is not often of any great significance in the time of gelation, especially with polymers of the polysaccharide type. (18 refs.)

  14. Precipitation of plutonium from acidic solutions using magnesium oxide

    International Nuclear Information System (INIS)

    Jones, S.A.

    1994-01-01

    Plutonium (IV) is only marginally soluble in alkaline solution. Precipitation of plutonium using sodium or potassium hydroxide to neutralize acidic solutions produces a gelatinous solid that is difficult to filter and an endpoint that is difficult to control. If the pH of the solution is too high, additional species precipitate producing an increased volume of solids separated. The use of magnesium oxide as a reagent has advantages. It is added as a solid (volume of liquid waste produced is minimized), the pH is self-limiting (pH does not exceed about 8.5), and the solids precipitated are more granular (larger particle size) than those produced using KOH or NaOH. Following precipitation, the raffinate is expected to meet criteria for disposal to tank farms. The solid will be heated in a furnace to dry it and convert any hydroxide salts to the oxide form. The material will be cooled in a desiccator. The material is expected to meet vault storage criteria

  15. Physical chemistry of the interface between oxide and aqueous solution

    International Nuclear Information System (INIS)

    Jolivet, J.P.

    1997-01-01

    The behavior and properties of small oxide particles in aqueous suspension are dominated by the physico-chemistry of their surface. It is electrostatically charged and strongly solvated. The origin of the surface charge is discussed through the MUSIC model [Hiemstra 1996], allowing to estimate the acid-base behavior of surface oxygen atoms. The stability of aqueous dispersions of particles is analysed following the DLVO model, with a special attention on the hydration layers allowing the peptization of flocs. Different adsorption mechanisms of metal cations are presented in terms of coordination chemistry (outer- and inner-sphere complexes) emphasizing the coordinating ability of the surface towards metal complexes in solution. The anion adsorption is also studied in relation with some interesting consequences on spinel iron oxide nano-particles. (author)

  16. Metal Oxide Decomposition In Hydrothermal Alkaline Sodium Phosphate Solutions

    Energy Technology Data Exchange (ETDEWEB)

    S.E. Ziemniak

    2003-09-24

    Alkaline hydrothermal solutions of sodium orthophosphate (2.15 < Na/P < 2.75) are shown to decompose transition metal oxides into two families of sodium-metal ion-(hydroxy)phosphate compounds. Equilibria for these reactions are quantified by determining phosphate concentration-temperature thresholds for decomposition of five oxides in the series: Ti(IV), Cr(III), Fe(III, II), Ni(II) and Zn(II). By application of a computational chemistry method General Utility Lattice Program (GULP), it is demonstrated that the unique non-whole-number Na/P molar ratio of sodium ferric hydroxyphosphate is a consequence of its open-cage structure in which the H{sup +} and excess Na{sup +} ions are located.

  17. Asymptotically exact solution of a local copper-oxide model

    International Nuclear Information System (INIS)

    Zhang Guangming; Yu Lu.

    1994-03-01

    We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities. (author). 15 refs, 1 fig

  18. Understanding the defect structure of solution grown zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liew, Laura-Lynn [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Block N4.1 Nanyang Avenue, Singapore 639798 (Singapore); Sankar, Gopinathan, E-mail: g.sankar@ucl.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Handoko, Albertus D. [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); Goh, Gregory K.L., E-mail: g-goh@imre.a-star.edu.sg [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Block N4.1 Nanyang Avenue, Singapore 639798 (Singapore); Kohara, Shinji [Japan Synchrotron Radiation Research Institute (JASRI), Mikazuki, Sayo, Hyogo 679-5198 (Japan)

    2012-05-15

    Zinc oxide (ZnO) is a wide bandgap semiconducting oxide with many potential applications in various optoelectronic devices such as light emitting diodes (LEDs) and field effect transistors (FETs). Much effort has been made to understand the ZnO structure and its defects. However, one major issue in determining whether it is Zn or O deficiency that provides ZnO its unique properties remains. X-ray absorption spectroscopy (XAS) is an ideal, atom specific characterization technique that is able to probe defect structure in many materials, including ZnO. In this paper, comparative studies of bulk and aqueous solution grown ({<=}90 Degree-Sign C) ZnO powders using XAS and x-ray pair distribution function (XPDF) techniques are described. The XAS Zn-Zn correlation and XPDF results undoubtedly point out that the solution grown ZnO contains Zn deficiency, rather than the O deficiency that were commonly reported. This understanding of ZnO short range order and structure will be invaluable for further development of solid state lighting and other optoelectronic device applications. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer ZnO powders have been synthesized through an aqueous solution method. Black-Right-Pointing-Pointer Defect structure studied using XAS and XPDF. Black-Right-Pointing-Pointer Zn-Zn correlations are less in the ZnO powders synthesized in solution than bulk. Black-Right-Pointing-Pointer Zn vacancies are present in the powders synthesized. Black-Right-Pointing-Pointer EXAFS and XPDF, when used complementary, are useful characterization techniques.

  19. Evaporation and wet oxidation of steam generator cleaning solutions

    International Nuclear Information System (INIS)

    Baldwin, P.N. Jr.

    1996-01-01

    Ethylene diamine tetra acetic acid (EDTA) is used in metal-cleaning formulations. Usually the form of the EDTA used is the tetra ammonium salt. When these powerful cleaning solutions are used in steam generators, they attract the key metals of interest--iron and copper. A reduction in the volume of these cleaners and EDTA destruction is required to meet waste management and disposal standards. One method of volume reduction is described: concentration by evaporation. Once volume is reduced, the liquid waste can then be further volume reduced and treated for EDTA content through the use of wet oxidation. The effect of this process on the total organic carbon (TOC) in the form of EDTA contained in the copper as well as the iron spent cleaning solutions is reviewed, including regression analysis of selected benchmark and production data. A regressive analysis is made of the relationship between the EDTA and the TOC analyzed in the wet-oxidation batch residuals as well as the summary effects of hydrogen peroxide, sulfuric acid, and reaction time on the percentage of TOC destroyed

  20. Oxidative desulfurization of Cayirhan lignites by permanganate solution

    Energy Technology Data Exchange (ETDEWEB)

    Guru, M.; Tuzun, F.N.; Murathan, A.S.; Asan, A.; Kiyak, T. [Gazi University, Ankara (Turkey). Dept. for Chemical Engineering

    2008-07-01

    Unless important developments record new and renewable energy sources, the role of fossil fuels as an energy resource goes on. It is possible to detect sulfur, heavy metals, and tracer elements such as arsenic and selenium by decreasing calorific value of coals. Sulfur oxides, which are the main pollutants in atmosphere, are irritative to humans and plants, and erosion occurs on buildings. Although there are high lignite reservoirs, high sulfur content limits the efficient use of them. In this research, it is aimed to convert combustible sulfur in coal to non-combustible sulfur form in the ash by oxidizing it with permanganate solution. During this research, the effect of two different parameters of potassium permanganate concentration, processing time, and mean particle size were investigated at constant room temperature and shaking rate. The conversion of combustible sulfur to non-combustible sulfur form was achieved optimally with 0.14 M potassium permanganate solution, 0.1 mm mean particle size at 16 h of treatment time, and the combustible sulfur amount was decreased by 46.37% compared to undoped conditions.

  1. An economic route to mass production of graphene oxide solution for preparing graphene oxide papers

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Yan-Jia; Tsai, Bo-Da; Huang, Wu-Jang, E-mail: wjhuang@mail.npust.edu.tw

    2015-03-15

    Highlights: • Graphene oxide paper can be prepared from synthesized graphene sheet containing carbon materials. • Graphene oxide paper can be used as a phase change materials for thermal storage. • To prepare graphene oxide paper from synthesized graphene sheet containing carbon materials could highly reduce the cost. - Abstract: Graphene oxide paper (GOP) is a composite material fabricated from graphene oxide (GO) solution. In addition, it can be a novel and potential material for application on the separation of water vapor from gaseous steam or larger alkali ions from aqueous solution. GOP could be used as electricity and thermal storage materials. The preparation of GO commonly uses high purity natural or artificial graphite. It is difficult to prepare GOP from artificial graphite powder due to the cost of $1,450 US/ton. In this study, we tried to prepare GOPs from homemade graphene sheets containing carbon materials (GSCCMs) and evaluate the thermal properties of GSCCM derived GOPs. Results show that GSCCM derived GOPs have a higher phase transition temperature, and the average mesophase phase change enthalpy is 9.41 J/g, which is 2.87 times higher than graphite derived GOP. Therefore, to prepare GOP from GSCCMs could highly reduce the cost.

  2. Ab initio molecular dynamics simulation of aqueous solution of nitric oxide in different formal oxidation states

    Science.gov (United States)

    Venâncio, Mateus F.; Rocha, Willian R.

    2015-10-01

    Ab initio molecular dynamics simulations were used to investigate the early chemical events involved in the dynamics of nitric oxide (NOrad), nitrosonium cation (NO+) and nitroxide anion (NO-) in aqueous solution. The NO+ ion is very reactive in aqueous solution having a lifetime of ∼4 × 10-13 s, which is shorter than the value of 3 × 10-10 s predicted experimentally. The NO+ reacts generating the nitrous acid as an intermediate and the NO2- ion as the final product. The dynamics of NOrad revealed the reversibly formation of a transient anion radical species HONOrad -.

  3. Thermoluminescence properties of zinc oxide obtained by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2014-08-15

    High-dose thermoluminescence dosimetry properties of novel zinc oxide obtained by solution combustion synthesis in a glycine-nitrate process, with a non-stoichiometric value of the elemental stoichiometric coefficient (Φ{sub c}) are presented in this work. Zn O powder samples obtained were annealed afterwards at 900 grades C during 2 h in air. Sintered particles of sizes between ∼ 0.5 and ∼ 2 μm were obtained, according to scanning electron microscopy results. X-ray diffraction indicates the presence of the hexagonal phase of Zn O for the powder samples obtained, before and after thermal annealing, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima; one located at ∼ 149 grades C and another at ∼ 308 grades C, being the latter the dosimetric component of the curve. Dosimetric characterization of non-stoichiometric zinc oxide provided experimental evidence like asymptotic behavior of the Tl signal fading for times greater than 16 h between irradiation and the corresponding Tl readout, as well as the linear behaviour of the dose response without saturation in the dose interval studied (from 12.5 up to 400 Gy). Such characteristics place Zn O phosphors obtained in this work as a promising material for high-dose radiation dosimetry applications (e.g., radiotherapy and food industry). (author)

  4. Thermoluminescence properties of zinc oxide obtained by solution combustion synthesis

    International Nuclear Information System (INIS)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C.; Bernal, R.

    2014-08-01

    High-dose thermoluminescence dosimetry properties of novel zinc oxide obtained by solution combustion synthesis in a glycine-nitrate process, with a non-stoichiometric value of the elemental stoichiometric coefficient (Φ c ) are presented in this work. Zn O powder samples obtained were annealed afterwards at 900 grades C during 2 h in air. Sintered particles of sizes between ∼ 0.5 and ∼ 2 μm were obtained, according to scanning electron microscopy results. X-ray diffraction indicates the presence of the hexagonal phase of Zn O for the powder samples obtained, before and after thermal annealing, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima; one located at ∼ 149 grades C and another at ∼ 308 grades C, being the latter the dosimetric component of the curve. Dosimetric characterization of non-stoichiometric zinc oxide provided experimental evidence like asymptotic behavior of the Tl signal fading for times greater than 16 h between irradiation and the corresponding Tl readout, as well as the linear behaviour of the dose response without saturation in the dose interval studied (from 12.5 up to 400 Gy). Such characteristics place Zn O phosphors obtained in this work as a promising material for high-dose radiation dosimetry applications (e.g., radiotherapy and food industry). (author)

  5. Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions.

    Science.gov (United States)

    Hunger, Johannes; Tielrooij, Klaas-Jan; Buchner, Richard; Bonn, Mischa; Bakker, Huib J

    2012-04-26

    We study aqueous solutions of the amphiphilic osmolyte trimethylamine-N-oxide (TMAO) using broadband dielectric spectroscopy and femtosecond mid-infrared spectroscopy. Both experiments provide strong evidence for distinctively slower rotation dynamics for water molecules interacting with the hydrophobic part of the TMAO molecules. Further, water is found to interact more strongly at the hydrophilic site of the TMAO molecules: we find evidence for the formation of stable, TMAO·2H2O and/or TMAO·3H2O complexes. While this coordination structure seems obvious, the lifetime of these complexes is found to be extraordinarily long (>50 ps). The existence of these long-lived complexes leads to pronounced parallel dipole correlations between water and TMAO, reflected in enhanced amplitudes in the dielectric spectra. The strong interaction between water and TMAO also results in a red-shifted band for the O-D stretching vibration of HDO molecules in an isotopically diluted aqueous TMAO solution. This O-D stretching vibration has a vibrational lifetime of 670 fs, which is significantly shorter than the lifetime of the O-D stretch vibration of bulk-like HDO molecules, presumably due to efficient coupling to vibrational modes of TMAO. The rotational dynamics of these O-D groups are slowed down dramatically, and are limited by the rotation of the whole complex, while the O-D vector oriented away from TMAO probably shows an accelerated reorientation.

  6. Cathodic reduction of benzil in acetone and in dichloromethane

    Energy Technology Data Exchange (ETDEWEB)

    Quintanilla, Gloria [Departamento de Quimica Organica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)], E-mail: gloria.quintanilla@uah.es; Liebeck, Miriam; Bengtsson, Carina; Arnold, Lena; Barba, Fructuoso [Departamento de Quimica Organica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)

    2008-02-15

    The cathodic reduction of benzil has been carried out at a controlled potential on a mercury cathode in two different SSE (solvent-supporting-electrolyte) conditions: (a) acetone/lithium perchlorate in absence of electrophile where 2,3-diphenyl-5-methyl-furan and 1,2-diphenyl-2-hydroxy-1,4-pentanedione were obtained as main products and (b) dichloromethane/tetrabuthylammonium chloride with the addition of oxalyl chloride as electrophile, where a fast electron transfer took place.

  7. Insights from Epidemiology into Dichloromethane and Cancer Risk

    Directory of Open Access Journals (Sweden)

    Cheryl Siegel Scott

    2011-08-01

    Full Text Available Dichloromethane (methylene chloride is a widely used chlorinated solvent. We review the available epidemiology studies (five cohort studies, 13 case-control studies, including seven of hematopoietic cancers, focusing on specific cancer sites. There was little indication of an increased risk of lung cancer in the cohort studies (standardized mortality ratios ranging from 0.46 to 1.21. These cohorts are relatively small, and variable effects (e.g., point estimates ranging from 0.5 to 2.0 were seen for the rarer forms of cancers such as brain cancer and specific hematopoietic cancers. Three large population-based case-control studies of incident non-Hodgkin lymphoma in Europe and the United States observed odds ratios between 1.5 and 2.2 with dichloromethane exposure (ever exposed or highest category of exposure, with higher risk seen in specific subsets of disease. More limited indications of associations with brain cancer, breast cancer, and liver and biliary cancer were also seen in this collection of studies. Existing cohort studies, given their size and uneven exposure information, are unlikely to resolve questions of cancer risks and dichloromethane exposure. More promising approaches are population-based case-control studies of incident disease, and the combination of data from such studies, with robust exposure assessments that include detailed occupational information and exposure assignment based on industry-wide surveys or direct exposure measurements.

  8. Influence of corrosive solutions on microhardness and chemistry of magnesium oxide /001/ surfaces

    Science.gov (United States)

    Ishigaki, H.; Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted on cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved to specimen size along the /001/ surface, and indentations were made on the cleaved surface in corrosive solutions containing HCl, NaOH, or HNO3 and in water without exposing the specimen to any other environment. The results indicated that chloride (such as MgCl2) and sodium films are formed on the magnesium oxide surface as a result of interactions between an HCl-containing solution and a cleaved magnesium oxide surface. The chloride films soften the magnesium oxide surface. In this case microhardness is strongly influenced by the pH value of the solution. The lower the pH, the lower the microhardness. Sodium films, which are formed on the magnesium oxide surface exposed to an NaOH containing solution, do not soften the magnesium oxide surface.

  9. Photocatalysis of zinc oxide nanotip array/titanium oxide film heterojunction prepared by aqueous solution deposition

    Science.gov (United States)

    Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu

    2017-05-01

    A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.

  10. Cation incorporation into zirconium oxide in LiOH, NaOH, and KOH solutions

    International Nuclear Information System (INIS)

    Jeong, Y.H.; Kim, K.H.; Baek, J.H.

    1999-01-01

    To investigate the cation incorporation into zirconium oxide, SIMS analysis was performed on the specimens prepared to have an equal oxide thickness in LiOH, NaOH, and KOH solutions. Even though they have an equal oxide thickness in LiOH, NaOH, and KOH solutions, the penetration depth of cation into the oxide decreased with an increase in the ionic radius of cation. The cation is considered to control the corrosion in alkali hydroxide solutions and its effect is dependent on the concentration of alkali and the oxide thickness. The slight enhancement of the corrosion rate at a low concentration is thought to be caused by cation incorporation into oxide, while the significant acceleration at a high concentration is due to the transformation of oxide microstructures that would be also induced by cation incorporation into oxide. (orig.)

  11. Hydrogen oxidation on gold electrode in perchloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sustersic, M.G.; Almeida, N.V.; Von Mengershausen, A.E. [Facultad de Ingenieria y Ciencias Economico Sociales, Universidad Nacional de San Luis, 25 de Mayo N 384, 5730 Villa Mercedes, San Luis (Argentina)

    2010-06-15

    The aim of this research is to study the interface gold/perchloric acid solution in presence of hydrogen. The reactive is generated by H{sup +} ion reduction and by saturating the electrolyte with the gaseous H{sub 2}. No evidence of H{sub 2} dissociative adsorption is found. In special conditions, a strongly adsorbed layer is formed from the atoms diffusing from inside of the metal. The mass transport occurs in three ways: the diffusion of H atoms inwards, the diffusion of H atoms back to the surface and the dissolved H{sub 2} diffusion from the bulk electrolyte to the surface. When dissolved H{sub 2} reacts, the reaction is kinetically controlled when the H{sub 2} partial pressure is high, and it is diffusionally controlled when the reactive partial pressure is low. Above 0.7 V, (measured vs. RHE), the (100) plane surface reconstruction lifts, and the rate determining step is the H diffusion towards inside of the metal, and the current suddenly falls. The Hydrogen redox reaction on gold shows reversibility with respect to the potential when the reactives are the H diffusing outwards of the metal and the H{sup +} ion present in the electrolyte. However, the absolute current values of oxidation and reduction are different because the reactive sources are different. (author)

  12. Corrosion characteristics and oxide microstructures of Zircaloy-4 in aqueous alkali hydroxide solutions

    International Nuclear Information System (INIS)

    Jeong, Y.H.; Baek, J.H.; Kim, S.J.; Kim, H.G.

    1999-01-01

    The corrosion characteristics of Zircaloy-4 have been investigated in various aqueous solutions of LiOH, NaOH, KOH, RbOH and CsOH with equimolar M + and OH - at 350 C. The characterization of the oxides was performed using transmission electron microscope (TEM) and scanning electron microscope (SEM) on the samples which were prepared to have an equal oxide thickness in pre-transition and post-transition regimes. At a low concentration (4.3 mmol) of aqueous alkali hydroxide solutions, the corrosion rates decrease gradually as the ionic radius of cation increases. At a high concentration (32.5 mmol), the corrosion rate increases significantly in LiOH solution and slightly in NaOH solution, but in the other hydroxide solutions such as KOH, RbOH and CsOH, the corrosion rate is not accelerated. Even if the specimens have an equal oxide thickness in LiOH, NaOH and KOH solutions, the oxide microstructure formed in the LiOH solution is quite different from those formed in the NaOH or the KOH solutions. In the LiOH solution, the oxides grown in the pre-transition regime as well as in the post-transition regime have an equiaxed structure including many pores and open grain boundaries. The oxides grown in the NaOH solution have a protective columnar structure in the pre-transition regime but an equiaxed structure in the post-transition regime. On the other hand, in the KOH solution, the columnar structure is maintained from its pre-transition regime to the post-transition regime. On the basis of the above results, it can be suggested that the cation incorporation into zirconium oxide would control the oxide microstructure, the oxide growth mechanism at the metal-oxide interface and the corrosion rate in alkali hydroxide solutions. (orig.)

  13. Process for the reduction of competitive oxidant consuming reactions in the solution mining of a mineral

    International Nuclear Information System (INIS)

    Stover, D.E.

    1980-01-01

    The present invention relates to an improved method for the solution mining of a mineral from a subterranean formation. More specifically, the invention relates to an improved method which enhances significantly the recovery of the mineral from a subterranean formation via solution mining by reducing the oxidant consuming reactions which compete with the mineral for the oxidant injected therein

  14. [Changes of chlorine isotope composition characterize bacterial dehalogenation of dichloromethane].

    Science.gov (United States)

    Ziakun, A M; Firsova, Iu E; Torgonskaia, M L; Doronina, N V; Trotsenko, Iu A

    2007-01-01

    Fractionation of dichloromethane (DCM) molecules with different chlorine isotopes by aerobic methylobacteria Methylobacterium dichloromethanicum DM4 and Albibacter nethylovorans DM10; cell-free extract of strain DM4; and transconjugant Methylobacterium evtorquens Al1/pME 8220, expressing the dcmA gene for DCM dehalogenase but unable to grow on DCM, was studied. Kinetic indices of DCM isotopomers for chlorine during bacterial dehalogenation and diffusion were compared. A two-step model is proposed, which suggests diffusional DCM transport to bacterial cells.

  15. Dichloromethane as an antisickling agent in sickle cell hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B.P.; North, B.E.

    1977-01-01

    Observations are reported that show that dichloromethane (DCM) does have a significant effect on the oxygen binding properties of hemoglobin. At DCM pressures high enough to prevent or reverse sickling, DCM would lower the oxygen affinity of hemoglobin, therefore reducing oxygen transport at low oxygen pressure. This decrease in oxygen affinity might, however, increase the oxygen availability to tissue as long as a sufficiently large lung P/sub O/sub 2// is maintained. Crystallographic studies show that site D4 has a much lower affinity for DCM than site D3 while sites D1 and D2 show a higher affinity.

  16. Reaction of hydrogen peroxide with uranium zirconium oxide solid solution - Zirconium hinders oxidative uranium dissolution

    Science.gov (United States)

    Kumagai, Yuta; Takano, Masahide; Watanabe, Masayuki

    2017-12-01

    We studied oxidative dissolution of uranium and zirconium oxide [(U,Zr)O2] in aqueous H2O2 solution to estimate (U,Zr)O2 stability to interfacial reactions with H2O2. Studies on the interfacial reactions are essential for anticipating how a (U,Zr)O2-based molten fuel may chemically degrade after a severe accident. The fuel's high radioactivity induces water radiolysis and continuous H2O2 generation. Subsequent reaction of the fuel with H2O2 may oxidize the fuel surface and facilitate U dissolution. We conducted our experiments with (U,Zr)O2 powder (comprising Zr:U mole ratios of 25:75, 40:60, and 50:50) and quantitated the H2O2 reaction via dissolved U and H2O2 concentrations. Although (U,Zr)O2 reacted more quickly than UO2, the dissolution yield relative to H2O2 consumption was far less for (U,Zr)O2 compared to that of UO2. The reaction kinetics indicates that most of the H2O2 catalytically decomposed to O2 at the surface of (U,Zr)O2. We confirmed the H2O2 catalytic decomposition via O2 production (quantitative stoichiometric agreement). In addition, post-reaction Raman scattering spectra of the undissolved (U,Zr)O2 showed no additional peaks (indicating a lack of secondary phase formation). The (U,Zr)O2 matrix is much more stable than UO2 against H2O2-induced oxidative dissolution. Our findings will improve understanding on the molten fuels and provide an insight into decommissioning activities after a severe accident.

  17. Pulse radiolysis investigations on oxidation reactions of bilirubin in aqueous solutions (Preprint No. RC-3)

    International Nuclear Information System (INIS)

    Mohan, Hari; Gopinathan, C.

    1988-02-01

    The oxidation of bilirubin in aqueous solutions have been investigated by different oxidizing species such as CH 3 I.OH, Br 2 - and CO 3 - . The rate constant for the oxidation of bilirubin has been determined from the formation kinetics of bilirubin cations. (author). 3 refs

  18. Studies on mixed metal oxides solid solutions as heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    H. R. Arandiyan

    2009-03-01

    Full Text Available In this work, a series of perovskite-type mixed oxide LaMo xV1-xO3+δ powder catalysts (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, with 0.5 < δ < 1.5, prepared by the sol-gel process and calcined at 750ºC, provide an attractive and effective alternative means of synthesizing materials with better control of morphology. Structures of resins obtained during the gel formation process by FT-IR spectroscopy and XRD analysis showed that all the LaMo xV1-xO3+δ samples are single phase perovskite-type solid solutions. The surface area (BET between 2.5 - 5.0 m²/g (x = 0.1 and 1.0 respectively increases with increasing Mo ratio in the samples. They show high purity, good chemical homogeneity, and lower calcinations temperatures as compared with the solid-state chemistry route. SEM coupled to EDS and thermogravimetric analysis/differential thermal analyses (TGA/DTA have been carried out in order to evaluate the homogeneity of the catalyst. Finally, the experimental studies show that the calcination temperature and Mo content exhibited a significant influence on catalytic activity. Among the LaMo xV1-xO3+δ samples, LaMo0.7V0.3O4.2 showed the best catalytic activity for the topic reaction and the best activity and stability for ethane reforming at 850ºC under 8 bar.

  19. Dichloromethane and carbon monoxide inhalation: carboxyhemoglobin addition, and drug metabolizing enzymes in rat

    Energy Technology Data Exchange (ETDEWEB)

    Kurppa, K.; Kivistoe, H.; Vainio, H.

    1981-09-01

    Male Wistar rats were exposed for 3 h to 100 ppm CO, 1,000 ppm dichloromethane, or to their combination. Exposure to dichloromethane alone or in combination with CO doubled the ethoxycoumarin O-deethylase activity in the kidney microsomes but not in the liver. An additive effect on blood COHb concentration by simultaneous exposure to CO and dichloromethane was observed. The mechanism of the additive effect is discussed.

  20. Microwave Catalytic Oxidation of Hydrocarbons in Aqueous Solutions

    National Research Council Canada - National Science Library

    Cha, Chang

    2003-01-01

    .... A sufficient amount of experimental work has been completed evaluating the performance of the microwave catalytic oxidation process and determining the effect of different operating parameters...

  1. Catalytic Oxidation of Mustard Simulants in Basic Solution

    National Research Council Canada - National Science Library

    Richardson, David

    2002-01-01

    .... Variation of bicarbonate source and the cosolvent can allow optimization of substrate solubility and oxidation rates for applications in chemical warfare agent decontamination, Use of surfactants...

  2. The kinetics of oxidation of bilirubin and ascorbic acid in solution

    Science.gov (United States)

    Solomonov, A. V.; Rumyantsev, E. V.; Kochergin, B. A.; Antina, E. V.

    2012-07-01

    The results of a comparative study of the oxidation of bilirubin, ascorbic acid, and their mixture in aqueous solutions under the action of air oxygen and hydrogen peroxide are presented. The observed and true rate constants for the oxidation reactions were determined. It was shown that the oxidation of tetrapyrrole pigment occurred under these conditions bypassing the stage of biliverdin formation to monopyrrole products. Simultaneous oxidation of bilirubin and ascorbic acid was shown to be accompanied by the inhibition of ascorbic acid oxidation by bilirubin, whereas ascorbic acid itself activated the oxidation of bilirubin.

  3. Electrochemical oxidation of organic carbonate based electrolyte solutions at lithium metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, R; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The oxidative decomposition of carbonate based electrolyte solutions at practical lithium metal oxide composite electrodes was studied by differential electrochemical mass spectrometry. For propylene carbonate (PC), CO{sub 2} evolution was detected at LiNiO{sub 2}, LiCoO{sub 2}, and LiMn{sub 2}O{sub 4} composite electrodes. The starting point of gas evolution was 4.2 V vs. Li/Li{sup +} at LiNiO{sub 2}, whereas at LiCoO{sub 2} and LiMn{sub 2}O{sub 4}, CO{sub 2} evolution was only observed above 4.8 V vs. Li/Li{sup +}. In addition, various other volatile electrolyte decomposition products of PC were detected when using LiCoO{sub 2}, LiMn{sub 2}O4, and carbon black electrodes. In ethylene carbonate / dimethyl carbonate, CO{sub 2} evolution was only detected at LiNiO{sub 2} electrodes, again starting at about 4.2 V vs. Li/Li{sup +}. (author) 3 figs., 2 refs.

  4. Recent Advances of Solution-Processed Metal Oxide Thin-Film Transistors.

    Science.gov (United States)

    Xu, Wangying; Li, Hao; Xu, Jian-Bin; Wang, Lei

    2018-03-06

    Solution-processed metal oxide thin-film transistors (TFTs) are considered as one of the most promising transistor technologies for future large-area flexible electronics. This review surveys the recent advances in solution-based oxide TFTs, including n-type oxide semiconductors, oxide dielectrics and p-type oxide semiconductors. Firstly, we provide an introduction on oxide TFTs and the TFT configurations and operating principles. Secondly, we present the recent progress in solution-processed n-type transistors, with a special focus on low-temperature and large-area solution processed approaches as well as novel non-display applications. Thirdly, we give a detailed analysis of the state-of-the-art solution-processed oxide dielectrics for low-voltage electronics. Fourthly, we discuss the recent progress in solution-based p-type oxide semiconductors, which will enable the highly desirable future low-cost large-area complementary circuits. Finally, we draw the conclusions and outline the perspectives over the research field.

  5. Non-uniform Solute Segregation at Semi-Coherent Metal/Oxide Interfaces

    Science.gov (United States)

    Choudhury, Samrat; Aguiar, Jeffery A.; Fluss, Michael J.; Hsiung, Luke L.; Misra, Amit; Uberuaga, Blas P.

    2015-08-01

    The properties and performance of metal/oxide nanocomposites are governed by the structure and chemistry of the metal/oxide interfaces. Here we report an integrated theoretical and experimental study examining the role of interfacial structure, particularly misfit dislocations, on solute segregation at a metal/oxide interface. We find that the local oxygen environment, which varies significantly between the misfit dislocations and the coherent terraces, dictates the segregation tendency of solutes to the interface. Depending on the nature of the solute and local oxygen content, segregation to misfit dislocations can change from attraction to repulsion, revealing the complex interplay between chemistry and structure at metal/oxide interfaces. These findings indicate that the solute chemistry at misfit dislocations is controlled by the dislocation density and oxygen content. Fundamental thermodynamic concepts - the Hume-Rothery rules and the Ellingham diagram - qualitatively predict the segregation behavior of solutes to such interfaces, providing design rules for novel interfacial chemistries.

  6. Study of the removal of cesium from aqueous solutions by graphene oxide

    International Nuclear Information System (INIS)

    Bueno, Vanessa N.; Rodrigues, Debora F.; Vitta, Patricia B. Di

    2013-01-01

    Graphene oxide, used in this work, was synthesized from the oxidation of graphite by Hummer method. The experiments were performed in batch and analyzed for the following parameters: contact time, pH, cesium ion concentration in aqueous solution and removing capacity of the graphene oxide. After the experiments the samples were vacuum filtered and the remaining cesium in solution was quantified by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The equilibrium was reached after 60 minutes of contact in neutral solution. The percentage of removal was around 80%

  7. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    OpenAIRE

    Naofumi Uekawa; Naoya Endo; Keisuke Ishii; Takashi Kojima; Kazuyuki Kakegawa

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very...

  8. Synthesis of calcium carbonate in alkali solution based on graphene oxide and reduced graphene oxide

    Science.gov (United States)

    Yaseen, Sarah Abduljabbar; Yiseen, Ghadah Abdaljabar; Li, Zongjin

    2018-06-01

    This paper reports a new approach of producing CaCO3 particles in alkali solution. CaCO3 particles with pure calcite structure were obtained from the reaction of water-dispersed graphene oxide (GO) or reduced graphene oxide (rGO) with either Ca(OH)2 or CaO. In Fourier Transform Infrared (FTIR) spectra, the pure calcite structure was demonstrated by fundamental bands at 1425 (ν3), 873 (ν2), and 712 cm-1 (ν4). The Raman spectra showed the characteristic peak of calcite structure at 1085 cm-1 (ν1). X-ray diffraction pattern (XRD) and X-ray photoelectron spectroscopy (XPS) analyses further confirmed that only the pure calcite phase of CaCO3 was formed in both synthesis approaches. Scanning electron microscopy (SEM), Energy dispersive X-ray analyzer (EDX), and High-resolution transmission electron microscopy (HRTEM) also confirmed that distorted cubic and rhombic calcite particles were obtained with GO, while the pine flower-like and flower-like particles were obtained with rGO, and the average crystallite sizes varied from 26 to 44 nm. The mechanism of the reaction was investigated and it was found that the decomposition of oxygen functional groups on the surface of GO or rGO in certain alkaline media to release CO, CO2, and water was a key process as the released CO2 further reacted with OH- and Ca2+ to form CaCO3. This demonstrated that both GO and rGO could be used as main reactants for the synthesis of calcite.

  9. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  10. Soft solution synthesis and intense visible photoluminescence of lamellar zinc oxide hybrids

    International Nuclear Information System (INIS)

    Sağlam, Özge

    2013-01-01

    Graphical abstract: -- In this study, we demonstrate the synthesis of layered zinc oxide films intercalated with dodecyl sulphate ions by a simple soft solution process. The presence of potassium (K + ) and lithium (Li + ) ions in the precursor solution of layered zinc hydroxide resulted in lamellar hybrid zinc oxide films instead of layered zinc hydroxides. On the other hand, the addition of nickel phthalocyanine induces zinc hydroxide host layers which exhibit an intense blue emission. This is also promoted by K + and Li + ions

  11. [Ultrasound induced the formation of nitric oxide and nitrosonium ions in water and aqueous solutions].

    Science.gov (United States)

    Stepuro, I I; Adamchuk, R I; Stepuro, V I

    2004-01-01

    Nitric oxide, nitrosonium ions, nitrites, and nitrates are formed in water saturated with air under the action of ultrasound. Nitrosonium ions react with water and hydrogen peroxide to form nitrites and nitrates in sonicated solution, correspondingly. Nitric oxide is practically completely released from sonicated water into the atmosphere and reacts with air oxygen, forming NOx compounds. The oxidation of nitric oxide in aqueous medium by hydroxyl radicals and dissolved oxygen is a minor route of the formation of nitrites and nitrates in ultrasonic field.

  12. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19). Application of dynamic mean-field density functional theory

    NARCIS (Netherlands)

    van Vlimmeren, BAC; Maurits, NM; Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM

    1999-01-01

    We simulate the microphase separation dynamics of aqueous solutions of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19) by a dynamic variant of mean-field density functional theory for

  13. Kinetics of transuranium element oxidation-reduction reactions in solution

    International Nuclear Information System (INIS)

    Gourisse, D.

    1966-09-01

    A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author) [fr

  14. Protonation enhancement by dichloromethane doping in low-pressure photoionization.

    Science.gov (United States)

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-12-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH 2 Cl 2 ) doping. CH 2 Cl 2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500-1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH 2 Cl 2 , meanwhile CH 2 Cl 2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization.

  15. Modified rotating biological contactor for removal of dichloromethane vapours.

    Science.gov (United States)

    Ravi, R; Philip, Ligy; Swaminathan, T

    2015-01-01

    Bioreactors are used for the treatment of waste gas and odour that has gained much acceptance in the recent years to treat volatile organic compounds (VOCs). The different types of bioreactors (biofilter, biotrickling filter and bioscrubber) have been used for waste gas treatment. Each of these reactors has some advantages and some limitations. Though biodegradation is the main process for the removal of the pollutants, the mechanisms of removal and the microbial communities may differ among these bioreactors. Consequently, their performance or removal efficiency may also be different. Clogging of reactor and pressure drop are the main problems. In this study attempts are made to use the principle of rotating biological contactor (RBC) used for wastewater treatment for the removal of VOC. To overcome the above problem the RBC is modified which is suitable for the treatment of VOC (dichloromethane, DCM). DCM is harmful to human health and hazardous to the atmospheric environment. Modified RBC had no clogging problems and no pressure drop. So, it can handle the pollutant load for a longer period of time. A maximum elimination capacity of 25.7 g/m3 h has been achieved in this study for the DCM inlet load of 58 g/m3 h. The average biofilm thickness is 1 mm. The transient behaviour of the modified RBC treating DCM was investigated. The modified RBC is able to handle shutdown, restart and shock loading operations.

  16. Chronic effects of dichloromethane on amino acids, glutathione and phosphoethanolamine in gerbil brain

    Energy Technology Data Exchange (ETDEWEB)

    Briving, C.; Hamberger, A.; Kjellstrand, P.; Rosengren, L.; Karlsson, J.E.; Haglid, K.G.

    1986-06-01

    Mongolian gerbils were exposed to dichloromethane for three months by continuous inhalation at 210 ppm. Total free tissue amino acids, glutathione, and phosphoethanolamine were determined in the vermis posterior of the cerebellum and the frontal cerebral cortex. These two brain areas were chosen because humans occupationally exposed to dichloromethane have shown abnormalities in the electroencephalogram of the frontal part of the cerebral cortex. This study showed that long-term exposure of gerbils to dichloromethane (210 ppm) for three months leads to decreased levels of glutamate, gamma-aminobutyric acid, and phosphoethanolamine in the frontal cerebral cortex, while glutamine and gamma-aminobutyric acid are elevated in the posterior cerebellar vermis.

  17. Formation and dissolution of the anodic oxide film on zirconium in alcoholic aqueous solutions

    International Nuclear Information System (INIS)

    Mogoda, A.S.

    1995-01-01

    The dissolution behavior of the anodic oxide film formed in alcoholic aqueous solutions was studied. Results indicated the dissolution mechanism of the duplex oxide film followed a zero-order rate equation. The increase in methanol concentration in the formation medium (phosphoric acid [H 3 PO 4 ]) resulted in formation of an oxide film that incorporated little phosphate ion and that dissolved at a low rate. The dissolution rate of the oxide film decreased with increasing methanol concentration in the dissolution medium. This was attributed to the increase in the viscosity of the medium, which led to a decrease in the diffusion coefficient of the dissolution product of the zirconium oxide film. Dissolution of the anodic oxide film also was investigated as a function of the chain length of alcohols

  18. Low-temperature solution-processed zinc oxide field effect transistor by blending zinc hydroxide and zinc oxide nanoparticle in aqueous solutions

    Science.gov (United States)

    Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee

    2018-05-01

    We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.

  19. Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Ishan; Deepak, E-mail: saboo@iitk.ac.in

    2017-04-15

    Highlights: • Both n and p-type semiconductors are solution processed. • Temperature compatibility with flexible substrates such as polyimide. • Compatibility of p-type film (CuO) on n-type film (IZO). • Diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. • Construction of band alignment using XPS. - Abstract: Printed electronics on flexible substrates requires low temperature and solution processed active inks. With n-type indium-gallium-zinc oxide (IGZO) based electronics maturing for thin film transistor (TFT), we here demonstrate its heterojunction diode with p-copper oxide, prepared by sol-gel method and processed at temperatures compatible with polyimide substrates. The phase obtained for copper oxide is CuO. When coated on n-type oxide, it is prone to develop morphological features, which are minimized by annealing treatment. Diodes of p-CuO films with IGZO are of poor quality due to its high resistivity while, conducting indium-zinc oxide (IZO) films yielded good diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. A detailed measurement at the interface by X-ray photoelectron spectroscopy and optical absorption ascertained the band alignment to be of staggered type. Consistently, the current in the diode is established to be due to electrons tunnelling from n-IZO to p-CuO.

  20. High performance solution processed zirconium oxide gate dielectric appropriate for low temperature device application

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Musarrat; Nguyen, Manh-Cuong; Kim, Hyojin; You, Seung-Won; Jeon, Yoon-Seok; Tong, Duc-Tai; Lee, Dong-Hwi; Jeong, Jae Kyeong; Choi, Rino, E-mail: rino.choi@inha.ac.kr

    2015-08-31

    This paper reports a solution processed electrical device with zirconium oxide gate dielectric that was fabricated at a low enough temperature appropriate for flexible electronics. Both inorganic dielectric and channel materials were synthesized in the same organic solvent. The dielectric constant achieved was 13 at 250 °C with a reasonably low leakage current. The bottom gate transistor devices showed the highest mobility of 75 cm{sup 2}/V s. The device is operated at low voltage with high-k dielectric with excellent transconductance and low threshold voltage. Overall, the results highlight the potential of low temperature solution based deposition in fabricating more complicated circuits for a range of applications. - Highlights: • We develop a low temperature inorganic dielectric deposition process. • We fabricate oxide semiconductor channel devices using all-solution processes. • Same solvent is used for dielectric and oxide semiconductor deposition.

  1. Removal of radionuclides from partitioning waste solutions by adsorption and catalytic oxidation methods

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Isao; Yamaguchi, Isoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kubota, Masumitsu [Research Organization for Information Science and Technology (RIST), Tokai, Ibaraki (Japan)

    2000-09-01

    Adsorption of radionuclides with inorganic ion exchangers and catalytic oxidation of a complexant were studied for the decontamination of waste solutions generated in past partitioning tests with high-level liquid waste. Granulated ferrocyanide and titanic acid were used for adsorption of Cs and Sr, respectively, from an alkaline solution resulting from direct neutralization of an acidic waste solution. Both Na and Ba inhibited adsorption of Sr but Na did not that of Cs. These exchangers adsorbed Cs and Sr at low concentration with distribution coefficients of more than 10{sup 4}ml/g from 2M Na solution of pH11. Overall decontamination factors (DFs) of Cs and total {beta} nuclides exceeded 10{sup 5} and 10{sup 3}, respectively, at the neutralization-adsorption step of actual waste solutions free from a complexant. The DF of total {alpha} nuclides was less than 10{sup 3} for a waste solution containing diethylenetriaminepentaacetic acid (DTPA). DTPA was rapidly oxidized by nitric acid in the presence of a platinum catalyst, and radionuclides were removed as precipitates by neutralization of the resultant solution. The DF of {alpha} nuclides increased to 8x10{sup 4} by addition of the oxidation step. The DFs of Sb and Co were quite low through the adsorption step. A synthesized Ti-base exchanger (PTC) could remove Sb with the DF of more than 4x10{sup 3}. (author)

  2. Isolation and identification of euphol and ß-sitosterol from the dichloromethane extracts of Synadenium glaucescens

    CSIR Research Space (South Africa)

    Nyigo, VA

    2016-06-01

    Full Text Available Purification of dichloromethane extract from root barks and leaves of Synadenium glaucescens respectively resulted into the isolation of two compounds namely Euphol and ß-sitosterol. Chemical structures were established mainly by using (sup1)H...

  3. Evaluation of effects of dichloromethane fraction from Platonia insignis on pilocarpine-induced seizures

    Directory of Open Access Journals (Sweden)

    Joaquim S. da Costa Júnior

    2011-09-01

    Full Text Available The objective of present study was to evaluate the antioxidant and anticonvulsant activities of dichloromethane fraction (DMF from Platonia insignis Mart., Clusiaceae. The DMF from P. insignis (2 mg/kg was tested by intraperitoneal (i.p. to evaluate effects on lipid peroxidation level, nitrite formation, as well as on locomotor and anticonvulsant activities. Wistar rats were treated with, (saline/Tween 80 0.5%, i.p., control group, DMF (2 mg/kg, i.p., DMF group, pilocarpine (400 mg/kg, i.p., P400 group, or the combination of DMF (2 mg/kg, i.p. and pilocarpine (400 mg/kg, i.p., DMF plus P400. After the treatments all groups were observed for 24 h. In P400 group rats there was a decrease in the motor activity when compared with control group. In DMF plus P400 co-administered rats was observed an increase in motor activity when compared with P400 group. In P400 group rats there was a significant increase in lipid peroxidation and nitrite levels. In DMF plus P400 co-administered rats, antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content after seizures. Previous findings strongly support the hypothesis that oxidative stress occurs in rat striatum during pilocarpine-induced seizures, and our results imply that strong neuprotective effect on this brain region could be achieved using DMF from P. insignis.

  4. Comparative ion insertion study into a nanostructured vanadium oxide in aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Q.; Ren, S. L.; Zukowski, J.; Pomeroy, M.; Soghomonian, V., E-mail: soghomon@vt.edu [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2014-07-07

    We present a comparative study for the electrochemical insertion of different cations into a nanostructured vanadium oxide material. The oxide is hydrothemally synthesized and electrically characterized by variable temperature measurements. The electrochemical reactions are performed in aqueous chloride solutions of lithium, sodium, potassium, and ammonium, and the electrochemical behavior of various cycles are correlated with visual changes in the vanadium oxide nanosheets as observed by scanning electron microscopy. We note an increase in the specific charge per cycle in the cases of sodium and ammonium ions only, correlated with minimal physical changes to the nanosheets. The differing behavior of the various ions has implications for their use in electrical energy storage applications.

  5. Isotopic exchange rate of sodium ions between hydrous metal oxides and aqueous solutions

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamazaki, Hiromichi

    1991-01-01

    To elucidate the kinetics of ion-exchange reaction on hydrous metal oxide, the isotopic exchange rates of sodium ions between hydrous metal oxides such as hydrous tin (IV), niobium (V), zirconium (IV) and titanium (IV) oxides, and aqueous solutions were measured radiochemically and compared with each other. The rate of reaction cannot be understood by an unified view since the rate controlling step differs with the kind of exchangers. The rate constants relevant to each exchanger such as diffusion constants and their activation energies were also determined. (author)

  6. Thermal expansion studies on uranium-neodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Venkata Krishnan, R.; Antony, M.P.; Nagarajan, K.

    2012-01-01

    Uranium-Neodymium mixed oxides solid solutions (U 1-y Nd y ) O 2 (y=0.2-0.95) were prepared by combustion synthesis using citric acid as fuel. Structural characterization and computation of lattice parameter was carried out from room temperature X-ray diffraction measurements. Single-phase fluorite structure was observed up to y=0.80. For solid solutions with y>0.80 additional Nd 2 O 3 lines were visible

  7. Investigations on the oxidation of nitric acid plutonium solutions with ozone

    International Nuclear Information System (INIS)

    Boehm, M.

    1983-01-01

    The reaction of ozone with nitric acid Pu solutions was studied as a function of reaction time, acid concentration and Pu concentration. Strong nitric acid Pu solutions are important in nuclear fuel element production and reprocessing. The Pu must be converted into hexavalent Pu before precipitation from the homogeneous solution together with uranium-IV, ammonia and CO 2 in the form of ammonium uranyl/plutonyl carbonate (AUPuC). Formation of a solid phase during ozonation was observed for the first time. The proneness to solidification increases with incrasing plutonium concentrations and with decreasing acid concentrations. If the formation of a solid phase during ozonation of nitric acid Pu solutions cannot be prevented, the PU-IV oxidation process described is unsuitable for industrial purposes as Pu solutions in industrial processes have much higher concentrations than the solutions used in the present investigation. (orig./EF) [de

  8. Large-area graphene films by simple solution casting of edge-selectively functionalized graphite.

    Science.gov (United States)

    Bae, Seo-Yoon; Jeon, In-Yup; Yang, Jieun; Park, Noejung; Shin, Hyeon Suk; Park, Sungjin; Ruoff, Rodney S; Dai, Liming; Baek, Jong-Beom

    2011-06-28

    We report edge-selective functionalization of graphite (EFG) for the production of large-area uniform graphene films by simply solution-casting EFG dispersions in dichloromethane on silicon oxide substrates, followed by annealing. The resultant graphene films show ambipolar transport properties with sheet resistances of 0.52-3.11 kΩ/sq at 63-90% optical transmittance. EFG allows solution processing methods for the scalable production of electrically conductive, optically transparent, and mechanically robust flexible graphene films for use in practice.

  9. Thermodynamic study of the solubility of ibuprofen in acetone and dichloromethane

    Directory of Open Access Journals (Sweden)

    Diana Marcela Aragón

    2010-06-01

    Full Text Available Thermodynamic functions, Gibbs energy, enthalpy and entropy for the solution processes of ibuprofen (IBP in acetone and dichloromethane (DCM were calculated from solubility values obtained at temperatures ranging from 293.15 K to 313.15 K. The respective thermodynamic functions for mixing and solvation processes as well as the activity coefficients for the solute were calculated. IBP solubility was high and proved similar in both solvents but was greater in DCM than acetone. In addition, the thermodynamic quantities for the transfer process of this drug from cyclohexane to the organic solvents were also calculated in order to estimate the contributions of hydrogen-bonds or of other dipolar interactions. The results were discussed in terms of solute-solvent interactions.As funções termodinâmicas, energia de Gibbs, entalpia e entropia dos processos de solução de ibuprofeno (IBP em acetona e em diclorometano (DCM foram calculadas a partir dos valores de solubilidade, obtidos em intervalos de temperatura de 293,15 K a 313,15 K. As funções termodinâmicas respectivas para os processos de mistura e solvatação e os coeficientes de atividade para o soluto também foram calculados. A solubilidade do IBP foi grande e semelhante em ambos os solventes, mas, maior em DCM do que em acetona. Em adição, as quantidades termodinâmicas relativas ao processo de transferência desse fármaco do cicloexano para os solventes orgânicos foram, também, calculadas com o objetivo de estimar as contribuições devidas às ligações de hidrogênio ou a outras interações dipolares. Os resultados foram discutidos nos termos das interações soluto-solvente.

  10. Effective adsorption and collection of cesium from aqueous solution using graphene oxide grown on porous alumina

    Science.gov (United States)

    Entani, Shiro; Honda, Mitsunori; Shimoyama, Iwao; Li, Songtian; Naramoto, Hiroshi; Yaita, Tsuyoshi; Sakai, Seiji

    2018-04-01

    Graphene oxide (GO) with a large surface area was synthesized by the direct growth of GO on porous alumina using chemical vapor deposition to study the Cs adsorption mechanism in aqueous solutions. Electronic structure analysis employing in situ near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy measurements clarifies the Cs atoms bond via oxygen functional groups on GO in the aqueous solution. The Cs adsorption capacity was found to be as high as 650-850 mg g-1, which indicates that the GO/porous alumina acts as an effective adsorbent with high adsorption efficiency for radioactive nuclides in aqueous solutions.

  11. All-solution processed polymer light-emitting diodes with air stable metal-oxide electrodes

    NARCIS (Netherlands)

    Bruyn, P. de; Moet, D.J.D.; Blom, P.W.M.

    2012-01-01

    We present an all-solution processed polymer light-emitting diode (PLED) using spincoated zinc oxide (ZnO) and vanadium pentoxide (V2O5) as electron and hole injecting contact, respectively. We compare the performance of these devices to the standard PLED design using PEDOT:PSS as anode and Ba/Al as

  12. Investigation of the oxidation states of Pu isotopes in a hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.H. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, P. O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)], E-mail: mhlee@kaeri.re.kr; Kim, J.Y.; Kim, W.H.; Jung, E.C.; Jee, K.Y. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, P. O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2008-12-15

    The characteristics of the oxidation states of Pu in a hydrochloric acid solution were investigated and the results were applied to a separating of Pu isotopes from IAEA reference soils. The oxidation states of Pu(III) and Pu(IV) were prepared by adding hydroxylamine hydrochloride and sodium nitrite to a Pu stock solution, respectively. Also, the oxidation state of Pu(VI) was adjusted with concentrated HNO{sub 3} and HClO{sub 4}. The stability of the various oxidation states of plutonium in a HCl solution with elapsed time after preparation were found to be in the following order: Pu(III){approx}Pu(VI)>Pu(IV)>Pu(V). The chemical recoveries of Pu(IV) in a 9 M HCl solution with an anion exchange resin were similar to those of Pu(VI). This method for the determination of Pu isotopes with an anion exchange resin in a 9 M HCl medium was applied to IAEA reference soils where the activity concentrations of {sup 239,240}Pu and {sup 238}Pu in IAEA-375 and IAEA-326 were consistent with the reference values reported by the IAEA.

  13. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  14. Nanofibrous web quality in dependence on the preparation of poly(ethylene oxide) aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Peer, Petra; Filip, Petr

    2017-01-01

    Roč. 108, č. 12 (2017), s. 2021-2026 ISSN 0040-5000 R&D Projects: GA ČR GA17-26808S Institutional support: RVO:67985874 Keywords : nanofibrous web * poly(ethylene oxide) solution * magnetic stirring * vibrational shaking Subject RIV: BK - Fluid Dynamics OBOR OECD: Polymer science Impact factor: 1.007, year: 2016

  15. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution

    KAUST Repository

    Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A.; Anthopoulos, Thomas D.

    2017-01-01

    with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors

  16. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    International Nuclear Information System (INIS)

    Hung, C.-M.

    2009-01-01

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H 2 PtCl 6 , Pd(NO 3 ) 3 and Rh(NO 3 ) 3 . Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h -1 in the wet catalytic processes

  17. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.-M. [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)], E-mail: hungcm1031@gmail.com

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H{sub 2}PtCl{sub 6}, Pd(NO{sub 3}){sub 3} and Rh(NO{sub 3}){sub 3}. Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h{sup -1} in the wet catalytic processes.

  18. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  19. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).

  20. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chang-Mao, E-mail: hungcm1031@gmail.com [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h{sup -1}.

  1. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    International Nuclear Information System (INIS)

    Hung, Chang-Mao

    2009-01-01

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h -1 .

  2. Radiolysis of Aqueous Benzene Solutions in the Presence of Inorganic Oxides

    International Nuclear Information System (INIS)

    Christensen, H.

    1964-07-01

    Aqueous 0.1 N alkaline solutions of benzene have been irradiated with Co γ-rays in the presence of various inorganic oxides. The addition to the solution of silica gel, copper(ll) oxide and chromium(lll) oxide did not increase the yield of phenol. When chromium(lll) oxide gel, zinc oxide or titanium dioxide were added, we obtained a 9 - 13 per cent increase, and the addition of uranium dioxide and thorium dioxide caused a 31 and 39 per cent increase respectively. The increase of the phenol yield was related to the energy absorbed by the solid, and G ox values defined in this way were calculated as follows: G ZnO = 4.0, G TiO 2 = 3.7, a G UO 2 = 6.4, G ThO 2 = 8.0. The specific surface areas of the oxides were determined and the possibility that the increase of the phenol yield may be dependent on this quantity is discussed

  3. Radiolysis of Aqueous Benzene Solutions in the Presence of Inorganic Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H

    1964-07-15

    Aqueous 0.1 N alkaline solutions of benzene have been irradiated with Co {gamma}-rays in the presence of various inorganic oxides. The addition to the solution of silica gel, copper(ll) oxide and chromium(lll) oxide did not increase the yield of phenol. When chromium(lll) oxide gel, zinc oxide or titanium dioxide were added, we obtained a 9 - 13 per cent increase, and the addition of uranium dioxide and thorium dioxide caused a 31 and 39 per cent increase respectively. The increase of the phenol yield was related to the energy absorbed by the solid, and G{sub ox} values defined in this way were calculated as follows: G{sub ZnO} = 4.0, G{sub TiO{sub 2}} = 3.7, a G{sub UO{sub 2}} = 6.4, G{sub ThO{sub 2}} = 8.0. The specific surface areas of the oxides were determined and the possibility that the increase of the phenol yield may be dependent on this quantity is discussed.

  4. The calcium oxide influence on formation of manganese, calcium pyrovanadate solid solutions

    International Nuclear Information System (INIS)

    Vatolin, N.A.; Volkova, P.I.; Sapozhnikova, T.V.; Ovchinnikova, L.A.

    1988-01-01

    The X-ray graphic, derivatographic, microscopic and chemical methods are used to study solid solutions of manganese, calcium pyrovanadates containing 1-10 mass% CaO and the products of interaction of reprocessing charges of vanadium-containing converter slags intended for he formation of manganese and calcium pyrovanadates with additions of calcium oxide within 10-90 mass%. It is established that in the case of 1-6 mass% CaO content in manganese pyrovanadate solid interstitial solutions appear, while at 6-20 mass% CaO - solid substitution solutions form. The results of calculating elementary cell parameters as well as melting temperatures and pyrovanadate solid solution solubility depending on CaO content are presented. The best solubility of introduction solid solutions during vanadium extraction according to the lime technology is found

  5. Oxidation of nitride films in aqueous solution: Correlation between surface analysis and electrochemical studies

    International Nuclear Information System (INIS)

    Brown, R.; Alias, M.N.

    1994-01-01

    Ac impedance and dc polarization tests of 304 stainless steels coated by cathodic arc plasma deposition (CAPD) titanium nitride and zirconium nitride were conducted in aqueous chloride solution. Cyclic polarization data suggested passive films were formed over the nitride coatings which are most likely hydrated titanium oxide and zirconium oxides. ESCA analysis of fresh samples and samples exposed during impedance tests indicated a layer rich in oxygen over the ZrN coating after exposure but not over TiN coating. Chemical shifts in the Zr 3d 5/2 core electrons indicate transformation from ZrN to its oxide; the shifts in Ti 2P 3/2 did not support the change from TiN to its oxide. The influence of these shifts on corrosion protection is documented

  6. Magnetic graphene oxide for adsorption of organic dyes from aqueous solution

    Science.gov (United States)

    Drashya, Lal, Shyam; Hooda, Sunita

    2018-05-01

    Graphene oxide (GO), a 2-D carbon nanomaterial, large surface area, oxygen-containing groups (like: hydroxyl, epoxy and carboxyl) and excellent water dispersibility due to it is good adsorbent dye removal from pollutant water1. But it's difficult to separate GO from water after adsorption. Therefore, Iron oxide was introduced in Graphene oxide by decorating method to make separation more efficient2. We present herein a one step process to prepare Magnetic Graphene oxide (MGO). The Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Raman Spectroscopy characterized the chemical structure of the MGO composite. The adsorption of dyes onto MGO was studied in relation to initial concentration of Dyes, contact time, adsorbent dose, temperature and pH value of solution. We have studied adsorption capacity of different dyes (Methylene blue and crystal violet) by MGO.

  7. 9% Cr steel high temperature oxidation. Solutions investigated for improving corrosion resistance of the steel

    Energy Technology Data Exchange (ETDEWEB)

    Evin, Harold Nicolas; Heintz, Olivier; Chevalier, Sebastien [UMR 5209 CNRS-Bourgogne Univ. (France). Lab. Interdisciplinaire Carnot de Bourgogne; Foejer, Cecilia; Jakani, Saad; Dhont, Annick; Claessens, Serge [OCAS N.V. ArcelorMittal Global R and D, Gent (Belgium)

    2010-07-01

    The improvement of high temperature oxidation resistance of low chromium content steels, such as T/P91, is of great interest in regards with their application in thermal power generating plants. Indeed, they possess good creep properties, but are facing their limits of use at temperature higher than 600 C, due to accelerated corrosion phenomena. Good knowledge of the mechanisms involved during their oxidation process is needed to prevent the degradation of the materials and to extend life time of the power plants components. Oxide layers thermally grown, on 9% Cr steels (provided by OCAS N.V), during isothermal tests between 600 C and 750 C in laboratory air under atmospheric pressure were investigated, by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The oxidation behaviour appeared very limited at 750 C, due to the presence of a breakaway, which can be linked to iron porous oxide grown over the surface of the samples. ''In situ'' X-ray Photoelectron spectroscopy (XPS) analyses were performed in air at 600 C after short exposures (between 5 min and 25 h). A complex mixture of iron oxide, Cr{sub 2}O{sub 3} and Cr (VI) species were characterized in the scales. The in-situ analyses were compared and related to XPS analyses performed on thick oxide scales formed on samples oxidized in air at 600 C for 100h. An oxidation mechanism is then proposed to understand the oxide scale growth in the temperature range 600 - 750 C. The second step of this study consists in improving the high temperature corrosion resistance of these steels without modifying their mechanical properties. Thus several solutions were investigated such as MOCVD coatings, pack cementation coatings, and tested in cycle conditions prior. (orig.)

  8. Reductive and oxidative reactions with inorganic colloids in aqueous solution initiated by ultrasound

    International Nuclear Information System (INIS)

    Mulvaney, P.C.; Sostaric, J.Z.; Ashokkumar, M.; Grieser, F.

    1998-01-01

    Full text: The absorption of ultrasound in an aqueous solution can lead to the formation of H and OH radicals which can act as redox species or react with solutes to produce secondary radicals which themselves may participate in electron transfer reactions. The radical formation occurs through the growth then rapid collapse of microbubbles a process that produces localised hot spots with an internal temperature of the order of 5000 K. We have examined two colloidal systems one involving the reductive dissolution of MnO 2 colloids and the other the oxidative dissolution of CdS colloids. In the case of MnO 2 dissolution we found that the reduction of the colloidal metal oxide was considerably enhanced in the presence of aliphatic alcohols in solution and the longer the alkyl chain length on the alcohol the greater its effect. The dissolution of CdS colloids which we ascribe to the reaction of H 2 O 2 and O 2 - with the metal sulfide lo yield Cd 2+ and S could be significantly retarded by the presence of excess S 2- in solution. The mechanisms involved in these two dissolution processes will he presented. Our results clearly show that sonochemical reactions are quite efficient in colloidal solutions and this fact needs to be considered when using sonication to disperse colloidal material in solution, a common practice among colloid chemists

  9. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    Science.gov (United States)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  10. Water activity of aqueous solutions of ethylene oxide-propylene oxide block copolymers and maltodextrins

    Directory of Open Access Journals (Sweden)

    N. D. D. Carareto

    2010-03-01

    Full Text Available The water activity of aqueous solutions of EO-PO block copolymers of six different molar masses and EO/PO ratios and of maltodextrins of three different molar masses was determined at 298.15 K. The results showed that these aqueous solutions present a negative deviation from Raoult's law. The Flory-Huggins and UNIFAC excess Gibbs energy models were employed to model the experimental data. While a good agreement was obtained with the Flory-Huggins equation, discrepancies were observed when predicting the experimental behavior with the UNIFAC model. The water activities of ternary systems formed by a synthetic polymer, maltodextrin and water were also measured and used to test the predictive capability of both models.

  11. Mechanism of iron catalyzed oxidation of SO/sub 2/ in oxygenated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, J

    1975-01-01

    Previous experimental work concerning the iron catalyzed oxidation of SO/sub 2/ in oxygenated acid solutions failed to provide a consistent reaction mechanism and rate expression. As iron is one of the main constituents of urban atmospheric aerosols, the rate studies of heterogeneous sulphate formation in polluted city air were hampered. The present study develops a new theory for the iron catalyzed oxidation of SO/sub 2/. The resulting new rate expression is general enough to account for the results of previous experimental investigations that were performed in different ranges of SO/sub 2/ and catalyst concentrations.

  12. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    Science.gov (United States)

    Basirun, Wan J.; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R.; Ebadi, Mehdi

    2013-09-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  13. Chlorination and chloramination of aminophenols in aqueous solution: oxidant demand and by-product formation.

    Science.gov (United States)

    Mehrez, O Abou; Dossier-Berne, F; Legube, B

    2015-01-01

    Chlorination and monochloramination of aminophenols (AP) were carried out in aqueous solution at 25°C and at pH 8.5. Oxidant demand and disinfection by-product formation were determined in excess of oxidant. Experiments have shown that chlorine consumption of AP was 40-60% higher than monochloramine consumption. Compared with monochloramination, chlorination of AP formed more chloroform and haloacetic acids (HAA). Dichloroacetic acid was the major species of HAA. Chloroform and HAA represented, respectively, only 1-8% and 14-15% of adsorbable organic halides (AOX) by monochloramination but up to 29% and 39% of AOX by chlorination.

  14. Synthesis, characterization and thermal expansion studies on thorium-praseodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Full text: Thorium-praseodymium mixed oxide solid solutions containing 15, 25, 40 and 55 mole percent of praseodymia were synthesized by mixing the solutions of thorium nitrate in water and praseodymium oxide (Pr 6 O 11 ) in conc. HNO 3 . Subsequently, their hydroxides were co-precipitated by the addition of aqueous ammonia. Further the precipitate was dried at 50 deg C, calcined at 600 deg C for 4 hours and sintered at 1200 deg C for 6 h in air. X-ray diffraction measurements were performed for phase identification and lattice parameter derivation. Single-phase fluorite structure was observed for all the compositions. Bulk and theoretical densities of solid solutions were also determined by immersion and X-ray techniques. Thermal expansion coefficients and percentage linear thermal expansion of the solid solutions were determined using high temperature X-ray diffraction technique in the temperature range 300 to 1700 K for the first time. The room temperature lattice constants estimated for above compositions are 0.5578, 0.5565, 0.5545 and 0.5526 nm, respectively. The mean linear thermal expansion coefficients for the solid solutions are 15.48 x 10 -6 K -1 , 18.35 x 10 -6 K -1 , 22.65 x 10 -6 K -1 and 26.95 x 10 -6 K -1 , respectively. The percentage linear thermal expansions in this temperature range are 1.68, 1.89, 2.21 and 2.51 respectively. It is seen that the solid solutions are stable up to 1700 K. It is also seen that the effect and nature of the dopant are the important parameters influencing the thermal expansion of the ThO 2 . The lattice parameter of the solid solutions exhibited a decreasing trend with respect to praseodymia addition. The percentage linear thermal expansion of the solid solutions increases steadily with increasing temperature

  15. Oxidative destruction of ammonia for restoration of uranium solution mining sites

    International Nuclear Information System (INIS)

    Humenick, M.J.; Garwacka, K.

    1984-01-01

    A laboratory experimental research project was conducted to evaluate the use of chlorine for the oxidative destruction of residual ammonia that may remain in ground water after in-situ uranium solution mining operations. The work tested the idea of injecting high strength calcium hypochlorite solution into the mining zone to convert ammonia to nitrogen gas as a final cleanup process for ammonia removal from the ground water system. This paper details ammonia removal efficiency as a function of chlorine dose, reactant, and product material balances, and how the concept may be used as a final ground water restoration process

  16. Oxidative destruction of ammonia for restoration of uranium solution mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Humenick, M.J.; Garwacka, K.

    1984-02-01

    A laboratory experimental research project was conducted to evaluate the use of chlorine for the oxidative destruction of residual ammonia that may remain in ground water after in-situ uranium solution mining operations. The work tested the idea of injecting high strength calcium hypochlorite solution into the mining zone to convert ammonia to nitrogen gas as a final cleanup process for ammonia removal from the ground water system. This paper details ammonia removal efficiency as a function of chlorine dose, reactant, and product material balances, and how the concept may be used as a final ground water restoration process.

  17. Oxidative destruction of ammonia for restoration of uranium solution mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Humenick, M.J.; Garwacka, K.

    1984-01-01

    A laboratory experimental research project was conducted to evaluate the use of chlorine for the oxidative destruction of residual ammonia that may remain in ground water after in-situ uranium solution mining operations. The work tested the idea of injecting high strength calcium hypochlorite solution into the mining zone to convert ammonia to nitrogen gas as a final cleanup process for ammonia removal from the ground water system. This paper details ammonia removal efficiency as a function of chlorine dose, reactant, and product material balances, and how the concept may be used as a final ground water restoration process.

  18. Oxidation of ascorbic acid by a (salen)ruthenium(VI) nitrido complex in aqueous solution.

    Science.gov (United States)

    Wang, Qian; Man, Wai-Lun; Lam, William W Y; Lau, Tai-Chu

    2014-12-25

    The oxidation of ascorbic acid (H2A) by [Ru(VI)(N)(L)(MeOH)](+) in aqueous acidic solutions has the following stoichiometry: 2[Ru(VI)(N)] + 3H2A → 2[Ru(III)(NH2-HA)](+) + A. Mechanisms involving HAT/N-rebound at low pH (≤2) and nucleophilic attack at the nitride at high pH (≥5) are proposed.

  19. Electron paramagnetic resonance response and magnetic interactions in ordered solid solutions of lithium nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Azzoni, C.B. [Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, Pavia (Italy); Paleari, A. [Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica, Universita di Milano, Milan (Italy); Massarotti, V.; Capsoni, D. [Dipartimento di Chimica-Fisica, Universita di Pavia, Pavia (Italy)

    1996-09-23

    EPR data of ordered solid solutions of lithium nickel oxides are reported as a function of the lithium content. The features of the signal and the EPR centre density are analysed by a model of dynamical trapping of holes in [(Ni{sup 2+}-O-Ni{sup 2+})-h{sup +}] complexes. The possible origin of the interactions responsible for the magnetic ordering and some features of the transport properties are also discussed. (author)

  20. XPS characterization of the anodic oxide film formed on uranium metal in sodium hydroxide solution

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Guo Huanjun; Wang Qingfu; Zhao Zhengping; Zhong Yongqiang

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) is used to examine the anodic oxide film formed on uranium metal in 0.8 mol/L NaOH solution. The U4f 7/2 fitting spectra suggests that the anodic oxide film is composed of uranium trioxide and a small amount of UO 2+x . Under UHV condition, the U4f peak shifts to the lower binding energy, while a gradual increase in the intensity of U5f peak and the broad of U4f peak are also observed. All of these changes are due to reduction of uranium trioxide in the anodic oxide film. XPS quantitative analysis confirms the occurrence of reduction reaction

  1. A kinetic study of the enhancement of solution chemiluminescence of glyoxylic acid oxidation by manganese species.

    Science.gov (United States)

    Otamonga, Jean-Paul; Abdel-Mageed, Amal; Agater, Irena B; Jewsbury, Roger A

    2015-08-01

    In order to study the mechanism of the enhancement of solution chemiluminescence, the kinetics of the decay of the oxidant and the chemiluminescence emission were followed for oxidations by permanganate, manganese dioxide sol and Mn(3+) (aq) of glyoxylic acid, using stopped-flow spectrophotometry. Results are reported for the glyoxylic acid oxidized under pseudo first-order conditions and in an acidic medium at 25 °C. For permanganate under these conditions, the decay is sigmoidal, consistent with autocatalysis, and for manganese dioxide sol and Mn(3+) it is pseudo first order. The effects of the presence of aqueous formaldehyde and Mn(2+) were observed and a fit to a simple mechanism is discussed. It is concluded that chemiluminescent enhancement in these systems is best explained by reaction kinetics. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Variable valence of praseodymium in rare-earth oxide solid solutions

    International Nuclear Information System (INIS)

    Kravchinskaya, M.V.; Merezhinskii, K.Y.; Tikhonov, P.A.

    1986-01-01

    Solid solutions of elevated praseodymium oxide content have interesting electrical properties, making them the basis for the manufacture of high-temperature electrically conducting materials. Establishment of the composition-structure-valence state relationships enables control of the material properties. The authors performed investigations using a thermogravimetric apparatus with an electronic microbalance of type EM-5-3M, and using x-ray phase analysis of powders (DRON-1 diffractometer, CuK /SUB alpha/ -radiation). The authors also studied the kinetics of praseodymium oxidation with a thermogravimetric apparatus under isothermal conditions. Evaluation of the results with the equation of Kolmogorov, Erofeev, and Avraam indicates that the process is limited by the chemical oxidation of praseodymium and not by diffusion

  3. Methanol oxidation at platinum electrodes in acid solution: comparison between model and real catalysts

    Directory of Open Access Journals (Sweden)

    A. V. TRIPKOVIC

    2006-12-01

    Full Text Available Methanol oxidation in acid solution was studied at platinum single crystals, Pt(hkl, as the model catalyst, and at nanostructural platinum supported on high surface area carbon, Pt/C, as the real catalyst. The linear extrapolation method was used to determine the beginning of hydroxyl anion adsorption. Structural sensitivity of the adsorption was proved and a correlation with the onset of the methanol oxidation current was established at all catalysts. Bisulfate and chloride anions were found to decrease the methanol oxidation rate, but probably did not influence the reaction parth. The specific activity for the reaction increased in the sequence Pt(110 < Pt/C < Pt(111, suggesting that the activity of the supported Pt catalyst can be correlated with the activities of the dominating crystal planes on its surface.

  4. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution.

    Science.gov (United States)

    Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A; Anthopoulos, Thomas D

    2017-03-01

    Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In 2 O 3 /ZnO heterojunction. We find that In 2 O 3 /ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In 2 O 3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In 2 O 3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.

  5. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution

    KAUST Repository

    Faber, Hendrik

    2017-04-28

    Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In2O3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.

  6. Removal of 4-Chlorophenol from Aqueous Solutions Using Graphene Oxide Nanoporous Adsorbent

    Directory of Open Access Journals (Sweden)

    akbar eslami

    2015-03-01

    Full Text Available In this study, graphene oxide was used as a nanostructured adsorbent with properties supposedly better than other common adsorbents to remove 4-chlorophenol from aqueous solutions. For this purpose, graphene oxide was initially synthesized using the Hummer's method and x-ray diffraction and scanning electron microscopy were employed to identify its morphology and structure. The variables involved in the absorption process (including 4-chlorophenol initial concentration, adsorbent dosage, and pH were investigated based on the one-factor-at-a-time method. Eventually, the data were confirmed against the Langmuir and Freundlich isotherms. It was found that the adsorption process reached equilibrium in 20 minutes. A dosage of 0.4 g/L graphene oxide at pH=8 brought about 90% removal of 10 mg/L 4-chlorophenol within 5 minutes. The adsorption isotherm was described well by the Langmuir isotherm model and the values for R2 and RL were recorded as 0.99 for and 0.34, respectively. Being a low cost and highly efficient process, the adsorption process using graphene oxide adsorbent may be recommended for the reduction and elimination of pollutants in the environment, especially those in aqueous solutions.

  7. Kinetics of oxidation of bilirubin and its protein complex by hydrogen peroxide in aqueous solutions

    Science.gov (United States)

    Solomonov, A. V.; Rumyantsev, E. V.; Antina, E. V.

    2010-12-01

    A comparative study of oxidation reactions of bilirubin and its complex with albumin was carried out in aqueous solutions under the action of hydrogen peroxide and molecular oxygen at different pH values. Free radical oxidation of the pigment in both free and bound forms at pH 7.4 was shown not to lead to the formation of biliverdin, but to be associated with the decomposition of the tetrapyrrole chromophore into monopyrrolic products. The effective and true rate constants of the reactions under study were determined. It was assumed that one possible mechanism of the oxidation reaction is associated with the interaction of peroxyl radicals and protons of the NH groups of bilirubin molecules at the limiting stage with the formation of a highly reactive radical intermediate. The binding of bilirubin with albumin was found to result in a considerable reduction in the rate of the oxidation reaction associated with the kinetic manifestation of the protein protection effect. It was found that the autoxidation of bilirubin by molecular oxygen with the formation of biliverdin at the intermediate stage can be observed with an increase in the pH of solutions.

  8. Bulk-heterojunction organic solar cells sandwiched by solution processed molybdenum oxide and titania nanosheet layers

    Science.gov (United States)

    Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi

    2014-02-01

    The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.

  9. Repellent activities of dichloromethane extract of Allium sativum (garlic) (Liliaceae) against Hyalomma rufipes (Acari).

    Science.gov (United States)

    Nchu, Felix; Magano, Solomon R; Eloff, Jacobus N

    2016-12-02

    Dichloromethane (DCM) extract of garlic (Allium sativum Linn.) bulbs was assessed for its repellent effect against the hard tick, Hyalomma rufipes (Acari: Ixodidae) using two tick behavioural bioassays; Type A and Type B repellency bioassays, under laboratory conditions. These bioassays exploit the questing behaviour of H. rufipes, a tick that in nature displays ambush strategy, seeking its host by climbing up on vegetation and attaching to a passing host. One hundred microlitres (100 µL) of the test solution containing DCM extract of garlic bulbs and DCM at concentrations of 0.35%, 0.7% or 1.4% w/v were evaluated. DCM only was used for control. Tick repellency increased significantly (R2 = 0.98) with increasing concentration (40.03% - 86.96%) yielding an EC50 of 0.45% w/v in Type B repellency bioassay. At concentration of 1.4% w/v, the DCM extract of garlic bulbs produced high repellency index of 87% (male ticks) and 87.5% (female ticks) in the Type A repellency bioassay. Only 4% avoidance of male ticks or female ticks was recorded in the Type B repellency bioassay. In the corresponding controls, the mean numbers of non-repelled male or female ticks were 80% and 41 males or 38 females of 50 ticks in the Type A and Type B repellency bioassays, respectively. The variations in the results could be attributed to the difference in tick repellent behaviours that were assessed by the two repellency bioassays; the Type A repellency bioassay assessed repellent effect of garlic extracts without discriminating between deterrence and avoidance whereas the Type B repellency bioassay only assessed avoidance response. Generally, DCM extract of garlic was repellent against H. rufipes, albeit weak tick repellency was obtained in the Type B repellency bioassay. Furthermore, this study established that the tick repellent activity of garlic extracts is predominantly by deterrence.

  10. U(VI) extraction by 8-hydroxyquinoline. A comparison study in ionic liquid and in dichloromethane

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Li-Yong; Shi, Wei-Qun [Chinese Academy of Sciences, Beijing (China). Lab. of Nuclear Energy Chemistry; Liao, Xiang-Hong [Chinese Academy of Sciences, Beijing (China). Lab. of Nuclear Energy Chemistry; East China Institute of Technology, Nanchang (China). School of Nuclear Engineering and Geophysics; Liu, Zhi-Rong [East China Institute of Technology, Nanchang (China). School of Nuclear Engineering and Geophysics; Chai, Zhi-Fang [Chinese Academy of Sciences, Beijing (China). Lab. of Nuclear Energy Chemistry; Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine

    2017-08-01

    Room temperature ionic liquids (RTILs) represent a recent new class of solvents with potential application in liquid/liquid extraction based nuclear fuel reprocessing due to their unique physical and chemical properties. The work herein provides a comparison of U(VI) extraction by 8-hydroxyquinoline (HOX) in a commonly used RTIL, i.e. 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]) and in conventional solvent, i.e. dichloromethane (CH{sub 2}Cl{sub 2}). The effect of HOX concentration, solution acidity and nitrate ions on the extraction were discussed in detail, and the speciation analyses of the extracted U(VI) were performed. One of the main emphasis of this work is the extraction mechanism of U(VI) extracted from aqueous phase into RTILs and conventional solvent. In CH{sub 2}Cl{sub 2}, the extraction occurs through a combination of ion change and neutral complexation, and the extracted complex is proposed as UO{sub 2}(OX){sub 2}HOX. In [C{sub 4}mim][PF{sub 6}], although a cation-change mechanism as previously reported for RTILs-based system was involved, the extracted complex of UO{sub 2}(OX){sub 1.5}(HOX){sub 1.5}(PF6){sub 0.5} gave a clear indication that the usage of HOX as an acidic extractant markedly inhibited the solubility loss of [C{sub 4}mim][PF{sub 6}] during the extraction by leaching H{sup +} to aqueous phase. Moreover, the extracted U(VI) in [C{sub 4}mim][PF{sub 6}] can be easily stripped by using 0.01 M nitric acid, which provides a simple way of the ionic liquid recycling.

  11. New porous titanium–niobium oxide for photocatalytic degradation of bromocresol green dye in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chaleshtori, Maryam Zarei, E-mail: mzarei@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Hosseini, Mahsa; Edalatpour, Roya [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Masud, S.M. Sarif [Department of Chemistry, University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Chianelli, Russell R., E-mail: chianell@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States)

    2013-10-15

    Graphical abstract: The photocatalytic activity of different porous titanium–niobium oxides was evaluated toward degradation of bromocresol green (BG) under UV light. A better catalytic activity was observed for all samples at lower pH. Catalysts have a stronger ability for degradation of BG in acid media than in alkaline media. - Highlights: • Different highly structured titanium–niobium oxides have been prepared using improved methods of synthesis. • Photo-degradation of bromocresol green dye (BG) with nanostructure titanium–niobium oxide catalysts was carried out under UV light. • The photo-catalytic activity of all catalysts was higher in lower pH. • Titanium–niobium oxide catalysts are considerably stable and reusable. - Abstract: In this study, high surface area semiconductors, non porous and porous titanium–niobium oxides derived from KTiNbO{sub 5} were synthesized, characterized and developed for their utility as photocatalysts for decontamination with sunlight. These materials were then used in the photocatalytic degradation of bromocresol green dye (BG) in aqueous solution using UV light and their catalytic activities were evaluated at various pHs. For all catalysts, the photocatalytic degradation of BG was most efficient in acidic solutions. Results show that the new porous oxides have large porous and high surface areas and high catalytic activity. A topotactic dehydration treatment greatly improves catalyst performance at various pHs. Stability and long term activity of porous materials (topo and non-topo) in photocatalysis reactions was also tested. These results suggest that the new materials can be used to efficiently purify contaminated water.

  12. Dissolution of thorium/uranium mixed oxide in nitric acid-hydrofluoric acid solution

    International Nuclear Information System (INIS)

    Filgueiras, S.A.C.

    1984-01-01

    The dissolution process of thorium oxide and mixed uranium-thorium oxide is studied, as a step of the head-end of the fuel reprocessing. An extensive bibliography was analysed, concerning the main aspects of the system, specially the most important process variables. Proposed mechanisms and models for the thorium oxide dissolution are presented. The laboratory tests were performed in two phases: at first, powdered thoria was used as the material to be dissolved. The objective was to know how changes in he concentrations of the dissolvent solution components HNO 3 , HF and Al(NO 3 ) 3 affect the dissolution rate. The tests were planned according to the fractional factorial method. Thes results showed that it is advantageous to work with powdered material, since the reaction occurs rapidly. And, if the Thorex solution (HNO 3 13M, HF 0.05M and Al(NO 3 ) 3 0.10M) is a suitable dissolvent, it was verified that it is possible to reduce the concentration of either nitric or fluoridric acid, without reducing the reaction rate to an undesirable value. It was also observed significant interaction between the components of the dissolvent solution. In the second phase of the tests, (Th, 5%U)O 2 sintered pellets were used. The main goals were to know the pellets dissolution behaviour and to compare the results for different pellets among themselves. It was observed that the metallurgical history of the material strongly influences its dissolution, specially the density and the microstructure. It was also studied how the (Th,U)O 2 mass/Thorex solution volume ratio affects the time needed to obtain an 1 M Th/liter solution. The activation energy for the reaction was obtained. (Author) [pt

  13. Behaviour of zirconium oxidation and is oxide films in alkali halide solutions as studied by electrochemical techniques

    International Nuclear Information System (INIS)

    Saleh, H.E.M.

    1996-01-01

    Study of the properties of Zr electrode and the oxide films that cover the metal surface is of extreme importance due to their wide applications in chemical and nuclear industry. In this thesis the electrochemical behaviour of Zr electrode in alkali halide solutions and with various surface conditions was studied, Also the galvanostatic oxidation of the metal in addition to the open circuit and impedance measurements were employed. Chapter I is a literature survey of the electrochemistry of Zr metal with particular emphasis on the stability and growth process of Zr in different media. Chapter II contains the experimental part, including details of the electrochemical techniques used in the measurements. The electrode impedance was always balanced as a series capacitance Cs and resistance Rs.Chapter III includes the experimental results and discussion. It is divide into sections, A and B. Section A includes the results of some experimental parameters which affect the reactivity of the oxide growth process on the zirconium surface, such as surface pre - treatment, electrolyte composition, the effect of different alkali halide anions, as well as the triiodide ion. 9 tabs.,26 figs.,67 refs

  14. Recovery of iron/iron oxide nanoparticles from solution: comparison of methods and their effects

    International Nuclear Information System (INIS)

    Nurmi, James T.; Sarathy, Vaishnavi; Tratnyek, Paul G.; Baer, Donald R.; Amonette, James E.; Karkamkar, Abhi

    2011-01-01

    Most methods currently being used to recover Fe 0 -core/oxide-shell nanoparticles from solutions (including the solvents they are synthesized or stored in) are potentially problematic because they may alter the particle composition (e.g., depositing salts formed from solutes) or leave the particles prone to transformations during subsequent storage and handling (e.g., due to residual moisture). In this study, several methods for recovery of nanoparticles from aqueous solution were studied to determine how they affect the structure and reactivity of the recovered materials. Simple washing of the nanoparticles during vacuum filtration (i.e., “flash drying”) can leave up to ∼17 wt% residual moisture. Modeling calculations suggest this moisture is mostly capillary or matric water held between particles and particle aggregates, which can be removed by drying for short periods at relative vapor pressures below 0.9. Flash drying followed by vacuum drying, all under N 2 , leaves no detectable residue from precipitation of solutes (detectable by X-ray photoelectron spectroscopy, XPS), no significant changes in overall particle composition or structure (determined by transmission electron microscopy, TEM), and negligible residual moisture (by thermogravimetric analysis, TGA). While this improved flash-drying protocol may be the preferred method for recovering nanoparticles for many purposes, we found that Fe 0 -core/oxide-shell nanoparticles still exhibit gradual aging during storage when characterized electrochemically with voltammetry.

  15. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion

    Science.gov (United States)

    Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-10-01

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  16. Fenton-Like Oxidation of Malachite Green Solutions: Kinetic and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Saeedeh Hashemian

    2013-01-01

    Full Text Available Oxidation by Fenton-like (Fe3+/H2O2 reactions is proven to be an economically feasible process for destruction of a variety of hazardous pollutants in wastewater. In this study, the degradation and mineralization of malachite green dye are reported using Fenton-like reaction. The effects of different parameters like pH of the solution, the initial concentrations of Fe3+, H2O2, and dye, temperature, and added electrolytes (Cl− and on the oxidation of the dye were investigated. Optimized condition was determined. The efficiency of 95.5% degradation of MAG after 15 minutes of reaction at pH 3 was obtained. TOC removal indicates partial and insignificant mineralization of malachite green dye. The results of experiments showed that degradation of malachite green dye in Fenton-like oxidation process can be described with a pseudo-second-order kinetic model. The thermodynamic constants of the Fenton oxidation process were evaluated. The results implied that the oxidation process was feasible, spontaneous, and endothermic. The results will be useful for designing the treatment systems of various dye-containing wastewaters.

  17. Iron oxide and hydroxide precipitation from ferrous solutions and its relevance to Martian surface mineralogy

    Science.gov (United States)

    Posey-Dowty, J.; Moskowitz, B.; Crerar, D.; Hargraves, R.; Tanenbaum, L.

    1986-01-01

    Experiments were performed to examine if the ubiquitousness of a weak magnetic component in all Martian surface fines tested with the Viking Landers can be attributed to ferric iron precipitation in aqueous solution under oxidizing conditions at neutral pH. Ferrous solutions were mixed in deionized water and various minerals were added to separate liquid samples. The iron-bearing additives included hematite, goethite, magnetite, maghemite, lepidocrocite and potassium bromide blank at varying concentrations. IR spectroscopic scans were made to identify any precipitates resulting from bubbling oxygen throughout the solutions; the magnetic properties of the precipitates were also examined. The data indicated that the lepidocrocite may have been preferentially precipitated, then aged to maghemite. The process would account for the presumed thin residue of maghemite on the present Martian surface, long after abundant liquid water on the Martian surface vanished.

  18. Iron oxide and hydroxide precipitation from ferrous solutions and its relevance to Martian surface mineralogy

    International Nuclear Information System (INIS)

    Posey-Dowty, J.; Moskowitz, B.; Crerar, D.; Hargraves, R.; Tanenbaum, L.

    1986-01-01

    Experiments were performed to examine if the ubiquitousness of a weak magnetic component in all Martian surface fines tested with the Viking Landers can be attributed to ferric iron precipitation in aqueous solution under oxidizing conditions at neutral pH. Ferrous solutions were mixed in deionized water and various minerals were added to separate liquid samples. The iron-bearing additives included hematite, goethite, magnetite, maghemite, lepidocrocite and potassium bromide blank at varying concentrations. IR spectroscopic scans were made to identify any precipitates resulting from bubbling oxygen throughout the solutions; the magnetic properties of the precipitates were also examined. The data indicated that the lepidocrocite may have been preferentially precipitated, then aged to maghemite. The process would account for the presumed thin residue of maghemite on the present Martian surface, long after abundant liquid water on the Martian surface vanished. 40 references

  19. Gold sorption from aqueous solutions by hydroxides and oxides at conditions of complex formation and oxidation-reduction

    International Nuclear Information System (INIS)

    Novikov, A.I.; Shekoturova, E.K.; Ribalko, T.A.

    1986-01-01

    With using of radionuclide 198 Au 3+ at initial form 198 AuCl 4 - the sorption of Au 3+ at its concentrations from 1.27·10 3 till 1.9·10 -9 mol/l from solutions of NaClO 4 (0.1 and 1 mol/l), KHO 3 (0.1 and 1 mol/l), NaNO 3 (1 mol/l), NaCl(0.7-3 mol/l), KCl(0.01; 0.1 and 1 mol/l), NH 4 NO 3 (0.1 and 1 mol/l)NH 4 Cl(10 -3 ; 10 -2 ; 10 -1 and 1 mol/l) in a wide ph range (0+14) by hydroxides of Fe(III), Zr, oxides of Fe(III), Ti(IV), Mn(IV) and Sn(IV) is studied. The dependences of sorption value of Au 3+ on ph of medium, composition and concentrations of electrolytes in solution are defined. Calculations on condition of Au 3+ in aqueous solutions are conducted. Optimal conditions of gold concentration (including 198 Au) and its separation from carrier at sorption process are defined as well.

  20. Behaviour of aqueous sulfamethizole solution and temperature effects in cold plasma oxidation treatment.

    Science.gov (United States)

    Sokolov, Alexander; Louhi-Kultanen, Marjatta

    2018-06-07

    The increase in volume and variety of pharmaceuticals found in natural water bodies has become an increasingly serious environmental problem. The implementation of cold plasma technology, specifically gas-phase pulsed corona discharge (PCD), for sulfamethizole abatement was studied in the present work. It was observed that sulfamethizole is easily oxidized by PCD. The flow rate and pH of the solution have no significant effect on the oxidation. Treatment at low pulse repetition frequency is preferable from the energy efficiency point of view but is more time-consuming. The maximum energy efficiency was around 120 g/kWh at half-life and around 50 g/kWh at the end of the treatment. Increasing the solution temperature from room temperature to 50 °C led to a significant reaction retardation of the process and decrease in energy efficiency. The pseudo-first order reaction rate constant (k 1 ) grows with increase in pulse repetition frequency and does not depend on pH. By contrast, decreasing frequency leads to a reduction of the second order reaction rate constant (k 2 ). At elevated temperature of 50 °C, the k 1 , k 2 values decrease 2 and 2.9 times at 50 pps and 500 pps respectively. Lower temperature of 10 °C had no effect on oxidation efficiency compared with room temperature.

  1. Cathodic electrodeposition of mixed molybdenum tungsten oxides from peroxo-polymolybdotungstate solutions.

    Science.gov (United States)

    Kondrachova, Lilia; Hahn, Benjamin P; Vijayaraghavan, Ganesh; Williams, Ryan D; Stevenson, Keith J

    2006-12-05

    Mixed molybdenum tungsten trioxide films of varying stoichiometry (MoxW1 - xO3, 0 cathodic electrodeposition on indium tin oxide (ITO)-coated glass substrates from aqueous peroxo-polymolybdotungstate solutions. Electrochemical quartz crystal microbalance (EQCM), cyclic voltammetry, and chronocoulometry were used to gain insight into the electrodeposition mechanism. The compositional and structural properties were characterized for MoxW1 - xO3 films deposited at intermediate potentials (-0.35 V vs Ag/AgCl) and sintered at 250 degrees C using energy-dispersive spectroscopy, X-ray diffraction, and Raman spectroscopy. These studies reveal that films consist of homogeneously mixed MoxW1 - xO3, with an enriched Mo content ranging in composition from 0.4 < x < 0.7 depending upon the mol % Mo present in the deposition solution. Chronoamperometry and spectroelectrochemical measurements were conducted to estimate lithium ion diffusion coefficients and coloration efficiencies for the mixed metal oxide films in 1 M LiClO4/propylene carbonate. The subtle interplay between structural and compositional properties due to the uniform mixing of Mo and W oxide components shows that electrochromic and lithium ion transport properties are moderately enhanced relative to those of single-component WO3 and MoO3 and demonstrate improved structural stability over pure MoO3 polymorphs during electrochemical cycling.

  2. Activation of Graphene Oxide with Hydrochloric Acid for Nitrate Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Abolghasem Alighardashi

    2017-11-01

    Full Text Available Long-term drinking of nitrate-contaminated water poses a serious risk to human health. The present study explores the possibility of enhancing the adsorption capacity of graphene oxide via activation with hydrochloric acid for nitrate removal from aqueous solutions. Experiments were performed in a batch reactor in which such major factors as pH, reaction time, and concentrations of both graphene oxide (GO and activated graphene oxide (AGO were used as variables. Nitrate removal efficiency was investigated using the One-Way ANOVA statistical test and SPSS-16 software. The chemical composition and solid structure of the synthesized AGO were analyzed using FE-SEM coupled with energy dispersive spectrometry (EDS. The micropore volumes of the samples were determined using the BET and BJH. The predominant composition (52% of the synthesized AGO was C and its mean pore diameter was 26.896 nm. The maximum adsorption capacity of AGO was estimated at 3333.33 mg/g. Based on the results, the AGO nano-structure may be recomended as a new means for nitrate removal from aqueous solutions.

  3. Considerations in modelling the melting of fuel containing fission products and solute oxides

    International Nuclear Information System (INIS)

    Akbari, F.; Welland, M.J.; Lewis, B.J.; Thompson, W.T.

    2005-01-01

    It is well known that the oxidation of a defected fuel element by steam gives rise to an increase in O/U ratio with a consequent lowering of the incipient melting temperature. Concurrently, the hyperstoichiometry reduces the thermal conductivity thereby raising the centerline fuel pellet temperature for a fixed linear power. The development of fission products soluble in the UO 2 phase or, more important, the deliberate introduction of additive oxides in advanced CANDU fuel bundle designs further affects and generally lowers the incipient melting temperature. For these reasons, the modeling of the molten (hyperstoichiometric) UO 2 phase containing several solute oxides (ZrO 2 , Ln 2 O 3 and AnO 2 ) is advancing in the expectation of developing a moving boundary heat and mass transfer model aimed at better defining the limits of safe operating practice as burnup advances. The paper describes how the molten phase stability model is constructed. The redistribution of components across the solid-liquid interface that attends the onset of melting of a non-stoichiometric UO 2 containing several solutes will be discussed. The issues of how to introduce boundary conditions into heat transfer calculations consistent with the requirements of the Phase Rule will be addressed. The Stefan problem of a moving boundary associated with the solid/liquid interface sets this treatment apart from conventional heat and mass transfer problems. (author)

  4. Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution

    DEFF Research Database (Denmark)

    Sun, Jian-Hui; Shi, Shao-Hui; Lee, Yi-Fan

    2009-01-01

    In this paper, the application of Fenton oxidation process for the decolorization of an azo dye Direct Blue 15 (DB15) in aqueous solution was investigated. The effect of initial pH, dosage of H2O2, H2O2/Fe2+ and H2O2/dye ratios and the reaction temperature on the decolorization efficiency...... = 60: 1 and temperature = 30 degrees C. Under the optimal conditions, 4.7 x 10(-5) mol/L of the DB15 aqueous solution can be completely decolorized by Fenton oxidation within 50-min reaction time and the decolorization kinetic rate constant k was determined as 0.1694 min(-1). Additionally increasing...... the reaction temperature from 20 to 40 degrees C showed a positive effect on the decolorization efficiency of DB15. The present study can provide guidance to relational industry operators and planners to effectively treat the DB15 contaminated wastewater by Fenton oxidation process. (C) 2009 Elsevier B. V. All...

  5. Structure and interaction of silk fibroin and graphene oxide in concentrated solution under shear.

    Science.gov (United States)

    Zhang, Chao; Shao, Huili; Luo, Jie; Hu, Xuechao; Zhang, Yaopeng

    2018-02-01

    Considering the high biocompatibility of regenerated silk fibroin (RSF) and the good enhancement effect of graphene oxide (GO), various RSF/GO composite materials have been previously investigated, and found that GO plays a vital role in the fabrication of high-performance RSF/GO materials. However, its effects on the structure of RSF solution are unclear. Therefore, in this work, we studied the rheological and optical properties, as well as the aggregation behavior of concentrated RSF/GO solution in response to applied shear. The results demonstrated that the presence of GO sheets in RSF solution increased the shear resistance, while delayed the sol-gel transition. Moreover, GO sheets were not favorable to the formation of the ordered structures of RSF. The results from small angle X-ray scattering (SAXS) of RSF/GO solution also showed that the shear process promoted the formation of RSF/GO interface. The data also provided insights into the structural evolution within the mixture solutions, which can be beneficial to the future design and fabrication of nanofiller-reinforced high-performance materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide).

    Science.gov (United States)

    Duan, Bin; Dong, Cunhai; Yuan, Xiaoyan; Yao, Kangde

    2004-01-01

    Electrospinning of chitosan solutions with poly(ethylene oxide) (PEO) in an aqueous solution of 2 wt% acetic acid was studied. The properties of the chitosan/PEO solutions, including conductivity, surface tension and viscosity, were measured. Morphology of the electrospun chitosan/PEO was observed by using scanning electron micrographs. Results showed that the ultrafine fibers could be generated after addition of PEO in 2:1 or 1:1 mass ratios of chitosan to PEO from 4-6 wt% chitosan/PEO solutions at 15 kV voltage, 20 cm capillary-collector distance and flow rate 0.1 ml/h. During electrospinning of the chitosan/PEO solutions, ultrafine fibers with diameters from 80 nm to 180 nm were obtained, while microfibers with visually thicker diameters could be formed as well. Results of X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and differential scanning calorimeter exhibited the larger electrospun microfibers were almost entirely made from PEO, while the electrospun ultrafine fibers mainly contained chitosan.

  7. Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solution.

    Science.gov (United States)

    Ji, Liangliang; Chen, Wei; Xu, Zhaoyi; Zheng, Shourong; Zhu, Dongqiang

    2013-01-01

    Graphenes are an emerging class of carbon nanomaterials whose adsorption properties toward organic compounds have not been well understood. In the present study, graphene nanosheets were prepared by reoxidation and abrupt heating of graphite oxide, which was prepared by sequential chemical oxidation of commercial nonporous graphite powder. Adsorption properties of three aromatic compounds (naphthalene, 2-naphthol, and 1-naphthylamine) and one pharmaceutical compound (tylosin) on graphene nanosheets and graphite oxide were examined to explore the potential of these two adsorbents for the removal of organic contaminants from aqueous solutions. Compared with the literature data of adsorption on carbon nanotubes, adsorption of bulky, flexible tylosin on graphene nanosheets exhibited markedly faster adsorption kinetics, which can be attributed to their opened-up layer structure. Graphene nanosheets and graphite oxide showed similar sequences of adsorption affinity: 1-naphthylamine > 2-naphthol > tylosin > naphthalene (with much larger differences observed on graphite oxide). It was proposed that the strong adsorption of the three aromatic compounds was mainly due to π-π electron donor-acceptor interactions with the graphitic surfaces of adsorbents. Additionally, Lewis acid-base interaction was likely an important factor contributing to the strong adsorption of 1-naphthylamine and tylosin, especially for the O-functionality-abundant graphite oxide. After being normalized on the basis of adsorbent surface area, adsorption affinities of all four tested adsorbates on graphene nanosheets were very close to those on nonporous graphite powder, reflecting complete accessibility of the adsorbent surface area in adsorption. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Micro-Arc oxidation of Ti in a solution of sulfuric acid and Ti+3 salt

    International Nuclear Information System (INIS)

    Ragalevicius, Rimas; Stalnionis, Giedrius; Niaura, Gediminas; Jagminas, Arunas

    2008-01-01

    A comparative study was performed on the behavior of titanium electrode in a sulfuric acid solution with and without Ti +3 during micro-arc oxidation under the constant current density control regime. The composition and microstructure of the obtained micro-arc films were analyzed using scanning electron microscopy, glancing-angle X-ray diffractometry, Raman and energy-dispersive X-ray spectroscopies. We have shown that addition of a Ti +3 salt extends the region of current densities (j a ) can be used for micro-arc oxidation of Ti and results in an obvious change of sparking behavior from extensive, large and long-played sparks to numerous, small and short sparks. As a consequence, the titania films formed in the Ti +3 -containing solutions are relatively thick, more uniform, composed of almost pure crystalline anatase and rutile phases of TiO 2 , and contain a network of evenly distributed small pores. It has also been shown that these films are promising for applications in catalysis, sensors and optoelectronics. The Raman spectra indicate that an increase in the electrolysis time of titanium in the Ti +3 -containing solution leads to the increase in rutile content, as expected

  9. The cathodic reduction of dioxygen on uranium oxide in dilute alkaline aqueous solution

    International Nuclear Information System (INIS)

    Hocking, W.H.; Betteridge, J.S.; Shoesmith, D.W.

    1991-09-01

    The cathodic reduction of dioxygen on uranium oxide in dilute alkaline aqueous solutions has been investigated within the context of a program to develop a comprehensive model to predict the behaviour of used CANDU (Canada Deuterium Uranium) nuclear fuel under disposal-vault conditions. Two different kinds of ceramic UO 2 were studied: reactor-grade CANDU fuel with normal p-type electrical conductivity and low-resistance material that exhibits n-type photoelectrochemical behaviour. The transport of electroactive species in solution was controlled by varying the rotation rate of rotating disc electrodes (RDE) and rotating ring-disc electrodes (RRDE). Steady-state polarization measurements were made using the current-interrupt method to compensate for the potential drop caused by ohmic resistance. Any release of peroxide to solution from the UO 2 (disc) surface could be monitored by oxidizing it at the Au ring of an RRDE. The existing theory for the cathodic 0 2 -reduction process as applied to RDE and RRDE experiments has been reviewed as a starting point for the interpretation of the results obtained in our work. (37 figs., 2 tabs., 170 refs.)

  10. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    Science.gov (United States)

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

  11. Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors

    KAUST Repository

    Nayak, Pradipta K.; Hedhili, Mohamed N.; Cha, Dong Kyu; Alshareef, Husam N.

    2013-01-01

    It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a

  12. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.; Lin, Yenhung; Zhao, Kui; Li, Ruipeng; Thomas, Stuart R.; Semple, James; Androulidaki, Maria; Sygellou, Lamprini; McLachlan, Martyn A.; Stratakis, Emmanuel; Amassian, Aram; Anthopoulos, Thomas D.

    2015-01-01

    reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization

  13. Mechanical behavior and coupling between mechanical and oxidation in alloy 718: effect of solide solution elements

    International Nuclear Information System (INIS)

    Max, Bertrand

    2014-01-01

    Alloy 718 is the superalloy the most widely used in industry due to its excellent mechanical properties, as well as oxidation and corrosion resistance in wide range of temperatures and solicitation modes. Nevertheless, it is a well-known fact that this alloy is sensitive to stress corrosion cracking and oxidation assisted cracking under loading in the range of temperatures met in service. Mechanisms explaining this phenomenon are not well understood: nevertheless, it is well established that a relation exists between a change in fracture mode and the apparition of plastic instabilities phenomenon. During this study, the instability phenomenon, Portevin-Le Chatelier effect, in alloy 718 was studied by tensile tests in wide ranges of temperatures and strain rates. Different domains of plastic instabilities have been evidenced. Their characteristics suggest the existence of interactions between dislocations and different types of solute elements: interstitials for lower temperatures and substitutionals for higher testing temperatures. Mechanical spectroscopy tests have been performed on alloy 718 and various alloys which composition is comparable to that of alloy 718. These tests prove the mobility of molybdenum atoms in the alloy in the studied temperature range. Specific tests have been performed to study interaction phenomenon between plasticity and oxidation. These results highlight the strong effect of plastic strain rate on both mechanical behavior and intergranular cracking in alloy 718. The subsequent discussion leads to propose hypothesis on coupling effects between deformation mechanisms and oxidation assisted embrittlement in the observed cracking processes. (author)

  14. The extraction of trace amounts of tantalum(V) from different mineral acid solutions by 4-(5-nonyl) pyridine oxide and trioctylamine oxide

    International Nuclear Information System (INIS)

    Ejaz, M.; Carswell, D.J.

    1976-01-01

    Data are presented on the distribution of trace amounts of tantalum(V) between different mineral acid solutions and 0.1M solutions of N-oxides of 4-(5-nonyl) pyridine and trioctylamine. The optimal acidity is 0.01-0.5M, depending on the nature of the acid. Common anions have little effect on extraction. Possible mechanism of extraction are suggested making use of slope analysis data. Separation factors for a number of metal ions with respect to tantalum are reported for the 0.1M 4-(5-nonyl)pyridine oxide - 1M sulphuric acid extraction system. Separation from uranium(VI), thorium(IV) and a number of fission products is suggested. The conclusions are unique as follows: Amine oxides are as unique as oxygen-donor extractants in their extraction of tantalum(V) from weakly acid solutions; tantalum is almost completely extracted from weakly nitric, hydrochloric and sulphuric acid solutions by both of the amine oxides; the extraction in low acidity solutions is independent of the nature of the anion of the acids present, indicating the ability of amine oxides to extract the product of hydrolysis of hydrolysable elements. In this respect amine oxides are much better than tributyl phosphate. (T.G.)

  15. Air oxidation of aqueous sodium sulfide solutions with coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, D; Chaudhuri, S K [Southern Illinois University, Carbondale, IL (United States). Dept. of Mining Engineering

    1999-02-01

    The paper investigated the potential of coal fly ash as a catalyst in the air oxidation of aqueous sodium sulfide (Na{sub 2}S) solutions in the temperature range of 303-333 K. The rate of oxidation was found to be independent of the initial concentration of Na{sub 2}S in the range of 5.80 x 10{sup -2} - 28.45 x 10{sup -2} kmol/m{sup 3}. The effects of fly ash loading, source of fly ash, speed of agitation, air flow rate, fly ash particle size were also studied. Experimental results suggested a film-diffusion controlled reaction mechanism. The deactivation of the catalytic effect of fly ash was found to be less than 31% even after five repeated uses.

  16. Highly sensitive methanol chemical sensor based on undoped silver oxide nanoparticles prepared by a solution method

    International Nuclear Information System (INIS)

    Rahman, M.M.; Khan, S.B.; Asiri, A.M.; Jamal, A.; Faisal, M.

    2012-01-01

    We have prepared silver oxide nanoparticles (NPs) by a simple solution method using reducing agents in alkaline medium. The resulting NPs were characterized by UV-vis and FT-IR spectroscopy, X-ray powder diffraction, and field-emission scanning electron microscopy. They were deposited on a glassy carbon electrode to give a sensor with a fast response towards methanol in liquid phase. The sensor also displays good sensitivity and long-term stability, and enhanced electrochemical response. The calibration plot is linear (r 2 = 0.8294) over the 0.12 mM to 0.12 M methanol concentration range. The sensitivity is ∼ 2.65 μAcm -2 mM -1 , and the detection limit is 36.0 μM (at a SNR of 3). We also discuss possible future prospective uses of this metal oxide semiconductor nanomaterial in terms of chemical sensing. (author)

  17. Semiconducting properties of oxide films formed onto an Nb electrode in NaOH solutions

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIC

    2008-03-01

    Full Text Available In this paper, the results of the potentiostatic formation of homogeneous and heterogeneous, nano-crystalline passive films of Nb2O5 onto an Nb electrode in NaOH solutions of different concentrations at potentials lower than 3.0 V vs. SCE are presented. The semiconducting properties of such films were investigated by EIS measurements. After fitting the EIS results by appropriate equivalent circuits, the space charge capacitance (Csc and space charge resistance (Rsc of these films were determined. The donor density (Nsc, flat band potential (Efb and thickness of the space charge layer (dsc for such oxide films were determined from the corresponding Mott–Schottky (M–S plots. It is shown that all oxide films were n-type semiconductors in a certain potential range.

  18. The effect of crystal textures on the anodic oxidization of zirconium in a boiling nitric acid solution

    International Nuclear Information System (INIS)

    Kato, Chiaki; Ishijima, Yasuhiro; Ueno, Fumiyoshi; Yamamoto, Masahiro

    2016-01-01

    The effects of crystal textures and the potentials in the anodic oxidation of zirconium in a boiling nitric acid solution were investigated to study the stress corrosion cracking of zirconium in nitric acid solutions. The test specimen was machined such that the specimen surface was parallel to the rolling surface, arranged with a (0002) crystal texture. The potentials applied for the anodic oxidation of zirconium were set at 1.2, 1.4, and 1.5 V against a saturated KCl–Ag/AgCl electrode (SSE) in boiling 6 M HNO_3. The growth of the zirconium oxide film dramatically changed depending on the applied potential at a closed depassivation potential (1.47 V vs. SSE in this study). At 1.5 V, the zirconium oxide film rapidly grows, and its growth exhibits cyclic oxidation kinetics in accordance with a nearly cubic rate law. The zirconium oxide film grows according to the quantity of electric charge and the growth rate does not depend on the crystal texture in the pretransition region before the cyclic oxidation kinetics. However, the growth and cracking under the thick oxide film depend on the crystal texture in the transition region. On the normal direction side, the oxide film thickness decreases on average since some areas of the thick oxide film are separated from the specimen surface owing to the cracks in the thick oxide. On the rolling direction (RD) side, no cracks in the thick oxide film are observed, but cracks are found under the thick oxide film, which deeply propagate in metal matrix along the RD without an external stress. The cracks under the thick oxide film propagate to the center of the oxide layer. The crystal orientation relationship between the oxide layer and the zirconium matrix is (0002)_Z_r//(111)_Z_r_O_2, and the cracks in the oxide layer propagate in the (0002)_Z_r plane in the zirconium matrix. The oxide layer consists of string-like zirconium oxide and zirconium hydride. The string-like zirconium oxide contains orthorhombic ZrO_2 in addition

  19. Radiolysis study of the oxidation of a vitamin K model compound in ethanolic solution

    International Nuclear Information System (INIS)

    Fackir, L.; Jore, D.; Gardes-Albert, M.; Ferradini, C.; Acher, F.; Azerad, R.

    1993-01-01

    It seems that the biological action of vitamin K (with its important role in carboxylating processes) may involve monoelectronic exchanges. Therefore radical mechanisms of a vitamin K model molecule KHp have been studied in ethanolic solution by mean of steady state radiolysis method. The oxidation of KHp by H 3 C-CH(OH)OO . model peroxyl radicals leads to the formation of a 'dimeric' form of vitamin K. The superoxide anions seem not to be reactive towards KHp in the chosen irradiation conditions

  20. Transparent heaters based on solution-processed indium tin oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Im, Kiju [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Research Institute of TNB Nanoelec Co. Ltd., Seoul 136-701 (Korea, Republic of); Cho, Kyoungah [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Kim, Jonghyun [Research Institute of TNB Nanoelec Co. Ltd., Seoul 136-701 (Korea, Republic of); Kim, Sangsig, E-mail: sangsig@korea.ac.k [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of)

    2010-05-03

    We demonstrate transparent heaters constructed on glass substrates using solution-processed indium tin oxide (ITO) nanoparticles (NPs) and their heating capability. The heat-generating characteristics of the heaters depended significantly on the sintering temperature at which the ITO NPs deposited on a glass substrate by spin-coating were transformed thermally into a solid film. The steady-state temperature of the ITO NP film sintered at 400 {sup o}C was 163 {sup o}C at a bias voltage of 20 V, and the defrosting capability of the film was confirmed by using dry-ice.

  1. Electrochemical oxidation of 4-morpholinoaniline in aqueous solutions: Synthesis of a new trimer of 4-morpholinoaniline

    International Nuclear Information System (INIS)

    Esmaili, Roya; Nematollahi, Davood

    2011-01-01

    Research highlights: → Electrochemical study of 4-morpholinoaniline in various pHs. → Electrochemical trimerization of 4-morpholinoaniline in aqueous solution. → Green method for the synthesis of '4-morpholinoaniline-trimer'. → Potential-pH diagram for 4-morpholinoaniline. - Abstract: Electrochemical oxidation of 4-morpholinoaniline has been studied in various pHs using cyclic voltammetry and controlled-potential coulometry. The electrochemical trimerization of 4-morpholinoaniline is described and its mechanism has been studied in aqueous solution. This method provides a green, reagent-less, and environmentally friendly procedure with high atom economy, for the synthesis of '4-morpholinoaniline-trimer' using a carbon electrode in an undivided cell in good yield and purity.

  2. Textured indium tin oxide thin films by chemical solution deposition and rapid thermal processing

    International Nuclear Information System (INIS)

    Mottern, Matthew L.; Tyholdt, Frode; Ulyashin, Alexander; Helvoort, Antonius T.J. van; Verweij, Henk; Bredesen, Rune

    2007-01-01

    The microstructure of state-of-the-art chemical solution deposited indium tin oxide thin films typically consists of small randomly oriented grains, high porosity and poor homogeneity. The present study demonstrates how the thin film microstructure can be improved significantly by tailoring the precursor solutions and deposition conditions to be kinetically and thermodynamically favorable for generation of homogeneous textured thin films. This is explained by the occurrence of a single heterogeneous nucleation mechanism. The as-deposited thin films, crystallized at 800 deg. C, have a high apparent density, based on a refractive index of ∼ 1.98 determined by single wavelength ellipsometry at 633 nm. The microstructure of the films consists of columnar grains with preferred orientation as determined by X-ray diffraction and transmission electron microscopy. The resistivity, measured by the four point probe method, is ∼ 2 x 10 -3 Ω cm prior to post-deposition treatments

  3. First-Principles Modeling of ThO2 Solid Solutions with Oxides of Trivalent Cations

    Science.gov (United States)

    Alexandrov, Vitaly; Asta, Mark; Gronbech-Jensen, Niels

    2010-03-01

    Solid solutions formed by doping ThO2 with oxides of trivalent cations, such as Y2O3 and La2O3, are suitable for solid electrolyte applications, similar to doped zirconia and ceria. ThO2 has also been gaining much attention as an alternative to UO2 in nuclear energy applications, the aforementioned trivalent cations being important fission products. In both cases the mixing energetics and short-range ordering/clustering are key to understanding structural and transport properties. Using first-principles atomistic calculations, we address intra- and intersublattice interactions for both cation and anion sublattices in ThO2-based fluorite-type solid solutions and compare the results with similar modeling studies for related trivalent-doped zirconia systems.

  4. Deposition and Characterization of Silver Oxide from Solution of Silver, Cassava and Sugarcane Juice Effects

    Directory of Open Access Journals (Sweden)

    Uche E. Ekpunobi

    2013-06-01

    Full Text Available Silver oxide was deposited on metallic substrates (zinc and lead from silver solution with different additives at a pH of 5, dc current of 0.2A, 4V for 20seconds at 25°C. The additives were cassava solution and sugarcane juice. The metallic substrates served as cathode while a copper electrode serves as the anode. Compositions of the electrolytes were 50ml AgNO3, 50ml AgNO3 and 50ml of cassava solution or 50ml of sugarcane juice. Structural and textural characterizations were carried out on the deposits. The result showed that deposition using zinc substrate gave a better result than that of lead in that the deposits were pure without impurities. Using cassava solution as additive, a pure Ag2O3 deposit was obtained while sugarcane juice gave a pure intergrowth of Ag2O3 and Ag3O4 deposits both on zinc substrates.

  5. Effects of Temperature on Aggregation Kinetics of Graphene Oxide in Aqueous Solutions

    Science.gov (United States)

    Wang, M.; Gao, B.; Tang, D.; Sun, H.; Yin, X.; Yu, C.

    2017-12-01

    Temperature may play an important role in controlling graphene oxide (GO) stability in aqueous solutions, but it has been overlooked in the literature. In this work, laboratory experiments were conducted to determine the effects of temperature (6, 25, and 40 °C) on GO aggregation kinetics under different combinations of ionic strength, cation type, humic acid (HA) concentration by monitoring GO hydrodynamic radii and attachment efficiencies. The results showed that, without HA, temperature increase promoted GO aggregation in both monovalent (Na+ and K+) and divalent (Ca2+) solutions. This phenomenon might be caused by multiple processes including enhanced collision frequency, enhanced cation dehydration, and reduced electrostatic repulsion. The presence of HA introduced steric repulsion forces that enhanced GO stability and temperature showed different effects GO aggregation kinetics in monovalent and divalent electrolytes. In monovalent electrolytes, cold temperature diminished the steric repulsion of HA-coated GO. As a result, the fastest increasing rate of GO hydrodynamic radius and the smallest critical coagulation concentration value appeared at the lowest temperature (6 °C). Conversely, in divalent electrolyte solutions with HA, high temperate favored GO aggregation, probably because the interactions between Ca2+ and HA increased with temperature resulting in lower HA coating on GO. Findings of this work emphasized the importance of temperature as well as solution chemistry on the stability and fate of GO nanoparticles in aquatic environment.

  6. All-Solution-Processed Metal-Oxide-Free Flexible Organic Solar Cells with Over 10% Efficiency.

    Science.gov (United States)

    Song, Wei; Fan, Xi; Xu, Bingang; Yan, Feng; Cui, Huiqin; Wei, Qiang; Peng, Ruixiang; Hong, Ling; Huang, Jiaming; Ge, Ziyi

    2018-05-16

    All-solution-processing at low temperatures is important and desirable for making printed photovoltaic devices and also offers the possibility of a safe and cost-effective fabrication environment for the devices. Herein, an all-solution-processed flexible organic solar cell (OSC) using poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) electrodes is reported. The all-solution-processed flexible devices yield the highest power conversion efficiency of 10.12% with high fill factor of over 70%, which is the highest value for metal-oxide-free flexible OSCs reported so far. The enhanced performance is attributed to the newly developed gentle acid treatment at room temperature that enables a high-performance PEDOT:PSS/plastic underlying substrate with a matched work function (≈4.91 eV), and the interface engineering that endows the devices with better interface contacts and improved hole mobility. Furthermore, the flexible devices exhibit an excellent mechanical flexibility, as indicated by a high retention (≈94%) of the initial efficiency after 1000 bending cycles. This work provides a simple route to fabricate high-performance all-solution-processed flexible OSCs, which is important for the development of printing, blading, and roll-to-roll technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solution of reduced graphene oxide synthesized from coconut shells and its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mas’udah, Kusuma Wardhani, E-mail: masudahkusuma@ymail.com [Department of Physics, Faculty of Mathematics and Natural Sciences,Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111 (Indonesia); Faculty of Mathematics and Natural Sciences, Univesitas Pesantren Tinggi Darul Ulum, PP. Darul ‘Ulum Tromol Pos 10 Peterongan Jombang 61481 (Indonesia); Nugraha, I Made Ananta, E-mail: anantanugraha25@gmail.com; Abidin, Saiful, E-mail: namakuanimail@gmail.com; Mufid, Ali, E-mail: muvidphysics@gmail.com; Astuti, Fahmi, E-mail: fahmia@physics.its.ac.id; Darminto, E-mail: darminto@physics.its.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences,Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111 (Indonesia)

    2016-04-19

    Reduced graphene oxide (r-GO)powder has been prepared from coconut shells by carbonization process at 400°C for 3, 4 and 5 hours.Theresulted sample mass was reduced to be 60% relativelycompared to the starting material. The longer heating duration has also led to the rGO with reduced crystalinity according to the X-ray diffractometry data and TEM. The rGO solution was prepared by adding powders of 5, 10 and 15 grams into 50 ml destiled water and then centrifused at 6000 rpm for 30 minutes.The resulted solutions were seen to be varied form clear transparant, light and dark yellow to black. Measurement using particle size analyser shows that the individual rGO particles tends to be agglomerating each others to form bigger size clustering, manifested by the observed bigger size particles for the increasing amount of soluted rGO powders in water.The varying UV-visible spectra of these rGO solutions together with their optical bandgaps will also be discussed in this study.

  8. Turbidimetric determination of polyacrylamide in aqueous solutions with the use of oxidizing agents

    International Nuclear Information System (INIS)

    Karpyuk, A.D.; Kolyada, N.S.; Pshenichnikova, E.Yu.

    1992-01-01

    Polyacrylamide is widely used in industry. For example, one of the methods for obtaining microspheres of metal oxides, particularly a mixed nuclear fuel, is based on a process involving the ammoniacal precipitation of hydroxides from aqueous solutions of metal nitrates in the presence of polyacrylamide (PAA), which promotes the formation of spheres in the initial stages of the process. Monitoring the industrial process, the course of the treatment of the production waste products, and the composition of the waste water calls for determination of the content of PAA in industrial solutions. The existing methods for determining PAA are based on its chemical properties, which are specified by the presence of amide groupings in its molecule. The use of the classical methods of analysis, which are based on the reactions of PAA with formaldehyde, sulfuric acid, etc. and the hydrolysis of PAA, do not provide reliable results, since PAA is partially or completely hydrolyzed in industrial solutions. In addition, industrial solutions contain various modifiers, including urea and urotropin, and the method of determining PAA from the amount of ammonia evolved is consequently unacceptable. Turbidimetric methods of analysis, in which the content of PAA is evaluated from the turbidity caused by the formation of suspension during hydrolysis or upon the introduction of NaClO 4 or diisotubylphenoxyethoxyethyldimethylbenzyl chloride, are known. The purpose of the present work was to develop a simple quick method for determining polymers in solutions, including solutions from the production and treatment of nuclear fuel. The following reagents were proposed for the turbidimetric determination of PAA: cerium(IV) sulfate, potassium dichromate, and potassium permanganate. 5 refs., 3 figs., 1 tab

  9. Electrochemical oxidation of zirconium alloys in pre-transition and post-transition kinetic regimes at corrosion in electrolyte solutions

    International Nuclear Information System (INIS)

    Barkov, A.A.; Shavshin, V.M.

    1986-01-01

    With the aim of investigation on oxidation of zirconium alloys (Zr+2.5% Nb) the critical thickness of beginning of spalling of froming oxide films in HCl and NHO 3 aqueous solutions was evaluated by coulometry with accelerated procedure. Some variants of predeposition of modificated oxide coatings are proposed increase pre-transition regime time and to decrease corrosion during post-transition regime. Increase in agressivity of solutions (addition of 1 vol.% HF) and UV irradiation are found to increase 3-4 times pre-transition period

  10. High Dielectric Performance of Solution-Processed Aluminum Oxide-Boron Nitride Composite Films

    Science.gov (United States)

    Yu, Byoung-Soo; Ha, Tae-Jun

    2018-04-01

    The material compositions of oxide films have been extensively investigated in an effort to improve the electrical characteristics of dielectrics which have been utilized in various electronic devices such as field-effect transistors, and storage capacitors. Significantly, solution-based compositions have attracted considerable attention as a highly effective and practical technique to replace vacuum-based process in large-area. Here, we demonstrate solution-processed composite films consisting of aluminum oxide (Al2O3) and boron nitride (BN), which exhibit remarkable dielectric properties through the optimization process. The leakage current of the optimized Al2O3-BN thin films was decreased by a factor of 100 at 3V, compared to pristine Al2O3 thin film without a loss of the dielectric constant or degradation of the morphological roughness. The characterization by X-ray photoelectron spectroscopy measurements revealed that the incorporation of BN with an optimized concentration into the Al2O3 dielectric film reduced the density of oxygen vacancies which act as defect states, thereby improving the dielectric characteristics.

  11. Feasibility and preliminary safety of nitric oxide releasing solution as a treatment for bovine mastitis.

    Science.gov (United States)

    Regev, Gilly; Martins, James; Sheridan, Michael P; Leemhuis, Jonathan; Thompson, James; Miller, Christopher

    2018-06-01

    Nitric oxide-releasing solution (NORS) is a liquid formulation that releases nitric oxide, a broad spectrum antimicrobial, single electron nitroxide radical. This solution was investigated as a potential antimicrobial treatment for bovine mastitis (BM). Three experiments were performed: a) NORS' effect on Staphylococcus aureus and Escherichia coli in an in vitro model; b) NORS' effect on milk obtained from dairy cows showing symptoms of clinical mastitis; and c) the consequences of administering NORS to healthy milking cattle using a dose-escalating in vivo study. Metabolite concentrations were estimated in their blood for methaemoglobin and nitrite; also, milk nitrite concentration and somatic cell count (SCC) were measured to study possible mammary gland inflammation following treatment. NORS lowered the bacterial concentration in all infected samples, in a time- and milk-diluted dependant fashion. Blood methemoglobin concentrations following treatment were all within the normal range for cattle. However, blood and milk nitrite concentrations increased initially but, during the next 24 h, returned to normal range, as did SCC, without any clinical signs of mammary gland inflammation. NORS, if shown to be effective, could be an alternative treatment for mastitis with a shorter clearance time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Dissolution study of thorium-uranium oxides in aqueous triflic acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bulemela, E.; Bergeron, A.; Stoddard, T. [Canadian Nuclear Laboratories - CNL, 286 Plant Rd., Chalk River, Ontario, K0J 1J0 (Canada)

    2016-07-01

    The dissolution of sintered mixed oxides of thorium with uranium in various concentrations of trifluoromethanesulfonic (triflic) acid solutions was investigated under reflux conditions to evaluate the suitability of the method. Various fragment sizes (1.00 mm < x < 7.30 mm) of sintered (Th,U)O{sub 2} and simulated high-burnup nuclear fuel (SIMFUEL) were almost completely dissolved in a few hours, which implies that triflic acid could be used as an alternative to the common dissolution method, involving nitric acid-hydrofluoric acid mixture. The influence of acid concentration, composition of the solids, and reaction time on the dissolution yield of Th and U ions was studied using Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). The dissolution rate was found to depend upon the triflic acid concentration and size of the solid fragments, with near complete dissolution for the smallest fragments occurring in boiling 87% w/w triflic acid. The formation of Th and U ions in solution appears to occur at the same rate as the triflic acid simultaneously reacts with the constituent oxides as evidenced by the results of a constant U/Th concentration ratio with the progress of the dissolution. (authors)

  13. Optimization of strontium adsorption from aqueous solution using (mn-Zr) oxide-pan composite spheres

    International Nuclear Information System (INIS)

    Inan, S.; Altas, Y.

    2009-01-01

    The processes based on adsorption and ion exchange have a great role for the pre-concentration and separation of toxic, long lived radionuclides from liquid waste. In Nuclear waste management, the removal of long lived, radiotoxic isotopes from radioactive waste such as strontium reduces the storage problems and facilitates the disposal of the waste. Depending on the waste type, a variety of adsorbents and/or ion exchangers are used. Due to the amorphous structure of hydrous oxides and their mixtures, they don't have reproducible properties. Besides, obtained powders are very fine particles and they can cause operational problems such as pressure drop and filtration. Therefore they are not suitable for column applications. These reasons have recently expedited the study on the preparation of organic-inorganic composite adsorbent beads for industrial applications. PAN, as a stable and porous support for fine particles, provides the utilization of ion exchangers in large scale column applications. The utilization of PAN as a support material with many inorganic ion exchangers was firstly achieved by Sebesta in the beginning of 1990's. Later on, PAN based composite ion exchangers were prepared and used for the removal of radionuclides and heavy metal ions from aqueous solution and waste waters. In this study, spherical (Mn-Zr)oxide-PAN composite were prepared for separation of strontium from aqueous solution in a wide pH range. Sr 2 + adsorption of composite adsorbent was optimized by using experimental design 'Central Composite Design' model.

  14. Oxidative Pressure Leaching of Silver from Flotation Concentrates with Ammonium Thiocyanate Solution

    Science.gov (United States)

    Yang, Sheng-Hai; Yang, Jian-Guang; Liu, Wei; Chen, Geng-Tao; Tang, Mo-Tang; Qiu, Guan-Zhou

    2010-02-01

    The thermodynamics and technologies of the selective pressure leaching of silver from flotation concentrates were investigated in an ammonium thiocyanate medium. Thermodynamic analyses, which include silver solubility in NH4SCN solution and Eh-pH diagrams of the Me-MeS-NH4SCN-H2O system at 25 °C, were discussed. The effects of several factors, such as temperature, leaching time, oxidant, pH value, flotation concentrates concentration, surfactant concentration, and so on, on the extraction percentages of silver and zinc were investigated. The following optimal leaching conditions were obtained: NH4SCN concentration 1.5 M, lignin concentration 0.5 g/L, Fe3+ concentration 2 g/L, flotation concentrates addition 200 g/L, and oxygen pressure 1.2 MPa at 130 °C for 3 hours. Under these optimum conditions, the average extraction percentage of silver exceeded 94 pct, whereas the average extraction percentage of zinc was less than 3 pct. Only 7 pct of ammonium thiocyanate was consumed after 4 cycles, which indicated that ammonium thiocyanate hardly was oxidized under these oxidative pressure leaching conditions.

  15. Solid solutions of gadolinium doped zinc oxide nanorods by combined microwave-ultrasonic irradiation assisted crystallization

    Science.gov (United States)

    Kiani, Armin; Dastafkan, Kamran; Obeydavi, Ali; Rahimi, Mohammad

    2017-12-01

    Nanocrystalline solid solutions consisting of un-doped and gadolinium doped zinc oxide nanorods were fabricated by a modified sol-gel process utilizing combined ultrasonic-microwave irradiations. Polyvinylpyrrolidone, diethylene glycol, and triethylenetetramine respectively as capping, structure directing, and complexing agents were used under ultrasound dynamic aging and microwave heating to obtain crystalline nanorods. Crystalline phase monitoring, lattice parameters and variation, morphology and shape, elemental analysis, functional groups, reducibility, and the oxidation state of emerged species were examined by PXRD, FESEM, TEM, EDX, FTIR, micro Raman, H2-TPR, and EPR techniques. Results have verified that irradiation mechanism of gelation and crystallization reduces the reaction time, augments the crystal quality, and formation of hexagonal close pack structure of Wurtzite morphology. Besides, dissolution of gadolinium within host lattice involves lattice deformation, unit cell distortion, and angular position variation. Structure related shape and growth along with compositional purity were observed through microscopic and spectroscopic surveys. Furthermore, TPR and EPR studies elucidated more detailed behavior upon exposure to the exerted irradiations and subsequent air-annealing including the formed oxidation states and electron trapping centers, presence of gadolinium, zinc, and oxygen disarrays and defects, as well as alteration in the host unit cell via gadolinium addition.

  16. Determination of uranium in uranium metal, uranium oxides, and uranyl nitrate solutions by potentiometric titration

    International Nuclear Information System (INIS)

    Tucker, H.L.; McElhaney, R.J.

    1983-01-01

    A simple, fast method for the determination of uranium in uranium metal, uranium oxides, and uranyl nitrate solutions has been adapted from the Davies-Gray volumetric method to meet the needs of Y-12. One-gram duplicate aliquots of uranium metal or uranium oxide are dissolved in 1:1 HNO 3 and concentrated H 2 SO 4 to sulfur trioxide fumes, and then diluted to 100-mL volume. Duplicate aliquots are then weighed for analysis. For uranyl nitrate samples, duplicate aliquots containing between 50 and 150 mg of U are weighed and analyzed directly. The weighed aliquot is transferred to a Berzelius beaker; 1.5 M sulfamic acid is added, followed in order by concentrated phosphoric acid, 1 M ferrous sulfate, and (after a 30-second interval) the oxidizing reagent. After a timed 3-minute waiting period, 100 mL of the 0.1% vanadyl sulfate-sulfuric acid mixture is added. The sample is then titrated past its endpoint with standard potassium dichromate, and the endpoint is determined by second derivative techniques on a mV/weight basis

  17. Facet-Dependent Oxidative Goethite Growth As a Function of Aqueous Solution Conditions.

    Science.gov (United States)

    Strehlau, Jennifer H; Stemig, Melissa S; Penn, R Lee; Arnold, William A

    2016-10-04

    Nitroaromatic compounds are groundwater pollutants that can be degraded through reactions with Fe(II) adsorbed on iron oxide nanoparticles, although little is known about the evolving reactivity of the minerals with continuous pollutant exposure. In this work, Fe(II)/goethite reactivity toward 4-chloronitrobenzene (4-ClNB) as a function of pH, organic matter presence, and reactant concentrations was explored using sequential-spike batch reactors. Reaction rate constants were smaller with lower pH, introduction of organic matter, and diluted reactant concentrations as compared to a reference condition. Reaction rate constants did not change with the number of 4-ClNB spikes for all reaction conditions. Under all conditions, oxidative goethite growth was demonstrated through X-ray diffraction, magnetic characterization, and transmission electron microscopy. Nonparametric statistics were applied to compare histograms of lengths and widths of goethite nanoparticles as a function of varied solution conditions. The conditions that slowed the reaction also resulted in statistically shorter and wider particles than for the faster reactions. Additionally, added organic matter interfered with particle growth on the favorable {021} faces to a greater extent, with statistically reduced rate of growth on the tip facets and increased rate of growth on the side facets. These data demonstrate that oxidative growth of goethite in aqueous systems is dependent on major groundwater variables, such as pH and the presence of organic matter, which could lead to the evolving reactivity of goethite particles in natural environments.

  18. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A.; Rodríguez, Rosa M.; Brillas, Enric, E-mail: brillas@ub.edu

    2015-06-15

    Highlights: • Quicker degradation of Allura Red AC in the order EO-H{sub 2}O{sub 2} < EF < PEF with Pt or BDD anode. • Almost total mineralization achieved by the most powerful PEF process with BDD. • Similar decolorization and mineralization rate in SO{sub 4}{sup 2−}, ClO{sub 4}{sup −} and NO{sub 3}{sup −} media. • In Cl{sup −} medium, only slightly larger decolorization rate but strong inhibition of mineralization. • Identification of aromatic products, carboxylic acids and released NH{sub 4}{sup +}, NO{sub 3}{sup −} and SO{sub 4}{sup 2−} ions. - Abstract: The decolorization and mineralization of solutions containing 230 mg L{sup −1} of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H{sub 2}O{sub 2} (EO-H{sub 2}O{sub 2}), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H{sub 2}O{sub 2}. The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton’s reaction between H{sub 2}O{sub 2} and added Fe{sup 2+}. The oxidation ability increased in the sequence EO-H{sub 2}O{sub 2} < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO{sub 4}{sup 2−}, ClO{sub 4}{sup −} and NO{sub 3}{sup −} media, whereas in Cl{sup −} medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC–MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO{sub 4}{sup 2−} medium and three chloroaromatics in Cl{sup −} solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH{sub 4

  19. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes

    International Nuclear Information System (INIS)

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A.; Rodríguez, Rosa M.; Brillas, Enric

    2015-01-01

    Highlights: • Quicker degradation of Allura Red AC in the order EO-H 2 O 2 < EF < PEF with Pt or BDD anode. • Almost total mineralization achieved by the most powerful PEF process with BDD. • Similar decolorization and mineralization rate in SO 4 2− , ClO 4 − and NO 3 − media. • In Cl − medium, only slightly larger decolorization rate but strong inhibition of mineralization. • Identification of aromatic products, carboxylic acids and released NH 4 + , NO 3 − and SO 4 2− ions. - Abstract: The decolorization and mineralization of solutions containing 230 mg L −1 of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H 2 O 2 . The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton’s reaction between H 2 O 2 and added Fe 2+ . The oxidation ability increased in the sequence EO-H 2 O 2 < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO 4 2− , ClO 4 − and NO 3 − media, whereas in Cl − medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC–MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO 4 2− medium and three chloroaromatics in Cl − solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH 4 + , NO 3 − and SO 4 2− ions were released during the mineralization

  20. Phase-separation phenomena in solutions of poly(2,6-dimethyl-1,4 phenylene oxide). II. Differential scanning calorimetry of solutions in toluene

    NARCIS (Netherlands)

    Koenhen, D.M.; Smolders, C.A.

    1977-01-01

    The phase-separation phenomena observed in solutions of poly(2,6 dimethyl-1,4 phenylene oxide) in toluene have been investigated by differential scanning calorimetry. These measurements supplement the experimental evidence in favor of the concept that the phase transitions observed are

  1. Phase-separation phenomena in solutions of poly(2,6-dimethyl-1,4-phenylene oxide). I. Thermodynamic parameters of solutions in toluene

    NARCIS (Netherlands)

    Koenhen, D.M.; Smolders, C.A.

    1977-01-01

    New experimental data have been collected on thermodynamic properties of solutions of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) in toluene. The Flory-Huggins interaction parameters g have been determined from light scattering measurements. These values are in agreement with values obtained by

  2. High-temperature, Knudsen cell-mass spectroscopic studies on lanthanum oxide/uranium dioxide solid solutions

    International Nuclear Information System (INIS)

    Sunder, S.; McEachern, R.; LeBlanc, J.C.

    2001-01-01

    Knudsen cell-mass spectroscopic experiments were carried out with lanthanum oxide/uranium oxide solid solutions (1%, 2% and 5% (metal at.% basis)) to assess the volatilization characteristics of rare earths present in irradiated nuclear fuel. The oxidation state of each sample used was conditioned to the 'uranium dioxide stage' by heating in the Knudsen cell under an atmosphere of 10% CO 2 in CO. The mass spectra were analyzed to obtain the vapour pressures of the lanthanum and uranium species. It was found that the vapour pressure of lanthanum oxide follows Henry's law, i.e., its value is directly proportional to its concentration in the solid phase. Also, the vapour pressure of lanthanum oxide over the solid solution, after correction for its concentration in the solid phase, is similar to that of uranium dioxide. (authors)

  3. Uptake and Release of Cerium During Fe-Oxide Formation and Transformation in Fe(II) Solutions

    DEFF Research Database (Denmark)

    Nedel, Sorin; Dideriksen, Knud; Christiansen, Bo C.

    2010-01-01

    Fe-oxides are ubiquitous in soils and sediments and form during Fe(0) corrosion. Depending on redox conditions and solution composition, Fe-oxides such as ferrihydrite, goethite, magnetite, and green rust (GR) may form. These phases typically have high surface area and large affinity for adsorption......(III) release. X-ray photoelectron spectroscopy revealed Ce(III) adsorbed on magnetite. When Fe-oxides were synthesized by air oxidation of Fe(II) solutions at pH 7, GR(Na,SO4) played a catalytic role in the oxidation of Ce(III) to Ce(IV) by O-2, removing more than 90% of the dissolved Ce. Transmission electron...

  4. High-Pressure Phase Behavior of Polycaprolactone, Carbon Dioxide, and Dichloromethane Ternary Mixture Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, JungMin; Kim, Hwayong [Seoul National University, Seoul (Korea, Republic of); Shin, Hun Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Soo Hyun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2015-04-15

    The high-pressure phase behavior of a polycaprolactone (Mw=56,145 g/mol, polydispersity 1.2), dichloromethane, and carbon dioxide ternary system was measured using a variable-volume view cell. The experimental temperatures and pressures ranged from 313.15 K to 353.15 K and up to 300 bar as functions of the CO{sub 2}/dichloromethane mass ratio and temperature, at poly(D-lactic acid) weight fractions of 1.0, 2.0, and 3.0%. The correlation results were obtained from the hybrid equation of state (Peng-Robinson equation of state + SAFT equation of state) for the CO{sub 2}-polymer system using the van der Waals one-fluid mixing rule. The three binary interaction parameters were optimized by the simplex method algorithm.

  5. Application of oxide coatings to metals in electrolyte solutions by microplasma methods

    Directory of Open Access Journals (Sweden)

    Vladimirovich Timoshenko, Aleksander

    2000-10-01

    Full Text Available Microplasma oxidation of aluminium alloys in alkaline colloidal and finely dispersed solutions is analysed. Oxidation causes both electrolyte and alloy components to be incorporated into resultant coatings, which affect the deposition parameters and coating properties. Oxidation process has been studied at spark, micro-are, and are stages under an alternating current polarisation and under purely anodic polarisation. It is shown that the cathodic component of the alternating current not only facilitates subsequent anodic process, but also contributes to the formation of an oxide layer.

    Se ha examinado la aplicación de procesos de oxidación por microplasma de las aleaciones de aluminio en electrólitos alcalinos, tanto en estado coloidal como microdisperso. Se descubrió que durante el proceso de la oxidación, en la estructura del recubrimiento óxido, van incluyéndose tanto los componentes del electrólito como los de la aleación, lo que modifica las propiedades y parámetros de deposición de las aleaciones obtenidas. El proceso de la oxidación se examinó a lo largo de las siguientes etapas: chispas, micro-arco y arco, tanto bajo la polarización de la corriente alterna como en condiciones de polarización anódica. Se ha demostrado que la componente catódica de la corriente alterna polarizante no sólo facilita los siguientes procesos anódicos, sino que además contribuye a los procesos de formación de la capa óxida.

  6. Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions.

    Science.gov (United States)

    Zhang, Chao; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2016-02-10

    Regenerated silk fibroin (RSF)/graphene oxide (GO) hybrid silk fibers were dry-spun from a mixed dope of GO suspension and RSF aqueous solution. It was observed that the presence of GO greatly affect the viscosity of RSF solution. The RSF/GO hybrid fibers showed from FTIR result lower β-sheet content compared to that of pure RSF fibers. The result of synchrotron radiation wide-angle X-ray diffraction showed that the addition of GO confined the crystallization of silk fibroin (SF) leading to the decrease of crystallinity, smaller crystallite size, and new formation of interphase zones in the artificial silks. Synchrotron radiation small-angle X-ray scattering also proved that GO sheets in the hybrid silks and blended solutions were coated with a certain thickness of interphase zones due to the complex interaction between the two components. A low addition of GO, together with the mesophase zones formed between GO and RSF, enhanced the mechanical properties of hybrid fibers. The highest breaking stress of the hybrid fibers reached 435.5 ± 71.6 MPa, 23% improvement in comparison to that of degummed silk and 72% larger than that of pure RSF silk fiber. The hybrid RSF/GO materials with good biocompatibility and enhanced mechanical properties may have potential applications in tissue engineering, bioelectronic devices, or energy storage.

  7. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    International Nuclear Information System (INIS)

    Elen, Ken; Capon, Boris; De Dobbelaere, Christopher; Dewulf, Daan; Peys, Nick; Detavernier, Christophe; Hardy, An; Van Bael, Marlies K.

    2014-01-01

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum

  8. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Elen, Ken [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Strategisch Initiatief Materialen (SIM), SoPPoM Program (Belgium); Capon, Boris [Strategisch Initiatief Materialen (SIM), SoPPoM Programm (Belgium); Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); De Dobbelaere, Christopher [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Dewulf, Daan [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Peys, Nick [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw, Kapeldreef 75, B-3001 Heverlee (Belgium); Detavernier, Christophe [Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); Hardy, An [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Van Bael, Marlies K., E-mail: marlies.vanbael@uhasselt.be [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium)

    2014-03-31

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum.

  9. Calculational assessment of critical experiments with mixed-oxide fuel pin arrays moderated by organic solution

    International Nuclear Information System (INIS)

    Smolen, G.R.; Funabashi, H.

    1987-01-01

    Critical experiments have been conducted with organically moderated mixed-oxide (MOX) fuel pin assemblies at the Pacific Northwest Lab. Critical Mass Lab. These experiments are part of a joint exchange program between the US Dept. of Energy and the Power Reactor and Nuclear Fuel Development Corp. of Japan in the area of criticality data development. The purpose of these experiments is to benchmark computer codes and cross-section libraries and to assess the reactivity difference between systems moderated by water and those moderated by an organic solution. Past studies have indicated that some organic mixtures may be better moderators than water. This topic is of particular importance to the criticality safety of fuel processing plants where fissile material is dissolved in organic solutions during the solvent extraction process. In the past, it has been assumed that the codes and libraries benchmarked with water-moderated experiments were adequate when performing design and licensing studies of organically moderated systems. Calculations presented in this paper indicated that the Scale code system and the 27-energy-group cross-section library accurately compute k/sub eff/ for organically moderated MOX fuel pin assemblies. Furthermore, the reactivity of an organic solution with a 32 vol % TBP/68 vol% NPH mixture in a heterogeneous configuration is the same, for practical purposes, as water

  10. Calculational assessment of critical experiments with mixed oxide fuel pin arrays moderated by organic solution

    International Nuclear Information System (INIS)

    Smolen, G.R.

    1987-01-01

    Critical experiments have been conducted with organic-moderated mixed oxide (MOX) fuel pin assemblies at the Pacific Northwest Laboratory (PNL) Critical Mass Laboratory (CML). These experiments are part of a joint exchange program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan in the area of criticality data development. The purpose of these experiments is to benchmark computer codes and cross-section libraries and to assess the reactivity difference between systems moderated by water and those moderated by an organic solution. Past studies have indicated that some organic mixtures may be better moderators than water. This topic is of particular importance to the criticality safety of fuel processing plants where fissile material is dissolved in organic solutions during the solvent extraction process. In the past, it has been assumed that the codes and libraries benchmarked with water-moderated experiments were adequate when performing design and licensing studies of organic-moderated systems. Calculations presented in this paper indicated that the SCALE code system and the 27-energy-group cross-section accurately compute k-effectives for organic moderated MOX fuel-pin assemblies. Furthermore, the reactivity of an organic solution with a 32-vol-% TBP/68-vol-% NPH mixture in a heterogeneous configuration is the same, for practical purposes, as water. 5 refs

  11. Kinetics of Phenol Degradation in Aqueous Solution Oxidized under Low Frequency Ultrasonic Irradiation

    Directory of Open Access Journals (Sweden)

    Marwan Marwan

    2014-06-01

    Full Text Available Phenol is categorized as a refractory pollutant and its presence in water stream is strictly limited according to the government regulation. The present study investigated the degra-dation of phenol in aqueous solution by the effect of ultrasound. The process took place in a 500 ml glass reactor equipped with magnetic stirring and irradiated by low frequency (28 kHz ultrasound from a horn type probe. Ultrasonic irradiation was found to enhance oxidation rates at ambient conditions, compared to other approaches. Optimum conditions were observed at a stirring speed of 400 rpm and temperature of 30 C in acidic solution. It was revealed that the phenol degradation was the first order kinetics with respect to phenol. A low value of the activation energy 6.04 kcal/mol suggested that diffusional steps were rate determining during the phenol decomposition. It also confirmed that phenol was mostly degraded in the film region and less occurred in the bulk solution.

  12. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xuebing, E-mail: xuebinghu2010@gmail.com [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Yu, Yun, E-mail: yunyush@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Wang, Yongqing; Zhou, Jianer [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Song, Lixin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China)

    2015-02-28

    Graphical abstract: By adding an alkaline (NaOH or KOH) solution, the unprecipitated nano graphene oxide undergoes fast aggregation from the residual strong-acid filtrate of the modified Hummers method and forms the stable floccules when the pH value of the filtrate is about 1.7. The acid–base interaction with the surface functional groups of the carbon layers plays a role in the aggregation of the unprecipitated nano graphene oxide. - Highlights: • The novel and high-efficient method for separating graphene oxide was showed. • Graphene oxide undergoes aggregation and forms the floccules when pH value is ∼1.7. • The acid–base interaction plays a role in the aggregation of graphene oxide. - Abstract: In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid–base interaction with the surface functional groups of the carbon layers.

  13. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    International Nuclear Information System (INIS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-01-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ∝ 4.1 Aa), and low electrical resistivity (4.2 x 10 -4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained ''on/off'' current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 x 10 7 , 0.43 V/decade, 0.7 V, and 2.1 cm 2 /V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs. (orig.)

  14. Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: A theoretical and experimental study

    International Nuclear Information System (INIS)

    Su Liyan; Wang Haijun

    2009-01-01

    The densities for binary mixtures of dichloromethane with aniline, or nitrobenzene, respectively, including those of pure liquids, were measured over the entire composition range at T = (288.15, 293.15, 298.15, and 303.15) K and atmospheric pressure using a vibrating-tube densimeter. From the experimental results, the excess molar volumes, V m E , partial molar volumes, V i -bar, the apparent molar volume, V φi , and the partial molar excess volumes at infinite dilution, (V i E -bar) ∞ , were calculated over whole composition range. Negative values of V m E for (dichloromethane + aniline) attributed to the formation of the charge transfer complex, while for (dichloromethane + nitrobenzene) system, the free volume effect played a dominant role. The extent of negative deviations in V m E values follows the order: nitrobenzene > aniline. The Prigogine-Flory-Patterson (PFP) theory and its applicability in predicting V m E at T = 298.15 K were tested. There is a good agreement in general between the experimental V m E values and those predicted by PFP theory

  15. Simple solution-processed titanium oxide electron transport layer for efficient inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shen, Wenfei [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Institute of Hybrid Materials, Laboratory of New Fiber Materials and Modern Textile—The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Chen, Weichao [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Wang, Ning; Dou, Xiaowei; Han, Liangliang; Wen, Shuguang [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China)

    2014-12-31

    Titanium oxide (TiO{sub X}) is an effective electron transport layer (ETL) in polymer solar cells (PSCs). We report efficient inverted PSCs with a simple solution-processed amorphous TiO{sub X} (s-TiO{sub X}) film as an ETL. The s-TiO{sub X} film with high light transmittance was prepared by spin-coating titanium (IV) isopropoxide isopropanol solution on indium tin oxide coated glass in inert and then placed in air under room temperature for 60 min. The introduction of s-TiO{sub X} ETL greatly improved the short circuit current density of the devices. PSCs based on poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester and poly(4,8-bis-alkyloxy-benzo[1,2-b:4,5-b′]dithiophene-alt-alkylcarbonyl -thieno[3,4-b]thiophene):[6,6]-phenyl- C71-butyric acid methyl ester using s-TiO{sub X} film as ETL shows high power conversion efficiency of 4.29% and 6.7% under the illumination of AM 1.5G, 100 mW/cm{sup 2}, which shows enhancements compared to the conventional PSCs with poly(styrenesulfonate)-doped poly(ethylenedioxythiophene) as anode buffer layer. In addition, the device exhibits good stability in a humid ambient atmosphere without capsulation. The results indicate that the annealing-free, simple solution processed s-TiO{sub X} film is an efficient ETL for high-performance PSCs. - Highlights: • High quality s-TiO{sub X} films were prepared by a simple, solution method without thermal treatment. • The s-TiO{sub X} films with high transmittance are very smooth. • The organic photovoltaic performance with s-TiO{sub X} film improved greatly and exhibited good stability. • The annealing-free, simple prepared s-TiO{sub X} film will be much compatible with flexible substrates.

  16. Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid

    KAUST Repository

    Mahalingam, Dinesh. K.; Kim, DooLi.; Nunes, Suzana. P.

    2017-01-01

    Novel high flux polyethersulfone (PES) ultrafiltration membranes were fabricated by incorporating different amounts of graphene oxide (GO) sheets to PES as nanofillers. The membranes were prepared from solutions in 50/50 1-ethyl-3-methylimidazolium-diethylphosphate/N,N-dimethyl formamide. It was observed that the water permeance increased from 550 to 800 L m-2h-1bar-1, with incorporation of 1 wt% GO, keeping a molecular weight cut-off (MWCO) of approximately 32-34 kg mol-1. Cross-sectional scanning electron microscopy images of GO/PES membranes showed the formation of ultrathin selective layer unlike pristine membranes. Contact angle measurements confirmed the increase of hydrophilicity, by increasing the GO concentration. The rejection of humic acid and bovine serum albumin was demonstrated. The mechanical properties were improved, compared with the pristine membranes. The performance was just above the trade-off relationship between permeance and separation factor for PES membranes reported in the literature.

  17. Elaboration of strontium ruthenium oxide thin films on metal substrates by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Seveno, R. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France)]. E-mail: raynald.seveno@univ-nantes.fr; Braud, A. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France); Gundel, H.W. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France)

    2005-12-22

    In order to improve the structural interface between a metal substrate and a lead zirconate titanate (Pb(ZrTi)O{sub 3}, PZT) ferroelectric thin film, the elaboration of strontium ruthenium oxide (SrRuO{sub 3}) by chemical solution deposition is studied. The SrRuO{sub 3} thin films were realized by multiple spin-coating technique and the temperature of the rapid thermal annealing process was optimized. The crystallization behavior was examined by X-ray diffraction; surface analyses using scanning electron microscope and atomic force microscope techniques showed the influence of the SrRuO{sub 3} layer at the interface PZT/metal on the morphology of the ferroelectric thin film. From the electrical measurements, a coercive electric field around 25 kV/cm and a remanent polarization of approximately 30 {mu}C/cm were found.

  18. Evaluations of Effective Factors on Efficiency Zinc Oxides Nanoparticles in Cadmium Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    MH Ehrampoush

    2014-09-01

    Results: The results indicated that the adsorption process is affected by different parameters such as initial pollutant concentrations, adsorbent dose, pH, and contact time and Cadmiumremoval efficiency increases with increasing adsorbent dose and reaction time and decreases with increasing initial concentration of Cadmium. Therefore, it is observed that by raising the initial Cadmium concentration, the adsorption rate increases. The maximum efficiency of adsorptionin pH=7amounted to 89.6%. Conclusion: It is concluded that Zinc Oxide nanoparticles have proper efficiency in removal of Cadmium from aqueous solutions and can be used in the treatment of wastewater that contains ion Cadmium. However, its efficiency is deeply dependent on ion strength and the interaction of other metals in wastewater.

  19. Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid

    KAUST Repository

    Mahalingam, Dinesh. K.

    2017-07-18

    Novel high flux polyethersulfone (PES) ultrafiltration membranes were fabricated by incorporating different amounts of graphene oxide (GO) sheets to PES as nanofillers. The membranes were prepared from solutions in 50/50 1-ethyl-3-methylimidazolium-diethylphosphate/N,N-dimethyl formamide. It was observed that the water permeance increased from 550 to 800 L m-2h-1bar-1, with incorporation of 1 wt% GO, keeping a molecular weight cut-off (MWCO) of approximately 32-34 kg mol-1. Cross-sectional scanning electron microscopy images of GO/PES membranes showed the formation of ultrathin selective layer unlike pristine membranes. Contact angle measurements confirmed the increase of hydrophilicity, by increasing the GO concentration. The rejection of humic acid and bovine serum albumin was demonstrated. The mechanical properties were improved, compared with the pristine membranes. The performance was just above the trade-off relationship between permeance and separation factor for PES membranes reported in the literature.

  20. Elaboration of strontium ruthenium oxide thin films on metal substrates by chemical solution deposition

    International Nuclear Information System (INIS)

    Seveno, R.; Braud, A.; Gundel, H.W.

    2005-01-01

    In order to improve the structural interface between a metal substrate and a lead zirconate titanate (Pb(ZrTi)O 3 , PZT) ferroelectric thin film, the elaboration of strontium ruthenium oxide (SrRuO 3 ) by chemical solution deposition is studied. The SrRuO 3 thin films were realized by multiple spin-coating technique and the temperature of the rapid thermal annealing process was optimized. The crystallization behavior was examined by X-ray diffraction; surface analyses using scanning electron microscope and atomic force microscope techniques showed the influence of the SrRuO 3 layer at the interface PZT/metal on the morphology of the ferroelectric thin film. From the electrical measurements, a coercive electric field around 25 kV/cm and a remanent polarization of approximately 30 μC/cm were found

  1. A Facile One Step Solution Route to Synthesize Cuprous Oxide Nanofluid

    Directory of Open Access Journals (Sweden)

    Shenoy U. Sandhya

    2013-05-01

    Full Text Available A cuprous oxide nanofluid stabilized by sodium lauryl sulfate, synthesized by using the one step method, has been reported. Nanofluids were synthesized by using a well‐ controlled surfactant‐assisted solution phase synthesis. The method involved reduction of copper acetate by glucose in a mixture of water and ethylene glycol serving as the base fluid. The synthesized fluid was characterized by X‐ray and electron diffraction techniques, in addition, transmission and field emission microscopic techniques and Fourier transform infra red spectroscopic analysis was undertaken. The rheological property, as well as the thermal conductivity of the fluid, were measured. The variation of reaction parameters considerably affected the size of the particles as well as the reaction rate. The uniform dispersion of the particles in the base fluid led to a stability period of three months under stationary state, augmenting the thermal conductivity of the nanofluid. The method is found to be simple, reliable and fast for the synthesis of Newtonian nanofluids containing cuprous oxide nanoparticles.

  2. Work function tuning of tin-doped indium oxide electrodes with solution-processed lithium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Ow-Yang, C.W., E-mail: cleva@sabanciuniv.edu [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Nanotechnology Application Center, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Jia, J. [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan); Aytun, T. [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Zamboni, M.; Turak, A. [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L8 (Canada); Saritas, K. [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Shigesato, Y. [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan)

    2014-05-30

    Solution-processed lithium fluoride (sol-LiF) nanoparticles synthesized in polymeric micelle nanoreactors enabled tuning of the surface work function of tin-doped indium oxide (ITO) films. The micelle reactors provided the means for controlling surface coverage by progressively building up the interlayer through alternating deposition and plasma etch removal of the polymer. In order to determine the surface coverage and average interparticle distance, spatial point pattern analysis was applied to scanning electron microscope images of the nanoparticle dispersions. The work function of the sol-LiF modified ITO, obtained from photoelectron emission yield spectroscopy analysis, was shown to increase with surface coverage of the sol-LiF particles, suggesting a lateral depolarization effect. Analysis of the photoelectron emission energy distribution in the near threshold region revealed the contribution of surface states for surface coverage in excess of 14.1%. Optimization of the interfacial barrier was achieved through contributions from both work function modification and surface states. - Highlights: • Work function of indium tin oxide increased with LiF nanoparticle coverage. • Work function was analyzed via photoelectron emission yield (PEYS). • At higher surface coverage, the energy distribution of PEYS increased. • Pre-threshold increase in PEYS consistent with emission from surface states.

  3. Suppression of persistent photo-conductance in solution-processed amorphous oxide thin-film transistors

    Science.gov (United States)

    Lee, Minkyung; Kim, Minho; Jo, Jeong-Wan; Park, Sung Kyu; Kim, Yong-Hoon

    2018-01-01

    This study offers a combinatorial approach for suppressing the persistent photo-conductance (PPC) characteristic in solution-processed amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) in order to achieve rapid photo-recovery. Various analyses were used to examine the photo-instability of indium-gallium-zinc-oxide (IGZO) TFTs including negative-bias-illumination-stress (NBIS) and transient photo-response behaviors. It was found that the indium ratio in metallic components had a significant impact on their PPC and photo-recovery characteristics. In particular, when the indium ratio was low (51.5%), the PPC characteristic was significantly suppressed and achieving rapid photo-recovery was possible without significantly affecting the electrical performance of AOSs. These results imply that the optimization of the indium composition ratio may allow achieving highly photo-stable and near PPC-free characteristics while maintaining high electrical performance of AOSs. It is considered that the negligible PPC behavior and rapid photo-recovery observed in IGZO TFTs with a lower indium composition are attributed to the less activation energy required for the neutralization of ionized oxygen vacancies.

  4. Citric acid-modified Fenton's reaction for the oxidation of chlorinated ethylenes in soil solution systems.

    Science.gov (United States)

    Seol, Yongkoo; Javandel, Iraj

    2008-06-01

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H2O2 concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H2O2 relative to iron catalysts (Fe2+/H2O2<1/330) would result in lowering the efficiency of contaminant removal by iron chelation in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  5. Optimisation of chemical solution deposition of indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Tor Olav Løveng; Einarsrud, Mari-Ann; Grande, Tor, E-mail: grande@ntnu.no

    2014-12-31

    An environmentally friendly aqueous sol–gel process has been optimised to deposit indium tin oxide (ITO) thin films, aiming to improve the film properties and reduce the deposition costs. It was demonstrated how parameters such as cation concentration and viscosity could be applied to modify the physical properties of the sol and thereby reduce the need for multiple coatings to yield films with sufficient conductivity. The conductivity of the thin films was enhanced by adjusting the heat treatment temperature and atmosphere. Both increasing the heat treatment temperature of the films from 530 to 800 °C and annealing in reducing atmosphere significantly improved the electrical conductivity, and conductivities close to the state of the art sputtered ITO films were obtained. A pronounced decreased conductivity was observed after exposing the thin films to air and the thermal reduction and ageing of the film was studied by in situ conductivity measurements. - Highlights: • Spin coating of indium tin oxide using an aqueous solution was optimised. • The conductivity was enhanced by thermal annealing in reducing atmosphere. • The conductivity of is comparable to the conductivity of sputtered films. • A relaxation process in the reduced thin film was observed after exposure in air.

  6. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    Science.gov (United States)

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  7. Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS.

    Science.gov (United States)

    Melníková, L; Petrenko, V I; Avdeev, M V; Garamus, V M; Almásy, L; Ivankov, O I; Bulavin, L A; Mitróová, Z; Kopčanský, P

    2014-11-01

    Synthetic biological macromolecule of magnetoferritin containing an iron oxide core inside a protein shell (apoferritin) is prepared with different content of iron. Its structure in aqueous solution is analysed by small-angle synchrotron X-ray (SAXS) and neutron (SANS) scattering. The loading factor (LF) defined as the average number of iron atoms per protein is varied up to LF=800. With an increase of the LF, the scattering curves exhibit a relative increase in the total scattered intensity, a partial smearing and a shift of the match point in the SANS contrast variation data. The analysis shows an increase in the polydispersity of the proteins and a corresponding effective increase in the relative content of magnetic material against the protein moiety of the shell with the LF growth. At LFs above ∼150, the apoferritin shell undergoes structural changes, which is strongly indicative of the fact that the shell stability is affected by iron oxide presence. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Oxidation of sulfur (IV by oxygen in aqueous solution: role of some metal ions

    Directory of Open Access Journals (Sweden)

    Martins Claudia R.

    1999-01-01

    Full Text Available Catalytic effect of metal ions: Cr(VI, Cr(III, Cd(II, V(V and chloride anion, on the oxidation of S(IV in aqueous solution, at concentrations of metal ions and S(IV usually found in urban atmospheres, were studied under controlled experimental conditions (pH (2.1 - 4,5, T (25.0 - 35.0 °C, air flow rate, concentration of reactants, etc.... The kinetic constant determined at 25.0 °C and pH range (2.1 - 4.5, using ultra pure water was 8.0 ± 0.5 x 10-4 s-1. This value was considered as a reference for the oxidation reaction rate. The kinetic constants determined in the presence of Cr(VI revealed that the oxidation reaction of S(IV is quite influenced by the acidity. At pH = 2.1 (K = 2.3 x 10-2 mg-1 L s-1 the reaction is carried out with a rate five times greater when compared to pH = 2.6 (K = 4.3 x 10-3 mg-1 L s-1 and thirty times greater when compared to pH = 3.4 (K= 8.0 x 10 -4 mg-1 L s-1. The following rate expression was obtained at pH = 2.6: -r(S(IV =K [Cr(VI] [S(IV] and the activation energy found was: Ea =70.3KJ/mol. No catalytic effects were observed for Cd(II or chloride ion, while inhibitory effects were observed for Cr(III and V(V ions.

  9. Investigation of Phenol Removal in Aqueous Solutions Using Advanced Photochemical Oxidation (APO

    Directory of Open Access Journals (Sweden)

    Naser Jamshidi

    2010-01-01

    Full Text Available Most organic compounds are resistant to conven­tional chemical and biological treatments. For this reason, other methods are being studied as alter­natives to the biological and classical physico-chemical pro­cesses. In this study, advanced photochemical oxidation (APO processes (UV, UV/H2O2, UV/H2O2/Fe(II, andUV/H2O2/Fe(III were investigated in lab-scale experiments for the degradation of phenol in an aqueous solution. A medium-pressure 300 watt (UV-C mercury ultraviolet lamp was used as the radiation source and H2O2 30% as the oxidant. Phenol (initial concentration= 0.5 mmol/L was selected as the model due to its high use and application. Some important parameters such as pH, H2O2 input concentration, iron catalyst concentration, the type of iron salt, and duration of UV radiation were studied based on the standard methods. The results showed that the Photo-Fenton process was the most effective treatment under acidic conditions producing a higher rate of phenol degradation over a very short radiation time. The process accelerated the oxidation rate by 4-5 times the rate of the UV/H2O2 process. The optimum conditions were obtained at a pH value of 3, with a molar ratio of 11.61 for H2O2/Phenol and molar ratios of 0.083 and 0.067for Iron/H2O2 in the UV/H2O2/Fe (II and the UV/H2O2/Fe (III systems, respectively.

  10. Radiation-induced destruction of organic compounds in aqueous solutions by dual oxidation/reduction mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Chaychiana, M.; Silverman, J.; Al-Sheikhly, M. [Department of Materials Science and Engineering, University of Maryland (United States); Poster, D.; Neta, P.; Huie, R. [Chemical Science and Technology Laboratory, National Institute of Standard and Technology (United States)

    2011-07-01

    This research presents the feasibility and mechanisms of using high energy electrons for the dechlorination of polychlorinated biphenyls (PCBs) in marine sediment, and hazardous organic compounds in waste water. The remediation of the organic contaminants by ionizing radiation is achieved by means of both reduction and oxidation processes. PCBs in marine sediment can be effectively dechlorinated by reduction, while toxic organic compounds in water are removed mainly by oxidation. Radiolytic degradation of aqueous suspensions of PCBs in marine sediments in the presence of isopropanol was also studied. Addition of isopropanol was necessary to enhance the radiolytic yield and the dechlorination of PCBs. Also presented are results from an examination of the oxidative and reductive effects of electron-beam irradiation on the concentrations of six organic solvents in water. The organic solvents in water were prepared to mimic a pharmaceutical waste stream. Radiation-induced destruction of benzene was also investigated using pulse radiolysis technique. Pulse radiolysis with spectrophotometric and conductometric detection was utilized to study the formation and reactions of radicals from benzene and dienes in aqueous solutions. The benzene OH adduct, {sup ●}C{sub 6}H{sub 6}OH, reacts with O{sub 2} (k = 3x10{sup 8} L mol{sup -1} s{sup -1}) in a reversible reaction. The peroxyl radical, HOC{sub 6}H{sub 6}O{sub 2}{sup ●}, undergoes O{sub 2}●- elimination, bimolecular decay, and reaction with benzene to initiate a chain reaction, depending on the dose rate, benzene concentration, and pH. The occurrence of the chain reaction is demonstrated in low-dose-rate gamma radiolysis experiments where the consumption of O{sub 2} was monitored. (author)

  11. Corrosion behaviour of nanometre sized cerium oxide and titanium oxide incorporated aluminium in NaCl solution

    International Nuclear Information System (INIS)

    Ashraf, P. Muhamed; Edwin, Leela

    2013-01-01

    Highlights: ► Corrosion resistant aluminium incorporated with nano oxides of cerium and titanium. ► 0.2% nano CeO 2 and 0.05% nano TiO 2 showed increased corrosion resistance. ► Nano TiO 2 concentration influenced the optimum performance of the material. ► Comparison of Micro and nano CeO 2 and TiO 2 aluminium showed the latter is best. - Abstract: The study highlights the development of an aluminium matrix composite by incorporating mixture of nanometre sized cerium oxide and titanium oxide in pure aluminium and its corrosion resistance in marine environment. The mixed nanometre sized oxides incorporated aluminium exhibited improved microstructure and excellent corrosion resistance. Corrosion resistance depends on the concentration of nanometre sized titanium oxide. Electrochemical characteristics improved several folds in nanometre sized mixed oxides incorporated aluminium than micrometre sized oxides incorporated aluminium.

  12. Preparation of tetraethylenepentamine modified magnetic graphene oxide for adsorption of dyes from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaosheng [Hubei Normal University (China); Tang, Ping; Liu, Liangliang, E-mail: liuliangliang@caas.cn [Chinese Academy of Agricultural Sciences, Changsha (China)

    2018-05-01

    In this study, tetraethylenepentamine modified magnetic graphene oxide nanomaterial (TMGO) was prepared and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and vibration sample magnetometer (VSM). All the characterizations proved that the modification and preparation of TMGO were successful. The TMGO nanomaterial was used in the adsorption of Acid Red 18 (AR) in aqueous solution. The parameters like pH of solution, adsorption kinetics and isotherms were all investigated. The results indicated that the TMGO nanomaterial had satisfied adsorption ability and the maximum adsorption capacity was 524.2 mg g{sup -}'1 at 45 °C and pH 6. The adsorption capacity remained at 91.8% of the initial value after five cycles. The adsorption process with AR was found through fitting the pseudo-second-order kinetics equations and the Freundlich adsorption model. The experimental results demonstrated that the TMGO nanomaterial could be rapidly extracted from the medium and had a good adsorption ability to remove dyes in wastewater. (author)

  13. Influence of pH of spray solution on optoelectronic properties of cadmium oxide thin films

    International Nuclear Information System (INIS)

    Hodlur, R. M.; Rabinal, M. K.

    2015-01-01

    Highly conducting transparent cadmium oxide thin films were prepared by the conventional spray pyrolysis technique. The pH of the spray solution is varied by adding ammonia/hydrochloric acid. The effect of pH on the morphology, crystallinity and optoelectronic properties of these films is studied. The structural analysis showed all the films in the cubic phase. For the films with pH < 7 (acidic condition), the preferred orientation is along the (111) direction and for those with pH >7 (alkaline condition), the preferred orientation is along the (200) direction. A lowest resistivity of 9.9 × 10 −4 Ω·cm (with carrier concentration = 5.1 × 10 20 cm −3 , mobility = 12.4 cm 2 /(V·s)) is observed for pH ≈ 12. The resistivity is tuned almost by three orders of magnitude by controlling the bath pH with optical transmittance more than 70%. Thus, the electrical conductivity of CdO films could be easily tuned by simply varying the pH of the spray solution without compromising the optical transparency. (paper)

  14. Characterization of microstructure and catalytic of cerium oxide obtained by colloidal solution

    International Nuclear Information System (INIS)

    Senisse, C.A.L.; Bergmann, C.P.; Alves, A.K.

    2012-01-01

    This study investigated to obtain particles of cerium oxide, for use as catalysts for the combustion of methane using the technique of through polymeric colloidal solution. Obtaining the colloidal system is based on hydrolysis of salts such as cerium acetylacetonate, cerium nitrate in the presence of additives such as polyvinylbutyral (PVB), polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA), at concentrations of 5, 10 and 15% in aqueous or alcoholic medium. These solutions containing ions of interest were subjected to a heat treatment at 650° C for 30 minutes, with heating rate of 2 ° C/ min. After heat treatment, the fibers were characterized according to their morphology, surface area, crystallinity, weight loss and catalytic activity. Samples obtained from cerium acetylacetonate were more reactive than the cerium nitrate to the combustion of methane, as showed greater conversions and higher temperatures reached during the process, which is of utmost importance since the combustion catalytic methane is used for generating thermal energy. After the reaction with methane, the samples underwent significant change in surface area, probably due to the intensity of combustion reactions of the nitrate and the generation of heat involved in this reaction, which gave rise to coarse particles. During the combustion process using the obtained from particles of cerium acetylacetonate, there was the release of large quantities of nitrogen compared to the results of assays with the particles obtained with cerium nitrate. (author)

  15. Adsorption characteristics of As(III) from aqueous solution on iron oxide coated cement (IOCC)

    International Nuclear Information System (INIS)

    Kundu, Sanghamitra; Gupta, A.K.

    2007-01-01

    Contamination of potable groundwater with arsenic is a serious health hazard, which calls for proper treatment before its use as drinking water. The objective of the present study is to assess the effectiveness of iron oxide coated cement (IOCC) for As(III) adsorption from aqueous solution. Batch studies were conducted to study As(III) adsorption onto IOCC at ambient temperature as a function of adsorbent dose, pH, contact time, initial arsenic concentration and temperature. Kinetics reveal that the uptake of As(III) ion is very rapid and most of fixation occurs within the first 20 min of contact. The pseudo-second order rate equation successfully described the adsorption kinetics. Langmuir, Freundlich, Redlich-Peterson (R-P), and Dubinin-Radushkevich (D-R) models were used to describe the adsorption isotherms at different initial As(III) concentrations and at 30 g l -1 fixed adsorbent dose. The maximum adsorption capacity of IOCC for As(III) determined from the Langmuir isotherm was 0.69 mg g -1 . The mean free energy of adsorption (E) calculated from the D-R isotherm was found to be 2.86 kJ mol -1 which suggests physisorption. Thermodynamic parameters indicate an exothermic nature of adsorption and a spontaneous and favourable process. The results suggest that IOCC can be suitably used for As(III) removal from aqueous solutions

  16. Modeling drain current of indium zinc oxide thin film transistors prepared by solution deposition technique

    Science.gov (United States)

    Qiang, Lei; Liang, Xiaoci; Cai, Guangshuo; Pei, Yanli; Yao, Ruohe; Wang, Gang

    2018-06-01

    Indium zinc oxide (IZO) thin film transistor (TFT) deposited by solution method is of considerable technological interest as it is a key component for the fabrication of flexible and cheap transparent electronic devices. To obtain a principal understanding of physical properties of solution-processed IZO TFT, a new drain current model that account for the charge transport is proposed. The formulation is developed by incorporating the effect of gate voltage on mobility and threshold voltage with the carrier charges. It is demonstrated that in IZO TFTs the below threshold regime should be divided into two sections: EC - EF > 3kT and EC - EF ≤ 3kT, where kT is the thermal energy, EF and EC represent the Fermi level and the conduction band edge, respectively. Additionally, in order to describe conduction mechanisms more accurately, the extended mobility edge model is conjoined, which can also get rid of the complicated and lengthy computations. The good agreement between measured and calculated results confirms the efficiency of this model for the design of integrated large-area thin film circuits.

  17. Enzymatic hydrolysis of cellulose dissolved in N-methyl morpholine oxide/water solutions.

    Science.gov (United States)

    Ramakrishnan, S; Collier, J; Oyetunji, R; Stutts, B; Burnett, R

    2010-07-01

    In situ hydrolysis of cellulose (dissolving pulp) in N-methyl morpholine oxide (NMMO) solutions by commercially available Accellerase1000 is carried out. The yield of reducing sugars is followed as a function of time at three different temperatures and four different enzyme loadings to study the effect of system parameters on enzymatic hydrolysis. Initial results show that rates of hydrolysis of cellulose and yields of reducing sugars in the presence of NMMO-water is superior initially (ratio of initial reaction rates approximately 4) and comparable to that of regenerated cellulose (for times greater than 5h) when suspended in aqueous solutions. The usage of Accellerase1000 results predominantly in the formation of glucose with minimal amounts of cellobiose. This study proves the ability of cellulases to remain active in NMMO to carry out an in situ saccharification of cellulose thus eliminating the need to recover regenerated cellulose. Thus this work will form the basis for developing a continuous process for conversion of biomass to hydrogen, ethanol and other hydrocarbons. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Attempts to cathodically reduce boron oxides to borohydride in aqueous solution

    International Nuclear Information System (INIS)

    McLafferty, J.; Colominas, S.; Macdonald, D.D.

    2010-01-01

    Sodium borohydride is being considered as a chemical hydrogen storage material (hydrogen being released through hydrolysis) and as an anodic fuel for fuel cells. However, the current cost of sodium borohydride is prohibitively high for automotive applications. Thus, there is interest in recycling the by-product of the hydrolysis or oxidation reaction, sodium metaborate. Numerous patents claim that this reaction is feasible in aqueous solution. Here, we report extensive experiments based upon methods outlined in the patents (particularly, the so-called direct reduction using high overpotential cathode materials). We also attempt to address concerns not discussed in the patents. In particular, to the authors' knowledge, previous reports have not addressed electrostatic repulsion of metaborate anion from the cathode. We further report several methods that were designed to overcome this problem: (1) use of a cathode material having a very negative potential of zero charge, (2) modification of the electrical double layer by using specifically adsorbing tetraalkylammonium hydroxides, (3) use of a rectangular wave pulse, and (4) use of chemically modified cathodes. None of these methods produced measurable quantities of borohydride. We then speculate as to why this reaction is not feasible, at least in aqueous solutions.

  19. Effect of the degree of oxidation and defects of graphene oxide on adsorption of Cu2+ from aqueous solution

    Science.gov (United States)

    Tan, Ping; Bi, Qi; Hu, Yongyou; Fang, Zheng; Chen, Yuancai; Cheng, Jianhua

    2017-11-01

    Graphene oxide (GO) is a promising adsorbent for heavy metal ions from water. However, the relationship between the degree of oxidation and defects of GO and the adsorption performance has been rarely reported. In this study, a series of GO with different degree of oxidation (GO1, GO5, GO6) and defects (GO1-GO4) were prepared by the improved Hummers method and were employed to explore the relationship between the degree of oxidation and defects of GO and the Cu2+ adsorption. The results showed that the adsorption of Cu2+ on GO was strongly dependent on the degree of oxidation and independent of the defects under various pH levels and ionic strength. The adsorption isotherms of Cu2+ on GO with different degree of oxidation and defects were well described by the Langmuir model and the maximum adsorption capacity of GO for Cu2+ increased with the improvement of the degree of oxidation but was independent of the defects, indicating that the adsorption of Cu2+ on GO was mainly proportional to the degree of oxidation but become insignificant in the structure integrity of aromatic matrixes, which might be due to the shielding effect of oxygen-containing groups. The adsorption of Cu2+ on GO with different degree of oxidation and defects reached an equilibrium state after 50 min, the adsorption kinetics followed the pseudo-second-order model and the adsorption process was controlled by the degree of oxidation.

  20. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    of a bottom electrode comprising silver nanoparticles on a 130 micron thick polyethyleneternaphthalate (PEN) substrate. Subsequently an electron transporting layer of zinc oxide nanoparticles was applied from solution followed by an active layer of P3HT-PCBM and a hole transporting layer of PEDOT......, 3 and 8 stripes. All five layers in the device were processed from solution in air and no vacuum steps were employed. An additional advantage is that the use of indium-tin-oxide (ITO) is avoided in this process. The devices were tested under simulated sunlight (1000 W m−2, AM1.5G) and gave a typical...

  1. In situ photoelectrochemistry and Raman spectroscopic characterization on the surface oxide film of nickel electrode in 30 wt.% KOH solution

    International Nuclear Information System (INIS)

    Nan Junmin; Yang Yong; Lin Zugeng

    2006-01-01

    The oxide films of nickel electrode formed in 30 wt.% KOH solution under potentiodynamic conditions were characterized by means of electrochemical, in situ PhotoElectrochemistry Measurement (PEM) and Confocal Microprobe Raman spectroscopic techniques. The results showed that a composite oxide film was produced on nickel electrode, in which aroused cathodic or anodic photocurrent depending upon polarization potentials. The cathodic photocurrent at -0.8 V was raised from the amorphous film containing nickel hydroxide and nickel monoxide, and mainly attributed to the formation of NiO through the separation of the cavity and electron when laser light irradiates nickel electrode. With the potential increasing to more positive values, Ni 3 O 4 and high-valence nickel oxides with the structure of NiO 2 were formed successively. The composite film formed in positive potential aroused anodic photocurrent from 0.33 V. The anodic photocurrent was attributed the formation of oxygen through the cavity reaction with hydroxyl on solution interface. In addition, it is demonstrated that the reduction resultants of high-valence nickel oxides were amorphous, and the oxide film could not be reduced completely. A stable oxide film could be gradually formed on the surface of nickel electrode with the cycling and aging in 30 wt.% KOH solution

  2. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions

    International Nuclear Information System (INIS)

    Hefny, Mohamed Mokhtar; Pattyn, Cedric; Benedikt, Jan; Lukes, Petr

    2016-01-01

    A remote microscale atmospheric pressure plasma jet ( µ APPJ) with He, He/H 2 O, He/O 2 , and He/O 2 /H 2 O gas mixtures was used to study the transport of reactive species from the gas phase into the liquid and the following aqueous phase chemistry. The effects induced by the µ APPJ in water were quantitatively studied using phenol as a chemical probe and by measuring H 2 O 2 concentration and pH values. These results were combined with the analysis of the absolute densities of the reactive species and the modeling of convective/diffusion transport and recombination reactions in the effluent of the plasma jet. Additionally, modified plasma jets were used to show that the role of emitted photons in aqueous chemistry is negligible for these plasma sources. The fastest phenol degradation was measured for the He/O 2 plasma, followed by He/H 2 O, He/O 2 /H 2 O, and He plasmas. The modeled quantitative flux of O atoms into the liquid in the He/O 2 plasma case was highly comparable with the phenol degradation rate and showed a very high transfer efficiency of reactive species from the plasma into the liquid, where more than half of the O atoms leaving the jet nozzle entered the liquid. The results indicate that the high oxidative effect of He/O 2 plasma was primarily due to solvated O atoms, whereas OH radicals dominated the oxidative effects induced in water by plasmas with other gas mixtures. These findings help to understand, in a quantitative way, the complex interaction of cold atmospheric plasmas with aqueous solutions and will allow a better understanding of the interaction of these plasmas with water or buffered solutions containing biological macromolecules, microorganisms, or even eukaryotic cells. Additionally, the µ APPJ He/O 2 plasma source seems to be an ideal tool for the generation of O atoms in aqueous solutions for any future studies of their reactivity. (paper)

  3. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis.

    Science.gov (United States)

    Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae

    2013-05-01

    We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.

  4. Investigation of DBS electro-oxidation reaction in the aqueous-organic solution of LiClO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Darlewski, Witold [Military University of Technology, Institute of Chemistry, Kaliskiego Street 2, 00-908 Warszawa (Poland); Popiel, Stanislaw, E-mail: spopiel@wat.edu.pl [Military University of Technology, Institute of Chemistry, Kaliskiego Street 2, 00-908 Warszawa (Poland); Nalepa, Tomasz [Department of Defense Affairs of the Ministry of Economy, Plac Trzech Krzyzy 3/5, 00-507 Warszawa (Poland); Gromotowicz, Waldemar [Warsaw Pharmaceutical Plant ' Polfa' S.A., Karolkowa Street 22/24, 01-207 Warszawa (Poland); Szewczyk, Rafal [Department of Biology and Environment Protection, University of Lodz, Pilarskiego Street 14/16, 90-231 Lodz (Poland); Stankiewicz, Romuald [Warsaw University, Department of Physics, Hoza Street 69, 00-681 Warszawa (Poland)

    2010-03-15

    A process of dibutyl sulphide (DBS) electro-oxidation using electrolysis and cyclic voltamperometry was investigated in water-methanol solution using different electrodes (platinum, boron doped diamond, graphite and glassy carbon). Obtained results indicate that the DBS electro-oxidation process is irreversible in voltamperometric conditions. It was shown that during DBS electrolytic oxidation on Pt, at the low anode potential (1.8 V), DBS was oxidized to sulphoxide and sulphone. Electrolysis at higher potential (up to 3.0 V) resulted in complete DBS oxidation and formation of various products, including: butyric acid, sulphuric acid, butanesulphinic acid, butanesulphonic acid, identified using gas chromatography (GC-AED) and mass spectrometry (GC-MS) methods.

  5. Solute transport and the prediction of breakaway oxidation in gamma + beta Ni-Cr-Al alloys

    Science.gov (United States)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    The Al transport and the condition leading to breakaway oxidation during the cyclic oxidation of gamma + beta NiCrAl alloys have been studied. The Al concentration/distance profiles were measured after various cyclic oxidation exposures at 1200 C. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide/metal interface, maintaining a constant flux of Al to the Al2O3 scale. It was also observed that breakaway oxidation occurs when the Al concentration at the oxide/metal interface approaches zero. A numerical model was developed to simulate the diffusional transport of Al and to predict breakaway oxidation in gamma + beta NiCrAl alloys undergoing cyclic oxidation. In a comparison of two alloys with similar oxide spalling characteristics, the numerical model was shown to predict correctly the onset of breakaway oxidation in the higher Al-content alloy.

  6. Acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Joseane Böhm

    Full Text Available Abstract Introduction: Hemodialysis contributes to increased oxidative stress and induces transitory hypoxemia. Compartmentalization decreases the supply of solutes to the dialyzer during treatment. The aim of this study was to investigate the acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease during a single hemodialysis session. Methods: Thirty patients were randomized to perform aerobic exercise with cycle ergometer for lower limbs during 30 minutes with intensity between 60-70% of maximal heart rate, or control group (CG. Blood samples were collected prior to and immediately after exercise or the equivalent time in CG. Analysis of blood and dialysate biochemistry as well as blood gases were performed. Mass removal and solute clearance were calculated. Oxidative stress was determined by lipid peroxidation and by the total antioxidant capacity. Results: Serum concentrations of solutes increased with exercise, but only phosphorus showed a significant elevation (p = 0.035. There were no significant changes in solute removal and in the acid-base balance. Both oxygen partial pressure and saturation increased with exercise (p = 0.035 and p = 0.024, respectivelly, which did not occur in the CG. The total antioxidant capacity decreased significantly (p = 0.027. Conclusion: The acute intradialytic aerobic exercise increased phosphorus serum concentration and decreased total antioxidant capacity, reversing hypoxemia resulting from hemodialysis. The intradialytic exercise did not change the blood acid-base balance and the removal of solutes.

  7. Acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease.

    Science.gov (United States)

    Böhm, Joseane; Monteiro, Mariane Borba; Andrade, Francini Porcher; Veronese, Francisco Veríssimo; Thomé, Fernando Saldanha

    2017-01-01

    Hemodialysis contributes to increased oxidative stress and induces transitory hypoxemia. Compartmentalization decreases the supply of solutes to the dialyzer during treatment. The aim of this study was to investigate the acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease during a single hemodialysis session. Thirty patients were randomized to perform aerobic exercise with cycle ergometer for lower limbs during 30 minutes with intensity between 60-70% of maximal heart rate, or control group (CG). Blood samples were collected prior to and immediately after exercise or the equivalent time in CG. Analysis of blood and dialysate biochemistry as well as blood gases were performed. Mass removal and solute clearance were calculated. Oxidative stress was determined by lipid peroxidation and by the total antioxidant capacity. Serum concentrations of solutes increased with exercise, but only phosphorus showed a significant elevation (p = 0.035). There were no significant changes in solute removal and in the acid-base balance. Both oxygen partial pressure and saturation increased with exercise (p = 0.035 and p = 0.024, respectivelly), which did not occur in the CG. The total antioxidant capacity decreased significantly (p = 0.027). The acute intradialytic aerobic exercise increased phosphorus serum concentration and decreased total antioxidant capacity, reversing hypoxemia resulting from hemodialysis. The intradialytic exercise did not change the blood acid-base balance and the removal of solutes.

  8. Investigation of the capacitive performance of tobacco solution reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Milan [Surface Engineering and Tribology Division, Council of Scientific and Industrial Research – Central Mechanical Engineering Research Institute, Durgapur 713209 (India); Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001 (India); Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra [Surface Engineering and Tribology Division, Council of Scientific and Industrial Research – Central Mechanical Engineering Research Institute, Durgapur 713209 (India); Lee, Joong Hee, E-mail: jhl@jbnu.ac.kr [Advanced Materials Research Institute for BIN Fusion Technology (BK Plus Global, Program), Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kuila, Tapas, E-mail: tkuila@gmail.com [Surface Engineering and Tribology Division, Council of Scientific and Industrial Research – Central Mechanical Engineering Research Institute, Durgapur 713209 (India)

    2015-02-01

    A facile and green approach for the reduction of graphene oxide (GO) using tobacco leaves solution was reported. The benefits of this approach were the use of green and cheap reducing agent as compared to the commercially available toxic and hazardous chemicals. Moreover, the purification of reduced GO (rGO) sheets can be avoided by using naturally occurring reducing agents. The obtained rGO sheets were characterised by Ultra violet visible, Fourier transform infrared, Raman and X-ray photo electron spectroscopy analysis. The morphologies were recorded by transmission electron and field emission scanning electron microscopy analysis and these showed the formation of a few layer rGO sheets. The electrical conductivity of rGO was found to be ∼410 S m{sup −1} at room temperature. Electrochemical performances were characterised by cyclic voltammetry, charge–discharge and electrochemical impedance spectroscopy analysis. A two electrode symmetric supercapacitor device was designed using nickel foam as current collector. The specific capacitance of the two-electrode device reached to 206 F g{sup −1} at a current density of 0.16 A g{sup −1}. The retention in specific capacitance was found to be ∼112% after 1000 charge–discharge cycles. - Highlights: • Reduced graphene has been prepared by bio-reduction of graphene oxide. • Few layers of graphene has been synthesised as observed by Raman spectra. • Two electrode based supercapacitors are fabricated. • Highest specific capacitance is found to be 206 F g{sup −1}. • Retention in specific capacitance is 112% after 1000 charge–discharge cycles.

  9. Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Fang [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000 (China); Kong, Lingtao, E-mail: ltkong@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Jiarui [College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000 (China); Wu, Shibiao [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039 (China); Zhang, Kaisheng [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wang, Xuelong [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039 (China); Sun, Bai; Jin, Zhen; Wang, Jin [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Xing-Jiu, E-mail: xjhuang@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Jinhuai, E-mail: jhliu@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-04-01

    Highlights: • A newly designed GO-NH{sub 2}: Higher adsorption capability than that of activated carbon. • Very quick adsorption property: More than 90% of Co(II) can be removed within 5 min. • One of the highest adsorption capabilities of today's nanomaterials for Co(II) (116.35 mg/g). • GO-NH{sub 2} membrane can remove more than 98% Co(II) from the water. - Abstract: A newly designed amination graphene oxide (GO-NH{sub 2}), a superior adsorption capability to that of activated carbon, was fabricated by graphene oxide (GO) combining with aromatic diazonium salt. The resultant GO-NH{sub 2} maintained a high surface area of 320 m{sup 2}/g. When used as an adsorbent, the GO-NH{sub 2} demonstrated a very quick adsorption property for the removal of Co(II) ions, more than 90% of Co(II) ions could be removed within 5 min for dilute solutions at 0.3 g/L adsorbent dose. The adsorption capability approaches 116.35 mg/g, which is one of the highest capabilities of today's materials. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that the Co(II) ions adsorption on GO-NH{sub 2} was a spontaneous process. Considering the superior adsorption capability, the GO-NH{sub 2} filter membrane was fabricated for the removal of Co(II) ions. Membrane filtration experiments revealed that the removal capabilities of the materials for cobalt ions depended on the membrane's thickness, flow rate and initial concentration of Co(II) ions. The highest percentage removal of Co(II) exceeds 98%, indicating that the GO-NH{sub 2} is one of the very suitable membrane materials in environmental pollution management.

  10. Nitric oxide production by visible light irradiation of aqueous solution of nitrosyl ruthenium complexes.

    Science.gov (United States)

    Sauaia, Marília Gama; de Lima, Renata Galvão; Tedesco, Antonio Claudio; da Silva, Roberto Santana

    2005-12-26

    [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](PF(6))(5) (L is NH(3), py, or 4-acpy) was prepared with good yields in a straightforward way by mixing an equimolar ratio of cis-[Ru(NO(2))(bpy)(2)(NO)](PF(6))(2), sodium azide (NaN(3)), and trans-[RuL(NH(3))(4)(pz)] (PF(6))(2) in acetone. These binuclear compounds display nu(NO) at ca. 1945 cm(-)(1), indicating that the nitrosyl group exhibits a sufficiently high degree of nitrosonium ion (NO(+)). The electronic spectrum of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex in aqueous solution displays the bands in the ultraviolet and visible regions typical of intraligand and metal-to-ligand charge transfers, respectively. Cyclic voltammograms of the binuclear complexes in acetonitrile give evidence of three one-electron redox processes consisting of one oxidation due to the Ru(2+/3+) redox couple and two reductions concerning the nitrosyl ligand. Flash photolysis of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex is capable of releasing nitric oxide (NO) upon irradiation at 355 and 532 nm. NO production was detected and quantified by an amperometric technique with a selective electrode (NOmeter). The irradiation at 532 nm leads to NO release as a consequence of a photoinduced electron transfer. All species exhibit similar photochemical behavior, a feature that makes their study extremely important for their future application in the upgrade of photodynamic therapy in living organisms.

  11. Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Augustine Chioma Affam

    2018-01-01

    Full Text Available The study compared the technical efficiency and economic cost of five advanced oxidation processes (Fenton, UV photo-Fenton, solar photo-Fenton, UV/TiO2/H2O2 and FeGAC/H2O2 for degradation of the pesticides chlorpyrifos cypermethrin and chlorothalonil in aqueous solution. The highest degradation in terms of COD and TOC removals and improvement of the biodegradability (BOD5/COD ratio index (BI were observed to be (i Fenton - 69.03% (COD, 55.61% (TOC, and 0.35 (BI; (ii UV photo-Fenton -78.56% (COD, 63.76% (TOC and 0.38 (BI;  (iii solar photo-Fenton - 74.19% (COD, 58.32% (TOC and 0.36 (BI; (iv UV/TiO2/H2O2 - 53.62% (COD, 21.54% (TOC, and 0.26 (BI; and  (v the most technical efficient and cost effective process was FeGAC/H2O2. At an optimum condition (FeGAC 5 g/L, H2O2 100 mg/L, and reaction time of 60 min at pH 3, the COD and TOC removal efficiency were 96.19 and 85.60%, respectively, and the biodegradation index was 0.40. The degradation rate constant and cost were 0.0246 min-1 and $0.74/kg TOC, respectively. The FeGAC/H2O2 process is the most technically efficient and cost effective for pretreatment of the pesticide wastewater before biological treatment. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 26nd September 2017; Accepted: 27th September 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Affam, A.C., Chaudhuri, M., Kutty, S.R.M. (2018. Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 179-186 (doi:10.9767/bcrec.13.1.1394.179-186

  12. Large-area processing of solution type metal-oxide in TFT backplanes and integration in highly stable OLED displays

    NARCIS (Netherlands)

    Marinkovic, Marko; Takata, Ryo; Neumann, Anita; Pham, Duy Vu; Anselmann, Ralf; Maas, Joris; Van Der Steen, Jan Laurens; Gelinck, Gerwin; Katsouras, Ilias

    2017-01-01

    Solution type metal-oxide semiconductor was processed on mass-production ready equipment and integrated in a backplane with ESL architecture TFTs. Excellent thickness uniformity of the semiconductor layer was obtained over the complete Gen I glass substrate (320 mm ×00D7; 352 mm), resulting in

  13. Establishing the potential dependent equilibrium oxide coverage on platinum in alkaline solution and its influence on the oxygen reduction

    DEFF Research Database (Denmark)

    Wiberg, Gustav; Arenz, Matthias

    2012-01-01

    Publication year: 2012 Source:Journal of Power Sources, Volume 217 Gustav K.H. Wiberg, Matthias Arenz The oxidation process of polycrystalline platinum subjected to alkaline solution is re-examined using a combination of cyclic voltammetry and potential hold techniques in Ar, H2 and O2 purged 0.1...

  14. Formation of chromium oxide nanoparticles by gamma irradiation of chromate solutions

    International Nuclear Information System (INIS)

    Alrehaily, L.M.; Joseph, J.M.; Wren, J.C.; Guzonas, D.A.

    2012-09-01

    One of the operational and safety challenges of nuclear reactors is the corrosion of coolant system materials. Corrosion products released into the reactor coolant circulate through the reactor core and can be deposited on surfaces there where they can be neutron activated. If these radioactive species are then released into the coolant, they can migrate out of the core and deposit on piping and components located outside the biological shield of the reactor core. These activated corrosion products pose a radiological hazard to plant workers. The radiolysis of water produces redox-active radicals and molecules that can interact very effectively with metallic corrosion products, changing their oxidation states. The solubility of hydrated metal species varies considerably depending on their oxidation state. For example, ferrous iron is several orders of magnitude more soluble than ferric iron at acidic and neutral pHs, while Cr VI species are much more soluble than Cr III species at all pHs. Conversion of more soluble metal ions to less soluble ions will promote precipitation of metal oxide colloidal particles. The conversion of a dissolved ion to a particle will change the transport behaviour of corrosion products and their removal efficiency from system surfaces or by a purification system. Hence, a well-founded understanding of the behaviour of corrosion product ions in a radiolytic environment is very important in assessing their transport behaviour in a reactor coolant system, and the effectiveness of measures to limit radioactive contamination of the coolant system. The formation of chromium oxide nanoparticles by gamma radiolysis of Cr VI (aq) (CrO 4 2- or Cr 2 O 7 2- ) solutions was investigated as a function of pH and Cr VI (aq) concentration using a range of chemical and particle analysis techniques. The results show that Cr VI (aq) is reduced to less soluble Cr III species by reducing radiolysis products (e.g., .eaq - ). These insoluble Cr III species

  15. Mechanistic studies of the oxidation of soluble species of ruthenium in nitric acid solutions. Application to the removal of ruthenium from nuclear fuel dissolution solutions

    International Nuclear Information System (INIS)

    Carron, V.

    2001-01-01

    Ruthenium is one of the most troublesome fission products during nuclear fuel reprocessing. His removal from nitric acid fuel dissolution solutions, above the PUREX process, is under consideration. Electro-volatilization could be a possible way to eliminate this element. It consists in the oxidation of soluble ruthenium species coupled with the volatilization of formed RuO 4 . Soluble species are nitrate and nitro complexes of nitrosyl ruthenium RuNO 3+ . The first part of this work deals with the direct oxidation of RuNO 3+ at a golden or a platinum anode. It has been investigated by cyclic voltammetry and infrared and UV-visible reflectance spectroscopy. The oxidation of RuNO 3+ begins with an adsorption step, which precedes the formation of RuO 4 . Then a reaction between RuO 4 and RuNO 3+ occurs to produce a Ru IV compound, which is also electro-oxidized to RuO 4 . The second part concerns potentiostatic electro-volatilization experiences. The rate of electro-volatilization decreases with increasing HNO 3 concentration. At low concentrations, kinetic is controlled by the volatilization of RuO 4 . The rate-determining step is the oxidation of RuNO 3+ at concentrations higher than 1 M. In HNO 3 4 M, the addition of AgNO 3 is required to accelerate the oxidation of RuNO 3+ . The last part is devoted to the study of the indirect oxidation of RuNO 3+ . The electrocatalytic power of electro-generated Ag II is illustrated by voltammetric techniques and potentiostatic electrolysis. The existence of a limit concentration of AgNO 3 is shown (which value depends on experimental conditions) beyond which kinetic is controlled by the RuO 4 volatilization step. These results indicate that the electro-volatilization kinetic could be increased by optimizing the volatilization conditions. (author)

  16. Phenol degradation in aqueous solution by photolytic oxidation with ozone and/or hydrogen peroxide

    International Nuclear Information System (INIS)

    Koepp, T.; Koether, M.; Brueckner, B.; Radeke, K.H.

    1993-01-01

    The removal of phenol in an aqueous solution as a typical pollutant by oxidation using ozone and hydrogen peroxide under ultraviolet irradiation has been studied. Both the O 3 /UV and the H 2 O 2 /UV method can be powerful to decompose the total organic carbon (TOC) to carbon dioxide and water, but the first method is more effective. In the case of H 2 O 2 /UV method a strong overdose on H 2 O 2 is necessary to remove TOC effectively, however, a favourable H 2 O 2 concentration exists. This is probably caused by undesired parallel reactions of hydrogen peroxide. The simultaneous use of ozone and hydrogen peroxide accelerates the removal of TOC in the first third of experiment in comparison to the O 3 /UV method, but the time of total decomposition of TOC is delayed. A change in measured kinetics of ozone consumption by organic molecules corresponds well with the time of total transformation of aromatic into aliphatic substances. (orig.)

  17. Effect of hydroxylamine hydrochloride on the floral decoration of zinc oxide synthesized by solution method

    International Nuclear Information System (INIS)

    Wahab, Rizwan; Ansari, S.G.; Kim, Young Soon; Khang, Gilson; Shin, Hyung-Shik

    2008-01-01

    Effect of the structure-directing agent on the floral (depicting flower) morphological variation of ZnO is systematically studied and presented here. Flowery decorated (resembling flower) zinc oxide structure composed of hexagonal nanorods (sharp tips and wider bases) was synthesized at 90 deg. C using zinc acetate dihydrate and sodium hydroxide at various concentrations of hydroxylamine hydrochloride for 12 h by solution method. Single crystalline nature with the wurtzite hexagonal phase remained unaltered with increasing concentration of hydroxylamine hydrochloride while the morphology changes from nanorod to plate like structure. Photoelectron spectroscopic measurement presented spectra close to the standard bulk ZnO, with an O 1s peak composed of surface adsorbed O-H group, O 2- in the oxygen vacancies on ZnO structure and ZnO. At higher concentration (0.8 M), surface adsorbed O-H group increases while other component decreases because of the changes in the nucleation and surface energy. Results clearly indicate that hydroxylamine hydrochloride works as a structure-directing agent without affecting other properties

  18. Solute's perspective on how trimethylamine oxide, urea, and guanidine hydrochloride affect water's hydrogen bonding ability.

    Science.gov (United States)

    Pazos, Ileana M; Gai, Feng

    2012-10-18

    While the thermodynamic effects of trimethylamine oxide (TMAO), urea, and guanidine hydrochloride (GdnHCl) on protein stability are well understood, the underlying mechanisms of action are less well characterized and, in some cases, even under debate. Herein, we employ the stretching vibration of two infrared (IR) reporters, i.e., nitrile (C≡N) and carbonyl (C═O), to directly probe how these cosolvents mediate the ability of water to form hydrogen bonds with the solute of interest, e.g., a peptide. Our results show that these three agents, despite having different effects on protein stability, all act to decrease the strength of the hydrogen bonds formed between water and the infrared probe. While the behavior of TMAO appears to be consistent with its protein-protecting ability, those of urea and GdnHCl are inconsistent with their role as protein denaturants. The latter is of particular interest as it provides strong evidence indicating that although urea and GdnHCl can perturb the hydrogen-bonding property of water their protein-denaturing ability does not arise from a simple indirect mechanism.

  19. Copper(II) oxide solubility behavior in aqueous sodium phosphate solutions at elevated temperatures

    International Nuclear Information System (INIS)

    Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.

    1990-02-01

    A platinum-lined, flowing autoclave facility is used to investigate the solubility behavior of copper(II) oxide (CuO) in aqueous sodium phosphate solutions at temperatures between 292 and 535 K. Copper solubilities are observed to increase continuously with temperature and phosphate concentration. The measured solubility is examined via a Cu(II) ion hydrolysis/complexing model and thermodynamic functions for the hydrolysis/complexing reactions are obtained from a least- squares analysis of the data. Altogether, thermochemical properties are established for five anionic complexes: Cu(OH) 3 - , Cu(OH) 4 = , Cu(OH) 2 (HPO 4 ) = , Cu(OH) 3 (H 2 PO 4 ) = , and Cu(OH) 2 (PO 4 ) ≡ . Precise thermochemical parameters are also derived for the Cu(OH) + hydroxocomplex based on CuO solubility behavior previously observed in pure water (*) at elevated temperatures. The relative ease of Cu(II) ion hydrolysis is such that Cu(OH) 3 - species become the preferred hydroxocomplex for pH ≥ 9.4. 20 refs., 8 figs., 6 tabs

  20. Comparative Study of Commercial Oxide Electrodes Performance in Electrochemical Degradation of Organics in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Pelegrino Rosângela L.

    2002-01-01

    Full Text Available In this paper the potentiality of two types of DSAâ commercial electrodes, for electrochemical treatment of effluents, is investigated. Oxide anodes, with nominal composition of 70TiO2/30RuO2 and 45IrO2/55Ta2O5, were used in a flow-cell reactor for the electrooxidation of phenol. Comparative results were presented as phenol concentration decay as a function of electrolysis time, as well as COD and TOC concentration reduction. The cell reactor was operated at current densities, ranging from 15 to 150 mA cm-2 and solution linear velocity was 0.24 m s-1. Results reported in this paper showed that phenol and quinones were degraded to a very low concentration, besides only a small portion of the organic carbon is reduced. Starting from 100 mg L-1, after five hours of electrolysis at 100 mA cm-2, concentrations reached 0.4 mg L-1 of phenol, 1 mg L-1 of hydroquinone, 7 mg L-1 of benzoquinone and TOC was reduced by 35%.

  1. Decomposition and Mineralization of Dimethyl Phthalate in an Aqueous Solution by Wet Oxidation

    Directory of Open Access Journals (Sweden)

    Dar-Ren Ji

    2015-01-01

    Full Text Available Dimethyl phthalate (DMP was treated via wet oxygen oxidation process (WOP. The decomposition efficiency ηDMP of DMP and mineralization efficiency ηTOC of total organic carbons were measured to evaluate the effects of operation parameters on the performance of WOP. The results revealed that reaction temperature T is the most affecting factor, with a higher T offering higher ηDMP and ηTOC as expected. The ηDMP increases as rotating speed increases from 300 to 500 rpm with stirring enhancement of gas liquid mass transfer. However, it exhibits reduction effect at 700 rpm due to purging of dissolved oxygen by overstirring. Regarding the effects of pressure PT, a higher PT provides more oxygen for the forward reaction with DMP, while overhigh PT increases the absorption of gaseous products such as CO2 and decomposes short-chain hydrocarbon fragments back into the solution thus hindering the forward reaction. For the tested PT of 2.41 to 3.45 MPa, the results indicated that 2.41 MPa is appropriate. A longer reaction time of course gives better performance. At 500 rpm, 483 K, 2.41 MPa, and 180 min, the ηDMP and ηTOC are 93 and 36%, respectively.

  2. Optical constants of anodic aluminum oxide films formed in oxalic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jian [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Chengwei [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: cwwang@nwnu.edu.cn; Li Yan [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2008-09-01

    The anodic aluminum oxide (AAO) films with highly ordered nanopore arrays were prepared in oxalic acid solution under different anodizing voltage and time, its surface and cross section appearances were characterized by using field emission scanning electron microscopy, the transmission spectra with the interference fringes were measured at normal incidence over the wavelength range 200 to 2500 nm. Then the modified Swanepoel method was used for the determination of the optical constants and thickness of the free standing AAO films. The results indicate that the refractive index increases with the increase of anodizing voltage and the decrease of anodizing time, which is mainly due to the content of Al{sub 2}O{sub 3} with octahedron increases in the AAO films. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model, and the energy dependence of the absorption coefficient can be described using the direct transition model proposed by Tauc. Likewise, the optical energy gap E{sub g} is derived from Tauc's extrapolation, and E{sub g} increases from 4.178 to 4.256 eV with the anodizing voltage, but is weakly dependent on anodizing time. All the results are self-consistent in the paper.

  3. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution.

    Science.gov (United States)

    Nam, Seung-Woo; Jung, Chanil; Li, Hang; Yu, Miao; Flora, Joseph R V; Boateng, Linkel K; Her, Namguk; Zoh, Kyung-Duk; Yoon, Yeomin

    2015-10-01

    The adsorptive properties of graphene oxide (GO) were characterized, and the binding energies of diclofenac (DCF) and sulfamethoxazole (SMX) on GO adsorption were predicted using molecular modeling. The adsorption behaviors of DCF and SMX were investigated in terms of GO dosage, contact time, and pH. Additionally, the effects of sonication on GO adsorption were examined. GO adsorption involves "oxygen-containing functional groups" (OCFGs) such as COOH, which exhibit negative charges over a wide range of pH values (pH 3-11). DCF (-18.8 kcal mol(-1)) had a more favorable binding energy on the GO surface than SMX (-15.9 kcal mol(-1)). Both DCF and SMX were removed from solution (adsorbed to GO), up to 35% and 12%, respectively, within 6h, and an increase in GO dosage enhanced the removal of DCF. Electrostatic repulsion occurred between dissociated DCF/SMX and the more negatively charged GO at basic pH (>pKa). The sonication of GO significantly improved the removal of DCF (75%) and SMX (30%) due to dispersion of exfoliated GO particles and the reduction of OCFGs on the GO surface. Both DCF and SMX in the adsorption isotherm were explained well by the Freundlich model. The results of this study can be used to maximize the adsorption capacities of micropollutants using GO in water treatment processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications

    International Nuclear Information System (INIS)

    Dong Wenjun; Huang Huandi; Zhu Yanjun; Li Xiaoyun; Wang Xuebin; Li Chaorong; Chen Benyong; Wang Ge; Shi Zhan

    2012-01-01

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide–amine intermediate and Ag + at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO 3 nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag–MoO 3 nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature. (paper)

  5. Dissolution of oxide films on iron in aqueous solutions containing complexing anions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Lee, W.; Owen, D.G.

    1981-01-01

    The dissolution, in oxalic acid and oxalic acid plus ethylenediaminetetraacetate, of magnetite films grown at high temperature on iron has been studied under varying conditions of pH and temperature. For oxalate concentrations greater than about 2 x 10 -3 mol dm -3 , magnetite dissolves by direct chemical dissolution. The mechanism appears to involve adsorption of oxalate ions at ferric ion sites in the oxide lattice, followed by proton attack and desorption of cationic species. Once metal dissolution starts, β-ferrous oxalate dihydrate is precipitated on the electrode, leading to erratic fluctuations in the electrode potential and eventually to inhibition of metal dissolution. For oxalate concentrations -3 mol dm -3 , the predominant dissolution mechanism appears to involve reduction by the metal. Also, once solution penetration to the underlying metal has occurred, and the electrode has returned to the active state, autoreductive dissolution appears to predominate even at higher oxalate concentrations. This change in mechanism from predominantly chemical dissolution to predominantly autoreductive dissolution may be due, at least in part, to the desorption of oxalate ions at the more negative potentials achieved in the active state. (author)

  6. Isotopic exchange rate of cobalt ions between hydrous tin(IV) oxide and aqueous solutions

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamazaki, Hiromichi; Itami, Akira

    1989-01-01

    The isotopic exchange rate of cobalt ions between hydrous tin(IV) oxide ion exchanger and aqueous solutions was radiochemically measured to obtain fundamental data which are useful for elucidating the ion-exchange kinetics of the material for the transition metal elements. The rate can be understood by considering that the cobalt ions were present in the exchanger as three kinds of species: (A 1 ) Free ions which can diffuse in the exchanger particles, (A 2 ) Weakly bound ions to the exchange sites which exchange rapidly with A 1 , and (B) Covalently fixed ions to the exchange sites which exchange very slowly with A 1 . At low fraction of B, the rate is controlled by the diffusion of A 1 with the effective diffusion coefficient, D eff , the values of which depend on the concentration ratios of A 2 to A 1 . When B predominates over the A species, the concentration ratios of B to A 1 affect greatly D eff . The values of D eff and their activation energy(20 kJ/mol) were also estimated

  7. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2015-10-15

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  8. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    International Nuclear Information System (INIS)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C.; Bernal, R.

    2015-10-01

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  9. Electropolishing of AISI-304 stainless steel using an oxidizing solution originally used for electrochemical coloration

    International Nuclear Information System (INIS)

    Andrade, Leonardo S.; Xavier, Sandro C.; Rocha-Filho, Romeu C.; Bocchi, Nerilso; Biaggio, Sonia R.

    2005-01-01

    Chemical polishing or electropolishing, instead of mechanical polishing, are recommended for the attainment of metallic surface polishes without the introduction of contaminants or tensions in the surface layers of the metal. The fundamental difference between the chemical and electrochemical polishing processes is that in the latter anodic currents/potentials are used to help in the dissolution and passivation of the metal. In this paper, the use of an oxidizing electrolytic solution (2.5 mol L -1 CrO 3 + 5.0 mol L -1 H 2 SO 4 ) originally employed in electrochemical coloration processes is reported for the electropolishing of AISI-314 stainless steel. Parameters involved in this electropolishing process, such as temperature, current density and time, were optimized so as to attain the best possible results evaluated by the obtained surface brightness measured by reflectance spectra. Surface analyses by scanning electron microscopy allowed a clear correlation between obtained brightness and surface smoothing. The best conditions obtained for the electropolishing process are: temperature of 45 deg. C, electrolysis time of 10 min and current density of around 25 A dm -2 . It should be pointed out that an electropolishing process signature (periodic oscillations of the cell potential) was established; this may be an important tool for optimizing and monitoring electropolishing processes

  10. Solution deposited and modified iron oxide for enhanced solar water splitting

    Science.gov (United States)

    Abel, Anthony J.

    Growing worldwide energy demand coupled with an increasing awareness of anthropogenic climate change has driven research into carbon-neutral and solar-derived energy sources. One attractive strategy is the storage of solar energy in the bonds of H2 formed by photoelectrochemical (PEC) water splitting. Hematite, an iron oxide, has been widely investigated as a candidate material for PEC water splitting due to its stability, non-toxicity, earth abundance and consequent low cost, and a theoretical 15% solar-to-hydrogen conversion efficiency. However, poor electrical properties and slow rates of the water oxidation reaction have limited its potential as an economical water splitting catalyst. Additionally, the most efficient hematite-based devices are fabricated via expensive, vacuum-phase techniques, limiting scalability to broad integration into the energy supply. In this thesis, I develop a new, solution-based deposition method for high quality, planar hematite thin films using successive ionic layer adsorption and reaction (SILAR). The constant geometry and tight control over layer thickness possible with SILAR makes these films ideal model systems to understand the two key steps of PEC water oxidation: charge separation and interfacial hole transfer. In Chapter 3, I report on facile annealing treatments to dope hematite with Ti and Sn, and I show that these impurity atoms at the hematite/electrolyte interface increase hole transfer efficiency from nearly 0 to above 60%. However, charge separation remains below 15% with these dopants incorporated via solid state diffusion, mainly due to low hole mobility. To overcome this associated small transport length, extremely thin hematite coatings were deposited on Sb:SnO2 monolayer inverse opal scaffolds. With this modified substrate, photocurrent increased proportionately to the surface area of the scaffold. While Chapter 3 discusses incorporation of dopants via solid state diffusion, Chapter 4 examines methods to

  11. Influent of Carbonization of Sol Solution at the External Gelation Process on the Quality of Uranium Oxide Kernel

    International Nuclear Information System (INIS)

    Damunir; Sukarsono

    2007-01-01

    The influent of carbonization of sol solution at the external gelation process on the quality of uranium oxide kernel was done. Variables observed are the influent of carbon, temperature and time of reduction process of U 3 O 8 kernel resulted from carbonization of sol solution. First of all, uranyl nitrate was reacted with 1 M NH 4 OH solution, producing the colloid of UO 3 . Then by mixing and heating up to the temperature of 60-80 °C, the colloid solution was reacted with PVA, mono sorbitol oleate and paraffin producing of uranium-PVA sol. Then sol solution was carbonized with carbon black of mol ratio of carbon to uranium =2.32-6.62, produce of carbide gel. Gel then washed, dried and calcined at 800 °C for 4 hours to produce of U 3 O 8 kernel containing carbon. Then the kernel was reduced by H 2 gas in the medium of N 2 gas at 500-800 °C, 50 mmHg pressure for 3 hours. The process was repeated at 700 °C, 50 mmHg pressure for 1-4 hours. The characterization of chemical properties of the gel grains and uranium oxide kernel using FTIR covering the analysis of absorption band of infra red spectrum of UO 3 , C-OH, NH 3 , C-C, C-H and OH functional group. The physical properties of uranium oxide covering specific surface area, void volume, mean diameter using surface area meter Nova-1000 and as N 2 gas an absorbent. And O/U ratio of uranium dioxide kernel by gravimetry method. The result of experiment showed that carbonization of sol solution at the external gelation process give influencing the quality of uranium oxide kernel. (author)

  12. Comparison in decoloration efficiency among radiation, ultraviolet ray and Fenton oxidation treatment for aqueous solution of dyes

    International Nuclear Information System (INIS)

    Shimokawa, Toshishige; Sawai, Takeshi

    1984-01-01

    To establish the methods of oxidation and decomposition treatment for dyeing waste water, the processes by radiation, ultraviolet ray and Fenton oxidation were examined comparatively for the decoloration efficiency. The dyes tested were commercially available reactive dyes, RBO-3R, DBR-BB, MBY-6GS and RBB-R. In the radiation process, the dye solution was irradiated with gamma ray of cobalt-60 while blowing air through it. Radiation process and Fenton oxidation were excellent for decoloration. Ultraviolet ray was low in the treatment efficiency, so it is not practical. In the radiation process, the addition of a reagent and the adjustment of pH are not required unlike the case of the Fenton oxidation process. Its continuous operation is also possible, so it is a highly practical means. (Mori, K.)

  13. Degradation of Acetaminophen and Its Transformation Products in Aqueous Solutions by Using an Electrochemical Oxidation Cell with Stainless Steel Electrodes

    Directory of Open Access Journals (Sweden)

    Miguel Ángel López Zavala

    2016-09-01

    Full Text Available In this study, a novel electrochemical oxidation cell using stainless steel electrodes was found to be effective in oxidizing acetaminophen and its transformation products in short reaction times. Aqueous solutions of 10 mg/L-acetaminophen were prepared at pH 3, 5, 7, and 9. These solutions were electrochemically treated at direct current (DC densities of 5.7 mA/cm2, 7.6 mA/cm2, and 9.5 mA/cm2. The pharmaceutical and its intermediates/oxidation products were determined by using high pressure liquid chromatography (HPLC. The results showed that electrochemical oxidation processes occurred in the cell. Acetaminophen degradation rate constants increased proportionally with the increase of current intensity. High current densities accelerated the degradation of acetaminophen; however, this effect diminished remarkably at pH values greater than 5. At pH 3 and 9.5 mA/cm2, the fastest degradation of acetaminophen and its intermediates/oxidation products was achieved. To minimize the wear down of the electrodes, a current density ramp is recommended, first applying 9.5 mA/cm2 during 2.5 min or 7.6 mA/cm2 during 7.5 min and then continuing the electrochemical oxidation process at 5.7 mA/cm2. This strategy will hasten the acetaminophen oxidation, extend the electrode’s life, and shorten the reaction time needed to degrade the pharmaceutical and its intermediates/oxidation products. DC densities up to 9.5 mA/cm2 can be supplied by photovoltaic cells.

  14. Pulse electrodeposition of Pt and Pt–Ru methanol-oxidation nanocatalysts onto carbon nanotubes in citric acid aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Huei-Yu [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Hsieh, Chien-Kuo [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Tsai, Ming-Chi; Wei, Yu-Hsuan; Yeh, Tsung-Kuang [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Tsai, Chuen-Horng, E-mail: tsai@aec.gov.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2015-06-01

    In this study, platinum nanoparticle/carbon nanotube (Pt NP/CNT) and platinum–ruthenium nanoparticle (Pt–Ru NP/CNT) hybrid nanocatalysts were prepared by the pulse-electrodeposition method in different aqueous solutions containing citric acid (CA) or sulfuric acid (SA). The electrocatalytic properties of the Pt NP/CNT and Pt–Ru NP/CNT electrodes prepared using different aqueous solutions were investigated for methanol oxidation. The results show that the electrochemical mass activities of these hybrid nanocatalysts prepared in the CA aqueous solution were increased by factors of 1.46 and 2.77 for Pt NPs and Pt–Ru NPs, respectively, compared with those prepared in SA aqueous solutions using the same procedure. These increased mass activities are attributed to the CA playing dual roles as both a stabilizing agent and a particle size reducing agent in the aqueous solutions. The approach developed in this work enables further reductions in the particle sizes of noble-metal nanocatalysts. - Highlights: • Pulse-electrodeposition of Pt or Pt–Ru nanoparticles on carbon nanotubes • Carbon nanotubes used as a catalyst-supporting material • Citric acid used as reducing agent in the aqueous electrodeposition solutions • Electrochemical activity for methanol oxidation improved by a factor of 1.46 to 2.77.

  15. Influence of silicon species on the transformation of green rust I(Cl-) in aqueous solution by oxidation

    International Nuclear Information System (INIS)

    Sahoo, Gadadhar; Fujieda, Shun; Shinoda, Kozo; Yamaguchi, Shinichi; Korosaki, Masao; Suzuki, Shigeru

    2011-01-01

    Highlights: → Addition of silicate species and silica to GRI(Cl - ) increased oxidation time. → The lepidocrocite particle size in silicate added case has been reduced significantly. → The influence of silicate was attributed to its adsorption on lepidocrocite. → Silicate also influenced GRI(Cl - ) transformation due to adsorption on it. - Abstract: X-ray diffraction (XRD) and solution analysis were used for characterizing the influence of different silicon species on oxidation of green rust (GRI(Cl - )) suspension. While addition of silicon to metallic iron enhanced the formation of β-FeOOH, GRI(Cl - ) in aqueous solution oxidized into lepidocrocite and oxidation was delayed in presence of silica and silicate species as noticed from potential, pH, and dissolved oxygen (DO) measurements. Transmission electron micrographs showed that the particle size of lepidocrocite was reduced due to silicate addition. The influence of silicate was attributed to its adsorption on GRI(Cl - ) and lepidocrocite particles as confirmed from ICP-AES analysis of supernatant solution.

  16. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution

    International Nuclear Information System (INIS)

    Zhang, Chang; Li, Yongqiu; Wang, Fenghua; Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Ma, Chi; Li, Zihao; Xu, ZiYi; Zeng, Guangming

    2017-01-01

    Highlights: • Magnetic zirconium-iron oxide nanoparticle (MZION) was successfully synthesized. • The removal of phosphate could be effectively fulfilled using MZION. • MZION could be conveniently separated by magnet after adsorption. • The Fe/Zr molar ratios played a key role in adsorption capacity and magnetic separation. - Abstract: In this study, magnetic zirconium-iron oxide nanoparticles (MZION) of different Fe/Zr molar ratios were successfully prepared using the co-precipitation method, and their performance for phosphate removal was systematically evaluated. The as-obtained adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential analyzer, Fourier transform infrared spectroscopy (FT-IR) and Brunauer Emmett Teller (BET) specific surface area analysis. The effects of pH, ionic strength, and co-existing ions (including Cl − , SO 4 2− , NO 3 − and HCO 3 − ) were measured to evaluate the adsorption performance in batch experiments. The results showed that decreasing the Fe/Zr molar ratios increased the specific surface area that was propitious to adsorption process, but the adsorption capacity enhanced with the decrease of Fe/Zr molar ratios. Phosphate adsorption on MZION could be well described by the Freundlich equilibrium model and pseudo-second-order kinetics. The adsorption of phosphate was highly pH dependent and decreased with increasing pH from 1.5 to 10.0. The adsorption was slightly affected by ionic strength. With the exception of HCO 3 − , co-existing anions showed minimum or no effect on their adsorption performance. After adsorption, phosphate on these MZION could be easily desorbed by 0.1 M NaOH solution. The phosphate adsorption mechanism of MZION followed the inner-sphere complexing mechanism, and the surface −OH groups played a significant role in the phosphate adsorption. Additionally, the main advantages of MZION consisted in its

  17. The rheology of oxide dispersions and the role of concentrated electrolyte solutions

    International Nuclear Information System (INIS)

    Biggs, Simon; Tindley, Amy

    2007-01-01

    Stability control of particulate dispersions is critical to a wide range of industrial processes. In the UK nuclear industry, significant volumes of waste materials arising from the corrosion products of Magnox fuel rods currently require treatment and storage. The majority of this waste is present as aqueous dispersions of oxide particulates. Treatment of these dispersions will require a variety of unit operations including mobilisation, transport and solid- liquid separation. Typically these processes must operate across a narrow optimal range of pH and the dispersions are, almost without exception, found in complex electrolyte conditions of high overall concentration. Knowledge of the behaviour of oxides in various electrolyte conditions and over a large pH range is essential for the efficient design and control of any waste processing approach. The transport properties of particle dispersions are characterised by the rheological properties. It is well known that particle dispersion rheology is strongly influenced by particle-particle interaction forces, and that particle-particle interactions are strongly influenced by adsorbed ions on the particle surfaces. Here we correlate measurements of the shear yield stress and the particle zeta potentials to provide insight as to the role of ions in moderating particle interactions. The zeta potential of model TiO 2 suspensions were determined (Colloidal Dynamics Zeta Probe) over a range of pH for a series of alkali metal halides and quaternary ammonium halides at a range of solution concentrations (0.001 M - 1 M). The results show some surprising co-ion effects at high electrolyte concentrations (>0.5 M) and indicate that even ions generally considered to be indifferent induce a shift in iso-electric point (i.e.p.) which is inferred as being due to specific adsorption of ions. The shear yield stress values of concentrated titania dispersions were measured using a Bohlin C-VOR stress controlled rheometer. The shear

  18. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chang, E-mail: zhangchang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Yongqiu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Wang, Fenghua, E-mail: 952157786@qq.com [Institute of Physical Education, Xinjiang Normal University, Urumqi 830054 (China); Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Ma, Chi; Li, Zihao; Xu, ZiYi; Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-02-28

    Highlights: • Magnetic zirconium-iron oxide nanoparticle (MZION) was successfully synthesized. • The removal of phosphate could be effectively fulfilled using MZION. • MZION could be conveniently separated by magnet after adsorption. • The Fe/Zr molar ratios played a key role in adsorption capacity and magnetic separation. - Abstract: In this study, magnetic zirconium-iron oxide nanoparticles (MZION) of different Fe/Zr molar ratios were successfully prepared using the co-precipitation method, and their performance for phosphate removal was systematically evaluated. The as-obtained adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential analyzer, Fourier transform infrared spectroscopy (FT-IR) and Brunauer Emmett Teller (BET) specific surface area analysis. The effects of pH, ionic strength, and co-existing ions (including Cl{sup −}, SO{sub 4}{sup 2−}, NO{sub 3}{sup −} and HCO{sub 3}{sup −}) were measured to evaluate the adsorption performance in batch experiments. The results showed that decreasing the Fe/Zr molar ratios increased the specific surface area that was propitious to adsorption process, but the adsorption capacity enhanced with the decrease of Fe/Zr molar ratios. Phosphate adsorption on MZION could be well described by the Freundlich equilibrium model and pseudo-second-order kinetics. The adsorption of phosphate was highly pH dependent and decreased with increasing pH from 1.5 to 10.0. The adsorption was slightly affected by ionic strength. With the exception of HCO{sub 3}{sup −}, co-existing anions showed minimum or no effect on their adsorption performance. After adsorption, phosphate on these MZION could be easily desorbed by 0.1 M NaOH solution. The phosphate adsorption mechanism of MZION followed the inner-sphere complexing mechanism, and the surface −OH groups played a significant role in the phosphate adsorption. Additionally, the main

  19. Reaction mechanisms and evaluation of effective process operation for catalytic oxidation and coagulation by ferrous solution and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Moon, H.J.; Kim, Y.M. [Dept. of Environmental Engineering, Sangmyung Univ., Cheonan (Korea); Bae, W.K. [Dept. of Civil and Environmental Engineering, Hanyang Univ., Ansan, Kyounggi (Korea)

    2003-07-01

    This research was carried out to evaluate the removal efficiencies of COD{sub cr} and colour for the dyeing wastewater by ferrous solution and the different dosage of H{sub 2}O{sub 2} in Fenton process. In the case of H{sub 2}O{sub 2} divided dosage, 7:3 was more effective than 3:7 to remove COD{sub cr} and colour. The results showed that COD was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand colour was removed by Fenton oxidation rather than Fenton coagulation. This paper also aims at pursuing to investigate the effective removal mechanisms using ferrous ion coagulation, ferric ion coagulation and Fenton oxidation process. The removal mechanism of COD{sub cr} and colour was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However the final removal efficiency of COD and colour was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide. (orig.)

  20. Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: Solution chemistry and surface characterization by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jegou, C., E-mail: christophe.jegou@cea.f [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Caraballo, R.; De Bonfils, J.; Broudic, V.; Peuget, S. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Vercouter, T. [Commissariat a l' Energie Atomique (CEA), Saclay Reasearch Center, B.P. 11, F-91191 Gif-sur-Yvette Cedex (France); Roudil, D. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France)

    2010-04-01

    The mechanisms of oxidizing dissolution of spent MOX fuel (MIMAS TU2 (registered) ) subjected to water radiolysis were investigated experimentally by leaching spent MOX47 fuel samples in pure water at 25 deg. C under different oxidizing conditions (with and without external gamma irradiation); the leached surfaces were characterized by Raman spectroscopy. The highly oxidizing conditions resulting from external gamma irradiation significantly increased the concentration of plutonium (Pu(V)) and uranium (U(VI)) compared with a benchmark experiment (without external irradiation). The oxidation behavior of the plutonium-enriched aggregates differed significantly from that of the UO{sub 2} matrix after several months of leaching in water under gamma irradiation. The plutonium in the aggregates appears to limit fuel oxidation. The only secondary phases formed and identified to date by Raman spectroscopy are uranium peroxides that generally precipitate on the surface of the UO{sub 2} grains. Concerning the behavior of plutonium, solution analysis results appear to be compatible with a conventional explanation based on an equilibrium with a Pu(OH){sub 4(am)} phase. The fission product release - considered as a general indicator of matrix alteration - from MOX47 fuel also increases under external gamma irradiation and a change in the leaching mode is observed. Diffusive leaching was clearly identified, coinciding with the rapid onset of steady-state actinide concentrations in the bulk solution.

  1. Tungsten oxide coatings deposited by plasma spray using powder and solution precursor for detection of nitrogen dioxide gas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangc@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Wang, Jie [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Geng, Xin [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China)

    2016-05-25

    Increasing attention has been paid on preparation methods for resistive-type gas sensors based on semiconductor metal oxides. In this work, tungsten oxide (WO{sub 3}) coatings were prepared on alumina substrates and used as gas sensitive layers. The coatings were deposited by atmospheric plasma spray using powder, solution precursor, or a combination of both. Tungsten oxide powder through a powder port and ammonium tungstate aqueous solution through a liquid port were injected into plasma stream respectively or together to deposit WO{sub 3} coatings. Phase structures in the coatings were characterized by X-ray diffraction analyzer. The field-emission scanning electron microscopy images confirmed that the coatings were in microstructure, nanostructure or micro-nanostructure. The sensing properties of the sensors based on the coatings exposed to 1 ppm nitrogen dioxide gas were characterized in a home-made instrument. Sensing properties of the coatings were compared and discussed. The influences of gas humidity and working temperature on the sensor responses were further studied. - Highlights: • Porous gas sensitive coatings were deposited by plasma spray using powder and solution precursor. • Crystallized WO{sub 3} were obtained through hybrid plasma spray plus a pre-conditioned step. • Plasma power had an important influence on coating microstructure. • The particle size of atmospheric plasma-sprayed microstructured coating was stable. • Solution precursor plasma-sprayed WO{sub 3} coatings had nanostructure and showed good responses to 1 ppm NO{sub 2}.

  2. Humic Acid Adsorption Onto Iron Oxide Magnetic Nano Particles in Aquious Solution

    Directory of Open Access Journals (Sweden)

    Maryam Foroghi

    2013-12-01

    Full Text Available Background & Objectives: Humic Acid (HA compounds affects water quality, such as color, taste and odor. The compounds not only react with disinfectants to produce disinfection by-products (DBPs harmful to human health. Iron oxide magnetic nanoparticles (MNPs have a high adsorption capacity to adsorb to organic matter. In this study HA removal by IOMNPs was surveyed in aqueous solutions. Methods:  The effects of pH value, agitation rate, adsorbent dose, contact time and the adsorbate concentration on the adsorption efficiency were studied as critical parameters. In addition, effect of ionic strength on the adsorption process and effluent turbidity was surveyed. The MNPs was characterized by X-ray diffraction. Results: Results revealed that at HA concentration of 10 mg/L, pH 4.5, adsorbent dose of 2.7 g/l, agitation rate of 250 rpm and contact time of 90 min at presence of 0.1 M NaCl as an ionic strength agent, the HA removal reached to about 98%. Also, the turbidity of treated samples was increased with increasing of HA loading. On the other hand, increases of ionic strength resulting in increase of removal efficiency and decrees of effluent turbidity. Conclusion: With increasing HA concentration, adsorption capacity of MNPs was increased and HA removal efficiency was decreased. Increasing of ionic strength leads to increase of removal efficiency and decrease of nano particles release. MNPs are easily attracted to the magnetic field application leads to easy separation from aquatic environment.

  3. EFFECT OF RICE STRAW AND NITRATE LEVELS IN SOIL SOLUTION ON NITROUS OXIDE EMISSION

    Directory of Open Access Journals (Sweden)

    André Carlos Cruz Copetti

    2015-04-01

    Full Text Available Among the greenhouse gases, nitrous oxide (N2O is considered important, in view of a global warming potential 296 times greater than that of carbon dioxide (CO2 and its dynamics strongly depend on the availability of C and mineral N in the soil. The understanding of the factors that define emissions is essential to develop mitigation strategies. This study evaluated the dynamics of N2O emissions after the application of different rice straw amounts and nitrate levels in soil solution. Pots containing soil treated with sodium nitrate rates (0, 50 and 100 g kg-1 of NO−3-N and rice straw levels (0, 5 and 10 Mg ha-1, i.e., nine treatments, were subjected to anaerobic conditions. The results showed that N2O emissions were increased by the addition of greater NO−3 amounts and reduced by large straw quantities applied to the soil. On the 1st day after flooding (DAF, significantly different N2O emissions were observed between the treatments with and without NO−3 addition, when straw had no significant influence on N2O levels. Emissions peaked on the 4th DAF in the treatments with highest NO−3-N addition. At this moment, straw application negatively affected N2O emissions, probably due to NO−3 immobilization. There were also alterations in other soil electrochemical characteristics, e.g., higher straw levels raised the Fe, Mn and dissolved C contents. These results indicate that a lowering of NO−3 concentration in the soil and the increase of straw incorporation can decrease N2O emissions.

  4. Oxidative degradation of alternative gasoline oxygenates in aqueous solution by ultrasonic irradiation: Mechanistic study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Duk Kyung, E-mail: dkim@aum.edu [Department of Physical Science, Auburn University Montgomery, Montgomery, AL 36117 (United States); O' Shea, Kevin E., E-mail: osheak@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, University Park, Miami, FL 33199 (United States); Cooper, William J. [Department of Civil and Environmental Engineering, Urban Water Research Center, University of California Irvine, Irvine, CA 92697-2175 (United States)

    2012-07-15

    Widespread pollution has been associated with gasoline oxygenates of branched ethers methyl tert-butyl ether (MTBE), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), and tert-amyl ether (TAME) which enter groundwater. The contaminated plume develops rapidly and treatment for the removal/destruction of these ethers is difficult when using conventional methods. Degradation of MTBE, with biological methods and advanced oxidation processes, are rather well known; however, fewer studies have been reported for degradation of alternative oxygenates. Degradation of alternative gasoline oxygenates (DIPE, ETBE, and TAME) by ultrasonic irradiation in aqueous oxygen saturation was investigated to elucidate degradation pathways. Detailed degradation mechanisms are proposed for each gasoline oxygenate. The common major degradation pathways are proposed to involve abstraction of {alpha}-hydrogen atoms by hydroxyl radicals generated during ultrasound cavitation and low temperature pyrolytic degradation of ETBE and TAME. Even some of the products from {beta}-H abstraction overlap with those from high temperature pyrolysis, the effect of {beta}-H abstraction was not shown clearly from product study because of possible 1,5 H-transfer inside cavitating bubbles. Formation of hydrogen peroxide and organic peroxides was also determined during sonolysis. These data provide a better understanding of the degradation pathways of gasoline oxygenates by sonolysis in aqueous solutions. The approach may also serve as a model for others interested in the details of sonolysis. - Highlights: Black-Right-Pointing-Pointer Gasoline oxygenates (ETBE, TAME, DIPE) were completely degraded after 6 hours under ultrasonic irradiation in O{sub 2} saturation. Black-Right-Pointing-Pointer The major degradation pathways were proposed to involve abstraction of {alpha}-hydrogen atoms by hydroxyl radicals and low temperature pyrolytic degradation. Black-Right-Pointing-Pointer The effect of {beta

  5. Electrokinetic properties of tantalum oxide deposited on model substrate in NaCl and LiCl solutions

    International Nuclear Information System (INIS)

    Sidorova, M.P.; Bogdanova, N.F.; Ermakova, L.Eh.; Bobrov, P.V.

    1997-01-01

    Electrokinetic characteristics of tantalum oxide have been studied using a model system - a plane-parallel capillary in chloride solutions containing monocharge (H + , Na + , Li + ) counterions in a wide range of pH and concentrations. It is shown that position of isoelectric point (IEP) of Ta 2 O 5 depends on concentration and type of counterion, moreover, the dependence is not explained in the framework of classical notions of the influence of counterion specific adsorption on IEP position. Electrokinetic potential of Ta 2 O-5 surface at the background of diluted LiCl solutions is higher in its absolute value, than at the background of NaCl solutions according to direct lyotropic series. The results of measurements of the capillary resistance dependence on pH at the background of NaCl and LiCl solutions 10 -3 -10 -1 M are used for the calculation of efficiency and specific surface conductivity factors

  6. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    Science.gov (United States)

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw oxides iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Influence of dissolved organic matter and manganese oxides on metal speciation in soil solution: A modelling approach.

    Science.gov (United States)

    Schneider, Arnaud R; Ponthieu, Marie; Cancès, Benjamin; Conreux, Alexandra; Morvan, Xavier; Gommeaux, Maxime; Marin, Béatrice; Benedetti, Marc F

    2016-06-01

    Trace element (TE) speciation modelling in soil solution is controlled by the assumptions made about the soil solution composition. To evaluate this influence, different assumptions using Visual MINTEQ were tested and compared to measurements of free TE concentrations. The soil column Donnan membrane technique (SC-DMT) was used to estimate the free TE (Cd, Cu, Ni, Pb and Zn) concentrations in six acidic soil solutions. A batch technique using DAX-8 resin was used to fractionate the dissolved organic matter (DOM) into four fractions: humic acids (HA), fulvic acids (FA), hydrophilic acids (Hy) and hydrophobic neutral organic matter (HON). To model TE speciation, particular attention was focused on the hydrous manganese oxides (HMO) and the Hy fraction, ligands not considered in most of the TE speciation modelling studies in soil solution. In this work, the model predictions of free ion activities agree with the experimental results. The knowledge of the FA fraction seems to be very useful, especially in the case of high DOM content, for more accurately representing experimental data. Finally, the role of the manganese oxides and of the Hy fraction on TE speciation was identified and, depending on the physicochemical conditions of the soil solution, should be considered in future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. UO2 leaching and radionuclide release modelling under high and low ionic strength solution and oxidation conditions

    International Nuclear Information System (INIS)

    1995-01-01

    In this work, the UO 2 dissolution under oxidizing conditions has been studied in order to compare these results to those obtained with spent fuel. Two different leaching solutions have been used, one with a high ionic strength trying to simulate the conditions expected in a saline repository and the other at low ionic strength much appropriate to granitic environments. In both cases, the dissolution has been studied studied as a function of pH, redox potential, oxidants, complexing agents, particle size as well as the experimental methodology. Results can be summarized as follows: a) The UO 2 dissolution is rather independent on ionic strength. b) Dissolution rates can be explained in general independent on the oxidant as: Log R=3DK [oxidant] Surface solid evolution is very important to understand the dissolution/oxidation mechanism of UO 2 . d) Under oxidizing conditions, the dissolution is H+ and HCO 3 promoted. e) In carbonate medium, both UO 2 and spent fuel dissolution rates are very similar, while in a non-complexing medium, spent fuel dissolution rate is much higher than the UO 2 one. This fact seems to indicate that radiolysis is much important non-complexing media. (Author)

  9. The discrimination of the oxidation states of neptunium in sodium hydroxide solutions by means of chromatography on alumina

    International Nuclear Information System (INIS)

    Shiokawa, Yoshinobu; Yamana, Hajimu; Sato, Akiko; Suzuki, Shin

    1982-01-01

    A method of discriminating the oxidation states of Np in a NaOH solution by means of chromatography on alumina is proposed. In a NaOH solution of 0.5 - 1.7 M (1 M = 1 mol dm - 3 ), the separation of Np (VI) from Np (VII) can be made effectively by means of chromatography on alumina. Only a little Np (VI) is adsorbed on alumina the Np (VII) adsorbed to some extent, and the Np (V), strongly, under the same conditions. By applying this chromatographic method, the method of preparing Np (VI) and Np (VII) of a tracer quantity in 1 M NaOH is established. (author)

  10. Short-Term Synaptic Plasticity Regulation in Solution-Gated Indium-Gallium-Zinc-Oxide Electric-Double-Layer Transistors.

    Science.gov (United States)

    Wan, Chang Jin; Liu, Yang Hui; Zhu, Li Qiang; Feng, Ping; Shi, Yi; Wan, Qing

    2016-04-20

    In the biological nervous system, synaptic plasticity regulation is based on the modulation of ionic fluxes, and such regulation was regarded as the fundamental mechanism underlying memory and learning. Inspired by such biological strategies, indium-gallium-zinc-oxide (IGZO) electric-double-layer (EDL) transistors gated by aqueous solutions were proposed for synaptic behavior emulations. Short-term synaptic plasticity, such as paired-pulse facilitation, high-pass filtering, and orientation tuning, was experimentally emulated in these EDL transistors. Most importantly, we found that such short-term synaptic plasticity can be effectively regulated by alcohol (ethyl alcohol) and salt (potassium chloride) additives. Our results suggest that solution gated oxide-based EDL transistors could act as the platforms for short-term synaptic plasticity emulation.

  11. Degradation of di-2-ethylhexyl phthalate in aqueous solution by advanced oxidation process

    Directory of Open Access Journals (Sweden)

    Maryam Zarean

    2015-01-01

    Conclusion: It could be found that the UV/O3 process is a method for DEHP degradation in aqueous solution and may be recommended as a supplement with other processes for treatment of solutions containing low DEHP concentrations.

  12. Kinetics and mechanism of the oxidation of uranium(III) by aqueous acidic solutions of iodine and bromine

    International Nuclear Information System (INIS)

    Adegite, A.; Egboh, H.; Ojo, J.F.; Olieh, R.

    1977-01-01

    The rates of oxidation of U 3+ by I 2 and Br 2 in aqueous acidic solutions have been investigated. The rate equations for iodine and bromine are shown, together with the corresponding activation parameters. An excellent correlation has been obtained between the rates of uranium(III) reduction of some oxidants, including iodine and bromine, and the free energies of these reactions. Since these other non-halogen reactions go via the outer-sphere mechanism, it is concluded that at least the first step in the two-step oxidation of U 3+ by Br 2 , I 2 , or [I 3 ] - is outer sphere. The homonuclear exchange rate constant ksub(ex) for U 3+ + U 4+ is deduced to be 1.66 +- 0.16 dm 3 mol -1 s -1 . (author)

  13. [Effect of DNA-damaging agents on the aerobic methylobacteria capable and incapable of utilizing dichloromethane].

    Science.gov (United States)

    Firsova, Iu E; Torgonskaia, M L; Doronina, N V; Trotsenko, Iu A

    2005-01-01

    Methylobacterium dichloromethanicum DM4, a degrader of dichloromethane (DCM), was more tolerant to the effect of H2O2 and UV irradiation than Methylobacterium extorquens AM1, which does not consume DCM. Addition of CH2Cl2 to methylobacteria with active serine, ribulose monophosphate, and ribulose bisphosphate pathways of C1 metabolism, grown on methanol, resulted in a 1.1- to 2.5-fold increase in the incorporation of [alpha-32P]dATP into DNA Klenow fragment (exo-). As DCM dehalogenase was not induced in this process, the increase in total lengths of DNA gaps resulted from the action of DCM rather than S-chloromethylglutathione (intermediate of primary dehalogenation). The degree of DNA damage in the presence of CH2Cl2 was lower in DCM degraders than methylobacteria incapable of degrading this pollutant. This suggests that DCM degraders possess a more efficient mechanism of DNA repair.

  14. [Aerobic methylobacteria as the basis for a biosensor for dichloromethane detection].

    Science.gov (United States)

    Plekhanova, Iu V; Firsova, Iu E; Doronina, N V; Trotsenko, Iu A; Reshetilov, A N

    2013-01-01

    Cells of dichloromethane (DChM) bacteria-destructors were immobilized by sorption on different types of membranes, which were fixed on the measuring surface of a pH-sensitive field transistor. The presence of DChM in the medium (0.6-8.8 mM) led to a change in the transistor's output signal, which was determined by the appearance of H+ ions in the medium due to DChM utilization by methylobateria. Among four strains of methylobacteria--Methylobacterium dichloromethanicum DM4, Methylobacterium extorquens DM 17, Methylopila helvetica DM6, and Ancylobacter dichloromethanicus DM 16--the highest and most stable activity toward DChM degradation was observed in the strain M. dichloromethanicum DM4. Among 11 types of membranes for cell immobilization, Millipore nitrocellulose membranes and chromatographic fiber paper GF/A, which allow one to obtain stable biosensor signals for 2 weeks without a bioreceptor change, were chosen as optimal carriers.

  15. A novel reaction catalysed by active carbons production of dichloromethane from phosgene and formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T A; Stacey, M H

    1984-08-01

    A variety of Activated charcoals have been found to catalyse a reaction between phosgene and formaldehyde. In a continuous flow fluidized bed reactor, the reaction rate reaches a broad maximum near 170/sup 0/C where the selectivity is consistent with the stoichiometry. The reaction proceeds via a strongly adsorbed intermediate which has been identified as chloromethyl chloroformate. This ester is an adduct of formaldehyde and phosgen and forms rapidly above 100/sup 0/C in co-adsorption/desorption experiments. It decomposes rapidly 170/sup 0/C without significant desorption of the intact molecule to give the observed products dichloromethane and carbon dioxide. Under steady-state conditions the rate-determining step is the formation of this ester so that it is normally only present on the surface at low coverages; hence it is not observable in the gas phase. The catalysis is probably due to the presence of polar acid or base sites on the surface of the activated charcoals.

  16. Validation of MCNP6.1 for Criticality Safety of Pu-Metal, -Solution, and -Oxide Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kiedrowski, Brian C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Conlin, Jeremy Lloyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favorite, Jeffrey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kahler, III, Albert C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kersting, Alyssa R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parsons, Donald K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Walker, Jessie L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-13

    Guidance is offered to the Los Alamos National Laboratory Nuclear Criticality Safety division towards developing an Upper Subcritical Limit (USL) for MCNP6.1 calculations with ENDF/B-VII.1 nuclear data for three classes of problems: Pu-metal, -solution, and -oxide systems. A benchmark suite containing 1,086 benchmarks is prepared, and a sensitivity/uncertainty (S/U) method with a generalized linear least squares (GLLS) data adjustment is used to reject outliers, bringing the total to 959 usable benchmarks. For each class of problem, S/U methods are used to select relevant experimental benchmarks, and the calculational margin is computed using extreme value theory. A portion of the margin of sub criticality is defined considering both a detection limit for errors in codes and data and uncertainty/variability in the nuclear data library. The latter employs S/U methods with a GLLS data adjustment to find representative nuclear data covariances constrained by integral experiments, which are then used to compute uncertainties in keff from nuclear data. The USLs for the classes of problems are as follows: Pu metal, 0.980; Pu solutions, 0.973; dry Pu oxides, 0.978; dilute Pu oxide-water mixes, 0.970; and intermediate-spectrum Pu oxide-water mixes, 0.953.

  17. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.

    2015-02-13

    Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.

  18. Structure-property relationships of new bismuth and lead oxide based perovskite ternary solid solutions

    Science.gov (United States)

    Dwivedi, Akansha

    Two new bismuth and lead oxide based perovskite ternary solid solutions, namely xBi(Zn1/2Ti1/2)O3-yPbZrO3-zPbTiO3 [xBZT-yPZ-zPT] and xBi(Mg1/2Ti1/2)O3-yBi(Zn 1/2Ti1/2)O3-zPbTiO3 [xBMT-yBZT-zPT] have been developed and their structural and electrical properties have been determined. Various characterization techniques such as X-ray diffraction, calorimetery, electron microscopy, dielectric and piezoelectric measurements have been performed to determine the details of the phase diagram, crystal structure, and domain structure. The selection of these materials is based on the hypothesis that the presence of BZT-PT (Case I ferroelectric (FE)) will increase the transition temperature of MPB systems BMT-PT (Case II FE), and PZ-PT (Case III FE), and subsequently a MPB will be observed in the ternary phase diagrams. The Case I, II, and III classification has been outlined by Stringer et al., is on the basis of the transition temperatures (TC) behavior with composition in the Bi and Pb oxide based binary systems. Several pseudobinary lines have been investigated across the xBZT-yPZ-zPT ternary phase diagram which exhibit varied TC behavior with composition, showing both Case I- and Case III-like TC trends in different regions. A MPB between rhombohedral to tetragonal phases has been located on a pseudobinary line 0.1BZT-0.9[xPT-(1-x)PZ]. Compositions near MPB exhibit mainly soft PZT-like properties with the TC around 60°C lower than the unmodified PZT near its MPB. Electrical properties are reported for the MPB composition, TC = 325°C, Pr = 35 microC/cm2, d33 = 300 pC/N and kP =0.45. Rhombohedral compositions show diffuse phase transition with small frequency dispersion, similar to relaxors. Two transition peaks in the permittivity as well as in the latent heat has been observed in some compositions near the BZT-PT binary. This leads to the speculation for the existence of miscibility gap in the solid solutions in these regions. Transmission electron microscopy (TEM

  19. Manufacture of nano graphite oxides derived from aqueous glucose solutions and in-situ synthesis of magnetite–graphite oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: liuxiang@ahut.edu.cn; Zhao, Tiantian; Liu, Pengpeng; Cui, Ping, E-mail: cokecp@sohu.com; Hu, Peng

    2015-03-01

    A “bottom up” approach of manufacturing graphite oxides (GOs) derived from aqueous glucose solutions by virtue of an environmentally-friendly process and the way of in-situ synthesizing magnetite–GOs composites are described in this work in detail. The dehydrations among glucose molecules under hydrothermal condition result in the initial carbon quantum dots and ultimate GOs. The structural information of the GOs is obtained by the infrared, ultraviolet–visible and X-ray photoelectron spectra. The magnetite–GOs composites were obtained by a one-pot method under the same hydrothermal conditions as the one of preparing GOs. The composites perform high activities in catalytic degradation of Rhodamine B in the presence of hydrogen peroxides without extra heating or pH adjusting. Both the GOs and the magnetite–GOs composites are also assured by measurements of transmission electron microscope and X-ray powder diffraction. - Highlights: • Graphite oxides are made from aqueous glucose solutions by hydrothermal reaction. • A way of in-situ synthesizing composites of magnetite–graphite oxides is depicted. • The composites perform high activities in catalytic degradation of Rhodamine B.

  20. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    NARCIS (Netherlands)

    Rao, A.M.F.; Malkin, S.Y.; Hidalgo-Martinez, S.; Meysman, Filip

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly

  1. Solute transport during the cyclic oxidation of Ni-Cr-Al alloys. M.S. Thesis

    Science.gov (United States)

    Nesbitt, J. A.

    1982-01-01

    Important requirements for protective coatings of Ni-Cr-Al alloys for gas turbine superalloys are resistance to oxidation accompanied by thermal cycling, resistance to thermal fatigue cracking. The resistance to oxidation accompanied by thermal cycling is discussed. The resistance to thermal fatigue cracking is also considered.

  2. Photochemical generation and 1H NMR detection of alkyl allene oxides in solution

    International Nuclear Information System (INIS)

    Breen, L.E.; Schepp, N.P.; Tan, C.-H.E.

    2005-01-01

    Irradiation of substituted 5-alkyl-4,5-epoxyvalerophenones leads to the formation of alkyl allene oxides that, in some cases, are sufficiently long-lived to be detected at room temperature by 1 H NMR spectroscopy. Absolute lifetime measurements show that the size of the alkyl group has a significant influence on the reactivity of the allene oxide, with tert-butyl allene oxide having a lifetime of 24 h in CD 3 CN at room temperature that is considerably longer than the 1.5 h lifetime of the ethyl allene oxide. The allene oxides react rapidly with water to give α-hydroxyketones. The mechanism involves nucleophilic attack to the epoxide carbon to give an enol, which can also be detected as an intermediate by 1 H NMR spectroscopy. (author)

  3. Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2-WO3 photoanodes.

    Science.gov (United States)

    Georgieva, J; Valova, E; Armyanov, S; Philippidis, N; Poulios, I; Sotiropoulos, S

    2012-04-15

    The use of binary semiconductor oxide anodes for the photoelectrocatalytic oxidation of organic species (both in solution and gas phase) is reviewed. In the first part of the review, the principle of electrically assisted photocatalysis is presented, the preparation methods for the most common semiconductor oxide catalysts are briefly mentioned, while the advantages of appropriately chosen semiconductor combinations for efficient UV and visible (vis) light utilization are highlighted. The second part of the review focuses on the discussion of TiO(2)-WO(3) photoanodes (among the most studied bi-component semiconductor oxide systems) and in particular on coatings prepared by electrodeposition/electrosynthesis or powder mixtures (the focus of the authors' research during recent years). Studies concerning the microscopic, spectroscopic and photoelectrochemical characterization of the catalysts are presented and examples of photoanode activity towards typical dissolved organic contaminants as well as organic vapours are given. Particular emphasis is paid to: (a) The dependence of photoactivity on catalyst morphology and composition and (b) the possibility of carrying out photoelectrochemistry in all-solid cells, thus opening up the opportunity for photoelectrocatalytic air treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Evaluation of three physiologically based pharmacokinetic (PBPK) modeling tools for emergency risk assessment after acute dichloromethane exposure

    NARCIS (Netherlands)

    Boerleider, R. Z.; Olie, J. D N; van Eijkeren, J. C H; Bos, P. M J; Hof, B. G H; de Vries, I.; Bessems, J. G M; Meulenbelt, J.; Hunault, C. C.

    2015-01-01

    Introduction: Physiologically based pharmacokinetic (PBPK) models may be useful in emergency risk assessment, after acute exposure to chemicals, such as dichloromethane (DCM). We evaluated the applicability of three PBPK models for human risk assessment following a single exposure to DCM: one model

  5. Evaluation of the Cytotoxic Effect of the Brittle Star (Ophiocoma Erinaceus) Dichloromethane Extract and Doxorubicin on EL4 Cell Line.

    Science.gov (United States)

    Afzali, Mahbubeh; Baharara, Javad; Nezhad Shahrokhabadi, Khadijeh; Amini, Elaheh

    2017-01-01

    Leukemia is a blood disease that creates from inhibition of differentiation and increased proliferation rate. The nature has been known as a rich source of medically useful substances. High diversity of bioactive molecules, extracted from marine invertebrates, makes them as ideal candidates for cancer research. The study has been done to investigate cytotoxic effects of dichloromethane brittle star extract and doxorubicin on EL4 cancer cells. Blood cancer EL4 cells were cultured and treated at different concentrations of brittle star ( Ophiocoma erinaceus ) dichloromethane extract at 24, 48 and 72 h. Cell toxicity was studied using MTT assay. Cell morphology was examined using an invert microscope. Further, apoptosis was examined using Annexin V-FITC, propodium iodide, DAPI, and Acridine orange/propodium iodide staining. Eventually, the apoptosis pathways were analyzed using measurement of Caspase-3 and -9 activity. The statistical analysis was performed using SPSS, ANOVA software, and Tukey's test. P EL4 proliferation as IC 50 =32 µg/mL. All experiments related to apoptosis analysis confirmed that dichloromethane brittle star extract and doxorubicin have a cytotoxic effect on EL4 cells inIC 50 concentration. The study showed that dichloromethane brittle star extract is as an adjunct to doxorubicin in treatment of leukemia cells.

  6. Solvent Extraction and Separation of Chromium(III) and (V I) in Aqueous Solutions with Trioctylphosphine Oxide

    International Nuclear Information System (INIS)

    Sekine, T.; Yamada, M.

    1999-01-01

    The solvent extraction of chromium(III) and (V I) in aqueous solutions with a solvating type extractant, trioctylphosphine oxide(TOPO), in hexane is studied. Kinetically inert Cr 3+ is extracted from 1 mol dm -3 sodium perchlorate solution very quickly and quantitatively as Cr(H 2 O · TOPO) 6 3+ (CIO 4 -) 3 . Chromium(V I) in hydrochloric acid is extracted effectively as the H 2 CrO $ (H CI) n centre dot TOPO m species ( m = 2 or 3, n = 0 to 2) and the distribution ratio increased by an increase in the acid concentration. From these, a procedure is proposed for the extraction of both chromium(V I) and chromium(III) in aqueous solution separately with 0.1 mol dm -3 TOPO in hexane

  7. All solution-processed high-resolution bottom-contact transparent metal-oxide thin film transistors

    International Nuclear Information System (INIS)

    Park, Sung Kyu; Kim, Yong-Hoon; Han, Jeong-In

    2009-01-01

    We report all solution-processed high-resolution bottom-contact indium-gallium-zinc-oxide (IGZO) thin film transistors (TFTs) using a simple surface patterning and dip-casting process. High-resolution nanoparticulate Ag source/drain electrodes and a sol-gel processed IGZO semiconductor were deposited by a simple dip-casting along with a photoresist-free, non-relief-pattern lithographic process. The deposited Ag and IGZO solution can be steered into the desired hydrophilic areas by a low surface energy self-assembled monolayer, resulting in source/drain electrodes and semiconducting layer, respectively. The all solution-processed bottom-contact IGZO TFTs including a channel length of 10 μm typically showed a mobility range 0.05-0.2 cm 2 V -1 s -1 with an on/off ratio of more than 10 6 .

  8. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics.

    Science.gov (United States)

    Pham, A Ninh; Waite, T David

    2014-08-01

    Spontaneous oxidation of dopamine (DA) and the resultant formation of free radical species within dopamine neurons of the substantia nigra (SN) is thought to bestow a considerable oxidative load upon these neurons and may contribute to their vulnerability to degeneration in Parkinson's disease (PD). An understanding of DA oxidation under physiological conditions is thus critical to understanding the relatively selective vulnerability of these dopaminergic neurons in PD and may support the development of novel neuro-protective approaches for this disorder. In this study, the oxidation of dopamine (0.2-10μM) was investigated both in the absence and the presence of copper (0.01-0.4μM), a redox active metal that is present at considerable concentrations in the SN, over a range of background chloride concentrations (0.01-0.7M), different oxygen concentrations and at physiological pH7.4. DA was observed to oxidize extremely slowly in the absence of copper and at moderate rates only in the presence of copper but without chloride. The oxidation of DA however was significantly enhanced in the presence of both copper and chloride with the rate of DA oxidation greatest at intermediate chloride concentrations (0.05-0.2M). The variability of the catalytic effect of Cu(II) on DA oxidation at different chloride concentrations can be explained and successfully modeled by appropriate consideration of the reaction of Cu(II) species with DA and the conversion of Cu(I) to Cu(II) through oxygenation. This model suggests that the speciation of Cu(II) and Cu(I) is critically important to the kinetics of DA oxidation and thus the vulnerability to degradation of dopaminergic neuron in the brain milieu. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Study of the removal of cesium from aqueous solutions by graphene oxide; Estudo da remocao de cesio em solucoes aquosas por oxido de grafeno

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Vanessa N.; Rodrigues, Debora F. [University of Houston (UH), Houston, TX (United States); Vitta, Patricia B. Di [Universidade de Sao Paulo (STRES/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Setor Tecnico de Residuos Quimicos e Solventes; Oshiro, Mauricio T.; Vicente, Roberto; Hiromoto, Goro; Potiens Junior, Ademar; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Graphene oxide, used in this work, was synthesized from the oxidation of graphite by Hummer method. The experiments were performed in batch and analyzed for the following parameters: contact time, pH, cesium ion concentration in aqueous solution and removing capacity of the graphene oxide. After the experiments the samples were vacuum filtered and the remaining cesium in solution was quantified by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The equilibrium was reached after 60 minutes of contact in neutral solution. The percentage of removal was around 80%.

  10. Total Oxidation of Dichloromethane and Ethanol over Ceria-Zirconia Mixed Oxide Supported Platinum and Gold Catalysts

    Czech Academy of Sciences Publication Activity Database

    Matějová, Lenka; Topka, Pavel; Kaluža, Luděk; Pitkäaho, S.; Ojala, S.; Gaálová, Jana; Keiski, R.L.

    142-143, OCT-NOV (2013), s. 54-64 ISSN 0926-3373 R&D Projects: GA ČR GP13-24186P Institutional support: RVO:67985858 Keywords : gold * platinum * ceria Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.007, year: 2013

  11. A review of irradiation induced re-solution in oxide fuels

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    1980-01-01

    The paper reviews the existing experimental evidence for irradiation induced re-solution and also possible explanations for the mechanism. The importance of re-solution is considered with regard to intragranular bubbles and the accumulation of gas on grain boundaries. It is concluded that re-solution is most effective at low temperatures and could account for the present concern over gas release in high burn-up water reactor fuel assemblies. (author)

  12. [Physiological and biochemical analysis of the transformants of aerobic methylobacteria expressing the dcm A gene of dichloromethane dehydrogenase].

    Science.gov (United States)

    Firsova, Iu E; Doronina, N V; Trotsenko, Iu A

    2004-01-01

    The transformants of Methylobacterium dichloromethanicum DM4 (DM4-2cr-/pME8220 and DM4-2cr-/pME8221) and of Methylobacterium extorquens AM1 (AM1/pME8220 and AM1/pME8221) that express the dcm A gene of dichloromethane dehalogenase undergo lysis when incubated in the presence of dichloromethane and are sensitive to acidic shock. The lysis of the transformants was found to be related neither to the accumulation of Cl- ions, CH2O, and HCOOH, nor to the impairment of glutathione synthesis or to the maintenance of intracellular pH. The (exo-) Klenow fragment-mediated incorporation of [alpha-32P]dATP into the DNA of the transformants DM4-2cr-/pME8220 and AM1/pME8220 was considerably greater when the transformed cells were incubated with CH2Cl2 than when they were incubated with CH3OH, indicating the occurrence of a significant increase in the total length of gaps. At the same time, the strain AM1 (which lacks dichloromethane dehalogenase) and the dichloromethane-degrading strain DM4 incubated with CH2Cl2 showed an insignificant increase in the total length of the gaps. The transformed cells are likely to lyse due to the relatively inefficient repair of DNA lesions that are induced in response to the alkylating action of S-chloromethylglutathione, an intermediate product of CH2Cl2 degradation. The data obtained suggest that the bacterial mineralization of dichloromethane requires an efficient DNA repair system.

  13. Structural and silver/vanadium ratio effects on silver vanadium phosphorous oxide solution formation kinetics: impact on battery electrochemistry.

    Science.gov (United States)

    Bock, David C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2015-01-21

    The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.

  14. Iron Oxide Deposition from Aqueous Solution and Iron Formations on Mars

    Science.gov (United States)

    Catling, David; Moore, Jeff

    2000-01-01

    Iron formations are ancient, laminated chemical sediments containing at least 15 wt% Fe. We discuss possible mechanisms for their formation in aqueous environments on early Mars. Such iron oxide deposits may be detectable today.

  15. Preparation and application of attapulgite/iron oxide magnetic composites for the removal of U(VI) from aqueous solution

    International Nuclear Information System (INIS)

    Fan, Qiao-hui; Li, Ping; Chen, Yun-fei; Wu, Wang-suo

    2011-01-01

    Highlights: → We first synthesized ATP/IOM composites as an adsorbents for removal U(VI) from aqueous solution. → The sorption ability of ATP/IOM composites were obviously superior to ATP and iron oxides. → The prevalent species of U(VI) on ATP/IOM composites were =S s OUO 2 + and =S w OUO 2 (CO 3 ) 2 3- . → ATP/IOM composites could be a promising candidate for pre-concentration and immobilization of radionuclides from large volumes of aqueous solutions. - Abstract: Recently, magnetic sorbents have received considerable attention because of their excellent segregative features and sorption capacities. Herein, attapulgite/iron oxide magnetic (ATP/IOM) composites were prepared and characterized. The sorption results indicated that ATP/IOM composites were superior to ATP and iron oxides individually for the removal of U(VI) from aqueous solution. Based on X-ray photoelectron spectroscopy (XPS) analysis and surface complexation model, the main sorption species of U(VI) on ATP were =X 2 UO 2 0 below pH 4.0 and =S s OUO 2 + , =S w OUO 2 CO 3 - , and =S w OUO 2 (CO 3 ) 2 3- above pH 5.0. However the prevalent species on ATP/IOM composites were =S s OUO 2 + and =S w OUO 2 (CO 3 ) 2 3- over the observed pH range. ATP/IOM composites are a promising candidate for pre-concentration and immobilization of radionuclides from large volumes of aqueous solutions, as required for remediation purposes.

  16. Synthesis of complex oxides with garnet structure by spray drying of an aqueous salt solution

    Science.gov (United States)

    Makeenko, A. V.; Larionova, T. V.; Klimova-Korsmik, O. G.; Starykh, R. V.; Galkin, V. V.; Tolochko, O. V.

    2017-04-01

    The use of spray drying to obtain powders of complex oxides with a garnet structure has demonstrated. The processes occurring during heating of the synthesized oxide-salt product, leading to the formation of a material with a garnet structure, have been investigated using DTA, TGA, XPS, and XRD. It has been shown that a single-phase garnet structure of system (Y x Gd(3- x))3Al5O12 can be synthesized over the entire range of compositions.

  17. Matrix-Matched Iron-Oxide Laser Ablation ICP-MS U–Pb Geochronology Using Mixed Solution Standards

    Directory of Open Access Journals (Sweden)

    Liam Courtney-Davies

    2016-08-01

    Full Text Available U–Pb dating of the common iron-oxide hematite (α-Fe2O3, using laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS, provides unparalleled insight into the timing and processes of mineral deposit formation. Until now, the full potential of this method has been negatively impacted by the lack of suitable matrix-matched standards. To achieve matrix-matching, we report an approach in which a U–Pb solution and ablated material from 99.99% synthetic hematite are simultaneously mixed in a nebulizer chamber and introduced to the ICP-MS. The standard solution contains fixed U- and Pb-isotope ratios, calibrated independently, and aspiration of the isotopically homogeneous solution negates the need for a matrix-matched, isotopically homogenous natural iron-oxide standard. An additional advantage of using the solution is that the individual U–Pb concentrations and isotope ratios can be adjusted to approximate that in the unknown, making the method efficient for dating hematite containing low (~10 ppm to high (>1 wt % U concentrations. The above-mentioned advantage to this solution method results in reliable datasets, with arguably-better accuracy in measuring U–Pb ratios than using GJ-1 Zircon as the primary standard, which cannot be employed for such low U concentrations. Statistical overlaps between 207Pb/206Pb weighted average ages (using GJ-1 Zircon and U–Pb upper intercept ages (using the U–Pb mixed solution method of two samples from iron-oxide copper-gold (IOCG deposits in South Australia demonstrate that, although fractionation associated with a non-matrix matched standard does occur when using GJ-1 Zircon as the primary standard, it does not impact the 207Pb/206Pb or upper intercept age. Thus, GJ-1 Zircon can be considered reliable for dating hematite using LA-ICP-MS. Downhole fractionation of 206Pb/238U is observed to occur in spot analyses of hematite. The use of rasters in future studies will hopefully minimize

  18. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Qian Xin, E-mail: qx3023@nimte.ac.cn [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang Xuefei; Ouyang Qin; Chen Yousi; Yan Qing [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment. Black-Right-Pointing-Pointer The concentration of oxygen and nitrogen on the fiber surface increased after surface treatment. Black-Right-Pointing-Pointer The intensity of oxidative reaction varied with the change of ammonium-salt solutions. Black-Right-Pointing-Pointer The higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative reaction happened. - Abstract: The surfaces of polyacrylonitrile-based carbon fibers were treated by an electrochemical anodic method. Three different kinds of ammonium-salt solutions namely NH{sub 4}HCO{sub 3}, (NH{sub 4}){sub 2}CO{sub 3} and (NH{sub 4}){sub 3}PO{sub 4} were respectively chosen as the electrolytes. The effect of these electrolytes on the surface structure was studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The results showed that longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment, and the root mean square roughness (RMS) of carbon fiber surface increased from 4.6 nm for untreated fibers to 13.5 nm for treated fibers in (NH{sub 4}){sub 3}PO{sub 4} electrolytes. The concentration of oxygen and nitrogen atomic on the fiber surface increased after surface treatment. The tensile strength of oxidized fibers had an obvious decrease, whereas the interlaminar shear strength (ILSS) value of corresponding carbon fiber reinforced polymers (CFRPs) increased in a large extent. The intensity of oxidative reaction varied with the change of ammonium-salt solutions and electrochemical oxidation in (NH{sub 4}){sub 3}PO{sub 4} electrolyte was of the most violence. The corresponding mechanism was also discussed and the result showed that the higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative

  19. A novel solution combustion synthesis of cobalt oxide nanoparticles as negative-electrode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Wen Wei; Wu Jinming; Tu Jiangping

    2012-01-01

    Highlights: ► We examine the electrochemical performance of cobalt oxides fabricated by solution combustion synthesis for rechargeable lithium-ion battery applications. ► The additive of NaF in precursor results in an eruption combustion mode. ► The eruption combustion leads to fluffy networks with smaller grains and more macroporous voids. ► The network contributes to higher discharge capacity, higher initial coulombic efficiency, and better cycling performance for rechargeable lithium-ion batteries. - Abstract: Low cost mass production of cobalt oxide nanoparticles with high electrochemical performance is of practical interest for rechargeable lithium-ion batteries. In this report, cobalt oxide nanoparticles were fabricated by solution combustion synthesis, with the introduction of NaF into the precursor to alter the combustion mode. The novel eruption combustion resulted in fluffy networks with smaller particles and more macroporous voids, which contributed to the higher discharge capacity, higher initial coulombic efficiency, and better cycling performance when compared with that achieved by the conventional combustion mode.

  20. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.

    Science.gov (United States)

    Zhang, Gaosheng; Ren, Zongming; Zhang, Xiwang; Chen, Jing

    2013-08-01

    To obtain a highly efficient and low-cost adsorbent for arsenic removal from water, a novel nanostructured Fe-Cu binary oxide was synthesized via a facile co-precipitation method. Various techniques including BET surface area measurement, powder XRD, SEM, and XPS were used to characterize the synthetic Fe-Cu binary oxide. It showed that the oxide was poorly crystalline, 2-line ferrihydrite-like and was aggregated with many nanosized particles. Laboratory experiments were performed to investigate adsorption kinetics, adsorption isotherms, pH adsorption edge and regeneration of spent adsorbent. The results indicated that the Fe-Cu binary oxide with a Cu: Fe molar ratio of 1:2 had excellent performance in removing both As(V) and As(III) from water, and the maximal adsorption capacities for As(V) and As(III) were 82.7 and 122.3 mg/g at pH 7.0, respectively. The values are favorable, compared to those reported in the literature using other adsorbents. The coexisting sulfate and carbonate had no significant effect on arsenic removal. However, the presence of phosphate obviously inhibited the arsenic removal, especially at high concentrations. Moreover, the Fe-Cu binary oxide could be readily regenerated using NaOH solution and be repeatedly used. The Fe-Cu binary oxide could be a promising adsorbent for both As(V) and As(III) removal because of its excellent performance, facile and low-cost synthesis process, and easy regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Multifunctional Organic-Semiconductor Interfacial Layers for Solution-Processed Oxide-Semiconductor Thin-Film Transistor.

    Science.gov (United States)

    Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik

    2017-06-01

    The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); University of Science and Technology of China, Hefei, 230026 (China); Li, Jiaxing, E-mail: lijx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Wang, Xiangxue; Chen, Changlun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Wang, Xiangke [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-11-15

    In this study, phosphate-functionalized graphene oxide (PGO) was prepared by grafting triethyl phosphite onto the surface of GO using Arbuzov reaction. The as-prepared PGO was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and Zeta potential. The application of the PGO to remove U(VI) from aqueous solution was investigated with a maximum adsorption capacity of 251.7 mg/g at pH = 4.0 ± 0.1 and T = 303 K. The adsorption mechanism was also investigated by X-ray photoelectron spectroscopy analysis, indicating a chemical adsorption of U(VI) on PGO surface. Moreover, experimental results gave a better removal efficiency toward U(VI) on PGO surface than other heavy metal ions at acidic solution, indicating the selective extraction of U(VI) from environmental pollutants. - Highlights: • The successful grafting phosphonate to graphene oxide by the Arbuzov reaction. • Selective adsorption of U(VI) on PGO surface over other heavy metal ions from acidic solution. • Electrostatic interactions of U(VI) with phosphonate and oxygen-containing functional groups on PGO surface. • Higher sorption capacity on PGO surface than GO surface for the U(VI) removal.

  3. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    KAUST Repository

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, Husam N.

    2012-01-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility

  4. Kinetics and mechanism of permanganate oxidation of iota- and lambda-carrageenan polysaccharides as sulfated carbohydrates in acid perchlorate solutions.

    Science.gov (United States)

    Hassan, Refat M; Fawzy, Ahmed; Ahmed, Gamal A; Zaafarany, Ishaq A; Asghar, Basim H; Takagi, Hideo D; Ikeda, Yasuhisa

    2011-10-18

    The kinetics of oxidation of iota- and lambda-carrageenan as sulfated carbohydrates by permanganate ion in aqueous perchlorate solutions at a constant ionic strength of 2.0 mol dm(-3) have been investigated spectrophotometrically. The pseudo-first-order plots were found to be of inverted S-shape throughout the entire courses of reactions. The initial rates were found to be relatively slow in the early stages, followed by an increase in the oxidation rates over longer time periods. The experimental observations showed first-order dependences in permanganate and fractional first-order kinetics with respect to both carrageenans concentration for both the induction and autoacceleration periods. The results obtained at various hydrogen ion concentrations showed that the oxidation processes in these redox systems are acid-catalyzed throughout the two stages of oxidation reactions. The added salts lead to the prediction that Mn(III) is the reactive species throughout the autoacceleration periods. Kinetic evidence for the formation of 1:1 intermediate complexes was revealed. The kinetic parameters have been evaluated and tentative reaction mechanisms in good agreement with the kinetic results are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The formation of magnetic carboxymethyl-dextrane-coated iron-oxide nanoparticles using precipitation from an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Sašo, E-mail: saso.gyergyek@ijs.si [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Primc, Darinka [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Plantan, Ivan [Lek Pharmaceuticals d.d., Mengeš (Slovenia)

    2015-03-01

    The formation of spinel iron-oxide nanoparticles during the co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions from an aqueous solution in the presence of carboxymethyldextrane (CMD) was studied. To follow the formation of the nanoparticles, a mixture of the Fe ions, CMD and ammonia was heated to different temperatures, while the samples were taken, quenched in liquid nitrogen, freeze-dried and characterized using transmission electron microscopy (TEM), X-ray diffractometry (XRD) and magnetometry. The CMD plays a role in the reactions of the Fe ions' precipitation by partially immobilizing the Fe{sup 3+} ions into a complex. At room temperature, the amorphous material is precipitated. Then, above approximately 30 °C, the spinel nanoparticles form inside the amorphous matrix, and at approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles. The CMD bonded to the nanoparticles' surfaces hinders the mass transport and thus prevents their growth. - Highlights: • The carboxymethyl-dextrane coated iron-oxide nanoparticles were synthesized. • The carboxymethyl-dextrane significantly modifies formation of the spinel nanoparticles. • The spinel nanoparticles are formed inside the amorphous matrix. • At approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles.

  6. The formation of magnetic carboxymethyl-dextrane-coated iron-oxide nanoparticles using precipitation from an aqueous solution

    International Nuclear Information System (INIS)

    Makovec, Darko; Gyergyek, Sašo; Primc, Darinka; Plantan, Ivan

    2015-01-01

    The formation of spinel iron-oxide nanoparticles during the co-precipitation of Fe 3+ /Fe 2+ ions from an aqueous solution in the presence of carboxymethyldextrane (CMD) was studied. To follow the formation of the nanoparticles, a mixture of the Fe ions, CMD and ammonia was heated to different temperatures, while the samples were taken, quenched in liquid nitrogen, freeze-dried and characterized using transmission electron microscopy (TEM), X-ray diffractometry (XRD) and magnetometry. The CMD plays a role in the reactions of the Fe ions' precipitation by partially immobilizing the Fe 3+ ions into a complex. At room temperature, the amorphous material is precipitated. Then, above approximately 30 °C, the spinel nanoparticles form inside the amorphous matrix, and at approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles. The CMD bonded to the nanoparticles' surfaces hinders the mass transport and thus prevents their growth. - Highlights: • The carboxymethyl-dextrane coated iron-oxide nanoparticles were synthesized. • The carboxymethyl-dextrane significantly modifies formation of the spinel nanoparticles. • The spinel nanoparticles are formed inside the amorphous matrix. • At approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles

  7. Elaboration of nano titania-magnetic reduced graphene oxide for degradation of tartrazine dye in aqueous solution

    Science.gov (United States)

    Nada, Amr A.; Tantawy, Hesham R.; Elsayed, Mohamed A.; Bechelany, Mikhael; Elmowafy, Mohamed E.

    2018-04-01

    In this paper, magnetic nanocomposites are synthesized by loading reduced graphene oxide (RG) with two components of nanoparticles consisting of titanium dioxide (TiO2) and magnetite (Fe3O4) with varying amounts. The structural and magnetic features of the prepared composite photocatalysts were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (UV-vis/DRS), Raman and vibrating sample magnetometer (VSM). The resulting TiO2/magnetite reduced graphene oxide (MRGT) composite demonstrated intrinsic visible light photocatalytic activity, on degradation of tartrazine (TZ) dye from a synthetic aqueous solution. Specifically, it exhibits higher photocatalytic activity than magnetite reduced graphene oxide (MRG) and TiO2 nanoparticles. The photocatalytic degradation of TZ dye when using MRG and TiO2 for 3 h under visible light was 35% and 10% respectively, whereas for MRGT it was more than 95%. The higher photocatalytic efficiency of MRGT is due to the existence of reduced graphene oxide and magnetite which enhances the photocatalytic efficiency of the composite in visible light towards the degradation of harmful soluble azo dye (tartrazine).

  8. Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors

    KAUST Repository

    Nayak, Pradipta K.

    2013-05-08

    It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a decrease in zinc tin oxide film thickness, and (ii) an increase in oxygen vacancy concentration. The devices prepared without soft annealing exhibited inferior transistor performances, in comparison to devices in which the active channel layer (zinc tin oxide) was subjected to soft annealing. The highest saturation field-effect mobility - 5.6 cm2 V-1 s-1 with a drain-to-source on-off current ratio (Ion/Ioff) of 2 × 108 - was achieved in the case of devices with 10-min soft-annealed zinc tin oxide thin films as the channel layer. The findings of this work identify soft annealing as a critical parameter for the processing of chemically derived thin-film transistors, and it correlates device performance to the changes in material structure induced by soft annealing. © 2013 American Chemical Society.

  9. Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions.

    Science.gov (United States)

    Valenzuela, Juan Luis; Manzano, Susana; Palma, Francisco; Carvajal, Fátima; Garrido, Dolores; Jamilena, Manuel

    2017-07-08

    Immature, vegetable-like fruits are produced by crops of great economic importance, including cucumbers, zucchini, eggplants and bell peppers, among others. Because of their high respiration rates, associated with high rates of dehydration and metabolism, and their susceptibility to chilling injury (CI), vegetable fruits are highly perishable commodities, requiring particular storage conditions to avoid postharvest losses. This review focuses on the oxidative stress that affects the postharvest quality of vegetable fruits under chilling storage. We define the physiological and biochemical factors that are associated with the oxidative stress and the development of CI symptoms in these commodities, and discuss the different physical, chemical and biotechnological approaches that have been proposed to reduce oxidative stress while enhancing the chilling tolerance of vegetable fruits.

  10. Dry And Ringer Solution Lubricated Tribology Of Thin Osseoconductive Metal Oxides And Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Waldhauser W.

    2015-09-01

    Full Text Available Achieving fast and strong adhesion to jawbone is essential for dental implants. Thin deposited films may improve osseointegration, but they are prone to cohesive and adhesive fracture due to high stresses while screwing the implant into the bone, leading to bared, less osteoconductive substrate surfaces and nano- and micro-particles in the bone. Aim of this work is the investigation of the cohesion and adhesion failure stresses of osteoconductive tantalum, titanium, silicon, zirconium and aluminium oxide and diamond-like carbon films. The tribological behaviour under dry and lubricated conditions (Ringer solution reveals best results for diamond-like carbon, while cohesion and adhesion of zirconium oxide films is highest.

  11. Oxidation potentials, Gibbs energies, enthalpies and entropies of actinide ions in aqueous solutions

    International Nuclear Information System (INIS)

    1977-01-01

    The values of the Gibbs energy, enthalpy, and entropy of different actinide ions, thermodynamic characteristics of the processes of hydration of these ions, and the presently known ionization potentials of actinides are given. The enthalpy and entropy components of the oxidation potentials of actinide elements are considered. The curves of the dependence of the Gibbs energy of ion formation on the atomic number of the element and the Frost diagrams are analyzed. The diagram proposed by Frost represents the graphical dependence of the Gibbs energy of hydrated ions on the degree of oxidation of the element. Using the Frost diagram it is easy to establish whether a given ion is stable to disproportioning

  12. Radio reduction of the vitamin K in ethanolic solution: Contribution to radical oxidation study of a glutamic residue

    International Nuclear Information System (INIS)

    Fackir, L.

    1995-01-01

    The biological action of vitamin K may involve mono electronic exchanges. Therefore, in this work we achieved a radiolytical study on one land, of mono electronic reduction of vitamin K hydroquinone symbolized by KHsubn pp. We also studied the vitamin K2 model of glutamic residue( B - Glu ) by radiolytic mean. The study of radical mechanisms of vitamin K1 reduction in ethanolic solution showed that vitamin K1 is a good sensor of free radicals alpha - hydroxyethyles ( R sup . ) issued from the radiolysis of vitamin K1 ethanolic solutions, saturated with N sub2 O. The final product is hydroquinone K sub 1 H sub 2. It has been demonstrated that mono electronic reduction can be also initiated by solvated electrons. The mono electronic oxidation of K H sub p has been studied in ethanolic solution.The results showed that K H sub p is a good sensor of peroxyl radicals model (RO sub2) sup . issues from ethanol. The oxidation leads to the formation a dimeric from of the quinone K. All these results showed that the free radicals R sup . centred on carbon are efficient reducing agents of vitamin K1, and that the peroxyl radicals R Osub2 centred on oxygen are possible oxidants of KH sub p. At the end and for modeling the eventual interaction of semi quinonic radical with glutamic acid. We have irradiated mixture of vitamin K1 and a compound having a glutamic residue, the concentration ratio (B-Glu) sub 0/ (K sub 1) sub 0 varying for 0,03 to 1. The obtained results showed that the yield of vitamin K sub 1 disappearance is superior to G (R sup .)/R for low concentration of B-Glu. 80 figs., 5 tabs., 105 refs. (F. M.)

  13. The Effect of Varying Ultrafast Pulse Laser Energies on the Electrical Properties of Reduced Graphene Oxide Sheets in Solution

    Science.gov (United States)

    Ibrahim, Khaled H.; Irannejad, Mehrdad; Wales, Benjamin; Sanderson, Joseph; Musselman, Kevin P.; Yavuz, Mustafa

    2018-02-01

    Laser treatment of graphene oxide solution among other techniques is a well-established technique for producing reduced graphene sheets. However, production of high-quality ultra-low sheet resistance reduced graphene oxide (rGO) sheets in solution has been a challenge due to their high degree of randomness, defect-rich medium, and lack of controlability. Recent studies lack an in-depth analytic comparison of laser treatment parameters that yield the highest quality rGO sheets with a low defect ratio. Hence, in this study, we implement a comprehensive comparison of laser treatment parameters and their effect on the yielded rGO sheets from an electronic and physical standpoint. Ultra-low sheet resistance graphene oxide sheets were fabricated using ultrafast laser irradiation with different laser pulse energies in the range of 0.25-2 mJ. Laser treatment for 10 min using a pulse energy of 1 mJ resulted in an increase in the defect spacing, accompanied by a large red shift in the optical absorption of the C=C bond, indicating significant restoration of the s p 2 carbon bonds. These enhancements resulted in a significant reduction in the electrical resistance of the rGO flakes (up to 2 orders of magnitude), raising the electron mobility of the films produced using the irradiated graphene oxide a step closer to that of pristine graphene films. From this study, we can also deduce which exposure regimes result in the fabrication of quantum dots and continuous defect-free films.

  14. Efficiency of Advanced H2O2/ZnO Oxidation Process in Ceftriaxone Antibiotic Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Maryam Noroozi cholcheh

    2017-11-01

    Full Text Available A major concern about pharmaceutical pollution is the presence of antibiotics in water resources through their release into sewers where they cause bacterial resistance and enhanced drug-resistance in human-borne pathogens and growing microbial populations in the environment. The objective of this study was to investigate the efficiency of  the advanced H2O2/ZnO oxidation process in removing ceftriaxone from aqueous solutions. For this purpose, an experimental study was conducted in which the SEM, XRD, and TEM techniques were employed to determine the size of Zinc oxide nano-particles. Additionally, the oxidation process parameters of pH (3-11, molar ratio of H2O2/ZnO (1.5-3, initial concentration of ceftriaxone (5–15 mg/L, and contact time (30-90 min were investigated. Teh data thus obntained were subjected top statistical analysis using the SPSS (ANOVA test. XRD results revealeda hexagonal crystal structure for the nano-ZnO. TEM images confirmed the spherical shape of the nanoparticles. Finally, SEM images revealed that the Zn nanoparticles used in this study were less than 30 nanometers in diameter. Based on the results, an optimum pH of 11, a contact time of 90 minutes, and a H2O2/ZnO molar ratio equal to 1.5 were the optimum conditions to achieve a ceftriaxone removal efficiency of 92%. The advance H2O2/ZnO oxidation process may thus be claimed to be highly capable of removing ceftriaxone from aqueous solutions.

  15. Kinetics of transuranium element oxidation-reduction reactions in solution; Cinetique des reactions d'oxydo-reduction des elements transuraniens en solution

    Energy Technology Data Exchange (ETDEWEB)

    Gourisse, D. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-09-01

    A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author) [French] Une revue systematique de la cinetique des reactions d'oxydo-reduction des elements U, Np, Pu, Am, en solution perchlorique est proposee. Des considerations relatives aux grandeurs thermodynamiques d'activation associees aux actes elementaires (effet de compensation, entropie standard des complexes actives, rapidite des reactions) sont developpees. L'influence de l'acidite, de la force ionique, de l'eau lourde et de la polarite des solvants mixtes sur la vitesse des reactions est decrite. Enfin l'influence des differents anions sur la vitesse des reactions est expliquee par les variations de l'enthalpie libre standard de la reaction et de l'enthalpie libre d'activation (travail des forces electrostatiques) resultant de la complexation des especes dissoutes dans la solution. (auteur)

  16. Kinetics of transuranium element oxidation-reduction reactions in solution; Cinetique des reactions d'oxydo-reduction des elements transuraniens en solution

    Energy Technology Data Exchange (ETDEWEB)

    Gourisse, D [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-09-01

    A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author) [French] Une revue systematique de la cinetique des reactions d'oxydo-reduction des elements U, Np, Pu, Am, en solution perchlorique est proposee. Des considerations relatives aux grandeurs thermodynamiques d'activation associees aux actes elementaires (effet de compensation, entropie standard des complexes actives, rapidite des reactions) sont developpees. L'influence de l'acidite, de la force ionique, de l'eau lourde et de la polarite des solvants mixtes sur la vitesse des reactions est decrite. Enfin l'influence des differents anions sur la vitesse des reactions est expliquee par les variations de l'enthalpie libre standard de la reaction et de l'enthalpie libre d'activation (travail des forces electrostatiques) resultant de la complexation des especes dissoutes dans la solution. (auteur)

  17. Impedance response characteristics of iron oxide interface in the EDTA solutions

    International Nuclear Information System (INIS)

    Sawa, Tosio; Higuchi, Shigeo; Kataoka, Ichiro; Ito, Hisao.

    1986-01-01

    The relationship between the dissolution and the surface conditions of Fe 3 O 4 were studied in the various conditions of EDTA solutions by means of the A · C impedance measurement. From the experimental results obtained, surface layer of Fe 3 O 4 electrode can be expressed with electrical equivalent circuit that have capacitance and reaction resistance in the electrical double layer. In the Na 2 SO 4 solution without occuring dissolution, reaction resistance was estimated as 314 kΩ · cm 2 and capacitance was 203 μF/cm 2 . In the EDTA solutions, reaction resistance decreases along with dissolution of Fe 3 O 4 . The factors to make decrease reaction resistance are EDTA concentration, pH and temperature of the solutions. In contrast with this, the factor to increase it is dissolved oxygen in the solutions. The reciprocal value of reaction resistance agrees well with the rate of dissolution. On the other hand, when the electrode potential was maintained under the cathodic polarization in the EDTA solutions, impedances of electrode surface showed the lower value than that in the immersion condition. And apparent resistance came near to 0 at the potential of -2.0 V in all the range of frequency. Fe 3 O 4 electrodes pretreated with the cathodic polarization exhibited the characteristic impedance response that were caused by the change of electrode surface and the deposites such as iron hydroxide. (author)

  18. COMPARISON OF DIFFERENT ADVANCED OXIDATION PROCESSES DEGRADING P-CHLOROPHENOL IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    H. Movahedyan ، A. M. Seid Mohammadi ، A. Assadi

    2009-07-01

    Full Text Available In present study, degradation of p-chlorophenol using several oxidation systems involving advanced oxidation processes such as ultraviolet/H2O2, microwave/H2O2 and both in the absence of hydrogen peroxide in batch mode by photolytic pilot plant and modified domestic microwave oven was evaluated. The oxidation rate was influenced by many factors, such as the pH value, the amount of hydrogen peroxide, irradiation time and microwave power. The optimum conditions obtained for the best degradation rate were pH=7 and H2O2 concentration of 0.05 mol/L for ultraviolet/H2O2 system and pH=10.5, H2O2 concentration of about 0.1 mol/L and microwave irradiation power of about 600W for microwave/H2O2 system at constant p-chlorophenol concentration. The degradation of p-chlorophenol by different types of oxidation processes followed first order rate decay kinetics. The rate constants were 0.137, 0.012, 0.02 and 0.004/min1 for ultraviolet/H2O2, microwave/H2O2, ultraviolet and microwave irradiation alone. Finally a comparison of the specific energy consumption showed that ultraviolet/H2O2 process reduced the energy consumption by at least 67% compared with the microwave/H2O2 process.

  19. Oxidative Mineralization and Characterization of Polyvinyl Alcohol Solutions for Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.N.

    1999-08-31

    The principal objectives of this study are to identify an appropriate polyvinyl alcohol (PVA) oxidative mineralization technique, perform compatibility and evaporation fate tests for neat and mineralized PVA, and determine potential for PVA chemical interferences which may affect ion exchange utilization for radioactive wastewater processing in the nuclear industry.

  20. Adsorption of heavy metals from aqueous solutions by Mg-Al-Zn mingled oxides adsorbent.

    Science.gov (United States)

    El-Sayed, Mona; Eshaq, Gh; ElMetwally, A E

    2016-10-01

    In our study, Mg-Al-Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg-Al-Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N 2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg-Al-Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g -1 , and 70.4 mg g -1 , respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, q max , obtained was 113.8 mg g -1 , and 79.4 mg g -1 for Co(II), and Ni(II), respectively. Our results showed that Mg-Al-Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.

  1. Solution mining and heating by oxidation for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; Stegemeier, George Leo

    2009-06-23

    A method for treating an oil shale formation comprising nahcolite includes providing a first fluid to a portion of the formation. A second fluid is produced from the portion. The second fluid includes at least some nahcolite dissolved in the first fluid. A controlled amount of oxidant is provided to the portion of the formation. Hydrocarbon fluids are produced from the formation.

  2. Coexistence of spheres and rods in micellar solution of dodecyldimethylamine oxide

    NARCIS (Netherlands)

    Majhi, P.R.; Dubin, P.L.; Feng, X.H.; Ruo, X.H.; Leermakers, F.A.M.; Tribet, C.

    2004-01-01

    Micelles of dimethyldodecylamine oxide (DMDAO) are known to exhibit sphere-to-rod transitions as a function of pH and ionic strength. Long micelles are stabilized at pH corresponding to half-protonation, because hydrogen bonding between nonionic and protonated monomers yields an effectively

  3. Possibility of Modification of Zeolites by Iron Oxides and its Utilization for Removal of Pb(II from Water Solutions

    Directory of Open Access Journals (Sweden)

    Michal Lovás

    2004-12-01

    Full Text Available Ion-exchange properties of cations from lattice and ions from solutions are characteristic for zeolites. Zeolites as sorbents are used in many branches of industry. Ion-exchange reactions of cations on zeolites have been a theme of many works. With the exception of using natural zeolites as the sorbent, a modification of surface of zeolites and preparation of synthetic zeolites has received interest lately. One of the common modification of zeolites is modification by iron oxides, which increases capacity of adsorption. In this work, we prepared a modified zeolite by the precipitation of magnetite on the surface of zeolite. This new adsorbent was used to remove of Pb(II from waste water. The maximum adsorption capacity was 73,25 mg/g from the solution of Pb with the concentration of 400 mg/l.

  4. A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite

    International Nuclear Information System (INIS)

    Qi, Kai; Sun, Yimin; Duan, Hongwei; Guo, Xingpeng

    2015-01-01

    Highlights: • Solution-processable polymer-grafted graphene nanocomposite is synthesized. • The nanocomposite exhibits synergistic properties of both building blocks. • The nanocomposite can be easily applied to form a protective coating on metals. • The coating can effectively prevent corrosion of copper substrate. - Abstract: A new type of solution-processable graphene coating has been synthesized by grafting polymethylmethacrylate (PMMA) brushes on graphene oxide (GO) via surface-initiated atom transfer radical polymerization (ATRP). One major finding is that the PMMA-grafted GO nanocomposite exhibits synergistic properties of both building blocks, i.e., permeation inhibition of GO and solubility of PMMA in a variety of solvents, which makes it compatible with commonly used coating methods to form uniform coatings with controlled thickness. Our results demonstrate that PMMA-grafted GO coating can effectively block charge transfer at the metal–electrolyte interface and prevent corrosion of the copper substrate under aggressive saline conditions

  5. High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment

    KAUST Repository

    Nayak, Pradipta K.

    2012-05-16

    Solution-deposited amorphous indium gallium zinc oxide (a-IGZO) thin film transistors(TFTs) with high performance were fabricated using O2-plasma treatment of the films prior to high temperature annealing. The O2-plasma treatment resulted in a decrease in oxygen vacancy and residual hydrocarbon concentration in the a-IGZO films, as well as an improvement in the dielectric/channel interfacial roughness. As a result, the TFTs with O2-plasma treated a-IGZO channel layers showed three times higher linear field-effect mobility compared to the untreated a-IGZO over a range of processing temperatures. The O2-plasma treatment effectively reduces the required processing temperature of solution-deposited a-IGZO films to achieve the required performance.

  6. Controlled synthesis of multi-shelled transition metal oxide hollow structures through one-pot solution route

    Institute of Scientific and Technical Information of China (English)

    Xi Wang; Yi-Jun Yang; Ying Ma; Jian-Nian Yao

    2013-01-01

    As one type of promising candidates fot environmental and energy-related systems,multi-shelled transition metal oxide hollow structures (MS-TMOHSs) have drawn great scientific and technical interest in the past few years.This article highlights recent advances in one-pot solution synthesis of MS-TMOHSs.We begin it with an overview of synthetic strategies that have been exploited to achieve these peculiar structures.We then focus on one-pot solution approaches in the following four sections:i) soft templates directed growth; ii) Ostwald ripening; iii) controlled etching; and iv) gas bubble assisted growth.After giving a brief discussion on the unique properties and applications of these multi-shelled hollow structures,we conclude this review with the general challenges and the potential future directions of this exciting area of research.

  7. Tetraethylammonium dicyanido(5,10,15,20-tetraphenylporphyrinatoferrate(III dichloromethane monosolvate

    Directory of Open Access Journals (Sweden)

    Michael Shatruk

    2013-08-01

    Full Text Available The title compound, (C8H20N[Fe(C44H28N4(CN2]·CH2Cl2 or (Et4N[Fe(TPP(CN2], was recrystallized from dichloromethane–diethyl ether. The compound crystallizes with the two unique halves of the FeIII porphyrinato complex, one tetraethylammonium cation and one interstitial dichloromethane molecule within the asymmetric unit. Both anionic FeIII complexes exhibit inversion symmetry. Both the cation and the solvent molecules show positional disorder. The cation is disordered over two sets of sites with an occupancy ratio of 0.710 (3:0.290 (3; the solvent molecule is disordered over three positions with a 0.584 (6:0.208 (3:0.202 (5 ratio. The crystal packing features columns of [Fe(TPP(CN2]− anions that propagate along [001]. The columns further pack into layers that are parallel to (011 and also include the Et4N+ cations. The interstitial CH2Cl2 molecules appear in the interlayer space. This complex may serve as a useful precursor for the assembly of multinuclear and extended CN-bridged complexes for the design of single-molecule and single-chain magnets, respectively.

  8. Experimental and theoretical electron-scattering cross-section data for dichloromethane

    Science.gov (United States)

    Krupa, K.; Lange, E.; Blanco, F.; Barbosa, A. S.; Pastega, D. F.; Sanchez, S. d'A.; Bettega, M. H. F.; García, G.; Limão-Vieira, P.; Ferreira da Silva, F.

    2018-04-01

    We report on a combination of experimental and theoretical investigations into the elastic differential cross sections (DCSs) and integral cross sections for electron interactions with dichloromethane, C H2C l2 , in the incident electron energy over the 7.0-30 eV range. Elastic electron-scattering cross-section calculations have been performed within the framework of the Schwinger multichannel method implemented with pseudopotentials (SMCPP), and the independent-atom model with screening-corrected additivity rule including interference-effects correction (IAM-SCAR+I). The present elastic DCSs have been found to agree reasonably well with the results of IAM-SCAR+I calculations above 20 eV and also with the SMC calculations below 30 eV. Although some discrepancies were found for 7 eV, the agreement between the two theoretical methodologies is remarkable as the electron-impact energy increases. Calculated elastic DCSs are also reported up to 10000 eV for scattering angles from 0° to 180° together with total cross section within the IAM-SCAR+I framework.

  9. Health risk assessment of dichloromethane (methylene chloride) in California ground water

    International Nuclear Information System (INIS)

    Bogen, K.T.; Hall, L.C.; Wright, K.; McKone, T.E.

    1992-01-01

    This document presents an assessment of potential health risks associated with exposure to dichloromethane (DCM) dissolved in California drinking water, focusing primarily on information relevant to a determination of potential cancer risk that may be associated with such exposures to DCM. This assessment is being provided to the California Environmental Protection Agency for the development of drinking-water standards to manage the health risks of DCM exposures. Other assessments required in the risk-management process include analyses of the technical and economic feasibilities of treating water supplies contaminated with DCM. The primary goal of this health-risk assessment is to evaluate scientifically plausible dose-response relationships for observed and potential DCM-induced cancer in order to define dose rates that can be used to establish standards that win protect members of the general public from this chronic toxicity endpoint resulting solely from groundwater-based exposures to DCM, based on information obtained from the scientific literature. The document consists of seven sections, plus one supporting appendix. Each section provides information that can be used to develop DCM drinking-water standards that will safeguard human health. Evaluation of this information in support of specific groundwater safety standards for DCM was not conducted in this report; rather, the basis for selection of alternative standards, along with a narrative description of certain key sources of underlying uncertainty, are presented for evaluation through the regulatory risk-management process

  10. Phase behaviour of the ternary system {poly(ε-caprolactone) + carbon dioxide + dichloromethane}

    International Nuclear Information System (INIS)

    Bender, Joao P.; Feitein, Mirian; Mazutti, Marcio A.; Franceschi, Elton; Corazza, Marcos L.; Oliveira, J. Vladimir

    2010-01-01

    Recently, production of biocompatible and biodegradable polymer microparticles has been a matter of growing interest in pharmaceutical and food areas such as drug or active compounds delivery. To conduct production of microparticles, polymeric particle coating, impregnation of active compounds in polymeric films, the knowledge of phase behaviour involving the biodegradable polymer in supercritical carbon dioxide in the presence of a modifier may be needed to allow developing new industrial applications. In this sense, the aim of this work was to investigate the phase behaviour of the ternary system formed by the biodegradable polymer poly(ε-caprolactone) in (carbon dioxide + dichloromethane). Experimental phase transition (bubble and cloud point) values were obtained by applying the static-synthetic method using a variable-volume view cell over the temperature range of (303 to 343) K and pressures up to 21 MPa, in the CO 2 overall composition range of (25-46) wt%, while polymer concentrations studied were (1, 3, 5, and 7) wt%. For the system investigated, depending on the polymer concentration, vapour-liquid, liquid-liquid, and vapour-liquid-liquid phase transitions were verified.

  11. Stability of fortified cefazolin ophthalmic solutions prepared in artificial tears containing surfactant-based versus oxidant-based preservatives.

    Science.gov (United States)

    Rojanarata, Theerasak; Tankul, Junlathip; Woranaipinich, Chayanee; Potawanich, Paweena; Plianwong, Samarwadee; Sakulma, Sirinart; Saehuan, Choedchai

    2010-10-01

    The aim of this study was to investigate the stability of fortified cefazolin sodium ophthalmic solutions (50 mg mL⁻¹) extemporaneously prepared in commercial artificial tears containing 2 different types of preservatives, namely the surfactants and oxidants. Fortified cefazolin sodium solutions were prepared by reconstituting cefazolin for injection with sterile water and further diluted with Tears Naturale II or Natear, 2 commercial artificial tears containing polyquaternium-1 and sodium perborate, respectively, as preservatives. The solutions were then kept at room temperature (28°C) or in the refrigerator (4°C). During the 28-day period, the formulations were periodically examined for the physical appearance, pH, and the remaining drug concentrations. The antibacterial potency was evaluated as the minimal inhibitory concentration against Staphylococcus aureus strain ATCC 29923 by broth dilution technique. The activity of the preservatives was demonstrated by antimicrobial effectiveness tests. On day 28, the microbial contamination in the preparations was tested. The stability profiles of cefazolin solutions prepared in Tears Naturale II, Natear, and water were not different, but they were significantly influenced by the storage temperature. The refrigerated formulations showed no loss of drug and antibacterial potency as well as alteration of physical appearance and pH throughout the 28 days. In contrast, those kept at room temperature showed gradual change in color and odor. The degradation of drug exceeded 10% from day 3 and the decrease of antibacterial potency could be observed at week 3. All cefazolin solutions prepared in artificial tears retained the antimicrobial activity of preservatives and were free from bacterial and fungal contamination throughout the 28-day period of study. Cefazolin sodium ophthalmic solutions can be extemporaneously prepared in Tears Naturale II or Natear without the influence from different types of preservatives used in

  12. Air-stable, solution-processed oxide p-n heterojunction ultraviolet photodetector.

    Science.gov (United States)

    Kim, Do Young; Ryu, Jiho; Manders, Jesse; Lee, Jaewoong; So, Franky

    2014-02-12

    Air-stable solution processed all-inorganic p-n heterojunction ultraviolet photodetector is fabricated with a high gain (EQE, 25 300%). Solution-processed NiO and ZnO films are used as p-type and n-type ultraviolet sensitizing materials, respectively. The high gain in the detector is due to the interfacial trap-induced charge injection that occurs at the ITO/NiO interface by photogenerated holes trapped in the NiO film. The gain of the detector is controlled by the post-annealing temperature of the solution-processed NiO films, which are studied by X-ray photoelectron spectroscopy (XPS).

  13. Studies of dissolution solutions of ruthenium metal, oxide and mixed compounds in nitric acid

    International Nuclear Information System (INIS)

    Mousset, F.; Eysseric, C.; Bedioui, F.

    2004-01-01

    Ruthenium is one of the fission products generated by irradiated nuclear fuel. It is present throughout all the steps of nuclear fuel reprocessing-particularly during extraction-and requires special attention due to its complex chemistry and high βγ activity. An innovative electro-volatilization process is now being developed to take advantage of the volatility of RuO 4 in order to eliminate it at the head end of the Purex process and thus reduce the number of extraction cycles. Although the process operates successfully with synthetic nitrato-RuNO 3+ solutions, difficulties have been encountered in extrapolating it to real-like dissolution solutions. In order to better approximate the chemical forms of ruthenium found in fuel dissolution solutions, kinetic and speciation studies on dissolved species were undertaken with RuO 2 ,xH 2 O and Ru 0 in nitric acid media. (authors)

  14. Photochemical oxidation of americium(3) in bicarbonate-carbonate solutions saturated with N2O

    International Nuclear Information System (INIS)

    Shilov, V.P.; Yusov, A.B.

    1993-01-01

    The influence of UV radiation on 1.1x10 -4 mol/l Am(3) in bicarbonate-carbonate solutions of sodium and potassium saturated with N 2 O was studied by spectrographic method. In all the cases Am(4) was formed as a primary product. Initial rate of Am(4) accumulation remains stable in solutions up to HCO 3 - or HCO 3 - +CO 3 2- concentration of approximately 1.5 mol/l, but it decreases in case of their higher concentration. In solutions with pH 8.4-10 Am(4) disproportionates at a slow rate and the method suggested permits attaining practically 100% yield of it

  15. Plutonium estimation in the process solutions and oxide dissolved audit samplers by potentiometry using memo titrator

    International Nuclear Information System (INIS)

    Kumaraguru, K.; Shukla, Y.D.; Vijayan, K.; Ramamoorthy, N.; Jambunathan, U.; Kapoor, S.C.

    1990-01-01

    Potentiometric method is employed by using memotitrator coupled with combined electrode for the estimation of plutonium. The estimations are carried out on the process samples and the acid dissolved samples for auditing, in the concentration range of 5 g/l to 20 g/l. The chemical procedure is: i)oxidising plutonium to higher oxidation state by silver oxide, ii)reducing the same by adding excess ferrous, and iii)titrating potassium dichromate against the unreacted ferrous. The plutonium content is computed from ferrous consumed in the reaction. The average percentage error of the method is +/-0.27. The values obtained are in close agreement with those obtained by coulometry. (author)

  16. Recovery of manganese from manganese oxide ores in the EDTA solution

    Science.gov (United States)

    Zhang, Chao; Wang, Shuai; Cao, Zhan-fang; Zhong, Hong

    2018-04-01

    A new process has been experimentally and theoretically established for the recovery of manganese from manganese oxide ores, mainly including the reductive leaching of manganese by ethylenediaminetetraacetic acid (EDTA), EDTA recovery, and manganese electrolysis. The experimental conditions for this process were investigated. Moderate leaching environment by EDTA with the pH in the range of 5-6 is of benefit to leach manganese from some manganese oxide ores with high-content impurities, such as iron and aluminum. Most of EDTA can be recovered by acidification. A small amount of the residual EDTA in the electrolyte can prevent the generation of anode mud. In addition, trimanganese tetroxide (Mn3O4) can be obtained by the roasting of the EDTA-Mn crystallized product.

  17. Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH.

    Science.gov (United States)

    Rangel-Mendez, J R; Streat, M

    2002-03-01

    The surface of activated carbon cloth (ACC), based on polyacrylonitrile fibre as a precursor, was oxidised using nitric acid, ozone and electrochemical oxidation to enhance cadmium ion exchange capacity. Modified adsorbents were physically and chemically characterised by pH titration, direct titration, X-ray photoelectron spectroscopy, elemental analysis, surface area and porosimetry, and scanning electron microscopy. BET surface area decreased after oxidation, however, the total ion exchange capacity increased by a factor of approximately 3.5 compared to the commercial as-received ACC. A very significant increase in cadmium uptake, by a factor of 13, was observed for the electrochemically oxidised ACC. Equilibrium sorption isotherms were determined at pH 4, 5 and 6 and these showed that cadmium uptake increased with increasing pH. There was clear evidence of physical damage to ozone-oxidised fibre, however, acid and electrochemically oxidised samples were completely stable.

  18. Oxidative Damage in Erythrocytes During Cold Storage With Organ Preservation Solution

    OpenAIRE

    MEMMEDOĞLU, Akif B.

    1999-01-01

    It is known that erythrocyte aggregation in renal tissue during preserva-tion is cause of microcirculation defects in the reperfusion period. The aim of our study is to investigate oxidative damage in erythrocytes relative to the time of cold ischemia during organ preservation and relationship between lipid peroxidation and development of these damages. In experiments with a rabbit model, explanted kidneys were exposed to perfusion and 96 hours preservation with Euro-Collins (EC) in the 1...

  19. Study of the solid solution formation in mixed oxides by X-ray diffraction

    International Nuclear Information System (INIS)

    Riella, H.G.

    1984-01-01

    A method to determine the plutonium distribution in mixed oxides - UO 2 /PuO 2 is described. The distribution function and the medium size of crystallite are obtained from the X-ray diffraction profile. Through the deconvolution by Fourier analysis, the X-ray diffraction profile is obtained without the influence of the difractrometer. Some experimental results for different samples of UO 2 -PuO 2 discussed. (Author) [pt

  20. Effective Removal of Hexavalent Chromium from Aqueous Solutions Using Ionic Liquid Modified Graphene Oxide Sorbent

    Directory of Open Access Journals (Sweden)

    A. Nasrollahpour

    2017-10-01

    Full Text Available Ionic liquid modified reduced graphene oxide (IL-rGO was prepared and examined for chromate removal. The sorbent was characterized by N2 adsorption-desorption measurement (BET, transmission electron microscopy (TEM, powder X-ray diffraction (XRD, and X-ray photoelectron spectroscopy (XPS analysis. The sorption behavior of chromate on the ionic liquid modified reduced graphene oxide sorbent from an aqueous medium was studied by varying the parameters such as contact time, initial chromate concentration, pH, and agitation speed. The results showed that sorption kinetics of chromate by IL-rGO follows the pseudo second order, which indicates that the sorption mechanism is both chemical and physical interaction. The sorption isotherm studies revealed that Langmuir model provided the best fit to all the experimental data with an adsorption capacity of 232.55 mg g–1 for IL-rGO. Thermodynamic parameters, such as Gibbs free energy (–2.85 kJ mol–1 at 298 K, enthalpy (55.41 kJ mol–1, and entropy (11.64 J mol–1 K–1 of sorption of the chromate on ionic liquid modified reduced graphene oxide was evaluated, and it was found that the reaction was spontaneous and endothermic in nature.

  1. Supercritical Water Oxidation: A Solution for the Elimination of Back-End Organic Reprocessing Wastes

    International Nuclear Information System (INIS)

    Leybros, A.; Roubaud, A.; Turc, H.A.; Fournel, B.

    2008-01-01

    Supercritical water oxidation (SCWO) is a very efficient technique for total elimination of organic wastes from reprocessing activities on the way of 'zero wastes' facilities. This technology uses the properties of supercritical water (P > 221 bars and T > 647 K) to obtain a good mixing between oxygen (the oxidant) and the organic waste. Thereby, the oxidation reaction is fast and complete. Using the SCWO process, contamination contained in organic materials like spent solvents can be confined in a closed space, like a reactor in a glovebox. A new application is tested for the treatment of solid organic wastes like ion exchange resins (IER). Experiments are made with suspensions of IER in water and isopropyl-alcohol. A nuclear version of the process with the double shell reactor has been constructed and is being tested. The aim of this work is to obtain a treatment capacity of 1 kg/h for the nuclear version with the same global set-up, concept of process and security as well as contamination management as for a 200 g/h pilot. (authors)

  2. Backbone dynamics of oxidized and reduced D. vulgaris flavodoxin in solution

    International Nuclear Information System (INIS)

    Hrovat, Andrea; Bluemel, Markus; Loehr, Frank; Mayhew, Stephen G.; Rueterjans, Heinz

    1997-01-01

    Recombinant Desulfovibrio vulgaris flavodoxin was produced in Escherichia coli. A complete backbone NMR assignment for the two-electron reduced protein revealed significant changes of chemical shift values compared to the oxidized protein, in particular for the flavine mononucleotide (FMN)-binding site. A comparison of homo- and heteronuclear NOESY spectra for the two redox states led to the assumption that reduction is not accompanied by significant changes of the global fold of the protein.The backbone dynamics of both the oxidized and reduced forms of D. vulgaris flavodoxin were investigated using two-dimensional 15 N- 1 H correlation NMR spectroscopy.T 1 , T 2 and NOE data are obtained for 95% of the backbone amide groups in both redox states. These values were analysed in terms of the 'model-free' approach introduced by Lipari and Szabo [(1982) J. Am. Chem. Soc., 104, 4546-;4559, 4559-;4570]. A comparison of the two redox states indicates that in the reduced species significantly more flexibility occurs in the two loop regions enclosing FMN.Also, a higher amplitude of local motion could be found for the N(3)H group of FMN bound to the reduced protein compared to the oxidized state

  3. Supercritical Water Oxidation: A Solution for the Elimination of Back-End Organic Reprocessing Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, A.; Roubaud, A.; Turc, H.A.; Fournel, B. [Supercritical fluids and membranes Laboratory, CEA Valrho, BP 17171, 30207 Bagnols/Ceze Cedex (France)

    2008-07-01

    Supercritical water oxidation (SCWO) is a very efficient technique for total elimination of organic wastes from reprocessing activities on the way of 'zero wastes' facilities. This technology uses the properties of supercritical water (P > 221 bars and T > 647 K) to obtain a good mixing between oxygen (the oxidant) and the organic waste. Thereby, the oxidation reaction is fast and complete. Using the SCWO process, contamination contained in organic materials like spent solvents can be confined in a closed space, like a reactor in a glovebox. A new application is tested for the treatment of solid organic wastes like ion exchange resins (IER). Experiments are made with suspensions of IER in water and isopropyl-alcohol. A nuclear version of the process with the double shell reactor has been constructed and is being tested. The aim of this work is to obtain a treatment capacity of 1 kg/h for the nuclear version with the same global set-up, concept of process and security as well as contamination management as for a 200 g/h pilot. (authors)

  4. Analysis on porous aluminum anodic oxide film formed in Re-OA-H{sub 3}PO{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Wang, H.W. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)]. E-mail: hwwang@sjtu.edu.cn

    2006-06-10

    An anodic porous film on aluminum was prepared in a mixed electrolyte of phosphoric acid and organic acid and cerium salt. The growth, morphology and chemical composition of the film were investigated. The results indicate that the growth of porous layers in this solution undergo three stages during anodizing, as in other conventional solution, while the whole growth rate is nonlinear. This electrolyte is sensitive to anodizing temperature, which affects current density in great degree. SEM indicates the surface morphology of film is strongly dependent on temperature and current density and its cross-section has two distinct oxide layers. Al, O and P are found in the film with different distribution in the two layers with EPMA. However, Ce has been detected on the outer surface with EDAX. XPS analysis on the electron binding energy of the component elements show the chemical composition of oxide film surface are Al{sub 2}O{sub 3}, Ce(OH) and some phosphates. The formation mechanics of Ce compound is also deduced.

  5. Use of Raman spectroscopy to assess the efficiency of MgAl mixed oxides in removing cyanide from aqueous solutions

    International Nuclear Information System (INIS)

    Cosano, Daniel; Esquinas, Carlos; Jiménez-Sanchidrián, César; Ruiz, José Rafael

    2016-01-01

    Graphical abstract: - Highlights: • Raman is used by first time for adsorption of cyanide on calcined LDHs. • Raman is an effective, accurate and expeditious method for monitoring this process. • Cyanide is adsorbed by a rehydration process based on the “memory effect”. • The metal ratio of the LDH has a crucial influence on the adsorption capacity. - Abstract: Calcining magnesium/aluminium layered double hydroxides (Mg/Al LDHs) at 450 °C provides excellent sorbents for removing cyanide from aqueous solutions. The process is based on the “memory effect” of LDHs; thus, rehydrating a calcined LDH in an aqueous solution restores its initial structure. The process, which conforms to a first-order kinetics, was examined by Raman spectroscopy. The metal ratio of the LDH was found to have a crucial influence on the adsorption capacity of the resulting mixed oxide. In this work, Raman spectroscopy was for the first time use to monitor the adsorption process. Based on the results, this technique is an effective, expeditious choice for the intended purpose and affords in situ monitoring of the adsorption process. The target solids were characterized by using various instrumental techniques including X-ray diffraction spectroscopy, which confirmed the layered structure of the LDHs and the periclase-like structure of the mixed oxides obtained by calcination.

  6. Use of Raman spectroscopy to assess the efficiency of MgAl mixed oxides in removing cyanide from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cosano, Daniel; Esquinas, Carlos; Jiménez-Sanchidrián, César; Ruiz, José Rafael, E-mail: qo1ruarj@uco.es

    2016-02-28

    Graphical abstract: - Highlights: • Raman is used by first time for adsorption of cyanide on calcined LDHs. • Raman is an effective, accurate and expeditious method for monitoring this process. • Cyanide is adsorbed by a rehydration process based on the “memory effect”. • The metal ratio of the LDH has a crucial influence on the adsorption capacity. - Abstract: Calcining magnesium/aluminium layered double hydroxides (Mg/Al LDHs) at 450 °C provides excellent sorbents for removing cyanide from aqueous solutions. The process is based on the “memory effect” of LDHs; thus, rehydrating a calcined LDH in an aqueous solution restores its initial structure. The process, which conforms to a first-order kinetics, was examined by Raman spectroscopy. The metal ratio of the LDH was found to have a crucial influence on the adsorption capacity of the resulting mixed oxide. In this work, Raman spectroscopy was for the first time use to monitor the adsorption process. Based on the results, this technique is an effective, expeditious choice for the intended purpose and affords in situ monitoring of the adsorption process. The target solids were characterized by using various instrumental techniques including X-ray diffraction spectroscopy, which confirmed the layered structure of the LDHs and the periclase-like structure of the mixed oxides obtained by calcination.

  7. 2-Chlorophenol Removal of Aqueous Solution Using Advanced Oxidation Processes Resulting from Iron/ Persulfate and Ultra Violet/ Persulfate

    Directory of Open Access Journals (Sweden)

    Shokufeh Astereki

    2016-06-01

    Full Text Available Background: Advanced oxidation processes are used to remove toxic aromatic compounds with low biodegradability, such as 2-chlorophenol. This study investigated the use of sulfate (SO4- and persulfate (S2O82- radicals, as one of the advanced oxidation methods, to remove 2- chlorophenol from aquatic solutions. Methods: This experimental and pilot-scale study was carried out using two chemical batch reactors; one of the reactors equipped with UV lamps and the other was on the hot plate. In iron/ persulfate (Fe/S2O82- and ultra violet/ persulfate (UV/S2O82- processes different parameters were investigated. Results: Iron, UV, the initial pH of the solution, persulfate concentration have considerable effects on the elimination of 2-chlorophenol in both processes. In both processes, the maximum elimination occurred in acidic conditions. The elimination efficiency was increased by increasing the concentration of 2-chlorophenol and UV intensity, and also by decreasing the concentration of persulfate and iron. Accordingly, in iron/ persulfate and ultra violet/ persulfate processes 2-chlorophenol was eliminated with 99.96% and 99.58% efficiencies, respectively. Conclusion: Sulfate radicals produced from activated persulfate ions with hot-Fe ion and UV radiation have significant impact on the removal of 2-chlorophenol. Therefore, the processes of Fe/S2O82- and UV/S2O82- can be regarded as good choices for industrial wastewater treatment plants operators in the future.

  8. Bridging phases at the morphotropic boundaries of lead oxide solid solutions

    NARCIS (Netherlands)

    Noheda, Beatriz; Cox, DE

    2006-01-01

    Ceramic solid solutions of PbZr1-xTixO3 (PZT) with compositions x similar or equal to 0.50 are well-known for their extraordinarily large piezoelectric responses. The latter are highly anisotropic, and it was recently shown that, for the rhombohedral compositions (x less than or similar to 0.5), the

  9. Hypertonic saline solution reduces the oxidative stress responses in traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Mojtaba Mojtahedzadeh

    2014-01-01

    Full Text Available Background: Oxidative stress processes play an important role in the pathogenesis of secondary brain injury after traumatic brain injury (TBI. Hypertonic saline (HTS has advantages as being preferred osmotic agent, but few studies investigated oxidant and antioxidant effects of HTS in TBI. This study was designed to compare two different regimens of HTS 5% with mannitol on TBI-induced oxidative stress. Materials and Methods: Thirty-three adult patients with TBI were recruited and have randomly received one of the three protocols: 125 cc of HTS 5% every 6 h as bolus, 500 cc of HTS 5%as infusion for 24 h or 1 g/kg mannitol of 20% as a bolus, repeated with a dose of 0.25-0.5 g/kg every 6 h based on patient′s response for 3 days. Serum total antioxidant power (TAP, reactive oxygen species (ROS and nitric oxide (NO were measured at baseline and daily for 3 days. Results: Initial serum ROS and NO levels in patients were higher than control(6.86± [3.2] vs. 1.57± [0.5] picoM, P = 0.001, 14.6± [1.6] vs. 7.8± [3.9] mM, P = 0.001, respectively. Levels of ROS have decreased for all patients, but reduction was significantly after HTS infusion and mannitol (3. 08 [±3.1] to 1.07 [±1.6], P = 0.001, 5.6 [±3.4] to 2.5 [±1.8], P = 0.003 respectively. During study, NO levels significantly decreased in HTS infusion but significantly increased in mannitol. TAP Levels had decreased in all patients during study especially in mannitol (P = 0.004. Conclusion: Hypertonic saline 5% has significant effects on the oxidant responses compared to mannitol following TBI that makes HTS as a perfect therapeutic intervention for reducing unfavorable outcomes in TBI patients.

  10. Solution based synthesis of perovskite-type oxide films and powders

    International Nuclear Information System (INIS)

    McHale, J.M. Jr.

    1995-01-01

    Conventional solid state reactions are diffusion limited processes that require high temperatures and long reaction times to reach completion. In this work, several solution based methods were utilized to circumvent this diffusion limited reaction and achieve product formation at lower temperatures. The solution methods studied all have the common goal of trapping the homogeneity inherent in a solution and transferring this homogeneity to the solid state, thereby creating a solid atomic mixture of reactants. These atomic mixtures can yield solid state products through diffusionless mechanisms. The effectiveness of atomic mixtures in solid state synthesis was tested on three classes of materials, varying in complexity. A procedure was invented for obtaining the highly water soluble salt, titanyl nitrate, TiO(NO 3 ) 2 , in crystalline form, which allowed the production of titanate materials by freeze drying. The freeze drying procedures yielded phase pure, nanocrystalline BaTiO 3 and the complete SYNROC-B phase assemblage after ten minute heat treatments at 600 C and 1,100 C, respectively. Two novel methods were developed for the solution based synthesis of Ba 2 YCu 3 O 7-x and Bi 2 Sr 2 Ca 2 Cu 3 O 10 . Thin and thick films of Ba 2 YCu 3 O 7-x and Bi 2 Sr 2 Ca 2 Cu 3 O 10 were synthesized by an atmospheric pressure, chemical vapor deposition technique. Liquid ammonia solutions of metal nitrates were atomized with a stream of N 2 O and ignited with a hydrogen/oxygen torch. The resulting flame was used to coat a substrate with superconducting material. Bulk powders of Ba 2 YCu 3 O 7-x and Bi 2 Sr 2 Ca 2 Cu 3 O 10 were synthesized through a novel acetate glass method. The materials prepared were characterized by XRD, TEM, SEM, TGA, DTA, magnetic susceptibility and electrical resistivity measurements

  11. Survey Efficiency of Ultraviolet and Zinc Oxide Process (UV/ZnO for Removal of Diazinon Pesticide from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Dehghani

    2015-03-01

    Full Text Available The presence of persistent organic pollutants and toxics (e.g., pesticides in ground, surface, and drinking water resources combined with the inability of conventional treatment methods to remove these pollutants have led to the development of advanced oxidation processes. Nowadays, nanophotocatalyst processes are considered as clean and environmentally-friendly treatment methods that can be extensively used for removing contaminants. The objective of the present study was to determine the efficiency of the ultraviolet and zinc oxide (UV/ZnO process in the removal of diazinon pesticide from aqueous solutions. For the purposes of this study, samples were adjusted in a batch reactor at five different detention times. The pH levels used were 3, 7, and 9. Irradiation was performed using a 125 W medium-pressure mercury lamp. The diazinon concentrations of the samples were 100 and 500 µg/L and the concentrations of zinc oxide nanoparticles were 50, 100, and 150 mg/L. The highest degradation efficiency was observed at pH 7 (mean = 80.92 30.3, while the lowest was observed for pH 3 (mean 67.11 24.49. Results showed that the optimal concentration of nanoparticles (6-12 nm was 100 mg L-1.

  12. Oxidation inhibitors for aqueous MEA solutions used in a post-combustion CO{sub 2} capture process

    Energy Technology Data Exchange (ETDEWEB)

    Carrette, P.L.; Bonnard, L. [IFP, Solaize (France); Delfort, B. [IFP, Rueil-Malmaison (France)

    2009-07-01

    This study examined the feasibility of using an aqueous solution of MEA as a solvent for post- combustion capture of carbon dioxide (CO{sub 2}). MEA is inexpensive, largely available, non toxic and highly effective because of its high capacity for CO{sub 2} capture and its fast reaction kinetics. However, significant oxidative degradation occurs when MEA is exposed to oxygen. Oxidation of MEA is not only a source of solvent consumption but also creates volatile compounds such as ammonia and carboxylic acids that can cause corrosion. As such, degradation control is a major challenge. Oxidative degradation can potentially be solved by the use of antioxidant additives. This presentation reported on a laboratory scale evaluation test of MEA degradation associated with analysis of degradation products. Different antioxidant additives were then evaluated. Conventional antioxidant additives were found to be poorly active or inactive, and some even exhibited a pronounced effect upon degradation. New classes of additives have been found to be effective in considerably reducing degradation.

  13. A time effect in the early stages of a surface oxidation of a Pt(111 plane in alkaline solution

    Directory of Open Access Journals (Sweden)

    J. D. LOVIC

    2001-12-01

    Full Text Available A time effect in the early stages of surface oxidation of a Pt(111 plane in 0.1 M NaOH solution was studied by examining the reduction parts of the j/E profile recorded after holding the potential for various times at several values at the end of anodic-going sweeps. The processes associated with the two peaks, which appear in the anodic part of the voltammogram, are assigned to the early stages of a surface oxidation. Two OHad states are suggested based on the existence of reversibly or weakly bound OHad species and irreversibly or strongly bound OHad species. The reversibly bound OHad species are involved in the “normal” structure of the butterfly peak, while the irreversibly adsorbed OHad species can be obtained only by the slow diffusion of a part of the initially electrosorbed OH species from sites with low to sites with higher binding energies. The irreversibly reduced OHad species cannot be completely removed from the surface causing, therefore, some permanent transformation of the initial state of the surface. This kind of species was not detected in the area of the second oxidation peak. The phenomena observed in the reduction part of the j/E profile induced by a time effect in the second peak could be associated with a place-exchange mechanism between oxygen containing species, whatever they are, and the platinum surface.

  14. Solution NMR Structures of Oxidized and Reduced Ehrlichia chaffeensis thioredoxin: NMR-Invisible Structure Owing to Backbone Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Hewitt, Stephen N.; Van Voorhis, Wesley C.; Myler, Peter J.

    2018-01-02

    Thioredoxins (Trxs) are small ubiquitous proteins that participate in a diverse variety of redox reactions via the reversible oxidation of two cysteine thiol groups in a structurally conserved active site, CGPC. Here, we describe the NMR solution structures of a Trx from Ehrlichia chaffeensis (Ec-Trx, ECH_0218), the etiological agent responsible for human monocytic ehrlichiosis, in both the oxidized and reduced states. The overall topology of the calculated structures is similar in both redox states and similar to other Trx structures, a five-strand, mixed -sheet (1:3:2:4:5) surrounded by four -helices. Unlike other Trxs studied by NMR in both redox states, the 1H-15N HSQC spectra of reduced Ec-Trx was missing eight amide cross peaks relative to the spectra of oxidized Ec-Trx. These missing amides correspond to residues C32-E39 in the active site containing helix (2) and S72-I75 in a loop near the active site and suggest a substantial change in the backbone dynamics associated with the formation of an intramolecular C32-C35 disulfide bond.

  15. Removal of Fluoride Ion from Aqueous Solution by Nanocomposite Hydrogel Based on Starch/Sodium Acrylate/Nano Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Aboulfazl Barati

    2014-01-01

    Full Text Available Determination of fluoride in drinking water has received increasing interest, due to its beneficial and detrimental effects on health. Contamination of drinking water by fluoride can cause potential hazards to human health. In recent years, considerable attention has been given to different methods for the removal of fluoride from drinking and waste waters. The aim of this research was to investigate the effect of nano composite hydrogel based on starch/sodium acrylate/aluminum oxide in reduction of fluoride concentration in drinking water and industrial waste water. In a batch system, the dynamic and equilibrium adsorption of fluoride ions were studied with respect to changes in determining parameters such as pH, contact time, initial fluoride concentration, starch/acrylic acid weight ratio and weight percent of nano aluminum oxide. The obtained equilibrium adsorption data were fitted with Langmuir and Freundlich models, as well as the kinetic data with pseudo-first order and pseudo- second order models. The results showed that optimum pH was found to be in the range of 5 to 7. Removal efficiency of fluoride was increased with decreases in initial concentration of fluoride. Sixty percent of initial value of fluoride solution was removed by nano composite hydrogel (4 wt% of nano aluminum oxide at 240 min (initial fluoride concentration = 5 ppm, pH 6.8 and temperature = 25ºC. Under the same condition, the equilibrium adsorption of fluoride ions was 85% and 68% for initial solution concentration of 5 and 10 ppm, respectively. Adsorption isotherm data showed that the fluoride sorption followed the Langmuir model. Kinetics of sorption of fluoride onto nano composite hydrogel was described by pseudo-first order model.

  16. Substitution of carcinogenic solvent dichloromethane for the extraction of volatile compounds in a fat-free model food system.

    Science.gov (United States)

    Cayot, Nathalie; Lafarge, Céline; Bou-Maroun, Elias; Cayot, Philippe

    2016-07-22

    Dichloromethane is known as a very efficient solvent, but, as other halogenated solvents, is recognized as a hazardous product (CMR substance). The objective of the present work is to propose substitution solvent for the extraction of volatile compounds. The most important physico-chemical parameters in the choice of an appropriate extraction solvent of volatile compounds are reviewed. Various solvents are selected on this basis and on their hazard characteristics. The selected solvents, safer than dichloromethane, are compared using the extraction efficiency of volatile compounds from a model food product able to interact with volatile compounds. Volatile compounds with different hydrophobicity are used. High extraction yields were positively correlated with high boiling points and high Log Kow values of volatile compounds. Mixtures of solvents such as azeotrope propan-2-one/cyclopentane, azeotrope ethyl acetate/ethanol, and mixture ethyl acetate/ethanol (3:1, v/v) gave higher extraction yields than those obtained with dichloromethane. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Phase behaviour of the ternary mixture system of poly(L-lactic acid), dichloromethane and carbon dioxide

    International Nuclear Information System (INIS)

    Gwon, Jungmin; Cho, Dong Woo; Kim, Soo Hyeon; Shin, Hun Yong; Kim, Hwayong

    2012-01-01

    Highlights: ► The high pressure phase behaviour of poly(L-lactic acid), dichloromethane and carbon dioxide ternary mixtures was measured. ► The experimental data shows the characteristics of the LCST behaviour of polymer–solvent–gas systems. ► The experimental data correlation was performed using the hybrid EOS. - Abstract: In this study, the high pressure phase behaviour of poly(L-lactic acid) (M = 312,000), dichloromethane and carbon dioxide ternary mixtures was studied using a variable volume view cell at temperatures ranging from 313.15 K to 363.15 K and pressures of up to 30.0 MPa as functions of temperature and the CO 2 /dichloromethane mass ratio at poly(L-lactic acid) weight fractions of 1.0%, 2.5% and 3.0%. The experimental results were correlated with the hybrid equation of state for the CO 2 -polymer system using the van der Waals one-fluid mixing rule with three adjustable binary interaction parameters.

  18. Anti-mitotic activity towards sea urchin eggs of dichloromethane fraction obtained from Allamanda schottii Pohl (Apocynaceae

    Directory of Open Access Journals (Sweden)

    Louisa M. A. Sousa

    Full Text Available Allamanda (Apocynaceae is a genus of climbing shrubs known for producing compounds with a range of biological activities. Previous works have shown the anti-proliferative effect of the ethanolic extract of Allamanda schottii on leukemic cells. The present work was conducted to evaluate the effects of dichloromethane fraction, obtained from Allamanda schottii, on sea urchin Echinometra lucunter eggs, as a multicellular model for evaluating anti-tumor activity. Our results show an inhibition of sea urchin development in a dose-dependent manner in the presence of dichloromethane fraction. The IC50 values for first and third cleavage and blastulae stage were 103.7 µg/mL, 33.1 µg/mL and 10.2 µg/mL, respectively. These results also demonstrate the cumulative effect of this fraction on sea urchin embryos. In the present work, the expressive anti-mitotic activity of dichloromethane fraction towards sea urchin eggs, a multicellular model, reinforces the anti-tumor potential of the Allamanda schotti.

  19. Kinetics of Np(4) oxidation reaction by persulphate in nitric acid solution in the presence of ferric ions as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Koltunov, V S; Marchenko, V I

    1976-01-01

    The kinetics of the reaction Np(IV) + Fe(III) = Np(V) + Fe(II)was investigated by a spectrophotometric method according to observation of the consumption of Np(IV) at 720 nm in a solution of HNO/sub 3/ + NaNO/sub 3/ in the concentration range; (F(III))equal (5.12-102.4).10/sup -3/ M, (H+) equal 0.14-1 M, (NO/sub 3//sup -/) = 0.5-2 M at an ionic strength of the solution ..mu.. = 0.2-2 and temperatures of 25-46/sup 0/C. To exclude the reverse reaction, (3-6).10/sup -2/ M (NH/sub 4/)/sub 2/S/sub 2/O/sub 8/, which rapidly oxidizes Fe(II), was added to the solution. The possible oxidation of Np(V) to Np(VI) was prevented by the addition of small quantities of N/sub 2/H/sub 4/. It was shown that the reaction rate is described by the equation -d(Np(IV))/dt=k(Np(IV))(Fe(III))/(H/sup +/)/sup 3/. where k = 0.490 +- 0.026 M/sup 2/.min/sup -1/ at 25/sup 0/ and ..mu.. = 1. The No/sub 3//sup -/ ions inhibit the reaction in the interval (NO/sub 3//sup -/) = 0-1 M and do not influence it at (NO/sub 3//sup -/) > 1 M. On the basis of an investigation of the dependence of k on the temperature, the energy (E = 32.5 kcal/mole), free energy (..delta..F* = 20.3 kcal/mole), and entropy (..delta..S* = 39 entropy units) of activation of the reaction were calculated. The reaction mechanism is discussed.

  20. Kinetics of imidazolium-based ionic liquids degradation in aqueous solution by Fenton oxidation.

    Science.gov (United States)

    Domínguez, Carmen M; Munoz, Macarena; Quintanilla, Asunción; de Pedro, Zahara M; Casas, Jose A

    2017-10-15

    In the last few years, several works dealing with Fenton oxidation of ionic liquids (ILs) have proved the capability of this technology for their degradation, achieving complete ILs removal and non-toxic effluents. Nevertheless, very little is known about the kinetics of this process, crucial for its potential application. In this work, the effect of several operating conditions, including reaction temperature (50-90 °C), catalyst load (10-50 mg L -1 Fe 3+ ), initial IL concentration (100-2000 mg L -1 ), and hydrogen peroxide dose (10-200% of the stoichiometric amount for the complete IL mineralization) on 1-butyl-3-methylimidazolium chloride ([C 4 mim]Cl) oxidation has been investigated. Under the optimum operating conditions (T = 90 °C; [Fe 3+ ] 0  = 50 mg L -1 ; [H 2 O 2 ] 0  = 100% of the stoichiometric amount), the complete removal of [C 4 mim]Cl (1000 mg L -1 ) was achieved at 1.5-min reaction time. From the experimental results, a potential kinetic model capable to describe the removal of imidazolium-based ILs by Fenton oxidation has been developed. By fitting the proposed model to the experimental data, the orders of the reaction with respect to IL initial concentration, Fe 3+ amount and H 2 O 2 dose were found to be close to 1, with an apparent activation energy of 43.3 kJ mol -1 . The model resulted in a reasonable fit within the wide range of operating conditions tested in this work.

  1. Kinetics of bromide catalysed oxidation of dextrose by cerium (IV) in aqueous sulphuric acid solution

    International Nuclear Information System (INIS)

    Sharma, J.; Sah, M.P.

    1994-01-01

    Kinetics of bromide catalysed oxidation of dextrose by Ce IV in aqueous sulphuric acid medium show first order dependence each in dextrose and cerium(IV). The reaction rate decreases on increasing the concentration of hydrogen ion. The increase in [HSO 4 - ] or [SO 4 2- ] decreases the rate. The bromide ion shows positive catalytic effect on the reaction rate. The value of activation energy has been calculated and a suitable mechanism confirming to the kinetic data is proposed. (author). 3 refs., 3 tabs

  2. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    De Velasco Maldonado, Paola S. [Instituto Tecnologico de Aguascalientes, Av. Adolfo López Mateos No. 1801 Ote. C.P, Aguascalientes, Ags, 20256 (Mexico); Hernández-Montoya, Virginia, E-mail: virginia.hernandez@yahoo.com.mx [Instituto Tecnologico de Aguascalientes, Av. Adolfo López Mateos No. 1801 Ote. C.P, Aguascalientes, Ags, 20256 (Mexico); Concheso, A.; Montes-Morán, Miguel A. [Instituto Nacional del Carbon, INCAR-CSIC, Apartado 73, E-33080, Oviedo (Spain)

    2016-11-15

    Highlights: • The formation of cerussite and hydrocerussite was observed on the carbon surface. • Occurrence of CaCO{sub 3} on the carbons surface plays a crucial role in the formation. • The carbons were prepared by carbonization and oxidation with cold oxygen plasma. • Oxidation with cold oxygen plasma increases the formation of these compounds. - Abstract: A new procedure of elimination of Pb{sup 2+} from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N{sub 2} at −196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb{sup 2+} was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb{sup 2+} removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO{sub 3} on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb{sup 2+}. Accordingly, retention capacities as high as 63 mg of Pb{sup 2+} per gram of adsorbent have been attained.

  3. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    International Nuclear Information System (INIS)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Concheso, A.; Montes-Morán, Miguel A.

    2016-01-01

    Highlights: • The formation of cerussite and hydrocerussite was observed on the carbon surface. • Occurrence of CaCO_3 on the carbons surface plays a crucial role in the formation. • The carbons were prepared by carbonization and oxidation with cold oxygen plasma. • Oxidation with cold oxygen plasma increases the formation of these compounds. - Abstract: A new procedure of elimination of Pb"2"+ from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N_2 at −196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb"2"+ was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb"2"+ removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO_3 on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb"2"+. Accordingly, retention capacities as high as 63 mg of Pb"2"+ per gram of adsorbent have been attained.

  4. Kinetics and mechanisms of the oxidation of iodide and bromide in aqueous solutions by a trans-dioxoruthenium(VI) complex.

    Science.gov (United States)

    Lam, William W Y; Man, Wai-Lun; Wang, Yi-Ning; Lau, Tai-Chu

    2008-08-04

    The kinetics and mechanisms of the oxidation of I (-) and Br (-) by trans-[Ru (VI)(N 2O 2)(O) 2] (2+) have been investigated in aqueous solutions. The reactions have the following stoichiometry: trans-[Ru (VI)(N 2O 2)(O) 2] (2+) + 3X (-) + 2H (+) --> trans-[Ru (IV)(N 2O 2)(O)(OH 2)] (2+) + X 3 (-) (X = Br, I). In the oxidation of I (-) the I 3 (-)is produced in two distinct phases. The first phase produces 45% of I 3 (-) with the rate law d[I 3 (-)]/dt = ( k a + k b[H (+)])[Ru (VI)][I (-)]. The remaining I 3 (-) is produced in the second phase which is much slower, and it follows first-order kinetics but the rate constant is independent of [I (-)], [H (+)], and ionic strength. In the proposed mechanism the first phase involves formation of a charge-transfer complex between Ru (VI) and I (-), which then undergoes a parallel acid-catalyzed oxygen atom transfer to produce [Ru (IV)(N 2O 2)(O)(OHI)] (2+), and a one electron transfer to give [Ru (V)(N 2O 2)(O)(OH)] (2+) and I (*). [Ru (V)(N 2O 2)(O)(OH)] (2+) is a stronger oxidant than [Ru (VI)(N 2O 2)(O) 2] (2+) and will rapidly oxidize another I (-) to I (*). In the second phase the [Ru (IV)(N 2O 2)(O)(OHI)] (2+) undergoes rate-limiting aquation to produce HOI which reacts rapidly with I (-) to produce I 2. In the oxidation of Br (-) the rate law is -d[Ru (VI)]/d t = {( k a2 + k b2[H (+)]) + ( k a3 + k b3[H (+)]) [Br (-)]}[Ru (VI)][Br (-)]. At 298.0 K and I = 0.1 M, k a2 = (2.03 +/- 0.03) x 10 (-2) M (-1) s (-1), k b2 = (1.50 +/- 0.07) x 10 (-1) M (-2) s (-1), k a3 = (7.22 +/- 2.19) x 10 (-1) M (-2) s (-1) and k b3 = (4.85 +/- 0.04) x 10 (2) M (-3) s (-1). The proposed mechanism involves initial oxygen atom transfer from trans-[Ru (VI)(N 2O 2)(O) 2] (2+) to Br (-) to give trans-[Ru (IV)(N 2O 2)(O)(OBr)] (+), which then undergoes parallel aquation and oxidation of Br (-), and both reactions are acid-catalyzed.

  5. Simple and robust near-infrared spectroscopic monitoring of indium-tin-oxide (ITO) etching solution using Teflon tubing

    International Nuclear Information System (INIS)

    Nah, Sanghee; Ryu, Kyungtag; Cho, Soohwa; Chung, Hoeil; Namkung, Hankyu

    2006-01-01

    The ability to monitor etching solutions using a spectroscopy directly through existing Teflon lines in electronic industries is highly beneficial and offers many advantages. A monitoring method was developed using near-infrared (NIR) measurements with Teflon tubing as a sample container for the quantification of components in the indium-tin-oxide (ITO) etching solution composed of hydrochloric acid (HCl), acetic acid (CH 3 COOH) and water. Measurements were reproducible and it was possible to use the same calibration model for different Teflon tubings. Even though partial least squares (PLS) calibration performance was slightly degraded for Teflon cells when compared to quartz cells of the similar pathlength, the calibration data correlated well with reference data. The robustness of Teflon-based NIR measurement was evaluated by predicting the spectra of 10 independent samples that were collected using five different Teflon tubes. Although, two Teflon tubes were visually less transparent than the other three, there was no significant variation in the standard error of predictions (SEPs) among the five Teflon tubes. Calibration accuracy was successfully maintained and highly repeatable prediction results were achieved. This study verifies that a Teflon-based NIR measurement is reliable for the monitoring of etching solutions and it can be successfully integrated into on-line process monitoring

  6. Synthesis and Application of Iron Oxide/Silica Gel Nanocomposite for Removal of Sulfur Dyes from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Naser Tavassoli

    2017-03-01

    Full Text Available Background & Aims of the Study: water pollution by synthetic organic dyes is mainly regarded as environmental and ecological critical issues worldwide. In this research, magnetite iron oxide/silica gel nanocomposite (termed as Fe3O4/SG was synthesized chemically and then used as an effective adsorbent for removal of sulfur dyes from aqueous solution. Materials and Methods: The various parameters such as pH, sorbent dosage, initial dye concentration, contact time and dye solution temperature were investigated in a batch system. The equilibrium data were analyzed by Langmuir and Freundlich isotherm models. Results: The experimental data fit well with pseudo-second-order kinetic model (R2≥0.998 and conformed better to Langmuir isotherm model (R2≥0.997. The maximum adsorption capacity for Fe3O4/SG obtained from the Langmuir model was 11.1mg/g. Evaluation of thermodynamic parameters proved that the adsorption process was normally feasible, spontaneous and exothermic. Conclusion: It can be concluded that the Fe3O4/SG can be considered as a cost-effective and an environmental friendly adsorbent for efficient removal of sulfur dyes from aqueous solutions.

  7. Advanced Oxidation of the Endosulfan and Profenofos in Aqueous Solution Using UV/H2O22 Process

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available Degradation of two pesticides, endosulfan and profenofos, was investigated in aqueous solution using a combination of ultraviolet (UV light and hydrogen peroxide (H2O2. Photochemical experiments based on the L9 (34 three-level orthogonal array of the Taguchi method with four control factors including initial pesticide concentrations (10, 15 and 20 mg/l, UV irradiation times (30, 60 and 90 min, pH (5, 6.5 and 8 and H2O2 (0.1, 0.01 and 0.05 M were conducted. The endosulfan and profenofos were analyzed using gas chromatography with electron capture detector (ECD and gas chromatography with mass spectrometry (GC-MS respectively. Under the optimum conditions, 96.5% of the endosulfan and 98.5% of the profenofos were removed in about 90 min. The study also showed that the oxidation rate was enhanced more during the UV/H2O2 process in comparison to direct photolysis. The results of our study suggested that the concentration of 0.1 molar H2O2 and 10 ppm of pesticide in the solution at pH 8 with 90 min UV irradiation time were the optimal conditions for the photochemical degradation of two pesticides. The photochemical degradation with UV/H2O2 can be an efficient method to remove the endosulfan and profenofos from aqueous solution.

  8. Morphological Influence of Solution-Processed Zinc Oxide Films on Electrical Characteristics of Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Hyeonju Lee

    2016-10-01

    Full Text Available We report on the morphological influence of solution-processed zinc oxide (ZnO semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs. Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites.

  9. Solution based preparation of Perovskite-type oxide films and powders

    Energy Technology Data Exchange (ETDEWEB)

    McHale, Jr., James M. [Temple Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1995-04-01

    Conventional solid state reactions are diffusion limited processes that require high temperatures and long reaction times to reach completion. In this work, several solution based methods were utilized to circumvent this diffusion limited reaction and achieve product formation at lower temperatures. The solution methods studied all have the common goal of trapping the homogeneity inherent in a solution and transferring this homogeneity to the solid state, thereby creating a solid atomic mixture of reactants. These atomic mixtures can yield solid state products through "diffusionless" mechanisms. The effectiveness of atomic mixtures in solid state synthesis was tested on three classes of materials, varying in complexity. A procedure was invented for obtaining the highly water soluble salt, titanyl nitrate, TiO(NO3)2, in crystalline form, which allowed the production of titanate materials by freeze drying. The freeze drying procedures yielded phase pure, nanocrystalline BaTiO3 and the complete SYNROC-B phase assemblage after ten minute heat treatments at 600{degrees}C and 1100{degrees}C, respectively. Two novel methods were developed for the solution based synthesis of Ba2YCu3O7-x and Bi2Sr2Ca2Cu3O10. Thin and thick films of Ba2YCu3O7-x and Bi2Sr2Ca2u3O10 were synthesized by an atmospheric pressure, chemical vapor deposition technique. Liquid ammonia solutions of metal nitrates were atomized with a stream of N2O and ignited with a hydrogen/oxygen torch. The resulting flame was used to coat a substrate with superconducting material. Bulk powders of Ba2YCu3O7-x and Bi2Sr2Ca2Cu3O10 were synthesized through a novel acetate glass method. The materials prepared were

  10. Sample contamination with NMP-oxidation products and byproduct-free NMP removal from sample solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cesar Berrueco; Patricia Alvarez; Silvia Venditti; Trevor J. Morgan; Alan A. Herod; Marcos Millan; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2009-05-15

    1-Methyl-2-pyrrolidinone (NMP) is widely used as a solvent for coal-derived products and as eluent in size exclusion chromatography. It was observed that sample contamination may take place, through reactions of NMP, during extraction under refluxing conditions and during the process of NMP evaporation to concentrate or isolate samples. In this work, product distributions from experiments carried out in contact with air and under a blanket of oxygen-free nitrogen have been compared. Gas chromatography/mass spectrometry (GC-MS) clearly shows that oxidation products form when NMP is heated in the presence of air. Upon further heating, these oxidation products appear to polymerize, forming material with large molecular masses. Potentially severe levels of interference have been encountered in the size exclusion chromatography (SEC) of actual samples. Laser desorption mass spectrometry and SEC agree in showing an upper mass limit of nearly 7000 u for a residue left after distilling 'pure' NMP in contact with air. Furthermore, experiments have shown that these effects could be completely avoided by a strict exclusion of air during the refluxing and evaporation of NMP to dryness. 45 refs., 13 figs.

  11. Investigation of copper(I sulphide leaching in oxidative hydrochloric acid solution

    Directory of Open Access Journals (Sweden)

    Branislav Marković

    2015-12-01

    Full Text Available Present work is focused on the copper (I sulphide leaching with sodium chloride in hydrochloric acid solution and with introduction of gaseous oxygen. Chemical reactions of leaching and their thermodynamic probabilities are predicted based on the literature data and products which were formed during the process and the overall leaching reaction was defined. The influence of temperature and time on the leaching degree of copper was experimentally determined. The quantity of dissolved copper increases with the increase of both investigated parameters. Elemental sulphur was formed as the main leaching product, precipitated at the particle surfaces and chloride ions have a role to disrupt the creation of this passive layer.

  12. Degradation of phthalate in aqueous solution by advanced oxidation process, photo-fenton

    International Nuclear Information System (INIS)

    Trabelsi, S.; Bellakhal, N.; Oturan, N.; Oturan, M.A.

    2009-01-01

    A photochemical method for degradation of persistent organic pollutants present in liquid effluents from the plastic industry and in the leaching described. This method, called P hoto-Fenton i nvolves the generation of radicals hydroxyl coupling between the Fenton reaction and photochemistry, OH radicals. Thus formed react with very high speeds, organic substances pollutants leading to their oxidation to total mineralization. In this study, we applied the process photo-Fenton treatment Plasticizers, Phthalates. For this, optimization of experimental parameters (namely the relationship between the concentrations of hydrogen peroxide and iron concentration catalyst) was performed. Under optimal conditions and determined the kinetics mineralization of phthalic anhydride by OH was studied. The overall results confirm the effectiveness of photo-Fenton process for the decontamination of liquid effluents responsible for persistent organic pollutants (Pop's).

  13. Parametric studies of radiolytic oxidation of iodide solutions with and without paint: comparison with code calculations

    Energy Technology Data Exchange (ETDEWEB)

    Poletiko, C; Hueber, C [Inst. de Protection et de Surete Nucleaire, C.E. Cadarache, St. Paul-lez-Durance (France); Fabre, B [CISI, C.E. Cadarache, St. Paul-lez-Durance (France)

    1996-12-01

    In case of severe nuclear accident, radioactive material may be released into the environment. Among the fission products involved, are the very volatile iodine isotopes. However, the chemical forms are not well known due to the presence of different species in the containment with which iodine may rapidly react to form aerosols, molecular iodine, hydroiodic acid and iodo-organics. Tentative explanations of different mechanisms were performed through benchscale tests. A series of tests has been performed at AEA Harwell (GB) to study parameters such as pH, dose rate, concentration, gas flow rate, temperature in relation to molecular iodine production, under dynamic conditions. Another set of tests has been performed in AECL Whiteshell (CA) to study the behaviour of painted coupons, standing in gas phase or liquid phase or both, with iodine compounds under radiation. The purpose of our paper is to synthesize the data and compare the results to the IODE code calculation. Some parameters of the code were studied to fit the experimental result the best. A law, concerning the reverse reaction of iodide radiolytic oxidation, has been proposed versus: pH, concentrations and gas flow-rate. This law does not apply for dose rate variations. For the study of painted coupons, it has been pointed out that molecular iodine tends to be adsorbed or chemically absorbed on the surface in gas phase, but the mechanism should be more sophisticated in the aqueous phase. The iodo-organics present in liquid phase tend to be partly or totally destroyed by oxidation under radiation (depending upon the dose delivered). These points are discussed. (author) 18 figs., 3 tabs., 15 refs.

  14. Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    2017-07-01

    Full Text Available We investigated the influence of low-concentration indium (In doping on the chemical and structural properties of solution-processed zinc oxide (ZnO films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs. The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance.

  15. Interaction of aluminum oxide nanoparticles with flow of polyvinyl alcohol solutions base nanofluids over a wedge

    Science.gov (United States)

    Hassan, Mohsan; Faisal, Abrar; Bhatti, Muhammad Mubashir

    2018-02-01

    Polyvinyl alcohol (PVA) is an important industrial chemical, which is used in numerous chemical engineering applications. It is important to study and predict the flow behavior of PVA solutions and the role of nanoparticles in heat transfer applications to be used in chemical processes on industrial scale. Therefore, the present study deals with the PVA solution-based non-Newtonian Al2O3-nanofluid flow along with heat transfer over wedge. The power-law model is used for this non-Newtonian nanofluid which exhibited shear-thinning behavior. The influences of PVA and nanoparticles concentrations on the characteristics of velocity and temperature profiles are examined graphically. The impacts of these parameters on wall shear stress and convective heat transfer coefficient are also studied through tabular form. During the numerical computations, the impacts of these parameters on flow index and consistency index along with other physical properties of nanofluid are also considered. In this study, we found an improvement in heat transfer and temperature profile of fluid by distribution of Al2O3 nanoparticles. It is also noticed that resistance between adjacent layers of moving fluid is enhanced due to these nanoparticles which leads to decline in velocity profile and increases in shear stress at wall.

  16. Study on radiation-induced oxide-reduction of actinoid ions in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Ishigure, Kenkichi; Katsumura, Yosuke; Hiroishi, Daisuke [Tokyo Univ. (Japan). Faculty of Engineering; and others

    1996-01-01

    Many studies have been made on the application of actinoid ion, especially UO{sub 2}{sup 2+} to change atomic valance but the mechanism of photoreduction has not yet been solved. In this study, the mechanism of photoreduction of UO{sub 2}{sup 2+} in acid solution was investigated. As functions of alcohol and acid concentrations, {phi}(U{sup IV}) was determined and photoreduction of UO{sub 2}{sup 2+} was investigated as well as NpO{sub 2}{sup 2+}. As an increase of alcohol content (EtOH, MtOH, iso-PrOH), {phi}(U{sup IV}) increased to reach a plateau ({approx}0.6). In addition, {phi}(U{sup IV}) increased linearly with an increase of acid content and the value became smaller in the order, H{sub 3}PO{sub 4}, H{sub 2}SO{sub 4}, HClO{sub 4} solution. Comparing with these results of UO{sub 2}{sup 2+}, photoreduction of NpO{sub 2}{sup 2+} was investigated. Only NpO{sub 2}{sup +} was produced as the final products, but not Np{sup IV} and NP{sup III}. Alcohol dependency of NpO{sub 2}{sup 2+} photoreduction was similar to that of UO{sub 2}{sup 2+} system but the plateau level of {phi} (NpO{sub 2}{sup 2+}) was lower ({approx}0.15) than the latter. (M.N.)

  17. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang Hui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yu Dezhen [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Luo Yan [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wang Fuping, E-mail: hitth001@yahoo.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. Black-Right-Pointing-Pointer The corrosion resistance of the magnesium alloy has been enhanced by micro-arc oxidation and solution treatment. Black-Right-Pointing-Pointer The coating fabricated by micro-arc oxidation and solution treatment exhibits a high ability to form apatite. - Abstract: Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  18. Electron Transfer Mediator Effects in Water Oxidation Catalysis by Solution and Surface-Bound Ruthenium Bpy-Dicarboxylate Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, Matthew V.; Sherman, Benjamin D.; Marquard, Seth L.; Fang, Zhen; Ashford, Dennis L.; Wee, Kyung-Ryang; Gold, Alexander S.; Alibabaei, Leila; Rudd, Jennifer A.; Coggins, Michael K.; Meyer, Thomas J.

    2015-11-12

    Electrocatalytic water oxidation by the catalyst, ruthenium 2,2'-bipyridine-6,6'-dicarboxylate (bda) bis-isoquinoline (isoq), [Ru(bda)(isoq)2], 1, was investigated at metal oxide electrodes surface-derivatized with electron transfer (ET) mediators. At indium-doped tin oxide (ITO) in pH 7.2 in H2PO4–/HPO42– buffers in 0.5 M NaClO4 with added acetonitrile (MeCN), the catalytic activity of 1 is enhanced by the surface-bound redox mediators [Ru (4,4'-PO3H2-bpy)(4,4'-R-bpy)2]2+ (RuPbpyR22+, R = Br, H, Me, or OMe, bpy = 2,2'-bipyridine). Rate-limiting ET between the Ru3+ form of the mediator and the RuIV(O) form in the [RuV/IV(O)]+/0 couple of 1 is observed at relatively high concentrations of HPO42– buffer base under conditions where O···O bond formation is facilitated by atom-proton transfer (APT). For the solution [Ru(bpy)3]3+/2+ mediator couple and 1 as the catalyst, catalytic currents vary systematically with the concentration of mediator and the HPO42– buffer base concentration. Electron transfer mediation of water oxidation catalysis was also investigated on nanoparticle TiO2 electrodes co-loaded with catalyst [Ru(bda)(py-4-O(CH2)3-PO3H2)2], 2, (py = pyridine) and RuPbpyR22+ (R = H, Me, or OMe) with an interplay between rate-limiting catalyst oxidation and rate-limiting O···O bond formation by APT. Lastly, the co-loaded assembly RuPbpyR22+ + 2 has been investigated in a dye-sensitized photoelectrosynthesis cell for water splitting.

  19. Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jeong-Wan; Park, Sung Kyu, E-mail: yhkim76@skku.edu, E-mail: skpark@cau.ac.kr [School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Kim, Yong-Hoon, E-mail: yhkim76@skku.edu, E-mail: skpark@cau.ac.kr [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-07-28

    In this report, photo-induced hysteresis, threshold voltage (V{sub T}) shift, and recovery behaviors in photochemically activated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) are investigated. It was observed that a white light illumination caused negative V{sub T} shift along with creation of clockwise hysteresis in electrical characteristics which can be attributed to photo-generated doubly ionized oxygen vacancies at the semiconductor/gate dielectric interface. More importantly, the photochemically activated IGZO TFTs showed much reduced overall V{sub T} shift compared to thermally annealed TFTs. Reduced number of donor-like interface states creation under light illumination and more facile neutralization of ionized oxygen vacancies by electron capture under positive gate potential are claimed to be the origin of the less V{sub T} shift in photochemically activated TFTs.

  20. Ultra-thin solution-based coating of molybdenum oxide on multiwall carbon nanotubes for high-performance supercapacitor electrodes

    KAUST Repository

    Shakir, Imran

    2014-02-01

    Uniform and conformal coating of ultrathin molybdenum oxide (MoO 3) thin film onto conducting MWCNTs was successfully synthesized through a facile, nontoxic and generally applicable precipitation method, followed by a simple heat treatment. The ultrathin MoO3 coating enables a fast and reversible redox reaction which improves the specific capacitance by utilizing the maximum number of active sites for the redox reaction, while the high porosity of the MWCNTs facilitates ion migration in the electrolyte and shorten the ion diffusion path. The ultrathin MoO3 coated MWCNTs electrodes show a very high specific capacitance of 1145 Fg -1 in 2 M Na2SO4 aqueous solution when 5 nm thick MoO3 was considered alone despite the low weight percentage of the MoO3 (16wt%). Furthermore, the ultrathin MoO3 coated MWCNTs supercapacitor electrodes exhibited excellent cycling performance of > 97% capacitance retention over 1000 cycles. © 2013 Elsevier Ltd.

  1. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    Science.gov (United States)

    Chang, Shenteng; Lu, Chungsying; Lin, Kun-Yi Andrew

    2015-01-01

    Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  2. Discrepancy between different estimates of the hydrodynamic diameter of polymer-coated iron oxide nanoparticles in solution

    International Nuclear Information System (INIS)

    Regmi, R.; Gumber, V.; Subba Rao, V.; Kohli, I.; Black, C.; Sudakar, C.; Vaishnava, P.; Naik, V.; Naik, R.; Mukhopadhyay, A.; Lawes, G.

    2011-01-01

    We have synthesized iron oxide nanoparticles coated with a monolayer of dextran, with molecular weights of the polymer between 5 and 670 kDa. Transmission electron microscopy images confirm that the hard core has a crystalline diameter of approximately 12 nm. The hydrodynamic diameters of these coated nanoparticles in solution measured using dynamical light scattering and estimated from magnetic susceptibility studies vary from near 90 nm for the lightest polymer to 140 nm for the heaviest polymer. Conversely, fluorescence correlation spectroscopy measurements yield a diameter of approximately 55 nm for the 15–20 kDa dextran coated nanoparticles, which is consistent with the expected value estimated from the sum of the hard-core diameter and monolayer dextran coating. We discuss the implications of this discrepancy for applications involving polymer-coated magnetic nanoparticles.

  3. Highly conductive p-type amorphous oxides from low-temperature solution processing

    International Nuclear Information System (INIS)

    Li Jinwang; Tokumitsu, Eisuke; Koyano, Mikio; Mitani, Tadaoki; Shimoda, Tatsuya

    2012-01-01

    We report solution-processed, highly conductive (resistivity 1.3-3.8 mΩ cm), p-type amorphous A-B-O (A = Bi, Pb; B = Ru, Ir), processable at temperatures (down to 240 °C) that are compatible with plastic substrates. The film surfaces are smooth on the atomic scale. Bi-Ru-O was analyzed in detail. A small optical bandgap (0.2 eV) with a valence band maximum (VBM) below but very close to the Fermi level (binding energy E VBM = 0.04 eV) explains the high conductivity and suggests that they are degenerated semiconductors. The conductivity changes from three-dimensional to two-dimensional with decreasing temperature across 25 K.

  4. Solutions for reducing dissolved hydrogen sulphide in the Black Sea by electrochemical oxidation

    International Nuclear Information System (INIS)

    Ciocanea, Adrian; Budea, Sanda; Radulescu, Gabriel

    2007-01-01

    Anaerobic disintegration of organic matter is a particular phenomenon in the Black Sea because of the set up of deposits of hydrogen sulphide, H 2 S, having high concentrations. The formation of such deposits is due to the absence of upward streams at depths larger than 100 meters. In Black Sea there is an oxic layer located roughly between 50 and 200 meters from which downwards begins the anoxic layer. If the equilibrium in Black Sea is not kept under control, an ecological disaster is possible. The first signals will be observed in surface waters, than, if the equilibrium is further disturbed the depth sulphides and the hydrogen sulphide deposits can develop up to inflammable and even explosive phases. This paper presents some solutions to reduce the hydrogen sulphide from Black Sea with a particular stress upon the electrochemical method. (authors)

  5. Electrochemical impedance spectroscopy investigation on indium tin oxide films under cathodic polarization in NaOH solution

    International Nuclear Information System (INIS)

    Gao, Wenjiao; Cao, Si; Yang, Yanze; Wang, Hao; Li, Jin; Jiang, Yiming

    2012-01-01

    The electrochemical corrosion behaviors of indium tin oxide (ITO) films under the cathodic polarization in 0.1 M NaOH solution were investigated by electrochemical impedance spectroscopy. The as-received and the cathodically polarized ITO films were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction for morphological, compositional and structural studies. The results showed that ITO films underwent a corrosion process during the cathodic polarization and the main component of the corrosion products was body-centered cubic indium. The electrochemical impedance parameters were related to the effect of the cathodic polarization on the ITO specimens. The capacitance of ITO specimens increased, while the charge transfer resistance and the inductance decreased with the increase of the polarization time. The proposed mechanism indicated that the corrosion products (metallic indium) were firstly formed during the cathodic polarization and then absorbed on the surface of the ITO film. As the surface was gradually covered by indium particles, the corrosion process was suppressed. - Highlights: ► Cathodic polarization of indium tin oxide (ITO) in 0.1 M NaOH. ► Cathodic polarization studied with electrochemical impedance spectroscopy. ► ITO underwent a corrosion attack during cathodic polarization, indium was observed. ► Electrochemical parameters of ITO were obtained using equivalent electrical circuit. ► A corrosion mechanism is proposed.

  6. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.F. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: Guohf@hit.edu.cn; An, M.Z. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: mzan@hit.edu.cn; Huo, H.B. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Xu, S. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wu, L.J. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-09-15

    Micro-arc oxidation (MAO) of AZ31B magnesium alloys was studied in alkaline silicate solutions at constant applied current densities. The microstructure, phase composition and elemental distribution of ceramic coatings were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDX). There are two inflections in the voltage-time response, three regions were identifiable and each of the regions was almost linear. The pores with different shapes distributed all over the coating surface, the number of the pores was decreasing, while the diameter was apparently increasing with prolonged MAO treatment time. There were also cracks on the coating surface, resulting from the rapid solidification of the molten oxide. The ceramic coating was comprised of two layers, an outer loose layer and an inner dense layer. The ceramic coating was mainly composed of forsterite phase Mg{sub 2}SiO{sub 4} and MgO; the formation of MgO was similar to conversional anodizing technology, while formation of Mg{sub 2}SiO{sub 4} was attributed to a high temperature phase transformation reaction. Presence of Si and O indicated that the electrolyte components had intensively incorporated into coatings.

  7. Graphene oxide-Fe2O3 hybrid nanoparticles: a highly efficient sorbent for Am (III) from aqueous solutions

    International Nuclear Information System (INIS)

    Patre, D.K.; Gujar, R.B.; Mohapatra, P.K.; Gadly, T.; Ghosh, S.K.

    2016-01-01

    Recently, carbon nano materials such as carbon nano tubes and graphene oxide (GO) have been widely studied for the treatment of radioactive waste water. GO can be obtained after oxidization of graphene, and there are many oxygen containing surface functional groups such as epoxy (C-O-C), hydroxyl (OH) and carboxyl (COOH) groups on GO surfaces. As a result, GO showed high adsorption capacity for the removal of different kinds of metal ions and organic contaminants in practical applications. In addition to this, the existences of oxygen-containing functional groups make GO participate in various modifications, and thus lots of GO-based multifunctional materials have been prepared and used for the removal of environmental contaminants. The introduction of magnetic materials into GO can combine the high adsorption properties of GO and the separation convenience of magnetic materials. GO-based magnetic materials have caught more attentions in adsorption study due to their unique magnetic and structural characteristics. In this paper, the magnetic GO nanoparticles were used for the sorption of Am(III) from acidic feed solutions in the pH range of 1-6

  8. Nitric oxide-dependent vasorelaxation induced by extractive solutions and fractions of Maytenus ilicifolia Mart ex Reissek (Celastraceae) leaves.

    Science.gov (United States)

    Rattmann, Yanna D; Cipriani, Thales R; Sassaki, Guilherme L; Iacomini, Marcello; Rieck, Lia; Marques, Maria C A; da Silva-Santos, José E

    2006-04-06

    This study reveals that an ethanolic supernatant obtained from an aqueous extractive solution prepared from residues of methanolic extracts of ground leaves of Maytenus ilicifolia is able to cause a concentration- and endothelium-dependent relaxation in pre-contract rat aorta rings, with EC(50) of 199.7 (190-210) microg/ml. The non-selective nitric oxide synthase inhibitors l-NAME and l-NMMA abolished this effect, while superoxide dismutase and MnTBAP (a non-enzymatic superoxide dismutase mimetic) enhanced it. Further, relaxation induced by this ethanolic supernatant have been strongly inhibited by the guanylate cyclase inhibitors methylene blue and ODQ, as well as by the potassium channel blockers 4-aminopyridine and tetraethylammonium, but was unchanged by the cyclooxygenase inhibitor indomethacin and the membrane receptor antagonists atropine, HOE-140 and pirilamine. Partition of the ethanolic supernatant between H(2)O and EtOAc generated a fraction several times more potent, able to fully relax endothelium-intact aorta rings with an EC(50) of 4.3 (3.9-4.8) microg/ml. (13)C NMR spectrum of this fraction showed signals typical of catechin. This study reveals that the leaves of M. ilicifolia possess one or more potent substances able to relax endothelium-intact rat aorta rings, an event that appears to involve nitric oxide production, guanylate cyclase activation and potassium channel opening.

  9. Novel Aluminum Oxide-Impregnated Carbon Nanotube Membrane for the Removal of Cadmium from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ihsanullah

    2017-09-01

    Full Text Available An aluminum oxide-impregnated carbon nanotube (CNT-Al2O3 membrane was developed via a novel approach and used in the removal of toxic metal cadmium ions, Cd(II. The membrane did not require any binder to hold the carbon nanotubes (CNTs together. Instead, the Al2O3 particles impregnated on the surface of the CNTs were sintered together during heating at 1400 °C. Impregnated CNTs were characterized using XRD, while the CNT-Al2O3 membrane was characterized using scanning electron microscopy (SEM. Water flux, contact angle, and porosity measurements were performed on the membrane prior to the Cd(II ion removal experiment, which was conducted in a specially devised continuous filtration system. The results demonstrated the extreme hydrophilic behavior of the developed membrane, which yielded a high water flux through the membrane. The filtration system removed 84% of the Cd(II ions at pH 7 using CNT membrane with 10% Al2O3 loading. A maximum adsorption capacity of 54 mg/g was predicted by the Langmuir isotherm model for the CNT membrane with 10% Al2O3 loading. This high adsorption capacity indicated that adsorption was the main mechanism involved in the removal of Cd(II ions.

  10. Efficient removal of cobalt from aqueous solution by zinc oxide nanoparticles. Kinetic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Khezami, L.; Modwi, A. [Al Imam Mohammad Ibn Saud Islamic Univ. (IMSIU), Riyadh (Saudi Arabia). Dept. of Chemistry; Taha, Kamal K. [Al Imam Mohammad Ibn Saud Islamic Univ. (IMSIU), Riyadh (Saudi Arabia). Dept. of Chemistry; Univ. of Bahri, Khartoum (Sudan). College of Applied and Industrial Sciences

    2017-08-01

    This article deals with the removal of cobalt ions using zinc oxide nanopowder. The nanomaterial was prepared via the sol-gel method under supercritical drying. The nanomaterial was characterised via XRD, SEM, EDX, FTIR, and BET surface area techniques. The kinetics, equilibrium, and thermodynamic studies of the metal ions adsorption on the nanomaterial were conducted in batch mode experiments by varying some parameters such as pH, contact time, initial ion concentrations, nanoparticles dose, and temperature. The data revealed significant dependence of the adsorption process on concentration, and the temperature was found to enhance the adsorption rate indicating an endothermic nature of the adsorption. The adsorption complied well with the pseudo-second-order kinetics model. The adsorption process was found to match the Langmuir adsorption isotherm. The ZnO nanoparticles could successfully remove up to 125 mg.g{sup -1} of Co(II) ions at elevated temperature. The metal ions adsorption could be described as an endothermic, spontaneous physisorption process. A mechanism for the metal ions adsorption was proposed.

  11. Optimization of Fenton oxidation for the removal of methyl parathion in aqueous solution

    Directory of Open Access Journals (Sweden)

    Roli Saini

    2016-09-01

    Full Text Available In the present study, for the treatment of methyl parathion, Fenton oxidation is adopted. The aims of this study were (a to assess the removal efficiency in terms of chemical oxygen demand (COD, (b to scrutinize the influence of different parameters: initial pH, concentrations of H2O2 and Fe2+ and, (c response surface methodology (RSM was used to design the Fenton process. Three-level central composite design (CCD was applied in designing the experiments to observe the effects of most important operating factors. The enactment of the model was judged with the analysis of variance (ANOVA. A quadratic model was used to represent the experimental data. The predicted values and experimental values were found to be in good agreement with the (R2 = 0.9891 and Adj-R2 = 0.9877, which define the propriety of the model. The characteristic of methyl parathion bearing wastewater was concentration 30 mg/L, COD 440 mg/L, pH 6.5. Maximum removal efficiency was perceived at acidic pH value 3.

  12. Ozone direct oxidation kinetics of Cationic Red X-GRL in aqueous solution

    International Nuclear Information System (INIS)

    Zhao Weirong; Wu Zhongbiao; Wang Dahui

    2006-01-01

    This study characterizes the ozonation of the azo dye Cationic Red X-GRL in the presence of TBA (tert-butyl alcohol), a scavenger of hydroxyl radical, in a bubble column reactor. Effects of oxygen flow rate, temperature, initial dye concentration, and pH were investigated through a series of batch tests. Generally, enhancing oxygen flow rate enhanced the removal of dye. However, there was a minimum removal of dye at temperature 298 K. Increasing or decreasing temperature enhanced the degradation of dye. Increasing the initial dye concentration decreased the removal of dye while the ozonation rate increased. The rate constants and the kinetic regime of the reaction between ozone and dye were obtained by fitting the experimental data to a kinetics model based on a second order overall reaction, first order with respect to both ozone and dye. The Hatta numbers of the reactions were between 0.039 and 0.083, which indicated that the reaction occurred in the liquid bulk. The direct oxidation rate constant k D was correlated with temperature by a modified Arrhenius Equation with an activation energy E a of 15.538 kJ mol -1

  13. Efficient removal of cobalt from aqueous solution by zinc oxide nanoparticles. Kinetic and thermodynamic studies

    International Nuclear Information System (INIS)

    Khezami, L.; Modwi, A.; Taha, Kamal K.; Univ. of Bahri, Khartoum

    2017-01-01

    This article deals with the removal of cobalt ions using zinc oxide nanopowder. The nanomaterial was prepared via the sol-gel method under supercritical drying. The nanomaterial was characterised via XRD, SEM, EDX, FTIR, and BET surface area techniques. The kinetics, equilibrium, and thermodynamic studies of the metal ions adsorption on the nanomaterial were conducted in batch mode experiments by varying some parameters such as pH, contact time, initial ion concentrations, nanoparticles dose, and temperature. The data revealed significant dependence of the adsorption process on concentration, and the temperature was found to enhance the adsorption rate indicating an endothermic nature of the adsorption. The adsorption complied well with the pseudo-second-order kinetics model. The adsorption process was found to match the Langmuir adsorption isotherm. The ZnO nanoparticles could successfully remove up to 125 mg.g -1 of Co(II) ions at elevated temperature. The metal ions adsorption could be described as an endothermic, spontaneous physisorption process. A mechanism for the metal ions adsorption was proposed.

  14. Preparation and activity of Cu-Al mixed oxides via hydrotalcite-like precursors for the oxidation of phenol aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alejandre, A.; Medina, F.; Rodriguez, X.; Salagre, P.; Sueiras, J.E.

    1999-12-10

    The authors performed thermogravimetric analysis (TGA), X-ray diffraction (XRD), BET areas, and FT-IR spectroscopy to characterize copper-aluminium mixed-oxide samples with Cu/Al ratios between 0.5 and 3.0. The thermal stability, crystallinity, and purity of the materials depended on the Cu/Al atomic ratio. The FT-IR and TG detected carbonate (mainly) and nitrate as counteranions which interact in the interlayer region. The authors found loosely bound carbonate and nitrate anions and one strongly bound type of carbonate. They used dynamic XRD experiments to study the evolution of phases during calcination. All the samples after calcination showed well-dispersed CuO and/or CuAl{sub 2}O{sub 4} phases. They also tested their catalytic behavior for the oxidation of 5 g/l phenol aqueous solutions using a triphasic tubular reactor working in a trickle-bed regime and air with an oxygen partial pressure of 0.9 MPa at a temperature reaction of 413 K. Phenol conversion decreased continuously over time for the samples calcined at lower temperatures (673 K). This is because of continuous loss of the CuO phase by elution and the formation of a new phase like copper oxalate on the surface of the copper catalysts which also elutes with time XRD shows that samples calcined at higher temperatures (1,073 K) and after HCl treatment (0.1 M) to avoid the CuO phase, have a pure copper aluminate phase. This CuAl{sub 2}O{sub 4} phase reaches steady activity plateaus in the 55--65% range of phenol conversion. The triphasic tubular reactor using trickle-bed regime largely avoids polymer formation as a catalyst-deactivation process.

  15. Synthesis of titanium oxide nanoparticles using DNA-complex as template for solution-processable hybrid dielectric composites

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.C. [Center for Sustainable Materials Chemistry, 153 Gilbert Hall, Oregon State University, Corvallis, OR (United States); Mejia, I.; Murphy, J.; Quevedo, M. [Department of Materials Science and Engineering, University of Texas at Dallas, Dallas, TX (United States); Garcia, P.; Martinez, C.A. [Engineering and Technology Institute, Autonomous University of Ciudad Juarez, Ciudad Juarez, Chihuahua (Mexico)

    2015-09-15

    Highlights: • We developed a synthesis method to produce TiO{sub 2} nanoparticles using a DNA complex. • The nanoparticles were anatase phase (~6 nm diameter), and stable in alcohols. • Composites showed a k of 13.4, 4.6 times larger than the k of polycarbonate. • Maximum processing temperature was 90 °C. • Low temperature enables their use in low-voltage, low-cost, flexible electronics. - Abstract: We report the synthesis of TiO{sub 2} nanoparticles prepared by the hydrolysis of titanium isopropoxide (TTIP) in the presence of a DNA complex for solution processable dielectric composites. The nanoparticles were incorporated as fillers in polycarbonate at low concentrations (1.5, 5 and 7 wt%) to produce hybrid dielectric films with dielectric constant higher than thermally grown silicon oxide. It was found that the DNA complex plays an important role as capping agent in the formation and suspension stability of nanocrystalline anatase phase TiO{sub 2} at room temperature with uniform size (∼6 nm) and narrow distribution. The effective dielectric constant of spin-cast polycarbonate thin-films increased from 2.84 to 13.43 with the incorporation of TiO{sub 2} nanoparticles into the polymer host. These composites can be solution processed with a maximum temperature of 90 °C and could be potential candidates for its application in low-cost macro-electronics.

  16. Three-dimensional barium-sulfate-impregnated reduced graphene oxide aerogel for removal of strontium from aqueous solutions

    Science.gov (United States)

    Jang, Jiseon; Lee, Dae Sung

    2018-06-01

    A three-dimensional barium-sulfate-impregnated reduced graphene oxide (BaSO4-rGO) aerogel was successfully synthesized by a facile one-step hydrothermal method and was used as an adsorbent to remove strontium from aqueous solutions. The characterized elemental composition, crystal structure, and morphology of the prepared aerogel confirmed that barium sulfate particles were firmly anchored on the surface of the rGO sheets and exhibited a porous 3D structure with a high surface area of 129.37 m2/g. The mass ratio of BaSO4 in the BaSO4-rGO aerogel substantially affected strontium adsorption, and the optimal BaSO4/rGO ratio was found to be 1:1. The synthesized BaSO4-rGO aerogel not only reached adsorption equilibrium within 1 h, but also showed much higher adsorption capacity than an rGO aerogel. The experimental data were well fitted to a pseudo-second-order kinetic model and the adsorption behavior followed the Langmuir isotherm. The adsorption capacity of strontium on BaSO4-rGO aerogels remained relatively high even under ionic competition in simulated seawater. These results showed that the BaSO4-rGO aerogel is an efficient and promising adsorbent for the treatment of strontium in aqueous solutions.

  17. Natural silica sand modified by calcium oxide as a new adsorbent for uranyl ions removal from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Elhefnawy, O.A.; Elabd, A.A. [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Nuclear Safeguards and Physical Protection Dept.

    2017-07-01

    Calcium oxide modified El-Zafarana silica sand (CMZS) was prepared as a new adsorbent for U(VI) removal from aqueous solutions in a series of batch experiments. The new adsorbent CMZS was characterized by different analysis techniques SEM, EDX, XRD, and FTIR. The influence of many parameters on the removal process like; effect of pH, contact time, U(VI) initial concentration and temperature on U(VI) removal were investigated. Kinetic experiments showed that U(VI) removal on CMZS followed pseudo-second-order kinetics model appropriately and the equilibrium data agreed well with the Langmuir isotherm model. Kinetics and isothermal data reveal the chemisorption process of U(VI) on CMZS. The thermodynamic parameters (ΔH {sup circle}, ΔS {sup circle}, ΔG {sup circle}) were evaluated from temperature dependent adsorption data and the U(VI) removal on CMZS was found to be endothermic and spontaneous in nature. U(VI) desorption from CMZS was studied by a simple acid treatment. The results indicate that CMZS is an effective adsorbent for U(VI) from aqueous solutions.

  18. Inert gas annealing effect in solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors

    Science.gov (United States)

    Lee, Seungwoon; Jeong, Jaewook

    2017-08-01

    In this paper, the annealing effect of solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs), under ambient He (He-device), is systematically analyzed by comparison with those under ambient O2 (O2-device) and N2 (N2-device), respectively. The He-device shows high field-effect mobility and low subthreshold slope owing to the minimization of the ambient effect. The degradation of the O2- and N2-device performances originate from their respective deep acceptor-like and shallow donor-like characteristics, which can be verified by comparison with the He-device. However, the three devices show similar threshold voltage instability under prolonged positive bias stress due to the effect of excess oxygen. Therefore, annealing in ambient He is the most suitable method for the fabrication of reference TFTs to study the various effects of the ambient during the annealing process in solution-processed a-IGZO TFTs.

  19. Densification effects on solution-processed indium-gallium-zinc-oxide films and their thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Rim, You Seung; Kim, Hyun Jae [School of Electrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of)

    2014-09-15

    We report the effects of high-pressure annealing (HPA) on solution-processed InGaZnO (IGZO) thin-film transistors (TFTs). HPA increased the density of IGZO films. In particular, annealing in O{sub 2} at 1.0 MPa and 350 C resulted in a high-density and low-porosity IGZO film, as characterized using X-ray reflectivity (XRR) and ellipsometry measurements. This was attributed to the oxidative and compressive effects on the oxygen-deficient solution-processed IGZO film. TFTs annealed in O{sub 2} at 1.0 MPa and 350 C exhibited an increase in the field-effect mobility by a factor of approximately five compared with TFTs annealed in air at 0.1 MPa and 350 C. Furthermore, improvements in reliability under negative and positive bias stresses were also observed following HPA. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors.

    Science.gov (United States)

    Sohn, Il-Yung; Kim, Duck-Jin; Jung, Jin-Heak; Yoon, Ok Ja; Thanh, Tien Nguyen; Quang, Trung Tran; Lee, Nae-Eung

    2013-07-15

    Solution-gated reduced graphene oxide field-effect transistors (R-GO FETs) were investigated for pH sensing and biochemical sensing applications. A channel of a networked R-GO film formed by self-assembly was incorporated as a sensing layer into a solution-gated FET structure for pH sensing and the detection of acetylcholine (Ach), which is a neurotransmitter in the nerve system, through enzymatic reactions. The fabricated R-GO FET was sensitive to protons (H(+)) with a pH sensitivity of 29 mV/pH in terms of the shift of the charge neutrality point (CNP), which is attributed to changes in the surface potential caused by the interaction of protons with OH surface functional groups present on the R-GO surface. The R-GO FET immobilized with acetylcholinesterase (AchE) was used to detect Ach in the concentration range of 0.1-10mM by sensing protons generated during the enzymatic reactions. The results indicate that R-GO FETs provide the capability to detect protons, demonstrating their applicability as a biosensing device for enzymatic reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons

    International Nuclear Information System (INIS)

    Santos, V.P.; Pereira, M.F.R.; Faria, P.C.C.; Orfao, J.J.M.

    2009-01-01

    The decolourisation of dye solutions by oxidation with H 2 O 2 , using activated carbon as catalyst, is studied. For this purpose, three different samples, mainly differing in the respective surface chemistries, were prepared and characterized. Moreover, this work involved three pH levels, corresponding to acid, neutral and alkaline solutions, and six dyes belonging to several classes. The catalytic decolourisation tests were performed in a laboratorial batch reactor. Adsorption on activated carbon and non-catalytic peroxidation kinetic experiments were also carried out in the same reactor, in order to compare the efficiencies of the three processes. The non-catalytic reaction is usually inefficient and, typically, adsorption presents a low level of decolourisation. In these cases, the combination of activated carbon with hydrogen peroxide may significantly enhance the process, since the activated carbon catalyses the decomposition of H 2 O 2 into hydroxyl radicals, which are very reactive. Based on the experiments with the different activated carbon samples, which have similar physical properties, it is proved that the surface chemistry of the catalyst plays a key role, being the basic sample the most active. This is discussed considering the involvement of the free electrons on the graphene basal planes of activated carbon as active centres for the catalytic reaction. Additionally, it is shown that the decolourisation is enhanced at high pH values, and a possible explanation for this observation, based on the proposed mechanism, is given

  2. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    Directory of Open Access Journals (Sweden)

    Justin Wright

    2017-11-01

    Full Text Available The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM, has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26 with DCM contamination ranging from 0.89 to 9,800,000 μg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration

  3. Contribution to the study of mechanisms of oxidation of uranium (IV) in solution

    International Nuclear Information System (INIS)

    Michaille, Patrick

    1977-01-01

    In the first part, the author reports a bibliographical study which aims at briefly describing the main parameters which govern redox kinetics between metallic ions in solution: acidity, complexing reaction by anions, solvent effects. The author also highlights existing contradictions and shortcomings in the interpretation of experimental results as well as in current theories, and highlights characteristics proper to uranium (IV). The author then describes results obtained for kinetics of Ce(IV)-U(IV) systems: effects of acidity, of sulphate, search for other anionic and cationic catalysts, influence of fluoride, inhibition by DMSO). Some of these results (influence of fluoride and DMSO) are compared with those obtained with the Ce(IV)-Fe(II) system. A more detailed study of the solvent role has been performed for the U(IV)-Fe(III) system in a mixed water-ethylene glycol medium and in pure glycol. The next part addresses the modifications of flow stopped spectrophotometry to solve problems of corrosion and bad temperature regulation. The author presents analog (kinetics) and digital (complexing equilibrium) calculation methods, and the development of colour indicators of temperature [fr

  4. Solution combustion synthesis of the nanocrystalline NCM oxide for lithium-ion battery uses

    Science.gov (United States)

    Habibi, Amirhosein; Jalaly, Maisam; Rahmanifard, Roohollah; Ghorbanzadeh, Milad

    2018-02-01

    In this study, the NCM cathode with a chemical composition of {{{LiNi}}}1/3}{{{Co}}}1/3}{{{Mn}}}1/3}{{{O}}}2 were synthesized through a solution combustion method. In this method, metal nitrates and urea were used as precursors and fuel, respectively. The powder obtained from combustion were transferred into a alumina crucible and insert to the muffle furnace and calcined at 750 °C for 15 h. The crystallite size of the sample was calculated with sherer equation to be about 41 nm. The prepared cathode were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC) and battery charge-discharge test. The initial charge and discharge capacities of {{{LiNi}}}1/3}{{{Co}}}1/3}{{{Mn}}}1/3}{{{O}}}2 electrode containing 94% active material at a rate of 0.05 C in voltage window of 2.5-4.3 V at room temperature was obtained 168.03 and 150.01 mAh g-1, respectively.

  5. Effect of substituted hydroxyl groups in the changes of solution turbidity in the oxidation of aromatic contaminants.

    Science.gov (United States)

    Villota, N; Jm, Lomas; Lm, Camarero

    2017-01-01

    This paper deals with the changes of turbidity that are generated in aqueous solutions of phenol when they are oxidized by using different Fenton technologies. Results revealed that if the Fenton reaction was promoted with UV light, the turbidity that was generated in the water doubled. Alternatively, the use of ultrasonic waves produced an increase in turbidity which initially proceeded slowly, reaching intensities eight times higher than in the conventional Fenton treatment. As well, the turbidity showed a high dependence on pH. It is therefore essential to control acidity throughout the reaction. The maximum turbidity was generated when operating at pH = 2.0, and it slowly decreased with increasing to a value of pH = 3.0, at which the turbidity was the lowest. This result was a consequence of the presence of ferric ions in solution. At pH values greater than 3.5, the turbidity increased almost linearly until at pH = 5.0 reached its maximum intensity. In this range, ferrous ions may generate an additional contribution of radicals that promote the degradation of the phenol species that produce turbidity. Turbidity was enhanced at ratios R = 4.0 mol H 2 O 2 /mol C 6 H 6 O. This value corresponds to the stoichiometric ratio that leads to the production of turbidity-precursor species. Therefore, muconic acid would be a species that generate high turbidity in solution according to its isomerism. Also, the results revealed that the turbidity is not a parameter to which species contribute additively since interactions may occur among species that would enhance their individual contributions to it. Analyzing the oxidation of phenol degradation intermediates, the results showed that meta-substituted compounds (resorcinol) generate high turbidity in the wastewater. The presence of polar molecules, such as muconic acid, would provide the structural features that are necessary for resorcinol to act as a clip between two carboxylic groups, thus establishing

  6. Advanced oxidation treatment and photochemical fate of selected antidepressant pharmaceuticals in solutions of Suwannee River humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Santoke, Hanoz, E-mail: hsantoke@uci.edu [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Song, Weihua, E-mail: wsong@uci.edu [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 (China); Cooper, William J., E-mail: wcooper@uci.edu [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Peake, Barrie M., E-mail: bpeake@chemistry.otago.ac.nz [Chemistry Department, University of Otago, P.O. Box 56, Dunedin 9054 (New Zealand)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer We elucidate the photochemical degradation of three antidepressant pharmaceuticals. Black-Right-Pointing-Pointer Hydroxyl radical is the most significant contributor to the degradation. Black-Right-Pointing-Pointer Excited state dissolved organic matter also plays a significant role for duloxetine. Black-Right-Pointing-Pointer Tentative reaction byproducts are identified. - Abstract: Antidepressant pharmaceuticals have recently been detected at low concentrations in wastewater and surface water. This work reports studies of the direct and indirect photochemical fate and treatment by advanced oxidation of three antidepressant compounds (duloxetine, venlafaxine and bupropion) in solutions of humic acid in order to elucidate their behavior in the natural environment prior to reaching a water treatment facility and potentially entering a potable water supply. Humic acid solution was prepared by adding to distilled water a known amount of organic matter as a photosensitizer. All three antidepressants react very rapidly with hydroxyl radicals ({center_dot}OH) and hydrated electrons (e{sup -}{sub aq}) with rate constants of {approx}10{sup 8} to 10{sup 10} M{sup -1} s{sup -1}, but significantly slower with singlet oxygen ({sup 1}{Delta}O{sub 2}) ({approx}10{sup 3} to 10{sup 5} M{sup -1} s{sup -1}). The steady-state concentrations of {center_dot}OH and {sup 1}{Delta}O{sub 2}, in a sample of humic acid solution were measured and used with the second order rate constants to show that the hydroxyl radical was an order of magnitude more effective than the singlet oxygen in the solar-induced photochemical degradation of the antidepressants. Excited state dissolved organic matter also accounted for a substantial portion of degradation of duloxetine, decreasing its half-life by 27% under solar irradiation. Several reaction pathways and by-products arising from the photodegradation were identified using gamma-irradiation followed by LC

  7. Extensive Turnover of Compatible Solutes in Cyanobacteria Revealed by Deuterium Oxide (D_2O) Stable Isotope Probing

    International Nuclear Information System (INIS)

    Baran, Richard; Lau, Rebecca; Bowen, Benjamin P.; Diamond, Spencer; Jose, Nick

    2017-01-01

    In diverse environments on a global scale cyanobacteria are important primary producers of organic matter. Moreover, while mechanisms of CO_2 fixation are well understood, the distribution of the flow of fixed organic carbon within individual cells and complex microbial communities is less well characterized. To obtain a general overview of metabolism, we describe the use of deuterium oxide (D_2O) to measure deuterium incorporation into the intracellular metabolites of two physiologically diverse cyanobacteria: a terrestrial filamentous strain (Microcoleus vaginatus PCC 9802) and a euryhaline unicellular strain (Synechococcus sp. PCC 7002). D_2O was added to the growth medium during different phases of the diel cycle. Incorporation of deuterium into metabolites at nonlabile positions, an indicator of metabolite turnover, was assessed using liquid chromatography mass spectrometry. Expectedly, large differences in turnover among metabolites were observed. Some metabolites, such as fatty acids, did not show significant turnover over 12–24 h time periods but did turn over during longer time periods. Unexpectedly, metabolites commonly regarded to act as compatible solutes, including glutamate, glucosylglycerol, and a dihexose, showed extensive turnover compared to most other metabolites already after 12 h, but only during the light phase in the cycle. We observed extensive turnover and found it surprising considering the conventional view on compatible solutes as biosynthetic end points given the relatively slow growth and constant osmotic conditions. Our suggests the possibility of a metabolic sink for some compatible solutes (e.g., into glycogen) that allows for rapid modulation of intracellular osmolarity. To investigate this, uniformly "1"3C-labeled Synechococcus sp. PCC 7002 were exposed to "1"2C glucosylglycerol. Following metabolite extraction, amylase treatment of methanol-insoluble polymers revealed "1"2C labeling of glycogen. Overall, our work shows that D_2

  8. High performance flexible metal oxide/silver nanowire based transparent conductive films by a scalable lamination-assisted solution method

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2017-03-01

    Full Text Available Flexible MoO3/silver nanowire (AgNW/MoO3/TiO2/Epoxy electrodes with comparable performance to ITO were fabricated by a scalable solution-processed method with lamination assistance for transparent and conductive applications. Silver nanoparticle-based electrodes were also prepared for comparison. Using a simple spin-coating and lamination-assisted planarization method, a full solution-based approach allows preparation of AgNW-based composite electrodes at temperatures as low as 140 °C. The resulting flexible AgNW-based electrodes exhibit higher transmittance of 82% at 550 nm and lower sheet resistance about 12–15 Ω sq−1, in comparison with the values of 68% and 22–25 Ω sq−1 separately for AgNP based electrodes. Scanning electron microscopy (SEM and Atomic force microscopy (AFM reveals that the multi-stacked metal-oxide layers embedded with the AgNWs possess lower surface roughness (<15 nm. The AgNW/MoO3 composite network could enhance the charge transport and collection efficiency by broadening the lateral conduction range due to the built of an efficient charge transport network with long-sized nanowire. In consideration of the manufacturing cost, the lamination-assisted solution-processed method is cost-effective and scalable, which is desire for large-area fabrication. While in view of the materials cost and comparable performance, this AgNW-based transparent and conductive electrodes is potential as an alternative to ITO for various optoelectronic applications.

  9. Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance.

    Science.gov (United States)

    Qin, Yiheng; Alam, Arif U; Pan, Si; Howlader, Matiar M R; Ghosh, Raja; Selvaganapathy, P Ravi; Wu, Yiliang; Deen, M Jamal

    2016-01-01

    Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass substrates and annealed at low temperature to generate Pd and PdO. The percentages of PdO at the surface and in the bulk of the electrodes are correlated to their sensing performance, which was studied by using the X-ray photoelectron spectroscope. Large amounts of PdO introduced by prolonged annealing improve the electrode's sensitivity and long-term stability. Atomic force microscopy study showed that the low-temperature annealing results in a smooth electrode surface, which contributes to a fast response. Nano-voids at the electrode surfaces were observed by scanning electron microscope, indicating a reason for the long-term degradation of the pH sensitivity. Using the optimized annealing parameters of 200°C for 48 h, a linear pH response with sensitivity of 64.71±0.56 mV/pH is obtained for pH between 2 and 12. These electrodes show a response time shorter than 18 s, hysteresis less than 8 mV and stability over 60 days. High reproducibility in the sensing performance is achieved. This low-temperature solution-processed sensing electrode shows the potential for the development of pH sensing systems on flexible substrates over a large area at low cost without using vacuum equipment. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Phase separation phenomena in solutions of poly(2,6-dimethyl-1,4-phenylene oxide). IV. Thermodynamic parameters for solutions in a series of homologous solvents: Toluene to hexylbenzene

    NARCIS (Netherlands)

    Koenhen, D.M.; Bakker, A.; Broens, L.; van den Berg, J.W.A.; Smolders, C.A.

    1984-01-01

    Melting-point curves for solutions of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) in a series of homologous solvents (toluene to n-hexylbenzene) have been obtained from visual and differential scanning calorimetry measurements. The measured melting points were used to calculate thermodynamic

  11. [μ-Bis(diphenylphosphanyl-κPmethane]decacarbonyltri-μ-hydrido-trirhenium(I(3 Re—Re dichloromethane solvate

    Directory of Open Access Journals (Sweden)

    Ahmed F. Abdel-Magied

    2011-12-01

    Full Text Available In the title compound, [Re3(μ-H3(C25H22P2(CO10]·CH2Cl2, the three Re atoms form a triangle bearing ten terminal carbonyl groups and three edge-bridging hydrides. The bis(diphenylphosphanylmethane ligand bridges two Re atoms. Neglecting the Re—Re interactions, each Re atom is in a slightly distorted octahedral coordination environment. The dichloromethane solvent molecule is disordered over two sets of sites with fixed occupancies of 0.6 and 0.4.

  12. Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer

    International Nuclear Information System (INIS)

    Chen, Dazheng; Zhang, Chunfu; Wang, Zhizhe; Zhang, Jincheng; Tang, Shi; Wei, Wei; Sun, Li; Hao, Yue

    2014-01-01

    Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C 61 butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150 °C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100 °C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightly improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.

  13. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo; Javandel, Iraj

    2008-03-15

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  14. The role of iron species on the turbidity of oxidized phenol solutions in a photo-Fenton system.

    Science.gov (United States)

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez-Arce, Jonatan

    2015-01-01

    This work aims at establishing the contribution of the iron species to the turbidity of phenol solutions oxidized with photo-Fenton technology. During oxidation, turbidity increases linearly with time till a maximum value, according to a formation rate that shows a dependence of second order with respect to the catalyst concentration. Next, the decrease in turbidity shows the evolution of second-order kinetics, where the kinetics constant is inversely proportional to the dosage of iron, of order 0.7. The concentration of iron species is analysed at the point of maximum turbidity, as a function of the total amount of iron. Then, it is found that using dosages FeT=0-15.0 mg/L, the majority iron species was found to be ferrous ions, indicating that its concentration increases linearly with the dosage of total iron. This result may indicate that the photo-reaction of ferric ion occurs leading to the regeneration of ferrous ion. The results, obtained by operating with initial dosages FeT=15.0 and 25.0 mg/L, suggest that ferrous ion concentration decreases while ferric ion concentration increases in a complementary manner. This fact could be explained as a regeneration cycle of the iron species. The observed turbidity is generated due to the iron being added as a catalyst and the organic matter present in the system. Later, it was found that at the point of maximum turbidity, the concentration of ferrous ions is inversely proportional to the concentration of phenol and its dihydroxylated intermediates.

  15. Removal of Mefenamic acid from aqueous solutions by oxidative process: Optimization through experimental design and HPLC/UV analysis.

    Science.gov (United States)

    Colombo, Renata; Ferreira, Tanare C R; Ferreira, Renato A; Lanza, Marcos R V

    2016-02-01

    Mefenamic acid (MEF) is a non-steroidal anti-inflammatory drug indicated for relief of mild to moderate pain, and for the treatment of primary dysmenorrhea. The presence of MEF in raw and sewage waters has been detected worldwide at concentrations exceeding the predicted no-effect concentration. In this study, using experimental designs, different oxidative processes (H2O2, H2O2/UV, fenton and Photo-fenton) were simultaneously evaluated for MEF degradation efficiency. The influence and interaction effects of the most important variables in the oxidative process (concentration and addition mode of hydrogen peroxide, concentration and type of catalyst, pH, reaction period and presence/absence of light) were investigated. The parameters were determined based on the maximum efficiency to save time and minimize the consumption of reagents. According to the results, the photo-Fenton process is the best procedure to remove the drug from water. A reaction mixture containing 1.005 mmol L(-1) of ferrioxalate and 17.5 mmol L(-1) of hydrogen peroxide, added at the initial reaction period, pH of 6.1 and 60 min of degradation indicated the most efficient degradation, promoting 95% of MEF removal. The development and validation of a rapid and efficient qualitative and quantitative HPLC/UV methodology for detecting this pollutant in aqueous solution is also reported. The method can be applied in water quality control that is generated and/or treated in municipal or industrial wastewater treatment plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Oxidation of D-glucose and D-fructose with oxygen in aqueous, alkaline solutions. III. Kinetic approach to the product distribution

    NARCIS (Netherlands)

    de Wilt, H.G.J.; Kuster, Ben

    1972-01-01

    Based on a previously reported, integral reaction-scheme for the homogeneous oxidation of -glucose and -fructose with oxygen in aqueous, alkaline solutions, a kinetic model covering the product distribution has been developed. The model consists of a repeated set of reactions with constant rate

  17. Fe hydroxyphosphate precipitation and Fe(II) oxidation kinetics upon aeration of Fe(II) and phosphate-containing synthetic and natural solutions

    NARCIS (Netherlands)

    Grift, B. van der; Behrends, T.; Osté, L.A.; Schot, P.P.; Wassen, M.J.; Griffioen, J.

    2016-01-01

    Exfiltration of anoxic Fe-rich groundwater into surface water and the concomitant oxidative precipitation of Fe are important processes controlling the transport of phosphate (PO4) from agricultural areas to aquatic systems. Here, we explored the relationship between solution composition, reaction

  18. Fe hydroxyphosphate precipitation and Fe(II) oxidation kinetics upon aeration of Fe(II) and phosphate-containing synthetic and natural solutions

    NARCIS (Netherlands)

    van der Grift, B.; Behrends, T.; Osté, L.A.; Schot, P.P.; Wassen, M.J.; Griffioen, J.

    2016-01-01

    Abstract Exfiltration of anoxic Fe-rich groundwater into surface water and the concomitant oxidative precipitation of Fe are important processes controlling the transport of phosphate (PO4) from agricultural areas to aquatic systems. Here, we explored the relationship between solution composition,

  19. Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov.--novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane.

    Science.gov (United States)

    Doronina, N V; Trotsenko, Y A; Tourova, T P; Kuznetsov, B B; Leisinger, T

    2000-06-01

    Eight strains of Gram-negative, aerobic, asporogenous, neutrophilic, mesophilic, facultatively methylotrophic bacteria are taxonomically described. These icl- serine pathway methylobacteria utilize dichloromethane, methanol and methylamine as well as a variety of polycarbon compounds as the carbon and energy source. The major cellular fatty acids of the non-pigmented strains DM1, DM3, and DM5 to DM9 are C18:1, C16:0, C18:0, Ccy19:0 and that of the pink-pigmented strain DM4 is C18:1. The main quinone of all the strains is Q-10. The non-pigmented strains have similar phenotypic properties and a high level of DNA-DNA relatedness (81-98%) as determined by hybridization. All strains belong to the alpha-subgroup of the alpha-Proteobacteria. 16S rDNA sequence analysis led to the classification of these dichloromethane-utilizers in the genus Methylopila as a new species - Methylopila helvetica sp.nov. with the type strain DM9 (=VKM B-2189). The pink-pigmented strain DM4 belongs to the genus Methylobacterium but differs from the known members of this genus by some phenotypic properties, DNA-DNA relatedness (14-57%) and 16S rDNA sequence. Strain DM4 is named Methylobacterium dichloromethanicum sp. nov. (VKM B-2191 = DSMZ 6343).

  20. Kinetics of the oxidation of hydrogen sulfite by hydrogen peroxide in aqueous solution:. ionic strength effects and temperature dependence

    Science.gov (United States)

    Maaß, Frank; Elias, Horst; Wannowius, Klaus J.

    Conductometry was used to study the kinetics of the oxidation of hydrogen sulfite, HSO -3, by hydrogen peroxide in aqueous non-buffered solution at the low concentration level of 10 -5-10 -6 M, typically found in cloud water. The kinetic data confirm that the rate law reported for the pH range 3-6 at higher concentration levels, rate= kH·[H +]·[HSO -3]·[H 2O 2], is valid at the low concentration level and at low ionic strength Ic. At 298 K and Ic=1.5×10 -4 M, third-order rate constant kH was found to be kH=(9.1±0.5)×10 7 M -2 s -1. The temperature dependence of kH led to an activation energy of Ea=29.7±0.9 kJ mol -1. The effect of the ionic strength (adjusted with NaCl) on rate constant kH was studied in the range Ic=2×10 -4-5.0 M at pH=4.5-5.2 by conductometry and stopped-flow spectrophotometry. The dependence of kH on Ic can be described with a semi-empirical relationship, which is useful for the purpose of comparison and extrapolation. The kinetic data obtained are critically compared with those reported earlier.

  1. Solution processed transition metal oxide anode buffer layers for efficiency and stability enhancement of polymer solar cells

    Science.gov (United States)

    Ameen, M. Yoosuf; Shamjid, P.; Abhijith, T.; Reddy, V. S.

    2018-01-01

    Polymer solar cells were fabricated with solution-processed transition metal oxides, MoO3 and V2O5 as anode buffer layers (ABLs). The optimized device with V2O5 ABL exhibited considerably higher power conversion efficiency (PCE) compared to the devices based on MoO3 and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) ABLs. The space charge limited current measurements and impedance spectroscopy results of hole-only devices revealed that V2O5 provided a very low charge transfer resistance and high hole mobility, facilitating efficient hole transfer from the active layer to the ITO anode. More importantly, incorporation of V2O5 as ABL resulted in substantial improvement in device stability compared to MoO3 and PEDOT:PSS based devices. Unencapsulated PEDOT:PSS-based devices stored at a relative humidity of 45% have shown complete failure within 96 h. Whereas, MoO3 and V2O5 based devices stored in similar conditions retained 22% and 80% of their initial PCEs after 96 h. Significantly higher stability of the V2O5-based device is ascribed to the reduction in degradation of the anode/active layer interface, as evident from the electrical measurements.

  2. Enhancement of Fenton oxidation for removing organic matter from hypersaline solution by accelerating ferric system with hydroxylamine hydrochloride and benzoquinone.

    Science.gov (United States)

    Peng, Siwei; Zhang, Weijun; He, Jie; Yang, Xiaofang; Wang, Dongsheng; Zeng, Guisheng

    2016-03-01

    Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions. This study investigated the feasibility of using benzoquinone (BQ) and hydroxylamine hydrochloride (HA) as Fenton enhancers for the removal of glycerin from saline water under ambient temperature by accelerating the ferric system. It was found that organics removal was not obviously affected by chloride ions of low concentration (less than 0.1mol/L), while the mineralization rate was strongly inhibited in the presence of a large amount of chloride ions. In addition, ferric hydrolysis-precipitation was significantly alleviated in the presence of HA and BQ, and HA was more effective in reducing ferric ions into ferrous ions than HA, while the H2O2 decomposition rate was higher in the BQ-Fenton system. Electron spin resonance analysis revealed that OH production was reduced in high salinity conditions, while it was enhanced after the addition of HA and BQ (especially HA). This study provided a possible solution to control and alleviate the inhibitory effect of chloride ions on the Fenton process for organics removal. Copyright © 2015. Published by Elsevier B.V.

  3. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Directory of Open Access Journals (Sweden)

    Venkatesan K

    2015-10-01

    Full Text Available Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4 magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311 of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM 

  4. Thermoluminescence of magnesium oxide doped with cerium and lithium obtained by a glycine-based solution combustion method

    International Nuclear Information System (INIS)

    Escobar O, F. M.; Orante B, V. R.; Cruz V, C.; Bernal, R.

    2015-10-01

    Full text: It is well known that glycine, fulfills two principal purposes: first, complexes with metal cations formed, which increases their solubility and prevents selective precipitation as water is evaporated; and second, it serves as fuel for the combustion reaction, being oxidized by the nitrate ions. The glycine molecule has a carboxylic acid group at one end and an amine group at the other end, both of which can participate in the complexation of metal ions. This zwitterionic character allows effective complexation with metal cations of different ionic size. Novel Mg O:Ce 3+ , Li + phosphor was obtained for the very first time by solution combustion synthesis (Scs) in which a redox combustion process between metallic nitrates and glycine at 500 degrees C was accomplished. The powder samples obtained were annealed at 900 degrees C during 2 h in air. X-ray diffraction (XRD) results showed the face-centered cubic (fcc) phase of Mg O as well as the presence of CeO 2 for the annealed powder samples. Photoluminescence emission spectra showed the characteristic Ce 3+ peak located at 520 nm. The thermoluminescence glow curve obtained after exposure to beta radiation of these samples, displayed three maxima located at ∼ 108 degrees C, ∼ 210 degrees C, and ∼ 310 degrees C. Results from experiments such as dose response and fading showed that annealed Mg O:Ce 3+ , Li + powder obtained by Scs is a promising material for radiation dosimetry applications. (Author)

  5. Adsorption of Pb(II) from aqueous solution using a magnetic chitosan/graphene oxide composite and its toxicity studies.

    Science.gov (United States)

    Melvin Samuel, S; Shah, Sk Sheriff; Bhattacharya, Jayanta; Subramaniam, Kalidass; Pradeep Singh, N D

    2018-05-02

    This study involves the adsorption of lead using magnetic chitosan/graphene oxide (MCGO) composite material in batch mode. The MCGO composite material was synthesized via modified Hummers method. The MCGO composite material was characterized by powder x-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Tunnelling electron microscopy (TEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) and UV-vis diffusive reflectance spectra. The adsorption mechanism of MCGO composite material was well described by Langmuir isotherm and pseudo second order kinetic model, with a high regression coefficient (composite material was applied for the removal of lead metal from aqueous solution. We have also evaluated toxicity of synthesized MCGO composite material by examining on A549 cells. The results have shown that MCGO material showed viable cell percentage of 53.7% at 50 μg and 44.8% at 100 μg. Copyright © 2017. Published by Elsevier B.V.

  6. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.

  7. Synergistic effect of graphene nanosheets and zinc oxide nanoparticles for effective adsorption of Ni (II) ions from aqueous solutions

    Science.gov (United States)

    Hadadian, Mahboubeh; Goharshadi, Elaheh K.; Fard, Mina Matin; Ahmadzadeh, Hossein

    2018-03-01

    The threat of toxic substances such as heavy metals to public health and wildlife has led to an increasing public awareness. Different techniques for neutralizing the toxic effects of heavy metals in wastewater have been used. Here, we prepared a new and efficient type of adsorbent, zinc oxide-graphene nanocomposite (ZnO-Gr), via a green method to remove Ni (II) ions from aqueous solutions. A facile microwave-assisted hydrothermal technique in the presence of an ionic liquid, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [C6mim] [NTf2], was used to prepare ZnO-Gr. The synergistic effect between graphene nanosheets and ZnO nanoparticles in this new adsorbent for Ni (II) ions caused a maximum adsorption capacity of 66.7 mg g-1 at room temperature which is much higher than that of graphene nanosheets (3.8 mg g-1) and other carbonaceous nanomaterials used as an adsorbent in the literature. The maximum desorption percentage (90.32%) was achieved at pH 3.6. By thermodynamic study, we found that the adsorption of this heavy metal ion on ZnO-Gr was spontaneous (Δ G° = -6.14 kJ mol-1) and endothermic (Δ H° = 53.31 kJ mol-1) with entropy change of Δ S° = 199.45 J K-1 mol- 1.

  8. Preparation procedure and certification of uranous-uranic oxide and nitric acid solution of neptunium as standard specimens of plant

    International Nuclear Information System (INIS)

    Bulyanitsa, L.S.; Lipovskij, A.A.; Ryzhinskij, M.V.; Preobrazhensskaya, L.D.; Aleksandruk, V.M.; Alekseeva, N.A.; Gromova, E.A.; Solntseva, L.F.; Shereshevskaya, I.I.

    1981-01-01

    Two techniques of certification of standard specimens of plant (SSP) are considered. The first technique-comparison with initial SS-metallic uranium NBS-960 - is used for certification of uranium. protoxide-oxide. The mass part of the sum of analyzed impurities in prepared initial SS is (8.4+-0.8)x10 -3 %. For certification according to mass uranium part the method of gravimetric potentiometric titration with semiautomatic titrator is used; the mean quadratic deviation of the method is s=0.0002-0.0003, certified value of uranium mass part in SSP (taking account of the error of initial SS) is (84.80+-0.02)%. The second technigue - a simplified circular experiment - is used for certification of SSP-nitric acid solution of neptunium as to Np mass part. Coulometry at controlled potential and coulometry at controlled current and two variants of potentiometric titration are used as certification methods of analysis. Relative mean quadratic deviations of the methods are ssub(r)=0.0014-0.0023. When calculating total error of certified value of neptunium mass part constituents of both accidental and unremoved systematic errors of the methods were included. The final certification result of SSP is (5.707+-0.018)% [ru

  9. Selective UV–O3 treatment for indium zinc oxide thin film transistors with solution-based multiple active layer

    Science.gov (United States)

    Kim, Yu-Jung; Jeong, Jun-Kyo; Park, Jung-Hyun; Jeong, Byung-Jun; Lee, Hi-Deok; Lee, Ga-Won

    2018-06-01

    In this study, a method to control the electrical performance of solution-based indium zinc oxide (IZO) thin film transistors (TFTs) is proposed by ultraviolet–ozone (UV–O3) treatment on the selective layer during multiple IZO active layer depositions. The IZO film is composed of triple layers formed by spin coating and UV–O3 treatment only on the first layer or last layer. The IZO films are compared by X-ray photoelectron spectroscopy, and the results show that the atomic ratio of oxygen vacancy (VO) increases in the UV–O3 treatment on the first layer, while it decreases on last layer. The device characteristics of the bottom gated structure are also improved in the UV–O3 treatment on the first layer. This indicates that the selective UV–O3 treatment in a multi-stacking active layer is an effective method to optimize TFT properties by controlling the amount of VO in the IZO interface and surface independently.

  10. Electroless oxidation of diamond surfaces in ceric and ferricyanide solutions: An easy way to produce 'C-O' functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N., E-mail: nathalie.simon@uvsq.f [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France); Charrier, G.; Etcheberry, A. [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France)

    2010-08-01

    Despite many works are devoted to oxidation of diamond surfaces, it is still a challenge, to successfully produce well defined 'C-O' functions, particularly for functionalization purposes. In this paper we describe and compare, for the first time, the 'electroless' oxidation of as-deposited polycrystalline boron-doped diamond (BDD) films in ceric and ferricyanide solutions at room temperature. Both reactions efficiently generate oxygen functionalities on BDD surface. While a higher amount of 'C-O' moieties is produced with Ce{sup 4+} as oxidizing agent, the use of ferricyanide specie seems the most interesting to specifically generate hydroxyl groups. Additionally, this easy to perform oxidative method appears not damaging for diamond surfaces and adapted to conductive or non-conductive materials. The resulting surfaces were characterized using X-ray photoelectron spectroscopy, contact angle and capacitance-voltage analysis.

  11. Determination of moxifloxacin and its oxidation products with kinetic evaluation under potassium permanganate treatment in acidic solution by ultra-performance liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Hubicka, Urszula; Zmudzki, Paweł; Zajdel, Paweł; Krzek, Jan

    2013-01-01

    A simple, sensitive, and reproducible ultra-performance LC method for the determination of moxifloxacin (MOXI) oxidation stability under permanganate treatment in acidic conditions (pH 3.0-6.0) was developed. Besides the MOXI peak [retention time (RT) = 2.58], four additional products (RT = 0.86, 0.91, 1.42, and 1.89) were observed in all conditions tested. The oxidation process followed second-order reaction kinetics and depended upon solution acidity. The highest reaction rate constant was observed at pH 3.0, and this value decreased as the pH was increased to 6.0. The oxidation products were characterized, and their fragmentation pathways, derived from MS/MS data, were proposed. Two of these products were identified as hydroxyl derivatives of MOXI and two others as their oxidation product analogs with molecular ions of 418.4 and 416.4 m/z, respectively.

  12. The effect of hydrogen and gamma radiation on the oxidation of UO2 in 0.1 mol*(dm)-3 NaCl solution

    International Nuclear Information System (INIS)

    King, F.; Quinn, M.J.; Miller, N.H.

    1999-11-01

    High partial pressures of H 2 may develop in an underground nuclear fuel waste disposal vault as a result of radiolysis of groundwater or corrosion of steel container components. The presence of H 2 could suppress the oxidation and subsequent dissolution of used fuel by creating reducing conditions near the fuel surface. A series of experiments has been performed to determine the extent of oxidation of UO 2 due to γ-radiolysis in the presence of H 2 . A H 2 partial pressure of 5 MPa was used to simulate the maximum possible pressure of H 2 in a disposal vault located at a depth of 500 m. Experiments were also performed with an Ar overpressure for comparison. Deaerated 0.1 mol·(dm) -3 NaCl was used to simulate the groundwater. The extent of oxidation was determined by monitoring the corrosion potential of UO 2 electrodes, by cathodically stripping the oxidized layer from the electrode at the end of the test, and by determining the ratio of U(VI) to U(IV) species on the surface of a UO 2 disc exposed to the same solution by X-ray photoelectron spectroscopy. The presence of H 2 is found to have two effects on the oxidation of UO 2 in the presence of y-radiation. Not only does H 2 prevent oxidation of the UO 2 by radiolytic oxidants but it also produces more reducing conditions than those observed with either H 2 or Ar atmospheres in the absence of irradiation. It is suggested that radiolytically produced reductants participate in homogeneous reactions in solution with radiolytic oxidants and in heterogeneous reactions on the UO 2 surface, most likely at reactive grain-boundary sites

  13. Layer-by-layer deposition of zirconium oxide films from aqueous solutions for friction reduction in silicon-based microelectromechanical system devices

    International Nuclear Information System (INIS)

    Liu Junfu; Nistorica, Corina; Gory, Igor; Skidmore, George; Mantiziba, Fadziso M.; Gnade, Bruce E.

    2005-01-01

    This work reports layer-by-layer deposition of zirconium oxide on a Si surface from aqueous solutions using the successive ionic layer adsorption and reaction technique. The process consists of repeated cycles of adsorption of zirconium precursors, water rinse, and hydrolysis. The film composition was determined by X-ray photoelectron spectroscopy. The film thickness was determined by Rutherford backscattering spectrometry, by measuring the Zr atom concentration. The average deposition rate from a 0.1 M Zr(SO 4 ) 2 solution on a SiO 2 /Si surface is 0.62 nm per cycle. Increasing the acidity of the zirconium precursor solution inhibits the deposition of the zirconium oxide film. Atomic force microscopy shows that the zirconium oxide film consists of nanoparticles of 10-50 nm in the lateral dimension. The surface roughness increased with increasing number of deposition cycles. Friction measurements made with a microelectromechanical system device reveal a reduction of 45% in the friction coefficient of zirconium oxide-coated surfaces vs. uncoated surfaces in air

  14. Crystal structure of tetrabutylammonium bromide–1,2-diiodo-3,4,5,6-tetrafluorobenzene–dichloromethane (2/2/1

    Directory of Open Access Journals (Sweden)

    Jasmine Viger-Gravel

    2015-05-01

    Full Text Available The crystallization of a 1:1 molar solution of 1,2-diiodo-3,4,5,6-tetrafluorobenzene (o-DITFB and tetrabutylammonium bromide (n-Bu4NBr from dichloromethane yielded pure white crystals of a halogen-bonded compound, C16H36N+·Br−·C6F4I2·0.5CH2Cl2 or [(n-Bu4NBr(o-DITFB]·0.5CH2Cl2. The compound may be described as a quaternary system and may be classified as a salt–cocrystal solvate. The asymmetric unit contains one molecule of solvent, two o-DITFB molecules, two cations (n-Bu4N+ and two crystallographically distinct bromide ions [θI...Br-...I = 144.18 (1 and 135.35 (1°]. The bromide ion is a bidentate halogen-bond acceptor which interacts with two covalently bonded iodines (i.e. halogen-bond donors, resulting in a one-dimensional polymeric zigzag chain network approximately along the a axis. The observed short contacts and angles are characteristic of the non-covalent interaction [dC—I...Br = 3.1593 (4–3.2590 (5 Å; θC—I...Br = 174.89 (7 and 178.16 (7°]. It is noted that iodine acts as both a halogen-bond donor and a weak CH hydrogen-bond acceptor, while the bromide ions act as acceptors for weak CH hydrogen bonds and halogen bonds.

  15. Speciation of the oxidation states of plutonium in aqueous solutions by UV/Vis spectroscopy, CE-ICP-MS and CE-RIMS

    International Nuclear Information System (INIS)

    Buerger, S.; Banik, N.L.; Buda, R.A.; Kratz, J.V.; Kuczewski, B.; Trautmann, N.

    2007-01-01

    For the speciation of the plutonium oxidation states in aqueous solutions, the online coupling of capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS) has been developed. Depending on the radius/electrical charge ratio, the oxidation states III, IV, V, and VI of plutonium are separated by CE, based on the different migration times through the capillary and are detected by ICP-MS. The detection limit is 20 ppb, i.e. 10 9 -10 10 atoms (10 -12 -10 -13 g) for one oxidation state with an uncertainty of the reproducibility of the migration times of ≤ 1% and ≤ 5% for the peak area. The redox kinetics of the different plutonium oxidation states in the presence of humic substances (humic and fulvic acid) have been studied. A relatively rapid reduction of Pu(VI) (10 to 1000 h) in contact with Gorleben fulvic or Aldrich humic acid could be observed, depending on the pH of the solution. Furthermore, at pH=1, a reduction to Pu(III) and Pu(IV) in a mixture of all four oxidation states in contact with Gorleben fulvic acid after one month has been observed. In order to improve the sensitivity of the CE method, the offline coupling of CE to resonance ionization mass spectrometry (RIMS) has been explored. First applications of this new speciation method are presented. (orig.)

  16. Continuous Reduced Graphene Oxide Film Prepared by Stitching of Nanosheets at the Interface of Two Immiscible Solutions

    International Nuclear Information System (INIS)

    Sohn, Young Ku; Kim, Seog K.; Min, Bong Ki

    2011-01-01

    method requires a transfer process from the metal substrates to a desired substrate such as a transparent plastic sheet. Simpler methods are a thermal reduction of graphene oxide film prepared via the filtration of graphene sheets, Langmuir-Blodgett (LB) layer-by- layer assembly, and filtration of graphene sheets followed by a film transfer. Investigators have now actively pursued various simpler ways of fabricating continuous graphene films or papers. Highly motivated by this, we have challenged to synthesize large-area/scale graphene films from solution

  17. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    KAUST Repository

    Zhang, Jizhe

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product of biodiesel, by using vanadium-substituted phosphomolybdic acids as catalysts and molecular oxygen as the oxidant. Significantly, this catalytic system allows for high-concentration conversions and thus leads to exceptional efficiency. Specifically, 3.64 g of formic acid was produced from 10 g of glycerol/water (50/50 in weight) solution. © 2014 the Partner Organisations.

  18. The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study

    International Nuclear Information System (INIS)

    Hsing, H.-J.; Chiang, P.-C.; Chang, E.-E.; Chen, M.-Y.

    2007-01-01

    The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO 2 , O 3 , O 3 /UV, O 3 /UV/TiO 2 , Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O 3 /UV and O 3 /UV/TiO 2 processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O 3 dose = 45 mg/L; (2) the optimum pH and ratio of [H 2 O 2 ]/[Fe 2+ ] found for the Fenton process, are pH 4 and [H 2 O 2 ]/[Fe 2+ ] = 6.58. The optimum [H 2 O 2 ] and [Fe 2+ ] under the same HF value are 58.82 and 8.93 mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80 V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O 3 3 /UV = O 3 /UV/TiO 2 3 = Fenton 3 /UV 3 /UV/TiO 2 for 30 min of reaction time

  19. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shenteng; Lu, Chungsying, E-mail: clu@nchu.edu.tw; Lin, Kun-Yi Andrew

    2015-01-30

    Graphical abstract: A comparison of TMAH adsorption capacity with GO, NaY and GAC is conducted and the result reveals that the magnitude of qe follows the order of GO > NaY > GAC. The adsorption capacity of GO is significantly higher than those of zeolite and activated carbon in this and reported studies, showing its encouraging potential. GO also exhibits good reversibility of TMAH adsorption through 10 cycles of adsorption and desorption process. This reflects that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment. - Highlights: • Adsorption kinetics and isotherms of TMAH to GO, NaY and GAC are compared. • Thermodynamics of TMAH adsorption to GO, NaY and GAC is determined. • GO exhibits the highest TMAH adsorption capacity, followed by NaY and GAC. • Recyclabilities of NaY and GO remain above 95% but that of GAC dropped to 70%. - Abstract: Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  20. Thermoluminescence of magnesium oxide doped with cerium and lithium obtained by a glycine-based solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Escobar O, F. M.; Orante B, V. R.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: flor.escobaroc@gmail.com [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2015-10-15

    Full text: It is well known that glycine, fulfills two principal purposes: first, complexes with metal cations formed, which increases their solubility and prevents selective precipitation as water is evaporated; and second, it serves as fuel for the combustion reaction, being oxidized by the nitrate ions. The glycine molecule has a carboxylic acid group at one end and an amine group at the other end, both of which can participate in the complexation of metal ions. This zwitterionic character allows effective complexation with metal cations of different ionic size. Novel Mg O:Ce{sup 3+}, Li{sup +} phosphor was obtained for the very first time by solution combustion synthesis (Scs) in which a redox combustion process between metallic nitrates and glycine at 500 degrees C was accomplished. The powder samples obtained were annealed at 900 degrees C during 2 h in air. X-ray diffraction (XRD) results showed the face-centered cubic (fcc) phase of Mg O as well as the presence of CeO{sub 2} for the annealed powder samples. Photoluminescence emission spectra showed the characteristic Ce{sup 3+} peak located at 520 nm. The thermoluminescence glow curve obtained after exposure to beta radiation of these samples, displayed three maxima located at ∼ 108 degrees C, ∼ 210 degrees C, and ∼ 310 degrees C. Results from experiments such as dose response and fading showed that annealed Mg O:Ce{sup 3+}, Li{sup +} powder obtained by Scs is a promising material for radiation dosimetry applications. (Author)

  1. Highly efficient removal of chlorotetracycline from aqueous solution using graphene oxide/TiO2 composite: Properties and mechanism

    Science.gov (United States)

    Li, Zhaoqian; Qi, Mengyu; Tu, Chunyan; Wang, Weiping; Chen, Jianrong; Wang, Ai-Jun

    2017-12-01

    The extensive usage of chlorotetracycline (CTC) has caused the persistence of antibiotic residues in aquatic environments, resulting in serious threat to human health and ecosystems. In this study, graphene oxide/titanium dioxide (GO/TiO2) nanocomposite was successfully synthesized via in situ hydrolysis of tetra-n-butyl titanate (Ti(BuO)4) to TiO2 particles on GO sheets and used as adsorbent for efficient adsorptive removal of CTC from aqueous solution. The prepared GO/TiO2 was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), Raman spectroscopy and X-ray photoelectron (XPS). Adsorption kinetics, isotherms and thermodynamics were systematically investigated to evaluate the adsorption properties of GO/TiO2. Adsorption mechanism was further analyzed by FT-IR, UV-vis and XPS. The results indicated that adsorption kinetics closely followed the pseudo-second order model; the maximum adsorption capacity determined by Langmuir model was 261.10 mg g-1 at 298 K and the thermodynamic studies revealed that the adsorption of CTC onto the GO/TiO2 was a spontaneous and endothermic process. Moreover, the interactions between CTC and GO/TiO2 were presumed to be ligand exchange between CTC and TiO2, while the π-π electron donor-acceptor interaction, hydrogen bond and cation-π bonding were constructed between CTC and GO. Finally, the prepared GO/TiO2 was successfully applied for the efficient removal of CTC from Wu River water.

  2. Phase-separation phenomena in solutions of poly(2,6-dimethyl-1,4-phenylene oxide). III. Pulse-induced critical scattering of solutions in toluene

    NARCIS (Netherlands)

    Koenhen, D.M.; Smolders, C.A.; Gordon, M.

    1977-01-01

    For the polymer-solvent system poly(phenylene oxide) in toluene the mechanism and kinetics of crystallization have been studied with the Pulse Induced Critical Scattering technique. It was found that after a delay-time the growth mechanism was diffusion controlled. The delay-time is thought to be

  3. A study of selective precipitation techniques used to recover refined iron oxide pigments for the production of paint from a synthetic acid mine drainage solution

    International Nuclear Information System (INIS)

    Ryan, M.J.; Kney, A.D.; Carley, T.L.

    2017-01-01

    New resource recovery methods of acid mine drainage (AMD) treatment aim to reduce waste by extracting iron contaminants in usable forms, specifically iron oxides as industrial inorganic pigments, which can be marketed and sold to subsidize treatment costs. In this study, iron oxide pigments of varying colors and properties were recovered from a synthetic AMD solution through a stepwise selective precipitation process using oxidation, pH adjustment, and filtration. Chemical and physical design variables within the process, such as alkaline addition rate, reaction temperature, drying duration, and target pH, were altered and observed for their effects on iron oxide morphology as a means of reducing—or even eliminating—the need for refining after synthesis. Resulting iron oxide pigment powders were analyzed with X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), and visually evaluated for color and coating ability. Drying duration resulted in increased redness in paint streaks and enhanced crystallinity, as amorphous phases of iron oxide transformed into hematite. Alkaline addition rate showed no effect on the crystallinity of the powders and no consistent effect on color. Conversely, increasing reaction temperature darkened the color of pigments and increased surface area of pigment particles (thus improving coating ability) without changing the crystallinity of the samples. Iron oxides precipitated at pH 3 displayed the highest purity and possessed a distinct yellow color suggestive of jarosite, while other paint streaks darkened in color as trace metal impurities increased. The choice to use lower pH for higher quality iron oxides comes with the compromise of reduced iron recovery efficiency. Manganese and nickel did not begin to precipitate out of solution up to pH 7 and thus require increased pH neutralization in the field if natural AMD is found to contain those metals. All pigments developed in this study were found to be adequate for use as

  4. One step aqueous solution preparation of nanosize iron-doped tin oxide from SnO{sub 2}.xH{sub 2}O gel

    Energy Technology Data Exchange (ETDEWEB)

    Melghit, Khaled [Chemistry Department, College of Science, P.O. Box 36, Al-Khodh 123, Sultan Qaboos University (Oman)]. E-mail: melghit@squ.edu.om; Bouziane, Khalid [Physics Department, College of Science, P.O. Box 36, Al-Khodh 123, Sultan Qaboos University (Oman)

    2006-03-15

    Nanosized iron-doped tin oxide solid solution was prepared by mixing tin oxide gel SnO{sub 2}.xH{sub 2}O with a boiling solution of iron nitrate. The XRD data of the as-prepared and annealed sample at 773 K show that the patterns are indexed to the rutile phase without any trace of an extra phase. SEM and TEM results performed on different selected area of the samples reveal a homogeneous composition of 8 at.% of Fe content and a size of about 2 nm of the particles. The particles size was found to increase slightly with temperature; about 7 nm after 24 h at 773 K. Structural and magnetic results seem to indicate that Fe{sup 3+} substitute for Sn{sup 4+} on the as-prepared sample. The system presents some weak ferromagnetic character at room temperature.

  5. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 2. of ISO 7097 describes procedures for determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with cerium(IV) and ISO 7097-1 uses a titration with potassium dichromate

  6. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 1. of ISO 7097 describes procedures for the determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with potassium dichromate and ISO 7097-2 uses a titration with cerium(IV)

  7. Role of solution chemistry in the retention and release of graphene oxide nanomaterials in uncoated and iron oxide-coated sand

    Science.gov (United States)

    Upon increasing production and use of graphene oxide nanoparticles (GONPs), concerns agitate over their potential impacts and risks to the environment, ecosystem, and human health. An improved understanding of the fate and transport including remobilization of GONPs in the subsur...

  8. Assessment of the Mutagenic Potential of Carbon Disulfide, Carbon Tetrachloride, Dichloromethane, Ethylene Dichloride, and Methyl Bromide: A Comparative Analysis in Relation to Ethylene Dibromide

    Science.gov (United States)

    The document provides an evaluation of the mutagenic potential of five alternative fumigants to ethylene dibromide(EDB). These include carbon disulfide(CS2), carbon tetrachloride(CCl4), dichloromethane(DCM), ethylene dichloride(EDC), and methyl bromide (MB). Of the five proposed ...

  9. In vitro schistosomicidal effects of aqueous and dichloromethane fractions from leaves and stems of Piper species and the isolation of an active amide from P. amalago L. (Piperaceae).

    Science.gov (United States)

    Carrara, V S; Vieira, S C H; de Paula, R G; Rodrigues, V; Magalhães, L G; Cortez, D A G; Da Silva Filho, A A

    2014-09-01

    Dichloromethane and aqueous fractions from leaves and stems of Piper arboreum Aubl., P. aduncum L., P. amalago L., P. crassinervium H.B. & K., P. diospyrifolium Kunth, P. hispidum Sw. and P. xylosteoides (Kunth) Steud. were tested against adult worms of Schistosoma mansoni. The in vitro activity was evaluated in terms of mortality, number of separated worms and number of worms with reduced motor activity. Most dichloromethane fractions from all Piper species showed moderate schistosomicidal activity, but aqueous fractions were not active. The dichloromethane fraction of P. amalago leaves (at 100 μg/ml) showed the highest activity, resulting in worm mortality, the separation of worm pairs and reduced motor activity. Chromatographic fractionation of the dichloromethane fraction of P. amalago leaves led to the isolation of its major compound, which was also tested against adults of S. mansoni. The isolated piperamide N-[7-(3',4'-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl] pyrrolidine, at 100 μ m, resulted in the mortality of all adult worms after 24 h of incubation. The findings suggest that species of Piper are potential sources of schistosomicidal compounds.

  10. Interrelationship between lignin-rich dichloromethane extracts of hot water-treated wood fibers and high-density polyethylene (HDPE) in wood plastic composite (WPC) production

    Science.gov (United States)

    Manuel R. Pelaez-Samaniego; Vikram Yadama; Manuel Garcia-Perez; Eini Lowell; Rui Zhu; Karl Englund

    2016-01-01

    Hot water extraction (HWE) partially removes hemicelluloses from wood while leaving the majority of the lignin and cellulose; however, the lignin partially migrates to the inner surfaces of the cell wall where it can be deposited as a layer that is sometimes visible as droplets. This lignin-rich material was isolated via Soxhlet extraction with dichloromethane to...

  11. Chemical composition of essential oils of Piper jacquemontianum and Piper variabile from Guatemala and bioactivity of the dichloromethane and methanol extracts

    Directory of Open Access Journals (Sweden)

    Sully M. Cruz

    2011-08-01

    Full Text Available The essential oils from two native species from Guatemala were studied for their chemical composition and the dichloromethane and methanol extracts for their biological activity. A GC-MS analysis of the essential oil from Piper jacquemontianum Kunth, Piperaceae, showed 34 constituents, consisting mainly of linalool (69.4%, while Piper variabile C. DC. essential oil had 36 constituents, camphor (28.4%, camphene (16.6% and limonene (13.9% being the major components. Dichloromethane extracts of both species were cytotoxic against MCF-7, H-460 and SF-268 cell lines (<7 µg/mL. Dichloromethane extract of P. jacquemontianum was slightly active against bacteria (0.5 mg/mL, was active against promastigotes of Leishmania (20.4-61.0 µg/mL, and epimastigotes of Trypanosoma cruzi (51.9 µg/mL. The methanol extract of P. variabile showed antimalarial activity against Plasmodium falciparum F32 (4.5 µg/mL, and the dichloromethane extract against Leishmania (55.8-76.3 µg/mL and T. cruzi (45.8 µg/mL. None of the extracts from the two species was active against Aedes aegypti larvae and Artemia salina nauplii.

  12. Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study.

    Science.gov (United States)

    Fawzy, Ahmed

    2016-03-15

    The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Use of bovine catalase and manganese dioxide for elimination of hydrogen peroxide from partly oxidized aqueous solutions of aromatic molecules - Unexpected complications

    Science.gov (United States)

    Kovács, Krisztina; Sági, Gyuri; Takács, Erzsébet; Wojnárovits, László

    2017-10-01

    Being a toxic substance, hydrogen peroxide (H2O2) formed during application of advanced oxidation processes disturbs the biological assessment of the treated solutions. Therefore, its removal is necessary when the concentration exceeds the critical level relevant to the biological tests. In this study, H2O2 removal was tested using catalase enzyme or MnO2 as catalysts and the concentration changes were measured by the Cu(II)/phenanthroline method. MnO2 and Cu(II) were found to react not only with H2O2 but also with the partly oxidized intermediates formed in the hydroxyl radical induced degradation of aromatic antibiotic and pesticide compounds. Catalase proved to be a milder oxidant, it did not show significant effects on the composition of organic molecules. The Cu(II)/phenanthroline method gives the correct H2O2 concentration only in the absence of easily oxidizable compounds, e.g. certain phenol type molecules.

  14. Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy.

    Science.gov (United States)

    Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S

    2016-05-04

    The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.

  15. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells

    Science.gov (United States)

    Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.

    2016-03-01

    The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self

  16. The role of electrolyte anions (ClO4-, NO3-, and Cl-) in divalent metal (M2+) adsorption on oxide and hydroxide surfaces in salt solutions

    International Nuclear Information System (INIS)

    Criscenti, L.J.; Sverjensky, D.A.

    1999-01-01

    Adsorption of divalent metal ions (M 2+ ) onto oxide and hydroxide surfaces from solutions of strong electrolytes has typically been inferred to take place without the involvement of the electrolyte anion. Only in situations where M 2+ forms a strong enough aqueous complex with the electrolyte anion (for example, CdCl + or PbCl + ) has it been frequently suggested that the metal and the electrolyte anion adsorb simultaneously. A review of experimental data for the adsorption of Cd 2+ , Pb 2+ , Co 2+ , UO 2 2+ , Zn 2+ , Cu 2+ , Ba 2+ , Sr 2+ , and Ca 2+ onto quartz, silica, goethite, hydrous ferric oxide, corundum, γ-alumina, anatase, birnessite, and magnetite, from NaNO 3 , KNO 3 , NaCl, and NaClO 4 solutions over a wide range of ionic strengths (0.0001 M-1.0 M), reveals that transition and heavy metal adsorption behavior with ionic strength is a function of the type of electrolyte. In NaNO 3 solutions, metal adsorption exhibits little or no dependence on the ionic strength of the solution. However, in NaCl solutions, transition and heavy metal adsorption decreases strongly with increasing ionic strength. In NaClO 4 solutions, metal adsorption decreases strongly with increasing ionic strength. In NaClO 4 solutions, metal adsorption exhibits little dependence on ionic strength but is often suggestive of an increase in metal adsorption with increasing ionic strength. Analysis of selected adsorption edges was carried out using the extended triple-layer model and aqueous speciation models that included metal-nitrate, metal-chloride, and metal-hydroxide complexes

  17. Influence of the reuse of the electrolytic solution on the properties of hydroxyapatite coatings produced by plasma electrolytic oxidation of grade 4 titanium

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cesar A.; Rangel, Elidiane Cipriano; Cruz, Nilson Cristino, E-mail: cesar.augustoa@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil)

    2016-07-01

    Full text: Plasma electrolytic oxidation (PEO) is a process able to produce oxide coatings on light metals, such as Al, Ti, V, Mg, Ta and Nb. In this technique, the application of a voltage, in the range of hundreds of volts, between the sample and a cathode immersed in an electrolyte solution produces electrical fields intense enough to breakdown the insulating oxide layer on the sample surface giving rise to micro electric sparks[1]. These micro-arcs can locally melt the substrate alloying it with elements in the electrolyte solution [2]. In this work PEO has been used to produce coatings with high concentration of hydroxyapatite on Grade 4 titanium disks. The treatments were performed in a 1 liter stainless steel tank. The tank wall was used as the cathode and the coatings were produced during 120 s using calcium acetate and sodium glycerophosphate water solutions as electrolyte. The samples were biased with 480 V pulses with frequency and duty cycle of 100 Hz and 60%, respectively. Using profilometry, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction it has been evaluated the influence of the number of reuses of the solution on the coating properties. The coating produced contains around 85% of HA and it has not been observed any significant changes in their properties when the same solution was reused up to 5 times. [1] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, Surf. Coat. Technol. 130 (2000) 195 206. [2] C. A. Antonio, N. C. Cruz, et al. Materials Research. 17(6) 2014; 1427-1433. (author)

  18. Electrodeposition of composite films of reduced graphene oxide/polyaniline in neutral aqueous solution on inert and oxidizable metal

    Czech Academy of Sciences Publication Activity Database

    Harfouche, N.; Gospodinova, Natalia; Nessark, B.; Perrin, F. X.

    2017-01-01

    Roč. 786, 1 February (2017), s. 135-144 ISSN 1572-6657 Institutional support: RVO:61389013 Keywords : polyaniline * graphene oxide * reduced graphene oxide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.012, year: 2016

  19. The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hsing, H.-J. [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China); Chiang, P.-C. [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China)]. E-mail: pcchiang@ntu.edu.tw; Chang, E.-E. [Department of Biochemistry, Taipei Medical University, 25 Wu-Shin Street, Taipei 106, Taiwan (China); Chen, M.-Y. [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China)

    2007-03-06

    The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO{sub 2}, O{sub 3}, O{sub 3}/UV, O{sub 3}/UV/TiO{sub 2}, Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O{sub 3}/UV and O{sub 3}/UV/TiO{sub 2} processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O{sub 3} dose = 45 mg/L; (2) the optimum pH and ratio of [H{sub 2}O{sub 2}]/[Fe{sup 2+}] found for the Fenton process, are pH 4 and [H{sub 2}O{sub 2}]/[Fe{sup 2+}] = 6.58. The optimum [H{sub 2}O{sub 2}] and [Fe{sup 2+}] under the same HF value are 58.82 and 8.93 mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80 V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O{sub 3} < O{sub 3}/UV = O{sub 3}/UV/TiO{sub 2} < EC < Fenton; (5) the ranking of TOC removal efficiency of selected AOPs was in the order of O{sub 3} = Fenton < EC < O{sub 3}/UV < O{sub 3}/UV/TiO{sub 2} for 30 min of reaction time.

  20. Simultaneous Determination of 6-Mercaptopurine and its Oxidative Metabolites in Synthetic Solutions and Human Plasma using Spectrophotometric Multivariate Calibration Methods

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Rashidi

    2011-06-01

    Full Text Available Introduction: 6-Mercaptopurine (6MP is an important chemotherapeutic drug in the conventional treatment of childhood acute lymphoblastic leukemia (ALL. It is catabolized to 6-thiouric acid (6TUA through 8-hydroxo-6-mercaptopurine (8OH6MP or 6-thioxanthine (6TX intermediates. Methods: High-performance liquid chromatography (HPLC is usually used to determine the contents of therapeutic drugs, metabolites and other important biomedical analytes in biological samples. In the present study, the multivariate calibration methods, partial least squares (PLS-1 and principle component regression (PCR have been developed and validated for the simultaneous determination of 6MP and its oxidative metabolites (6TUA, 8OH6MP and 6TX without analyte separation in spiked human plasma. Mixtures of 6MP, 8-8OH6MP, 6TX and 6TUA have been resolved by PLS-1 and PCR to their UV spectra. Results: Recoveries (% obtained for 6MP, 8-8OH6MP, 6TX and 6TUA were 94.5-97.5, 96.6-103.3, 95.1-96.9 and 93.4-95.8, respectively, using PLS-1 and 96.7-101.3, 96.2-98.8, 95.8-103.3 and 94.3-106.1, respectively, using PCR. The NAS (Net analyte signal concept was used to calculate multivariate analytical figures of merit such as limit of detection (LOD, selectivity and sensitivity. The limit of detections for 6MP, 8-8OH6MP, 6TX and 6TUA were calculated to be 0.734, 0.439, 0.797 and 0.482 µmol L-1, respectively, using PLS and 0.724, 0.418, 0783 and 0.535 µmol L-1, respectively, using PCR. HPLC was also applied as a validation method for simultaneous determination of these thiopurines in the synthetic solutions and human plasma. Conclusion: Combination of spectroscopic techniques and chemometric methods (PLS and PCR has provided a simple but powerful method for simultaneous analysis of multicomponent mixtures.

  1. Highly transparent conductive electrode with ultra-low HAZE by grain boundary modification of aqueous solution fabricated alumina-doped zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Nian, Qiong; Cheng, Gary J. [Birck Nanotechnology Center and School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Callahan, Michael; Bailey, John [Greentech Solutions, Inc., Hanson, Massachusetts 02341 (United States); Look, David [Semiconductor Research Center, Wright State University, Dayton, Ohio 45435 (United States); Efstathiadis, Harry [College of Nanoscale Science and Engineering (CNSE), University of Albany, Albany, New York 12203 (United States)

    2015-06-01

    Commercial production of transparent conducting oxide (TCO) polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC) of solution deposited aluminium-doped zinc oxide (AZO) nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm{sup 2} V{sup −1} s{sup −1} with corresponding electrical resistivity and sheet resistances as low as 1 × 10{sup −3} Ω cm and 75 Ω/sq, respectively. The high mobility also enabled a high transmittance (T) of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.

  2. Corrosion behavior of oxide-covered Cu47Ti34Zr11Ni8 (Vitreloy 101) in chloride-containing solutions

    International Nuclear Information System (INIS)

    Baca, N.; Conner, R.D.; Garrett, S.J.

    2014-01-01

    Highlights: • Enrichment of Ti/Zr (as TiO 2 /ZrO 2 ) and depletion of Cu/Ni due to thermodynamically driven segregation. • Dominant corrosion mechanism is pitting. • Pit interiors were depleted of Ti and Zr due to equilibrium solubilization of oxide layer. • Corrosion can be explained by equilibrium and metal nobility arguments. - Abstract: The corrosion resistance of oxides that form in air on Vitreloy 101 (Cu 47 Ti 34 Zr 11 Ni 8 ) metallic glass ribbons in NaCl and HCl solutions was studied by scanning electron microscopy, X-ray photoelectron spectroscopy and potentiodynamic polarization. The air-exposed alloy was covered by a TiO 2 /ZrO 2 layer overlying a Cu-enriched region beneath. Ni was absent at the surface. Segregation of Ti and Zr was driven by exothermic oxide formation. Immersion in NaCl or HCl caused pitting corrosion by local Galvanic reactions that depleted less noble Ti, Zr and Ni from the pit interiors, leaving them rich in more noble Cu. Corrosion products containing Ti and Zr accumulated around the pit. Pits were most numerous in 1.0 M HCl due to TiO 2 (s)/Ti 3+ (aq) equilibrium that resulted in rapid solubilization of the oxide, creating local weaknesses and an increased rate of pit formation. On average, Ti preferentially dissolved from the oxide in accord with metal nobility arguments

  3. Synthesis of Polyaniline-Coated Graphene Oxide@SrTiO3 Nanocube Nanocomposites for Enhanced Removal of Carcinogenic Dyes from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-09-01

    Full Text Available The present investigation highlights the synthesis of polyaniline (PANI-coated graphene oxide doped with SrTiO3 nanocube nanocomposites through facile in situ oxidative polymerization method for the efficient removal of carcinogenic dyes, namely, the cationic dye methylene blue (MB and the anionic dye methyl orange (MO. The presence of oxygenated functional groups comprised of hydroxyl and epoxy groups in graphene oxide (GO and nitrogen-containing functionalities such as imine groups and amine groups in polyaniline work synergistically to impart cationic and anionic nature to the synthesised nanocomposite, whereas SrTiO3 nanocubes act as spacers aiding in segregation of GO sheets, thereby increasing the effective surface area of nanocomposite. The synthesised nanocomposites were characterised by field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, and Fourier transform infrared spectroscopy (FTIR. The adsorption efficiencies of graphene oxide (GO, PANI homopolymer, and SrTiO3 nanocubes-doped nanocomposites were assessed by monitoring the adsorption of methylene blue and methyl orange dyes from aqueous solution. The adsorption efficiency of nanocomposites doped with SrTiO3 nanocubes were found to be of higher magnitude as compared with undoped nanocomposite. Moreover, the nanocomposite with 2 wt % SrTiO3 with respect to graphene oxide demonstrated excellent adsorption behaviour with 99% and 91% removal of MB and MO, respectively, in a very short duration of time.

  4. Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl_2 for the removal sulfamethoxazole from aqueous solution

    International Nuclear Information System (INIS)

    Reguyal, Febelyn; Sarmah, Ajit K.; Gao, Wei

    2017-01-01

    Highlights: • Synthesis of strongly magnetic biochar via oxidative hydrolysis of FeCl_2. • Saturation magnetisation of magnetic pine sawdust biochar (MPSB) is 47.8 A m"2/kg. • Single-phase iron oxide (Fe_3O_4) nanoparticles formed on the surface of biochar. • Adsorption behaviour and regeneration were investigated. • Sorption of sulfamethoxazole onto MPSB could be due to hydrophobic interaction. - Abstract: Magnetisation of carbonaceous adsorbent using iron oxide (Fe_xO_y) has potential to decrease the recovery cost of spent adsorbent because it could be separated magnetically. However, formation of various phases of Fe_xO_y and iron hydroxide (Fe_x(OH)_y) during synthesis particularly the non-magnetic phases are difficult to control and could significantly reduce the magnetic saturation of the adsorbent. Hence, formation of the most magnetic Fe_xO_y, Fe_3O_4_, on biochar via oxidative hydrolysis of FeCl_2 under alkaline media was performed to synthesise magnetic adsorbent using pine sawdust biochar (magnetic pine sawdust biochar: MPSB). The Fe_3O_4 nanoparticles on the surface of biochar contributed to high saturation magnetisation of MPSB, 47.8 A m"2/kg, enabling it to be separated from aqueous solution using a magnet. MPSB were examined physically and chemically using various techniques. Sorbent-stability, parametric, kinetics, isotherm, thermodynamic and sorbent-regeneration studies were performed to comprehend the potential of MPSB as adsorbent to remove an emerging contaminant, sulfamethoxazole (SMX) from aqueous solution. Results showed that MPSB was stable within solution pH 4–9. Adsorption of SMX onto MPSB was favourable at low pH, fast and best described by Redlich-Peterson model. Adsorption was exothermic with physisorption possibly due to hydrophobic interaction and spent adsorbent could be regenerated by organic solvents.

  5. Dechlorination and decomposition of chloroform induced by glow discharge plasma in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongjun, E-mail: lyjglow@sohu.com [College of Environmental Science & Engineering, Dalian Maritime University, Dalian 116026 (China); Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta 30332 (United States); Crittenden, John C. [Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta 30332 (United States); Wang, Lei [College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen 361024 (China); Liu, Panliang [Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta 30332 (United States)

    2016-05-05

    Highlights: • Hydrated electrons played an important role for chloroform decomposition. • Oxygen enhanced hydrolyses are critical for the chloroform mineralization. • Energy efficiency of GDP is higher than those of the typical competitive processes. - Abstract: In this study, efficient dechlorination and decomposition of chloroform (CF) induced by glow discharge plasma (GDP) in contact with a sodium sulfate solution was investigated. Intermediate byproducts were determined by ionic chromatography and headspace gas chromatography, respectively. Results showed that CF can be effectively dechlorinated and decomposed under the action of GDP. Both removal and dechlorination of CF increased with increasing pH and with addition of hydroxyl radical scavengers to the solution. Addition of H{sub 2}O{sub 2} to the solution slightly decreased the CF removal. Formic acid, oxalic acid and dichloromethane were determined as the major intermediate byproducts. Final products were carbon dioxide and hydrochloric acid. Hydrated electrons were the most likely active species responsible for initiation of the dechlorination, and hydroxyl radicals may be the ones for the oxidation of the organic intermediate byproducts. Hydrolyses of the chloromethyl radicals contributed much in the mineralization of the organic chlorine. Reaction mechanism was proposed based on the dechlorination kinetics and the distribution of intermediate byproducts.

  6. Dechlorination and decomposition of chloroform induced by glow discharge plasma in an aqueous solution

    International Nuclear Information System (INIS)

    Liu, Yongjun; Crittenden, John C.; Wang, Lei; Liu, Panliang

    2016-01-01

    Highlights: • Hydrated electrons played an important role for chloroform decomposition. • Oxygen enhanced hydrolyses are critical for the chloroform mineralization. • Energy efficiency of GDP is higher than those of the typical competitive processes. - Abstract: In this study, efficient dechlorination and decomposition of chloroform (CF) induced by glow discharge plasma (GDP) in contact with a sodium sulfate solution was investigated. Intermediate byproducts were determined by ionic chromatography and headspace gas chromatography, respectively. Results showed that CF can be effectively dechlorinated and decomposed under the action of GDP. Both removal and dechlorination of CF increased with increasing pH and with addition of hydroxyl radical scavengers to the solution. Addition of H_2O_2 to the solution slightly decreased the CF removal. Formic acid, oxalic acid and dichloromethane were determined as the major intermediate byproducts. Final products were carbon dioxide and hydrochloric acid. Hydrated electrons were the most likely active species responsible for initiation of the dechlorination, and hydroxyl radicals may be the ones for the oxidation of the organic intermediate byproducts. Hydrolyses of the chloromethyl radicals contributed much in the mineralization of the organic chlorine. Reaction mechanism was proposed based on the dechlorination kinetics and the distribution of intermediate byproducts.

  7. Oxidation of cumene hydroperoxide on glassy carbon electrodes in aqueous solution and its interaction with ascorbic and gallic acids

    International Nuclear Information System (INIS)

    Estévez, Rafael; Mellado, José Miguel Rodríguez; Mayén, Manuel

    2015-01-01

    The cumene hydroperoxide oxidation on glassy carbon electrodes involves an irreversible one-electron transfer to peroxide and phenoxy radicals, being the main end products hydroquinone and acetone. The overall oxidation mechanism occurs in two steps: formation of acetone and a phenoxy radical, and the reaction of this phenoxy radical with water, getting stability by oxidizing into p-benzoquinone The interaction of such radicals with ascorbic and gallic acids decreases the oxidation signal of cumene hydroperoxide in differential pulse voltammetry. This decrease, due to the scavenging of the radicals formed after the electron transfer, is related to the antioxidant activities. So, it is possible to substitute the mercury as a probe for the electrochemical determination of antioxidant activity.

  8. The influence of sonication of poly(ethylene oxide) solutions to the quality of resulting electrospun nanofibrous mats

    Czech Academy of Sciences Publication Activity Database

    Peer, Petra; Filip, Petr; Polášková, M.; Kucharczyk, P.; Pavlínek, V.

    2016-01-01

    Roč. 126, April (2016), s. 101-106 ISSN 0141-3910 Institutional support: RVO:67985874 Keywords : electrospinning * nanofibres * poly(ethylene oxide) * sonication * degradation Subject RIV: BK - Fluid Dynamics Impact factor: 3.386, year: 2016

  9. In situ characterization of uranium and americium oxide solid solution formation for CRMP process: first combination of in situ XRD and XANES measurements.

    Science.gov (United States)

    Caisso, Marie; Picart, Sébastien; Belin, Renaud C; Lebreton, Florent; Martin, Philippe M; Dardenne, Kathy; Rothe, Jörg; Neuville, Daniel R; Delahaye, Thibaud; Ayral, André

    2015-04-14

    Transmutation of americium in heterogeneous mode through the use of U1-xAmxO2±δ ceramic pellets, also known as Americium Bearing Blankets (AmBB), has become a major research axis. Nevertheless, in order to consider future large-scale deployment, the processes involved in AmBB fabrication have to minimize fine particle dissemination, due to the presence of americium, which considerably increases the risk of contamination. New synthesis routes avoiding the use of pulverulent precursors are thus currently under development, such as the Calcined Resin Microsphere Pelletization (CRMP) process. It is based on the use of weak-acid resin (WAR) microspheres as precursors, loaded with actinide cations. After two specific calcinations under controlled atmospheres, resin microspheres are converted into oxide microspheres composed of a monophasic U1-xAmxO2±δ phase. Understanding the different mechanisms during thermal conversion, that lead to the release of organic matter and the formation of a solid solution, appear essential. By combining in situ techniques such as XRD and XAS, it has become possible to identify the key temperatures for oxide formation, and the corresponding oxidation states taken by uranium and americium during mineralization. This paper thus presents the first results on the mineralization of (U,Am) loaded resin microspheres into a solid solution, through in situ XAS analysis correlated with HT-XRD.

  10. Self-assembling of poly(ε-caprolactone)-b-poly(ethylene oxide) diblock copolymers in aqueous solution and at the silica-water interface

    International Nuclear Information System (INIS)

    Leyh, B.; Vangeyte, P.; Heinrich, M.; Auvray, L.; De Clercq, C.; Jerome, R.

    2004-01-01

    Small-angle neutron scattering is used to investigate the self-assembling behaviour of poly(ε-caprolactone)-b-poly(ethylene oxide) diblock copolymers with various block lengths (i) in aqueous solution, (ii) in aqueous solution with the addition of sodium dodecyl sulphate (SDS) and (iii) at the silica-water interface. Micelles are observed under our experimental conditions due to the very small critical micellar concentration of these copolymers (0.01 g/l). The poly(ε-caprolactone) core is surrounded by a poly(ethylene oxide) corona. The micellar form factors have been measured at low copolymer concentrations (0.2 wt%) under selected contrast matching conditions. The data have been fitted to various analytical models to extract the micellar core and corona sizes. SDS is shown to induce partial micelle disruption together with an increase of the poly(ethylene oxide) corona extension from 25% (without SDS) to 70% (with SDS) of a completely extended PEO 114 chain. Our data at the silica-water interface are compatible with the adsorption of micelles

  11. Sonolytic Oxidation of Tc(IVO2nH2O Nanoparticles to Tc(VIIO4 in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    M. Zakir

    2010-04-01

    Full Text Available Sonolysis of a hydrosol of TcO2nH2O was investigated in the Ar- or He- atmosphere. Colloidal TcO2nH2O nanoparticles were irradiated with a 200 kHz and 1.25 W/cm2 ultrasound. It was found that the TcO2nH2O colloids dispersed in an aqueous solution (under Ar or He atmosphere was completely dissolved by ultrasonic irradiation (200 kHz, 200 W. The original brownish black color of the suspension slowly disappeared leaving behind a colorless solution. This change suggests that oxidation of Tc(IV to Tc(VII takes place. The oxidation was almost complete during 30 minutes sonication time under argon atmosphere for initial concentration of 6.0E-5 M. Addition of t-butyl alcohol, an effective radical scavenger which readily reacts with OH radicals, supressed the dissolution of TcO2nH2O colloids. This reaction indicates that TcO2nH2O molecules are oxidized by OH radicals produced in cavitation bubbles.

  12. Measurement and protection of the oxidative damage induced by high-LET carbon-ion irradiation in salmon sperm DNA solution

    International Nuclear Information System (INIS)

    Moritake, T.; Nose, T.; Tsuboi, K.; Anzai, K.; Ikota, N.; Ozawa, T.; Ando, K.

    2003-01-01

    The aims of this study are to quantify the yield of hydroxyl radicals (OH) , and to evaluate the oxidative damage on DNA after high-linear energy transfer (LET) carbon-ion beams and x-rays. For this purpose, the relationship between the radiolytic yield of OH in aqueous solution and 8-hydroxydeoxyguanosine (8-OHdG) level in DNA solution were assessed after radiation. In addition, the anti-oxidative effect of 3-methyl-1-phenyl-2-pyrazonline-5-one (edaravone) on DNA was evaluated. Culture medium containing 200 mM 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was irradiated with doses of 0 to 20 Gy with an LET of 20 to 90 keV/μm, and the yields of OH were measured using an electron spin resonance (ESR) spectrometer. Salmon sperm DNA solution at a concentration of 1.0 mg/ml was irradiated with 10 Gy of x-rays or 290 MeV/nucleon carbon-ion beams with an LET range of 20-80 keV/μm. 8-OHdG levels in the DNA solution were measured by HPLC with an electrochemical detector (ECD) after each irradiation. Edaravone was added to the DNA solution in final concentrations of 10 μM to 1 mM and 8-OHdG levels were measured by the same method after irradiation. The yield of OH by carbon-ion radiolysis increased in proportion to the absorbed dose over the range of 0 to 20 Gy, and the yield of OH decreased as LET increased logarithmically from 20 to 90 keV/μm. The level of 8-OHdG increased dose-dependently after x-ray irradiation, and it was significantly suppressed by edaravone. Furthermore, the yield of 8-OHdG and the protection efficiency by edaravone decreased as LET value increased. These unique findings provide further understanding of the indirect effect of high-LET radiation, and chemical protection of oxidative damage on DNA is important for clinical application of high-LET radiation

  13. Measurement and protection of the oxidative damage induced by high-LET carbon-ion irradiation in salmon sperm DNA solution

    Energy Technology Data Exchange (ETDEWEB)

    Moritake, T; Nose, T [University of Tsukuba, (Japan); Tsuboi, K [Institute of Clinical Medical Center, (Japan); Anzai, K; Ikota, N [National Institute of Radiological Sciences, (Japan); Ozawa, T [Redox Regulation Research Group, (Japan); Ando, K [Research Center of Charged Particle Therapy, (Japan). National Institution

    2003-07-01

    The aims of this study are to quantify the yield of hydroxyl radicals (OH) , and to evaluate the oxidative damage on DNA after high-linear energy transfer (LET) carbon-ion beams and x-rays. For this purpose, the relationship between the radiolytic yield of OH in aqueous solution and 8-hydroxydeoxyguanosine (8-OHdG) level in DNA solution were assessed after radiation. In addition, the anti-oxidative effect of 3-methyl-1-phenyl-2-pyrazonline-5-one (edaravone) on DNA was evaluated. Culture medium containing 200 mM 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was irradiated with doses of 0 to 20 Gy with an LET of 20 to 90 keV/{mu}m, and the yields of OH were measured using an electron spin resonance (ESR) spectrometer. Salmon sperm DNA solution at a concentration of 1.0 mg/ml was irradiated with 10 Gy of x-rays or 290 MeV/nucleon carbon-ion beams with an LET range of 20-80 keV/{mu}m. 8-OHdG levels in the DNA solution were measured by HPLC with an electrochemical detector (ECD) after each irradiation. Edaravone was added to the DNA solution in final concentrations of 10 {mu}M to 1 mM and 8-OHdG levels were measured by the same method after irradiation. The yield of OH by carbon-ion radiolysis increased in proportion to the absorbed dose over the range of 0 to 20 Gy, and the yield of OH decreased as LET increased logarithmically from 20 to 90 keV/{mu}m. The level of 8-OHdG increased dose-dependently after x-ray irradiation, and it was significantly suppressed by edaravone. Furthermore, the yield of 8-OHdG and the protection efficiency by edaravone decreased as LET value increased. These unique findings provide further understanding of the indirect effect of high-LET radiation, and chemical protection of oxidative damage on DNA is important for clinical application of high-LET radiation.

  14. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Hosseini, Rahim; Jamehbozorg, Bahman

    2008-01-01

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied

  15. Modification of Colombian clays with pillars mixed Al-Fe and their evaluation in the catalytic oxidation of phenol in diluted watery solution

    International Nuclear Information System (INIS)

    Galeano, Luis A; Moreno G, Sonia

    2002-01-01

    The environmental legislation has become in the last time particularly restrictive with the bio-recalcitrant pollutants manage in the wastewaters. The pillared clays show great versatility to adjust at demands of the environmental reactions. Present study show that is achieve the modification of starting Colombian clays with precursor solutions of Al-Fe mixed pillars, and is found an excellent performance of them in the catalytic oxidation of aqueous solutions with middle contents of Total Organic Carbon TOC (36 mg C/L). The materials prepared in this way reached quantitative conversion of phenol, as model pollutant, in 2 hours of reaction at 20 Celsius degrade and atmospheric pressure; in 4 hours of reaction, the removal reached 62% of TOC in the solution yielding light carboxylic acids as main byproducts, although that CO 2 . The materials are stable under strongly oxidation media of reaction, and the iron leached in the effluent is close to 0,2 mg/L for the material of better catalytic performance

  16. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Hosseini, Rahim; Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2008-09-15

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied.

  17. Treatment of model and galvanic waste solutions of copper(II) ions using a lignin/inorganic oxide hybrid as an effective sorbent.

    Science.gov (United States)

    Ciesielczyk, Filip; Bartczak, Przemysław; Klapiszewski, Łukasz; Jesionowski, Teofil

    2017-04-15

    A study was made concerning the removal of copper(II) ions from model and galvanic waste solutions using a new sorption material consisting of lignin in combination with an inorganic oxide system. Specific physicochemical properties of the material resulted from combining the activity of the functional groups present in the structure of lignin with the high surface area of the synthesized oxide system (585m 2 /g). Analysis of the porous structure parameters, particle size and morphology, elemental composition and characteristic functional groups confirmed the effective synthesis of the new type of sorbent. A key element of the study was a series of tests of adsorption of copper(II) ions from model solutions. It was determined how the efficiency of the adsorption process was affected by the process time, mass of sorbent, concentration of adsorbate, pH and temperature. Potential regeneration of adsorbent, which provides the possibility of its reusing and recovering the adsorbed copper, was also analyzed. The sorption capacity of the material was measured (83.98mg/g), and the entire process was described using appropriate kinetic models. The results were applied to the design of a further series of adsorption tests, carried out on solutions of real sewage from a galvanizing plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The effects of additives on the microstructure and sinterability of molybdenum oxide - study of related solid solutions

    International Nuclear Information System (INIS)

    Kassem, M.

    2006-01-01

    This study focuses on the phase transformation induced during mixing a fixed quantity of MoO 3 with various concentration of V 2 O 5 , Bn 2 O 5 , Al 2 O 3 and pure aluminium. These concentrations are 2, 3, 4, 5, 10, 20, 40 and 50%. Employing several physical techniques such as x-ray powder diffraction, FTIR and DTA, different solid solution were identified. Also the compressibility and sintering of these solid solutions have been studied via the variation of the density of pellets prepared from these solid solutions (Author)

  19. Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique

    Directory of Open Access Journals (Sweden)

    Ioannis S. Tsagkalias

    2017-09-01

    Full Text Available The synthesis of nanocomposite materials based on poly(methyl methacrylate and graphene oxide (GO is presented using the in situ polymerization technique, starting from methyl methacrylate, graphite oxide, and an initiator, and carried out either with (solution or without (bulk in the presence of a suitable solvent. Reaction kinetics was followed gravimetrically and the appropriate characterization of the products took place using several experimental techniques. X-ray diffraction (XRD data showed that graphite oxide had been transformed to graphene oxide during polymerization, whereas FTIR spectra revealed no significant interactions between the polymer matrix and GO. It appears that during polymerization, the initiator efficiency was reduced by the presence of GO, resulting in a reduction of the reaction rate and a slight increase in the average molecular weight of the polymer formed, measured by gel permeation chromatography (GPC, along with an increase in the glass transition temperature obtained from differential scanning calorimetry (DSC. The presence of the solvent results in the suppression of the gel-effect in the reaction rate curves, the synthesis of polymers with lower average molecular weights and polydispersities of the Molecular Weight Distribution, and lower glass transition temperatures. Finally, from thermogravimetric analysis (TG, it was verified that the presence of GO slightly enhances the thermal stability of the nano-hybrids formed.

  20. Oxidation reactions catalyzed by cobalt ions in a photocatalytic system based on solutions of lecit hin vesicles

    International Nuclear Information System (INIS)

    Tsvetkov, I.M.; Lymar, S.V.; Parmon, V.N.; Zamaraev, V.I.

    1986-01-01

    The features of the light-induced transfer of electrons through the membranes of lecithin vesicles with an electron carrier, viz., cetyl viologen, incorporated in the lipid bilayer have been studied with the use of the water-soluble trisbipyridyl complex of ruthenium (II) as a photocatalyst. It has been shown that additions of cobalt ions to the systems just indicated are capable of catalyzing the oxidation processes of organic compounds (most probably, of lecithin), the role of the oxidizing agent being played by Ru(bpy) 3 3+ , which forms upon the transfer of an electron to the acceptor Fe(CN) 6 3- through the lipid membrane The possibility of the utilization of the photocatalytic oxidation of water to oxygen under the action of visible light has been discussed

  1. Catalytic oxidation of methanol on Pt/X (X = CaTP, NaTP electrodes in sulfuric acid solution

    Directory of Open Access Journals (Sweden)

    Said Benmokhtar

    2013-10-01

    Full Text Available In this paper, we report the synthesis and characterization of electrodes based on NASICON type phosphates. The study of the electrochemical oxidation of methanol at ambient temperature on electrodes based on NASICON type Ca0,5Ti2(PO43 (CaTP and Na5Ti(PO43 (NaTP compared to that of the platinum electrode model has been conducted by cyclic voltammetry in acidic medium. The results showed a significant increase of current density on the electro oxidation of methanol on the material developed based NASICON structure CaTP, cons deactivation of the electro oxidation is observed the closed structure type NaTP.

  2. Crystal structure of (μ-1,4-dicarboxybutane-1,4-dicarboxylatobis[bis(triphenylphosphanesilver(I] dichloromethane trisolvate

    Directory of Open Access Journals (Sweden)

    Peter Frenzel

    2016-02-01

    Full Text Available The molecular structure of the tetrakis(triphenylphosphanyldisilver salt of butane-1,1,4,4-tetracarboxylic acid, [Ag2(C8H8O8(C18H15P4]·3CH2Cl2, crystallizes with one and a half molecules of dichloromethane in the asymmetric unit. The coordination complex exhibits an inversion centre through the central CH2—CH2 bond. The AgI atom has a distorted trigonal–planar P2O coordination environment. The packing is characterized by intermolecular T-shaped π–π interactions between the phenyl rings of the PPh3 substituents in neighbouring molecules, forming a ladder-type superstructure parallel to [010]. These ladders are arranged in layers parallel to (101. Intramolecular hydrogen bonds between the OH group and one O atom of the Ag-bonded carboxylate group results in an asymmetric bidendate coordination of the carboxylate moiety to the AgI ion.

  3. Albibacter methylovorans gen. nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane.

    Science.gov (United States)

    Doronina, N V; Trotsenko, Y A; Tourova, T P; Kuznetsov, B B; Leisinger, T

    2001-05-01

    A novel genus, Albibacter, with one species, Albibacter methylovorans sp. nov., is proposed for a facultatively chemolithotrophic and methylotrophic bacterium (strain DM10T) with the ribulose bisphosphate (RuBP) pathway of C1 assimilation. The bacterium is a Gram-negative, aerobic, asporogenous, nonmotile, colourless rod that multiplies by binary fission. The organism utilizes dichloromethane, methanol, methylamine, formate and CO2/H2, as well as a variety of polycarbon compounds, as carbon and energy sources. It is neutrophilic and mesophilic. The major cellular fatty acids are straight-chain unsaturated C18:1, saturated C16:0 and cyclopropane C19:0 acids. The main ubiquinone is Q-10. The dominant phospholipids are phosphatidyl ethanolamine, phosphatidyl glycerol, phosphatidyl choline and cardiolipin. The DNA G+C content is 66.7 mol%. Strain DM10T has a very low degree of DNA-DNA hybridization (4-7%) with the type species of the genera Paracoccus, Xanthobacter, Blastobacter, Angulomicrobium, Ancylobacter and Ralstonia of RuBP pathway methylobacteria. Another approach, involving comparative 16S rDNA analysis, has shown that the novel isolate represents a separate branch within the alpha-2 subgroup of the Proteobacteria. The type species of the new genus is Albibacter methylovorans sp. nov.; the type strain is DM10T (= VKM B-2236T = DSM 13819T).

  4. Ag(I)-bovine serum albumin hydrosol-mediated formation of Ag3PO4/reduced graphene oxide composites for visible-light degradation of Rhodamine B solution.

    Science.gov (United States)

    Ma, Peiyan; Chen, Anliang; Wu, Yan; Fu, Zhengyi; Kong, Wei; Che, Liyuan; Ma, Ruifang

    2014-03-01

    A cost-effective Ag(I)-bovine serum albumin (BSA) supramolecular hydrosol strategy was utilized to assemble Ag3PO4 nanospheres onto reduced graphene oxide (rGO) sheets. The obtained composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy. Compared with the pure Ag3PO4 crystals and Ag3PO4 particles prepared with Ag(I)-BSA hydrosol as precursor, the Ag3PO4/rGO composites obtained with different content of graphene oxide indicated improved visible-light-driven photocatalysis activity for the decomposition of Rhodamine B aqueous solution. The results pointed to the possibility of synthesizing graphene-based photocatalysts by metal ion-BSA hydrosol. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer.

    Science.gov (United States)

    Bhaumik, Saikat; Pal, Amlan J

    2014-07-23

    We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.

  6. Iron(III) porphyrin-catalysed oxidation reactions by m-chloro ...

    Indian Academy of Sciences (India)

    Unknown

    The notable feature in this study is that none of the kinetic traces are expo- nential. A representative plot is given in figure 1 and the quantitative spectrum of TTBP• radical in dichloromethane is given in figure 2 (bold line). In this oxidation reaction under all the conditions, non-exponential kinetic traces were always obser-.

  7. Kinetics and selectivity of the oxidation of methylbenzenes in Co(III)-CH3COOH-CF3COOH solutions. Comparison with nitration and hydroxylation reactions

    International Nuclear Information System (INIS)

    Rudakov, E.S.; Lobachev, V.L.

    1989-01-01

    Data have been obtained concerning the kinetics, substrate selectivity, and kinetic isotope effect for the first stage in the oxidation of a series of arenes, from benzene to hexamethylbenzene, by Co(III) acetate in CH 3 COOH-CF 3 COOH (1.9 M) solutions at 25 degree C. A similarity was noted between substrate selectivity for reactions of alkylbenzenes with Co(III) and electrophilic nitration reactions, which occur via an electron transfer step. It was also found that substrate selectivity for these reactions differs significantly from that found for electrophilic hydroxylation reactions, which occur via an intermediate slow step involving σ-complex formation

  8. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    Science.gov (United States)

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.

    2012-06-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.

  9. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    KAUST Repository

    Nayak, Pradipta K.

    2012-06-22

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin filmtransistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectrictransistors, which is very promising for low-power non-volatile memory applications.

  10. Tannic acid promotes ion release of copper oxide nanoparticles: Impacts from solution pH change and complexation reactions.

    NARCIS (Netherlands)

    Zhao, Jing; Liu, Yang; Pan, Bo; Gao, Guoqian; Liu, Ying; Liu, Siqian; Liang, Ni; Zhou, Dandan; Vijver, Martina G; Peijnenburg, Willie J G M

    2017-01-01

    The increasing number of applications in which copper oxide nanoparticles (CuO NPs) are used, may lead to potential release of CuO NPs into the environment. However, the impact of natural organic matters on the behavior and fate of CuO NPs in aquatic media is still largely unknown. In this study,

  11. Synthesis of spherical metal oxide particles using homogeneous precipitation of aqueous solutions of metal sulfates with urea

    Czech Academy of Sciences Publication Activity Database

    Šubrt, Jan; Štengl, Václav; Bakardjieva, Snejana; Szatmáry, Lórant

    2006-01-01

    Roč. 169, č. 1 (2006), s. 33-40 ISSN 0032-5910 R&D Projects: GA MŠk LC523; GA ČR GA104/04/0467 Institutional research plan: CEZ:AV0Z40320502 Keywords : nanoparticles * homogenous hydrolysis * oxides Subject RIV: CA - Inorganic Chemistry Impact factor: 1.232, year: 2006

  12. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.

    Science.gov (United States)

    Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru

    2011-04-19

    The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society

  13. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  14. Low-cost label-free electrical detection of artificial DNA nanostructures using solution-processed oxide thin-film transistors.

    Science.gov (United States)

    Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2013-11-13

    A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.

  15. Addition and elimination kinetics in OH radical induced oxidation of phenol and cresols in acidic and alkaline solutions

    International Nuclear Information System (INIS)

    Roder, M.; Wojnarovits, L.; Foeldiak, G.; Emmi, S.S.; Beggiato, G.; D'Angelantonio, M.

    1999-01-01

    The rates of the two consecutive reactions, OH radical addition and H 2 O/OH - elimination, were studied by pulse radiolysis in highly acidic (pH=1.3-1.9) and alkaline (pH∼11) solutions, respectively, for phenol and for the three cresol isomers. The rate coefficient of the addition as measured by the build-up of phenoxyl radical absorbance and by a competitive method is the same (1.4±0.1)x10 10 mol -1 dm 3 s -1 both in acidic and alkaline solution. The rate coefficient of the H 2 O elimination in acidic solution is (1.6±0.2)x10 6 s -1 , whereas the coefficient of the OH - elimination in alkaline solutions is 6-8 times higher. The kinetics of the phenoxyl radical formation was described by the two-exponential equation of the consecutive reactions: the first exponential is related to the pseudo-first-order addition, while the second to the elimination reaction. No considerable structure dependence was found in the rate coefficients, indicating that the methyl substitutent in these highly acidic or alkaline solutions influences neither the addition nor the elimination rate

  16. Surface coverage and corrosion inhibition effect of Rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions

    Science.gov (United States)

    Loto, Roland Tolulope

    2018-03-01

    Electrochemical analysis of the corrosion inhibition and surface protection properties of the combined admixture of Rosmarinus officinalis and zinc oxide on low carbon steel in 1 M HCl and H2SO4 solution was studied by potentiodynamic polarization, open circuit potential measurement, optical microscopy and ATR-FTIR spectroscopy. Results obtained confirmed the compound to be more effective in HCl solution, with optimal inhibition efficiencies of 93.26% in HCl and 87.7% in H2SO4 acid solutions with mixed type inhibition behavior in both acids. The compound shifts the corrosion potential values of the steel cathodically in HCl and anodically in H2SO4 signifying specific corrosion inhibition behavior without applied potential. Identified functional groups of alcohols, phenols, 1°, 2° amines, amides, carbonyls (general), esters, saturated aliphatic, carboxylic acids, ethers, aliphatic amines, alkenes, aromatics, alkyl halides and alkynes within the compound completely adsorbed onto the steel forming a protective covering. Thermodynamic calculations showed physisorption molecular interaction with the steel's surface according to Langmuir and Frumkin adsorption isotherms. Optical microscopy images of the inhibited and uninhibited steels contrast each other with steel specimens from HCl solution showing a better morphology.

  17. The effect of the solution flow rate on the properties of zinc oxide (ZnO) thin films deposited by ultrasonic spray

    International Nuclear Information System (INIS)

    Attaf, A.; Benkhetta, Y.; Saidi, H.; Bouhdjar, A.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-01-01

    In this work, we used a system based on ultrasonic spray pyrolysis technique. By witch, we have deposited thin films of zinc oxide (ZnO) with the variation of solution flow rate from 50 ml / h to 150 ml / h, and set other parameters such as the concentration of the solution, the deposition time, substrate temperature and the nozzel -substrate distance. In order to study the influence of the solution flow rate on the properties of the films produced, we have several characterization techniques such as X-ray diffraction to determine the films structure, the scanning electron microscopy SEM for the morphology of the surfaces, EDS spectroscopy for the chemical composition, UV-Visible-Nir spectroscopy for determination the optical proprieties of thin films.The experimental results show that: the films have hexagonal structure at the type (wurtzite), the average size of grains varies from 20.11 to 32.45 nm, the transmittance of the films equals 80% in visible rang and the band gap is varied between 3.274 and 3.282 eV, when the solution flow rate increases from 50 to 150 ml/h

  18. The effect of the solution flow rate on the properties of zinc oxide (ZnO) thin films deposited by ultrasonic spray

    Science.gov (United States)

    Attaf, A.; Benkhetta, Y.; Saidi, H.; Bouhdjar, A.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-03-01

    In this work, we used a system based on ultrasonic spray pyrolysis technique. By witch, we have deposited thin films of zinc oxide (ZnO) with the variation of solution flow rate from 50 ml / h to 150 ml / h, and set other parameters such as the concentration of the solution, the deposition time, substrate temperature and the nozzel -substrate distance. In order to study the influence of the solution flow rate on the properties of the films produced, we have several characterization techniques such as X-ray diffraction to determine the films structure, the scanning electron microscopy SEM for the morphology of the surfaces, EDS spectroscopy for the chemical composition, UV-Visible-Nir spectroscopy for determination the optical proprieties of thin films.The experimental results show that: the films have hexagonal structure at the type (wurtzite), the average size of grains varies from 20.11 to 32.45 nm, the transmittance of the films equals 80% in visible rang and the band gap is varied between 3.274 and 3.282 eV, when the solution flow rate increases from 50 to 150 ml/h.

  19. Surface coverage and corrosion inhibition effect of Rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions

    Directory of Open Access Journals (Sweden)

    Roland Tolulope Loto

    2018-03-01

    Full Text Available Electrochemical analysis of the corrosion inhibition and surface protection properties of the combined admixture of Rosmarinus officinalis and zinc oxide on low carbon steel in 1 M HCl and H2SO4 solution was studied by potentiodynamic polarization, open circuit potential measurement, optical microscopy and ATR-FTIR spectroscopy. Results obtained confirmed the compound to be more effective in HCl solution, with optimal inhibition efficiencies of 93.26% in HCl and 87.7% in H2SO4 acid solutions with mixed type inhibition behavior in both acids. The compound shifts the corrosion potential values of the steel cathodically in HCl and anodically in H2SO4 signifying specific corrosion inhibition behavior without applied potential. Identified functional groups of alcohols, phenols, 1°, 2° amines, amides, carbonyls (general, esters, saturated aliphatic, carboxylic acids, ethers, aliphatic amines, alkenes, aromatics, alkyl halides and alkynes within the compound completely adsorbed onto the steel forming a protective covering. Thermodynamic calculations showed physisorption molecular interaction with the steel’s surface according to Langmuir and Frumkin adsorption isotherms. Optical microscopy images of the inhibited and uninhibited steels contrast each other with steel specimens from HCl solution showing a better morphology. Keywords: Corrosion, Inhibitor, Adsorption, Steel, Acid

  20. High Electron Mobility Thin-Film Transistors Based on Solution-Processed Semiconducting Metal Oxide Heterojunctions and Quasi-Superlattices

    KAUST Repository

    Lin, Yen-Hung; Faber, Hendrik; Labram, John G.; Stratakis, Emmanuel; Sygellou, Labrini; Kymakis, Emmanuel; Hastas, Nikolaos A.; Li, Ruipeng; Zhao, Kui; Amassian, Aram; Treat, Neil D.; McLachlan, Martyn; Anthopoulos, Thomas D.

    2015-01-01

    High mobility thin-film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin-film transistors is reported that exploits the enhanced electron transport properties of low-dimensional polycrystalline heterojunctions and quasi-superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band-like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature-dependent electron transport and capacitance-voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas-like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll-to-roll, etc.) and can be seen as an extremely promising technology for application in next-generation large area optoelectronics such as ultrahigh definition optical displays and large-area microelectronics where high performance is a key requirement.