WorldWideScience

Sample records for oxidized arc magmas

  1. Oxidation State of Iron in the Izu-Bonin Arc Initial Magma and Its Influence Factors

    Science.gov (United States)

    Li, H.; Arculus, R. J.; Brandl, P. A.; Hamada, M.; Savov, I. P.; Zhu, S.; Hickey-Vargas, R.; Tepley, F. J., III; Meffre, S.; Yogodzinski, G. M.; McCarthy, A.; Barth, A. P.; Kanayama, K.; Kusano, Y.; Sun, W.

    2014-12-01

    The redox state of mantle-derived magmas is a controversial issue, especially whether island arc basalts are more oxidized than those from mid-ocean ridges. Usually, arc magmas have higher Fe3+/Fe2+ and calculated oxygen fugacity (fO2) than mid-ocean ridge basalts (MORB). It is the high fO2 of arc magma that apparently delays onset of sulfide fractionation and sequestration of precious/base metals thereby facilitating the formation of many giant gold-copper deposits typically associated with subduction zones. But due to a paucity of Fe3+/Fe2+ data for primary mantle-derived arc magmas, the cause for high fO2 of these magma types is still controversial; causes may include inter alia subduction-released oxidized material addition to the mantle wedge source of arc magma, partial melting of subducted slab, and redox changes occurring during ascent of the magma. Fortunately, IODP expedition 351 drilling at IODP Site U1438 in the Amami-Sankaku Basin of the northwestern Philipine Sea, adjacent to the proto-Izu-Bonin Arc at the Kyushu-Palau Ridge (KPR), recovered not only volcaniclastics derived from the inception of Izu-Bonin Mariana (IBM) arc in the Eocene, but also similar materials for the Arc's subsequent evolution through to the Late Oligocene and abandonment of the KPR as a remnant arc. Samples of the pre-Arc oceanic crustal basement were also recovered enabling us to determine the fO2of the mantle preceding arc inception. As the oxidation state of iron in basaltic glass directly relates to the fO2 , the Fe3+/∑Fe ratio [Fe3+/(Fe3++ Fe2+)] of basaltic glass are quantified by synchrotron-facilitated micro X-ray Absorption Near Edge Structure (XANES) spectroscopy to reflect its fO2. Fe K-edge µ-XANES spectra were recorded in fluorescence mode at Beamline 15U1, Shanghai Synchrotron Radiation Facility (SSRF). Synthetic silicate glass with known Fe3+/∑Fe ratio was used in data handling. The experimental results as well as preliminary data from IODP Expedition 351

  2. U-series isotopes in arc magma

    Energy Technology Data Exchange (ETDEWEB)

    Hawkesworth, C.; Turner, S.; McDermott, F.; Peate, D.; Van Calsteren, P.

    1997-12-31

    Thorium is not readily mobilized in the fluid component along destructive plate margins. Uranium is mobilized, and the resultant fractionation in U/Th can be used to estimate the rates of transfer slab derived components through the mantle wedge. The variations in Th/Yb, and by implication in the fractionation-corrected Th abundances of arc magmas largely depend on the contributions from subducted sediments. It is inferred that the distinctive high Th/Ta ratios of subduction related magmas primarily reflect the Th/Ta ratios of the subducted sediments, and that such high Th/Ta ratios are generated by processes other than those associated with recent subduction-related magmatism. Uranium and thorium isotopes have also been used to evaluate magma residence times within the crust. Thus, separated minerals and groundmass from six rocks erupted in the last 4,000 years from Soufriere on St. Vincent in the Lesser Antilles, scatter about a 50,000 year errorchron on the U-Th equiline diagram (Heath et al., 1977). Models are currently being developed to investigate how such apparent ages may relate to calculated replenishment times in steady state systems. Bulk continental crust has a lower U/Th ratio (0.25) than at least some estimates for the bulk Earth (0.26) and the depleted upper mantle (0.39). However, the island arc rocks with low U/Th ratios appear to have inherited those from subducted sediments, and arc rocks with a low sediment contribution have significantly higher U/Th. Consequently, the U/Th ratios of new crustal material generated along destructive plate margins are significantly higher than those of bulk continental crust. The low average U/Th of bulk crust may be primarily due to different crust generation processes in the Archaean, when U would be less mobile because conditions were less oxidising, and when residual garnet may have had more of a role in crust generation processes. Extended abstract. 4 figs., 23 refs.

  3. The Origin of Tholeiitic and Calc-Alkaline Trends in Arc Magmas

    Science.gov (United States)

    Luffi, P. I.; Lee, C.

    2012-12-01

    It has long been recognized that tholeiitic (TH, high-Fe/Mg) and calc-alkaline (CA, low-Fe/Mg) magmatic series define the two most important igneous differentiation trends shaping Earth's crust. While oceanic crust formation at mid-ocean ridges is typically confined to a TH trend, arc magmatism at convergent margins, considered to significantly contribute to continent formation, generates both TH and CA trends. Thus, the origin of these trends - a key issue to understanding how continental crust forms - is matter of ongoing debate. Prevalent factors thought to contribute to the TH-CA duality are: 1) redox conditions (oxygen fugacity, fO2) and H2O contents in magmas, which control the onset and abundance of high-Fe/Mg oxide mineral fractionation; 2) crystallization depths that regulate the fractionating solid assemblage and thereby the solid/liquid Kd(Fe-Mg). Relying on an extensive geochemical dataset of modern arc volcanics and thermodynamic phase equilibria modeling, here we examine the validity and relative importance of these factors in arc petrogenesis. First, to discriminate igneous rocks more efficiently, we formulate an improved CA/TH index solely based on FeO-MgO systematics. We then confirm on a quantitative basis that, on regional scales, arcs formed on thick crust tend to be more calk-alkaline than those emplaced on thinner crust are, and show that the effect of fO2 on the CA/TH index in arc magmas is more significant than that of H2O. Importantly, we demonstrate that CA trends typical for continental arcs only form when crystal fractionation is accompanied by the assimilation of oxidized crustal components; in the absence of buffering oxidized assimilants fractionating magmas follow a TH trend more common in island arcs, irrespective of their H2O content and initial fO2 level. We find that high-pressure fractionation of amphibole and garnet in arc magmas occurs too late to have a significant influence on the CA/TH index; in addition, garnet-melt and

  4. No effect of H2O degassing on the oxidation state of hydrous rhyolite magmas: a comparison of pre- and post-eruptive Fe2+ concentrations in six obsidian samples from the Mexican and Cascade arcs

    Science.gov (United States)

    Waters, L.; Lange, R. A.

    2011-12-01

    The extent to which degassing affects the oxidation state of arc magmas is widely debated. Several researchers have examined how degassing of mixed H-C-O-S-Cl fluids may change the Fe3+/FeT ratio of magmas, and it has been proposed that degassing may induce either oxidation or reduction depending on the initial oxidation state. A commonly proposed oxidation reaction is related to H2O degassing: H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt). Another mechanism by which H2O degassing can affect the iron redox state is if dissolved water affects the activity of ferrous and/or ferric iron in the melt. Although Moore et al. (1995) presented experiments showing no evidence of an affect of dissolved water on the activity of the ferric-ferrous ratio in silicate melts, other experimental results (e.g., Baker and Rutherford, 1996; Gaillard et al., 2001; 2003) indicate that there may be such an effect in rhyolite liquids. It has long been understood that rhyolites, owing to their low total iron concentrations, are more sensitive than other magma types to degassing-induced change in redox state. Therefore, a rigorous test of whether H2O degassing affects the redox state of arc magmas is best evaluated on rhyolites. In this study, a comparison is made between the pre-eruptive (pre-degassing) Fe2+ concentrations in six, phenocryst-poor (volatiles, as indicated by the low loss on ignition values (LOI ≤ 0.7 wt%). In order to test how much oxidation of ferrous iron occurred as a consequence of that degassing, we measured the ferrous iron concentration in the bulk samples by titration, using the Wilson (1960) method, which was successfully tested again three USGS and one Canadian Geological Survey standards. Our results indicate no detectable change within analytical error between pre- and post-eruptive FeO concentrations, with an average deviation of 0.09 wt% and a maximum deviation of 0.15 wt%. Our results show that H2O degassing has no effect on the redox state of

  5. Magmatic sulphides in Quaternary Ecuadorian arc magmas

    Science.gov (United States)

    Georgatou, Ariadni; Chiaradia, Massimo; Rezeau, Hervé; Wälle, Markus

    2018-01-01

    New petrographic and geochemical data on magmatic sulphide inclusions (MSIs) are presented and discussed for 15 Quaternary volcanic centers of the Ecuadorian frontal, main and back volcanic arc. MSIs occur mostly in Fe-Ti oxides (magnetite and/or magnetite-ilmenite pair) and to a lesser extent in silicate minerals (amphibole, plagioclase, and pyroxene). MSIs are present in all volcanic centers ranging in composition from basalt to dacite (SiO2 = 50-67 wt.%), indicating that sulphide saturation occurs at various stages of magmatic evolution and independently from the volcano location along the volcanic arc. MSIs also occur in dioritic, gabbroic and hornblenditic magmatic enclaves of the volcanic rocks. MSIs display variable sizes (1-30 μm) and shapes (globular, ellipsoidal, angular, irregular) and occur mostly as polymineralic inclusions composed of Fe-rich and Cu-poor (pyrrhotite) and Cu-rich (mostly chalcopyrite) phases. Aerial sulphide relative abundances range from 0.3 to 7 ppm in volcanic host rocks and from 13 to 24 ppm in magmatic enclaves. Electron microprobe analyses of MSIs indicate maximum metal contents of Cu = 65.7 wt.%, Fe = 65.2 wt.%, Ni = 10.1 wt.% for those hosted in the volcanic rocks and of Cu = 57.7 wt.%, Fe = 60.9 wt.%, Ni = 5.1 wt.%, for those hosted in magmatic enclaves. Relationships of the sulphide chemistry to the host whole rock chemistry show that with magmatic differentiation (e.g., increasing SiO2) the Cu and Ni content of sulphides decrease whereas the Fe and S contents increase. The opposite behavior is observed with the increase of Cu in the whole rock, because the latter is anti-correlated with the SiO2 whole rock content. Laser ablation ICP-MS analyses of MSIs returned maximum values of PGEs and noble metals of Pd = 30 ppm, Rh = 8.1 ppm, Ag = 92.8 ppm and Au = 0.6 ppm and Pd = 43 ppm, Rh = 22.6 ppm, Ag = 89 ppm and Au = 1 ppm for those hosted in volcanic rocks and magmatic enclaves, respectively. These PGE contents display a

  6. Slab melting and magma formation beneath the southern Cascade arc

    Science.gov (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.

    2016-01-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  7. Magma addition rates in continental arcs: New methods of calculation and global implications

    Science.gov (United States)

    Ratschbacher, B. C.; Paterson, S. R.

    2017-12-01

    The transport of mass, heat and geochemical constituents (elements and volatiles) from the mantle to the atmosphere occurs via magma addition to the lithosphere. Calculation of magma addition rates (MARs) in continental arcs based on exposed proportions of igneous arc rocks is complex and rarely consistently determined. Multiple factors influence MAR calculations such as crust versus mantle contributions to magmas, a change in MARs across the arc and with depths throughout the arc crustal column, `arc tempos' with periods of high and low magmatic activity, the loss of previous emplaced arc rocks by subsequent magmatism and return to the mantle, arc migration, variations in the intrusive versus extrusive additions and evolving arc widths and thicknesses during tectonism. All of these factors need to be considered when calculating MARs.This study makes a new attempt to calculate MARs in continental arcs by studying three arc sections: the Famatinian arc, Argentina, the Sierra Nevada batholith, California and the Coast Mountain batholith, Washington and British Columbia. Arcs are divided into fore-arc, main arc and back arc sections and `boxes' with a defined width, length and thickness spanning upper middle and lower crustal levels are assigned to each section. Representative exposed crustal slices for each depth are then used to calculate MARs based on outcrop proportions for each box. Geochemical data is used to infer crustal recycling percentages and total thickness of the arc. Preliminary results show a correlation between MARs, crustal thicknesses and magmatic flare-up durations. For instance, the Famatinian arc shows a strong decrease in MARs between the main arc section (9.4 km3/Ma/arc-km) and the fore-arc (0.61 km3/Ma/arc-km) and back-arc (1.52 km3/Ma/arc-km) regions and an increase in the amount of magmatism with depth.Global MARs over geologic timescales have the potential to investigate mantle melt generation rates and the volatile outgassing contribution

  8. Magma interaction in the root of an arc batholith

    Science.gov (United States)

    Chapman, T.; Robbins, V.; Clarke, G. L.; Daczko, N. R.; Piazolo, S.

    2016-12-01

    Fiordland, New Zealand, preserves extensive Cretaceous arc plutons, emplaced into parts of the Delamerian/Ross Orogen. Dioritic to gabbroic material emplaced at mid to lower crustal levels are exposed in the Malaspina Pluton (c. 1.2 GPa) and the Breaksea Orthogneiss (c. 1.8 GPa). Distinct magmatic pulses can be mapped in both of these plutons consistent with cycles of melt advection. Relationships are consistent with predictions from lower crustal processing zones (MASH and hot zones) considered important in the formation of Cordilleran margins. Metamorphic garnet growth is enhanced along magmatic contacts, such as where hornblende gabbronorite is cut by garnet-clinopyroxene-bearing diorite. Such features are consistent with cycles of incremental emplacement, younger magma having induced localised garnet granulite metamorphism in wall rock of older material. Temperature estimates and microstructures preserved in garnet granulite are consistent with sub-solidus, water-poor conditions in both the Malaspina and Breaksea Orthogneiss. The extent and conditions of the metamorphism implies conditions and duration was incapable of partially melting older wall rock material. The nature of interactions in intermediate to basic compositions are assessed in terms of magma genesis in the Cretaceous batholith. Most of the upper crustal felsic I-type magmatism along the margin being controlled by high-pressure garnet-clinopyroxene fractionation.

  9. Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle

    Science.gov (United States)

    Bacon, C.R.; Bruggman, P.E.; Christiansen, R.L.; Clynne, M.A.; Donnelly-Nolan, J. M.; Hildreth, W.

    1997-01-01

    Major and trace element concentrations, including REE by isotope dilution, and Sr, Nd, Pb, and O isotope ratios have been determined for 38 mafic lavas from the Mount Adams, Crater Lake, Mount Shasta, Medicine Lake, and Lassen volcanic fields, in the Cascade arc, northwestern part of the United States. Many of the samples have a high Mg# [100Mg/(Mg + FeT) > 60] and Ni content (>140 ppm) such that we consider them to be primitive. We recognize three end-member primitive magma groups in the Cascades, characterized mainly by their trace-element and alkali-metal abundances: (1) High-alumina olivine tholeiite (HAOT) has trace element abundances similar to N-MORB, except for slightly elevated LILE, and has Eu/Eu* > 1. (2) Arc basalt and basaltic andesite have notably higher LILE contents, generally have higher SiO2 contents, are more oxidized, and have higher Cr for a given Ni abundance than HAOT. These lavas show relative depletion in HFSE, have lower HREE and higher LREE than HAOT, and have smaller Eu/Eu* (0.94-1.06). (3) Alkali basalt from the Simcoe volcanic field east of Mount Adams represents the third end-member, which contributes an intraplate geochemical signature to magma compositions. Notable geochemical features among the volcanic fields are: (1) Mount Adams rocks are richest in Fe and most incompatible elements including HFSE; (2) the most incompatible-element depleted lavas occur at Medicine Lake; (3) all centers have relatively primitive lavas with high LILE/HFSE ratios but only the Mount Adams, Lassen, and Medicine Lake volcanic fields also have relatively primitive rocks with an intraplate geochemical signature; (4) there is a tendency for increasing 87Sr/86Sr, 207Pb/204Pb, and ??18O and decreasing 206Pb/204Pb and 143Nd/144Nd from north to south. The three end-member Cascade magma types reflect contributions from three mantle components: depleted sub-arc mantle modestly enriched in LILE during ancient subduction; a modern, hydrous subduction component

  10. Magma genesis and slab-wedge interaction across an island arc-continent collision zone, East Sunda Arc, Indonesia

    NARCIS (Netherlands)

    Hoogewerff, J.A.

    1999-01-01

    This thesis presents the results of a detailed trace element and isotope geochemistry study into the magma-genesis ofvolcanoes in the Adonara-Pantar Section (APS) ofthe East Sunda Arc in Indonesia, a setting where an oceanic island arc is colliding with a passive continental margin. Sr, Nd, Pb, Ra,

  11. Magma genesis and slab-wedge interaction across an island arc-continent collision zone, East Sunda Arc, Indonesia

    NARCIS (Netherlands)

    Hoogewerff, J.A.

    1999-01-01

    This thesis presents the results of a detailed trace element and isotope geochemistry study into the magma-genesis ofvolcanoes in the Adonara-Pantar Section (APS) ofthe East Sunda Arc in Indonesia, a setting where an oceanic island arc is colliding with a passive continental margin. Sr, Nd, Pb,

  12. Radioactive equilibria and disequilibria of U-series nuclides in erupting magmas from Izu arc volcanoes

    International Nuclear Information System (INIS)

    Sato, Jun; Kurihara, Yuichi; Takahashi, Masaomi

    2009-01-01

    Radioactive disequilibria among U-series nuclides are observed in the magmas from volcanoes in the world. Basaltic products from Izu arc volcanoes, including Izu-Oshima and Fuji volcanoes, show 230 Th 238 U and 226 Ra> 230 Th disequilibria, indicating that the addition of U-and Ra-rich fluid from the subducting slab to the mantle wedge at the magma genesis. The disequilibria of 226 Ra> 230 Th in the erupting magmas suggest that the timescale from magma genesis to the eruption may be less than 8000 years. (author)

  13. Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc, Japan

    Science.gov (United States)

    Sano, Takashi; Shirao, Motomaro; Tani, Kenichiro; Tsutsumi, Yukiyasu; Kiyokawa, Shoichi; Fujii, Toshitsugu

    2016-06-01

    The chemical composition of intraplate seamounts is distinct from normal seafloor material, meaning that the subduction of seamounts at a convergent margin can cause a change in the chemistry of the mantle wedge and associated arc magmas. Nishinoshima, a volcanic island in the Izu-Bonin Arc of Japan, has been erupting continuously over the past 2 years, providing an ideal opportunity to examine the effect of seamount subduction on the chemistry of arc magmas. Our research is based on the whole-rock geochemistry and the chemistry of minerals within lavas and air-fall scoria from Nishinoshima that were erupted before 1702, in 1973-1974, and in 2014. The mineral phases within the analyzed samples crystallized under hydrous conditions (H2O = 3-4 wt.%) at temperatures of 970 °C-990 °C in a shallow (3-6 km depth) magma chamber. Trace element data indicate that the recently erupted Nishinoshima volcanics are much less depleted in the high field strength elements (Nb, Ta, Zr, Hf) than other volcanics within the Izu-Bonin Arc. In addition, the level of enrichment in the Nishinoshima magmas has increased in recent years, probably due to the addition of material from HIMU-enriched (i.e., high Nb/Zr and Ta/Hf) seamounts on the Pacific Plate, which is being subducted westwards beneath the Philippine Sea Plate. This suggests that the chemistry of scoria from Nishinoshima volcano records the progressive addition of components derived from subducted seamounts.

  14. Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas

    Science.gov (United States)

    Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.

    2017-02-01

    Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peridotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid

  15. The magma plumbing system in the Mariana Trough back-arc basin at 18° N

    Science.gov (United States)

    Lai, Zhiqing; Zhao, Guangtao; Han, Zongzhu; Huang, Bo; Li, Min; Tian, Liyan; Liu, Bo; Bu, Xuejiao

    2018-04-01

    Mafic magmas are common in back-arc basin, once stalled in the crust, these magmas may undergo different evolution. In this paper, compositional and textural variations of plagioclase as well as mineral-melt geothermobarometry are presented for basalts erupted from the central Mariana Trough (CMT). These data reveal crystallization conditions and we attempt a reconstruction of the magma plumbing system of the CMT. Plagioclase megacrysts, phenocrysts, microphenocrysts, microlites, olivine, spinel, and clinopyroxene have been recognized in basalt samples, using BSE images and compositional features. The last three minerals are homogeneous as microphenocrysts. Mineral-melt barometry indicates that plagioclase crystals crystallized and eventually grew into phenocrysts and megacrysts in mush zone with depth of 5-9 km, in which the normal zoning plagioclases crystallized in the interval of various batches of basic magma recharging. Plagioclase megacrysts and phenocrysts were dissolved and/or resorbed, when new basic magmas injected into the mush zone near Moho depth. It is inferred that magma extracted from the mush zone, and adiabatically ascended via different pathways. Some basaltic magmas underwent plagioclase and clinopyroxene microphenocrysts crystallization in low-pressure before eruption. Plagioclase microlites and outermost rims probably crystallized after eruption.

  16. Magnesium Isotopes as a Tracer of Crustal Materials in Volcanic Arc Magmas in the Northern Cascade Arc

    Directory of Open Access Journals (Sweden)

    Aaron W. Brewer

    2018-03-01

    Full Text Available Fifteen North Cascade Arc basalts and andesites were analyzed for Mg isotopes to investigate the extent and manner of crustal contributions to this magmatic system. The δ26Mg of these samples vary from within the range of ocean island basalts (the lightest being −0.33 ± 0.07‰ to heavier compositions (as heavy as −0.15 ± 0.06‰. The observed range in chemical and isotopic composition is similar to that of other volcanic arcs that have been assessed to date in the circum-pacific subduction zones and in the Caribbean. The heavy Mg isotope compositions are best explained by assimilation and fractional crystallization within the deep continental crust with a possible minor contribution from the addition of subducting slab-derived fluids to the primitive magma. The bulk mixing of sediment into the primitive magma or mantle source and the partial melting of garnet-rich peridotite are unlikely to have produced the observed range of Mg isotope compositions. The results show that Mg isotopes may be a useful tracer of crustal input into a magma, supplementing traditional methods such as radiogenic isotopic and trace element data, particularly in cases in which a high fraction of crustal material has been added.

  17. Distinctly different parental magmas for plutons and lavas in the central Aleutian arc

    Science.gov (United States)

    Cai, Y.; Rioux, M. E.; Kelemen, P. B.; Goldstein, S. L.; Bolge, L.; Kylander-Clark, A. R.

    2014-12-01

    While it is generally agreed that continental crust is generated by arc magmatism, average arc lavas are basaltic while the bulk continental crust is andesitic, and this has led to many models for secondary reprocessing of the arc crust in order to form continental crust. We report new data on calc-alkaline plutons in the central Aleutians showing that they have distinctly different sources compared to Holocene tholeiitic lavas. Therefore the lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks from the central Aleutian arc show higher SiO2 at a given Mg#, higher ɛNd- and ɛHf-values, and lower Pb isotope ratios than Holocene volcanic rocks from the same region. Instead, the plutonic rocks resemble volcanics from the western Aleutians isotopically, and have chemical compositions similar to bulk continental crust. These data could reflect temporal variation of Aleutian magma source compositions, from Eocene-Miocene "isotopically depleted" and predominantly calc-alkaline to Holocene "isotopically enriched" and predominantly tholeiitic. Alternatively, they may reflect different transport and emplacement processes for the magmas that form plutons and lavas: calc-alkaline magmas with higher Si content and high viscosity may preferentially form plutons, perhaps after extensive mid-crustal degassing of initially high water contents. The latter case implies that the upper and middle arc crust is more like the calc-alkaline bulk composition of the continental crust than the lavas alone. Crustal reprocessing mechanisms that preserve upper and middle arc crust, while removing lower arc crust, can account for the genesis and evolution of continental crust. Since gabbroic lower arc crust extends from ca 20-40 km depth, and is density stable over most of this depth range, "delamination" of dense lithologies [1] may not be sufficient to accomplish this. Alternatively

  18. Eruption Depths, Magma Storage and Magma Degassing at Sumisu Caldera, Izu-Bonin Arc: Evidence from Glasses and Melt Inclusions

    Science.gov (United States)

    Johnson, E. R.

    2015-12-01

    Island arc volcanoes can become submarine during cataclysmal caldera collapse. The passage of a volcanic vent from atmospheric to under water environment involves complex modifications of the eruption style and subsequent transport of the pyroclasts. Here, we use FTIR measurements of the volatile contents of glass and melt inclusions in the juvenile pumice clasts in the Sumisu basin and its surroundings (Izu-Bonin arc) to investigate changes in eruption depths, magma storage and degassing over time. This study is based on legacy cores from ODP 126, where numerous unconsolidated (250 m), massive to normally graded pumice lapilli-tuffs were recovered over four cores (788C, 790A, 790B and 791A). Glass and clast geochemistry indicate the submarine Sumisu caldera as the source of several of these pumice lapilli-tuffs. Glass chips and melt inclusions from these samples were analyzed using FTIR for H2O and CO2 contents. Glass chips record variable H2O contents; most chips contain 0.6-1.6 wt% H2O, corresponding to eruption depths of 320-2100 mbsl. Variations in glass H2O and pressure estimates suggest that edifice collapse occurred prior-to or during eruption of the oldest of these samples, and that the edifice may have subsequently grown over time. Sanidine-hosted melt inclusions from two units record variably degassed but H2O-rich melts (1.1-5.6 wt% H2O). The lowest H2O contents overlap with glass chips, consistent with degassing and crystallization of melts until eruption, and the highest H2O contents suggest that large amounts of degassing accompanied likely explosive eruptions. Most inclusions, from both units, contain 2-4 wt% H2O, which further indicates that the magmas crystallized at pressures of ~50-100 MPa, or depths ~400-2800 m below the seafloor. Further glass and melt inclusion analyses, including major element compositions, will elucidate changes in magma storage, degassing and evolution over time.

  19. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling

    International Nuclear Information System (INIS)

    Ben Othman, D.; Paris-6 Univ., 75; White, W.M.; Cornell Univ., Ithaca, NY; Patchett, J.; Arizona Univ., Tucson

    1989-01-01

    To assess the role of sediment subduction and recycling in island arc magma genesis and mantle evolution, we have determined Sr, Nd, and Pb isotope ratios and the concentrations of K, Rb, Cs, Ba, Sr, U, Th, Pb and rare earth elements in 36 modern marine sediments, including Mn nodules, biogenic oozes, and pelagic and hemipelagic clays from the Pacific, Antlantic and Indian Oceans. Sr and Nd isotope ratios and the Sr/Nd concentration ratios in sediments are such that mixing between subducted sediment on the one hand and depleted mantle or subducted oceanic crust on the other can produce mixing arrays which may pass either through or outside of the oceanic basalt Sr-Nd isotope 'mantle array'. Thus whether isotope compositions of island arc volcanics (IAV) plot inside our outside of the mantle array is not a good indication of whether or not their sources contain a subducted sediment component. The presence of subducted sediment in the sources of IAV should lead to Cs/Rb and Pb/Ce ratios which are higher than those in oceanic basalts, and Ba/Rb ratios which may be either higher or lower than oceanic basalts. Simple mixing calculations suggest that as little as a percent or so sediment in island arc magma sources can account for the observed Cs/Rb, Pb/Ce, and Ba/Rb ratios in IAV. However, it does not appear that high Ba/La ratios and negative Ce anomalies in IAV are inherited from sediment in IAV magma sources. It is more likely these features reflect fractionation of alkalis and alkaline earths from rare earths during slab dehydration and metasomatism. Pb isotope ratios in sediments from the Warton Basin south of the Sunda Arc are collinear in 208 Pb/ 204 Pb- 207 Pb/ 204 Pb- 206 Bp/ 204 Pb space with volcanics from West Sunda, but not with volcanics from the East Sunda. This collinearity is consistent with the hypothesis that sediments similar to these are being subducted to the magma genesis zone of the West Sunda Arc. (orig./WB)

  20. Zircon crytallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)

    Science.gov (United States)

    Bachman, O.; Charlier, B.L.A.; Lowenstern, J. B.

    2007-01-01

    In contrast to most large-volume silicic magmas in continental arcs, which are thought to evolve as open systems with significant assimilation of preexisting crust, the Kos Plateau Miff magma formed dominantly by crystal fractionation of mafic parents. Deposits from this ??? 60 km3 pyroclastic eruption (the largest known in the Aegean arc) lack xenocrystic zircons [secondary ion mass spectrometry (SIMS) U-Pb ages on zircon cores never older than 500 ka] and display Sr-Nd whole-rock isotopic ratios within the range of European mantle in an area with exposed Paleozoic and Tertiary continental crust; this evidence implies a nearly closed-system chemical differentiation. Consequently, the age range provided by zircon SIMS U-Th-Pb dating is a reliable indicator of the duration of assembly and longevity of the silicic magma body above its solidus. The age distribution from 160 ka (age of eruption by sanidine 40Ar/39Ar dating; Smith et al., 1996) to ca. 500 ka combined with textural characteristics (high crystal content, corrosion of most anhydrous phenocrysts, but stability of hydrous phases) suggest (1) a protracted residence in the crust as a crystal mush and (2) rejuvenation (reduced crystallization and even partial resorption of minerals) prior to eruption probably induced by new influx of heat (and volatiles). This extended evolution chemically isolated from the surrounding crust is a likely consequence of the regional geodynamics because the thinned Aegean microplate acts as a refractory container for magmas in the dying Aegean subduction zone (continent-continent subduction). ?? 2007 Geological Society of America.

  1. Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)

    Science.gov (United States)

    Bachman, O.; Charlier, B.L.A.; Lowenstern, J. B.

    2007-01-01

    In contrast to most large-volume silicic magmas in continental arcs, which are thought to evolve as open systems with significant assimilation of preexisting crust, the Kos Plateau Tuff magma formed dominantly by crystal fractionation of mafic parents. Deposits from this ~60 km3 pyroclastic eruption (the largest known in the Aegean arc) lack xenocrystic zircons [secondary ion mass spectrometry (SIMS) U-Pb ages on zircon cores never older than 500 ka] and display Sr-Nd whole-rock isotopic ratios within the range of European mantle in an area with exposed Paleozoic and Tertiary continental crust; this evidence implies a nearly closed-system chemical differentiation. Consequently, the age range provided by zircon SIMS U-Th-Pb dating is a reliable indicator of the duration of assembly and longevity of the silicic magma body above its solidus. The age distribution from 160 ka (age of eruption by sanidine 40Ar/39Ar dating; Smith et al., 1996) to ca. 500 ka combined with textural characteristics (high crystal content, corrosion of most anhydrous phenocrysts, but stability of hydrous phases) suggest (1) a protracted residence in the crust as a crystal mush and (2) rejuvenation (reduced crystallization and even partial resorption of minerals) prior to eruption probably induced by new influx of heat (and volatiles). This extended evolution chemically isolated from the surrounding crust is a likely consequence of the regional geodynamics because the thinned Aegean microplate acts as a refractory container for magmas in the dying Aegean subduction zone (continent-continent subduction).

  2. Geochemical differentiation processes for arc magma of the Sengan volcanic cluster, Northeastern Japan, constrained from principal component analysis

    Science.gov (United States)

    Ueki, Kenta; Iwamori, Hikaru

    2017-10-01

    In this study, with a view of understanding the structure of high-dimensional geochemical data and discussing the chemical processes at work in the evolution of arc magmas, we employed principal component analysis (PCA) to evaluate the compositional variations of volcanic rocks from the Sengan volcanic cluster of the Northeastern Japan Arc. We analyzed the trace element compositions of various arc volcanic rocks, sampled from 17 different volcanoes in a volcanic cluster. The PCA results demonstrated that the first three principal components accounted for 86% of the geochemical variation in the magma of the Sengan region. Based on the relationships between the principal components and the major elements, the mass-balance relationships with respect to the contributions of minerals, the composition of plagioclase phenocrysts, geothermal gradient, and seismic velocity structure in the crust, the first, the second, and the third principal components appear to represent magma mixing, crystallizations of olivine/pyroxene, and crystallizations of plagioclase, respectively. These represented 59%, 20%, and 6%, respectively, of the variance in the entire compositional range, indicating that magma mixing accounted for the largest variance in the geochemical variation of the arc magma. Our result indicated that crustal processes dominate the geochemical variation of magma in the Sengan volcanic cluster.

  3. Quantitative evaluation of the effect of H2O degassing on the oxidation state of magmas

    Science.gov (United States)

    Lange, R. A.; Waters, L.

    2014-12-01

    The extent to which degassing of the H2O component affects the oxidation state of hydrous magmas is widely debated. Several researchers have examined how degassing of mixed H-C-O-S-Cl fluids may change the Fe3+/FeT ratio of various magmas, whereas our focus is on the H2O component. There are two ways that degassing of H2O by itself may cause oxidation: (1) the reaction: H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt), and/or (2) if dissolved water preferentially enhances the activity of ferrous vs. ferric iron in magmatic liquids. In this study, a comparison is made between the pre-eruptive oxidation states of 14 crystal-poor, jet-black obsidian samples (obtained from two Fe-Ti oxides) and their post-eruptive values (analyzed with the Wilson 1960 titration method tested against USGS standards). The obsidians are from Medicine Lake (CA), Long Valley (CA), and the western Mexican arc; all have low FeOT (1.1-2.1 wt%), rendering their Fe2+/Fe3+ ratios highly sensitive to the possible effects of substantial H2O degassing. The Fe-Ti oxide thermometer/oxybarometer of Ghiorso and Evans, (2008) gave temperatures for the 14 samples that range for 720 to 940°C and ΔNNO values of -0.9 to +1.4. With temperature known, the plagioclase-liquid hygrometer was applied and show that ≤ 6.5 wt% H2O was dissolved in the melts prior to eruption. In addition, pre-eruptive Cl and S concentrations were constrained on the basis of apatite analyses (Webster et al., 2009) and sulfur concentrations needed for saturation with pyrrhotite (Clemente et al., 2004), respectively. Maximum pre-eruptive chlorine and sulfur contents are 6000 and 200 ppm, respectively. After eruption, the rhyolites lost nearly all of their volatiles. Our results indicate no detectable change between pre- and post-eruptive Fe2+ concentrations, with an average deviation of ± 0.1 wt % FeO. Although degassing of large concentrations of S and/or Cl may affect the oxidation state of magmas, at the pre-eruptive levels

  4. Magma evolution in the Pliocene Pleistocene succession of Kos, South Aegean arc (Greece)

    Science.gov (United States)

    Pe-Piper, Georgia; Moulton, Ben

    2008-11-01

    This study investigates the petrogenesis of Pliocene-Quaternary andesites, dacites and rhyolites of the island of Kos. These volcanic rocks differ from other volcanic centres in the South Aegean arc in the narrow range of Pliocene volcanic products, the abundance of high-silica rhyolite, the lower ɛNd for a given Sr isotope composition, and greater depth to the subducting slab. Pliocene and early Pleistocene dacite stocks and rhyolite domes are succeeded by younger tuffs, notably the 0.16 Ma Kos Plateau Tuff derived from a super-eruption of an andesite stratocone now subsided beneath the sea south of Kos. Volcanic products in tuffs have been sampled from lithic clasts. Andesite, dacite and rhyolite all have ɛNd ˜+ 1.5 to -1.5 and 86Sr/ 87Sr ˜ 0.7042; this unusual composition is argued to be the result of subduction of sediments derived from the River Nile. All rock types show structures indicative of widespread magma mixing, including complexly zoned plagioclase, clinopyroxene and amphibole containing glass inclusions of trachyte and rhyolite compositions. The observed rocks result from fractionation and mixing of three principal magma types: (a) calc-alkaline high-Al basalt that fractionated to andesite at the base of crust; (b) partially melted metabasaltic amphibolite underplated at the base of crust, that fractionated to produce high-SiO 2 rhyolite; and (c) a minor component of trachytic magma from partial melting of enriched subcontinental lithospheric mantle. The complexly zoned phenocrysts with glass inclusions provide specific evidence for mixing of these three components. Specifically, it was the emplacement of the andesite into a voluminous rhyolite magma in a mid-crustal magma chamber that led to the explosive Kos Plateau Tuff super-eruption.

  5. Glass inclusions in volcanic rocks in the Okinawa Trough back-arc basin: constraints on magma genesis and evolution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The major elemnt compositions of glass inclusions in plagioclase and pyroxene phenocrysts of basalt and pumice in the Okinawa Trough back-arc basin are determined by electron microprobe. The results indicate that basalt and pumice are cognate and respectively represent the proluots at early stages of mgmtism and at late stage of crystal fractionation. The initial magrma in the trough is rich in H2O. The variation of H2O content in magma may play an important role in the magma evolution. Plagioclase is the mineral crystallized throughout the whole magrmatic process and accumulates in the zoned magma chamber. From these features it can he inferred that the initial magma in the Okinawa Trough, whose opening began in recent years, is serious ly affected by fluid or other materials carried by subducting slab and the geocbemical feature of volcanic rocks is in some degree similar to that of lavas in island-arc environments.

  6. The role of crystallization-driven exsolution on the sulfur mass balance in volcanic arc magmas

    Science.gov (United States)

    Su, Yanqing; Huber, Christian; Bachmann, Olivier; Zajacz, Zoltán; Wright, Heather M.; Vazquez, Jorge A.

    2016-01-01

    The release of large amounts of sulfur to the stratosphere during explosive eruptions affects the radiative balance in the atmosphere and consequentially impacts climate for up to several years after the event. Quantitative estimations of the processes that control the mass balance of sulfur between melt, crystals, and vapor bubbles is needed to better understand the potential sulfur yield of individual eruption events and the conditions that favor large sulfur outputs to the atmosphere. The processes that control sulfur partitioning in magmas are (1) exsolution of volatiles (dominantly H2O) during decompression (first boiling) and during isobaric crystallization (second boiling), (2) the crystallization and breakdown of sulfide or sulfate phases in the magma, and (3) the transport of sulfur-rich vapor (gas influx) from deeper unerupted regions of the magma reservoir. Vapor exsolution and the formation/breakdown of sulfur-rich phases can all be considered as closed-system processes where mass balance arguments are generally easier to constrain, whereas the contribution of sulfur by vapor transport (open system process) is more difficult to quantify. The ubiquitous “excess sulfur” problem, which refers to the much higher sulfur mass released during eruptions than what can be accounted for by amount of sulfur originally dissolved in erupted melt, as estimated from melt inclusion sulfur concentrations (the “petrologic estimate”), reflects the challenges in closing the sulfur mass balance between crystals, melt, and vapor before and during a volcanic eruption. In this work, we try to quantify the relative importance of closed- and open-system processes for silicic arc volcanoes using kinetic models of sulfur partitioning during exsolution. Our calculations show that crystallization-induced exsolution (second boiling) can generate a significant fraction of the excess sulfur observed in crystal-rich arc magmas. This result does not negate the important role of

  7. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    Science.gov (United States)

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  8. On magma fragmentation by conduit shear stress: Evidence from the Kos Plateau Tuff, Aegean Volcanic Arc

    Science.gov (United States)

    Palladino, Danilo M.; Simei, Silvia; Kyriakopoulos, Konstantinos

    2008-12-01

    Large silicic explosive eruptions are the most catastrophic volcanic events. Yet, the intratelluric mechanisms underlying are not fully understood. Here we report a field and laboratory study of the Kos Plateau Tuff (KPT, 161 ka, Aegean Volcanic Arc), which provides an excellent geological example of conduit processes that control magma vesiculation and fragmentation during intermediate- to large-scale caldera-forming eruptions. A prominent feature of the KPT is the occurrence of quite unusual platy-shaped tube pumice clasts in pyroclastic fall and current deposits from the early eruption phases preceding caldera collapse. On macroscopic and SEM observations, flat clast faces are elongated parallel to tube vesicles, while transverse surfaces often occur at ~ 45° to vesicle elongation. This peculiar pumice texture provides evidence of high shear stresses related to strong velocity gradients normal to conduit walls, which induced vesiculation and fragmentation of the ascending magma. Either an increasing mass discharge rate without adequate enlargement of a narrow central feeder conduit or a developing fissure-like feeder system related to incipient caldera collapse provided suitable conditions for the generation of plate tube pumice within magma volumes under high shear during the pre-climactic KPT eruption phases. This mechanism implies that the closer to the conduit walls (where the stronger are the velocity gradients) the larger was the proportion of plate vs. conventional (lensoid) juvenile fragments in the ascending gas-pyroclast mixture. Consequently, plate pumice clasts were mainly entrained in the outer portions of the jet and convecting regions of a sustained, Plinian-type, eruption column, as well as in occasional lateral blast currents generated at the vent. As a whole, plate pumice clasts in the peripheral portions of the column were transported at lower altitudes and deposited by fallout or partial collapse closer to the vent relative to lensoid ones

  9. Using experimental petrology to constrain genesis of wet, silicic magmas in the Tonga-Kermadec island arc

    Science.gov (United States)

    Brens, R.; Rushmer, T. A.; Turner, S.; Adam, J.

    2012-12-01

    The Tongan arc system is comprised of a pair of island chains, where the western chain is the active volcanic arc. A range of rock suites, from basaltic andesites (53-56% SiO2) to dacites (64-66% SiO2), has been recovered from Late, Tofua and Fonualei in the Tonga-Kermadec primitive island arc system. For which the question arises: What is the mechanism that allows for silicic magmas to develop in a primitive island arc system? Caufield et al. (2012) suggest that fractional crystallization of a multi magma chamber process, with varying depth, is responsible for the silicic magma generation in this arc. Models such as this one have been proposed and experimentally tested in other systems (Novarupta, Alaska) to explain the origin of these silicic rocks. Our Tongan suite of rocks has had a full geochemical analysis for majors, traces and isotopes. The lavas from Tofua and Late are Fe-rich and have low concentrations of K, Rb, Ba, Zr, REE, Pb and U. However, experimental studies are needed to complement the extensive geochemical analysis done on the Tongan arc. Former geochemical work done on the igneous rocks from both of these volcanic suites from this arc suggests that the source of these rocks extend from 1.5-5.5 km in depth (Caulfield et al., 2012). Here, we present an experimental study of the phase equilibria on a natural andesitic sample (Late 1, from Ewart et al., 1975) from the island of Late. Experiments were run using the temperature constraints between 900 to 1220oC, pressure from 5 to 25 kbars and H2O addition of mostly 5wt% (but some results were obtained at 2wt% in the rocks). In the presence of 5 wt% water, phase equilibria of these experiments show the garnet stability field at >10 kb for 900 oC and increases with increasing temperature, while plagioclase enters at lower pressures when garnet exits. Experimental results currently suggests, at lower temperatures (900-950oC), a fractional crystallization relationship due to shallow level pressures of

  10. Geochemical Variation of Subducting Pacific Crust Along the Izu-Bonin Arc System and its Implications on the Generation of Arc Magmas

    Science.gov (United States)

    Durkin, K.; Castillo, P.; Abe, N.; Kaneko, R.; Straub, S. M.; Garcia, E. S. M.; Yan, Q.; Tamura, Y.

    2015-12-01

    Subduction zone magmatism primarily occurs due to flux melting of the mantle wedge that has been metasomatized by the slab component. The latter is enriched in volatiles and fluid-mobile elements and derived mainly from subducted sediments and altered oceanic crust (AOC). Subduction input has been linked to arc output in many studies, but this relationship is especially well documented in sedimented arc-trench systems. However, the Izu-Bonin system is sediment-poor, therefore the compositional and latitudinal variations (especially in Pb isotopes) of its arc magmas must be sourced from the subduction component originating primarily from the AOC. Pb is a very good tracer of recycled AOC that may contribute 50% or more of arc magma Pb. Izu-Bonin arc chemistry suggests a subduction influx of Indian-type crust, but the subducting crust sampled at ODP Site 1149 is Pacific-type. The discrepancy between subduction input and arc output calls into question the importance of the AOC as a source of the subduction component, and raises major concerns with our understanding of slab input. During the R/V Revelle 1412 cruise in late 2014, we successfully dredged vertical fault scarps at several sites from 27.5 N to 34.5 N, spanning a range of crustal ages that include a suggested compositional change at ~125 Ma. Major element data show an alkali enrichment towards the north of the study transect. Preliminary incompatible trace element data (e.g. Ba, Zr and Sr) data support this enrichment trend. Detailed mass balance calculations supported by Sr, Nd, Hf and especially Pb isotope analyses will be performed to evaluate whether the AOC controls the Pb isotope chemistry of the Izu-Bonin volcanic arc.

  11. The PROTEUS Experiment: Active Source Seismic Imaging of the Crustal Magma Plumbing Structure of the Santorini Arc Volcano

    Science.gov (United States)

    Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.

    2016-12-01

    The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.

  12. Regional and temporal variability of melts during a Cordilleran magma pulse: Age and chemical evolution of the jurassic arc, eastern mojave desert, California

    Science.gov (United States)

    Barth, A.P.; Wooden, J.L.; Miller, David; Howard, Keith A.; Fox, Lydia; Schermer, Elizabeth R.; Jacobson, C.E.

    2017-01-01

    Intrusive rock sequences in the central and eastern Mojave Desert segment of the Jurassic Cordilleran arc of the western United States record regional and temporal variations in magmas generated during the second prominent pulse of Mesozoic continental arc magmatism. U/Pb zircon ages provide temporal control for describing variations in rock and zircon geochemistry that reflect differences in magma source components. These source signatures are discernible through mixing and fractionation processes associated with magma ascent and emplacement. The oldest well-dated Jurassic rocks defining initiation of the Jurassic pulse are a 183 Ma monzodiorite and a 181 Ma ignimbrite. Early to Middle Jurassic intrusive rocks comprising the main stage of magmatism include two high-K calc-alkalic groups: to the north, the deformed 183–172 Ma Fort Irwin sequence and contemporaneous rocks in the Granite and Clipper Mountains, and to the south, the 167–164 Ma Bullion sequence. A Late Jurassic suite of shoshonitic, alkali-calcic intrusive rocks, the Bristol Mountains sequence, ranges in age from 164 to 161 Ma and was emplaced as the pulse began to wane. Whole-rock and zircon trace-element geochemistry defines a compositionally coherent Jurassic arc with regional and secular variations in melt compositions. The arc evolved through the magma pulse by progressively greater input of old cratonic crust and lithospheric mantle into the arc magma system, synchronous with progressive regional crustal thickening.

  13. Crystallization of oxidized, moderately hydrous arc basalt at mid-to-lower crustal pressures

    Science.gov (United States)

    Blatter, D. L.; Sisson, T. W.; Hankins, W. B.

    2012-12-01

    Decades of experimental work show that dry, reduced, subalkaline basalts differentiate to produce tholeiitic (high Fe/Mg) daughter liquids, however the influences of H2O and oxidation on differentiation paths are not well established. Accordingly, we performed crystallization experiments on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic lavas erupted in the Cascades magmatic arc near Mount Rainier, Washington. Starting material was synthesized with 3 wt% H2O and run in 2.54 cm piston-cylinder vessels at 900, 700, and 400 MPa and 1200 to 925 degrees C. Samples were contained in Au75Pd25 capsules pre-saturated with Fe by reaction with magnetite at controlled fO2. Oxygen fugacity was controlled during high-pressure syntheses by the double capsule method using Re-ReO2 plus H2O-CO2 vapor in the outer capsule, mixed to match the expected fH2O of the vapor-undersaturated sample. Crystallization was similar at all pressures with a high temperature interval consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, FeTi-oxides replace spinel, olivine dissolves, and finally amphibole appears. Liquids at 900 MPa track along Miyashiro's (1974) tholeiitic vs. calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline by ~57 wt% SiO2 and greater. Although these evolved liquids are similar in most respects to common calc-alkaline andesites, they differ in having low-CaO due to early and abundant crystallization of augite prior to plagioclase, with the result that they become peraluminous (ASI: Al/(Na+K+Ca)>1) by ~55 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer, 2006 and references therein). A compilation of >7000 analyses of volcanic and intrusive rocks from the Cascades and the Sierra Nevada batholith shows that ASI in arc magmas increases continuously and linearly with SiO2 from

  14. The role of amphibole in Merapi arc magma petrogenesis: insights from petrology and geochemistry of lava hosted xenoliths and xenocrysts

    Science.gov (United States)

    Chadwick, J. P.; Troll, V. R.; Schulz, B.; Dallai, L.; Freda, C.; Schwarzkopf, L. M.; Annersten, H.; Skogby, H.

    2010-05-01

    Recently, increasing attention has been paid to the role of amphibole in the differentiation of arc magmas. The geochemical composition of these magmas suggests that deep to mid crustal fractionation of amphibole has occurred. However, this phase is typically an infrequent modal phenocryst phase in subduction zone eruptive deposits(1). Nevertheless, erupted material only represents a portion of the magmatism produced in subduction zone settings, with many opportunities for melts to stall on route to the surface. This discrepancy between whole rock geochemistry and petrological interpretation of arc magmas has lead many scientists to postulate that, at mid to deep crustal levels, there may be significant volumes of amphibole bearing lithologies. Amphibole instability at shallow levels can also contribute to its scarcity in eruptive deposits. This argument is strengthened by field and petrological evidence, including the widespread occurrence of amphibole-rich intrusive rocks in exhumed orogenicbelts formed during subduction zone activity, e.g. the Adamello batholith (2),as well as the presence of amphibole-rich xenoliths and xenocrysts preserved in arc lavas worldwide, e.g. in Indonesia, Antilles, and Central America. Thus, amphibole appears to play an integral role in subduction zone magmatism and identifying and constraining this role is central to understanding arc magma petrogenisis. Amphibole-rich melts or bodies in the deep to mid crust could be a significant hydrous reservoir for intra-crustal melts and fluids (1). In this preliminary study, we have carried out petrological and geochemical analyses of recent basaltic andesite and amphibole bearing crystalline igneous inclusions and xenocrysts from Merapi volcano in Java, Indonesia. The basaltic andesite geochemistry is consistent with amphibole fractionation and the crystalline inclusions are cogenetic to the Merapi magmatic system. These inclusions are likely to represent fractionation residues reflecting

  15. Formation of continental crust in a temporally linked arc magma system from 5 to 30 km depth: ~ 90 Ma plutonism in the Cascades Crystalline Core composite arc section

    Science.gov (United States)

    Ratschbacher, B. C.; Miller, J. S.; Kent, A. J.; Miller, R. B.; Anderson, J. L.; Paterson, S. R.

    2015-12-01

    Continental crust has an andesitic bulk composition with a mafic lower crust and a granodioritic upper crust. The formation of stratified continental crust in general and the vertical extent of processes active in arc crustal columns leading to the differentiation of primitive, mantle-derived melts entering the lower crust are highly debated. To investigate where in the crustal column magma mixing, fractionation, assimilation and crystal growth occur and to what extent, we study the ~ 90 Ma magmatic flare-up event of the Cascades arc, a magma plumbing system from ~ 5 to 30 km depth. We focus on three intrusive complexes, emplaced at different depths during major regional shortening in an exceptionally thick crust (≥ 55 km1) but which are temporally related: the upper crustal Black Peak intrusion (1-3 kbar at 3.7 to 11 km; ~ 86.8 to 91.7 Ma2), the mid-crustal Mt. Stuart intrusion (3.5-4.0 kbar at 13 to 15 km; 90.8 and 96.3 Ma3) and the deep crustal Tenpeak intrusion (7 to 10 kbar at 25 to 37 km; 89.7 to 92.3 Ma4). These intrusive complexes are well characterized by geochronology showing that they have been constructed incrementally by multiple magma batches over their lifespans and thus allow the monitoring and comparison of geochemical parameters over time at different depths. We use a combination of whole rock major and trace element data and isotopes combined with detailed investigation of amphibole, which has been recognized to be important in the generation of calc-alkaline rocks in arcs to test the following hypotheses: (a) compositional bimodality is produced in the lower crust, whereas upper crustal levels are dominated by mixing to form intermediate compositions, or (b) differentiation occurs throughout the crustal column with different crystallizing phases and their compositions controlling the bulk chemistry. 1. Miller et al. 2009: GSA Special Paper 456, p. 125-149 2. Shea 2014: PhD thesis, Massachusetts Institute of Technology 3. Anderson et al. 2012

  16. U-Series disequilibria, magma petrogenesis and flux rates along the depleted Tonga-Kermadec Island Arc

    International Nuclear Information System (INIS)

    Turner, S.; Hawkesworth, C.; Rogers, N.; Bartlett, J.; Smith, I.; Worthington, T.; Smith, I.; Worthington, T.

    1997-01-01

    The fluid contribution to the lava source has been calculated as -1 ppm Rb, 10 ppm Ba, 0.02 ppm U, 600 ppm K 0.2 ppm Pb and 30 ppm Sr. It has 87 Sr/ 86 Sr = 0.7035 and 206 Pb/ 204 Pb = 18.5 and thus is inferred to be derived from dehydration of the subducting altered oceanic crust. U-Th isotope disequilibria reflect the time since fluid release from the subducting slab and a pseudo-isochron through the lowest ( 230 Th/ 232 Th) lavas constrains this to be ∼ 50 000 yr. Significantly, U-Th isotope data record similar timescales in the Lesser Antilles (∼40 000 yr, Turner et al., 1996) and in the Marianas (30 000 yr, Elliott et al., 1996) which provides encouragement that these data reflect some general aspect of the flux rates beneath island arcs. Large 226 Ra excesses have also been reported from Tonga-Kermadec (( 226 Ra/ 230 Th) = 1.5-3.0, Gill and Williams, 1990). Since 226 Ra will return to secular equilibrium with 230 Th (( 226 Ra/ 230 Th) = 1) within 7500 yr of Ra/Th fractionation the 238 U/ 230 Th and 226 Ra/ 230 Th disequilibria are clearly decoupled (see also Turner et al., 1996). This is an unexpected result and clearly the 226 Ra/ 230 Th disequilibria must have developed after the process responsible for the major U/Th fractionation. It is suggested that Th-Ra isotope disequilibria record the time since partial melting and thus indicate rapid channelled magma ascent. Olivine gabbro xenoliths from Raoul are interpreted as cumulates to their host lavas with which they form zero age U-Th isochrons indicating that minimal time was spent in magma chambers. The subduction signature is not observed in lavas from the back arc island of Niuafo'ou and thus does not penetrate as far 200 km beyond the arc front volcanoes. These were derived from partial melting of fertile peridotite at 130-160 km depth with melt rates around 2 x 10 -4 kg m -3 yr -1 , possibly due to volatiles released from the breakdown of phengite and lawsonite in the underlying slab at 200 km

  17. Effect of Mantle Wedge Hybridization by Sediment Melt on Geochemistry of Arc Magma and Arc Mantle Source - Insights from Laboratory Experiments at High Pressures and Temperatures

    Science.gov (United States)

    Mallik, A.; Dasgupta, R.; Tsuno, K.; Nelson, J. M.

    2015-12-01

    Generation of arc magmas involves metasomatism of the mantle wedge by slab-derived H2O-rich fluids and/or melts and subsequent melting of the modified source. The chemistry of arc magmas and the residual mantle wedge are not only regulated by the chemistry of the slab input, but also by the phase relations of metasomatism or hybridization process in the wedge. The sediment-derived silica-rich fluids and hydrous partial melts create orthopyroxene-rich zones in the mantle wedge, due to reaction of mantle olivine with silica in the fluid/melt [1,2]. Geochemical evidence for such a reaction comes from pyroxenitic lithologies coexisting with peridotite in supra-subduction zones. In this study, we have simulated the partial melting of a parcel of mantle wedge modified by bulk addition of sediment-derived melt with variable H2O contents to investigate the major and trace element chemistry of the magmas and the residues formed by this process. Experiments at 2-3 GPa and 1150-1300 °C were conducted on mixtures of 25% sediment-derived melt and 75% lherzolite, with bulk H2O contents varying from 2 to 6 wt.%. Partial reactive crystallization of the rhyolitic slab-derived melt and partial melting of the mixed source produced a range of melt compositions from ultra-K basanites to basaltic andesites, in equilibrium with an orthopyroxene ± phlogopite ± clinopyroxene ± garnet bearing residue, depending on P and bulk H2O content. Model calculations using partition coefficients (from literature) of trace elements between experimental minerals and silicate melt suggest that the geochemical signatures of the slab-derived melt, such as low Ce/Pb and depletion in Nb and Ta (characteristic slab signatures) are not erased from the resulting melt owing to reactive crystallization. The residual mineral assemblage is also found to be similar to the supra-subduction zone lithologies, such as those found in Dabie Shan (China) and Sanbagawa Belt (Japan). In this presentation, we will also

  18. Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc)

    Science.gov (United States)

    Degruyter, W.; Bachmann, O.; Burgisser, A.

    2010-01-01

    X-ray computed microtomography (µCT) was applied to pumices from the largest Quaternary explosive eruption of the active South Aegean Arc (the Kos Plateau Tuff; KPT) in order to better understand magma permeability within volcanic conduits. Two different types of pumices (one with highly elongated bubbles, tube pumice; and the other with near spherical bubbles, frothy pumice) produced synchronously and with identical chemical composition were selected for µCT imaging to obtain porosity, tortuosity, bubble size and throat size distributions. Tortuosity drops on average from 2.2 in frothy pumice to 1.5 in tube pumice. Bubble size and throat size distributions provide estimates for mean bubble size (~93-98 μm) and mean throat size (~23-29 μm). Using a modified Kozeny-Carman equation, variations in porosity, tortuosity, and throat size observed in KPT pumices explain the spread found in laboratory measurements of the Darcian permeability. Measured difference in inertial permeability between tube and frothy pumices can also be partly explained by the same variables but require an additional parameter related to the internal roughness of the porous medium (friction factor f 0 ). Constitutive equations for both types of permeability allow the quantification of laminar and turbulent gas escape during ascent of rhyolitic magma in volcanic conduits.

  19. Geodynamic control of the chemical composition of Tertiary continental arc magmas of Ecuador?

    International Nuclear Information System (INIS)

    Chiaradia, M.; Fontbote, L

    2001-01-01

    Whereas an abundant literature has been produced on the Tertiary magmatism of the Central Andes, no comparable studies exist for the Tertiary continental magmatism of the Northern Andes in general and of Ecuador in particular. In this contribution we present the first extensive data on lead and strontium isotopes of Paleocene to Pliocene magmatic rocks of Ecuador together with their major, trace and rare earth element geochemistry. The main interest of carrying out a geochemical and isotopic investigation on the magmatism of Ecuador is that, different from the Central Andes, Ecuador consists of several accreted terranes both of continental and oceanic affinity. The fragmented nature of the recently assembled crust of Ecuador, composed of lithologies such as Paleozoic schists, Triassic anatexites, and Jurassic metabasalts, could have variably affected the chemistry of the Ecuadorian magmas (au)

  20. Magma Differentiation Processes That Develop an "Enriched" Signature in the Izu Bonin Rear Arc: Evidence from Drilling at IODP Site U1437

    Science.gov (United States)

    Heywood, L. J.; DeBari, S. M.; Schindlbeck, J. C.; Escobar-Burciaga, R. D.

    2015-12-01

    The Izu Bonin rear arc represents a unique laboratory to study the development of continental crust precursors at an intraoceanic subduction zone., Volcanic output in the Izu Bonin rear arc is compositionally distinct from the Izu Bonin main volcanic front, with med- to high-K and LREE-enrichment similar to the average composition of the continental crust. Drilling at IODP Expedition 350 Site U1437 in the Izu Bonin rear arc obtained volcaniclastic material that was deposited from at least 13.5 Ma to present. IODP Expedition 350 represents the first drilling mission in the Izu Bonin rear arc region. This study presents fresh glass and mineral compositions (obtained via EMP and LA-ICP-MS) from unaltered tephra layers in mud/mudstone (Lithostratigraphic Unit I) and lapillistone (Lithostratigraphic Unit II) <4.5 Ma to examine the geochemical signature of Izu Bonin rear arc magmas. Unit II samples are coarse-grained tephras that are mainly rhyolitic in composition (72.1-77.5 wt. % SiO2, 3.2-3.9 wt. % K2O and average Mg# 24) and LREE-enriched. These rear-arc rhyolites have an average La/Sm of 2.6 with flat HREEs, average Th/La of 0.15, and Zr/Y of 4.86. Rear-arc rhyolite trace element signature is distinct from felsic eruptive products from the Izu Bonin main volcanic front, which have lower La/Sm and Th/La as well as significantly lower incompatible element concentrations. Rear arc rhyolites have similar trace element ratios to rhyolites from the adjacent but younger backarc knolls and actively-extending rift regions, but the latter is typified by lower K2O, as well as a smaller degree of enrichment in incompatible elements. Given these unique characteristics, we explore models for felsic magma formation and intracrustal differentiation in the Izu Bonin rear arc.

  1. Precursory deformation and depths of magma storage revealed by regional InSAR time series surveys: example of the Indonesian and Mexican volcanic arcs

    Science.gov (United States)

    Chaussard, E.; Amelung, F.; Aoki, Y.

    2012-12-01

    Despite the threat posed to millions of people living in the vicinity of volcanoes, only a fraction of the worldwide ~800 potentially active arc volcanoes have geodetic monitoring. Indonesian and Mexican volcanoes are sparsely monitored with ground-based methods but especially dangerous, emphasizing the need for remote sensing monitoring. In this study we take advantage of over 1200 ALOS InSAR images to survey the entire west Sunda and Mexican volcanic arcs, covering a total of 500 000 km2. We use 2 years of data to monitor the background activity of the Indonesian arc, and 4 years of data at four volcanic edifices (Sinabung, Kerinci, Merapi, and Agung), as well as 4 years of data to survey the Mexican arc. We derive time-dependent ground deformation data using the Small Baseline technique with DEM error correction. We detect seven volcanoes with significant deformation in the west-Sunda arc: six inflating volcanoes (Sinabung, Kerinci, Slamet, Lawu, Lamongan, and Agung) and one deflating volcano (Anak Krakatau). Three of the six inflating centers erupted during or after the observation period. We detect inflation prior to Sinabung's first Holocene eruption in September 2010, followed by a small deflation of the summit area. A similar signal is observed at Kerinci before and after its April 2009 eruption. We also detect uplift prior to Slamet's eruption in April 2009. Agung, in Bali, whose last eruption was in 1964, has been inflating steadily between mid 2007 and early 2009, followed by a period with little deformation until mid-2011. Inflation not followed by eruption is also observed at Lamongan and Lawu, both historically active centers. The close relation between periods of activity and observed deformation suggests that edifice inflation is of magmatic origin and represents the pressurization of reservoirs caused by ascent of new magma. We model the observed deformation and show that the seven deforming Indonesian volcanoes have shallow magma reservoirs at ~1

  2. Growth of the lower continental crust via the relamination of arc magma

    Science.gov (United States)

    He, Yumei; Zheng, Tianyu; Ai, Yinshuang; Hou, Guangbing; Chen, Qi-Fu

    2018-01-01

    How does continental crust transition from basaltic mantle-derived magmas into an andesitic composition? The relamination hypothesis has been presented as an alternative dynamical mechanism to classical delamination theory to explain new crust generation and has been supported by petrological and geochemical studies as well as by thermomechanical numerical modeling. However, direct evidence of this process from detailed seismic velocity structures is lacking. Here, we imaged the three-dimensional (3D) velocity structures of the crust and uppermost mantle beneath the geologically stable Ordos terrane of the North China Craton (NCC). We identify a region of continental crust that exhibits extreme growth using teleseismic data and an imaging technique that models the Common Conversion Point (CCP) stacking profiles. Our results show an approximately 400 × 400 km2 wide growth zone that underlies the primitive crust at depths of 30-50 km and exhibits a gradual increase of velocity with depth. The upper layer of the growth zone has a shear wave velocity of 3.6-3.9 km/s (Vp = 6.2-6.8 km/s), indicating felsic material, and the lower layer has a shear wave velocity of 4.1-4.3 km/s (Vp = 7.2-7.5 km/s), which corresponds to mafic material. We suggest that this vertical evolution of the layered structure could be created by relamination and that the keel structure formed by relamination may be the root of the supernormal stability of the ancient Ordos terrane.

  3. Magma differentiation fractionates Mo isotope ratios: Evidence from the Kos Plateau Tuff (Aegean Arc)

    Science.gov (United States)

    Voegelin, Andrea R.; Pettke, Thomas; Greber, Nicolas D.; von Niederhäusern, Brigitte; Nägler, Thomas F.

    2014-03-01

    We investigated high temperature Mo isotope fractionation in a hydrous supra-subduction volcano-plutonic system (Kos, Aegean Arc, Greece) in order to address the debate on the δ98/95Mo variability of the continental crust. In this igneous system, where differentiation is interpreted to be dominated by fractional crystallization, bulk rock data from olivine basalt to dacite show δ98/95Mo ratios increasing from + 0.3 to + 0.6‰ along with Mo concentrations increasing from 0.8 to 4.1 μg g- 1. Data for hornblende and biotite mineral separates reveal the extraction of light Mo into crystallizing silicates, with minimum partition coefficients between hornblende-silicate melt and biotite-silicate melt of 0.6 and 0.4 δ98/95Mo, respectively.

  4. Transition of magma genesis estimated by change of chemical composition of Izu-bonin arc volcanism associated with spreading of Shikoku Basin

    Science.gov (United States)

    Haraguchi, S.; Ishii, T.

    2006-12-01

    the Shikoku basin, and these rocks show about 26Ma, at the beginning of activity of Shikoku Basin, of Ar-Ar ages (Ishizuka, pers comm.). Therefore, it is considered that these volcanics are associated with rifting acrivity before spreading of back-arc basin. Based on these observations, it is considered that the chemical characteristics of Izu-Ogasawara arc volcanism were changed at spreading of Shikoku Basin. That is, low incompatible element content activity had continued from tholeiitic activity in the Haha-Jima during early arc volcanism to normal arc volcanism in the Izu forearc region recovered during ODP Leg126 operation. High incompatible element activity had begun at the beginning of back-arc basin activity, and incompatible element content of Izu arc magma was decreasing after spreading of Shikoku Basin to recent activity. We considered these characteristics are interpreted that mantle beneath island arc were change depleted composition to enrich composition at the back arc basin activity. And we assumed that this mantle movement is associated with back-arc basin activity.

  5. Intraplate mantle oxidation by volatile-rich silicic magmas

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Audrey M.; Médard, Etienne; Righter, Kevin; Lanzirotti, Antonio

    2017-11-01

    The upper subcontinental lithospheric mantle below the French Massif Central is more oxidized than the average continental lithosphere, although the origin of this anomaly remains unknown. Using iron oxidation analysis in clinopyroxene, oxybarometry, and melt inclusions in mantle xenoliths, we show that widespread infiltration of volatile (HCSO)-rich silicic melts played a major role in this oxidation. We propose the first comprehensive model of magmatism and mantle oxidation at an intraplate setting. Two oxidizing events occurred: (1) a 365–286 Ma old magmatic episode that produced alkaline vaugnerites, potassic lamprophyres, and K-rich calc-alkaline granitoids, related to the N–S Rhenohercynian subduction, and (2) < 30 Ma old magmatism related to W–E extension, producing carbonatites and hydrous potassic trachytes. These melts were capable of locally increasing the subcontinental lithospheric mantle fO2 to FMQ + 2.4. Both events originate from the melting of a metasomatized lithosphere containing carbonate + phlogopite ± amphibole. The persistence of this volatile-rich lithospheric source implies the potential for new episodes of volatile-rich magmatism. Similarities with worldwide magmatism also show that the importance of volatiles and the oxidation of the mantle in intraplate regions is underestimated.

  6. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet

    Science.gov (United States)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; McInnes, Brent I. A.; Li, JinXiang; Zhao, JunXing

    2018-03-01

    Arc magmas are more oxidized than mid-ocean ridge basalts; however, there is continuing debate as to whether this higher oxidation state is inherited from the source magma or developed during late-stage magmatic differentiation processes. Well-constrained Late Jurassic to Early Cretaceous arc-related intermediate to felsic rocks derived from distinct magma sources provide us with a good opportunity to resolve this enigma. A series of granitoids from the western Central Lhasa subterrane were analyzed for whole-rock magnetic susceptibility, Fe2O3/FeO ratios, and trace elements in zircon. Compared to Late Jurassic samples (1.8 ± 2.0 × 10-4 emu g-1 oe-1, Fe3+/Fetotal = 0.32 ± 0.07, zircon Ce4+/Ce3+* = 15.0 ± 13.4), Early Cretaceous rocks show higher whole-rock magnetic susceptibility (5.8 ± 2.5 × 10-4 emu g-1 oe-1), Fe3+/Fetotal ratios (0.43 ± 0.04), and zircon Ce4+/Ce3+* values (23.9 ± 22.3). In addition, positive correlations among whole-rock magnetic susceptibility, Fe3+/Fetotal ratios, and zircon Ce4+/Ce3+* reveal a slight increase in oxidation state from fO2 = QFM to NNO in the Late Jurassic to fO2 = ˜NNO in the Early Cretaceous. Obvious linear correlation between oxidation indices (whole-rock magnetic susceptibility, zircon Ce4+/Ce3+*) and source signatures (zircon ɛHf(t), TDM C ages) indicates that the oxidation state was predominantly inherited from the source with only a minor contribution from magmatic differentiation. Thus, the sources for both the Late Jurassic and Early Cretaceous rocks were probably influenced by mantle wedge-derived magma, contributing to the increased fO2. Compared to ore-forming rocks at giant porphyry Cu deposits, the relatively low oxidation state (QFM to NNO) and negative ɛHf(t) (-16 to 0) of the studied granitoids implies relative infertility. However, this study demonstrates two potential fast and effective indices ( fO2 and ɛHf(t)) to evaluate the fertility of granitoids for porphyry-style mineralization. In an

  7. Low-pressure evolution of arc magmas in thickened crust: The San Pedro-Linzor volcanic chain, Central Andes, Northern Chile

    Science.gov (United States)

    Godoy, Benigno; Wörner, Gerhard; Kojima, Shoji; Aguilera, Felipe; Simon, Klaus; Hartmann, Gerald

    2014-07-01

    Magmatism at Andean Central Volcanic Zone (CVZ), or Central Andes, is strongly influenced by differentiation and assimilation at high pressures that occurred at lower levels of the thick continental crust. This is typically shown by high light to heavy rare earth element ratios (LREE/HREE) of the erupted lavas at this volcanic zone. Increase of these ratios with time is interpreted as a change to magma evolution in the presence of garnet during evolution of Central Andes. Such geochemical signals could be introduced into the magmas be high-pressure fractionation with garnet on the liquidus and/or assimilation from crustal rocks with a garnet-bearing residue. However, lavas erupted at San Pedro-Linzor volcanic chain show no evidence of garnet fractionation in their trace element patterns. This volcanic chain is located in the active volcanic arc, between 22°00‧S and 22°30‧S, over a continental crust ˜70 km thick. Sampled lavas show Sr/Y and Sm/Yb ratios Chile. We relate our geochemical observations to shallow crustal evolution of primitive magmas involving a high degree of assimilation of upper continental crust. We emphasize that low pressure AFC- (Assimilation Fractional Crystallization) type evolution of the San Pedro-Linzor volcanic chain reflects storage, fractionation, and contamination of mantle-derived magmas at the upper felsic crust (<40 km depth). The ascent of mantle-derived magmas to mid-crustal levels is related with the extensional regime that has existed in this zone of arc-front offset since Late-Miocene age, and the relatively thin portion of mafic lower crust observed below the volcanic chain.

  8. Sediment-peridotite interactions in a thermal gradient: mineralogic and geochemical effects and the "sedimentary signature" of arc magmas

    Science.gov (United States)

    Woodland, Alan; Girnis, Andrei; Bulatov, Vadim; Brey, Gerhard; Höfer, Heidi; Gerdes, Axel

    2017-04-01

    Strong thermal and chemical gradients are characteristic of the slab-mantle interface in subduction zones where relatively cold sediments become juxtaposed with hotter peridotite of the mantle wedge. The formation of arc magmas is directly related to mass transfer processes under these conditions. We have undertaken a series of experiments to simulate interactions and mass transfer at the slab-mantle interface. In addition to having juxtaposed sediment and peridotite layers, the experiments were performed under different thermal gradients. The sediment had a composition similar to GLOSS (1) and also served as the source of H2O, CO2 and a large selection of trace elements. The peridotite was a depleted garnet harzburgite formed from a mixture of natural hand-picked olivine, opx and garnet. Graphite was added to this mixture to establish a redox gradient between the two layers. Experiments were performed at 7.5-10 GPa to simulate the processes during deep subduction. The thermal gradient was achieved by displacing the sample capsule (Re-lined Pt) from the center of the pressure cell. The gradient was monitored with separate thermocouples at each end of the capsule and by subsequent opx-garnet thermometry across the sample. Maximum temperatures varied from 1400˚ -900˚ C and gradients ranged from 200˚ -800˚ C. Thus, in some experiments melting occurred in the sediment layer and in others this layer remained subsolidus, only devolatilizing. Major and trace elements were transported both in the direction of melt percolation to the hot zone, as well as down temperature. This leads to the development of zones with discrete phase assemblages. Olivine in the peridotite layer becomes converted to orthopyroxene, which is due to Si addition, but also migration of Mg and Fe towards the sediment. In the coldest part of a sample, the sediment is converted into an eclogitic cpx + garnet assemblage. A thin zone depleted in almost all trace elements is formed in peridotite

  9. Trace-element and isotopic constraints on the source of magmas in the active volcano and Mariana island arcs, Western Pacific

    Science.gov (United States)

    Stern, Robert James; Ito, Emi

    1983-10-01

    Analytical results of the relative and absolute abundance of LIL-incompatible trace elements (K, Rb, Cs, Sr, and Ba) and isotopic compositions ( {18O}/{16O}, {87Sr}/{86Sr}, and {143Nd}/{144Nd}) are summarized for fresh samples from active and dormant volcanoes of the Volcano and Mariana island arcs. The presence of thickened oceanic crust ( T ˜ 15-20 km) beneath the arc indicates that while hybridization processes resulting in the modification of primitive magmas by anatectic mixing at shallow crustal levels cannot be neglected, the extent and effects of these processes on this arc's magmas are minimized. All components of the subducted plate disappear at the trench. This observation is used to reconstruct the composition of the crust in the Wadati-Benioff zone by estimating proportions of various lithologies in the crust of the subducted plate coupled with analyses from DSDP sites. Over 90% of the mass of the subducted crust consists of basaltic Layers II and III. Sediments and seamounts, containing the bulk of the incompatible elements, make up the rest. Bulk Western Pacific seafloor has {87Sr}/{86Sr} ˜ 0.7032 , δ 18O ˜ +7.2 , K/Rb ˜ 510, K/Ba ˜ 46, and K/Cs ˜ 13,500. Consideration of trace-element data and combined δ 18O - {87Sr}/{86Sr} systematics limits the participation of sediments in magmagenesis to less than 1%, in accord with the earlier results of Pb-isotopic studies. Combined {143Nd}/{144Nd} - {87Sr}/{86Sr} data indicate little, if any, involvement of altered basaltic seafloor in magmagenesis. Perhaps more important than mean isotopic and LIL-element ratios is the restricted range for lavas from along over 1000 km of this arc. Mixtures of mantle with either the subducted crust or derivative fluids should result in strong heterogeneities in the sources of individual volcanoes along the arc. Such heterogeneities would be due to: (1) gross variations of crustal materials supplied to the subduction zone; and (2) lesser efficiency of mixing processes

  10. Ore-forming adakitic porphyry produced by fractional crystallization of oxidized basaltic magmas in a subcrustal chamber (Jiamate, East Junggar, NW China)

    Science.gov (United States)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang

    2018-01-01

    Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages.The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The

  11. Ore-forming adakitic porphyry produced by fractional crystallization of oxidized basaltic magmas in a subcrustal chamber (Jiamate, East Junggar, NW China)

    Science.gov (United States)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen G.; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang

    2018-01-01

    Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages. The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA

  12. Automation of the micro-arc oxidation process

    Science.gov (United States)

    Golubkov, P. E.; Pecherskaya, E. A.; Karpanin, O. V.; Shepeleva, Y. V.; Zinchenko, T. O.; Artamonov, D. V.

    2017-11-01

    At present the significantly increased interest in micro-arc oxidation (MAO) encourages scientists to look for the solution of the problem of this technological process controllability. To solve this problem an automated technological installation MAO was developed, its structure and control principles are presented in this article. This device will allow to provide the controlled synthesis of MAO coatings and to identify MAO process patterns which contributes to commercialization of this technology.

  13. Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon

    Science.gov (United States)

    Jones, Rosemary E.; Kirstein, Linda A.; Kasemann, Simone A.; Dhuime, Bruno; Elliott, Tim; Litvak, Vanesa D.; Alonso, Ricardo; Hinton, Richard

    2015-09-01

    Subduction zones, such as the Andean convergent margin of South America, are sites of active continental growth and crustal recycling. The composition of arc magmas, and therefore new continental crust, reflects variable contributions from mantle, crustal and subducted reservoirs. Temporal (Ma) and spatial (km) variations in these contributions to southern Central Andean arc magmas are investigated in relation to the changing plate geometry and geodynamic setting of the southern Central Andes (28-32° S) during the Cenozoic. The in-situ analysis of O and Hf isotopes in zircon, from both intrusive (granitoids) and extrusive (basaltic andesites to rhyolites) Late Cretaceous - Late Miocene arc magmatic rocks, combined with high resolution U-Pb dating, demonstrates distinct across-arc variations. Mantle-like δ18O(zircon) values (+5.4‰ to +5.7‰ (±0.4 (2σ))) and juvenile initial εHf(zircon) values (+8.3 (±0.8 (2σ)) to +10.0 (±0.9 (2σ))), combined with a lack of zircon inheritance suggests that the Late Cretaceous (∼73 Ma) to Eocene (∼39 Ma) granitoids emplaced in the Principal Cordillera of Chile formed from mantle-derived melts with very limited interaction with continental crustal material, therefore representing a sustained period of upper crustal growth. Late Eocene (∼36 Ma) to Early Miocene (∼17 Ma) volcanic arc rocks present in the Frontal Cordillera have 'mantle-like' δ18O(zircon) values (+4.8‰ (±0.2 (2σ) to +5.8‰ (±0.5 (2σ))), but less radiogenic initial εHf(zircon) values (+1.0 (±1.1 (2σ)) to +4.0 (±0.6 (2σ))) providing evidence for mixing of mantle-derived melts with the Late Paleozoic - Early Mesozoic basement (up to ∼20%). The assimilation of both Late Paleozoic - Early Mesozoic Andean crust and a Grenville-aged basement is required to produce the higher than 'mantle-like' δ18O(zircon) values (+5.5‰ (±0.6 (2σ) to +7.2‰ (±0.4 (2σ))) and unradiogenic, initial εHf(zircon) values (-3.9 (±1.0 (2σ)) to +1.6 (±4.4 (2

  14. The Kinematics of Central American Fore-Arc Motion in Nicaragua: Geodetic, Geophysical and Geologic Study of Magma-Tectonic Interactions

    Science.gov (United States)

    La Femina, P. C.; Geirsson, H.; Saballos, A.; Mattioli, G. S.

    2017-12-01

    A long-standing paradigm in plate tectonics is that oblique convergence results in strain partitioning and the formation of migrating fore-arc terranes accommodated on margin-parallel strike-slip faults within or in close proximity to active volcanic arcs (e.g., the Sumatran fault). Some convergent margins, however, are segmented by margin-normal faults and margin-parallel shear is accommodated by motion on these faults and by vertical axis block rotation. Furthermore, geologic and geophysical observations of active and extinct margins where strain partitioning has occurred, indicate the emplacement of magmas within the shear zones or extensional step-overs. Characterizing the mechanism of accommodation is important for understanding short-term (decadal) seismogenesis, and long-term (millions of years) fore-arc migration, and the formation of continental lithosphere. We investigate the geometry and kinematics of Quaternary faulting and magmatism along the Nicaraguan convergent margin, where historical upper crustal earthquakes have been located on margin-normal, strike-slip faults within the fore arc and arc. Using new GPS time series, other geophysical and geologic data, we: 1) determine the location of the maximum gradient in forearc motion; 2) estimate displacement rates on margin-normal faults; and 3) constrain the geometric moment rate for the fault system. We find that: 1) forearc motion is 11 mm a-1; 2) deformation is accommodated within the active volcanic arc; and 3) that margin-normal faults can have rates of 10 mm a-1 in agreement with geologic estimates from paleoseismology. The minimum geometric moment rate for the margin-normal fault system is 2.62x107 m3 yr-1, whereas the geometric moment rate for historical (1931-2006) earthquakes is 1.01x107 m3/yr. The discrepancy between fore-arc migration and historical seismicity may be due to aseismic accommodation of fore-arc motion by magmatic intrusion along north-trending volcanic alignments within the

  15. Reduction of nitric oxide by arc vaporized carbons (AVC)

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, S C; Chen, Y K; Green, M L.H. [The Catalysis Centre, Inorganic Chemistry Laboratory, University of Oxford, Oxford (United Kingdom)

    1996-07-04

    The reduction of nitric oxide by arc vaporized carbons (AVC) including the compound C{sub 6}0, fullerene soot and carbon nanotubes, giving dinitrogen and carbon oxides has been studied. It is found that the AVC carbons are more active towards oxidation by NO than by oxygen gas at low temperatures (300-400C). In contrast, conventional carbons such as graphite and microporous carbons are more readily oxidised by oxygen than by NO. The addition of copper salts and to a lesser extent, cobalt salts, to fullerene soot substantially promote NO reduction. The high intrinsic activity for NO reduction by AVC carbons compared to graphitic carbons is attributed to the presence of five membered carbon rings in the AVC carbons

  16. The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes

    Science.gov (United States)

    Jones, Rosemary E.; Kirstein, Linda A.; Kasemann, Simone A.; Litvak, Vanesa D.; Poma, Stella; Alonso, Ricardo N.; Hinton, Richard; EIMF

    2016-10-01

    The tectonic and geodynamic setting of the southern Central Andean convergent margin changed significantly between the Late Cretaceous and the Late Miocene, influencing magmatic activity and its geochemical composition. Here we investigate how these changes, which include changing slab-dip angle and convergence angles and rates, have influenced the contamination of the arc magmas with crustal material. Whole rock geochemical data for a suite of Late Cretaceous to Late Miocene arc rocks from the Pampean flat-slab segment (29-31 °S) of the southern Central Andes is presented alongside petrographic observations and high resolution age dating. In-situ U-Pb dating of magmatic zircon, combined with Ar-Ar dating of plagioclase, has led to an improved regional stratigraphy and provides an accurate temporal constraint for the geochemical data. A generally higher content of incompatible trace elements (e.g. Nb/Zr ratios from 0.019 to 0.083 and Nb/Yb from 1.5 to 16.4) is observed between the Late Cretaceous ( 72 Ma), when the southern Central Andean margin is suggested to have been in extension, and the Miocene when the thickness of the continental crust increased and the angle of the subducting Nazca plate shallowed. Trace and rare earth element compositions obtained for the Late Cretaceous to Late Eocene arc magmatic rocks from the Principal Cordillera of Chile, combined with a lack of zircon inheritance, suggest limited assimilation of the overlying continental crust by arc magmas derived from the mantle wedge. A general increase in incompatible, fluid-mobile/immobile (e.g., Ba/Nb) and fluid-immobile/immobile (e.g., Nb/Zr) trace element ratios is attributed to the influence of the subducting slab on the melt source region and/or the influx of asthenospheric mantle. The Late Oligocene ( 26 Ma) to Early Miocene ( 17 Ma), and Late Miocene ( 6 Ma) arc magmatic rocks present in the Frontal Cordillera show evidence for the bulk assimilation of the Permian-Triassic (P

  17. Melt inclusion: methods, applications and problem: Silica-rich melts in quartz xenoliths from Vulcano islands and their bearing on processes of crustal melting and crust-magma interaction in the Aeolian Arc, Italy

    NARCIS (Netherlands)

    Frezzotti, M.L.; Zavon, V.; Peccerillo, A.; Nikogosian, I.

    2002-01-01

    Silica-rich melts in quartz xenoliths from Vulcano islands and their bearing on processes of crustal melting and crust-magma interaction in the Aeolian Arc, Italy Proceedings of workshop Melt inclusion: methods, applications and problem. Napoli, Italy, September 2002, p. 71-73

  18. Characterization and Tribological Properties of Hard Anodized and Micro Arc Oxidized 5754 Quality Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    M. Ovundur

    2015-03-01

    Full Text Available This study was initiated to compare the tribological performances of a 5754 quality aluminum alloy after hard anodic oxidation and micro arc oxidation processes. The structural analyses of the coatings were performed using XRD and SEM techniques. The hardness of the coatings was determined using a Vickers micro-indentation tester. Tribological performances of the hard anodized and micro arc oxidized samples were compared on a reciprocating wear tester under dry sliding conditions. The dry sliding wear tests showed that the wear resistance of the oxide coating generated by micro arc oxidation is remarkably higher than that of the hard anodized alloy.

  19. Adakite-like and Normal Arc Magmas: Distinct Fractionation Paths in the East Serbian Segment of the Balkan-Carpathian Arc

    OpenAIRE

    Kolb, M.; Von Quadt, A.; Peytcheva, I.; Heinrich, C. A.; Fowler, S. J.; Cvetković, V.

    2017-01-01

    New age and whole-rock 87Sr/86Sr and 143Nd/144Nd isotopic data are used to assess petrogenetic and regional geodynamic processes associated with Late Cretaceous subvolcanic intrusions within the sparsely studied Timok Magmatic Complex (TMC) and Ridanj-Krepoljin Zone (RKZ) of eastern Serbia. The TMC and RKZ form part of the Apuseni-Banat-Timok-Srednogorie (ABTS) magmatic belt, a Cu-Au mineralized calc-alkaline magmatic arc related to closure of the Tethys Ocean that extends through Romania, Se...

  20. Improved biological performance of magnesium by micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    W.H. Ma

    2015-03-01

    Full Text Available Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO, which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications.

  1. Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy

    Science.gov (United States)

    Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.

    2007-03-01

    Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.

  2. Magma-Tectonic Interactions along the Central America Volcanic Arc: Insights from the August 1999 Magmatic and Tectonic Event at Cerro Negro, Nicaragua

    Science.gov (United States)

    La Femina, P.; Connor, C.; Strauch, W.

    2002-12-01

    Volcanic vent alignments form parallel to the direction of maximum horizontal stress, accommodating extensional strain via dike injection. Roughly east-west extension within the Central America Volcanic Arc is accommodated along north-northwest-trending basaltic vent alignments. In Nicaragua, these alignments are located in a northwest-trending zone of dextral shear, with shear accommodated along northeast trending bookshelf faults. The recent eruption of Cerro Negro volcano, Nicaragua and Marabios Range seismic swarm revealed the interaction of these fault systems. A low energy (VEI 1), small volume (0.001 km3 DRE) eruption of highly crystalline basalt occurred at Cerro Negro volcano, Nicaragua, August 5-7, 1999. This eruption followed three tectonic earthquakes (each Mw 5.2) in the vicinity of Cerro Negro hours before the onset of eruptive activity. The temporal and spatial pattern of microseismicity and focal mechanisms of the Mw 5.2 earthquakes suggests the activation of northeast-trending faults northwest and southeast of Cerro Negro within the Marabios Range. The eruption was confined to three new vents formed on the southern flank of Cerro Negro along a preexisting north-northwest trending alignment; the El Hoyo alignment of cinder cones, maars and explosion craters. Surface ruptures formed > 1 km south and southeast of the new vents suggest dike injection. Numerical simulations of conduit flow illustrate that the observed effusion rates (up to 65 ms-1) and fountain heights (50-300 m) can be achieved by eruption of magma with little or no excess fluid pressure, in response to tectonic strain. These observations and models suggest that 1999 Cerro Negro activity is an excellent example of tectonically induced small-volume eruptions in an arc setting.

  3. Sr-Pb-Nd isotopic evidence that both MORB and OIB sources contribute to oceanic island arc magmas in Fiji

    International Nuclear Information System (INIS)

    Gill, J.B.

    1984-01-01

    Twenty-eight new Pb, 20 Sr, and 9 Nd isotopic compositions are presented for 32 rocks and one galena from Fiji and the South Fiji (back-arc) Basin. The Fijian rocks range in age from 35 to 143 Nd/ 144 Nd and low 206 Pb/ 204 Pb). Nearly constant 207 Pb/ 204 Pb, and an OIB source component lying within the conventional Sr-Nd-Pb mantle array. In later calc-alkaline and shoshonitic series rocks, these same trace element and isotopic ratios are more like those of OIB. The change was not accompanied by an increase in 207 Pb/ 204 Pb or Cs/K, indeed, 207 Pb/ 204 Pb is closer to the mantle array in these later series. Consequently, the change indicates a greater contribution from OIB sources, rather than from recycled ocean crust. These interpretations require that both MORB and OIB sources coexist in the uppermost mantle above subducted lithosphere. (orig./WB)

  4. Constraints on the origin and evolution of magmas in the Payún Matrú Volcanic Field, Quaternary Andean back-arc of western Argentina

    DEFF Research Database (Denmark)

    Hernadno, I R; Aragón, E; Frei, Robert

    2014-01-01

    and Sr–Nd isotopic compositions of the basaltic lavas and Payún Matrú rocks indicate that the trachytes of Payún Matrú are the result of fractional crystallization of basaltic parent magmas without significant upper crustal contamination, and that the basalts have a geochemical similarity to ocean island...... basalt (La/Nb = 0·8–1·5, La/Ba = 0·05–0·08). The Sr–Nd isotopic compositions of the basaltic to trachytic rocks range between 0·703813 and 0·703841 (87Sr/86Sr) and 0·512743 and 0·512834 (143Nd/144Nd). Mass-balance and Rayleigh fractionation models support the proposed origin of the trachytes...... that the basaltic lavas originated in the asthenospheric mantle, probably within the spinel stability field and beneath an attenuated continental lithosphere in the back-arc area. The lack of a slab-fluid signature in the Payún Matrú Volcanic Field rocks, along with unpublished and published geophysical results...

  5. Origin of dioritic magma and its contribution to porphyry Cu-Au mineralization at Pulang in the Yidun arc, eastern Tibet

    Science.gov (United States)

    Cao, Kang; Yang, Zhi-Ming; Xu, Ji-Feng; Fu, Bin; Li, Wei-Kai; Sun, Mao-Yu

    2018-04-01

    The giant Pulang porphyry Cu-Au deposit in the Yidun arc, eastern Tibet, formed due to westward subduction of the Garze-Litang oceanic plate in the Late Triassic. The deposit is hosted in an intrusive complex comprising primarily coarse-grained quartz diorite and cored quartz monzonite. Here, we investigate a suite of simultaneous (216.6 ± 1.9 Ma) diorite porphyries within the complex. The diorite porphyries are geochemically similar to mafic magmatic enclaves (MME) hosted in coarse-grained quartz diorite, and both are characterized by low SiO2 (59.4-63.0 wt%) and high total alkali (Na2O + K2O = 7.0-9.2 wt%), K2O (3.5-6.4 wt%), MgO (3.2-5.5 wt%), and compatible trace element (e.g., Cr = 72-149 ppm) concentrations. They are enriched in large-ion lithophile and light rare earth elements (LILE and LREE, respectively), but depleted in high field-strength and heavy rare earth elements (HFSE and HREE, respectively), and yield variably high (La/Yb)N ratios (17-126, average 65) with weak to negligible Eu anomalies. Furthermore, they yield low (87Sr/86Sr)i ratios (0.7054-0.7067), weakly negative εNd(t) (-2.8 to -0.8) values, and variable zircon εHf(t) (-5.4 to +0.8) and δ18O (6.0‰-6.7‰) values. These geochemical features indicate that the diorite porphyry and MME formed through crustal assimilation of a magma produced during low-degree partial melting of metasomatized phlogopite-rich subcontinental lithospheric mantle. In contrast, the coarse-grained quartz diorite and quartz monzonite have relatively high concentrations of SiO2 (61.1-65.3 wt%), K2O (4.1-5.4 wt%), and total alkali (Na2O + K2O = 7.1-8.1 wt%), and low concentrations of MgO (generally Y ratios (50-63) that indicate an adakitic affinity, and are enriched in LILE, depleted in HFSE, and yield lower (La/Yb)N values (13-20, average 17) than the diorite porphyry and MME. They yield low (87Sr/86Sr)i ratios (0.7046-0.7066), negative εNd(t) (-3.3 to -1.7) values, and zircon εHf(t) and δ18O values of -2.9 to

  6. Evidence of Arc Magma Genesis in a Paleo-Mantle Wedge, the Higashi-Akaishi Peridotite, Japan

    Science.gov (United States)

    Till, C. B.; Guild, M. R.; Grove, T. L.; Carlson, R. W.

    2014-12-01

    Located in the Sanbagawa subduction-related high-pressure metamorphic belt in SW Japan on the island of Shikoku, the Higashi-akaishi peridotite body is composed of dunite, lherzolite and garnet clinopyroxenite, interfingered in one locality with quartz-rich eclogite. Previous work indicates the P-T history of the peridotite includes rapid prograde metamorphism with peak temperatures of 700-810°C and pressures of 2.9-3.8 GPa [1] at ~88-89 Ma followed by rapid exhumation at >2.5 cm/yr [2,3]. Major and trace element and isotopic data from samples within the Higashi-akaishi peridotite presented here and in another recent study [4] provide a record of subduction zone melting processes in a paleo-mantle wedge. Ultramafic samples range from 40-52 wt.% SiO2, 1-11 wt.% Al2O3 and 21-45 wt.% MgO with olivine and clinopyroxene Mg#'s as high as 0.93. The quartz-rich eclogite contains 62 wt.% SiO2, 6 wt.% MgO and 13 wt.% Al2O3 with trace element concentrations that are enriched relative to the ultramafic samples. 87Sr/86Sr (.703237-.704288), 143Nd/144Nd (ɛNd=+2 to +6) and Pb isotopic compositions are within the range of previously studied Japanese arc rocks. We interpret the pyroxenites as shallowly crystallized cumulates with varying amounts of trapped hydrous melt and the harzburgites as residues of melting. The peak P-T conditions of these rocks are similar to the solidus conditions of H2O-saturated fertile mantle near the base of the mantle wedge [5,6]. The presence of garnet porphyroblasts that enclose primary euhedral chlorite together with the chemical evidence, suggest these samples are associated with mantle melting in the presence of H2O. Major element modeling suggests the quartz-rich eclogite composition can be reproduced through mixing melts of subducted sediment with wet peridotite melts in the mantle wedge. Thus the Higashi-aikashi rock suite provides an in-situ record of the beginnings of hydrous melting and the mechanisms of metasomatism in the mantle wedge

  7. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Fidan, S.; Muhaffel, F. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey); Riool, M. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Cempura, G. [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Boer, L. de; Zaat, S.A.J. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Filemonowicz, A. Czyrska - [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Cimenoglu, H., E-mail: cimenogluh@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey)

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC{sub 2}H{sub 3}O{sub 2}). In general, synthesized MAO layers were composed of zirconium oxide (ZrO{sub 2}) and zircon (ZrSiO{sub 4}). Addition of AgC{sub 2}H{sub 3}O{sub 2} into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  8. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    International Nuclear Information System (INIS)

    Fidan, S.; Muhaffel, F.; Riool, M.; Cempura, G.; Boer, L. de; Zaat, S.A.J.; Filemonowicz, A. Czyrska -; Cimenoglu, H.

    2017-01-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  9. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China

    Science.gov (United States)

    Song, Xie-Yan; Qi, Hua-Wen; Hu, Rui-Zhong; Chen, Lie-Meng; Yu, Song-Yue; Zhang, Jia-Fei

    2013-03-01

    Panzhihua intrusion is one of the largest layered intrusions that hosts huge stratiform Fe-Ti oxide layers in the central part of the Emeishan large igneous province, SW China. Up to 60 m thick stratiform massive Fe-Ti oxide layers containing 85 modal% of magnetite and ilmenite and overlying magnetite gabbro compose cyclic units of the Lower Zone of the intrusion. The cyclic units of the Middle Zone consist of magnetite gabbro and overlying gabbro. In these cyclic units, contents of Fe2O3(t), TiO2 and Cr and Fe3+/Ti4+ ratio of the rocks decrease upward, Cr content of magnetite and forsterite percentage of olivine decrease as well. The Upper Zone consists of apatite gabbro characterized by enrichment of incompatible elements (e.g., 12-18 ppm La, 20-28 ppm Y) and increasing of Fe3+/Ti4+ ratio (from 1.3 to 2.3) upward. These features indicate that the Panzhihua intrusion was repeatedly recharged by more primitive magma and evolved magmas had been extracted. Calculations using MELTS indicate that extensive fractionation of olivine and clinopyroxene in deep level resulted in increasing Fe and Ti contents in the magma. When these Fe-Ti-enriched magmas were emplaced along the base of the Panzhihua intrusion, Fe-Ti oxides became an early crystallization phase, leading to a residual magma of lower density. We propose that the unusually thick stratiform Fe-Ti oxide layers resulted from coupling of gravity settling and sorting of the crystallized Fe-Ti oxides from Fe-Ti-enriched magmas and frequent magma replenishment along the floor of the magma chamber.

  10. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  11. An InSAR survey of the central Andes: Constraints on magma chamber geometry and mass balance in a volcanic arc

    Science.gov (United States)

    Pritchard, M. E.; Simons, M.

    2002-12-01

    The central Andes (14-28o S) has a high density of volcanoes, but a sparse human population, such that the activity of most volcanoes is poorly constrained. We use InSAR to conduct the first systematic observations of deformation at nearly 900 volcanoes (about 50 of which are classified ``potentially active'') during the 1992-2002 time interval. We find volcanic deformation in four locations. Subsidence is seen at Robledo (or Cerro Blanco) caldera, Argentina. We observe inflation at the stratovolcano Uturuncu, Bolivia, near stratovolcano Hualca Hualca, Peru, and in a region not associated with any known edifice on the border between Chile and Argentina that we call ``Lazufre'' because it lies between volcanoes Lastarria and Cordon del Azufre. The deformation pattern can be well explained by a uniform point-source source of inflation or deflation, but we compare these model results with those from a tri-axial point-source ellipsoid to test the robustness of estimated source depth and source strength (inferred here to be volume change). We further explore the sensitivity of these parameters to elastic half-space and layered-space models of crustal structure, and the influence of local topography. Because only one satellite look direction is available for most time periods, a variety of models are consistent with our observations. If we assume that inflation is due solely to magmatic intrusion, we can compare the rate of magma intrusion to volcanic extrusion during the decade for which data is available and the longer-term geologic rate. For the last decade, the ratio of volume intruded to extruded is between about 1-10, which agrees with previous geologic estimates in this and other volcanic arcs. The combined rate of intrusion and extrusion is within an order of magnitude of the inferred geologic rate.

  12. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    Science.gov (United States)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  13. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics.

    Science.gov (United States)

    Fidan, S; Muhaffel, F; Riool, M; Cempura, G; de Boer, L; Zaat, S A J; Filemonowicz, A Czyrska-; Cimenoglu, H

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    OpenAIRE

    Yanfeng Ge; Bailing Jiang; Ming Liu; Congjie Wang; Wenning Shen

    2014-01-01

    The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section m...

  15. Direct atomic-emission determination of tungsten in molybdenum oxide in dc arc

    International Nuclear Information System (INIS)

    Zolotareva, N.I.; Grazhulene, S.S.

    2007-01-01

    A method of direct atomic-emission determination of tungsten impurity in molybdenum trioxide of high purity in dc arc is presented. Chemically active additives of elementary sulfur and gallium oxide are used to optimize W evaporation rate and residence time in the arc plasma. The procedure is easy to use and provides the limit of W determination at a level of 2x10 -4 wt. % [ru

  16. Cathodic arc sputtering of functional titanium oxide thin films, demonstrating resistive switching

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Petr, E-mail: pshvets@innopark.kantiana.ru; Maksimova, Ksenia; Demin, Maxim; Dikaya, Olga; Goikhman, Alexander

    2017-05-15

    The formation of thin films of the different stable and metastable titanium oxide phases is demonstrated by cathode arc sputtering of a titanium target in an oxygen atmosphere. We also show that sputtering of titanium in vacuum yields the formation of titanium silicides on the silicon substrate. The crystal structure of the produced samples was investigated using Raman spectroscopy and X-ray diffraction. We conclude that cathode arc sputtering is a flexible method suitable for producing the functional films for electronic applications. The functionality is verified by the memory effect demonstration, based on the resistive switching in the titanium oxide thin film structure.

  17. Synthesis of zinc oxide nanoparticles by dc arc dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, K., E-mail: akskumar.phy@gmail.com; Senthilkumar, O. [Shimane University, Research Project Promotion Institute (Japan); Morito, S.; Ohba, T.; Fujita, Y. [Shimane University, Interdisciplinary Graduate School of Science and Engineering (Japan)

    2012-10-15

    Optical emission signals of a dc arc plasma system that was used for generating ZnO nanoparticles (NPs) have been investigated in gas phase as a function of chamber pressure and arc current. In this technique, a commercially available zinc 4N rod is used as a zinc source, as well as anode in the dc circuit and ambient air as an oxygen source. A carbon rod acts as the cathode. The optical transitions of Zn(I) and O(I) in addition, excitation of high energy states of N{sub 2}, CN, and atomic nitrogen lines were observed in OES due to increase of electron temperature than gas temperature (T{sub e} > T{sub g}) by reducing the chamber pressure from 760 torr to lower pressures. The as-prepared NPs show good crystalline quality with hexagonal wurtzite structure and the particle size was ranging from few nm to 100 nm in the form of rod and spherical morphologies. The impurity nature and structural properties of as-prepared NPs by dc arc plasma experiments were correlated with OES and Raman spectroscopy.

  18. Synthesis of zinc oxide nanoparticles by dc arc dusty plasma

    International Nuclear Information System (INIS)

    Senthilkumar, K.; Senthilkumar, O.; Morito, S.; Ohba, T.; Fujita, Y.

    2012-01-01

    Optical emission signals of a dc arc plasma system that was used for generating ZnO nanoparticles (NPs) have been investigated in gas phase as a function of chamber pressure and arc current. In this technique, a commercially available zinc 4N rod is used as a zinc source, as well as anode in the dc circuit and ambient air as an oxygen source. A carbon rod acts as the cathode. The optical transitions of Zn(I) and O(I) in addition, excitation of high energy states of N 2 , CN, and atomic nitrogen lines were observed in OES due to increase of electron temperature than gas temperature (T e > T g ) by reducing the chamber pressure from 760 torr to lower pressures. The as-prepared NPs show good crystalline quality with hexagonal wurtzite structure and the particle size was ranging from few nm to 100 nm in the form of rod and spherical morphologies. The impurity nature and structural properties of as-prepared NPs by dc arc plasma experiments were correlated with OES and Raman spectroscopy.

  19. Molybdenite saturation in silicic magmas: Occurrence and petrological implications

    Science.gov (United States)

    Audetat, A.; Dolejs, D.; Lowenstern, J. B.

    2011-01-01

    We identified molybdenite (MoS2) as an accessory magmatic phase in 13 out of 27 felsic magma systems examined worldwide. The molybdenite occurs as small (molybdenite-saturated samples reveal 1-13 ppm Mo in the melt and geochemical signatures that imply a strong link to continental rift basalt-rhyolite associations. In contrast, arc-associated rhyolites are rarely molybdenite-saturated, despite similar Mo concentrations. This systematic dependence on tectonic setting seems to reflect the higher oxidation state of arc magmas compared with within-plate magmas. A thermodynamic model devised to investigate the effects of T, f O2 and f S2 on molybdenite solubility reliably predicts measured Mo concentrations in molybdenite-saturated samples if the magmas are assumed to have been saturated also in pyrrhotite. Whereas pyrrhotite microphenocrysts have been observed in some of these samples, they have not been observed from other molybdenite-bearing magmas. Based on the strong influence of f S2 on molybdenite solubility we calculate that also these latter magmas must have been at (or very close to) pyrrhotite saturation. In this case the Mo concentration of molybdenite-saturated melts can be used to constrain both magmatic f O2 and f S2 if temperature is known independently (e.g. by zircon saturation thermometry). Our model thus permits evaluation of magmatic f S2, which is an important variable but is difficult to estimate otherwise, particularly in slowly cooled rocks. ?? The Author 2011. Published by Oxford University Press. All rights reserved.

  20. Characterization and mechanical properties of coatings on magnesium by micro arc oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Usta, Metin

    2012-01-01

    Highlights: ► The commercial pure magnesium was coated by MAO in sodium silicate and sodium phosphate. ► Coatings produced in the phosphate electrolyte are thicker than ones in the silicate electrolyte. ► Coatings in the silicate electrolyte are harder than ones in the phosphate electrolyte. ► Adhesion strength of coatings increases with increasing coating thickness. ► The wear resistance of the coated commercial pure magnesium is improved. - Abstracts: The commercial pure magnesium was coated by micro arc oxidation method in different aqueous solution, containing sodium silicate and sodium phosphate. Micro arc oxidation process was carried out at 0.060 A/cm 2 , 0.085 A/cm 2 and 0.140 A/cm 2 current densities for 30 min. The thickness, phase composition, morphology, hardness, adhesion strength and wear resistance of coatings were analyzed by eddy current, X-ray diffraction (XRD), scanning electron microscope (SEM), micro hardness tester, scratch tester and ball-on disk tribometer, respectively. The average thicknesses of the micro arc oxidized coatings ranged from 27 to 48 μm for sodium silicate solution and from 45 to 75 μm for sodium phosphate solution. The dominant phases formed on the pure magnesium were found to be a mixture of spinel Mg 2 SiO 4 (Forsterite) and MgO (Periclase) for sodium silicate solution and Mg 3 (PO 4 ) 2 (Farringtonite) and MgO (Periclase) for sodium phosphate solution. The average hardnesses of the micro arc oxidized coatings were between 260 HV and 470 HV for sodium silicate solution and between 175 HV and 260 HV for sodium phosphate solution. Adhesion strengths and wear resistances of coatings produced in sodium silicate solution were higher than those of the ones in sodium phosphate solution due to high hardness of coatings produced in sodium silicate solution.

  1. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    Science.gov (United States)

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  2. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally.

    Directory of Open Access Journals (Sweden)

    Dan M Park

    Full Text Available Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, σ(70-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis.

  3. Os and S isotope studies of ultramafic rocks in the Duke Island Complex, Alaska: variable degrees of crustal contamination of magmas in an arc setting and implications for Ni-Cu-PGE sulfide mineralization

    Science.gov (United States)

    Stifter, Eric C.; Ripley, Edward M.; Li, Chusi

    2016-10-01

    The Duke Island Complex is one of the several "Ural-Alaskan" intrusions of Cretaceous age that occur along the coast of SE Alaska. Significant quantities of magmatic Ni-Cu-PGE sulfide mineralization are locally found in the complex, primarily within olivine clinopyroxenites. Sulfide mineralization is Ni-poor, consistent with petrologic evidence which indicates that sulfide saturation was reached after extensive olivine crystallization. Olivine clinopyroxenites were intruded by magmas that produced sulfide-poor, adcumulate dunites. As part of a study to investigate the potential for Ni-rich sulfide mineralization in association with the dunites, a Re-Os and S isotope study of the dunites, as well as sulfide mineralization in the olivine clinopyroxenites, was initiated. Importantly, recent drilling in the complex identified the presence of sulfidic and carbonaceous country rocks that may have been involved in the contamination of magmas and generation of sulfide mineralization. γOs (110 Ma) values of two sulfidic country rocks are 1022 and 2011. δ34S values of the country rocks range from -2.6 to -16.1 ‰. 187Os/188Os ratios of sulfide minerals in the mineralization hosted by olivine clinopyroxenites are variable and high, with γOs (110 Ma) values between 151 and 2059. Extensive interaction with Re-rich sedimentary country rocks is indicated. In contrast, γOs (110 Ma) values of the dunites are significantly lower, ranging between 2 and 16. 187Os/188Os ratios increase with decreasing Os concentration. This inverse relation is similar to that shown by ultramafic rocks from several arc settings, as well as altered abyssal dunites and peridotites. The relation may be indicative of magma derivation from a sub-arc mantle that had experienced metasomatism via slab-derived fluids. Alternatively, the relation may be indicative of minor contamination of magma by crustal rocks with low Os concentrations but high 187Os/188Os ratios. A third alternative is that the low Os

  4. Micro-Arc oxidation of Ti in a solution of sulfuric acid and Ti+3 salt

    International Nuclear Information System (INIS)

    Ragalevicius, Rimas; Stalnionis, Giedrius; Niaura, Gediminas; Jagminas, Arunas

    2008-01-01

    A comparative study was performed on the behavior of titanium electrode in a sulfuric acid solution with and without Ti +3 during micro-arc oxidation under the constant current density control regime. The composition and microstructure of the obtained micro-arc films were analyzed using scanning electron microscopy, glancing-angle X-ray diffractometry, Raman and energy-dispersive X-ray spectroscopies. We have shown that addition of a Ti +3 salt extends the region of current densities (j a ) can be used for micro-arc oxidation of Ti and results in an obvious change of sparking behavior from extensive, large and long-played sparks to numerous, small and short sparks. As a consequence, the titania films formed in the Ti +3 -containing solutions are relatively thick, more uniform, composed of almost pure crystalline anatase and rutile phases of TiO 2 , and contain a network of evenly distributed small pores. It has also been shown that these films are promising for applications in catalysis, sensors and optoelectronics. The Raman spectra indicate that an increase in the electrolysis time of titanium in the Ti +3 -containing solution leads to the increase in rutile content, as expected

  5. Hydrothermal manganese oxide deposits from the Izu-Ogasawara (Bonin)-Mariana Arc and adjacent areas

    Energy Technology Data Exchange (ETDEWEB)

    Usui, A.; Nishimura, A. (Geological Survey of Japan, Tsukuba (Japan))

    1992-04-27

    Modern and fossil hydrothermal manganese oxide deposits were discovered from a number of locations in the Izu-Ogasawara(Bonin)-Mariana Arc and adjacent areas during the Hakurei-Maru cruises from 1984 to 1989. This paper describes the occurrence and characteristics of these manganese deposits and their geological significance. It was found that the mineralogical and chemical composition and microstructure of the deposits are typically different from manganese nodules and crusts of hydrogenetic or diagenetic origin. Hardpans, veinlets, sheets, and irregular mass of the hydrothermal manganese deposits often cover a large area of sea bed, which suggests possible high-temperature hydrothermal sulfide deposits in their vicinity. On the other hand, the manganese minerals sometimes occur as substrate of younger hydrogenetic crusts and as nucleus of hydrogenetic nodules, which can provide a geological history of low-temperature hydrothermal activity on the past island arcs. 45 refs., 19 figs., 3 tabs.

  6. [Utilization of a transferred arc-plasma rotating furnace to melt and found oxide mixtures at around 2000 degrees C (presentation of the film VULCANO)].

    Science.gov (United States)

    Cognet, G; Laffont, G; Jegou, C; Pierre, J; Journeau, C; Sudreau, F; Roubaud, A

    1999-03-01

    Unless security measures are taken, a hypothetical accident resulting from the loss of the cooling circuit in a pressurized water nuclear reactor could cause the heart of the reactor to melt forming a bath, called the corium, mainly composed of uranium, zirconium and iron oxides as well as the structural steel. This type of situation would be similar to the Three Mile Island accident in 1979. In order to limit the consequences of such an accident, the Atomic Energy Commission has implemented a large study program [1] to improve our understanding of corium behavior and determine solutions to stabilize it and avoid its propagation outside the unit. The VULCANO installation was designed in order to perform the trials using real materials which are indispensable to study all the phenomena involved. A film on the VULCANO trials was presented at the Henri Moissan commemorative session organized by the French National Academy of Pharmacy. The rotating furnace used to melt and found the mixture simulating the corium is a direct descendant of the pioneer work by Henri Moissan. An electrical arc is directed at the center of the load to melt which is maintained against the walls by centrifugal force. After six high-temperature trials performed with compositions without uranium oxide, the first trial with real corium showed that the magma spread rather well, a result which is quite favorable for cooling.

  7. Potential oxidative stress in the bodies of electric arc welding operators: effect of photochemical smog.

    Science.gov (United States)

    Zhu, You-Gen; Zhou, Jun-Fu; Shan, Wei-Ying; Zhou, Pei-Su; Tong, Gui-Zhong

    2004-12-01

    To investigate whether photochemical smog emitted during the process of electric arc welding might cause oxidative stress and potential oxidative damage in the bodies of welding operators. Seventy electric arc welding operators (WOs) and 70 healthy volunteers (HVs) were enrolled in a randomized controlled study design, in which the levels of vitamin C (VC) and vitamin E (VE) in plasma as well as the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and the level of lipoperoxide (LPO) in erythrocytes were determined by spectrophotometry. Compared with the average values of the above experimental parameters in the HVs group, the average values of VC and VE in plasma as well as those of SOD, CAT and GPX in erythrocytes in the WOs group were significantly decreased (P smog the values of VC, VE, SOD, and GPX, except for CAT, in the WOs were decreased gradually (P smog in the bodies of WOs, thereby causing potential oxidative and lipoperoxidative damages in their bodies.

  8. Temperature and Nitric Oxide Generation in a Pulsed Arc Discharge Plasma

    International Nuclear Information System (INIS)

    Namihira, T.; Sakai, S.; Matsuda, M.; Wang, D.; Kiyan, T.; Akiyama, H.; Okamoto, K.; Toda, K.

    2007-01-01

    Nitric oxide (NO) is increasingly being used in medical treatments of high blood pressure, acute respiratory distress syndrome and other illnesses related to the lungs. Currently a NO inhalation system consists of a gas cylinder of N 2 mixed with a high concentration of NO. This arrangement is potentially risky due to the possibility of an accidental leak of NO from the cylinder. The presence of NO in the air leads to the formation of nitric dioxide (NO 2 ), which is toxic to the lungs. Therefore, an on-site generator of NO would be highly desirable for medical doctors to use with patients with lung disease. To develop the NO inhalation system without a gas cylinder, which would include a high concentration of NO, NAMIHIRA et al have recently reported on the production of NO from room air using a pulsed arc discharge. In the present work, the temperature of the pulsed arc discharge plasma used to generate NO was measured to optimize the discharge condition. The results of the temperature measurements showed the temperature of the pulsed arc discharge plasma reached about 10,000 K immediately after discharge initiation and gradually decreased over tens of microseconds. In addition, it was found that NO was formed in a discharge plasma having temperatures higher than 9,000 K and a smaller input energy into the discharge plasma generates NO more efficiently than a larger one

  9. Nonlinear system identification of the reduction nickel oxide smelting process in electric arc furnace

    Science.gov (United States)

    Gubin, V.; Firsov, A.

    2018-03-01

    As the title implies the article describes the nonlinear system identification of the reduction smelting process of nickel oxide in electric arc furnaces. It is suggested that for operational control ratio of components of the charge must be solved the problem of determining the qualitative composition of the melt in real time. The use of 0th harmonic of phase voltage AC furnace as an indirect measure of the melt composition is proposed. Brief description of the mechanism of occurrence and nature of the non-zero 0th harmonic of the AC voltage of the arc is given. It is shown that value of 0th harmonic of the arc voltage is not function of electrical parameters but depends of the material composition of the melt. Processed industrial data are given. Hammerstein-Wiener model is used for description of the dependence of 0th harmonic of the furnace voltage from the technical parameters of melting furnace: the melt composition and current. Recommendations are given about the practical use of the model.

  10. Micro-arc oxidation of Ti-15Zr-based alloys for osseointegrative implants

    International Nuclear Information System (INIS)

    Correa, Diego Rafael Nespeque; Rocha, Luis Augusto; Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao

    2016-01-01

    Full text: Micro-arc oxidation (MAO) is well-known as low-cost coating technique which can produce porous structure in valve metals [1]. Studies have indicated that MAOcoatings are suitable for improve biofunctionalization of Ti-based implants by bioactive ions incorporation in the oxide layer [2]. This work aims to evaluate the characteristics of the MAO-coating in recent developed biomedical Ti-15Zr-based alloys in order to use as osseointegrative implants. Ti-15Zr-xMo (x = 0, 5, 10 and 15 % wt.) alloys were produced by argon arc-melting and molded in a centrifugal casting machine. MAO treatment were performed in disks (ϕ 8 mm x 1.5 mm), at room temperature, with a 304 stainless steel plate as counter electrode. Electrolyte was composed by 0.15 M calcium acetate and 0.10 M calcium glycerophosphate. The electrodes were connected to a DC power supply, and applied a density current of 311 A/m 2 , for 10 min, with voltages of 300, 350 and 400 V. Morphology, thickness, composition and crystal structure of the oxide layer were evaluated by SEM, XRF and XRD techniques. A typical porous layer was produced in all surfaces, being the porosity, porous size and thickness increased with the voltage. The composition of the oxide layer indicated Ca and P incorporation, being the concentration increased with the voltage applied. The XRD patterns do not exhibited peaks from oxides compounds, but only peaks from bulk-Ti phases. The results showed that the bioactive coatings were successfully growth in the Ti-15Zr-based alloys, being suitable for osseointegrative implants. References: [1] Hanawa, T. Japanese dental Science Review 46, 93-101, 2010; [2] Tsutsumi, Y. et al. Metals 6, 76-85, 2016. (author)

  11. Micro-arc oxidation of Ti-15Zr-based alloys for osseointegrative implants

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diego Rafael Nespeque; Rocha, Luis Augusto [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil); Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao [Tokyo Medical and Dental University (Japan)

    2016-07-01

    Full text: Micro-arc oxidation (MAO) is well-known as low-cost coating technique which can produce porous structure in valve metals [1]. Studies have indicated that MAOcoatings are suitable for improve biofunctionalization of Ti-based implants by bioactive ions incorporation in the oxide layer [2]. This work aims to evaluate the characteristics of the MAO-coating in recent developed biomedical Ti-15Zr-based alloys in order to use as osseointegrative implants. Ti-15Zr-xMo (x = 0, 5, 10 and 15 % wt.) alloys were produced by argon arc-melting and molded in a centrifugal casting machine. MAO treatment were performed in disks (ϕ 8 mm x 1.5 mm), at room temperature, with a 304 stainless steel plate as counter electrode. Electrolyte was composed by 0.15 M calcium acetate and 0.10 M calcium glycerophosphate. The electrodes were connected to a DC power supply, and applied a density current of 311 A/m{sup 2}, for 10 min, with voltages of 300, 350 and 400 V. Morphology, thickness, composition and crystal structure of the oxide layer were evaluated by SEM, XRF and XRD techniques. A typical porous layer was produced in all surfaces, being the porosity, porous size and thickness increased with the voltage. The composition of the oxide layer indicated Ca and P incorporation, being the concentration increased with the voltage applied. The XRD patterns do not exhibited peaks from oxides compounds, but only peaks from bulk-Ti phases. The results showed that the bioactive coatings were successfully growth in the Ti-15Zr-based alloys, being suitable for osseointegrative implants. References: [1] Hanawa, T. Japanese dental Science Review 46, 93-101, 2010; [2] Tsutsumi, Y. et al. Metals 6, 76-85, 2016. (author)

  12. Optimization geometries of a vortex gliding-arc reactor for partial oxidation of methane

    International Nuclear Information System (INIS)

    Guofeng, Xu; Xinwei, Ding

    2012-01-01

    The effects of the geometry of gliding-arc reactor – such as distance between the electrodes, outlet diameter, and inlet position – on the reactor characteristics (methane conversion, hydrogen yield, and energy efficiency) have not been fully investigated. In this paper, AC gliding-arc reactors including the vortex flow configuration are designed to produce hydrogen from the methane by partial oxidation. The influence of vortex flow configuration on the reactor characteristics is also studied by varying the inlet position. When the inlet of the gliding-arc reactor is positioned close to the outlet, reverse vortex flow reactor (RVFR), the maximum energy efficiency reaches 50% and the yields of hydrogen and carbon monoxide are 40% and 65%, respectively. As the distance between electrodes increases from 5 mm to 15 mm, both hydrogen yield and energy efficiency increase approximately 10% for the RVFR. The energy efficiency and hydrogen yield are highest when the ratio of the outlet diameter to the inner diameter is 0.5 for the RVFR. Experimental results indicate that the flow field in the plasma reactor has an important influence on the reactor performance. Furthermore, hydrogen production increases as the number of feed gas flows in contact with the plasma zone increases. -- Highlights: ► Gliding-arc reactors were designed to produce hydrogen for studying the characteristics of the vortex flow reactor. ► Hydrogen yield of reverse vortex flow reactor was 10% higher than that of forward vortex flow reactor. ► Maximum energy efficiency was 50% for reverse vortex flow reactor. ► If discharge power was supplied to the reactors, the reactor performance increased with increasing distance between electrodes. ► Optimum ratio of the outlet and inner diameter was 1/2.

  13. Deposition of indium tin oxide thin films by cathodic arc ion plating

    International Nuclear Information System (INIS)

    Yang, M.-H.; Wen, J.-C.; Chen, K.-L.; Chen, S.-Y.; Leu, M.-S.

    2005-01-01

    Indium tin oxide (ITO) thin films have been deposited by cathodic arc ion plating (CAIP) using sintered oxide target as the source material. In an oxygen atmosphere of 200 deg. C, ITO films with a lowest resistivity of 2.2x10 -4 Ω-cm were obtained at a deposition rate higher than 450 nm/min. The carrier mobility of ITO shows a maximum at some medium pressures. Although morphologically ITO films with a very fine nanometer-sized structure were observed to possess the lowest resistivity, more detailed analyses based on X-ray diffraction are attempted to gain more insight into the factors that govern electron mobility in this investigation

  14. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yong [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang Yingjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Nan Kaihui [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Han Yong [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-09-15

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and {beta}-glycerol phosphate disodium salt pentahydrate ({beta}-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 {mu}m, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  15. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.

    Science.gov (United States)

    Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong

    2007-09-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  16. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Huang Yong; Wang Yingjun; Ning Chengyun; Nan Kaihui; Han Yong

    2007-01-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 μm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints

  17. Characterization and corrosion behavior of ceramic coating on magnesium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Aytac, Aylin; Usta, Metin

    2011-01-01

    Highlights: · The commercial pure magnesium was coated by micro-arc oxidation method. · The coating is composed of two layers, a porous outer layer and a dense inner layer. · A super corrosion resistance was achieved with MAO coatings. · Coating with Mg 2 SiO 4 is more resistant to corrosion than that containing Mg 3 (PO 4 ) 2 . - Abstract: In this study, the commercial pure magnesium was coated in different aqueous solutions of Na 2 SiO 3 and Na 3 PO 4 by the micro-arc oxidation method (MAO). Coating thickness, phase composition, surface and cross sectional morphology and corrosion resistance of coatings were analyzed by eddy current method, X-ray diffraction (XRD), scanning electron microscope (SEM) and tafel extrapolation method, respectively. The average thickness of the coatings ranged from 52 to 74 μm for sodium silicate solution and from 64 to 88 μm for sodium phosphate solution. The dominant phases on the coatings were detected as spinal Mg 2 SiO 4 (Forsterite) and MgO (Periclase) for sodium silicate solution and Mg 3 (PO 4 ) 2 (Farringtonite) and MgO (Periclase) for sodium phosphate solution. SEM images reveal that the coating is composed of two layers as of a porous outer layer and a dense inner layer. The corrosion results show the coating consisting Mg 2 SiO 4 is more resistant to corrosion than that containing Mg 3 (PO 4 ) 2 .

  18. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seyfoori, A., E-mail: klm.1985@yahoo.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); National Cell Bank, Pasteur Institute of Iran, 13164 Tehran (Iran, Islamic Republic of); Mirdamadi, Sh.; Seyedraoufi, Z.S.; Khavandi, A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); Aliofkhazraei, M. [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, 14115-143 Tehran (Iran, Islamic Republic of)

    2013-10-01

    The present research reports the synthesis of an innovative nanostructured composite film containing biphasic calcium phosphate (BCP) by the micro arc oxidation (MAO) method on AZ31 magnesium alloy. Nanometric structure of the used hydroxyapatite powder and the coatings were characterized by means of transmission and field-emission scanning electron microscope, respectively. Electrochemical behaviors of the pure MAO and nanocomposite films were also evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in simulated body fluid (SBF) environment. The results showed higher corrosion resistance of nanocomposite film compared to pure MAO coating, which was related to the blocking feature of the nanoparticles from the diffusing of the corrosive medium through the substrate. In addition, by immersing the specimens in simulated body fluid, greater apatite forming ability of the nanocomposite coating was proved. - Highlights: • Synthesis of innovative biphasic calcium phosphate containing nanostructured films via micro arc oxidation. • Nanocomposite film has lower degradation rate than pure MAO film. • Greater apatite forming ability for nanocomposite coating compared with pure MAO film is obtained.

  19. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy

    International Nuclear Information System (INIS)

    Seyfoori, A.; Mirdamadi, Sh.; Seyedraoufi, Z.S.; Khavandi, A.; Aliofkhazraei, M.

    2013-01-01

    The present research reports the synthesis of an innovative nanostructured composite film containing biphasic calcium phosphate (BCP) by the micro arc oxidation (MAO) method on AZ31 magnesium alloy. Nanometric structure of the used hydroxyapatite powder and the coatings were characterized by means of transmission and field-emission scanning electron microscope, respectively. Electrochemical behaviors of the pure MAO and nanocomposite films were also evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in simulated body fluid (SBF) environment. The results showed higher corrosion resistance of nanocomposite film compared to pure MAO coating, which was related to the blocking feature of the nanoparticles from the diffusing of the corrosive medium through the substrate. In addition, by immersing the specimens in simulated body fluid, greater apatite forming ability of the nanocomposite coating was proved. - Highlights: • Synthesis of innovative biphasic calcium phosphate containing nanostructured films via micro arc oxidation. • Nanocomposite film has lower degradation rate than pure MAO film. • Greater apatite forming ability for nanocomposite coating compared with pure MAO film is obtained

  20. Effect of applied voltage on phase components of composite coatings prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fang, Yu-Jing [Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060 (China); Zheng, Huade [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Tan, Guoxin [Guangdong University of Technology, Guangdong Province 510006 (China); Cheng, Haimei [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2013-10-01

    In this report, we present results from our experiments on composite coatings formed on biomedical titanium substrates by micro-arc oxidation (MAO) in constant-voltage mode. The coatings were prepared on the substrates in an aqueous electrolyte containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). We analyzed the element distribution and phase components of the coatings prepared at different voltages by X-ray diffraction, thin-coating X-ray diffraction, electron-probe microanalysis, and Fourier-transform infrared spectroscopy. The results show that the composite coatings formed at 500 V consist of titania (TiO{sub 2}), hydroxylapatite (HA), and calcium carbonate (CaCO{sub 3}). Furthermore, the concentration of Ca, P, and Ti gradually changes with increasing applied voltage, and the phase components of the composite coatings gradually change from the bottom of the coating to the top: the bottom layer consists of TiO{sub 2}, the middle layer consists of TiO{sub 2} and HA, and the top layer consists of HA and a small amount of CaCO{sub 3}. The formation of HA directly on the coating surface by MAO technique can greatly enhance the surface bioactivity. - Highlights: • Coatings prepared on biomedical titanium substrate by micro-arc oxidation • Coatings composed of titania, hydroxyapatite and calcium carbonate • Hydroxyapatite on the coating surface can enhance the surface bioactivity.

  1. Formation of hydrothermal deposits at Kings Triple Junction, northern Lau back-arc basin, SW Pacific: The geochemical perspectives

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Ray, D.; Balaram, V.; Prakash, L.S.; Mirza, I.H.; Satyanarayana, M.; Rao, T.G.; Kaisary, S.

    low concentration of high field strength elements (e.g. Zr, Hf, Nb and Ta) and enrichment of light REE in these sulfides indicate prominent influence of aqueous arc-magma, rich in subduction components. The oxide growths in the 'Christmas Tree' Field...

  2. Investigating the Influence of Micro-Arc Oxide Coating on Rigidity and Strength of Long Force Elements of Spacecraft

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2014-01-01

    Full Text Available Outboard elements (arms, towers are widely used in spacecraft structure for setting-out of a payload; their high stiffness-weight ratio provides an opportunity to decrease the mass. The deployment unit is considered as an example of outboard structure. Its strength beams work under special conditions in operation. At the transportation stage beams are under considerable vibration loads. Therefore for increasing the natural resonance frequency it is rational to increase their rigidity. Using the micro-arc oxide coating suggests itself because the modulus of elasticity of the micro-arc oxide coating is more than that of the aluminium alloy. The beams suffer considerable bending load at the step of deploying; therefore the aluminium alloy with the micro-arc oxide coating must have suitable loading capacity, in addition to increased rigidity.Influence of micro-arc oxide coating on the rigidity and strength of tubes f rom aluminium alloy is investigated. It is determined that forming the micro-arc oxide coating on thin-walled tubes with a ratio of the coating area to the cross-section area of more than 25% is the most rational. In this case the rigidity of composite material considerably exceeds the rigidity of the aluminium alloy of the same cross-section while the redistribution of stresses in the surface coating of heterogeneous elasticity cross-section doesn’t cause the sudden increase of stresses. Also forming an attainable thickness of the micro-arc oxide coating on the surface of tube from aluminium alloy will be rational solution because the increase of attainable thickness of the microarc oxide coating provides an opportunity to form it on thick-walled tubes saving an acceptable, in the context of the strength, ratio of the coating area to the overall cross-section area.Micro-arc oxidation is an advanced method to form the wear resistant, resistant to corrosion, heat-shielding and electrically insulating coatings, but depending on the

  3. Oxidation behavior of arc evaporated Al-Cr-Si-N thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tritremmel, Christian; Daniel, Rostislav; Mitterer, Christian; Mayrhofer, Paul H.; Lechthaler, Markus; Polcik, Peter [Christian Doppler Laboratory for Advanced Hard Coatings, Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Christian Doppler Laboratory for Application Oriented Coating Development, Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); OC Oerlikon Balzers AG, Iramali 18, LI-9496 Balzers (Liechtenstein); PLANSEE Composite Materials GmbH, Siebenbuergerstrasse 23, D-86983 Lechbruck am See (Germany)

    2012-11-15

    The impact of Al and Si on the oxidation behavior of Al-Cr-(Si)-N thin films synthesized by arc evaporation of powder metallurgically prepared Al{sub x}Cr{sub 1-x} targets with x = Al/(Al + Cr) of 0.5, 0.6, and 0.7 and (Al{sub 0.5}Cr{sub 0.5}){sub 1-z}Si{sub z} targets with Si contents of z = 0.05, 0.1, and 0.2 in N{sub 2} atmosphere was studied in detail by means of differential scanning calorimetry, thermogravimetric analysis (TGA), x-ray diffraction, and Raman spectroscopy. Dynamical measurements in synthetic air (up to 1440 Degree-Sign C) revealed the highest onset temperature of pronounced oxidation for nitride coatings prepared from the Al{sub 0.4}Cr{sub 0.4}Si{sub 0.2} target. Isothermal TGA at 1100, 1200, 1250, and 1300 Degree-Sign C highlight the pronounced improvement of the oxidation resistance of Al{sub x}Cr{sub 1-x}N coatings by the addition of Si. The results show that Si promotes the formation of a dense coating morphology as well as a dense oxide scale when exposed to air.

  4. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    Directory of Open Access Journals (Sweden)

    Ganhua Lu

    2006-01-01

    Full Text Available Miniaturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS. The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM for morphology and defects, energy dispersive X-ray (EDX spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS for surface composition. Nonagglomerated rutile tin oxide (SnO2 nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.

  5. Recognizing subtle evidence for silicic magma derivation from petrochemically-similar arc crust: Isotopic and chemical evidence for the bimodal volcanic series of Gorely Volcanic Center, Kamchatka, Russia

    Science.gov (United States)

    Seligman, A. N.; Bindeman, I. N.; Ellis, B. S.; Ponomareva, V.; Leonov, V.

    2012-12-01

    chemical compositions near the evolved ignimbrite compositions, strictly through 70-80% fractional crystallization at 1-2 kbars and NNO oxygen fugacity. The combination of light δ18O values as well as elevated 87Sr/86Sr and low 143Nd/144Nd values, in addition to the volumetric excess of silicic rocks suggest assimilation of the older and petrochemically-similar country-rocks (Karymshina volcano and/or the underlying Akhomten Massif). This research can be utilized for studies of other volcanoes at "long-term centers", underscoring the importance of using both isotopes and modeling of fractional crystallization to determine silicic magma derivation through coupled shallow crustal assimilation of similar older material and fractional crystallization.

  6. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yanfeng Ge

    2014-12-01

    Full Text Available The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating, and it acted as a shelter against corrosive products. The copper-accelerated acetic acid salt spray Test, abrasion resistance test, stone impact resistance test, thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM. The test results showed the composite coatings meet all the requirements. The MCC coating on Mg presents excellent properties, and it is a promising surface treatment technology on magnesium alloys for production vehicles.

  7. Experimental investigation on the motion of cathode spots in removing oxide film on metal surface by vacuum arc

    International Nuclear Information System (INIS)

    Shi Zongqian; Jia Shenli; Wang Lijun; Yuan Qingjun; Song Xiaochuan

    2008-01-01

    The motion of vacuum arc cathode spots has a very important influence on the efficiency of removing the oxide film on the metal surface. In this paper, the characteristics of cathode spot motion are investigated experimentally. Experiments were conducted in a detachable vacuum chamber with ac (50 Hz) arc current of 1 kA (rms). A stainless steel plate covered by an oxide layer was used as the cathode. The motion of cathode spots during the descaling process was photographed by a high-speed digital camera with an exposure time of 2 μs. Experimental results indicate that the motion of cathode spots is influenced by the interaction among individual cathode jets and the position of the anode as well as the surface condition. The waveform of arc voltage is also influenced by the motion of cathode spots

  8. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode

    Directory of Open Access Journals (Sweden)

    Wei-wei Chen

    2015-09-01

    Full Text Available Micro-arc oxidation (MAO coatings of ZK60 magnesium alloys were formed in a self-developed dual electrolyte composed of sodium silicate and phosphate at the high constant current of 1.8 A (15 A/dm2. The MAO process and growth mechanism were investigated by scanning electron microscopy (SEM coupled with an energy dispersive spectrometer (EDS, confocal laser scanning microscopy and X-ray diffraction (XRD. The results indicate that the growth process of MAO coating mainly goes through “forming → puncturing → rapid growth of micro-arc oxidation →large arc discharge → self-repairing”. The coating grows inward and outward at the same time in the initial stage, but outward growth of the coating is dominant later. Mg, Mg2SiO4 and MgO are the main phases of ceramic coating.

  9. The influence of the substrate on the adhesive strength of the micro-arc oxidation coating developed on TiNi shape memory alloy

    Science.gov (United States)

    Hsieh, Shy-Feng; Ou, Shih-Fu; Chou, Chia-Kai

    2017-01-01

    TiNi shape memory alloys (SMAs), used as long-term implant materials, have a disadvantage. Ni-ion release from the alloys may trigger allergies in the human body. Micro-arc oxidation has been utilized to modify the surface of the TiNi SMA for improving its corrosion resistance and biocompatibility. However, there are very few reports investigating the essential adhesive strength between the micro-arc oxidized film and TiNi SMA. Two primary goals were attained by this study. First, Ti50Ni48.5Mo1.5 SMA having a phase transformation temperature (Af) less than body temperature and good shape recovery were prepared. Next, the Ti50Ni50 and Ti50Ni48.5Mo1.5 SMA surfaces were modified by micro-arc oxidation in phosphoric acid by applying relatively low voltages to maintain the adhesive strength. The results indicated that the pore size, film thickness, and P content increased with applied voltage. The micro-arc oxidized film, comprising Ti oxides, Ni oxide, and phosphate compounds, exhibited a glassy amorphous structure. The outmost surface of the micro-arc oxidized film contained a large amount of P (>12 at%) but only a trace of Ni (micro-arc oxidized films exceeded the requirements of ISO 13779. Furthermore, Mo addition into TiNi SMAs was found to be favorable for improving the adhesive strength of the micro-arc oxidized film.

  10. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu; Ida, Satoshi; Miyata, Toshihiro

    2002-09-02

    Transparent conducting oxide (TCO) thin films have been deposited at a high rate above 370 nm/min by vacuum arc plasma evaporation (VAPE) using sintered oxide fragments as the source material. It was found that the deposition rate of TCO films was strongly dependent on the deposition pressure, whereas the obtained electrical properties were relatively independent of the pressure. Resistivities of 5.6x10{sup -4} and 2.3x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% (with substrate included) in the visible range were obtained in Ga-doped ZnO (GZO) thin films deposited at 100 and 350 deg. C, respectively. In addition, a resistivity as low as 1.4x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% were also obtained in indium-tin-oxide (ITO) films deposited at 300 deg. C. The deposited TCO films exhibited uniform distributions of resistivity and thickness on large area substrates.

  11. Micro-Arc Oxidation Enhances the Blood Compatibility of Ultrafine-Grained Pure Titanium

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2017-12-01

    Full Text Available Ultrafine-grained pure titanium prepared by equal-channel angular pressing has favorable mechanical performance and does not contain alloy elements that are toxic to the human body. It has potential clinical value in applications such as cardiac valve prostheses, vascular stents, and hip prostheses. To overcome the material’s inherent thrombogenicity, surface-coating modification is a crucial pathway to enhancing blood compatibility. An electrolyte solution of sodium silicate + sodium polyphosphate + calcium acetate and the micro-arc oxidation (MAO technique were employed for in situ oxidation of an ultrafine-grained pure titanium surface. A porous coating with anatase- and rutile-phase TiO2 was generated and wettability and blood compatibility were examined. The results showed that, in comparison with ultrafine-grained pure titanium substrate, the MAO coating had a rougher surface, smaller contact angles for distilled water and higher surface energy. MAO modification effectively reduced the hemolysis rate; extended the dynamic coagulation time, prothrombin time (PT, and activated partial thromboplastin time (APTT; reduced the amount of platelet adhesion and the degree of deformation; and enhanced blood compatibility. In particular, the sample with an oxidation time of 9 min possessed the highest surface energy, largest PT and APTT values, smallest hemolysis rate, less platelet adhesion, a lesser degree of deformation, and more favorable blood compatibility. The MAO method can significantly enhance the blood compatibility of ultrafine-grained pure titanium, increasing its potential for practical applications.

  12. Industrial study of iron oxide reduction by injection of carbon particles into the electric arc furnace

    International Nuclear Information System (INIS)

    Conejo, A. N.; Torres, R.; Cuellar, E.

    1999-01-01

    An industrial study was conducted in electric arc furnaces (EAF) employing 100% direct reduced iron to evaluate the oxidation level of the slag-metal system. Energy consumption is decreased by injecting gaseous oxygen, however, slag oxidation also increases. In order to reduce the extent of oxidation while keeping a high volume of the oxygen injected , it is required: a) to optimize the carbon injection practice, b) to increase the carbon concentration of sponge iron, c) to operate with soluble carbon in both the metal and the slag beyond a critical level and d) to employ a low temperature profile, on average 1,650 degree centigrade. A method to define the proper amount of carbon in sponge iron which considers their metallization as well as the amount of oxygen injected is proposed. The position of the lance is critical in order to optimize the practice of carbon injection and assure a better residence time of the carbon particles within the furnace. (Author) 23 refs

  13. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Ida, Satoshi; Miyata, Toshihiro

    2002-01-01

    Transparent conducting oxide (TCO) thin films have been deposited at a high rate above 370 nm/min by vacuum arc plasma evaporation (VAPE) using sintered oxide fragments as the source material. It was found that the deposition rate of TCO films was strongly dependent on the deposition pressure, whereas the obtained electrical properties were relatively independent of the pressure. Resistivities of 5.6x10 -4 and 2.3x10 -4 Ω·cm and an average transmittance above 80% (with substrate included) in the visible range were obtained in Ga-doped ZnO (GZO) thin films deposited at 100 and 350 deg. C, respectively. In addition, a resistivity as low as 1.4x10 -4 Ω·cm and an average transmittance above 80% were also obtained in indium-tin-oxide (ITO) films deposited at 300 deg. C. The deposited TCO films exhibited uniform distributions of resistivity and thickness on large area substrates

  14. Unraveling the diversity in arc volcanic eruption styles: Examples from the Aleutian volcanic arc, Alaska

    Science.gov (United States)

    Larsen, Jessica F.

    2016-11-01

    The magmatic systems feeding arc volcanoes are complex, leading to a rich diversity in eruptive products and eruption styles. This review focuses on examples from the Aleutian subduction zone, encompassed within the state of Alaska, USA because it exhibits a rich diversity in arc structure and tectonics, sediment and volatile influx feeding primary magma generation, crustal magma differentiation processes, with the resulting outcome the production of a complete range in eruption styles from its diverse volcanic centers. Recent and ongoing investigations along the arc reveal controls on magma production that result in diversity of eruptive products, from crystal-rich intermediate andesites to phenocryst-poor, melt-rich silicic and mafic magmas and a spectrum in between. Thus, deep to shallow crustal "processing" of arc magmas likely greatly influences the physical and chemical character of the magmas as they accumulate in the shallow crust, the flow physics of the magmas as they rise in the conduit, and eruption style through differences in degassing kinetics of the bubbly magmas. The broad spectrum of resulting eruption styles thus depends on the bulk magma composition, melt phase composition, and the bubble and crystal content (phenocrysts and/or microlites) of the magma. Those fundamental magma characteristics are in turn largely determined by the crustal differentiation pathway traversed by the magma as a function of tectonic location in the arc, and/or the water content and composition of the primary magmas. The physical and chemical character of the magma, set by the arc differentiation pathway, as it ascends towards eruption determines the kinetic efficiency of degassing versus the increasing internal gas bubble overpressure. The balance between degassing rate and the rate at which gas bubble overpressure builds then determines the conditions of fragmentation, and ultimately eruption intensity.

  15. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.t [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2010-10-22

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E{sub corr}) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  16. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Kung, Kuan-Chen; Lee, Tzer-Min; Lui, Truan-Sheng

    2010-01-01

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E corr ) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  17. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    OpenAIRE

    Skryabin M.L.; Smekhova I. N.

    2017-01-01

    The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential depende...

  18. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    Skryabin M.L.

    2017-12-01

    Full Text Available The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential dependence of the current density from the electric field in the surface film of the base metal. The role of discharges in the formation of oxide layers on the treated surface. Proposed and described features of the three main theories of formation of oxide films on the surface of the piston: physical and geometrical model of Keller; models of formation of oxide films as a colloid formations and plasma theory (theory of oxidation with the formation of plasma in the zone of oxidation. The features of formation of films in each of the models. For the model of Keller porous oxide film is a close-Packed oxide cell, having the shape of a prism. They are based on a hexagonal prism. These cells have normal orientation to the surface of the metal. In the center of the unit cell there is one season that is a channel, whose size is determined by the composition of the electrolyte, the chemical composition of the base metal and the electrical parameters of the process of oxidation. In the micro-arc oxidation process according to this model, the beginning of the formation of cells occurs with the formation of the barrier layer, passing in the porous layer and, over time, the elonga-tion of the pores, due to the constant etching electrolyte. In the theory of formation of the oxide films as kolloidnyh formations revealed that formation of pores in the film is a result of their growth. The anodic oxide is represented by a directed electric field, the alumina gel colloidal and

  19. Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Congjie [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Jiang, Bailing [School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816 (China); Liu, Ming [General Motors China Science Lab, Shanghai 201206 (China); Ge, Yanfeng [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2015-02-05

    Highlights: • A new protective composite coatings were prepared on AZ31B Mg alloy. • The E-coat locked into MAO coat by discharge channels forming a smoother and compact surface without defects. • Comparing with MAO coat, the MAOE composite coat could provide an excellent barrier for bare Mg against corrosion attack. - Abstract: A two layer composite coating system was applied on the surface of AZ31B magnesium alloy by Micro-arc Oxidation (MAO) plus electrophoretic coat (E-coat) technique. The Mg sample coated with MAO plus E-coat (MAOE) was compared with bare Mg and Mg sample coated by MAO only. The surface microstructure and cross section of bare and coated Mg before and after corrosion were examined by Scanning Electron Microscopy (SEM). The corrosion performance of bare and coated Mg was evaluated using electrochemical measurement and hydrogen evolution test. The results indicated that the corrosion resistance of AZ31B Mg alloy was significantly improved by MAOE composite coating. The corrosion mechanism of bare and coated Mg is discussed.

  20. Corrosion resistance and calcium–phosphorus precipitation of micro-arc oxidized magnesium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lichen; Cui, Chunxiang, E-mail: hutcui@hebut.edu.cn; Wang, Xin; Liu, Shuangjin; Bu, Shaojing; Wang, Qingzhou; Qi, Yumin

    2015-03-01

    Highlights: • Hydroxyapatite (HA) powders were added to the electrolyte. • The HA powders have participated in the formation reactions of MAO coating. • The growth efficiency of MAO coating was greatly enhanced owing to the HA addition. • The specimen anodized in the HA-containing electrolyte has a better corrosion resistance. • The specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation. - Abstract: To improve the corrosion resistance of magnesium, micro-arc oxidation (MAO) coatings were prepared on magnesium substrates in an aqueous solution with and without hydroxyapatite (HA) powders addition. The micrographs of scanning electron microscopy (SEM), the energy dispersive spectrometer (EDS) spectra, and X-ray diffraction (XRD) analysis show that the HA powders added into the electrolyte have participated in the formation reactions of MAO coating and the growth efficiency of MAO coating is greatly enhanced. Potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) confirm that the specimen anodized in the HA-containing electrolyte has a better corrosion resistance than the specimen anodized in the HA-free electrolyte. Immersion tests also indicate that the specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation compared with the specimen anodized in the HA-free electrolyte.

  1. Polyethylenimine/kappa carrageenan: Micro-arc oxidation coating for passivation of magnesium alloy.

    Science.gov (United States)

    Golshirazi, A; Kharaziha, M; Golozar, M A

    2017-07-01

    The aim of this study was to combine micro-arc oxidation (MAO) and self-assembly technique to improve corrosion resistivity of AZ91 alloy. While a silicate-fluoride electrolyte was adopted for MAO treatment, polyethylenimine (PEI)/kappa carrageenan (KC) self-assembly coating was applied as the second coating layer. Resulted demonstrated the formation of forsterite-fluoride containing MAO coating on AZ91 alloy depending on the voltage and time of anodizing process. Addition of the second PEI/KC coating layer on MAO treated sample effectively enhanced the adhesive strength of MAO coated sample due to filling the pores with polymers and increase in the mechanical interlocking of coating to the substrate. Moreover, the corrosion evaluation considered by potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that double layered PEI/KC:MAO coating presented superior resistance to corrosion attack. It is envisioned that the proposed double layered PEI/KC:MAO coating could be useful for biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    International Nuclear Information System (INIS)

    Pan, Y.K.; Chen, C.Z.; Wang, D.G.; Lin, Z.Q.

    2013-01-01

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH 3 COO) 2 Ca·H 2 O) and disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 ·12H 2 O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HA) and calcium pyrophosphates (Ca 2 P 2 O 7 , CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF 2 , CaO, CaF 2 and Ca 3 (PO 4 ) 2 . • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate

  3. Microscopy of Alloy Formation on Arc Plasma Sintered Oxide Dispersion Strengthen (ODS) Steel

    Science.gov (United States)

    Bandriyana, B.; Sujatno, A.; Salam, R.; Dimyati, A.; Untoro, P.

    2017-07-01

    The oxide dispersed strengthened (ODS) alloys steel developed as structure material for nuclear power plants (NPP) has good resistant against creep due to their unique microstructure. Microscopy investigation on the microstructure formation during alloying process especially at the early stages was carried out to study the correlation between structure and property of ODS alloys. This was possible thanks to the arc plasma sintering (APS) device which can simulate the time dependent alloying processes. The ODS sample with composition of 88 wt.% Fe and 12 wt.% Cr powder dispersed with 1 wt.% ZrO2 nano powder was mixed in a high energy milling, isostatic compressed to form sample coins and then alloyed in APS. The Scanning Electron Microscope (SEM) with X-ray Diffraction Spectroscopy (EDX) line scan and mapping was used to characterize the microstructure and elemental composition distribution of the samples. The alloying process with unification of each Fe and Cr phase continued by the alloying formation of Fe-Cr by inter-diffusion of both Fe and Cr and followed by the improvement of the mechanical properties of hardness.

  4. Antibacterial TiO2Coating Incorporating Silver Nanoparticles by Micro arc Oxidation and Ion Implantation

    International Nuclear Information System (INIS)

    Zhang, P.; Zhang, Z.; Li, W.

    2013-01-01

    Infection associated with titanium implants remains the most common serious complication in hard tissue replacement surgery. Since such postoperative infections are usually difficult to cure, it is critical to find optimal strategies for preventing infections. In this study, TiO 2 coating incorporating silver (Ag) nanoparticles were fabricated on pure titanium by micro arc oxidation and ion implantation. The antibacterial activity was evaluated by exposing the specimens to Staphylococcus aureus and comparing the reaction of the pathogens to Ti-MAO-Ag with Ti-MAO controls. Ti-MAO-Ag clearly inhibited bacterial colonization more than the control specimen. The coating’s antibacterial ability was enhanced by increasing the dose of silver ion implantation, and Ti-MAO-Ag 20.0 had the best antibacterial ability. In addition, cytocompatibility was assessed by culturing cell colonies on the specimens. The cells grew well on both specimens. These findings indicate that surface modification by means of this process combining MAO and silver ion implantation is useful in providing antibacterial activity and exhibits cytocompatibility with titanium implants

  5. Zirconium Micro-Arc Oxidation as a Method for Producing Heat Insulation Elements in Spacecraft

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2014-01-01

    Full Text Available Application of coatings on the surface of materials as well as their composition and structure control in the near-surface layer enables us to use properties of base material and modified layers in the most rational and profitable way and save expensive and rare metals and alloys.The space telescope of T-170M will be the main tool of the international space observatory "Spektr-UF".It is being understood that the main mirror shade, which is in the outer space and has a considerable height will act as a radiator cooling a unit (cage of the main mirror. Therefore it is necessary to create heat insulation between the shade of the main mirror and the frame of the main mirror unit. From the thermal calculations a detail to provide heat insulation must possess thermal conductivity, at most, 2,5 and a conditional limit of fluidity for compression, at least, 125 MPas to ensure that the shade diaphragms position of the main mirror is stable with respect to the optical system of telescope.Considering that oxide of zirconium possesses one of the lowest thermal conductivities among oxides of metals, it is offered to use zirconium, as a material of base, and to put the MAO-covering (micro-arc oxide on its surface.As a result of studying the features of MAO-coverings on zirconium it is:1 found that the composite material consisting of zirconium and MAO-covering on it, has low thermal conductivity (less than 2 , and thus, because of small oxide layer thickness against the thickness of base material, possesses the mechanical properties which are slightly different from the pure zirconium ones;2 found that the composite material possesses the low gas release, allowing its use in the outer space conditions; the material processed in two electrolytes i.e. phosphate and acid ones has the lowest gas release;3 found that with growing thickness of MAO-covering its porosity decreases, thus the average pore diameter grows thereby leading to increasing thermal

  6. Microscopic observations of osteoblast growth on micro-arc oxidized β titanium

    Science.gov (United States)

    Chen, Hsien-Te; Chung, Chi-Jen; Yang, Tsai-Ching; Tang, Chin-Hsin; He, Ju-Liang

    2013-02-01

    Titanium alloys are widely used in orthopedic and dental implants, owing to their excellent physical properties and biocompatibility. By using the micro-arc oxidation (MAO), we generated anatase-rich (A-TiO2) and rutile-rich (R-TiO2) titanium dioxide coatings, individually on β-Ti alloy, in which the latter achieved an enhanced in vitro and in vivo performance. Thoroughly elucidating how the osteoblasts interact with TiO2 coatings is of worthwhile interest. This study adopts the focused ion beam (FIB) to section off the TiO2 coated samples for further scanning electron microscope (SEM) and transmission electron microscope (TEM) observation. The detailed crystal structures of the TiO2 coated specimens are also characterized. Experimental results indicate osteoblasts adhered more tenaciously and grew conformably with more lamellipodia extent on the R-TiO2 specimen than on the A-TiO2 and raw β-Ti specimens. FIB/SEM cross-sectional images of the cell/TiO2 interface revealed micro gaps between the cell membrane and contact surface of A-TiO2 specimen, while it was not found on the R-TiO2 specimen. Additionally, the number of adhered and proliferated cells on the R-TiO2 specimen was visually greater than the others. Closely examining EDS line scans and elemental mappings of the FIB/TEM cross-sectional images of the cell/TiO2 interface reveals both the cell body and interior space of the TiO2 coating contain nitrogen and sulfur (the biological elements in cell). This finding supports the assumption that osteoblast can grow into the porous structure of TiO2 coatings and demonstrating that the R-TiO2 coating formed by MAO serves the best for β-Ti alloys as orthopedic and dental implants.

  7. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.K. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Chen, C.Z., E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Wang, D.G.; Lin, Z.Q. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China)

    2013-09-16

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH{sub 3}COO){sub 2}Ca·H{sub 2}O) and disodium hydrogen phosphate dodecahydrate (Na{sub 2}HPO{sub 4}·12H{sub 2}O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) and calcium pyrophosphates (Ca{sub 2}P{sub 2}O{sub 7}, CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF{sub 2}, CaO, CaF{sub 2} and Ca{sub 3}(PO{sub 4}){sub 2}. • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate.

  8. Carbothermic reduction of electric arc furnace dust and calcination of waelz oxide by semi-pilot scale rotary furnace

    Directory of Open Access Journals (Sweden)

    Morcali M.H.

    2012-01-01

    Full Text Available The paper gives a common outline about the known recycling techniques from electric arc furnace dusts and describes an investigation of a pyrometallurgical process for the recovery of zinc and iron from electric arc furnace dusts (EAFD. In the waelz process, the reduction of zinc and iron from the waste oxides using solid carbon (lignite coal was studied. In the reduction experiments; temperature, time and charge type (powder and pellet were investigated in detail. It was demonstrated that zinc and iron recovery (% increases with increasing temperature as well as time. Pelletizing was found to be a better method than using the powder as received for the zinc recovery and iron conversion (. In the calcination (roasting process, crude zinc oxide, which evaporated from non-ferric metals were collected as condensed product (crude waelz oxide, was heated in air atmosphere. Lead, cadmium as well as chlorine and other impurities were successfully removed from crude waelz oxide by this method. In the calcination experiments; temperature and time are investigated in detail. It was demonstrated that zinc purification (% increases with increasing temperature. The highest zinc refining (% was obtained at 1200°C for 120 minutes. A kinetic study was also undertaken to determine the activation energy of the process. Activation energies were 242.77 kJ/mol for the zinc recovery with powder forms, 261.99 kJ/mol for the zinc recovery with pellet forms respectively. It was found that, initially, the reaction was chemically controlled.

  9. Vacuum-arc chromium coatings for Zr-1%Nb alloy protection against high-temperature oxidation in air

    International Nuclear Information System (INIS)

    Kuprin, A.S.; Belous, V.A.; Bryk, V.V.; Vasilenko, R.L.; Voevodin, V.N.; Ovcharenko, V.D.; Tolmacheva, G.N.; Kolodij, I.V.; Lunev, V.M.; Klimenko, I.O.

    2015-01-01

    The effect of vacuum-arc Cr coatings on the alloy E110 resistance to the oxidation in air at temperatures 1020 and 1100 deg C for 3600 s has been investigated. The methods of scanning electron microscope, X-ray analysis and nanoindentation were used to determine the thickness, phase, mechanical properties of coatings and oxide layers. The results show that the chromium coating can effectively protect fuel tubes against high-temperature oxidation in air for one hour. In the coating during oxidation at T = 1100 deg C a Cr 2 O 3 oxide layer of 5 μm thickness is formed preventing further oxygen penetration into the coating, and thus the tube shape is conserved. Under similar test conditions the oxidation of uncoated tubes with formation of a porous monocline oxide of ZrO 2 of a thickness more than ≥ 250 μm is observed, then the deformation and cracking of samples occur and the oxide layer breaks away

  10. Petrographic and Geochemical Investigation of Andesitic Arc Volcanism: Mount Kerinci, Sunda Arc, Indonesia

    Science.gov (United States)

    Tully, M.; Saunders, K.; Troll, V. R.; Jolis, E.; Muir, D. D.; Deegan, F. M.; Budd, D. A.; Astbury, R.; Bromiley, G. D.

    2014-12-01

    Present knowledge of the chain of dominantly andesitic volcanoes, which span the Sumatran portion of the Sunda Arc is extremely limited. Previous studies have focused on Toba and Krakatau, although over 13 further volcanic edifices are known. Several recent explosive eruptions in Sumatra such as that of Mt. Sinabung, 2014, have highlighted the potential hazard that these volcanoes pose to the local and regional communities. Mount Kerinci, is one of the most active of the volcanoes in this region, yet little is known about the petrogenesis of the magma by which it is fed. Kerinci is located approximately mid-way between Toba in the North and Krakatau in the south. Along arc variations are observed in the major, minor and trace elements of whole rock analyses. However, bulk rock approaches produce an average chemical composition for a sample, potentially masking important chemical signatures. In-situ micro-analytical analysis of individual components of samples such as melt inclusions, crystals and groundmass provides chemical signatures of individual components allowing the evolution of volcanic centres to be deciphered in considerably more detail. Examination of whole rock chemistry indicates its location may be key to unravelling the petrogenesis of the arc as significant chemical changes occur between Kerinci and Kaba, 250 km to the south. Kerinci samples are dominantly porphyritic with large crystals of plagioclase, pyroxene and Fe-Ti oxides, rare olivine crystals are observed. Plagioclase and pyroxene crystals are chemically zoned and host melt inclusions. Multiple plagioclase populations are observed. A combination of in-situ micro-analysis techniques will be used to characterise the chemical composition of melt inclusions and crystals. These data can be used along with extant geothermobarometric models to help determine the magma source, storage conditions and composition of the evolving melt. Integration of the findings from this study with existing data for

  11. Ancient xenocrystic zircon in young volcanic rocks of the southern Lesser Antilles island arc

    Science.gov (United States)

    Rojas-Agramonte, Yamirka; Williams, Ian S.; Arculus, Richard; Kröner, Alfred; García-Casco, Antonio; Lázaro, Concepción; Buhre, Stephan; Wong, Jean; Geng, Helen; Echeverría, Carlos Morales; Jeffries, Teresa; Xie, Hangqian; Mertz-Kraus, Regina

    2017-10-01

    The Lesser Antilles arc is one of the best global examples in which to examine the effects of the involvement of subducted sediment and crustal assimilation in the generation of arc crust. Most of the zircon recovered in our study of igneous and volcaniclastic rocks from Grenada and Carriacou (part of the Grenadines chain) is younger than 2 Ma. Within some late Paleogene to Neogene ( 34-0.2 Ma) lavas and volcaniclastic sediments however, there are Paleozoic to Paleoarchean ( 250-3469 Ma) xenocrysts, and Late Jurassic to Precambrian zircon ( 158-2667 Ma) are found in beach and river sands. The trace element characteristics of zircon clearly differentiate between different types of magmas generated in the southern Lesser Antilles through time. The zircon population from the younger arc (Miocene, 22-19 Ma, to Present) has minor negative Eu anomalies, well-defined positive Ce anomalies, and a marked enrichment in heavy rare earth elements (HREE), consistent with crystallization from very oxidized magmas in which Eu2 + was in low abundance. In contrast, zircon from the older arc (Eocene to mid-Oligocene, 30-28 Ma) has two different REE patterns: 1) slight enrichment in the light (L)REE, small to absent Ce anomalies, and negative Eu anomalies and 2) enriched High (H)REE, positive Ce anomalies and negative Eu anomalies (a similar pattern is observed in the xenocrystic zircon population). The combination of positive Ce and negative Eu anomalies in the zircon population of the older arc indicates crystallization from magmas that were variably, but considerably less oxidized than those of the younger arc. All the igneous zircon has positive εHf(t), reflecting derivation from a predominantly juvenile mantle source. However, the εHf(t) values vary significantly within samples, reflecting considerable Hf isotopic heterogeneity in the source. The presence of xenocrystic zircon in the southern Lesser Antilles is evidence for the assimilation of intra-arc crustal sediments and

  12. Influence of Electrolyte Composition on the Calcium-Phosphorus compound Coating on Titanium Substrate by Micro-arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiu-hong; WANG Cong-zeng; KOU Bin-da; SU Xue-kuan; ZHANG Wen-quan

    2004-01-01

    The compound bioceramic coating containing calcium (Ca) and phosphorus (P) on titanium alloy substrate was prepared by means of micro-arc oxidation (MAO) treatment. The results show that under the different electrolyte the coating with the color of gray or black and surface morphology of cauliflower or honeycomb, where Ca content and P contain can attain 30% and 20% respectively, can be obtained. Meanwhile, the influences of electrolyte temperature, current density and discharge time on morphology and thickness of coating are also discussed here.

  13. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode

    OpenAIRE

    Wei-wei Chen; Ze-xin Wang; Lei Sun; Sheng Lu

    2015-01-01

    Micro-arc oxidation (MAO) coatings of ZK60 magnesium alloys were formed in a self-developed dual electrolyte composed of sodium silicate and phosphate at the high constant current of 1.8 A (15 A/dm2). The MAO process and growth mechanism were investigated by scanning electron microscopy (SEM) coupled with an energy dispersive spectrometer (EDS), confocal laser scanning microscopy and X-ray diffraction (XRD). The results indicate that the growth process of MAO coating mainly goes through “form...

  14. Magma Mixing: Why Picrites are Not So Hot

    Science.gov (United States)

    Natland, J. H.

    2010-12-01

    Oxide gabbros or ferrogabbros are the late, low-temperature differentiates of tholeiitic magma and usually form as cumulates that can have 2-30% of the magmatic oxides, ilmenite and magnetite. They are common in the ocean crust and are likely ubiquitous wherever extensive tholeiitic magmatism has occurred, especially beneath thick lava piles such as at Hawaii, Iceland, oceanic plateaus, island arcs and ancient continental crust. When intruded by hot primitive magma including picrite, the oxide-bearing portions of these rocks are readily partially melted or assimilated into the magma and contribute to it a degree of iron and titanium enrichment that is not reflective of the mantle source of the primitive magma. The most extreme examples of such mixing are meimechites and ferropicrites, but this type of end-member mixing is even common in MORB. To the extent this process occurs, the eruptive picrite cannot be used to estimate compositions of partial melts of mantle rocks, nor their eruptive or potential temperatures, using olivine-liquid FeO-MgO backtrack procedures. Most picrites have glasses with compositions approximating those expected from low-pressure multiphase cotectic crystallization, and olivine that on average crystallized from liquids of nearly those compositions. The hallmark of such rocks is the presence of minerals other than olivine among phenocrysts (plagioclase at Iceland, clinopyroxene at many oceanic islands), Fe- and Ti-rich chromian spinel (ankaramites, ferropicrites and meimichites), and in some cases the presence of iron-rich olivine (hortonolite ~Fo65 in ferropicrites), Ti-rich kaersutitic amphibole and even apatite (meimechites); the latter two derive from late-stage, hydrous and geochemically enriched metamorphic or alkalic assimilants. This type of mixing, however, does not necessarily involve depleted and enriched mixing components. To avoid such mixing, primitive melts have to rise primarily through upper mantle rocks of near-zero melt

  15. Corrosion behavior of a self-sealing pore micro-arc oxidation film on AM60 magnesium alloy

    International Nuclear Information System (INIS)

    Dong, Kaihui; Song, Yingwei; Shan, Dayong; Han, En-Hou

    2015-01-01

    Highlights: • Pore sealing constituents fall off and titanium oxides remain during corrosion. • Dark regions of film are corroded by migration of corrosion media through pores. • Light regions of film are corroded by transverse expansion of cracks. • Both outer and inner layers of the film provide effective protection to substrate. - Abstract: The deterioration process of a self-sealing pore micro-arc oxidation (MAO) film was investigated. The surface and cross-section corrosion morphologies were observed by scanning electron microscopy (SEM). Chemical composition was detected by EDS elemental mapping and XRD. The corrosion process was analyzed by electrochemical impedance spectroscopy (EIS). The surface of the film in dark and light regions exhibits different corrosion behavior. In the dark regions, the corrosion process mainly concentrates on the migration of corrosion media through the pores inward. In the light regions, the transverse expansion of cracks plays a key role, accompanying the exfoliation of film constituents.

  16. The origin of high-Mg magmas in Mt Shasta and Medicine Lake volcanoes, Cascade Arc (California): higher and lower than mantle oxygen isotope signatures attributed to current and past subduction

    Science.gov (United States)

    Martin, E.; Bindeman, I.; Grove, T. L.

    2011-11-01

    We report the oxygen isotope composition of olivine and orthopyroxene phenocrysts in lavas from the main magma types at Mt Shasta and Medicine Lake Volcanoes: primitive high-alumina olivine tholeiite (HAOT), basaltic andesites (BA), primitive magnesian andesites (PMA), and dacites. The most primitive HAOT (MgO > 9 wt%) from Mt. Shasta has olivine δ18O (δ18OOl) values of 5.9-6.1‰, which are about 1‰ higher than those observed in olivine from normal mantle-derived magmas. In contrast, HAOT lavas from Medicine Lake have δ18OOl values ranging from 4.7 to 5.5‰, which are similar to or lower than values for olivine in equilibrium with mantle-derived magmas. Other magma types from both volcanoes show intermediate δ18OOl values. The oxygen isotope composition of the most magnesian lavas cannot be explained by crustal contamination and the trace element composition of olivine phenocrysts precludes a pyroxenitic mantle source. Therefore, the high and variable δ18OOl signature of the most magnesian samples studied (HAOT and BA) comes from the peridotitic mantle wedge itself. As HAOT magma is generated by anhydrous adiabatic partial melting of the shallow mantle, its 1.4‰ range in δ18OOl reflects a heterogeneous composition of the shallow mantle source that has been influenced by subduction fluids and/or melts sometime in the past. Magmas generated in the mantle wedge by flux melting due to modern subduction fluids, as exemplified by BA and probably PMA, display more homogeneous composition with only 0.5‰ variation. The high-δ18O values observed in magnesian lavas, and principally in the HAOT, are difficult to explain by a single-stage flux-melting process in the mantle wedge above the modern subduction zone and require a mantle source enriched in 18O. It is here explained by flow of older, pre-enriched portions of the mantle through the slab window beneath the South Cascades.

  17. Influence of Catalysis and Oxidation on Slug Calorimeter Measurements in Arc Jets

    Science.gov (United States)

    Nawaz, Anuscheh; Driver, Dave; TerrazasSalinas, Imelda

    2012-01-01

    Arc jet tests play a critical role in the characterization and certification of thermal protection materials and systems (TPS). The results from these arc jet tests feed directly into computational models of material response and aerothermodynamics to predict the performance of the TPS in flight. Thus the precise knowledge of the plasma environment to which the test material is subjected, is invaluable. As one of the environmental parameters, the heat flux is commonly measured. The measured heat flux is used to determine the plasma enthalpy through analytical or computational models. At NASA Ames Research Center (ARC), slug calorimeters of a geometrically similar body to the test article are routinely used to determine the heat flux. A slug calorimeter is a thermal capacitance-type calorimeter that uses the temperature rise in a thermally insulated slug to determine the heat transfer rate, see Figure 1(left). Current best practices for measuring the heat flux with a slug calorimeter are described in ASTM E457 - 96. Both the calorimeter body and slug are made of Oxygen Free High Conductivity Copper, and are cleaned before each run.

  18. Earthquake swarms reveal submarine magma unrest induced by distant mega-earthquakes: Andaman Sea region

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš; Vaněk, Jiří

    2016-01-01

    Roč. 116, February (2016), s. 155-163 ISSN 1367-9120 Institutional support: RVO:67985530 Keywords : earthquake swarms * magma migration * submarine volcanic arc Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.335, year: 2016

  19. The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity

    Science.gov (United States)

    Bergantz, George W.; Cooper, Kari M.; Hildreth, Edward; Ruprecht, Phillipp

    2012-01-01

    Crystal zoning as well as temperature and pressure estimates from phenocryst phase equilibria are used to constrain the architecture of the intermediate-sized magmatic system (some tens of km3) of Volcán Quizapu, Chile, and to document the textural and compositional effects of magma mixing. In contrast to most arc magma systems, where multiple episodes of open-system behavior obscure the evidence of major magma chamber events (e.g. melt extraction, magma mixing), the Quizapu magma system shows limited petrographic complexity in two large historical eruptions (1846–1847 and 1932) that have contrasting eruptive styles. Quizapu magmas and peripheral mafic magmas exhibit a simple binary mixing relationship. At the mafic end, basaltic andesite to andesite recharge magmas complement the record from peripheral cones and show the same limited range of compositions. The silicic end-member composition is almost identical in both eruptions of Quizapu. The effusive 1846–1847 eruption records significant mixing between the mafic and silicic end-members, resulting in hybridized andesites and mingled dacites. These two compositionally simple eruptions at Volcán Quizapu present a rare opportunity to isolate particular aspects of magma evolution—formation of homogeneous dacite magma and late-stage magma mixing—from other magma chamber processes. Crystal zoning, trace element compositions, and crystal-size distributions provide evidence for spatial separation of the mafic and silicic magmas. Dacite-derived plagioclase phenocrysts (i.e. An25–40) show a narrow range in composition and limited zonation, suggesting growth from a compositionally restricted melt. Dacite-derived amphibole phenocrysts show similar restricted compositions and furthermore constrain, together with more mafic amphibole phenocrysts, the architecture of the magmatic system at Volcán Quizapu to be compositionally and thermally zoned, in which an andesitic mush is overlain by a homogeneous dacitic

  20. High-Temperature Oxidation and Smelt Deposit Corrosion of Ni-Cr-Ti Arc-Sprayed Coatings

    Science.gov (United States)

    Matthews, S.; Schweizer, M.

    2013-08-01

    High Cr content Ni-Cr-Ti arc-sprayed coatings have been extensively applied to mitigate corrosion in black liquor recovery boilers in the pulp and paper industry. In a previous article, the effects of key spray parameters on the coating's microstructure and its composition were investigated. Three coating microstructures were selected from that previous study to produce a dense, oxidized coating (coating A), a porous, low oxide content coating (coating B), and an optimized coating (coating C) for corrosion testing. Isothermal oxidation trials were performed in air at 550 and 900 °C for 30 days. Additional trials were performed under industrial smelt deposits at 400 and 800 °C for 30 days. The effect of the variation in coating microstructure on the oxidation and smelt's corrosion response was investigated through the characterization of the surface corrosion products, and the internal coating microstructural developments with time at high temperature. The effect of long-term, high-temperature exposure on the interaction between the coating and substrate was characterized, and the mechanism of interdiffusion was discussed.

  1. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

    Science.gov (United States)

    Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Temporal Evolution of Volcanic and Plutonic Magmas Related to Porphyry Copper Ores Based on Zircon Geochemistry

    Science.gov (United States)

    Dilles, J. H.; Lee, R. G.; Wooden, J. L.; Koleszar, A. M.

    2015-12-01

    Porphyry Cu (Mo-Au) and epithermal Au-Ag ores are globally associated with shallow hydrous, strongly oxidized, and sulfur-rich arc intrusions. In many localities, long-lived magmatism includes evolution from early andesitic volcanic (v) and plutonic (p) rocks to later dacitic or rhyolitic compositions dominated by plutons. We compare zircon compositions from three igneous suites with different time spans: Yerington, USA (1 m.y., p>v), El Salvador, Chile (4 m.y., p>v), and Yanacocha, Peru (6 m.y., v>p). At Yerington granite dikes and ores formed in one event, at ES in 2 to 3 events spanning 3 m.y., and at Yanacocha in 6 events spanning 5 m.y. At both ES and Yanacocha, high-Al amphiboles likely crystallized at high temperature in the mid-crust and attest to deep magmas that periodically recharged the shallow chambers. At Yanacocha, these amphiboles contain anhydrite inclusions that require magmas were sulfur-rich and strongly oxidized (~NNO+2). The Ti-in-zircon geothermometer provides estimates of 920º to 620º C for zircon crystallization, and records both core to rim cooling and locally high temperature rim overgrowths. Ore-related silicic porphyries yield near-solidus crystallization temperatures of 750-650°C consistent with low zircon saturation temperatures. The latter zircons have large positive Ce/Ce* and small negative Eu/Eu*≥0.4 anomalies attesting to strongly oxidized conditions (Ballard et al., 2001), which we propose result from crystallization and SO2 loss to the magmatic-hydrothermal ore fluid (Dilles et al., 2015). The Hf, REE, Y, U, and Th contents of zircons are diverse in the magma suites, and Th/U vs Yb/Gd plots suggest a dominant role of crystal fractionation with lesser roles for both crustal contamination and mixing with high temperature deep-sourced mafic magma. Ce/Sm vs Yb/Gd plots suggest that magma REE contents at contamination are most evident in pre-ore magmas, whereas ore-forming intrusions at low temperatures are dominated by crystal

  3. Modeling the Daly Gap: The Influence of Latent Heat Production in Controlling Magma Extraction and Eruption

    Science.gov (United States)

    Nelson, B. K.; Ghiorso, M. S.; Bachmann, O.; Dufek, J.

    2011-12-01

    A century-old issue in volcanology is the origin of the gap in chemical compositions observed in magmatic series on ocean islands and arcs - the "Daly Gap". If the gap forms during differentiation from a mafic parent, models that predict the dynamics of magma extraction as a function of chemical composition must simulate a process that results in volumetrically biased, bimodal compositions of erupted magmas. The probability of magma extraction is controlled by magma dynamical processes, which have a complex response to magmatic heat evolution. Heat loss from the magmatic system is far from a simple, monotonic function of time. It is modified by the crystallization sequence, chamber margin heat flux, and is buffered by latent heat production. We use chemical and thermal calculations of MELTS (Ghiorso & Sack, 1995) as input to the physical model of QUANTUM (Dufek & Bachmann, 2010) to predict crystallinity windows of most probable magma extraction. We modeled two case studies: volcanism on Tenerife, Canary Islands, and the Campanian Ignimbrite (CI) of Campi Flegrei, Italy. Both preserve a basanitic to phonolitic lineage and have comparable total alkali concentrations; however, CI has high and Tenerife has low K2O/Na2O. Modeled thermal histories of differentiation for the two sequences contrast strongly. In Tenerife, the rate of latent heat production is almost always greater than sensible heat production, with spikes in the ratio of latent to sensible heats of up to 40 associated with the appearance of Fe-Ti oxides at near 50% crystallization. This punctuated heat production must cause magma temperature change to stall or slow in time. The extended time spent at ≈50% crystallinity, associated with dynamical processes that enhance melt extraction near 50% crystallinity, suggests the magma composition at this interval should be common. In Tenerife, the modeled composition coincides with that of the first peak in the bimodal frequency-composition distribution. In our

  4. The Meaning of "Magma"

    Science.gov (United States)

    Bartley, J. M.; Glazner, A. F.; Coleman, D. S.

    2016-12-01

    Magma is a fundamental constituent of the Earth, and its properties, origin, evolution, and significance bear on issues ranging from volcanic hazards to planetary evolution. Unfortunately, published usages indicate that the term "magma" means distinctly different things to different people and this can lead to miscommunication among Earth scientists and between scientists and the public. Erupting lava clearly is magma; the question is whether partially molten rock imaged at depth and too crystal-rich to flow should also be called magma. At crystal fractions > 50%, flow can only occur via crystal deformation and solution-reprecipitation. As the solid fraction increases to 90% or more, the material becomes a welded crystal framework with melt in dispersed pores and/or along grain boundaries. Seismic images commonly describe such volumes of a few % melt as magma, yet the rheological differences between melt-rich and melt-poor materials make it vital not to confuse a large rock volume that contains a small melt fraction with melt-rich material. To ensure this, we suggest that "magma" be reserved for melt-rich materials that undergo bulk fluid flow on timescales consonant with volcanic eruptions. Other terms should be used for more crystal-rich and largely immobile partially molten rock (e.g., "crystal mush," "rigid sponge"). The distinction is imprecise but useful. For the press, the public, and even earth scientists who do not study magmatic systems, "magma" conjures up flowing lava; reports of a large "magma" body that contains a few percent melt can engender the mistaken perception of a vast amount of eruptible magma. For researchers, physical processes like crystal settling are commonly invoked to account for features in plutonic rocks, but many such processes are only possible in melt-rich materials.

  5. Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3

    Science.gov (United States)

    Zhang, Y.; Chen, Y.; Du, H. Q.; Zhao, YW

    2018-03-01

    Micro-arc oxidation (MAO) coatings were formed on the aluminum alloy in silicate-based electrolyte without and with the addition of Al2O3. It is showed that the coating produced in 7 g l‑1 Al2O3-containing electrolyte was of the most superior corrosion resistance. Besides, the corrosion properties of the coatings were studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test in both 0.5 M and 1 M NaCl solution. The results proved that the coating is capable to protect the substrate from the corrosion of aggressive Cl‑ in 0.5 M NaCl after 384 h immersion. However, it can not offer protection to the aluminum alloy substrate after 384 h immersion in 1 M NaCl solution. The schematic diagrams illustrate the corrosion process and matched well with the corrosion test results.

  6. Tribological properties of duplex MAO/DLC coatings on magnesium alloy using combined microarc oxidation and filtered cathodic arc deposition

    International Nuclear Information System (INIS)

    Liang Jun; Wang Peng; Hu Litian; Hao Jingcheng

    2007-01-01

    The combined microarc oxidation (MAO) and filtered cathode arc deposition process was used to deposit duplex MAO/DLC coating on AM60B magnesium alloy. The microstructure and composition of the resulting duplex coating were analyzed by Raman spectroscopy, X-ray photoelectron spectroscope (XPS) and scanning electron microscope (SEM). The tribological behaviors of the duplex coating were studied by ball-on-disk friction testing. It is found that the Ti-doped DLC thin film could be successfully deposited onto the polished MAO coating. The duplex MAO/DLC coating exhibits a better tribological property than the DLC or MAO monolayer on Mg alloy substrate, owing to the MAO coating served as an intermediate layer provides improved load support for the soft Mg alloy substrate and the DLC top coating exhibits low friction coefficient

  7. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang Hui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yu Dezhen [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Luo Yan [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wang Fuping, E-mail: hitth001@yahoo.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. Black-Right-Pointing-Pointer The corrosion resistance of the magnesium alloy has been enhanced by micro-arc oxidation and solution treatment. Black-Right-Pointing-Pointer The coating fabricated by micro-arc oxidation and solution treatment exhibits a high ability to form apatite. - Abstract: Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  8. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  9. Influence of dilution level on oxidation resistance of plasma transferred arc NiCrAlC coatings

    International Nuclear Information System (INIS)

    Benegra, M.; Farina, A.B.; Goldenstein, H.; Oliveira, A.S.C.M. d'

    2010-01-01

    NICRALC coatings processed by Plasma Transferred Arc (PTA) are a new proposal to protect the components exposed to high-temperature oxidation environments. This study evaluated the relationship between the compositional changes in the coatings due to the different levels of dilution, and the morphology and phase constitution of the developing protective oxide scale. Elementary powders were mixed and deposited by PTA welding onto AISI 316L stainless steel, varying current intensity (100 and 130 A). The microstructure of specimens was characterized by means of scanning electron microscopy with local chemical analysis and by X-Ray diffraction. The coatings were subjected to thermo-gravimetric balance (TGA), using temperatures range of 700-1,000 °C during 5 hours. Results revealed the alumina formation, independent on the compositional variation. For low dilution level transient q-alumina was observed, while for high dilution level resulted in a stable a-alumina. This difference was attributed to the complexity of aluminum diffusion in intermetallic structures. The accumulated mass were smaller than other materials employed to high-temperature, such as as-cast NiCrAlC, indicating better oxidation resistance of the tested coatings. (author)

  10. Effect of Thickness on Oxidation Behavior of Cr coated Zircaloy-4 using Arc Ion Plating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Jung; Kim, Sun Jin [Hanyang University, Seoul (Korea, Republic of); Park, Jung Hwan; Kim, Hyun Gil; Jung, Yang Il; Park, Dong Jun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Ever since the Fukushima accident, accident tolerant fuel (ATF) has been widely studied. To increase the life time and safety of nuclear claddings, there are increasing demands for protective coatings exhibiting excellent oxidation resistance. Many metal and oxide films are produced by using this method because of the high kinetic energy of the ions, ionization efficiency and deposition rate. Candidate materials for a protective layer have higher thermal neutron absorption cross sections than Zr. However, there is no systematic study of thickness effect on oxidation resistance of protective layer. In this study, Cr films with different thickness (from 1 μm to 50 μm) were deposited on the cladding surfaces by AIP. The high temperature oxidation resistance of Cr films with different thicknesses has been investigated. Uniform oxide layer with nanoporous structures have been fabricated on the surface of Zr-Nb-Sn alloy. Oxidation behavior of the pristine Zr-Nb-Sn alloy and the Zr-Nb-Sn alloy with nanostructured oxide layer evaluated by measuring weight gain (TGA).

  11. Pre-eruptive conditions of dacitic magma erupted during the 21.7 ka Plinian event at Nevado de Toluca volcano, Central Mexico

    Science.gov (United States)

    Arce, J. L.; Gardner, J. E.; Macías, J. L.

    2013-01-01

    The Nevado de Toluca volcano in Central Mexico has been active over the last ca. 42 ka, during which tens of km3 of pyroclastic material were erupted and two important Plinian-type eruptions occurred at ca. 21.7 ka (Lower Toluca Pumice: LTP) and ca. 10.5 ka (Upper Toluca Pumice: UTP). Samples from both the LTP and UTP contain plagioclase, amphibole, iron-titanium oxides, and minor anhedral biotite, set in a vesicular, rhyolitic, glassy matrix. In addition, UTP dacites contain orthopyroxene. Analysis of melt inclusions in plagioclase phenocrysts yields H2O contents of 2-3.5 wt.% for LTP and 1.3-3.6 wt.% for UTP samples. Ilmenite-ulvospinel geothermometry yields an average temperature of ~ 868 °C for the LTP magma (hotter than the UTP magma, ~ 842 °C; Arce et al., 2006), whereas amphibole-plagioclase geothermometry yields a temperature of 825-859 °C for the LTP magma. Water-saturated experiments using LTP dacite suggest that: (i) amphibole is stable above 100 MPa and below 900 °C; (ii) plagioclase crystallizes below 250-100 MPa at temperatures of 850-900 °C; and (iii) pyroxene is stable only below pressures of 200-100 MPa and temperatures of 825-900 °C. Comparison of natural and experimental data suggests that the LTP dacitic magma was stored at 150-200 MPa (5.8-7.7 km below the volcano summit). No differences in pressure found between 21.7 ka and 10.5 ka suggest that these two magmas were stored at similar depths. Orthopyroxene produced in lower temperature LTP experiments is compositionally different to those found in UTP natural samples, suggesting that they originated in two different magma batches. Whole-rock chemistry, petrographic features, and mineral compositions suggest that magma mixing was responsible for the generation of the dacitic Plinian LTP eruption.

  12. High-temperature Corrosion Resistance of Composite Coating Prepared by Micro-arc Oxidation Combined with Pack Cementation Aluminizing

    Directory of Open Access Journals (Sweden)

    HUANG Zu-jiang

    2018-01-01

    Full Text Available Al2O3 ceramic film was obtained by micro-arc oxidation (MAO process on Al/C103 specimen, which was prepared by pack cementation aluminizing technology on C103 niobium alloy. With the aid of XRD and SEM equipped with EDS, chemical compositions and microstructures of the composite coatings before and after high-temperature corrosion were analyzed. The behavior and mechanism of the composite coatings in high-temperature oxidation and hot corrosion were also investigated. The results indicate that oxidation mass gain at 1000℃ for 10h of the Al/C103 specimen is 6.98mg/cm2, and it is 2.89mg/cm2 of the MAO/Al/C103 specimen. However, the mass gain of MAO/Al/C103 specimen (57.52mg/cm2 is higher than that of Al/C103 specimen (28.08mg/cm2 after oxidation 20h. After hot corrosion in 75%Na2SO4 and 25%NaCl at 900℃ for 50h, the mass gain of Al/C103 and MAO/Al/C103 specimens are 70.54mg/cm2 and 55.71mg/cm2 respectively, Al2O3 and perovskite NaNbO3 phases are formed on the surface; the diffusion of molten salt is suppressed, due to part of NaNbO3 accumulated in the MAO micropores. Therefore, MAO/Al/C103 specimen exhibits better hot corrosion resistance.

  13. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.F. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: Guohf@hit.edu.cn; An, M.Z. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: mzan@hit.edu.cn; Huo, H.B. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Xu, S. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wu, L.J. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-09-15

    Micro-arc oxidation (MAO) of AZ31B magnesium alloys was studied in alkaline silicate solutions at constant applied current densities. The microstructure, phase composition and elemental distribution of ceramic coatings were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDX). There are two inflections in the voltage-time response, three regions were identifiable and each of the regions was almost linear. The pores with different shapes distributed all over the coating surface, the number of the pores was decreasing, while the diameter was apparently increasing with prolonged MAO treatment time. There were also cracks on the coating surface, resulting from the rapid solidification of the molten oxide. The ceramic coating was comprised of two layers, an outer loose layer and an inner dense layer. The ceramic coating was mainly composed of forsterite phase Mg{sub 2}SiO{sub 4} and MgO; the formation of MgO was similar to conversional anodizing technology, while formation of Mg{sub 2}SiO{sub 4} was attributed to a high temperature phase transformation reaction. Presence of Si and O indicated that the electrolyte components had intensively incorporated into coatings.

  14. Evaluation of aluminum oxide dosimeters using OSL technique in dosimetry of clinical photon beams on volumetric modulated arc treatment

    International Nuclear Information System (INIS)

    Villani, Daniel

    2017-01-01

    Treatment using Volumetric Modulated Arc Radiation Therapy is the most modern modality of conformational radiotherapy so that, with the overlapping of several fields, the dose distributions provide a perfect conformation to the tumor, reducing the probability of complications in adjacent normal tissues. In this sense, many efforts are being invested to improve dose distribution compliance as well as the integration of imaging techniques for tumor screening and correction of inter and intrafraction variations. To this end, an intensive monitoring of the quality of the processes and a quality assurance program are fundamental for patient safety and compliance with current legislation; besides the use of different dosimetry methodologies for intercomparison and validation of the results. The aim of this study is to evaluate and compare the performance of aluminum oxide (Al_2O_3:C) OSL dosimeters manufactured by Landauer Inc. with those produced by Rexon™ in the dosimetry of high energy photon clinical bundles used in Volumetric Modulated Arc Therapy - (VMAT) using different simulating objects. The dosimeters were characterized for gamma radiation of the "6"0Co and for clinical photon beams of 6 MV typical of treatments by VMAT under conditions of electronic equilibrium and maximum dose respectively. Performance tests of the TL and OSL readers used and repeatability of the samples were evaluated. After all tests, the dosimeters were irradiated in the simulation of different radiotherapy treatments by VMAT and their responses compared to the planning system. All types of dosimeters presented satisfactory results in verifying the doses of this type of planning simulation. The Al_2O_3:C dosimeters presented compatible results and validated by the other dosimeters and ionization chamber. Regarding the best technique, the OSL InLight commercial system presents greater practicality and versatility for use and application in the clinical routine. (author)

  15. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.R., E-mail: arribeiro@inmetro.gov.br [Department of Periodontology, Araraquara Dental School, University Estadual Paulista, Rua Humaitá 1680, 14801-903 Araraquara, São Paulo (Brazil); Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Oliveira, F., E-mail: fernando@dem.uminho.pt [Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Centre for Mechanical and Materials Technologies, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Boldrini, L.C., E-mail: lcboldrini@inmetro.gov.br [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Leite, P.E., E-mail: leitepec@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Falagan-Lotsch, P., E-mail: prifalagan@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Linhares, A.B.R., E-mail: adrianalinhares@hotmail.com [Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niterói (Brazil); and others

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  16. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    International Nuclear Information System (INIS)

    Ribeiro, A.R.; Oliveira, F.; Boldrini, L.C.; Leite, P.E.; Falagan-Lotsch, P.; Linhares, A.B.R.

    2015-01-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  17. Effects of micro arc oxidation on fatigue limits and fracture morphologies of 7475 high strength aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dejun, Kong, E-mail: kong-dejun@163.com [College of Mechanical Engineering, Changzhou University, Changzhou, 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou, 213164 (China); Hao, Liu; Jinchun, Wang [College of Mechanical Engineering, Changzhou University, Changzhou, 213164 (China)

    2015-11-25

    The oxide coatings with thicknesses of 8 μm, 10 μm, and 15 μm were prepared on 7475 aluminum alloy with micro arc oxidation (MAO) by controlling MAO time, the fatigue limits of original and MAO samples were contrastively measured by the Roccati method. The surface-interface morphologies, fracture morphologies, surface phases, and residual stresses of MAO coating were analyzed with a scanning electron microscopy (SEM), X-ray diffractometer (XRD) and XRD stress tester, respectively. The results show that fatigue limits of the MAO samples decreases as the coating thickness increasing. The fatigue limit of MAO sample with thickness of 8 μm, 10 μm, and 15 μm decreases by 6.48%, 8.33%, and 11.11%, respectively, compared with the original sample. The residual stress and defects introduced by MAO were the main factors of decreasing fatigue limits. - Graphical abstract: The fatigue limit of original sample was 216 MPa (a), while that of MAO samples with thickness of 8 μm, 10 μm and 15 μm was 202 MPa, 198 MPa and 192 MPa (b). The fatigue limit of MAO samples with thickness of 8 μm, 10 μm and 15 μm decreased by 6.48%, 8.33% and 11.11% compared with that of the original sample, as a result, the fatigue limit decreased with the MAO film thickness increasing. - Highlights: • The fatigue limits of MAO samples decrease with the oxide thickness increasing. • The overgrowth regions cause the crack source expanding. • The overgrowth of MAO film and tensile residual stress decrease fatigue limit.

  18. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  19. Preparation and characterization of micro-arc-induced Pd/TM(TM = Ni, Co and Ti) catalysts and comparison of their electrocatalytic activities toward ethanol oxidation

    International Nuclear Information System (INIS)

    Wang, Xiaoguang; Ma, Guanshui; Zhu, Fuchun; Lin, Naiming; Tang, Bin; Zhang, Zhonghua

    2013-01-01

    Using the electro-spark deposition technique, a novel kind of Pd/TM (TM = Ni, Co and Ti) electrode was successfully prepared by arc-depositing Pd on the transition metal substrates. The structure, morphology and chemical composition of the arc-deposited films were investigated using thin-film X-ray diffraction (TF-XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results show that, a coarsening topographical morphology can be obtained, being composed of numerous craters/spots with sizes ranging from nano-scales to several microns. The electrochemical measurements indicate that the arc-deposited Pd/TM electrodes exhibit distinct electrochemical behaviors and the catalytic activity toward ethanol electro-oxidation reaction (EOR) is highly dependent upon the nature of substrate. Among the Pd/TM electrodes investigated, the arc-deposited Pd/Co reveals the best activity and superior poisoning tolerance towards ethanol oxidation and will find promising applications as a candidate for the anode catalyst of direct ethanol fuel cells (DEFCs)

  20. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.

    Science.gov (United States)

    Langley, S; Igric, P; Takahashi, Y; Sakai, Y; Fortin, D; Hannington, M D; Schwarz-Schampera, U

    2009-01-01

    Sediment samples were obtained from areas of diffuse hydrothermal venting along the seabed in the Tonga sector of the Tonga-Kermadec Arc, southwest Pacific Ocean. Sediments from Volcano 1 and Volcano 19 were analyzed by X-ray diffraction (XRD) and found to be composed primarily of the iron oxyhydroxide mineral, two-line ferrihydrite. XRD also suggested the possible presence of minor amounts of more ordered iron (hydr)oxides (including six-line ferrihydrite, goethite/lepidocrocite and magnetite) in the biogenic iron oxides (BIOS) from Volcano 1; however, Mössbauer spectroscopy failed to detect any mineral phases more crystalline than two-line ferrihydrite. The minerals were precipitated on the surfaces of abundant filamentous microbial structures. Morphologically, some of these structures were similar in appearance to the known iron-oxidizing genus Mariprofundus spp., suggesting that the sediments are composed of biogenic iron oxides. At Volcano 19, an areally extensive, active vent field, the microbial cells appeared to be responsible for the formation of cohesive chimney-like structures of iron oxyhydroxide, 2-3 m in height, whereas at Volcano 1, an older vent field, no chimney-like structures were apparent. Iron reduction of the sediment material (i.e. BIOS) by Shewanella putrefaciens CN32 was measured, in vitro, as the ratio of [total Fe(II)]:[total Fe]. From this parameter, reduction rates were calculated for Volcano 1 BIOS (0.0521 day(-1)), Volcano 19 BIOS (0.0473 day(-1)), and hydrous ferric oxide, a synthetic two-line ferrihydrite (0.0224 day(-1)). Sediments from both BIOS sites were more easily reduced than synthetic ferrihydrite, which suggests that the decrease in effective surface area of the minerals within the sediments (due to the presence of the organic component) does not inhibit subsequent microbial reduction. These results indicate that natural, marine BIOS are easily reduced in the presence of dissimilatory iron-reducing bacteria, and that the

  1. Influence of Electrolyte Chemistry on Morphology and Corrosion Resistance of Micro Arc Oxidation Coatings Deposited on Magnesium

    Science.gov (United States)

    Rama Krishna, L.; Poshal, G.; Sundararajan, G.

    2010-12-01

    In the present work, micro arc oxidation (MAO) coatings were synthesized on magnesium substrate employing 11 different electrolyte compositions containing systematically varied concentrations of sodium silicate (Na2SiO3), potassium hydroxide (KOH), and sodium aluminate (NaAlO2). The resultant coatings were subjected to coating thickness measurement, energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), image analysis, and three-dimensional (3-D) optical profilometry. The corrosion performance of the coatings was evaluated by conducting potentiodynamic polarization tests in 3.5 wt pct NaCl solution. The inter-relationships between the electrolyte chemistry and the resulting chemistry and porosity of the coating, on one hand, and with the aqueous corrosion behavior of the coating, on the other, were studied. The changes in pore morphology and pore distribution in the coatings were found to be significantly influenced by the electrolyte composition. The coatings can have either through-thickness pores or pores in the near surface region alone depending on the electrolyte composition. The deleterious role of KOH especially when its concentration is >20 pct of total electrolyte constituents promoting the formation of large and deep pores in the coating was demonstrated. A reasonable correlation indicating the increasing pore volume implying the increased corrosion was noticed.

  2. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    International Nuclear Information System (INIS)

    Xu Xinhua; Lu Ping; Guo Meiqing; Fang Mingzhong

    2010-01-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  3. Improving the corrosion resistance of Mg–4.0Zn–0.2Ca alloy by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y.H. [The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, B.P., E-mail: zhangbp@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, C.X. [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Geng, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-12-01

    In this paper, corrosion resistance of the Mg–4.0Zn–0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg–4.0Zn–0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF{sub 2} was formed on the surface of Mg–4.0Zn–0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. - Highlights: • Ceramic layer which is composited by MgO and MgF{sub 2} is prepared to improve the corrosion resistance of Mg–4.0Zn–0.2Ca alloy. • MAO treatment does not affect the mechanical properties of the Mg–4.0Zn–0.2Ca alloy. • After 30-day immersion in SBF, the mechanical properties of MAO coated samples are still enough for bone fixed.

  4. Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.F. [Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Zhang, S.F., E-mail: zhangshufang790314@sina.com [Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Yang, N.; Yao, L.J.; He, F.X.; Zhou, Y.P.; Xu, X.; Chang, L.; Bai, S.J. [School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer 8-HQ can promote the coating formation and change the coating color. Black-Right-Pointing-Pointer 8-HQ can increase the coating thickness and decrease the pore size. Black-Right-Pointing-Pointer Insoluble Mg(HQ){sub 2} is formed in anodic coatings in an alkaline solution with 8-HQ. Black-Right-Pointing-Pointer 8-HQ improves the corrosion resistance of the anodized magnesium alloys. - Abstract: The influence of 8-hydroxyquinoline (8-HQ) on formation and properties of anodic coatings obtained by micro arc oxidation (MAO) on AZ91 magnesium alloys was studied by scanning electron microscope (SEM), energy dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy and potentiodynamic polarization tests. The results demonstrate that 8-HQ can decrease the solution conductivity, take part in the coating formation and change the coating color. By developing anodic coatings with increasing thickness, insoluble Mg(HQ){sub 2} and small pore size, 8-HQ improves the corrosion resistance of the anodized magnesium alloys. The coating shows the best corrosion resistance in the solution of 10 g/L NaOH and 18 g/L Na{sub 2}SiO{sub 3} with 2 g/L 8-HQ.

  5. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xinhua, E-mail: xhxu_tju@eyou.com [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Lu Ping; Guo Meiqing; Fang Mingzhong [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  6. Composite coating prepared by micro-arc oxidation followed by sol-gel process and in vitro degradation properties

    International Nuclear Information System (INIS)

    Zhang Yi; Bai Kuifeng; Fu Zhenya; Zhang Caili; Zhou Huan; Wang Liguo; Zhu Shijie; Guan Shaokang; Li Dongsheng; Hu Junhua

    2012-01-01

    A Mg phosphate coating was prepared on home-developed Mg-Zn-Ca alloy to improve its anticorrosion performance in simulated body fluid (SBF, Kokubo solution). The coating was prepared by micro-arc oxidation (MAO) method at the working voltage of 120-140 V. Evident improvement of anticorrosion was obtained even through the surface was porous. To further diminish the contact with SBF, a TiO 2 layer was coated on the porous MAO layer by sol-gel dip coating followed by an annealing treatment. The coatings were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The electrochemical performance of the MAO and TiO 2 /MAO coated alloys was evaluated by anodic polarization measurements. The pores on Mg phosphate layer provided accommodation sites for the subsequent TiO 2 sol-gel coating which sealed the pores and hence significantly enhanced the anticorrosion while single MAO coating only improve anticorrosion within a limited range. The present result indicates that fabrication of composite coatings is a significant strategy to improve the corrosion resistance of Mg-Zn-Ca alloy and other alloys, thus enhancing the potential of using Mg alloys as bio-implants.

  7. Improving the corrosion resistance of Mg–4.0Zn–0.2Ca alloy by micro-arc oxidation

    International Nuclear Information System (INIS)

    Xia, Y.H.; Zhang, B.P.; Lu, C.X.; Geng, L.

    2013-01-01

    In this paper, corrosion resistance of the Mg–4.0Zn–0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg–4.0Zn–0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF 2 was formed on the surface of Mg–4.0Zn–0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. - Highlights: • Ceramic layer which is composited by MgO and MgF 2 is prepared to improve the corrosion resistance of Mg–4.0Zn–0.2Ca alloy. • MAO treatment does not affect the mechanical properties of the Mg–4.0Zn–0.2Ca alloy. • After 30-day immersion in SBF, the mechanical properties of MAO coated samples are still enough for bone fixed

  8. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Science.gov (United States)

    Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  9. A preliminary study on investigating the attachment of soft tissue onto micro-arc oxidized titanium alloy implants

    International Nuclear Information System (INIS)

    Chen, G J; Wang, Z; Bai, H; Li, J M; Cai, H

    2009-01-01

    Intraosseous transcutaneous amputation prostheses (ITAP) rely on the integrity of the soft tissue-implant interface as a barrier to exogenous agents, and in the prevention of avulsion and marsupilization. This experimental work aimed at the in vivo evaluation of soft tissue attachment to Ti alloy (Ti 6 Al 4 V) transcutaneous custom-made screws treated by a micro-arc oxidation (MAO) method. Prior to implantation, the surface of the MAO treated implants was analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD). The experimental model comprised implantation of 16 transcutaneous screws (two groups: MAO and machined (control); total eight implants/group) in the medial aspect of the left tibia of eight female goats. The animals were euthanized at eight weeks and the samples harvested and processed for histological and histomorphometrical analysis of soft tissue attachment to the implant surface. Significant higher soft tissue attachment was observed in the MAO-modified group compared to the control. The in vivo data indicated that MAO-modified Ti alloy could be a useful biomaterial for tissue engineering and benefit applications where bone-anchored transcutaneous implants are used.

  10. Superior biocompatibility and osteogenic efficacy of micro-arc oxidation-treated titanium implants in the canine mandible

    International Nuclear Information System (INIS)

    Ran Wei; Guo Bing; Shu Dalong; Tian Zhihui; Nan Kaihui; Wang Yingjun

    2009-01-01

    The aim of this paper is to test implantation outcomes and osteogenic efficacy of plasma micro-arc oxidation (MAO)-treated titanium implants in dogs. Thirty-six pure titanium implants (18 MAO-treated, 18 untreated) were inserted into the mandibles of nine adult beagles and allowed to heal under non-weight-bearing conditions. Implant stability and interface characteristics were evaluated at 4, 8 and 12 weeks post-implantation. Methods included scanning electron microscopy, mechanical testing, histological analysis and computer-quantified tissue morphology. Osseointegration was achieved in both groups, but occurred earlier and more extensively in the MAO group. Areas of direct bone/implant contact were approximately nine times higher in the MAO group than in the control group at 12 weeks (65.85% versus 7.37%, respectively; p < 0.01). Bone-implant shear strength in the MAO group (71.4, 147.2 and 266.3 MPa at weeks 4, 8 and 12, respectively) was higher than in the control group (4.3, 7.1, and 11.8 MPa at weeks 4, 8 and 12, respectively), at all assessments (all, p < 0.01). MAO treatment of titanium implants promotes more rapid formation of new bone, and increases bone-implant shear strength compared to untreated titanium implants.

  11. Non-catalytic plasma-arc reforming of natural gas with carbon dioxide as the oxidizing agent for the production of synthesis gas or hydrogen

    OpenAIRE

    Blom, P.W.E.; Basson, G.W.

    2013-01-01

    The world’s energy consumption is increasing constantly due to the growing population of the world. The increasing energy consumption has a negative effect on the fossil fuel reserves of the world. Hydrogen has the potential to provide energy for all our needs by making use of fossil fuel such as natural gas and nuclear-based electricity. Hydrogen can be produced by reforming methane with carbon dioxide as the oxidizing agent. Hydrogen can be produced in a Plasma-arc reforming ...

  12. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance

    International Nuclear Information System (INIS)

    Guo, H.F.; An, M.Z.

    2005-01-01

    Micro-arc oxidization of AZ91D magnesium alloys was studied in solutions containing sodium aluminate and potassium fluoride at constant applied current densities. The influence of applied current densities, concentration and constituents of the electrolyte as well as treatment time on micro-arc oxidization process was investigated, respectively; surface morphology and phase structure were analyzed using scanning electron microscope (SEM) and X-ray powder diffraction (XRD). Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion resistance of ceramic coatings formed on magnesium alloys. XRD analyses indicate that the ceramic coatings fabricated on the surface of magnesium alloys by micro-arc oxidization are composed of spinel phase MgAl 2 O 4 and intermetallic phase Al 2 Mg; variation of treatment time arises no obvious difference to phase structure of the ceramic coatings. A few circular pores and micro-cracks are also observed to remain on the ceramic coating surface; the number of the pores is decreasing, while the diameter of the pores is apparently increasing with prolonging of treatment time. The corrosion resistance of ceramic coatings is improved more than 100 times compared with magnesium alloy substrate

  13. Hydrogen isotopic fractionation during crystallization of the terrestrial magma ocean

    Science.gov (United States)

    Pahlevan, K.; Karato, S. I.

    2016-12-01

    Models of the Moon-forming giant impact extensively melt and partially vaporize the silicate Earth and deliver a substantial mass of metal to the Earth's core. The subsequent evolution of the terrestrial magma ocean and overlying vapor atmosphere over the ensuing 105-6 years has been largely constrained by theoretical models with remnant signatures from this epoch proving somewhat elusive. We have calculated equilibrium hydrogen isotopic fractionation between the magma ocean and overlying steam atmosphere to determine the extent to which H isotopes trace the evolution during this epoch. By analogy with the modern silicate Earth, the magma ocean-steam atmosphere system is often assumed to be chemically oxidized (log fO2 QFM) with the dominant atmospheric vapor species taken to be water vapor. However, the terrestrial magma ocean - having held metallic droplets in suspension - may also exhibit a much more reducing character (log fO2 IW) such that equilibration with the overlying atmosphere renders molecular hydrogen the dominant H-bearing vapor species. This variable - the redox state of the magma ocean - has not been explicitly included in prior models of the coupled evolution of the magma ocean-steam atmosphere system. We find that the redox state of the magma ocean influences not only the vapor speciation and liquid-vapor partitioning of hydrogen but also the equilibrium isotopic fractionation during the crystallization epoch. The liquid-vapor isotopic fractionation of H is substantial under reducing conditions and can generate measurable D/H signatures in the crystallization products but is largely muted in an oxidizing magma ocean and steam atmosphere. We couple equilibrium isotopic fractionation with magma ocean crystallization calculations to forward model the behavior of hydrogen isotopes during this epoch and find that the distribution of H isotopes in the silicate Earth immediately following crystallization represents an oxybarometer for the terrestrial

  14. A photocatalytic approach in micro arc oxidation of WO3-TiO2 nano porous semiconductors under pulse current

    International Nuclear Information System (INIS)

    Bayati, M.R.; Golestani-Fard, F.; Moshfegh, A.Z.; Molaei, R.

    2011-01-01

    Graphical abstract: WO3-TiO2 layers were fabricated via microarc oxidation process and effect of the electrical current type on their photocatalytic performance under UV and visible illuminations was investigated. Highlights: → WO3-TiO2 layers were grown by MAO under pulse current for the first time. → Effect of the frequency and duty cycle on properties of the layers was studied. → A correlation between catalytic performance and growth conditions was proposed. - Abstract: Since ultraviolet (UV) irradiation cannot be applied for a long time in practical applications, it is necessary to develop a narrow band gap photocatalyst to decompose environmental pollutants under visible irradiation. In this research, (WO 3 ) x -(TiO 2 ) 1-x nano-porous layers were fabricated by micro arc oxidation (MAO) and influence of the electrical current type on their physical and chemical properties was investigated. Morphological studies, performed by SEM technique, revealed that pore size and roughness decreased with the frequency and increased with the duty cycle. The pulse-grown layers had a finer structure when compared to those fabricated under direct current. XRD and XPS results showed that the layers consisted of anatase, rutile, and tungsten oxide phases. Applying pulse current resulted in higher anatase relative contents. Band gap energies of the MAO-grown TiO 2 and WO 3 -TiO 2 layers were respectively measured as 3.14 and 2.96 eV. The layers fabricated under pulse current exhibited higher photoactivity under ultraviolet and visible illuminations as compared to the layers grown under direct current. Methylene blue (MB) was used as a model material to examine photocatalytic performance of the layers. Maximum MB-photodegradation reaction rate constants over the pulse-synthesized WO 3 -TiO 2 layers were measured as 0.0269 and 0.0129 min -1 for ultraviolet and visible irradiations. For layers grown under direct current, the rate constants were lower, i.e. 0.0228 and 0

  15. Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate

    International Nuclear Information System (INIS)

    Lu Lihong; Shen Dejiu; Zhang Jingwu; Song Jian; Li Liang

    2011-01-01

    Micro-arc oxidation (MAO) is not applicable to prepare ceramic coatings on the surface of steel directly. In this work, hybrid method of MAO and hot-dipping aluminum (HDA) were employed to fabricate composite ceramic coatings on the surface of Q235 steel. The evolution of MAO coatings, such as growth rate, thickness of the total coatings, ingrown and outgrown coatings, cross section and surface morphologies and phase composition of the ceramic coatings were studied. The results indicate that both the current density and the processing time can affect the total thickness, the growth rate and the ratio of ingrown and outgrown thickness of the ceramic coatings. The total thickness, outgrown thickness and growth rate have maximum values with the processing time prolonged. The time when the maximum value appears decreases and the ingrown dominant turns to outgrown dominant little by little with the current density increasing. The composite coatings obtained by this hybrid method consists of three layers from inside to outside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Al layer and the ceramic coatings which is as the top exterior layer. Metallurgical bonding was observed between every of the two layers. There are many micro-pores and micro-cracks, which act as discharge channels and result of quick and non-uniform cooling of melted sections in the MAO coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al 2 O 3 oxides. The crystal Al 2 O 3 phase includes κ-Al 2 O 3 , θ-Al 2 O 3 and β-Al 2 O 3 . Compared with the others, the β-Al 2 O 3 content is the least. The MAO process can be divided into three periods, namely the common anodic oxidation stage, the stable MAO stage and the ceramic coatings destroyed stage. The exterior loose part of the ceramic coatings was destroyed badly in the last period which should be avoided during the MAO process.

  16. Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong, E-mail: llh_qc@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China) and Research Department, The Chinese People' s Armed Police Academy, Langfang 065000 (China); Shen Dejiu; Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Song Jian; Li Liang [Tsinghua University, State Key Laboratory of Automotive Safety and Energy, Beijing 100084 (China)

    2011-02-15

    Micro-arc oxidation (MAO) is not applicable to prepare ceramic coatings on the surface of steel directly. In this work, hybrid method of MAO and hot-dipping aluminum (HDA) were employed to fabricate composite ceramic coatings on the surface of Q235 steel. The evolution of MAO coatings, such as growth rate, thickness of the total coatings, ingrown and outgrown coatings, cross section and surface morphologies and phase composition of the ceramic coatings were studied. The results indicate that both the current density and the processing time can affect the total thickness, the growth rate and the ratio of ingrown and outgrown thickness of the ceramic coatings. The total thickness, outgrown thickness and growth rate have maximum values with the processing time prolonged. The time when the maximum value appears decreases and the ingrown dominant turns to outgrown dominant little by little with the current density increasing. The composite coatings obtained by this hybrid method consists of three layers from inside to outside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Al layer and the ceramic coatings which is as the top exterior layer. Metallurgical bonding was observed between every of the two layers. There are many micro-pores and micro-cracks, which act as discharge channels and result of quick and non-uniform cooling of melted sections in the MAO coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. Compared with the others, the {beta}-Al{sub 2}O{sub 3} content is the least. The MAO process can be divided into three periods, namely the common anodic oxidation stage, the stable MAO stage and the ceramic coatings destroyed stage. The exterior loose part of the ceramic coatings was destroyed badly in the last period which should be

  17. Mush Column Magma Chambers

    Science.gov (United States)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  18. Effect of ZrO{sub 2} particle on the performance of micro-arc oxidation coatings on Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong; Sun, Yezi; Zhang, Jin, E-mail: zhangjin@ustb.edu.cn

    2015-07-01

    Highlights: • An anti-oxidation TiO{sub 2}/ZrO{sub 2} composite coating on Ti6Al4V alloy was prepared using micro-arc oxidation technology by adding ZrO{sub 2} particles in single phosphoric acid solution. • The composite coating displays excellent anti-oxidation characteristic at 700 °C in the air. • The concentration of ZrO{sub 2} particles not only influences the roughness and thickness of the coating, but the morphologies, phase composition, oxidation resistance and wear resistance. - Abstract: This paper investigates the effect of ZrO{sub 2} particle on the oxidation resistance and wear properties of coatings on a Ti6Al4V alloy generated using the micro-arc oxidation (MAO) technique. Different concentrations micron ZrO{sub 2} particles were added in phosphate electrolyte and dispersed by magnetic stirring apparatus. The composition of coating was characterized using X-ray diffraction and energy dispersive spectrum, and the morphology was examined using SEM. The high temperature oxidation resistance of the coating sample at 700 °C was investigated. Sliding wear behaviour was tested by a wear tester. The results showed that the coating consisted of ZrTiO{sub 4}, ZrO{sub 2}, TiO{sub 2}. With ZrO{sub 2} particle addition, the ceramic coating's forming time reduced by the current dynamic curve. It was shown that the addition of ZrO{sub 2} particles (3 g/L, 6 g/L) expressed an excellent oxidation resistance at 700 °C and wear resistance.

  19. Location of silicic caldera formation in arc settings

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Gwyneth R; Mahood, Gail A [Department of Geological and Environmental Sciences, Stanford University, 450 Serra, Mall, Building 320, Stanford, CA 94305-2115 (United States)

    2008-10-01

    Silicic calderas are the surface expressions of silicic magma chambers, and thus their study may yield information about what tectonic and crustal features favor the generation of evolved magma. The goal of this study is to determine whether silicic calderas in arc settings are preferentially located behind the volcanic front. After a global analysis of young, arc-related calderas, we find that silicic calderas at continental margins do form over a wide area behind the front, as compared to other types of arc volcanoes.

  20. Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle.

    Science.gov (United States)

    Lee, Changyeol; Wada, Ikuko

    2017-06-29

    Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.

  1. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun-Hua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jin [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China); Lu, Yan [School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Du, Mao-Hua [Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Han, Fu-Zhu, E-mail: hanfuzhu@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China)

    2015-01-01

    Highlights: • Single pulse energy remarkably influences the properties of ceramic coating prepared by MAO on Ti alloy. • The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. • The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. • Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. • The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle. - Abstract: The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti–6Al–4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO{sub 2}, anatase TiO{sub 2}, and a large amount of Al{sub 2}TiO{sub 5}. The effects of

  2. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  3. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to -41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  4. The Surtsey Magma Series.

    Science.gov (United States)

    Schipper, C Ian; Jakobsson, Sveinn P; White, James D L; Michael Palin, J; Bush-Marcinowski, Tim

    2015-06-26

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50(th) anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption's four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland's Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume.

  5. Lunar magma transport phenomena

    Science.gov (United States)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  6. Comparative Magma Oceanography

    Science.gov (United States)

    Jones, J. H.

    1999-01-01

    The question of whether the Earth ever passed through a magma ocean stage is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of martian (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of Mars contrast strongly to those of the Earth: (i) the extremely ancient ages of the martian core, mantle, and crust (about 4.55 b.y.); (ii) the highly depleted nature of the martian mantle; and (iii) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle. The easiest way to explain the ages and diverse isotopic compositions of martian basalts is to postulate that Mars had an early magma ocean. Cumulates of this magma ocean were later remelted to form the SNC meteorite suite and some of these melts assimilated crustal materials enriched in incompatible elements. The REE pattern of the crust assimilated by these SNC magmas was LREE enriched. If this pattern is typical of the crust as a whole, the martian crust is probably similar in composition to melts generated by small degrees of partial melting (about 5%) of a primitive source. Higher degrees of partial melting would cause the crustal LREE pattern to be essentially flat. In the context of a magma ocean model, where large degrees of partial melting presumably prevailed, the crust would have to be dominated by late-stage, LREE-enriched residual liquids. Regardless of the exact physical setting, Nd and W isotopic evidence indicates that martian geochemical reservoirs must have formed early and that they have not been efficiently remixed since. The important point is that in both the Moon and Mars we see evidence of a magma ocean phase and that we recognize it as such. Several lines of theoretical inference point to an early Earth that was also hot

  7. Origin of silicic magmas along the Central American volcanic front: Genetic relationship to mafic melts

    Science.gov (United States)

    Vogel, Thomas A.; Patino, Lina C.; Eaton, Jonathon K.; Valley, John W.; Rose, William I.; Alvarado, Guillermo E.; Viray, Ela L.

    2006-09-01

    Silicic pyroclastic flows and related deposits are abundant along the Central American volcanic front. These silicic magmas erupted through both the non-continental Chorotega block to the southeast and the Paleozoic continental Chortis block to the northwest. The along-arc variations of the silicic deposits with respect to diagnostic trace element ratios (Ba/La, U/Th, Ce/Pb), oxygen isotopes, Nd and Sr isotope ratios mimic the along-arc variation in the basaltic and andesitic lavas. This variation in the lavas has been interpreted to indicate relative contributions from the slab and asthenosphere to the basaltic magmas [Carr, M.J., Feigenson, M.D., Bennett, E.A., 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contributions to Mineralogy and Petrology, 105, 369-380.; Patino, L.C., Carr, M.J. and Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138 (3), 265-283.]. With respect to along-arc trends in basaltic lavas the largest contribution of slab fluids is in Nicaragua and the smallest input from the slab is in central Costa Rica — similar trends are observed in the silicic pyroclastic deposits. Data from melting experiments of primitive basalts and basaltic andesites demonstrate that it is difficult to produce high K 2O/Na 2O silicic magmas by fractional crystallization or partial melting of low-K 2O/Na 2O sources. However fractional crystallization or partial melting of medium- to high-K basalts can produce these silicic magmas. We interpret that the high-silica magmas associated Central America volcanic front are partial melts of penecontemporaneous, mantle-derived, evolved magmas that have ponded and crystallized in the mid-crust — or are melts extracted from these nearly completely crystallized magmas.

  8. Making mushy magma chambers in the lower continental crust: Cold storage and compositional bimodality

    Science.gov (United States)

    Jackson, Matthew; Blundy, Jon; Sparks, Steve

    2017-04-01

    the local melt fraction is too low to form a mobile magma. The model results are consistent with geochemical data suggesting that lower crustal magma reservoirs supply silicic and mafic melts to arc volcanoes, but intermediate magmas are formed by mixing in shallower reservoirs. We suggest here that lower crustal magma chambers primarily form in response to changes in bulk composition caused by melt migration and chemical reaction in a mush reservoir. This process is different to the conventional and widely applied models of magma chamber formation. Similar processes are likely to operate in shallow mush reservoirs, but will likely be further complicated by the presence of volatile phases, and mixing of different melt compositions sourced from deeper mush reservoirs.

  9. A Comparative Study of Cyclic Oxidation and Sulfates-Induced Hot Corrosion Behavior of Arc-Sprayed Ni-Cr-Ti Coatings at Moderate Temperatures

    Science.gov (United States)

    Guo, Wenmin; Wu, Yuping; Zhang, Jianfeng; Hong, Sheng; Chen, Liyan; Qin, Yujiao

    2015-06-01

    The cyclic oxidation and sulfates-induced hot corrosion behaviors of a Ni-43Cr-0.3Ti arc-sprayed coating at 550-750 °C were characterized and compared in this study. In general, all the oxidation and hot corrosion kinetic curves of the coating followed a parabolic law, i.e., the weight of the specimens showed a rapid growth initially and then reached the gradual state. However, the initial stage of the hot corrosion process was approximately two times longer than that of the oxidation process, indicating a longer preparation time required for the formation of a protective scale in the former process. At 650 °C, the parabolic rate constant for the hot corrosion was 7.2 × 10-12 g2/(cm4·s), approximately 1.7 times higher than that for the oxidation at the same temperature. The lower parabolic rate constant for the oxidation was mainly attributed to the formation of a protective oxide scale on the surface of corroded specimens, which was composed of a mixture of NiO, Cr2O3, and NiCr2O4. However, as the liquid molten salts emerged during the hot corrosion, these protective oxides would be dissolved and the coating was corrupted acceleratedly.

  10. On the conditions of magma mixing and its bearing on andesite production in the crust.

    Science.gov (United States)

    Laumonier, Mickael; Scaillet, Bruno; Pichavant, Michel; Champallier, Rémi; Andujar, Joan; Arbaret, Laurent

    2014-12-15

    Mixing between magmas is thought to affect a variety of processes, from the growth of continental crust to the triggering of volcanic eruptions, but its thermophysical viability remains unclear. Here, by using high-pressure mixing experiments and thermal calculations, we show that hybridization during single-intrusive events requires injection of high proportions of the replenishing magma during short periods, producing magmas with 55-58 wt% SiO2 when the mafic end-member is basaltic. High strain rates and gas-rich conditions may produce more felsic hybrids. The incremental growth of crustal reservoirs limits the production of hybrids to the waning stage of pluton assembly and to small portions of it. Large-scale mixing appears to be more efficient at lower crustal conditions, but requires higher proportions of mafic melt, producing more mafic hybrids than in shallow reservoirs. Altogether, our results show that hybrid arc magmas correspond to periods of enhanced magma production at depth.

  11. Magma storage conditions of historic Plinian eruptions of Volcán de Colima, México

    Science.gov (United States)

    Macias, J.; Arce, J.; Sosa, G.; Gardner, J. E.; Saucedo, R.

    2013-12-01

    Volcán de Colima has a historical record with major explosive eruptions occurring every ~100 years (1606, 1690, 1818, and 1913) followed by intra-Plinian effusive activity. The 1818 and 1913 Plinian eruptions erupted andesitic magmas (Pl > Opx > Cpx >> Hbl + Fe-Ti oxides + Ap and rare resorbed Ol) with homogeneous bulk compositions (1913; 58.3 × 0.5 wt.% SiO2, 1818; 58.9 × 0.2 wt.% SiO2; Saucedo et al., 2010). Instead, intra-Plinian magmas are devoid of hornblende and have compositions of 59-61 wt. % in silica (Savov et al., 2008). Pre-eruptive temperatures of oxide Fe-Ti pairs in 1818 and 1913 products yielded temperatures of 830×20°C colder than intra-Plinian magmas usually >970°C (Luhr et al., 2002) depending on the mineral phase analyzed. Amphibole in 1818 and 1913 products consists of two populations: a) large xenocrysts, with plag-px-Fe-Ti oxide rims with equilibrium pressures and temperatures of 380 MPa and 950 °C (Ridolfi et al., 2010), and b) microphenocryst with equilibrium pressures and temperatures of 190-280 MPa and 870-910 °C, respectively. Some phenocrysts in the 1818 magma have a high pressure core overgrowth by a low pressure rim. In order to understand the storage conditions of Colima explosive magmas we carried out a set of hydrothermal experiments with a 1818 pumice sample. Experiments were water oversaturated and close to the oxygen fugacity of the NNO buffer. Experiments show that amphibole is stable at pressures greater than 75 MPa at 850°C, and greater than 100 MPa at 925°C. For the same range of temperature, plagioclase is stable at pressures below ~210 MPa and 100 MPa, respectively. Experimental plagioclase and experimental glass were analyzed and compared to those from the natural sample, yielding an approximate storage pressure of 210 MPa. This pressure is confirmed by the chemical equilibrium of microphenocrystic amphibole of the natural sample. Given the nearly equivalent composition of the most recent Plinain magmas is

  12. Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sui-Dan; Zhang, Hui [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Dong, Xu-Dong [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3 (Canada); Ning, Cheng-Yun [College of Material Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Fok, Alex S.L. [Minnesota Dental Research Center of Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55414 (United States); Wang, Yan, E-mail: wyan65@163.com [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2015-02-28

    Highlights: • MAO coating improves the surface characteristics and cytocompatibility of titanium. • Composition of MAO coating varies with the electrolyte concentration. • MAO coating properties can be optimized by adjusting the electrolyte concentration. • Higher CA concentration contributes to more favorable MAO coating cytocompatibility. - Abstract: Objective: To explore the effect of calcium concentration in the electrolyte solution on the physicochemical properties and biocompatibility of coatings formed by micro-arc oxidation (MAO) on titanium surfaces. Methods: The surfaces of pure titanium plates were modified by MAO in an electrolytic solution containing calcium acetate (CA; C{sub 4}H{sub 6}CaO{sub 4}) at concentrations of 0.05, 0.1, 0.2, or 0.3 M and β-glycerophosphate disodium salt pentahydrate (β-GP; C{sub 3}H{sub 7}Na{sub 2}O{sub 6}P·5H{sub 2}O) at a fixed concentration of 0.02 M. Surface topography, elemental characteristics, phase composition, and roughness were investigated by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and a surface roughness tester, respectively. To assess the cytocompatibility and osteoinductivity of the surfaces, MC3T3-E1 preosteoblasts were cultured on the surfaces in vitro, and cell morphology, adhesion, proliferation, and differentiation were observed. Results: The porous MAO coating was composed primarily of TiO{sub 2} rutile and anatase. The amount of TiO{sub 2} rutile, the Ca/P ratio, and the surface roughness of the MAO coating increased with increasing CA concentration in the electrolyte solution. Ca{sub 3}(PO{sub 4}){sub 2}, CaCO{sub 3}, and CaTiO{sub 3} were formed on MAO-treated surfaces prepared with CA concentrations of 0.2 and 0.3 M. Cell proliferation and differentiation increased with increasing CA concentration, with MC3T3-E1 cells exhibiting favorable morphologies for bone–implant integration. Conclusions: MAO coating improves the surface characteristics and

  13. Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations

    International Nuclear Information System (INIS)

    Wu, Sui-Dan; Zhang, Hui; Dong, Xu-Dong; Ning, Cheng-Yun; Fok, Alex S.L.; Wang, Yan

    2015-01-01

    Highlights: • MAO coating improves the surface characteristics and cytocompatibility of titanium. • Composition of MAO coating varies with the electrolyte concentration. • MAO coating properties can be optimized by adjusting the electrolyte concentration. • Higher CA concentration contributes to more favorable MAO coating cytocompatibility. - Abstract: Objective: To explore the effect of calcium concentration in the electrolyte solution on the physicochemical properties and biocompatibility of coatings formed by micro-arc oxidation (MAO) on titanium surfaces. Methods: The surfaces of pure titanium plates were modified by MAO in an electrolytic solution containing calcium acetate (CA; C 4 H 6 CaO 4 ) at concentrations of 0.05, 0.1, 0.2, or 0.3 M and β-glycerophosphate disodium salt pentahydrate (β-GP; C 3 H 7 Na 2 O 6 P·5H 2 O) at a fixed concentration of 0.02 M. Surface topography, elemental characteristics, phase composition, and roughness were investigated by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and a surface roughness tester, respectively. To assess the cytocompatibility and osteoinductivity of the surfaces, MC3T3-E1 preosteoblasts were cultured on the surfaces in vitro, and cell morphology, adhesion, proliferation, and differentiation were observed. Results: The porous MAO coating was composed primarily of TiO 2 rutile and anatase. The amount of TiO 2 rutile, the Ca/P ratio, and the surface roughness of the MAO coating increased with increasing CA concentration in the electrolyte solution. Ca 3 (PO 4 ) 2 , CaCO 3 , and CaTiO 3 were formed on MAO-treated surfaces prepared with CA concentrations of 0.2 and 0.3 M. Cell proliferation and differentiation increased with increasing CA concentration, with MC3T3-E1 cells exhibiting favorable morphologies for bone–implant integration. Conclusions: MAO coating improves the surface characteristics and cytocompatibility of titanium for osseointegration. Higher CA

  14. Magma chamber processes in central volcanic systems of Iceland

    DEFF Research Database (Denmark)

    Þórarinsson, Sigurjón Böðvar; Tegner, Christian

    2009-01-01

    are composed of 2-10 m thick melanocratic layers rich in clinopyroxene and sometimes olivine, relative to the thicker overlying leucocratic oxide gabbros. While the overall compositional variation is limited (Mg# clinopyroxene 72-84; An% plagioclase 56-85), the melanocratic bases display spikes in Mg# and Cr2O......3 of clinopyroxene and magnetite indicative of magma replenishment. Some macrorhythmic units show mineral trends indicative of up-section fractional crystallisation over up to 100 m, whereas others show little variation. Two populations of plagioclase crystals (large, An-rich and small, less An......-rich) indicate that the recharge magma carried plagioclase xenocrysts (high An-type). The lack of evolved gabbros suggests formation in a dynamic magma chamber with frequent recharge, tapping and fractionation. Modelling of these compositional trends shows that the parent magma was similar to known transitional...

  15. Adakitic magmas: modern analogues of Archaean granitoids

    Science.gov (United States)

    Martin, Hervé

    1999-03-01

    /Y). Contrarily, when a young (subducted, the geothermal gradient along the Benioff plane is high, so the temperature of hydrated tholeiite solidus is reached before dehydration occurs. Under these conditions, garnet and/or hornblende are the main residual phases giving rise to HREE-depleted magmas (high La/Yb). The lack of residual plagioclase accounts for the Sr enrichment (high Sr/Y) of the magma. Experimental petrologic data show that the liquids produced by melting of tholeiite in subduction-like P- T conditions are adakitic in composition. However, natural adakites systematically have higher Mg no., Ni and Cr contents, which are interpreted as reflecting interactions between the ascending adakitic magma generated in the subducted slab and the overlying mantle wedge. This interpretation has been recently corroborated by studies on ultramafic enclaves in Batan lavas where olivine crystals contain glass inclusions with adakitic compositions [Schiano, P., Clochiatti, R., Shimizu, N., Maury, R., Jochum, K.P., Hofmann, A.W., 1995. Hydrous, silica-rich melts in the sub-arc mantle and their relationships with erupted arc lavas. Nature 377 595-600.]. This is interpreted as demonstrating that adakitic magmas passed through the mantle wedge and interacted with it. Sajona [Sajona, F.G., 1995. Fusion de la croûte océanique en contexte de subduction collision: géochimie, géochronologie et pétrologie du magmatisme plioquaternaire de Mindanao (Philippines). Unpublished thesis, Brest University, France, 223 pp.] also considers that the high-Nb basalts, which are associated with adakites, reflect mantle-adakite interactions. Recent structural studies have demonstrated that plate tectonics operated during the first half of Earth history. The very strong similarities that exist between modern adakites and Archaean tonalite, trondhjemite and granodiorite (TTG) attest that both have the same source and petrogenesis. Consequently, when Archaean-like P- T conditions are exceptionally realised

  16. ARC Operations

    Science.gov (United States)

    coordination on a regular basis. The overall ARC organizational structure is shown below. Organizational Structure Dynamics and Control of Vehicles Human Centered Modeling and Simulation High Performance

  17. Crustal growth of the Izu-Ogasawara arc estimated from structural characteristics of Oligocene arc

    Science.gov (United States)

    Takahashi, N.; Yamashita, M.; Kodaira, S.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.

    2011-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out seismic surveys using a multichannel reflection system and ocean bottom seismographs, and we have clarified crustal structures of whole Izu-Ogasawara (Bonin)-Marina (IBM) arc since 2002. These refection images and velocity structures suggest that the crustal evolution in the intra-oceanic island arc accompanies with much interaction of materials between crust and mantle. Slow mantle velocity identified beneath the thick arc crusts suggests that dense crustal materials transformed into the mantle. On the other hand, high velocity lower crust can be seen around the bottom of the crust beneath the rifted region, and it suggests that underplating of mafic materials occurs there. Average crustal production rate of the entire arc is larger than expected one and approximately 200 km3/km/Ma. The production rate of basaltic magmas corresponds to that of oceanic ridge. Repeated crustal differentiation is indispensable to produce much light materials like continental materials, however, the real process cannot still be resolved yet. We, therefore, submitted drilling proposals to obtain in-situ middle crust with P-wave velocity of 6 km/s. In the growth history of the IBM arc, it is known by many papers that boninitic volcanisms preceded current bimodal volcanisms based on basaltic magmas. The current volcanisms accompanied with basaltic magmas have been occurred since Oligocene age, however, the tectonic differences to develop crustal architecture between Oligocene and present are not understood yet. We obtained new refraction/reflection data along an arc strike of N-S in fore-arc region. Then, we estimate crustal structure with severe change of the crustal thickness from refraction data, which are similar to that along the volcanic front. Interval for location of the thick arc crust along N-S is very similar to that along the volcanic front. The refection image indicates that the basement of the fore-arc

  18. Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Laleh, M.; Rouhaghdam, A. Sabour; Shahrabi, T.; Shanghi, A.

    2010-01-01

    Oxide coatings were formed on AZ91D magnesium alloy using micro-arc oxidation process in alkaline electrolyte without and with addition of alumina sol. The microstructures and compositions of the MAO coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). Corrosion behaviors of the coatings were evaluated with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5%NaCl solution. Porosities of the coatings were measured by potentiodynamic polarization tests. It was found that the coating produced in the electrolyte with alumina sol has more compact and uniform morphology than that produced in the electrolyte without alumina sol. The results of corrosion tests showed that the coating formed in electrolyte with alumina sol enhances the corrosion resistance of the substrate significantly. XRD patterns showed that the coating produced in the electrolyte with alumina sol has more MgAl 2 O 4 phase than MgO.

  19. Thermal Response of Whipox-Type All-Oxide Ceramic Matrix Composites during Reentry Simulation in the Dlr-Lbk Arc-Heated Facility

    Science.gov (United States)

    Mechnich, P.; Braue, W.; Schneider, H.; Koch, U.; Esser, B.; Gülhan, A.

    2005-02-01

    All-oxide ceramic matrix composites (CMCs) such as WHIPOXTM (wound highly porous oxide) exhibit excellent damage tolerance and thermal stability up to 1400°C. Due to their low density and thermal conductivity these new ceramic materials are considered promising candidates for thermal protection systems (TPS) of spacecrafts. The performance of WHIPOX-type CMCs was evaluated during reentry simulations in the L2K leg of the arc-heated LBK facility of DLR, Cologne. The application of reaction-bonded alumina (RBAO) coatings provides significant CMC surface protection and decreased gas permeability, which are key issues for reentry applications. Since emittance and catalycity of the RBAO-coatings limit the performance of CMCs in a reentry environment, binary SiC/RBAO coatings providing higher emittance and/or lower catalycity proved to be a promising approach.

  20. Microstructural Study on Oxygen Permeated Arc Beads

    Directory of Open Access Journals (Sweden)

    Kuan-Heng Liu

    2015-01-01

    Full Text Available We simulated short circuit of loaded copper wire at ambient atmosphere and successfully identified various phases of the arc bead. A cuprous oxide flake was formed on the surface of the arc bead in the rapid solidification process, and there were two microstructural constituents, namely, Cu-κ eutectic structure and solutal dendrites. Due to the arc bead formed at atmosphere during the local equilibrium solidification process, the phase of arc bead has segregated to the cuprous oxide flake, Cu-κ eutectic, and Cu phase solutal dendrites, which are the fingerprints of the arc bead permeated by oxygen.

  1. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions.

    Science.gov (United States)

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N; Stern, Richard A; D'Abzac, Francois-Xavier; Schaltegger, Urs

    2015-09-10

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

  2. Superheat in magma oceans

    Science.gov (United States)

    Jakes, Petr

    1992-01-01

    The existence of 'totally molten' planets implies the existence of a superheat (excess of heat) in the magma reservoirs since the heat buffer (i.e., presence of crystals having high latent heat of fusion) does not exist in a large, completely molten reservoir. Any addition of impacting material results in increase of the temperature of the melt and under favorable circumstances heat is stored. The behavior of superheat melts is little understood; therefore, we experimentally examined properties and behavior of excess heat melts at atmospheric pressures and inert gas atmosphere. Highly siliceous melts (70 percent SiO2) were chosen for the experiments because of the possibility of quenching such melts into glasses, the slow rate of reaction in highly siliceous composition, and the fact that such melts are present in terrestrial impact craters and impact-generated glasses. Results from the investigation are presented.

  3. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation.

    Science.gov (United States)

    Duarte, Laís T; Bolfarini, Claudemiro; Biaggio, Sonia R; Rocha-Filho, Romeu C; Nascente, Pedro A P

    2014-08-01

    The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Carbon dioxide in magmas and implications for hydrothermal systems

    Science.gov (United States)

    Lowenstern, J. B.

    2001-01-01

    This review focuses on the solubility, origin, abundance, and degassing of carbon dioxide (CO2) in magma-hydrothermal systems, with applications for those workers interested in intrusion-related deposits of gold and other metals. The solubility of CO2 increases with pressure and magma alkalinity. Its solubility is low relative to that of H2O, so that fluids exsolved deep in the crust tend to have high CO2/H2O compared with fluids evolved closer to the surface. Similarly, CO2/H2O will typically decrease during progressive decompression- or crystallization-induced degassing. The temperature dependence of solubility is a function of the speciation of CO2, which dissolves in molecular form in rhyolites (retrograde temperature solubility), but exists as dissolved carbonate groups in basalts (prograde). Magnesite and dolomite are stable under a relatively wide range of mantle conditions, but melt just above the solidus, thereby contributing CO2 to mantle magmas. Graphite, diamond, and a free CO2-bearing fluid may be the primary carbon-bearing phases in other mantle source regions. Growing evidence suggests that most CO2 is contributed to arc magmas via recycling of subducted oceanic crust and its overlying sediment blanket. Additional carbon can be added to magmas during magma-wallrock interactions in the crust. Studies of fluid and melt inclusions from intrusive and extrusive igneous rocks yield ample evidence that many magmas are vapor saturated as deep as the mid crust (10-15 km) and that CO2 is an appreciable part of the exsolved vapor. Such is the case in both basaltic and some silicic magmas. Under most conditions, the presence of a CO2-bearing vapor does not hinder, and in fact may promote, the ascent and eruption of the host magma. Carbonic fluids are poorly miscible with aqueous fluids, particularly at high temperature and low pressure, so that the presence of CO2 can induce immiscibility both within the magmatic volatile phase and in hydrothermal systems

  5. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process

    Science.gov (United States)

    Fazel, M.; Salimijazi, H. R.; Golozar, M. A.; Garsivaz jazi, M. R.

    2015-01-01

    In this paper, the micro-arc oxidation (MAO) coatings were performed on pure Ti and Ti6Al4V samples at 180 V. The results indicated that unlike the volcanic morphology of oxide layer on pure Ti, a cortex-like morphology with irregular vermiform slots was seen on MAO/Ti6Al4V sample. According to polarization curves, the corrosion resistance of untreated samples was significantly increased by MAO process. The electrochemical impedance spectroscopy analysis showed a lower capacitance of barrier layer (led to higher resistance) for MAO/Ti specimens. This indicates that corrosive ions diffusion throughout the oxide film would be more difficult resulted in a higher corrosion resistance. Tribocorrosion results illustrated that the potential of untreated samples was dropped sharply to very low negative values. However, the lower wear volume loss was achieved for Ti6Al4V alloy. SEM images of worn surfaces demonstrated the local detachment of oxide layer within the wear track of MAO/Ti sample. Conversely, no delamination was detected in MAO/Ti6Al4V and a mild abrasive wear was the dominant mechanism.

  6. Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano, Kermadec island arc

    Science.gov (United States)

    Keith, Manuel; Haase, Karsten M.; Klemd, Reiner; Smith, Daniel J.; Schwarz-Schampera, Ulrich; Bach, Wolfgang

    2018-05-01

    Most magmatic-hydrothermal Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc systems. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-hydrothermal activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the hydrothermal system. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L'Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu > 2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe-Ti oxide suggest that the surrounding lavas that host the Brothers hydrothermal system represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying hydrothermal system. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal-porphyry deposits.

  7. Numerical modeling of magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, Onno

    2001-01-01

    This report explains the numerical programs behind a comprehensive modeling effort of magma-repository interactions. Magma-repository interactions occur when a magma dike with high-volatile content magma ascends through surrounding rock and encounters a tunnel or drift filled with either a magmatic

  8. Barium isotope geochemistry of subduction-zone magmas

    Science.gov (United States)

    Yu, H.; Nan, X.; Huang, J.; Wörner, G.; Huang, F.

    2017-12-01

    Subduction zones are crucial tectonic setting to study material exchange between crust and mantle, mantle partial melting with fluid addition, and formation of ore-deposits1-3. The geochemical characteristics of arc lavas from subduction zones are different from magmas erupted at mid-ocean ridges4, because there are addition of fluids/melts from subducted AOC and its overlying sediments into their source regions in the sub-arc mantle4. Ba is highly incompatible during mantle melting5, and it is enriched in crust (456 ppm)6 relative to the mantle (7.0 ppm)7. The subducted sediments are also enriched in Ba (776 ppm of GLOSS)8. Moreover, because Ba is fluid soluble during subduction, it has been used to track contributions of subduction-related fluids to arc magmas9 or recycled sediments to the mantle10-11. To study the Ba isotope fractionation behavior during subduction process, we analyzed well-characterized, chemically-diverse arc lavas from Central American, Kamchatka, Central-Eastern Aleutian, and Southern Lesser Antilles. The δ137/134Ba of Central American arc lavas range from -0.13 to 0.24‰, and have larger variation than the arc samples from other locations. Except one sample from Central-Eastern Aleutian arc with obviously heavy δ137/134Ba values (0.27‰), all other samples from Kamchatka, Central-Eastern Aleutian, Southern Lesser Antilles arcs are within the range of OIB. The δ137/134Ba is not correlated with the distance to trench, partial melting degrees (Mg#), or subducting slab-derived components. The samples enriched with heavy Ba isotopes have low Ba contents, indicating that Ba isotopes can be fractionated at the beginning of dehydration process with small amount of Ba releasing to the mantle wedge. With the dehydration degree increasing, more Ba of the subducted slab can be added to the source of arc lavas, likely homogenizing the Ba isotope signatures. 1. Rudnick, R., 1995 Nature; 2. Tatsumi, Y. & Kogiso, T., 2003; 3. Sun, W., et al., 2015 Ore

  9. Reassessment of the origin of the Dun Mountain Ophiolite, New Zealand : Nd-isotopic and geochemical evolution of magma suites

    International Nuclear Information System (INIS)

    Sivell, W.J.; McCulloch, M.T.

    2000-01-01

    Magmatic suites with contrasting isotopic and geochemical compositions, sequentially emplaced in different tectonic regimes, comprise the Dun Mountain Ophiolite Belt (DMOB), New Zealand. At D'Urville Island, the northernmost exposure of the DMOB, earliest erupted (stage 1) pillow basalts ε Nd (T) = +6.3 to +7.5, and are incompatible element enriched, like basalts from geochemically anomalous ridge segments. Overlying stage 2 basalts (sheeted flows) show a narrow range of ε Nd (T) = +8.3 + or -0.2, with chemical characteristics of depleted backarc basin basalts. These rocks are intruded by mafic to silicic stage 3 magmas, which have high uniform initial 143 Nd/ 144 Nd ratios (ε Nd (T) = +9.3 + or -0.2) over a wide range of 147 Sm/ 144 Nd values (yielding a precise Early Permian Nd-isotope age of 278 ± 4 Ma (MSWD = 0.48)). Stage 3 magmas show pronounced subduction-related geochemical signatures similar to island arc tholeiites (IAT) from immature arcs. They are closely analogous to some (boninite)-IAT magmas which characterise 'infant arc' eruptive activity in forearc basins of present-day Western Pacific island arc systems. A wide variety of stage 3 magma compositions, ranging from near-primary basaltic dikes (Mg = 74) to extremely fractionated silicic plagiogranites with uniformly very depleted isotopic ratios, is consistent with slow spreading rates which gave rise to polybaric, closed-system fractionation of magmas and periodic chamber abandonment. Some stage 3 rocks with SiO 2 levels in the andesite range have low-TiO 2 contents and high Mg, and may be fractionated equivalents of boninites. High ε Nd (T) values of stage 3 magmas indicate a lack of subducted sediment with inherited crustal residence signatures, and reflect the extent of supra-subduction zone (SSZ) mantle wedge depletion. DMOB stage 3 magmas may represent foreac magmatism that was the precursor to normal subduction-related volcanism established by c. 265 Ma in the Brook Street Arc and derived

  10. Development of surface decontamination technology for radioactive waste using plasma. Dust behaviors in the treatment of oxide films using a low-pressure arc

    International Nuclear Information System (INIS)

    Adachi, Kazuo; Furukawa, Shizue; Amakawa, Tadashi; Fujiwara, Kazutoshi; Kanbe, Hiromu

    2002-01-01

    We are developing the surface treatment technique using low-pressure arc as a new decontamination technology for radioactive wastes from nuclear facilities. For the practical use, effective dust collection methods are necessary, because dust is generated from oxide films on the surface during the treatment. The method using gas stream and filters may be one of them, but the behavior of the dust has not been examined yet. We studied the basic behavior of the dust and the possibilities of dust control by gas stream as follows. 1. Most of the dust attached to the anode in the case of no gas blow. 2. Dust attachment to the anode was reduced to about half using small cross section type anode. It seems to be possible to reduce the dust attachment by proper choice of electrode shape. 3. The dust attachment was reduced to 10 to 40 percent by the gas blow to the side of arc. The dust control by gas stream might be possible. (author)

  11. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc

    International Nuclear Information System (INIS)

    Chim, Y.C.; Ding, X.Z.; Zeng, X.T.; Zhang, S.

    2009-01-01

    In this paper, four kinds of hard coatings, TiN, CrN, TiAlN and CrAlN (with Al/Ti or Al/Cr atomic ratio around 1:1), were deposited on stainless steel substrates by a lateral rotating cathode arc technique. The as-deposited coatings were annealed in ambient atmosphere at different temperatures (500-1000 o C) for 1 h. The evolution of chemical composition, microstructure, and microhardness of these coatings after annealing at different temperatures was systematically analyzed by energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and nanoindentation experiments. The oxidation behaviour and its influence on overall hardness of these four coatings were compared. It was found that the ternary TiAlN and CrAlN coatings have better oxidation resistance than their binary counterparts, TiN and CrN coatings. The Cr-based coatings (CrN and CrAlN) exhibited evidently better oxidation resistance than the Ti-based coatings (TiN and TiAlN). TiN coating started to oxidize at 500 o C. After annealing at 700 o C no N could be detected by EDX, indicating that the coating was almost fully oxidized. After annealed at 800 o C, the coating completely delaminated from the substrate. TiAlN started to oxidize at 600 o C. It was nearly fully oxidized (with little residual nitrogen detected in the coating by EDX) and partially delaminated at 1000 o C. Both CrN and CrAlN started to oxidize at 700 o C. CrN was almost fully oxidized (with little residual nitrogen detected in the coating by EDX) and partially delaminated at 900 o C. The oxidation rate of the CrAlN coating is quite slow. After annealing at 1000 o C, only about 19 at.% oxygen was detected and the coating showed no delamination. The Ti-based (TiN and TiAlN) coatings were not able to retain their hardness at higher temperatures (≥ 700 o C). On the other hand, the hardness of CrAlN was stable at a high level between 33 and 35 GPa up to an annealing temperature of 800 o C and still kept at a comparative high value of

  12. Magma emplacement in 3D

    Science.gov (United States)

    Gorczyk, W.; Vogt, K.

    2017-12-01

    Magma intrusion is a major material transfer process in Earth's continental crust. Yet, the mechanical behavior of the intruding magma and its host are a matter of debate. In this study, we present a series of numerical thermo-mechanical experiments on mafic magma emplacement in 3D.In our model, we place the magmatic source region (40 km diameter) at the base of the mantle lithosphere and connect it to the crust by a 3 km wide channel, which may have evolved at early stages of magmatism during rapid ascent of hot magmatic fluids/melts. Our results demonstrate continental crustal response due to magma intrusion. We observe change in intrusion geometries between dikes, cone-sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions as well as injection time. The rheology and temperature of the host-rock are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favours host rock displacement and magma pools along the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle-crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle-crust. Low-density source magma results in T-shaped intrusions in cross-section with magma sheets at the surface.

  13. Experimental Study of Lunar and SNC Magmas

    Science.gov (United States)

    Rutherford, Malcolm J.

    1998-01-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. We discovered small metal blebs initially in the Al5 green glass, and determined the significant importance of this metal in fixing the oxidation state of the parent magma (Fogel and Rutherford, 1995). More recently, we discovered a variety of metal blebs in the Al7 orange glass. Some of these Fe-Ni metal blebs were in the glass; others were in olivine phenocrysts. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption (Weitz et al., 1997) They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. One of the more exciting and controversial findings in our research over the past year has been the possible fractionation of H from D during shock (experimental) of hornblende bearing samples (Minitti et al., 1997). This research is directed at explaining some of the low H2O and high D/H observed in hydrous phases in the SNC meteorites.

  14. Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique

    International Nuclear Information System (INIS)

    Shang Wei; Chen Baizhen; Shi Xichang; Chen Ya; Xiao Xiang

    2009-01-01

    Protective composite coatings were obtained on a magnesium alloy by micro-arc oxidation (MAO) and sol-gel technique. The coatings consisted of a MAO layer and a sol-gel layer. The microstructure and composition of the MAO coating and the composite coatings were analyzed by scanning electron microscopy (SEM) and energy dispersive X-rays (EDX). Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and total immersion tests were used to evaluate the corrosion behavior of these coatings in a 3.5 wt.% NaCl solution. The results show that the sol-gel layer provides corrosion protection by physically sealing the pores in the MAO coating and acting as a barrier. The composite coatings can suppress the corrosion process by preventing the corrosive ions from transferring or diffusing to the magnesium alloy substrate. This enhances the corrosion resistance of the magnesium alloy AZ91D significantly

  15. The effect of TiO2 coating on biological NiTi alloys after micro-arc oxidation treatment for corrosion resistance.

    Science.gov (United States)

    Sukuroglu, Ebru Emine; Sukuroglu, Suleyman; Akar, Kubra; Totik, Yasar; Efeoglu, Ihsan; Arslan, Ersin

    2017-08-01

    NiTi alloys exhibit good properties, such as shape memory behavior, high corrosion resistant, having the closest elasticity modulus of a human bone and superior biocompatibility properties. However, the surface problems that arise during the use of this alloy limit the usage in the industry and health sector. In recent years, micro-arc oxidation method is used to improve the surface properties and increase the usage of these alloys. In this study, the TiO 2 coatings were deposited on the NiTi substrates. The surface topography, morphology, crystallographic structure, and thickness of the coatings were determined using scanning electron microscopy and X-ray diffraction. The corrosion properties were investigated using potentiostat test unit in two different media such as NaCl solution and simulated body fluid. The results show that the coated samples have higher corrosion resistance than uncoated samples in the two different media.

  16. In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2015-03-01

    Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.

  17. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Xiao, Q.F.; Mei, D.D.; Zhong, Z.C.; Tong, Y.X.; Zheng, Y.F.; Li, L.

    2017-01-01

    Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO 2 and a few amorphous Fe 2 O 3 and Nd 2 O 3 . The amorphous SiO 2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  18. Formation mechanism and adhesive strength of a hydroxyapatite/TiO{sub 2} composite coating on a titanium surface prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shimin, E-mail: lshm1216@163.com [Department of Gem and Material Technique, Tianjin University of Commerce, Tianjin 300134 (China); Li, Baoe; Liang, Chunyong; Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Qiao, Zhixia [School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134 (China)

    2016-01-30

    Graphical abstract: - Highlights: • Hydroxyapatite/TiO{sub 2} composite coating was prepared by one-step micro-arc oxidation. • The formation mechanism of composite coating was investigated. • Higher bonding strength between hydroxyapatite and TiO{sub 2} layer was obtained. - Abstract: A hydroxyapatite (HA)/TiO{sub 2} composite coating was prepared on a titanium surface by one-step micro-arc oxidation (MAO). The formation mechanism of the composite coating was investigated and the adhesion of the coating to the substrate was also measured. The results showed that flocculent structures could be obtained during the early stages of treatment. As the treatment period extended, increasing amounts of Ca–P precipitate appeared on the surface, and the flocculent morphology transformed into a plate-like morphology. Then the plate-like calcium and phosphate salt self-assembled to form flower-like apatite. The Ca/P atomic ratio gradually decreased, indicating that the amounts of Ca{sup 2+} ions which diffused into the coating decreased more rapidly than that of PO{sub 4}{sup 3−} or HPO{sub 4}{sup 2−}. The adhesive strength between the apatite and TiO{sub 2} coating was improved. This improvement is attributed to the interlocking effect between the apatite and TiO{sub 2} layer which formed simultaneously during the early stages of the one-step MAO. This study shows that it is a promising method to prepare bioactive coating on a titanium surface.

  19. Preparation and characterization of amorphous SiO{sub 2} coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xiao, Q.F.; Mei, D.D. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [The Institute for Rare Earth Magnetic Materials and Devices, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Tong, Y.X. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China)

    2017-03-15

    Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO{sub 2} and a few amorphous Fe{sub 2}O{sub 3} and Nd{sub 2}O{sub 3}. The amorphous SiO{sub 2} coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  20. Aleutian tholeiitic and calc-alkaline magma series I: The mafic phenocrysts

    Science.gov (United States)

    Kay, S. Mahlburg; Kay, Robert W.

    1985-07-01

    Diagnostic mafic silicate assemblages in a continuous spectrum of Aleutian volcanic rocks provide evidence for contrasts in magmatic processes in the Aleutian arc crust. Tectonic segmentation of the arc exerts a primary control on the variable mixing, fractional crystallization and possible assimilation undergone by the magmas. End members of the continuum are termed calc-alkaline (CA) and tholeiitic (TH). CA volcanic rocks (e.g., Buldir and Moffett volcanoes) have low FeO/MgO ratios and contain compositionally diverse phenocryst populations, indicating magma mixing. Their Ni and Cr-rich magnesian olivine and clinopyroxene come from mantle-derived mafic olivine basalts that have mixed with more fractionated magmas at mid-to lower-crustal levels immediately preceding eruption. High-Al amphibole is associated with the mafic end member. In contrast, TH lavas (e.g., Okmok and Westdahl volcanoes) have high FeO/MgO ratios and contain little evidence for mixing. Evolved lavas represent advanced stages of low pressure crystallization from a basaltic magma. These lavas contain groundmass olivine (FO 40 50) and lack Ca-poor pyroxene. Aleutian volcanic rocks with intermediate FeO/MgO ratios are termed transitional tholeiitic (TTH) and calc-alkaline (TCA). TCA magmas are common (e.g., Moffett, Adagdak, Great Sitkin, and Kasatochi volcanoes) and have resulted from mixing of high-Al basalt with more evolved magmas. They contain amphibole (high and low-Al) or orthopyroxene or both and are similar to the Japanese hypersthene-series. TTH magmas (e.g., Okmok and Westdahl) contain orthopyroxene or pigeonite or both, and show some indication of upper crustal mixing. They are mineralogically similar to the Japanese pigeonite-series. High-Al basalt lacks Mg-rich mafic phases and is a derivative magma produced by high pressure fractionation of an olivine tholeiite. The low pressure mineral assemblage of high-Al basalt results from crystallization at higher crustal levels.

  1. Iron Redox Systematics of Shergottites and Martian Magmas

    Science.gov (United States)

    Righter, Kevin; Danielson, L. R.; Martin, A. M.; Newville, M.; Choi, Y.

    2010-01-01

    Martian meteorites record a range of oxygen fugacities from near the IW buffer to above FMQ buffer [1]. In terrestrial magmas, Fe(3+)/ SigmaFe for this fO2 range are between 0 and 0.25 [2]. Such variation will affect the stability of oxides, pyroxenes, and how the melt equilibrates with volatile species. An understanding of the variation of Fe(3+)/SigmaFe for martian magmas is lacking, and previous work has been on FeO-poor and Al2O3-rich terrestrial basalts. We have initiated a study of the iron redox systematics of martian magmas to better understand FeO and Fe2O3 stability, the stability of magnetite, and the low Ca/high Ca pyroxene [3] ratios observed at the surface.

  2. Lithospheric Contributions to Arc Magmatism: Isotope Variations Along Strike in Volcanoes of Honshu, Japan

    Science.gov (United States)

    Kersting; Arculus; Gust

    1996-06-07

    Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts.

  3. Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia

    Science.gov (United States)

    Erdmann, Saskia; Martel, Caroline; Pichavant, Michel; Kushnir, Alexandra

    2014-06-01

    Amphibole is widely employed to calculate crystallization temperature and pressure, although its potential as a geobarometer has always been debated. Recently, Ridolfi et al. (Contrib Mineral Petrol 160:45-66, 2010) and Ridolfi and Renzulli (Contrib Mineral Petrol 163:877-895, 2012) have presented calibrations for calculating temperature, pressure, fO2, melt H2O, and melt major and minor oxide composition from amphibole with a large compositional range. Using their calibrations, we have (i) calculated crystallization conditions for amphibole from eleven published experimental studies to examine the problems and the potential of the new calibrations; and (ii) calculated crystallization conditions for amphibole from basaltic-andesitic pyroclasts erupted during the paroxysmal 2010 eruption of Mount Merapi in Java, Indonesia, to infer pre-eruptive conditions. Our comparison of experimental and calculated values shows that calculated crystallization temperatures are reasonable estimates. Calculated fO2 and melt SiO2 content yields potentially useful estimates at moderately reduced to moderately oxidized conditions and intermediate to felsic melt compositions. However, calculated crystallization pressure and melt H2O content are untenable estimates that largely reflect compositional variation in the crystallizing magmas and crystallization temperature and not the calculated parameters. Amphibole from Merapi's pyroclasts yields calculated conditions of ~200-800 MPa, ~900-1,050 °C, ~NNO + 0.3-NNO + 1.1, ~3.7-7.2 wt% melt H2O, and ~58-71 wt% melt SiO2. We interpret the variations in calculated temperature, fO2, and melt SiO2 content as reasonable estimates, but conclude that the large calculated pressure variation for amphibole from Merapi and many other arc volcanoes is evidence for thorough mixing of mafic to felsic magmas and not necessarily evidence for crystallization over a large depth range. In contrast, bimodal pressure estimates obtained for other arc magmas

  4. The electrocatalytic oxidation of carbohydrates at a nickel/carbon paper electrode fabricated by the filtered cathodic vacuum arc technique

    International Nuclear Information System (INIS)

    Fu, Yingyi; Wang, Tong; Su, Wen; Yu, Yanan; Hu, Jingbo

    2015-01-01

    The direct electrochemical behaviour of carbohydrates at a nickel/carbon paper electrode with a novel fabrication method is investigated. The investigation is used for verification the feasibility of using monosaccharides and disaccharides in the application of fuel cell. The selected monosaccharides are glucose, fructose and galactose; the disaccharides are sucrose, maltose and lactose. The modified nickel/carbon paper electrode was prepared using a filtered cathodic vacuum arc technique. The morphology image of the nickel thin film on the carbon paper surface was characterized by scanning electron microscopy (SEM). The existence of nickel was verified by X-ray photoelectron spectroscopy (XPS). The contact angle measurement was also used to characterize the modified electrode. Cyclic voltammetry (CV) was employed to evaluate the electrochemical behaviour of monosaccharides and disaccharides in an alkaline aqueous solution. The modified electrode exhibits good electrocatalytic activities towards carbohydrates. In addition, the stability of the nickel/carbon paper electrode with six sugars was also investigated. The good catalytic effects of the nickel/carbon paper electrode allow for the use of carbohydrates as fuels in fuel cell applications

  5. Pliocene granodioritic knoll with continental crust affinities discovered in the intra-oceanic Izu-Bonin-Mariana Arc: Syntectonic granitic crust formation during back-arc rifting

    Science.gov (United States)

    Tani, Kenichiro; Dunkley, Daniel J.; Chang, Qing; Nichols, Alexander R. L.; Shukuno, Hiroshi; Hirahara, Yuka; Ishizuka, Osamu; Arima, Makoto; Tatsumi, Yoshiyuki

    2015-08-01

    A widely held hypothesis is that modern continental crust of an intermediate (i.e. andesitic) bulk composition forms at intra-oceanic arcs through subduction zone magmatism. However, there is a critical paradox in this hypothesis: to date, the dominant granitic rocks discovered in these arcs are tonalite, rocks that are significantly depleted in incompatible (i.e. magma-preferred) elements and do not geochemically and petrographically represent those of the continents. Here we describe the discovery of a submarine knoll, the Daisan-West Sumisu Knoll, situated in the rear-arc region of the intra-oceanic Izu-Bonin-Mariana Arc. Remotely-operated vehicle surveys reveal that this knoll is made up entirely of a 2.6 million year old porphyritic to equigranular granodiorite intrusion with a geochemical signature typical of continental crust. We present a model of granodiorite magma formation that involves partial remelting of enriched mafic rear-arc crust during the initial phase of back-arc rifting, which is supported by the preservation of relic cores inherited from initial rear-arc source rocks within magmatic zircon crystals. The strong extensional tectonic regime at the time of intrusion may have allowed the granodioritic magma to be emplaced at an extremely shallow level, with later erosion of sediment and volcanic covers exposing the internal plutonic body. These findings suggest that rear-arc regions could be the potential sites of continental crust formation in intra-oceanic convergent margins.

  6. Isotopic abundances relevant to the identification of magma sources

    International Nuclear Information System (INIS)

    O'Nions, R.K.

    1984-01-01

    The behaviour of natural radiogenic isotope tracers in the Earth that have lithophile and atmophile geochemical affinity is reviewed. The isotope tracer signature of oceanic and continental crust may in favourable circumstances by sufficiently distinct from that of the mantle to render a contribution from these sources resolvable within the isotopic composition of the magma. Components derived from the sedimentary and altered basaltic portion of oceanic crust are recognized in some island arc magmas from their Sr, Nd and Pb isotopic signatures. The rare-gas isotope tracers (He, Ar, Xe in particular) are not readily recycled into the mantle and thus provide the basis of an approach that is complementary to that based on the lithophile tracers. In particular, a small mantle-derived helium component may be readily recognized in the presence of a predominant radiogenic component generated in the continents. The importance of assessing the mass balance of these interactions rather than merely a qualitative recognition is emphasized. The question of the relative, contribution of continental-oceanic crust and mantle to magma sources is an essential part of the problem of generation and evolution of continental crust. An approach to this problem through consideration of the isotopic composition of sediments is briefly discussed. (author)

  7. Weak solutions of magma equations

    International Nuclear Information System (INIS)

    Krishnan, E.V.

    1999-01-01

    Periodic solutions in terms of Jacobian cosine elliptic functions have been obtained for a set of values of two physical parameters for the magma equation which do not reduce to solitary-wave solutions. It was also obtained solitary-wave solutions for another set of these parameters as an infinite period limit of periodic solutions in terms of Weierstrass and Jacobian elliptic functions

  8. Magma flow through elastic-walled dikes

    NARCIS (Netherlands)

    Bokhove, Onno; Woods, A.W.; de Boer, A

    2005-01-01

    A convection–diffusion model for the averaged flow of a viscous, incompressible magma through an elastic medium is considered. The magma flows through a dike from a magma reservoir to the Earth’s surface; only changes in dike width and velocity over large vertical length scales relative to the

  9. Influence of KMnO4 Concentrationon Infrared Emissivity of Coatings Formed on TC4 Alloys by Micro-Arc Oxidation

    Science.gov (United States)

    Li, Ying; Li, Chaozhong; Hu, Dan; Li, Zhengxian; Xi, Zhengping

    2017-01-01

    Ceramic coatings with high emissivity were fabricated on TC4 alloys by micro-arc oxidation technique (MAO) in mixed silicate and phosphate electrolytes with varying KMnO4 addition. The microstructure, phase and chemical composition were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), and the infrared emissivity of the MAO coatings was measured in a waveband of 5–20 μm. The results show that the thickness of the coatings increased with the addition of KMnO4, but the roughness of the coatings first decreased and then increased slightly due to the inhibitory effect of KMnO4 on Na2SiO3 deposition. The main phase composition of the coatings was anatase and rutile TiO2, amorphous form of SiO2 and MnO2. The infrared emissivity value of the coatings strongly depended on KMnO4 concentration, the coating formed at the concentration of 0.8 g/L KMnO4 reached the highest and an average of up to 0.87 was observed. PMID:29137192

  10. Surface damage mitigation of TC4 alloy via micro arc oxidation for oil and gas exploitation application: Characterizations of microstructure and evaluations on surface performance

    Science.gov (United States)

    Xie, Ruizhen; Lin, Naiming; Zhou, Peng; Zou, Jiaojuan; Han, Pengju; Wang, Zhihua; Tang, Bin

    2018-04-01

    Because of its excellent corrosion resistance, high specific strength and high tensile strength, TC4 titanium alloys used as petroleum tubes have received wide interest from material engineers after many technical investigations and estimations. However, because of its low surface hardness values, high coefficient of friction and poor wear resistance, the TC4 alloy is seldom adopted in tribological-related engineering components. In this work, micro-arc oxidation (MAO) coatings were fabricated on TC4 alloys in NaAlO2 and (NaPO3)6 electrolytes with and without ultrasonic assistance. The microstructural characterizations of the produced MAO coatings were investigated. Comparative estimations of electrochemical corrosion in CO2-saturated simulated oilfield brine and tribological behaviours on MAO coatings and TC4 alloys were conducted. The results showed that the introduction of ultrasound increased the thickness of the MAO coatings. The thickness increased by 34% and 15% in the NaAlO2 and (NaPO3)6 electrolytes, respectively. There was no significant discrepancy in phase constitutions when the MAO processes were conducted with and without ultrasonic assistance. Both MAO coatings obtained with and without ultrasonic assistance were found to improve the corrosion and wear resistance of the TC4 alloy. MAO treatments made it possible to ensure the working surface of a TC4 alloy with an enhanced surface performance for oil and gas exploitation applications.

  11. Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy

    Science.gov (United States)

    Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao

    2016-02-01

    A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.

  12. Preparation and characterization of a calcium-phosphate-silicon coating on a Mg-Zn-Ca alloy via two-step micro-arc oxidation.

    Science.gov (United States)

    Dou, Jinhe; Chen, Yang; Chi, Yiming; Li, Huancai; Gu, Guochao; Chen, Chuanzhong

    2017-06-14

    Magnesium alloys are the most promising implant materials due to their excellent biodegradability. However, their high degradation rate limits their practical application. In this study, we produced a calcium-phosphate (Ca-P) coating and a calcium-phosphate-silicon (Ca-P-Si) coating via one-step and two-step micro-arc oxidation processes, respectively. The microstructure and chemical composition of the MAO coatings were characterized using SEM, XRD and EDS. The degradation behaviors of the MAO coatings and the substrate were investigated using electrochemical techniques and immersion tests in simulated body fluid (SBF). The results show that the silicate was successfully incorporated into the Ca-P coating in the second MAO step, and this also increased the thickness of the coating. The Ca-P-Si coatings remarkably reduced the corrosion rate of the Mg alloy and Ca-P coating during 18 days of immersion in SBF. In addition, the bone-like apatite layer on the sample surface demonstrated the good biomineralization ability of the Ca-P-Si coating. Potentiodynamic polarization results showed that the MAO coating could clearly enhance the corrosion resistance of the Mg alloy. Moreover, we propose the growth mechanism of the MAO coating in the second step.

  13. Effects of Voltage on Microstructure and Corrosion Resistance of Micro-arc Oxidation Ceramic Coatings Formed on KBM10 Magnesium Alloy

    Science.gov (United States)

    Lu, J. P.; Cao, G. P.; Quan, G. F.; Wang, C.; Zhuang, J. J.; Song, R. G.

    2018-01-01

    Micro-arc oxidation (MAO) coatings on KBM10 magnesium alloy were prepared in an electrolyte system with sodium silicate, potassium hydroxide, sodium tungstate, and citric acid. The effects of voltage on the microstructure and corrosion resistance of MAO coatings were studied using stereoscopic microscopy, scanning electron microscopy, x-ray diffraction, scratch tests, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results showed that the roughness of the MAO coatings, diameter, and number of pores increase with the increase in voltage. The coating formed at the voltage of 350 V exhibited the best adhesive strength when evaluated by the automatic scratch tester. The coatings were mainly composed of MgO, MgWO4, and Mg2SiO4, and the content of Mg2SiO4 increased with the increase in voltage. The corrosion resistance of MAO coatings could be improved by changing the applied voltage, and the best corrosion resistance of MAO coating was observed at the voltage of 350 V.

  14. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Science.gov (United States)

    Tang, Hui; Yu, Dezhen; Luo, Yan; Wang, Fuping

    2013-01-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  15. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Science.gov (United States)

    Xu, J. L.; Xiao, Q. F.; Mei, D. D.; Zhong, Z. C.; Tong, Y. X.; Zheng, Y. F.; Li, L.

    2017-03-01

    Amorphous SiO2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the "coral reef" like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 μm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO2 and a few amorphous Fe2O3 and Nd2O3. The amorphous SiO2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees.

  16. Formation of Microcracks During Micro-Arc Oxidation in a Phytic Acid-Containing Solution on Two-Phase AZ91HP

    Science.gov (United States)

    Zhang, R. F.; Chang, W. H.; Jiang, L. F.; Qu, B.; Zhang, S. F.; Qiao, L. P.; Xiang, J. H.

    2016-04-01

    Micro-arc oxidation (MAO) is an effective method to produce ceramic coatings on magnesium alloys and can considerably improve their corrosion resistance. The coating properties are closely related with microcracks, which are always inevitably developed on the coating surface. In order to find out the formation and development regularity of microcracks, anodic coatings developed on two-phase AZ91HP after different anodizing times were fabricated in a solution containing environmentally friendly organic electrolyte phytic acid. The results show that anodic film is initially developed on the α phase. At 50 s, anodic coatings begin to develop on the β phase, evidencing the formation of a rough area. Due to the coating successive development, the microcracks initially appear at the boundary between the initially formed coating on the α phase and the subsequently developed coating on the β phase. With the prolonging treatment time, the microcracks near the β phase become evident. After treating for 3 min, the originally rough area on the β phase disappears and the coatings become almost uniform with microcracks randomly distributed on the sample surface. Inorganic phosphates are found in MAO coatings, suggesting that phytate salts are decomposed due to the high instantaneous temperature on the sample surface resulted from spark discharge.

  17. In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Kyoung-A. [Department of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bio Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Park, Il Song, E-mail: ilsong@chonbuk.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Sook Jeong [Neural Injury Research Lab, Department of Neurology, Asan life Science Institute, University, of Ulsan, College of Medicine, Seoul 138-736 (Korea, Republic of); Bae, Tae Sung [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Min Ho, E-mail: mh@jbnu.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} HA/TiO{sub 2} coating were prepared by a MAO and EPD technique. {center_dot} The NaOH electrolyte solution containing HA particles is employed. {center_dot} MAO and EPD treatment enhances the corrosion resistance and bioactivity of titanium. - Abstract: In situ composite coating of hydroxyapatite (HA)/TiO{sub 2} were produced on titanium (Ti) substrate by micro-arc oxidation coupled with electrophoretic deposition (MAO and EPD) technique with different concentrations of HA particles in the 0.2 M NaOH electrolyte solution. The surface morphology and chemical composition of the hybrid coating were effected by HA concentration. The amount of HA particles incorporated into coating layer increased with increasing HA concentration used in the electrolyte solution. The corrosion behavior of the coating layer in simulated body fluids (SBF) was evaluated using a potentiodynamic polarization test. The corrosion resistance of the coated sample was increased compared to the untreated Ti sample. The in vitro bioactivity assessment showed that the MAO and EPD treated Ti substrate possessed higher apatite-forming ability than the untreated Ti. Moreover, the apatite-forming ability had a positive correlation with HA concentration. In addition, the cell behavior was also examined using cell proliferation assay and alkaline phosphatase ability. The coating formed at HA concentration of 5 g/L exhibited the highest cell ability.

  18. In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiao [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang, Xiaoming [Panyu Hospital of Chinese Medicine, 65 Qiaodong Road, Guangzhou 511400 (China); Tan, Lili, E-mail: lltan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li, Mei [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Wang, Xin [College of Chemistry, Liaoning University, 66 Chongshanzhong Road, Shenyang 110036 (China); Zhang, Yu, E-mail: luck_2001@126.com [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Zhuangqi [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, Jianhong [Trauson Medical Instrument Co., Ltd., Changzhou 213163 (China)

    2014-01-01

    Magnesium alloys are promising biodegradable implant candidates for orthopedic application. In the present study, a phosphate-based micro-arc oxidation (MAO) coating was applied on the ZK60 alloy to decrease its initial degradation rate. Strontium (Sr) was incorporated into the coating in order to improve the bioactivity of the coating. The in vitro degradation studies showed that the MAO coating containing Sr owned a better initial corrosion resistance, which was mainly attributed to the superior inner barrier layer, and a better long-term protective ability, probably owning to its larger thickness, superior inner barrier layer and the superior apatite formation ability. The degradation of MAO coating was accompanied by the formation of degradation layer and Ca-P deposition layer. The in vitro cell tests demonstrated that the incorporation of Sr into the MAO coating enhanced both the proliferation of preosteoblast cells and the alkaline phosphatase activity of the murine bone marrow stromal cells. In conclusion, the MAO coating with Sr is a promising surface treatment for the biodegradable magnesium alloys.

  19. Microporous TiO2-WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu, Kee-Rong; Hung, Chung-Hsuang; Yeh, Chung-Wei; Wu, Jiing-Kae

    2012-01-01

    Highlights: ► A simple MAO is used to prepare porous WO 3 /TiO 2 layer on Ti sheet as a visible-light enabled catalyst. ► The photocatalytic activity of the WO 3 /TiO 2 is enhanced by sputtering over an N,C-TiO 2 layer. ► This is ascribed to the synergetic effect of hybrid sample prepared by two-step method. - Abstract: This study reports the preparation of microporous TiO 2 -WO 3 /TiO 2 films with a high surface area using a two-step approach. A porous WO 3 /TiO 2 template was synthesized by oxidizing a titanium sheet using a micro arc oxidation (MAO) process. This sheet was subsequently overlaid with a visible light (Vis)-enabled TiO 2 (N,C-TiO 2 ) film, which was deposited by codoping nitrogen (N) and carbon (C) ions into a TiO 2 lattice using direct current magnetron sputtering. The resulting microporous TiO 2 -WO 3 /TiO 2 film with a 0.38-μm-thick N,C-TiO 2 top-layer exhibited high photocatalytic activity in methylene blue (MB) degradation among samples under ultraviolet (UV) and Vis irradiation. This is attributable to the synergetic effect of two-step preparation method, which provides a highly porous microstructure and the well-crystallized N,C-TiO 2 top-layer. This is because a higher surface area with high crystallinity favors the adsorption of more MB molecules and more photocatalytic active areas. Thus, the microporous TiO 2 -WO 3 /TiO 2 film has promising applications in the photocatalytic degradation of dye solution under UV and Vis irradiation. These results imply that the microporous WO 3 /TiO 2 can be used as a template of hybrid electrode because it enables rapid fabrication.

  20. Caldera resurgence driven by magma viscosity contrasts.

    Science.gov (United States)

    Galetto, Federico; Acocella, Valerio; Caricchi, Luca

    2017-11-24

    Calderas are impressive volcanic depressions commonly produced by major eruptions. Equally impressive is the uplift of the caldera floor that may follow, dubbed caldera resurgence, resulting from magma accumulation and accompanied by minor eruptions. Why magma accumulates, driving resurgence instead of feeding large eruptions, is one of the least understood processes in volcanology. Here we use thermal and experimental models to define the conditions promoting resurgence. Thermal modelling suggests that a magma reservoir develops a growing transition zone with relatively low viscosity contrast with respect to any newly injected magma. Experiments show that this viscosity contrast provides a rheological barrier, impeding the propagation through dikes of the new injected magma, which stagnates and promotes resurgence. In explaining resurgence and its related features, we provide the theoretical background to account for the transition from magma eruption to accumulation, which is essential not only to develop resurgence, but also large magma reservoirs.

  1. [Scanning electron microscopy observation of the growth of osteoblasts on Ti-24Nb-4Zr-8Sn modified by micro-arc oxidation and alkali-heat treatment and implant-bone interface].

    Science.gov (United States)

    Han, Xue; Liu, Hong-Chen; Wang, Dong-Sheng; Li, Shu-Jun; Yang, Rui

    2011-01-01

    To observe the efficacy of micro-arc oxidation and alkali-heat treatment (MAH) on Ti-24Nb-4Zr-8Sn (Ti2448). Disks (diameter of 14.5 mm, thickness of 1 mm) and cylinders (diameter of 3 mm, height of 10 mm) were fabricated from Ti2448 alloy. Samples were divided into three groups: polished (Ti2448), micro-arc oxidation(MAO-Ti2448), micro-arc oxidation and alkali-heat treatment (MAH-Ti2448). MC3T3-E1 osteoblastic cells were cultured on the disks and cell morphology was observed with scanning electron microscopy (SEM) aftre 3 days. The cylinder samples were implanted in the tibia of dogs and implant-bone interface was observed with SEM after 3 months. A rough and porous structure was shown in both MAO and MAH group. The MC3T3-E1 cells on the MAH-Ti2448 discs spread fully in intimate contact with the underlying coarse surface through active cytoskeletal extentions. Osseointegration was formed in the implant-bone interface in MAH samples. MAH treatment can provide a more advantageous Ti2448 surface to osteoblastic cells than MAO treatment does, and the former can improve the implant-bone integration.

  2. Pressure effect on Fe3+/FeT in silicate melts and applications to magma redox, particularly in magma oceans

    Science.gov (United States)

    Zhang, H.; Hirschmann, M. M.

    2014-12-01

    The proportions of Fe3+ and Fe2+ in magmas reflect the redox conditions of their origin and influence the chemical and physical properties of natural silicate liquids, but the relationship between Fe3+/FeT and oxygen fugacity depends on pressure owing to different molar volumes and compressibilities of Fe3+ and Fe2+ in silicates. An important case where the effect of pressure effect may be important is in magma oceans, where well mixed (and therefore potentially uniform Fe3+/FeT) experiencses a wide range of pressures, and therefore can impart different ƒO2 at different depths, influencing magma ocean degassing and early atmospheres, as well as chemical gradients within magma oceans. To investigate the effect of pressure on magmatic Fe3+/FeT we conducted high pressure expeirments on ƒO2-buffered andestic liquids. Quenched glasses were analyzed by Mössbauer spectroscopy. To verify the accuracy of Mössbauer determinations of Fe3+/FeT in glasses, we also conducted low temperature Mössbauer studies to determine differences in the recoilless fraction (ƒ) of Fe2+ and Fe3. These indicate that room temperature Mössbauer determinations of on Fe3+/FeT glasses are systematically high by 4% compared to recoilless-fraction corrected ratios. Up to 7 GPa, pressure decreases Fe3+/FeT, at fixed ƒO2 relative to metal-oxide buffers, meaning that an isochemical magma will become more reduced with decreasing pressure. Consequently, for small planetary bodies such as the Moon or Mercury, atmospheres overlying their MO will be highly reducing, consisting chiefly of H2 and CO. The same may also be true for Mars. The trend may reverse at higher pressure, as is the case for solid peridotite, and so for Earth, Venus, and possibly Mars, more oxidized atmospheres above MO are possible. Diamond anvil experiments are underway to examine this hypothesis.

  3. Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc

    Science.gov (United States)

    Ancellin, Marie-Anne; Samaniego, Pablo; Vlastélic, Ivan; Nauret, François; Gannoun, Adbelmouhcine; Hidalgo, Silvana

    2017-03-01

    Previous studies of the Ecuadorian arc (1°N-2°S) have revealed across-arc geochemical trends that are consistent with a decrease in mantle melting and slab dehydration away from the trench. The aim of this work is to evaluate how these processes vary along the arc in response to small-scale changes in the age of the subducted plate, subduction angle, and continental crustal basement. We use an extensive database of 1437 samples containing 71 new analyses, of major and trace elements as well as Sr-Nd-Pb isotopes from Ecuadorian and South Colombian volcanic centers. Large geochemical variations are found to occur along the Ecuadorian arc, in particular along the front arc, which encompasses 99% and 71% of the total variations in 206Pb/204Pb and 87Sr/86Sr ratios of Quaternary Ecuadorian volcanics, respectively. The front arc volcanoes also show two major latitudinal trends: (1) the southward increase of 207Pb/204Pb and decrease of 143Nd/144Nd reflect more extensive crustal contamination of magma in the southern part (up to 14%); and (2) the increase of 206Pb/204Pb and decrease of Ba/Th away from ˜0.5°S result from the changing nature of metasomatism in the subarc mantle wedge with the aqueous fluid/siliceous slab melt ratio decreasing away from 0.5°S. Subduction of a younger and warmer oceanic crust in the Northern part of the arc might promote slab melting. Conversely, the subduction of a colder oceanic crust south of the Grijalva Fracture Zone and higher crustal assimilation lead to the reduction of slab contribution in southern part of the arc.

  4. Partially molten magma ocean model

    International Nuclear Information System (INIS)

    Shirley, D.N.

    1983-01-01

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model

  5. The evolution of hydrous magmas in the Tongariro Volcanic Centre : the 10 ka Pahoka-Mangamate eruptions

    International Nuclear Information System (INIS)

    Auer, A.; Palin, J.M.; White, J.D.L.; Nakagawa, M.; Stirling, C.

    2015-01-01

    The majority of arc-type andesites in the Tongariro Volcanic Centre are highly porphyritic, hornblende-free, two-pyroxene andesites. An exception is tephras from the c. 10,000 ka Pahoka-Mangamate event. Magmas of these Plinian eruptions bypassed the extensive crustal mush columns under the central volcanoes and sequentially derived a series of almost aphyric rocks spanning a compositional range from dacite to basaltic andesite. Mineral composition, trace element and isotopic data suggest that this eruptive series tapped a mid-crustal magma reservoir, resulting in the initial eruption of an hydrous dacitic magma and several following eruptions characterised by less-evolved and less-hydrous compositions at progressively higher temperatures and substantially lower 87 Sr/ 86 Sr ratios. Systematic changes in magma chemistry are also reflected in a sequential change in phenocryst content starting with an early hornblende-plagioclase-dominated assemblage to a late olivine-plagioclase-dominated assemblage. (author).

  6. Grain to outcrop-scale frozen moments of dynamic magma mixing in the syenite magma chamber, Yelagiri Alkaline Complex, South India

    Directory of Open Access Journals (Sweden)

    M.L. Renjith

    2014-11-01

    Full Text Available Magma mixing process is unusual in the petrogenesis of felsic rocks associated with alkaline complex worldwide. Here we present a rare example of magma mixing in syenite from the Yelagiri Alkaline Complex, South India. Yelagiri syenite is a reversely zoned massif with shoshonitic (Na2O + K2O=5–10 wt.%, Na2O/K2O = 0.5–2, TiO2 <0.7 wt.% and metaluminous character. Systematic modal variation of plagioclase (An11–16 Ab82–88, K-feldspar (Or27–95 Ab5–61, diopside (En34–40Fs11–18Wo46–49, biotite, and Ca-amphibole (edenite build up three syenite facies within it and imply the role of in-situ fractional crystallization (FC. Evidences such as (1 disequilibrium micro-textures in feldspars, (2 microgranular mafic enclaves (MME and (3 synplutonic dykes signify mixing of shoshonitic mafic magma (MgO = 4–5 wt.%, SiO2 = 54–59 wt.%, K2O/Na2O = 0.4–0.9 with syenite. Molecular-scale mixing of mafic magma resulted disequilibrium growth of feldspars in syenite. Physical entity of mafic magma preserved as MME due to high thermal-rheological contrast with syenite magma show various hybridization through chemical exchange, mechanical dilution enhanced by chaotic advection and phenocryst migration. In synplutonic dykes, disaggregation and mixing of mafic magma was confined within the conduit of injection. Major-oxides mass balance test quantified that approximately 0.6 portions of mafic magma had interacted with most evolved syenite magma and generated most hybridized MME and dyke samples. It is unique that all the rock types (syenite, MME and synplutonic dykes share similar shoshonitic and metaluminous character; mineral chemistry, REE content, coherent geochemical variation in Harker diagram suggest that mixing of magma between similar composition. Outcrop-scale features of crystal accumulation and flow fabrics also significant along with MME and synplutonic dykes in syenite suggesting that Yelagiri syenite magma chamber had evolved

  7. Geochemical studies on island arc volcanoes

    International Nuclear Information System (INIS)

    Notsu, Kenji

    1998-01-01

    This paper summarizes advances in three topics of geochemical studies on island arc volcanoes, which I and my colleagues have been investigating. First one is strontium isotope studies of arc volcanic rocks mainly from Japanese island arcs. We have shown that the precise spatial distribution of the 87 Sr/ 86 Sr ratio reflects natures of the subduction structure and slab-mantle interaction. Based on the 87 Sr/ 86 Sr ratio of volcanic rocks in the northern Kanto district, where two plates subduct concurrently with different directions, the existence of an aseismic portion of the Philippine Sea plate ahead of the seismic one was suggested. Second one is geochemical monitoring of active arc volcanoes. 3 He/ 4 He ratio of volcanic volatiles was shown to be a good indicator to monitor the behavior of magma: ascent and drain-back of magma result in increase and decrease in the ratio, respectively. In the case of 1986 eruptions of Izu-Oshima volcano, the ratio began to increase two months after big eruptions, reaching the maximum and decreased. Such delayed response is explained in terms of travelling time of magmatic helium from the vent area to the observation site along the underground steam flow. Third one is remote observation of volcanic gas chemistry of arc volcanoes, using an infrared absorption spectroscopy. During Unzen eruptions starting in 1990, absorption features of SO 2 and HCl of volcanic gas were detected from the observation station at 1.3 km distance. This was the first ground-based remote detection of HCl in volcanic gas. In the recent work at Aso volcano, we could identify 5 species (CO, COS, CO 2 , SO 2 and HCl) simultaneously in the volcanic plume spectra. (author)

  8. Arc saw development report

    International Nuclear Information System (INIS)

    Deichelbohrer, P.R.; Beitel, G.A.

    1981-01-01

    The arc saw is one of the key components of the Contaminated Equipment Volume Reduction (CEVR) Program. This report describes the progress of the arc saw from its inception to its current developmental status. History of the arc saw and early contributors are discussed. Particular features of the arc saw and their advantages for CEVR are detailed. Development of the arc saw including theory of operation, pertinent experimental results, plans for the large arc saw and advanced control systems are covered. Associated topics such as potential applications for the arc saw and other arc saw installations in the world is also touched upon

  9. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2014-12-15

    Highlights: • Adding CeO{sub 2}/ZrO{sub 2} nano-particles to modify the properties of n-MAO coating. • A bio-ceramic n-MAO/EPD composite coating was prepared by two-step methods. • The n-MAO/EPD composite coating with HA has a favorable anti-corrosion effect. - Abstract: A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO{sub 2} and ZrO{sub 2} nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO{sub 2} and ZrO{sub 2} peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  10. Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China); College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-02-15

    Graphical abstract: - Highlights: • A duplex coating was fabricated through combining MAO and baking layer. • A baking coating with a thickness of 92 μm was created on MAO-coated Mg alloy. • The duplex coating noticeably improved the corrosion resistance of Mg alloy. • The related corrosion and wear mechanisms were investigated. - Abstract: A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.

  11. Effect of Na2WO4 in Electrolyte on Microstructure and Tribological Behavior of Micro-arc Oxidation Coatings on Ti2AlNb Alloy

    Directory of Open Access Journals (Sweden)

    LIU Xiao-hui

    2018-02-01

    Full Text Available Micro-arc oxidation (MAO ceramic coatings were prepared on Ti2AlNb alloy in silicate/phosphate electrolytes with different concentrations of Na2WO4. The influence of Na2WO4 on the coating growth process, coating structure and composition was analyzed by SEM, XRD and XPS. The tribological behavior of MAO coatings was evaluated by the ball-disc wear test. The results show that the growth rate of MAO coating in electrolyte without Na2WO4 is only 0.08μm/min, meanwhile, the coating is loose and rough, and "networks" connecting with big pores exist on the coating surface.The main phase compositions of this coating are rutile TiO2, anatase TiO2, Al2O3, and Nb2O5. The addition of Na2WO4 in the electrolyte shortens the time before sparking of Ti2AlNb alloy, increases the growth rate of the coating, improves the uniformity of coating and meanwhile, a small amount of WO3 is introduced in the coating. Besides, MAO coatings formed in the participation of Na2WO4 have better wear resistance. Severe abrasive wear occurs when the test is made on Ti2AlNb alloy with Si3N4, the friction coefficient reaches 0.5-0.7. Both the friction coefficient and wear rate decrease obviously when Ti2AlNb is treated by MAO. The friction coefficient and wear rate of MAO coating prepared in the electrolyte with 4g/L Na2WO4 are 0.24 and 6.2×10-4mm3/(N·m, respectively. Only "fish scales" caused by fatigue wear appears on the coating surface.

  12. Explosive to Effusive Transition in Intermediate Volcanism: An Analysis of Changing Magma System Conditions in Dominica

    Science.gov (United States)

    Bersson, J.; Waters, L. E.; Frey, H. M.; Nicolaysen, K. P.; Manon, M. R. F.

    2017-12-01

    The oscillation between explosive and effusive intermediate (59-62 wt% SiO2) volcanism in the Roseau Valley on Dominica, an island in the Lesser Antilles Arc, provides an opportunity to investigate temporal changes in the magmatic system. Here, we test the relationship between the Roseau ignimbrites (1-65 ka) and the Micotrin dome ( 1.1 ka) which are proposed to originate from the same magmatic system, with a detailed petrologic analysis of phenocrysts to determine commonalities or changes in pre-eruptive conditions (i.e., intensive variables). The ignimbrites are saturated in five phenocrysts (plagioclase + orthopyroxene + clinopyroxene + ilmenite + magnetite ± amphibole ± quartz), and the lava dome contains the same assemblage, but with notable differences: amphiboles are entirely reacted, and quartz occurs in greater abundance. Plagioclase in the ignimbrites ranges in composition from An46-93, and those in the dome range from An46-85. Two Fe-Ti oxide geo-thermometry reveal pre-eruptive temperatures from 730-820°C for three different ignimbrite units, whereas the pre-eruptive temperature for the dome is slightly hotter (850±23°C). Values of fO2 (relative to NNO) derived from Fe-Ti oxide oxygen-barometry range from +0.3 to +1.32 ΔNNO for the ignimbrites, which overlap with those from the dome (+0.5 to +0.9 ΔNNO). Pre-eruptive temperatures, plagioclase compositions, whole rock and glass compositions are incorporated into a plagioclase-liquid hygrometer to determine pre-eruptive melt H2O contents for each sample. H2O contents for ignimbrites range from 7.1-9.3 wt%, and those from the lava dome range from 6.7-7.1 wt%. Application of a H2O solubility model shows that water contents for the Roseau magmas correspond to pressures of 3-5 kbar. The most notable difference between the explosive and effusive magmas is that the lava dome has a higher pre-eruptive temperature than the ignimbrites. However, the results collectively suggest that more recent volcanism in

  13. Volcanism in slab tear faults is larger than in island-arcs and back-arcs.

    Science.gov (United States)

    Cocchi, Luca; Passaro, Salvatore; Tontini, Fabio Caratori; Ventura, Guido

    2017-11-13

    Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.

  14. Interaction of coeval felsic and mafic magmas from the Kanker ...

    Indian Academy of Sciences (India)

    66

    20 crystallization of the latter, results in hybrid magmas under the influence of thermal and. 21 chemical exchange. The mechanical exchange occurs between the coexisting magmas due to. 22 viscosity contrast, if the mafic magma enters slightly later into the magma chamber, when the. 23 felsic magma started to crystallize.

  15. Shallow-level magma-sediment interaction and explosive behaviour at Anak Krakatau (Invited)

    Science.gov (United States)

    Troll, V. R.; Jolis, E. M.; Dahren, B.; Deegan, F. M.; Blythe, L. S.; Harris, C.; Berg, S. E.; Hilton, D. R.; Freda, C.

    2013-12-01

    Crustal contamination of ascending arc magmas is generally thought to be a significant process which occurs at lower- to mid-crustal magma storage levels where magmas inherit their chemical and isotopic character by blending, assimilation and differentiation [1]. Anak Krakatau, like many other volcanoes, erupts shallow-level crustal xenoliths [2], indicating a potential role for upper crustal modification and hence late-stage changes to magma rheology and thus potential eruptive behaviour. Distinguishing deep vs. shallow crustal contamination processes at Krakatau, and elsewhere, is therefore crucial to understand and assess pre-eruptive magmatic conditions and their associated hazard potential. Here we report on a multi-disciplinary approach to unravel the crustal plumbing system of the persistently-active and dominantly explosive Anak Krakatau volcano [2, 3], employing rock-, mineral- and gas-isotope geochemistry and link these results with seismic tomography [4]. We show that pyroxene crystals formed at mid- and lower-crustal levels (9-11 km) and carry almost mantle-like isotope signatures (O, Sr, Nd, He), while feldspar crystals formed dominantly at shallow levels (< 5km) and display unequivocal isotopic evidence for late stage contamination (O, Sr, Nd). This obeservation places a significant element of magma-crust interaction into the uppermost, sediment-rich crust beneath the volcano. Magma storage in the uppermost crust can thus offer a possible explanation for the compositional modifications of primitive Krakatau magmas, and likely provides extra impetus to increased explosivity at Anak Krakatau. [1] Annen, et al., 2006. J. Petrol. 47, 505-539. [2] Gardner, et al., 2013. J. Petrol. 54, 149-182. [3] Dahren, et al., 2012. Contrib. Mineral. Petrol. 163, 631-651. [4] Jaxybulatov, et al., 2011. J. Volcanol. Geoth. Res. 206, 96-105.

  16. Volatile Contents in Mafic Magmas from two Aleutian volcanoes: Augustine and Makushin

    Science.gov (United States)

    Zimmer, M. M.; Plank, T.; Hauri, E. H.; Nye, C.; Faust Larsen, J.; Kelemen, P. B.

    2004-12-01

    There are several competing theories for the origin of tholeiitic (TH) vs. calc-alkaline (CA) fractionation trends in arc magmas. One relates to water (TH-dry magma, CA-wet magma), another to pressure (TH-low pressure crystallization, CA-high pressure), and a third to primary magma composition (TH-low Si/Fe#, CA-hi Si/Fe#) These theories have been difficult to test without quantitative measures of the water contents and pressures of crystallization of arc magmas. We are in the process of studying several Aleutian arc tephra suites (phenocrysts and melt inclusions) with the aim of obtaining volatile element concentrations (by SIMS), major and trace element concentrations and thermobarometric data (by EMP and laser-ICPMS). We report preliminary results on olivine-hosted melt inclusions from Augustine and Makushin volcanoes that support the role of water in calc-alkaline fractionation. Basaltic melt inclusions from Augustine, a low-K2O, calc-alkaline volcano, are hosted in Fo80-82 olivine. The inclusions yield high water contents, up to 5 wt%, and contain 60-90 ppm CO2, 3000-4500 ppm S, and 3000-6000 ppm Cl. Inclusions record vapor-saturation pressures near 2 kbar. Cl/K2O ratios in Augustine inclusions (ave. 1.9) are among the highest documented in an arc setting, and likely record a Cl- and H2O- rich fluid from the subducting plate. High water contents in Augustine primary melts may have contributed to the strong calc-alkaline trend observed at this volcano. Basaltic melt inclusions from Pakushin, a medium-K2O, tholeiitic cone on the flanks of Makushin volcano, are hosted in Fo80-86 olivine. These inclusions have low water contents (pressures (high sulfur (2000-4000 ppm) and Cl (>2000 ppm) in Pakushin melt inclusions, however, indicate that degassing was minimal. The low water contents and low vapor saturation pressures recorded in Pakushin melt inclusions are consistent with development of its tholeiitic trend, but we cannot distinguish whether the low water

  17. Magma Mixing: Magmatic Enclaves in Morne Micotrin, Dominica

    Science.gov (United States)

    Hickernell, S.; Frey, H. M.; Manon, M. R. F.; Waters, L. E.

    2017-12-01

    Magmatic enclaves in volcanic rocks provide direct evidence of magma mingling/mixing within a magma reservoir and may reinvigorate the system and trigger eruption, as documented at the Soufriere Hills in Montserrat. Lava domes on the neighboring island of Dominica also contain multiple enclave populations and may be evidence for similar magma chamber processes. The central dome of Micotrin is at the head of the Roseau Valley, which was filled with 3 km3 of pyroclastic deposits from eruptions spanning 65 - 25 ka. There appear to be two distinct types of enclaves in the crystal-rich Micotrin andesites (60 wt% SiO2), fine-grained and coarse-grained. Fine-grained mafic enclaves (52 wt% SiO2) vary in size from 1 to 15 cm in diameter, whereas the coarse-grained enclaves are generally larger and range from 3-20 cm. Fine-grained enclaves are saturated in plag (35%) + opx (35%) + cpx (20%) + oxides (10%). Average pyroxenes are 0.01 to 0.02 cm in size, whereas plagioclase averages 0.05 cm and up to 0.1 cm. The texture of the fine-grained enclaves is cumulate-like, devoid of microlites and matrix glass. Coarse-grained enclaves lack cpx and have different modal abundances and textures: plag (75%) + opx (10%) + oxides (5%) + plag microlites (10%). Plagioclase are 0.1 cm in size and orthopyroxenes average 0.05 cm. The coarse-grained enclaves are highly vesicular, a notable difference from the host as well as the fine-grained enclaves. The boundaries of both the fine- and coarse-grained enclaves are quite sharp and distinct and there do not appear to be enclave minerals disaggregated in the host rock. Temperatures were determined by two oxides. The fine-grained enclaves had two populations of magnetite, yielding 847 + 21° and 920 + 17°C. The coarse-grained enclave was 890 + 42 °C, but the oxides were extensively exsolved. Plagioclase composition in both coarse and fine-grained samples was comparable, ranging from An50 to An80. Despite compositional similarity the textures of

  18. Crystal reaming during the assembly, maturation, and waning of an eleven-million-year crustal magma cycle: thermobarometry of the Aucanquilcha Volcanic Cluster

    Science.gov (United States)

    Walker, Barry A.; Klemetti, Erik W.; Grunder, Anita L.; Dilles, John H.; Tepley, Frank J.; Giles, Denise

    2013-04-01

    Phenocryst assemblages of lavas from the long-lived Aucanquilcha Volcanic Cluster (AVC) have been probed to assess pressure and temperature conditions of pre-eruptive arc magmas. Andesite to dacite lavas of the AVC erupted throughout an 11-million-year, arc magmatic cycle in the central Andes in northern Chile. Phases targeted for thermobarometry include amphibole, plagioclase, pyroxenes, and Fe-Ti oxides. Overall, crystallization is documented over 1-7.5 kbar (~25 km) of pressure and ~680-1,110 °C of temperature. Pressure estimates range from ~1 to 5 kbar for amphiboles and from ~3 to 7.5 kbar for pyroxenes. Pyroxene temperatures are tightly clustered from ~1,000-1,100 °C, Fe-Ti oxide temperatures range from ~750-1,000 °C, and amphibole temperatures range from ~780-1,050 °C. Although slightly higher, these temperatures correspond well with previously published zircon temperatures ranging from ~670-900 °C. Two different Fe-Ti oxide thermometers (Andersen and Lindsley 1985; Ghiorso and Evans 2008) are compared and agree well. We also compare amphibole and amphibole-plagioclase thermobarometers (Ridolfi et al. 2010; Holland and Blundy 1994; Anderson and Smith 1995), the solutions from which do not agree well. In samples where we employ multiple thermometers, pyroxene temperature estimates are always highest, zircon temperature estimates are lowest, and Fe-Ti oxide and amphibole temperature estimates fall in between. Maximum Fe-Ti oxide and zircon temperatures are observed during the middle stage of AVC activity (~5-3 Ma), a time associated with increased eruption rates. Amphibole temperatures during this time are relatively restricted (~850-1,000 °C). The crystal record presented here offers a time-transgressive view of an evolving, multi-tiered subvolcanic reservoir. Some crystals in AVC lavas are likely to be true phenocrysts, but the diversity of crystallization temperatures and pressures recorded by phases in individual AVC lavas suggests erupting magma

  19. High-Mg basalts as a Signal of Magma System Replenishment at Lopevi Island, Vanuatu

    Science.gov (United States)

    Stewart, R. B.; Smith, I. E.; Turner, M. B.; Cronin, S. J.

    2007-05-01

    Lopevi is is a basalt to basaltic andesite island stratovolcano in central Vanuatu and is part of a long-lived, mature Island Arc chain. Central Vanuatu is tectonically influenced by the subduction of the D'Entrecasteaux zone. Primitive rock types that have been identified from the arc include picrites, ankaramites and high MgO basalts. High MgO rocks are generally considered to be a relatively rare component of arc-type magma suites but as detailed sequence sampling of individual volcanoes occurs, they have been identified more often. Here we report on the occurrence of high-Mg basalts in a sequence of lavas erupted in the last 100 years from Lopevi volcano. Activity at Lopevi is characteristically intermittent with eruptive sequences occurring over a c. 6 year period, separated by longer periods of repose. A major eruptive episode in 1939 caused evacuation of the island and the next eruptive episode in the 1960's also led to evacuation. The 1960's cycle of activity ended in 1982. The most recent phase of activity commenced in 1998 with a return to eruption of more siliceous, high alumina basaltic andesite. Geochemical data show that the 1960's lavas were different from those erupted earlier and later. They are olivine basalts with up to 9 wt percent MgO, 70 ppm Ni and 300 ppm Cr; Al2O3 content is about 12 wt percent. The 2003 lavas and pre-1960's lavas, in contrast, are basaltic andesites with c. 4 wt percent MgO, less than 25 ppm Ni, less than 100 ppm Cr and c. 20 wt percent Al2O3. The 1960's Lopevi sequence of eruptions represents an injection of a more primitive, high MgO magma at the end of a 21 year quiescent period after the major eruptions of 1939. Injection of small batches of more primitive magmas over decadal time periods at Lopevi marks the initiation of a new magmatic cycle. The occurrence of high MgO magmas as part of a cycle that includes typically low MgO arc type rocks demonstrates a consanguineous relationship and shows that high MgO arc type

  20. SaOS-2 cell response to macro-porous boron-incorporated TiO{sub 2} coating prepared by micro-arc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qianli [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Elkhooly, Tarek A. [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Ceramics, Inorganic Chemical Industries Division, National Research Centre, Dokki, 12622 Cairo (Egypt); Liu, Xujie [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhang, Ranran; Yang, Xing; Shen, Zhijian [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO{sub 2} coating (B-TiO{sub 2} coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO{sub 2} coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO{sub 2} coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO{sub 2} coating. The spreading of SaOS-2 cells on B-TiO{sub 2} coating was faster than that on TiO{sub 2} coating. The proliferation rate of SaOS-2 cells cultured on B-TiO{sub 2} decreased after 5 days of culture compared to that on TiO{sub 2} coating. SaOS-2 cells cultured on B-TiO{sub 2} coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO{sub 2} coating. The present findings suggest that B-TiO{sub 2} coating is a promising candidate surface for orthopedic implants. - Highlights: • SaOS-2 cell response to pure TiO{sub 2} and B-TiO{sub 2} coatings was investigated. • Initial cell spreading on B-TiO{sub 2} coating was accelerated compared to that on TiO{sub 2} coating. • Cell proliferation on B-TiO{sub 2} coating was inhibited compared to that on TiO{sub 2} coating. • Cell differentiation on B-TiO{sub 2} coating was enhanced compared to that on TiO{sub 2} coating.

  1. Experimentally Studied Thermal Piston-head State of the Internal-Combustion Engine with a Thermal Layer Formed by Micro-Arc Oxidation Method

    Directory of Open Access Journals (Sweden)

    N. Yu. Dudareva

    2015-01-01

    Full Text Available The paper presents results of experimental study to show the efficiency of reducing thermal tension of internal combustion engine (ICE pistons through forming a thermal barrier coating on the piston-head. During the engine operation the piston is under the most thermal stress. High temperatures in the combustion chamber may lead to the piston-head burnout and destruction and engine failure.Micro-arc oxidation (MAO method was selected as the technology to create a thermal barrier coating. MAO technology allows us to form the ceramic coating with a thickness of 400μm on the surface of aluminum alloy, which have high heat resistance, and have good adhesion to the substrate even under thermal cycling stresses.Deliverables of MAO method used to protect pistons described in the scientific literature are insufficient, as they are either calculated or experimentally obtained at the special plants (units, which do not reproduce piston operation in a real engine. This work aims to fill this gap. The aim of the work is an experimental study of the thermal protective ability of MAO-layer formed on the piston-head with simulation of thermal processes of the real engine.The tests were performed on a specially designed and manufactured stand free of motor, which reproduces operation conditions maximum close to those of the real engine. The piston is heated by a fire source - gas burner with isobutene balloon, cooling is carried out by the water circulation system through the water-cooling jacket.Tests have been conducted to compare the thermal state of the regular engine piston without thermal protection and the piston with a heat layer formed on the piston-head by MAO method. The study findings show that the thermal protective MAO-layer with thickness of 100μm allows us to reduce thermal tension of piston on average by 8,5 %. Thus at high temperatures there is the most pronounced effect that is important for the uprated engines.The obtained findings can

  2. [Effects of different concentrations of MgSiF(6) as electrolyte for micro-arc oxidation on the bond strength between titanium and porcelain].

    Science.gov (United States)

    Yuan, M J; Zhang, S J; Liu, J; Tan, F

    2018-02-09

    Objective: To investigate the effects of different concentrations of MgSiF(6) as electrolyte on the bond strength between titanium and porcelain after micro-arc oxidation (MAO) treatment and screen the suitable concentration of MgSiF(6) that can improve the bond strength between titanium and porcelain. Methods: Four different concentrations of MgSiF(6) (10, 20, 30, 40 g/L) were chosen as MAO reaction solutions. Sandblasting treatment was selected as a control group. After porcelain was fused to each specimen, titanium-porcelain bond strengths were evaluated by the three-point bending test according to ISO 9693. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were adopted to evaluate the morphologies and elemental compositions of both the MAO coatings and the interfaces of the titanium-porcelain restoration. Results: The surface of titanium specimen in the control group was sharp and rough, while specimens in both 10 g/L group and 20 g/L group were porous and homogeneous. However, the pores found on the specimens in the latter group were larger in diameter (approximately 1.0-2.0 μm) than those on the former one (0.2-0.5 μm). The bond strengths of the control group and the experimental groups (10, 20, 30, 40 g/L MgSiF(6)) were (27.08±3.16), (38.18±2.65), (44.75±2.21), (36.44±2.04), (31.04±2.59) MPa, respectively. All the experimental groups showed higher bond strengths than the control group did ( Pporcelain were tight and compact in the 20 g/L group, while different amounts of pores and cracks were visible in the other groups. Additionally, after the three-point bending test, few residual porcelains could be observed on the surfaces of specimens in the control group. Conclusions: MAO treatment with 20 g/L MgSiF(6) on titanium can improve bonding strength between titanium and porcelain.

  3. Depth of origin of magma in eruptions.

    Science.gov (United States)

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  4. Volcanic emission of radionuclides and magma dynamics

    International Nuclear Information System (INIS)

    Lambert, G.; Le Cloarec, M.F.; Ardouin, B.; Le Roulley, J.C.

    1985-01-01

    210 Pb, 210 Bi and 210 Po, the last decay products of the 238 U series, are highly enriched in volcanic plumes, relative to the magma composition. Moreover this enrichment varies over time and from volcano to volcano. A model is proposed to describe 8 years of measurements of Mt. Etna gaseous emissions. The lead and bismuth coefficients of partition between gaseous and condensated phases in the magma are determined by comparing their concentrations in lava flows and condensated volatiles. In the case of volatile radionuclides, an escaping time is calculated which appears to be related to the volcanic activity. Finally, it is shown that that magma which is degassing can already be partly degassed; it should be considered as a mixture of a few to 50% of deep non-degassed magma with a well degassed superficial magma cell. (orig.)

  5. Impacts of continental arcs on global carbon cycling and climate

    Science.gov (United States)

    Lee, C. T.; Jiang, H.; Carter, L.; Dasgupta, R.; Cao, W.; Lackey, J. S.; Lenardic, A.; Barnes, J.; McKenzie, R.

    2017-12-01

    On myr timescales, climatic variability is tied to variations in atmospheric CO2, which in turn is driven by geologic sources of CO2 and modulated by the efficiency of chemical weathering and carbonate precipitation (sinks). Long-term variability in CO2 has largely been attributed to changes in mid-ocean ridge inputs or the efficiency of global weathering. For example, the Cretaceous greenhouse is thought to be related to enhanced oceanic crust production, while the late Cenozoic icehouse is attributed to enhanced chemical weathering associated with the Himalayan orogeny. Here, we show that continental arcs may play a more important role in controlling climate, both in terms of sources and sinks. Continental arcs differ from island arcs and mid-ocean ridges in that the continental plate through which arc magmas pass may contain large amounts of sedimentary carbonate, accumulated over the history of the continent. Interaction of arc magmas with crustal carbonates via assimilation, reaction or heating can significantly add to the mantle-sourced CO2 flux. Detrital zircons and global mapping of basement rocks shows that the length of continental arcs in the Cretaceous was more than twice that in the mid-Cenozoic; maps also show many of these arcs intersected crustal carbonates. The increased length of continental arc magmatism coincided with increased oceanic spreading rates, placing convergent margins into compression, which favors continental arcs. Around 50 Ma, however, nearly all the continental arcs in Eurasia and North America terminated as India collided with Eurasia and the western Pacific rolled back, initiating the Marianas-Tonga-Kermadec intra-oceanic subduction complex and possibly leading to a decrease in global CO2 production. Meanwhile, extinct continental arcs continued to erode, resulting in regionally enhanced chemical weathering unsupported by magmatic fluxes of CO2. Continental arcs, during their magmatic lifetimes, are thus a source of CO2, driving

  6. Shear thinning behaviors in magmas

    Science.gov (United States)

    Vetere, F. P.; Cassetta, M.; Perugini, D.

    2017-12-01

    Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour

  7. Stability of oxidized iron species and the redox budget of slab-derived fluids

    Science.gov (United States)

    Sanchez-Valle, C.; Hin, R.; Testemale, D.; Borca, C.; Grolimund, D.

    2017-12-01

    The high oxidation state of subduction zone magmas compared to magmas from other locations might result from the influx of oxidized fluid from the subducted oceanic plate into the mantle wedge. However, the nature of the chemical agent(s) and the mechanism responsible for the transfer of the oxidized signature from the slab to the mantle wedge remains poorly understood. In this contribution, we will discuss the oxidizing capacity of slab-derived fluids in the light of experimental results of the solubility and speciation of iron in high-pressure fluids that mimic the slab flux. Iron-bearing mineral assemblages were equilibrated with chlorinated aqueous fluids and hydrous granitic melts at different oxygen fugacities relevant for the present day crust/mantle. The concentration of iron and the distribution of stability of oxidized iron species were monitored up to 2.5 GPa and 800 °C using a combination of diamond trap experiments and XANES measurements in diamond anvil cells. The results illustrate the role of coordination chemistry involving halogen and polymerized species in the stability of oxidized iron in the fluids. The concentration of Fe3+ in the fluids progressively decreases as temperature increases, regardless of fluid composition and pressure. This implies that the fluid capacity to transport Fe3+ at high temperature may be limited, even at the redox conditions relevant for the present day crust and mantle. With the new experimental results, we place constrains on the oxidizing capacity of Fe-bearing metasomatic fluids and discuss the transfer of the oxidizing signature and the conditions for the genesis of oxidized arc magmas.

  8. Magma evolution at Copahue volcano (Chile/Argentina border): insights from melt inclusions

    Science.gov (United States)

    Cannatelli, C.; Aracena, C.; Leisen, M.; Moncada, D.; Roulleau, E.; Vinet, N.; Petrelli, M.; Paolillo, A.; Barra, F.; Morata, D.

    2016-12-01

    Copahue volcano is an active stratovolcano in the Andean Southern Volcanic Zone (SVZ), straddling at the border between Central Chile and Argentina. The volcano's eruptive style during its history has changed from mainly effusive in the Pleistocene to explosive in the Holocene. The prehistoric eruptions can be divided into pre-glacial (PG), syn-glacial (SG) and post-glacial (PM) stages, with products ranging from basaltic andesites to andesites. In order to investigate the evolution of the magma source and volatiles through time, we have focused our study on the eruptive products from the SG to the 2014 eruption (SUM2014). Sampled rocks are glomero-porphyritic, with a paragenetic mineral sequence of feldspars, ortho- and clinopyroxene, and olivine in order of abundance. All samples present a variable number of vesicles, with SUM2014 samples containing the biggest amount. Feldspar composition varies from Na-rich (andesine) in SG to Ca-rich (labradorite) in SUM2014. Two pyroxene types are present in SG and PM samples (augite and enstatite), while SUM2014 presents augite, pigeonite and enstatite. Thermobarometric estimation, based on mineral chemistry, show a bimodal distribution for SG and SUM2014 (P=10-12 kbars and 5-8 kbars) and only one interval for PM (P=7-8 kbars). Melt Inclusions Assemblages (MIAs) are found in all mineral phases, mostly re-crystallized, with one or more bubbles and daughter oxide minerals. Compositions vary from trachy-andesitic to dacitic for SG, andesitic to trachydacitic for PM, and basaltic andesitic to trachydacitic for SUM2014. Major elements systematics show the existence of a bimodal distribution of pyroxene and feldspar hosted-MIA in SUM2014, which together with the co-presence of pigeonite (low-Ca pyroxene) and augite and the bimodal distribution of P, can be interpreted as evidence of mixing of two types of magmas, evolving at different depths. Trace elements systematics for MIA in SG, PM and SUM2014 show a negative anomaly for Nb

  9. Erosion properties of unipolar arcs

    International Nuclear Information System (INIS)

    Chekalin, Eh.K.

    1982-01-01

    Processes modelling the formation of unipolar arcs on the elements of the first wall in limiters of the vacuum chamber and on active elements of tokamak divertor, are experimentally investigated. Erosion, processes that take place at two types of non-stationary cathode spots are considered. Experimental data prove the possibility of reducing erosion intensity by coating the surface of electrodes by oxide films, reduction of the temperature of electrode and discharge current

  10. Empirical constraints on partitioning of platinum group elements between Cr-spinel and primitive terrestrial magmas

    Science.gov (United States)

    Park, Jung-Woo; Kamenetsky, Vadim; Campbell, Ian; Park, Gyuseung; Hanski, Eero; Pushkarev, Evgeny

    2017-11-01

    Recent experimental studies and in situ LA-ICP-MS analysis on natural Cr-spinel have shown that Rh and IPGEs (Ir-group platinum group elements: Ru, Ir, Os) are enriched in the lattice of Cr-spinel. However, the factors controlling the partitioning behaviour of these elements are not well constrained. In this study, we report the Rh, IPGE, and trace element contents in primitive Cr-spinel, measured by LA-ICP-MS, from nine volcanic suites covering various tectonic settings including island arc picrites, boninites, large igneous province picrites and mid-ocean ridge basalts. The aim is to understand the factors controlling the enrichment of Rh and IPGEs in Cr-spinels, to estimate empirical partition coefficients between Cr-spinel and silicate melts, and to investigate the role of Cr-spinel fractional crystallization on the PGE geochemistry of primitive magmas during the early stages of fractional crystallization. There are systematic differences in trace elements, Rh and IPGEs in Cr-spinels from arc-related magmas (Arc Group Cr-spinel), intraplate magmas (Intraplate Group Cr-spinel), and mid-ocean ridge magmas (MORB Group Cr-spinel). Arc Group Cr-spinels are systematically enriched in Sc, Co and Mn and depleted in Ni compared to the MORB Group Cr-spinels. Intraplate Group Cr-spinels are distinguished from the Arc Group Cr-spinels by their high Ni contents. Both the Arc and Intraplate Group Cr-spinels have total Rh and IPGE contents of 22-689 ppb whereas the MORB Group Cr-spinels are depleted in Rh and IPGE (total time-resolved spectra of LA-ICP-MS data for Cr-spinels mostly show constant count rates for trace element and Rh and IPGEs, suggesting homogeneous distribution of these elements in Cr-spinels. The PGE spikes observed in several Cr-spinels were interpreted to be PGE-bearing mineral inclusions and excluded from calculating the PGE contents of the Cr-spinels. On primitive mantle normalized diagrams the Arc Group Cr-spinels are characterized by a fractionated

  11. Numerical modeling of bubble dynamics in magmas

    Science.gov (United States)

    Huber, Christian; Su, Yanqing; Parmigiani, Andrea

    2014-05-01

    Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.

  12. Evidence for seismogenic fracture of silicic magma.

    Science.gov (United States)

    Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R

    2008-05-22

    It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting.

  13. Examining shear processes during magma ascent

    Science.gov (United States)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  14. Using rocks to reveal the inner workings of magma chambers below volcanoes in Alaska’s National Parks

    Science.gov (United States)

    Coombs, Michelle L.; Bacon, Charles R.

    2012-01-01

    Alaska is one of the most vigorously volcanic regions on the planet, and Alaska’s national parks are home to many of the state’s most active volcanoes. These pose both local and more distant hazards in the form of lava and pyroclastic flows, lahars (mudflows), ash clouds, and ash fall. Alaska’s volcanoes lie along the arc of the Aleutian-Alaskan subduction zone, caused as the oceanic Pacific plate moves northward and dips below the North American plate. These volcanoes form as water-rich fluid from the down-going Pacific plate is released, lowering the melting temperature of rock in the overlying mantle and enabling it to partially melt. The melted rock (magma) migrates upward, collecting at the base of the approximately 25 mile (40 km) thick crust, occasionally ascending into the shallow crust, and sometimes erupting at the earth’s surface.During volcanic unrest, scientists use geophysical signals to remotely visualize volcanic processes, such as movement of magma in the upper crust. In addition, erupted volcanic rocks, which are quenched samples of magmas, can tell us about subsurface magma characteris-tics, history, and the processes that drive eruptions. The chemical compositions of and the minerals present in the erupted magmas can reveal conditions under which these magmas were stored in crustal “chambers”. Studies of the products of recent eruptions of Novarupta (1912), Aniakchak (1931), Trident (1953-74), and Redoubt (2009) volcanoes reveal the depths and temperatures of magma storage, and tell of complex interactions between magmas of different compositions. One goal of volcanology is to determine the processes that drive or trigger eruptions. Information recorded in the rocks tells us about these processes. Here, we demonstrate how geologists gain these insights through case studies from four recent eruptions of volcanoes in Alaska national parks.

  15. The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes

    Science.gov (United States)

    Turner, Stephen J.; Langmuir, Charles H.

    2015-07-01

    Petrogenetic models for convergent margins should be consistent with the global systematics of convergent margin volcanic compositions. A newly developed tool for compiling and screening data from the GEOROC database was used to generate a global dataset of whole rock chemical analyses from arc front stratovolcano samples. Data from 227 volcanoes within 31 volcanic arc segments were first averaged by volcano and then by arc to explore global systematics. Three different methods of data normalization produce consistent results that persist across a wide range of Mg# [Mg# =Mg / (Mg +Fe) ]. Remarkably coherent systematics are present among major and trace element concentrations and ratios, with the exception of three arcs influenced by mantle plumes and Peru/N. Chile, which is built on exceptionally thick crust. Chemical parameters also correlate with the thickness of the overlying arc crust. In addition to previously established correlations of Na6.0 with Ca6.0 and crustal thickness, correlations are observed among major elements, trace elements, and trace element ratios (e.g. La/Yb, Dy/Yb, Zr/Sm, Zr/Ti). Positive correlations include "fluid mobile," "high field strength," and "large ion lithophile" element groups, with concentrations that vary by a factor of five in all groups. Incompatible element enrichments also correlate well with crustal thickness, with the greatest enrichment found at arcs with the thickest crust. Intra-crustal processes, however, do not reproduce the global variations. High pressure fractionation produces intermediate magmas enriched in aluminum, but such magmas are rare. Furthermore, differences among magma compositions at various volcanic arcs persist from primitive to evolved compositions, which is inconsistent with the possibility that global variations are produced by crystal fractionation at any pressure. Linear relationships among elements appear to be consistent with mixing between depleted primary magma and an enriched contaminant

  16. Behavior of volatiles in arc volcanism : geochemical and petrologic evidence from active volcanoes in Indonesia

    NARCIS (Netherlands)

    Hoog, J.C.M. de

    2001-01-01

    Large amounts of material are recycled along subduction zones by uprising magmas, of which volcanoes are the surface expression. This thesis focuses on the behavior of volatiles elements (S, Cl, H) during these recycling processes. The study area is the Indonesian arc system, which

  17. Comments on 'Generation of Deccan Trap magmas'

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging)1461 1996 Oct 15 13:05:22

    Comments on 'Generation of Deccan Trap magmas' by Gautam Sen ... Department of Geology & Geophysics, School of Ocean & Earth Science & Technology (SOEST), University of .... Mahoney J J, Sheth H C, Chandrasekharan D and Peng Z.

  18. The Boycott effect in magma chambers

    Science.gov (United States)

    Blanchette, F.; Peacock, T.; Bush, J. W. M.

    2004-03-01

    We investigate the plausibility of the stratified Boycott effect as a source of layering in magma chambers. Crystal settling within the magma chamber will generate buoyant fluid near the sloping sidewalls whose vertical ascent may be limited by the ambient stratification associated with vertical gradients in SiO2. The resulting flow may be marked by a layered structure, each layer taking the form of a convection cell spanning the lateral extent of the magma chamber. Using parameters relevant to magma chambers, we estimate that such convection cells would be established over a timescale of a month and have a depth on the order of 4m, which is roughly consistent with field observations of strata within solidified chambers.

  19. Magma Chambers, Thermal Energy, and the Unsuccessful Search for a Magma Chamber Thermostat

    Science.gov (United States)

    Glazner, A. F.

    2015-12-01

    Although the traditional concept that plutons are the frozen corpses of huge, highly liquid magma chambers ("big red blobs") is losing favor, the related notion that magma bodies can spend long periods of time (~106years) in a mushy, highly crystalline state is widely accepted. However, analysis of the thermal balance of magmatic systems indicates that it is difficult to maintain a significant portion in a simmering, mushy state, whether or not the system is eutectic-like. Magma bodies cool primarily by loss of heat to the Earth's surface. The balance between cooling via energy loss to the surface and heating via magma accretion can be denoted as M = ρLa/q, where ρ is magma density, L is latent heat of crystallization, a is the vertical rate of magma accretion, and q is surface heat flux. If M>1, then magma accretion outpaces cooling and a magma chamber forms. For reasonable values of ρ, L, and q, the rate of accretion amust be > ~15 mm/yr to form a persistent volume above the solidus. This rate is extremely high, an order of magnitude faster than estimated pluton-filling rates, and would produce a body 10 km thick in 700 ka, an order of magnitude faster than geochronology indicates. Regardless of the rate of magma supply, the proportion of crystals in the system must vary dramatically with depth at any given time owing to transfer of heat. Mechanical stirring (e.g., by convection) could serve to homogenize crystal content in a magma body, but this is unachievable in crystal-rich, locked-up magma. Without convection the lower part of the magma body becomes much hotter than the top—a process familiar to anyone who has scorched a pot of oatmeal. Thermal models that succeed in producing persistent, large bodies of magma rely on scenarios that are unrealistic (e.g., omitting heat loss to the planet's surface), self-fulfilling prophecies (e.g., setting unnaturally high temperatures as fixed boundary conditions), or physically unreasonable (e.g., magma is intruded

  20. Magmatically Greedy Reararc Volcanoes of the N. Tofua Segment of the Tonga Arc

    Science.gov (United States)

    Rubin, K. H.; Embley, R. W.; Arculus, R. J.; Lupton, J. E.

    2013-12-01

    Volcanism along the northernmost Tofua Arc is enigmatic because edifices of the arc's volcanic front are mostly, magmatically relatively anemic, despite the very high convergence rate of the Pacific Plate with this section of Tonga Arc. However, just westward of the arc front, in terrain generally thought of as part of the adjacent NE Lau Backarc Basin, lie a series of very active volcanoes and volcanic features, including the large submarine caldera Niuatahi (aka volcano 'O'), a large composite dacite lava flow terrain not obviously associated with any particular volcanic edifice, and the Mata volcano group, a series of 9 small elongate volcanoes in an extensional basin at the extreme NE corner of the Lau Basin. These three volcanic terrains do not sit on arc-perpendicular cross chains. Collectively, these volcanic features appear to be receiving a large proportion of the magma flux from the sub-Tonga/Lau mantle wedge, in effect 'stealing' this magma flux from the arc front. A second occurrence of such magma 'capture' from the arc front occurs in an area just to the south, on southernmost portion of the Fonualei Spreading Center. Erupted compositions at these 'magmatically greedy' volcanoes are consistent with high slab-derived fluid input into the wedge (particularly trace element abundances and volatile contents, e.g., see Lupton abstract this session). It is unclear how long-lived a feature this is, but the very presence of such hyperactive and areally-dispersed volcanism behind the arc front implies these volcanoes are not in fact part of any focused spreading/rifting in the Lau Backarc Basin, and should be thought of as 'reararc volcanoes'. Possible tectonic factors contributing to this unusually productive reararc environment are the high rate of convergence, the cold slab, the highly disorganized extension in the adjacent backarc, and the tear in the subducting plate just north of the Tofua Arc.

  1. Silicic magma generation at Askja volcano, Iceland

    Science.gov (United States)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  2. The 2006-2009 activity of the Ubinas volcano (Peru): Petrology of the 2006 eruptive products and insights into genesis of andesite magmas, magma recharge and plumbing system

    Science.gov (United States)

    Rivera, Marco; Thouret, Jean-Claude; Samaniego, Pablo; Le Pennec, Jean-Luc

    2014-01-01

    Following a fumarolic episode that started six months earlier, the most recent eruptive activity of the Ubinas volcano (south Peru) began on 27 March 2006, intensified between April and October 2006 and slowly declined until December 2009. The chronology of the explosive episode and the extent and composition of the erupted material are documented with an emphasis on ballistic ejecta. A petrological study of the juvenile products allows us to infer the magmatic processes related to the 2006-2009 eruptions of the andesitic Ubinas volcano. The juvenile magma erupted during the 2006 activity shows a homogeneous bulk-rock andesitic composition (56.7-57.6 wt.% SiO2), which belongs to a medium- to high-K calc-alkaline series. The mineral assemblage of the ballistic blocks and tephra consists of plagioclase > two-pyroxenes > Fe-Ti oxide and rare olivine and amphibole set in a groundmass of the same minerals with a dacitic composition (66-67 wt.% SiO2). Thermo-barometric data, based on two-pyroxene and amphibole stability, records a magma temperature of 998 ± 14 °C and a pressure of 476 ± 36 MPa. Widespread mineralogical and textural features point to a disequilibrium process in the erupted andesite magma. These features include inversely zoned "sieve textures" in plagioclase, inversely zoned clinopyroxene, and olivine crystals with reaction and thin overgrowth rims. They indicate that the pre-eruptive magmatic processes were dominated by recharge of a hotter mafic magma into a shallow reservoir, where magma mingling occurred and triggered the eruption. Prior to 2006, a probable recharge of a mafic magma produced strong convection and partial homogenization in the reservoir, as well as a pressure increase and higher magma ascent rate after four years of fumarolic activity. Mafic magmas do not prevail in the Ubinas pre-historical lavas and tephras. However, mafic andesites have been erupted during historical times (e.g. AD 1667 and 2006-2009 vulcanian eruptions). Hence

  3. How does the architecture of a fault system controls magma upward migration through the crust?

    Science.gov (United States)

    Iturrieta, P. C.; Cembrano, J. M.; Stanton-Yonge, A.; Hurtado, D.

    2017-12-01

    The orientation and relative disposition of adjacent faults locally disrupt the regional stress field, thus enhancing magma flow through previous or newly created favorable conduits. Moreover, the brittle-plastic transition (BPT), due to its stronger rheology, governs the average state of stress of shallower portions of the fault system. Furthermore, the BPT may coincide with the location of transient magma reservoirs, from which dikes can propagate upwards into the upper crust, shaping the inner structure of the volcanic arc. In this work, we examine the stress distribution in strike-slip duplexes with variable geometry, along with the critical fluid overpressure ratio (CFOP), which is the minimum value required for individual faults to fracture in tension. We also determine the stress state disruption of the fault system when a dike is emplaced, to answer open questions such as: what is the nature of favorable pathways for magma to migrate? what is the architecture influence on the feedback between fault system kinematics and magma injection? To this end, we present a 3D coupled hydro-mechanical finite element model of the continental lithosphere, where faults are represented as continuum volumes with an elastic-plastic rheology. Magma flow upon fracturing is modeled through non-linear Stoke's flow, coupling solid and fluid equilibrium. A non-linear sensitivity analysis is performed in function of tectonic, rheology and geometry inputs, to assess which are the first-order factors that governs the nature of dike emplacement. Results show that the CFOP is heterogeneously distributed in the fault system, and within individual fault segments. Minimum values are displayed near fault intersections, where local kinematics superimpose on regional tectonic loading. Furthermore, when magma is transported through a fault segment, the CFOP is now minimized in faults with non-favorable orientations. This suggests that these faults act as transient pathways for magma to

  4. The role of magmas in the formation of hydrothermal ore deposits

    Science.gov (United States)

    Hedenquist, Jeffrey W.; Lowenstern, Jacob B.

    1994-01-01

    Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.

  5. Monitoring ARC services with GangliARC

    International Nuclear Information System (INIS)

    Cameron, D; Karpenko, D

    2012-01-01

    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  6. Short lived radionuclides in gases and magmas: contribution to the study of degassing and of the dynamics of magmatic reservoirs

    International Nuclear Information System (INIS)

    Gauthier, P.J.

    1998-01-01

    Crystallization and magma degassing at Stromboli (Italy) and Merapi (Indonesia) volcanoes are studied through 230 Th- 226 Ra- 210 Pb and 210 Pb- 210 Bi- 210 Po disequilibria in lavas and gases. An attempt to date crystallization by internal isochrones in ( 226 Ra)/Ba - ( 230 Th)/Ba and ( 210 Pb)/Pb - ( 226 Ra)/Pb diagrams reveals the complex evolution of these arc magmas. Several models (instantaneous but non simultaneous crystallization of the different mineral phases; continuous crystallization) are proposed to explain the lack of simple isochrones. The influence of other magmatic processes (assimilation, magma reinjection, degassing...) is discussed. The role played by radon loss from magmas (controlled by the ex solution of major gas species) on 210 Pb- 226 Ra disequilibria in lavas is examined through a model of dynamic degassing. At Stromboli, the magma reservoir has reached a steady-state and is rapidly renewed, thus explaining (Pb/Ra) ratios close to 1. At Merapi, the evolution of the reservoir is controlled by a succession of low dynamics degassing periods ( 2 analyses in the volcanic plume. The contribution of Etna as a source of atmospheric pollution is estimated during periods of contrasted volcanic activity and is compared to the volcanic emissions worldwide. (author)

  7. Radiographic visualization of magma dynamics in an erupting volcano.

    Science.gov (United States)

    Tanaka, Hiroyuki K M; Kusagaya, Taro; Shinohara, Hiroshi

    2014-03-10

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures.

  8. Mafic microgranular enclave swarms in the Chenar granitoid stock, NW of Kerman, Iran: evidence for magma mingling

    Science.gov (United States)

    Arvin, M.; Dargahi, S.; Babaei, A. A.

    2004-10-01

    Mafic microgranular enclaves (MME) are common in the Early to Middle Miocene Chenar granitoid stock, northwest of Kerman, which is a part of Central Iranian Eocene volcanic belt. They occur individually and in homogeneous or heterogeneous swarms. The MME form a number of two-dimensional structural arrangements, such as dykes, small rafts, vortices, folded lens-shapes and late swarms. The enclaves are elongated, rounded to non-elongated and subrounded in shape and often show some size-sorting parallel to direction of flow. Variation in the elongation of enclaves could reflect variations in the viscosity of the enclave, the time available for enclave deformation and differential strain during flow of the host granitoid magma. The most effective mechanism in the formation of enclave swarms in the Chenar granitoid stock was velocity gradient-related convection currents in the granitoid magma chamber. Gravitational sorting and the break-up of heterogeneous dykes also form MME swarms. The MME (mainly diorite to diorite gabbro) have igneous mineralogy and texture, and are marked by sharp contacts next to their host granitoid rocks. The contact is often marked by a chilled margin with no sign of solid state deformation. Evidence of disequilibrium is manifested in feldspars by oscillatory zoning, resorbed rims, mantling and punctuated growth, together with overgrowth of clinopyroxene/amphibole on quartz crystals, the acicular habit of apatites and the development of Fe-Ti oxides along clinopyroxene cleavages. These observations suggest that the MMEs are derived from a hybrid-magma formed as a result of the intrusion of a mafic magma into the base of a felsic magma chamber. The density contrast between hybrid-magma and the overlying felsic magma was reduced by the release of dissolved fluids and the ascent of exsolved gas bubbles from the mafic magma into the hybrid zone. Further convection in the magma chamber dispersed the hybridized magma as globules in the upper parts of

  9. Rapid Crystallization of the Bishop Magma

    Science.gov (United States)

    Gualda, G. A.; Anderson, A. T.; Sutton, S. R.

    2007-12-01

    Substantial effort has been made to understand the longevity of rhyolitic magmas, and particular attention has been paid to the systems in the Long Valley area (California). Recent geochronological data suggest discrete magma bodies that existed for hundreds of thousands of years. Zircon crystallization ages for the Bishop Tuff span 100-200 ka, and were interpreted to reflect slow crystallization of a liquid-rich magma. Here we use the diffusional relaxation of Ti zoning in quartz to investigate the longevity of the Bishop magma. We have used such an approach to show the short timescales of crystallization of Ti-rich rims on quartz from early- erupted Bishop Tuff. We have now recognized Ti-rich cores in quartz that can be used to derive the timescales of their crystallization. We studied four samples of the early-erupted Bishop. Hand-picked crystals were mounted on glass slides and polished. Cathodoluminescence (CL) images were obtained using the electron microprobe at the University of Chicago. Ti zoning was documented using the GeoSoilEnviroCARS x-ray microprobe at the Advanced Photon Source (Argonne National Lab). Quartz crystals in all 4 samples include up to 3 Ti-bearing zones: a central core (50-100 μm in diameter, ca. 50 ppm Ti), a volumetrically predominant interior (~40 ppm Ti), and in some crystals a 50-100 μm thick rim (50 ppm Ti). Maximum estimates of core residence times were calculated using a 1D diffusion model, as the time needed to smooth an infinitely steep profile to fit the observed profile. Surprisingly, even for the largest crystals studied - ca. 2 mm in diameter - core residence times are less than 1 ka. Calculated growth rates imply that even cm-sized crystals crystallized in less than 10 ka. Crystal size distribution data show that crystals larger than 3 mm are exceedingly rare, such that the important inference is that the bulk of the crystallization of the early-erupted Bishop magma occurred in only a few thousand years. This timescale

  10. Deformation patterns, magma supply, and magma storage at Karymsky Volcanic Center, Kamchatka, Russia, 2000-2010, revealed by InSAR

    Science.gov (United States)

    Ji, Lingyun; Izbekov, Pavel; Senyukov, Sergey; Lu, Zhong

    2018-02-01

    Under a complex geological region influenced by the subduction of the Pacific plate, Kamchatka Peninsula is one of the most active volcanic arcs in the Pacific Rim. Due to logistical difficulty in instrumentation, shallow magma plumbing systems beneath some of the Kamchatkan volcanoes are poorly understood. InSAR offers a safe and quick method for monitoring volcanic deformation with a high spatial resolution. In this study, a group of satellite radar interferograms that span the time interval from 2000 to 2010 shows eruptive and non-eruptive deformation at Karymsky Volcanic Center (KVC), Kamchatka, Russia. All the interferograms provide details of the activity around the KVC during 2000-2010, as follows: (1) from 2000 to 2004, the Karymsky-AN (Akademia Nauk) area deflated and the MS (Maly Semyachik) area inflated, (2) from 2004 to 2006, the Karymsky-AN area deflated with ongoing eruption, while the MS area subsided without eruption, (3) from 2006 to 2008, as with 2000-2004, the Karymsky-AN area deflated and the MS area inflated, (4) from 2008 to 2010, the Karymsky-AN area inflated up to 3 cm, and the MS area subsided. Point source models suggest that two magma reservoirs provide a good fit to the observed deformation. One source is located beneath the area between Karymsky and AN at a depth of approximately 7.0 km, and the other one is situated beneath MS at a depth of around 5.8 km. Synchronous deformation patterns suggest that two magma systems are fed from the same deep magma source and connected by a fracture zone. The InSAR results are consistent with GPS ground deformation measurements, seismic data, and petrological constraints.

  11. Arc generation from sputtering plasma-dielectric inclusion interactions

    International Nuclear Information System (INIS)

    Wickersham, C.E. Jr.; Poole, J.E.; Fan, J.S.

    2002-01-01

    Arcing during sputter deposition and etching is a significant cause of particle defect generation during device fabrication. In this article we report on the effect of aluminum oxide inclusion size, shape, and orientation on the propensity for arcing during sputtering of aluminum targets. The size, shape, and orientation of a dielectric inclusion plays a major role in determining the propensity for arcing and macroparticle emission. In previous studies we found that there is a critical inclusion size required for arcing to occur. In this article we used high-speed videos, electric arc detection, and measurements of particle defect density on wafers to study the effect of Al 2 O 3 inclusion size, shape, and orientation on arc rate, intensity, and silicon wafer particle defect density. We found that the cross-sectional area of the inclusion exposed to the sputtering plasma is the critical parameter that determines the arc rate and rate of macroparticle emission. Analysis of the arc rate, particle defect density, and the intensity of the optical emission from the arcing plasma indicates that the critical aluminum oxide inclusion area for arcing is 0.22±0.1 mm2 when the sputtering plasma sheath dark-space λ d , is 0.51 mm. Inclusions with areas greater than this critical value readily induce arcing and macroparticle ejection during sputtering. Inclusions below this critical size do not cause arcing or macroparticle ejection. When the inclusion major axis is longer than 2λ d and lies perpendicular to the sputter erosion track tangent, the arcing activity increases significantly over the case where the inclusion major axis lies parallel to the erosion track tangent

  12. Morphological changes in bone tissue around titanium implants subjected to micro-arc oxidation in alkaline electrolytes with and without the use of «CollapAn-gel»

    Directory of Open Access Journals (Sweden)

    Kalmin O.V.

    2013-12-01

    Full Text Available The purpose of the article is to conduct comparative study of the features of reparative processes in the bone during installation of titanium implants with sandblasted exposed microarc subsequent oxidation in alkaline electrolyte using osteoinductive formulation without the use of this preparation. Material and Methods. Histologically examined tissue samples from 24 adult rabbits in the region of titanium implant with osteoinductive formulation and without after 7, 14, 28, 56 and 112 days postoperatively. Results. It has been revealed that the installation of titanium implants subjected to micro-arc oxidation in alkaline electrolytes without the use of osteoinductive preparation leads to a moderate inflammatory response and the processes of bone formation take more time. When using identical implants with osteoinductive preparation «CollapAn-gel» led to a less expressed inflammatory response and a more active process of bone formation. Conclusion. The use of titanium implants subjected to sandblasting followed microarc oxidation in alkaline electrolytes is optimally combined with osteoinductive agents as it provides the best clinical results and highlights shorter time of bone regeneration.

  13. Electric arc hydrogen heaters

    International Nuclear Information System (INIS)

    Zasypin, I.M.

    2000-01-01

    The experimental data on the electric arc burning in hydrogen are presented. Empirical and semiempirical dependences for calculating the arc characteristics are derived. An engineering method of calculating plasma torches for hydrogen heating is proposed. A model of interaction of a hydrogen arc with a gas flow is outlined. The characteristics of plasma torches for heating hydrogen and hydrogen-bearing gases are described. (author)

  14. Intra-Arc extension in Central America: Links between plate motions, tectonics, volcanism, and geochemistry

    Science.gov (United States)

    Phipps Morgan, Jason; Ranero, Cesar; Vannucchi, Paola

    2010-05-01

    This study revisits the kinematics and tectonics of Central America subduction, synthesizing observations of marine bathymetry, high-resolution land topography, current plate motions, and the recent seismotectonic and magmatic history in this region. The inferred tectonic history implies that the Guatemala-El Salvador and Nicaraguan segments of this volcanic arc have been a region of significant arc tectonic extension; extension arising from the interplay between subduction roll-back of the Cocos Plate and the ~10-15 mm/yr slower westward drift of the Caribbean plate relative to the North American Plate. The ages of belts of magmatic rocks paralleling both sides of the current Nicaraguan arc are consistent with long-term arc-normal extension in Nicaragua at the rate of ~5-10 mm/yr, in agreement with rates predicted by plate kinematics. Significant arc-normal extension can ‘hide' a very large intrusive arc-magma flux; we suggest that Nicaragua is, in fact, the most magmatically robust section of the Central American arc, and that the volume of intrusive volcanism here has been previously greatly underestimated. Yet, this flux is hidden by the persistent extension and sediment infill of the rifting basin in which the current arc sits. Observed geochemical differences between the Nicaraguan arc and its neighbors which suggest that Nicaragua has a higher rate of arc-magmatism are consistent with this interpretation. Smaller-amplitude, but similar systematic geochemical correlations between arc-chemistry and arc-extension in Guatemala show the same pattern as the even larger variations between the Nicaragua arc and its neighbors. We are also exploring the potential implications of intra-arc extension for deformation processes along the subducting plate boundary and within the forearc ‘microplate'.

  15. Evaluating Complex Magma Mixing via Polytopic Vector Analysis (PVA in the Papagayo Tuff, Northern Costa Rica: Processes that Form Continental Crust

    Directory of Open Access Journals (Sweden)

    Guillermo E. Alvarado

    2013-08-01

    Full Text Available Over the last forty years, research has revealed the importance of magma mixing as a trigger for volcanic eruptions, as well as its role in creating the diversity of magma compositions in arcs. Sensitive isotopic and microchemical techniques can reveal subtle evidence of magma mixing in igneous rocks, but more robust statistical techniques for bulk chemical data can help evaluate complex mixing relationships. Polytopic vector analysis (PVA is a multivariate technique that can be used to evaluate suites of samples that are produced by mixing of two or more magma batches. The Papagayo Tuff of the Miocene-Pleistocene Bagaces Formation in northern Costa Rica is associated with a segment of the Central American Volcanic Arc. While this segment of the arc is located on oceanic plateau, recent (<8 Ma ignimbrites bear the chemical signatures of upper continental crust, marking the transition from oceanic to continental crust. The Papagayo Tuff contains banded pumice fragments consistent with one or more episodes of mixing/mingling to produce a single volcanic deposit. The PVA solution for the sample set is consistent with observations from bulk chemistry, microchemistry and petrographic data from the rocks. However, without PVA, the unequivocal identification of the three end-member solution would not have been possible.

  16. Magma wagging and whirling in volcanic conduits

    Science.gov (United States)

    Liao, Yang; Bercovici, David; Jellinek, Mark

    2018-02-01

    Seismic tremor characterized by 0.5-7 Hz ground oscillations commonly occur before and during eruptions at silicic volcanoes with widely ranging vent geometries and edifice structures. The ubiquitous characteristics of this tremor imply that its causes are potentially common to silicic volcanoes. Here we revisit and extend to three dimensions the magma-wagging model for tremor (Jellinek and Bercovici, 2011; Bercovici et al., 2013), wherein a stiff magma column rising in a vertical conduit oscillates against a surrounding foamy annulus of bubbly magma, giving rise to tremor. While prior studies were restricted to two-dimensional lateral oscillations, here we explore three-dimensional motion and additional modes of oscillations. In the absence of viscous damping, the magma column undergoes 'whirling' motion: the center of each horizontal section of the column traces an elliptical trajectory. In the presence of viscous effect we identify new 'coiling' and 'uncoiling' column bending shapes with relatively higher and comparable rates of dissipation to the original two-dimensional magma wagging model. We also calculate the seismic P-wave response of the crustal material around the volcanic conduit to the new whirling motions and propose seismic diagnostics for different wagging patterns using the time-lag between seismic stations. We test our model by analyzing pre-eruptive seismic data from the 2009 eruption of Redoubt Volcano. In addition to suggesting that the occurrence of elliptical whirling motion more than 1 week before the eruption, our analysis of seismic time-lags also implies that the 2009 eruption was accompanied by qualitative changes in the magma wagging behavior including fluctuations in eccentricity and a reversal in the direction of elliptical whirling motion when the eruption was immediately impending.

  17. Emissions of chromium (VI) from arc welding.

    Science.gov (United States)

    Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris

    2007-02-01

    The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used.

  18. Artificial magma and applications of the blasting technique

    Energy Technology Data Exchange (ETDEWEB)

    Ichioka, K [Chugoku Kaki KK, Japan

    1974-01-01

    Artifical magma is discussed. Solid magma is a high temperature source and fluid magma is also a heat carrier. Iron ores are examples of solid magma, silica-borate is an example of a hydrophobic heat carrier magma assuming a liquid phase at 600/sup 0/C, and S, Ag, Pb, etc. are also examples of heat carrier magma. In addition to these examples, basic salts such as NaNO/sub 3/, KNO/sub 3/, NaCl, CaCl, KCl, BaCl, and Na/sub 4/B/sub 4/O/sub 7/ can be used as artifical magma. These are artifical magmas or heat mediums capable of capturing geothermal heat when circulated inside volcanoes. The blasting technique's applications in geothermal wells are also discussed. The technique can be used to expand a well's diameter, repair the well bottom, regenerate old wells, clean wells, or cut steel pipe. Two figures and one table are provided.

  19. The Origin of Silicic Arc Crust - Insights from the Northern Pacific Volcanic Arcs through Space and Time

    Science.gov (United States)

    Straub, S. M.; Kelemen, P. B.

    2016-12-01

    The remarkable compositional similarities of andesitic crust at modern convergent margins and the continental crust has long evoked the hypothesis of similar origins. Key to understanding either genesis is understanding the mode of silica enrichment. Silicic crust cannot be directly extracted from the upper mantle. Hence, in modern arcs, numerous studies - observant of the pervasive and irrefutable evidence of melt mixing - proposed that arc andesites formed by mixing of mantle-derived basaltic melts and fusible silicic material from the overlying crust. Mass balance requires the amount of silicic crust in such hybrid andesites to be on the order to tens of percent, implying that their composition to be perceptibly influenced by the various crustal basements. In order to test this hypothesis, major and trace element compositions of mafic and silicic arc magmas with arc-typical low Ce/PbMexico) were combined with Pb isotope ratios. Pb isotope ratios are considered highly sensitive to crustal contamination, and hence should reflect the variable composition of the oceanic and continental basement on which these arcs are constructed. In particular, in thick-crust continental arcs where the basement is isotopically different from the mantle and crustal assimilation thought to be most prevalent, silicic magmas must be expected to be distinct from those of the associated mafic melts. However, in a given arc, the Pb isotope ratios are constant with increasing melt silica regardless of the nature of the basement. This observation argues against a melt origin of silicic melts from the crustal basement and suggest them to be controlled by the same slab flux as their co-eval mafic counterparts. This inference is validated by the spatial and temporal pattern of arc Pb isotope ratios along the Northern Pacific margins and throughout the 50 million years of Cenozoic evolution of the Izu Bonin Mariana arc/trench system that are can be related to with systematic, `real

  20. Kinematic variables and water transport control the formation and location of arc volcanoes.

    Science.gov (United States)

    Grove, T L; Till, C B; Lev, E; Chatterjee, N; Médard, E

    2009-06-04

    The processes that give rise to arc magmas at convergent plate margins have long been a subject of scientific research and debate. A consensus has developed that the mantle wedge overlying the subducting slab and fluids and/or melts from the subducting slab itself are involved in the melting process. However, the role of kinematic variables such as slab dip and convergence rate in the formation of arc magmas is still unclear. The depth to the top of the subducting slab beneath volcanic arcs, usually approximately 110 +/- 20 km, was previously thought to be constant among arcs. Recent studies revealed that the depth of intermediate-depth earthquakes underneath volcanic arcs, presumably marking the slab-wedge interface, varies systematically between approximately 60 and 173 km and correlates with slab dip and convergence rate. Water-rich magmas (over 4-6 wt% H(2)O) are found in subduction zones with very different subduction parameters, including those with a shallow-dipping slab (north Japan), or steeply dipping slab (Marianas). Here we propose a simple model to address how kinematic parameters of plate subduction relate to the location of mantle melting at subduction zones. We demonstrate that the location of arc volcanoes is controlled by a combination of conditions: melting in the wedge is induced at the overlap of regions in the wedge that are hotter than the melting curve (solidus) of vapour-saturated peridotite and regions where hydrous minerals both in the wedge and in the subducting slab break down. These two limits for melt generation, when combined with the kinematic parameters of slab dip and convergence rate, provide independent constraints on the thermal structure of the wedge and accurately predict the location of mantle wedge melting and the position of arc volcanoes.

  1. Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada

    Science.gov (United States)

    Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.

    1989-01-01

    by first mixing primitive arc magma with enriched basaltic liquid derived either from garnet peridotite or metasomatized mantle, followed by fractionation of olivine, pyroxenes, plagioclase and spinel. ?? 1989.

  2. Numerical modeling of magma-tectonic interactions at Pacaya Volcano, Guatemala

    Science.gov (United States)

    Wauthier, C.

    2017-12-01

    Pacaya Volcano is composed of several volcanic cones located along the southern rim of the Amatitlan caldera, approximately 25 km south of Guatemala City. It is a basaltic volcano located in the Central American Volcanic Arc. The shallow magma plumbing system at Pacaya likely includes at least three magma reservoirs: a very shallow ( 0.2-0.4 km depth) reservoir located below and possibly within the MacKenney cone, a 4 km deep reservoir located northwest of the summit, and a shallow dike-like conduit below the summit which fed the recent flank eruptions. Pacaya's western flank is slipping in a stick-slip fashion, and the instability seems associated with larger volume eruptions. Flank instability phases indeed occurred in 2010 and 2014 in coincidence with major intrusive and eruptive phases, suggesting a positive feedback between the flank motion and major intrusions. Simple analytical models are insufficient to fit the geodetic observations and model the flank processes and their mechanical interactions with the magmatic system. Here, numerical modeling approaches are used to characterize the 2014 flank deformation episode and magma-tectonic interactions.

  3. Loki Patera: A Magma Sea Story

    Science.gov (United States)

    Veeder, G. J.; Matson, D. L.; Rathbun, A. G.

    2005-01-01

    We consider Loki Patera on Io as the surface expression of a large uniform body of magma. Our model of the Loki magma sea is some 200 km across; larger than a lake but smaller than an ocean. The depth of the magma sea is unknown, but assumed to be deep enough that bottom effects can be ignored. Edge effects at the shore line can be ignored to first order for most of the interior area. In particular, we take the dark material within Loki Patera as a thin solidified lava crust whose hydrostatic shape follows Io's isostatic surface (approx. 1815 km radius of curvature). The dark surface of Loki appears to be very smooth on both regional and local (subresolution) scales. The thermal contrast between the low and high albedo areas within Loki is consistent with the observed global correlation. The composition of the model magma sea is basaltic and saturated with dissolved SO2 at depth. Its average, almost isothermal, temperature is at the liquidus for basalt. Additional information is included in the original extended abstract.

  4. Probing magma reservoirs to improve volcano forecasts

    Science.gov (United States)

    Lowenstern, Jacob B.; Sisson, Thomas W.; Hurwitz, Shaul

    2017-01-01

    When it comes to forecasting eruptions, volcano observatories rely mostly on real-time signals from earthquakes, ground deformation, and gas discharge, combined with probabilistic assessments based on past behavior [Sparks and Cashman, 2017]. There is comparatively less reliance on geophysical and petrological understanding of subsurface magma reservoirs.

  5. Iron Redox Systematics of Martian Magmas

    Science.gov (United States)

    Righter, K.; Danielson, L.; Martin, A.; Pando, K.; Sutton, S.; Newville, M.

    2011-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite [1]. Morris et al. [1] propose that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks [2,3]. Magnetite stability in terrestrial magmas is well understood, as are the stability of FeO and Fe2O3 in terrestrial magmas [4,5]. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas we have undertaken an experimental study with two emphases. First we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition. Second, we determine the FeO and Fe2O3 contents of the same shergottite bulk composition at 1 bar and variable fO2 at 1250 C, and at variable pressure. These two goals will help define not only magnetite stability, but pyroxene-melt equilibria that are also dependent upon fO2.

  6. Unusual Iron Redox Systematics of Martian Magmas

    Science.gov (United States)

    Danielson, L.; Righter, K.; Pando, K.; Morris, R. V.; Graff, T.; Agresti, D.; Martin, A.; Sutton, S.; Newville, M.; Lanzirotti, A.

    2012-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite. Morris et al. proposed that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks. Magnetite stability in terrestrial magmas is well understood, as are the stabilities of FeO and Fe2O3 in terrestrial magmas. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas, we have undertaken an experimental study with two emphases. First, we determine the FeO and Fe2O3 contents of super- and sub-liquidus glasses from a shergottite bulk composition at 1 bar to 4 GPa, and variable fO2. Second, we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition.

  7. Seismically active column and volcanic plumbing system beneath the island arc of the Izu-Bonin subduction zone

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš; Vaněk, Jiří; Hanuš, Václav

    2009-01-01

    Roč. 179, č. 3 (2009), s. 1301-1312 ISSN 0956-540X Institutional research plan: CEZ:AV0Z30120515 Keywords : seismicity and tectonics * volcano seismology * subduction zone processes * volcanic arc processes * magma migration and fragmentation * Pacific Ocean Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.435, year: 2009

  8. Diversity and Petrogenesis of Bonin Rear-Arc

    Science.gov (United States)

    Heywood, L. J.; DeBari, S. M.; Schindlbeck, J. C.; Escobar-Burciaga, R. D.; Gill, J.

    2016-12-01

    The Izu Bonin subduction zone has a history of abundant rhyolite production that is relevant to the development of intermediate to silicic middle crust. This study presents major and trace elemental compositions (via electron microprobe and LA-ICP-MS) of unaltered volcanic glass and phenocrysts from select medium- to high-K tephra intervals from IODP Site 1437 (Expedition 350, Izu Bonin Rear Arc). These data provide a time-resolved record of regional explosive magmatism ( 4.4Ma to present). Tephra from Site 1437 is basaltic to rhyolitic glass with accompanying phenocrysts, including hornblende. Glass compositions form a medium-K magmatic series with LREE enrichment (LaN/YbN = 2.5-6) whose trace element ratios and isotopic compositions are distinct from magmas with similar SiO2 contents in the main Izu Bonin volcanic front. Other workers have shown progressive enrichment in K and other trace element ratios moving from volcanic front westwards through the extensional region to the western seamounts in the rear arc. The <4.4 Ma rear-arc rhyolites from Site 1437 show pronounced negative Eu anomalies, high LaN/SmN (2-3.5), Ba/La <25 and Th of 1.5-4 ppm. These rhyolites show the highest variability for a given SiO2 content among all rear-arc magmas (rhyolites have 1.5-3.5 wt% K2O, Zr/Y of 1-8, LaN of 5-9 ppm) consistent with variability in literature reports of other rhyolite samples dredged from surrounding seamounts. Rhyolites have been dredged from several nearby seamounts with other high-K rhyolites dredged as close as nearby Meireki Seamount ( 3.8 Ma) and further afield in the Genroku seamount chain ( 1.88 Ma), which we compare to Site 1437 rhyolites. An extremely low-K rhyolite sill (13.6 Ma) was drilled lower in the section at Site U1437, suggesting that the mechanism for producing rhyolites in the Western Seamounts region changed over time. Rhyolites are either produced by differentiation of mafic magmas, by melting of pre-existing arc crust (as hypothesized in

  9. Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea

    Science.gov (United States)

    Gouiza, M.; Paton, D.

    2017-12-01

    Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.

  10. Monitoring the Sumatra volcanic arc with InSAR

    Science.gov (United States)

    Chaussard, E.; Hong, S.; Amelung, F.

    2009-12-01

    The Sumatra volcanic arc is the result of the subduction of the Indo-Australian plate under the Sunda plate. The arc consists of 35 known volcanic centers, subaerials on the west coast of the Sumatra and Andaman Islands and submarines between these islands. Six active centers are known in the Sumatra volcanic arc. Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Here we present a satellite-based Interferometric synthetic aperture radar (InSAR) survey of the Sumatra volcanic arc using ALOS data. Spanning the years 2007 to beginning of 2009, our survey reveals the background level of activity of the 35 volcanoes. We processed data from 40 tracks (24 in descending orbit and 16 in ascending orbit) to cover the whole Sumatra arc. In the first results five of these six known active centers show no sign of activity: Dempo, Kaba, Marapi, Talang and Peuet. The remaining active volcano, Mount Kerinci, has an ambiguous signal. We used pair-wise logic and InSAR time series of the available ALOS data to determine if the observed InSAR signal is caused by ground deformation or by atmospheric delays.

  11. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites.

    Science.gov (United States)

    Reubi, Olivier; Blundy, Jon

    2009-10-29

    Andesites represent a large proportion of the magmas erupted at continental arc volcanoes and are regarded as a major component in the formation of continental crust. Andesite petrogenesis is therefore fundamental in terms of both volcanic hazard and differentiation of the Earth. Andesites typically contain a significant proportion of crystals showing disequilibrium petrographic characteristics indicative of mixing or mingling between silicic and mafic magmas, which fuels a long-standing debate regarding the significance of these processes in andesite petrogenesis and ultimately questions the abundance of true liquids with andesitic composition. Central to this debate is the distinction between liquids (or melts) and magmas, mixtures of liquids with crystals, which may or may not be co-genetic. With this distinction comes the realization that bulk-rock chemical analyses of petrologically complex andesites can lead to a blurred picture of the fundamental processes behind arc magmatism. Here we present an alternative view of andesite petrogenesis, based on a review of quenched glassy melt inclusions trapped in phenocrysts, whole-rock chemistry, and high-pressure and high-temperature experiments. We argue that true liquids of intermediate composition (59 to 66 wt% SiO(2)) are far less common in the sub-volcanic reservoirs of arc volcanoes than is suggested by the abundance of erupted magma within this compositional range. Effective mingling within upper crustal magmatic reservoirs obscures a compositional bimodality of melts ascending from the lower crust, and masks the fundamental role of silicic melts (>/=66 wt% SiO(2)) beneath intermediate arc volcanoes. This alternative view resolves several puzzling aspects of arc volcanism and provides important clues to the integration of plutonic and volcanic records.

  12. The mechanics of shallow magma reservoir outgassing

    Science.gov (United States)

    Parmigiani, A.; Degruyter, W.; Leclaire, S.; Huber, C.; Bachmann, O.

    2017-08-01

    Magma degassing fundamentally controls the Earth's volatile cycles. The large amount of gas expelled into the atmosphere during volcanic eruptions (i.e., volcanic outgassing) is the most obvious display of magmatic volatile release. However, owing to the large intrusive:extrusive ratio, and considering the paucity of volatiles left in intrusive rocks after final solidification, volcanic outgassing likely constitutes only a small fraction of the overall mass of magmatic volatiles released to the Earth's surface. Therefore, as most magmas stall on their way to the surface, outgassing of uneruptible, crystal-rich magma storage regions will play a dominant role in closing the balance of volatile element cycling between the mantle and the surface. We use a numerical approach to study the migration of a magmatic volatile phase (MVP) in crystal-rich magma bodies ("mush zones") at the pore scale. Our results suggest that buoyancy-driven outgassing is efficient over crystal volume fractions between 0.4 and 0.7 (for mm-sized crystals). We parameterize our pore-scale results for MVP migration in a thermomechanical magma reservoir model to study outgassing under dynamical conditions where cooling controls the evolution of the proportion of crystal, gas, and melt phases and to investigate the role of the reservoir size and the temperature-dependent viscoelastic response of the crust on outgassing efficiency. We find that buoyancy-driven outgassing allows for a maximum of 40-50% volatiles to leave the reservoir over the 0.4-0.7 crystal volume fractions, implying that a significant amount of outgassing must occur at high crystal content (>0.7) through veining and/or capillary fracturing.

  13. Io: Loki Patera as a Magma Sea

    Science.gov (United States)

    Matson, Dennis L.; Davies, Ashley Gerard; Veeder, Glenn J.; Rathbun, Julie A.; Johnson, Torrence V.; Castillo, Julie C.

    2006-01-01

    We develop a physical model for Loki Patera as a magma sea. We calculate the total volume of magma moving through the Loki Patera volcanic system every resurfacing cycle (approx.540 days) and the resulting variation in thermal emission. The rate of magma solidification at times reaches 3 x 10(exp 6) kg per second, with a total solidified volume averaging 100 cu km per year. A simulation of gas physical chemistry evolution yields the crust porosity profile and the timescale when it will become dense enough to founder in a manner consistent with observations. The Loki Patera surface temperature distribution shows that different areas are at different life cycle stages. On a regional scale, however, there can be coordinated activity, indicated by the wave of thermal change which progresses from Loki Patera's SW quadrant toward the NE at a rate of approx.1 km per day. Using the observed surface temperature distribution, we test several mechanisms for resurfacing Loki Patera, finding that resurfacing with lava flows is not realistic. Only the crustal foundering process is consistent with observations. These tests also discovered that sinking crust has a 'heat deficit' which promotes the solidification of additional magma onto the sinking plate ("bulking up"). In the limiting case, the mass of sinking material can increase to a mass of approx.3 times that of the foundering plate. With all this solid matter sinking, there is a compensating upward motion in the liquid magma. This can be in excess of 2 m per year. In this manner, solid-liquid convection is occurring in the sea.

  14. Deep magma transport at Kilauea volcano, Hawaii

    Science.gov (United States)

    Wright, T.L.; Klein, F.W.

    2006-01-01

    The shallow part of Kilauea's magma system is conceptually well-understood. Long-period and short-period (brittle-failure) earthquake swarms outline a near-vertical magma transport path beneath Kilauea's summit to 20 km depth. A gravity high centered above the magma transport path demonstrates that Kilauea's shallow magma system, established early in the volcano's history, has remained fixed in place. Low seismicity at 4-7 km outlines a storage region from which magma is supplied for eruptions and intrusions. Brittle-failure earthquake swarms shallower than 5 km beneath the rift zones accompany dike emplacement. Sparse earthquakes extend to a decollement at 10-12 km along which the south flank of Kilauea is sliding seaward. This zone below 5 km can sustain aseismic magma transport, consistent with recent tomographic studies. Long-period earthquake clusters deeper than 40 km occur parallel to and offshore of Kilauea's south coast, defining the deepest seismic response to magma transport from the Hawaiian hot spot. A path connecting the shallow and deep long-period earthquakes is defined by mainshock-aftershock locations of brittle-failure earthquakes unique to Kilauea whose hypocenters are deeper than 25 km with magnitudes from 4.4 to 5.2. Separation of deep and shallow long-period clusters occurs as the shallow plumbing moves with the volcanic edifice, while the deep plumbing is centered over the hotspot. Recent GPS data agrees with the volcano-propagation vector from Kauai to Maui, suggesting that Pacific plate motion, azimuth 293.5?? and rate of 7.4 cm/yr, has been constant over Kilauea's lifetime. However, volcano propagation on the island of Hawaii, azimuth 325??, rate 13 cm/yr, requires southwesterly migration of the locus of melting within the broad hotspot. Deep, long-period earthquakes lie west of the extrapolated position of Kilauea backward in time along a plate-motion vector, requiring southwesterly migration of Kilauea's magma source. Assumed ages of 0

  15. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  16. Tokamak ARC damage

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  17. Metal halide arc discharge lamp having short arc length

    Science.gov (United States)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  18. Magma Dynamics in Dome-Building Volcanoes

    Science.gov (United States)

    Kendrick, J. E.; Lavallée, Y.; Hornby, A. J.; Schaefer, L. N.; Oommen, T.; Di Toro, G.; Hirose, T.

    2014-12-01

    The frequent and, as yet, unpredictable transition from effusive to explosive volcanic behaviour is common to active composite volcanoes, yet our understanding of the processes which control this evolution is poor. The rheology of magma, dictated by its composition, porosity and crystal content, is integral to eruption behaviour and during ascent magma behaves in an increasingly rock-like manner. This behaviour, on short timescales in the upper conduit, provides exceptionally dynamic conditions that favour strain localisation and failure. Seismicity released by this process can be mimicked by damage accumulation that releases acoustic signals on the laboratory scale, showing that the failure of magma is intrinsically strain-rate dependent. This character aids the development of shear zones in the conduit, which commonly fracture seismogenically, producing fault surfaces that control the last hundreds of meters of ascent by frictional slip. High-velocity rotary shear (HVR) experiments demonstrate that at ambient temperatures, gouge behaves according to Byerlee's rule at low slip velocities. At rock-rock interfaces, mechanical work induces comminution of asperities and heating which, if sufficient, may induce melting and formation of pseudotachylyte. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The bulk composition, mineralogy and glass content of the magma all influence frictional behaviour, which supersedes buoyancy as the controlling factor in magma ascent. In the conduit of dome-building volcanoes, the fracture and slip processes are further complicated: slip-rate along the conduit margin fluctuates. The shear-thinning frictional melt yields a tendency for extremely unstable slip thanks to its pivotal position with regard to the glass transition. This thermo-kinetic transition bestows the viscoelastic melt with the ability to either flow or

  19. Long term storage of explosively erupted magma at Nevado de Toluca volcano, Mexico

    Science.gov (United States)

    Arce, J. L.; Gardner, J.; Macias, J. L.

    2007-12-01

    Dacitic magmas production is common in subduction-related volcanoes, occurring in those with a long period of activity as a result of the magmatic evolution. However, in this evolution many factors (i.e. crystal fractionation, assimilation, magma mixing) can interact to produce dacites. Nevado de Toluca volcano (4,680 masl; 19°09'N; 99°45'W) Central Mexico has recorded a long period of time producing dacites explosively, at least during 42 ka of activity, involving several km3 of magma, with two important Plinian-type eruptions occurred at ~21.7 ka (Lower Toluca Pumice) and ~10.5 ka (Upper Toluca Pumice). Questions like, what was the mechanism responsible to produce voluminous dacitic magma and how the volatiles and pressure changed in the Nevado de Toluca system, remain without answers. Dacites from the Lower Toluca Pumice (LTP) contain plagioclase, amphibole, iron-titanium oxides, and minor resorbed biotite, set in a glassy-vesicular matrix and the Upper Toluca Pumice (UTP) dacites contain the same mineral phases plus orthopyroxene. Ilmenite- ulvospinel geothermometry yielded a temperature of ~860°C for the LTP dacite, a little hotter than the UTP (~ 840°C). Based on hydrothermal experiments data, amphibole is stable above 100 MPa under 900°C, while plagioclase crystallizes up to 250-100 MPa at temperatures of 850-900°C. Pyroxene occurs only at pressures of 200-100 MPa with its respective temperatures of 825-900°C. Water contents in the LTP magma (2-3.5 wt %) are similar to that calculated for the UTP magma (1.3-3.6 wt %). So, there are only small changes in temperature and pressure from ~21.7 ka to 10.5 ka. It is noteworthy that orthopyroxene is absent in the LTP, however reaction-rimmed biotite (probably xenocrystic) is commonly observed in all dacites. Hence, almost all dacitic magmas seem to be stored at relatively similar pressures, water contents, and temperatures. All of these data could suggest repetitive basic magma injections producing the

  20. Nature of the magma storage system beneath the Damavand volcano (N. Iran): An integrated study

    Science.gov (United States)

    Eskandari, Amir; Amini, Sadraddin; De Rosa, Rosanna; Donato, Paola

    2018-02-01

    Damavand intraplate stratovolcano constructed upon a moderately thick crust (58-67 km) over the last 2 Ma. The erupted products are dominantly trachyandesite-trachyte (TT) lavas and pyroclasts, with minor mafic magmas including tephrite-basanite-trachybasalt and alkali olivine basalts emplaced as cinder cones at the base of the stratovolcano. The TT products are characterized by a mineral assemblage of clinopyroxene (diopside-augite), orthopyroxene (clinoenstatite), feldspar (An2-58, Ab6-69, Or2-56), high Ti phlogopite, F-apatite, Fesbnd Ti oxides, and minor amounts of olivine (Fo73-80), amphibole and zircon, whereas olivine (Fo78-88), high Mg# (80-89) diopside, feldspar, apatite and Fesbnd Ti oxide occur in the mafic magmas. The presence of hydrous and anhydrous minerals, normal zonings, mafic cumulates, and the composition of magmatic inclusions in the TT products suggest evolutionary processes in polybaric conditions. In the same way, disequilibrium textures - including orthopyroxene mantled with clinopyroxene, reaction rim of phlogopite and amphibole, the coexistence of olivine and orthopyroxene, reverse, oscillatory and complex zonings of pyroxene and feldspar crystals - suggest magmatic evolutions in open systems with a varying temperature, oxygen fugacity, water as well as pressure and, to a lesser extent, melt chemistry. Mineral assemblages are used to model the physicochemical conditions and assess default parameters for the thermodynamic simulation of crystallization using MELTS software to track the P-T-H2O-ƒO2 evolution of the magma plumbing system. Thermobarometry and MELTS models estimated the initial nucleation depth at 16-17 kb (56-60 km) for olivine (Fo89) and high Al diopside crystals occurring in the mafic primary magma; it then stopped and underwent fractionation between 8 and 10 kb (28-35 km), corresponding with Moho depth, and continued to differentiate in the lower crust, in agreement with the geophysical models. The mafic rocks were formed

  1. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  2. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  3. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  4. Filtered cathodic arc source

    International Nuclear Information System (INIS)

    Falabella, S.; Sanders, D.M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45 degree to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures

  5. Single-Arc IMRT?

    International Nuclear Information System (INIS)

    Bortfeld, Thomas; Webb, Steve

    2009-01-01

    The idea of delivering intensity-modulated radiation therapy (IMRT) with a multileaf collimator in a continuous dynamic mode during a single rotation of the gantry has recently gained momentum both in research and industry. In this note we investigate the potential of this Single-Arc IMRT technique at a conceptual level. We consider the original theoretical example case from Brahme et al that got the field of IMRT started. Using analytical methods, we derive deliverable intensity 'landscapes' for Single-Arc as well as standard IMRT and Tomotherapy. We find that Tomotherapy provides the greatest flexibility in shaping intensity landscapes and that it allows one to deliver IMRT in a way that comes close to the ideal case in the transverse plane. Single-Arc and standard IMRT make compromises in different areas. Only in relatively simple cases that do not require substantial intensity modulation will Single-Arc be dosimetrically comparable to Tomotherapy. Compared with standard IMRT, Single-Arc could be dosimetrically superior in certain cases if one is willing to accept the spreading of low dose values over large volumes of normal tissue. In terms of treatment planning, Single-Arc poses a more challenging optimization problem than Tomotherapy or standard IMRT. We conclude that Single-Arc holds potential as an efficient IMRT technique especially for relatively simple cases. In very complex cases, Single-Arc may unduly compromise the quality of the dose distribution, if one tries to keep the treatment time below 2 min or so. As with all IMRT techniques, it is important to explore the tradeoff between plan quality and the efficiency of its delivery carefully for each individual case. (note)

  6. Magma ocean formation due to giant impacts

    Science.gov (United States)

    Tonks, W. B.; Melosh, H. J.

    1993-01-01

    The thermal effects of giant impacts are studied by estimating the melt volume generated by the initial shock wave and corresponding magma ocean depths. Additionally, the effects of the planet's initial temperature on the generated melt volume are examined. The shock pressure required to completely melt the material is determined using the Hugoniot curve plotted in pressure-entropy space. Once the melting pressure is known, an impact melting model is used to estimate the radial distance melting occurred from the impact site. The melt region's geometry then determines the associated melt volume. The model is also used to estimate the partial melt volume. Magma ocean depths resulting from both excavated and retained melt are calculated, and the melt fraction not excavated during the formation of the crater is estimated. The fraction of a planet melted by the initial shock wave is also estimated using the model.

  7. Illuminating magma shearing processes via synchrotron imaging

    Science.gov (United States)

    Lavallée, Yan; Cai, Biao; Coats, Rebecca; Kendrick, Jackie E.; von Aulock, Felix W.; Wallace, Paul A.; Le Gall, Nolwenn; Godinho, Jose; Dobson, Katherine; Atwood, Robert; Holness, Marian; Lee, Peter D.

    2017-04-01

    Our understanding of geomaterial behaviour and processes has long fallen short due to inaccessibility into material as "something" happens. In volcanology, research strategies have increasingly sought to illuminate the subsurface of materials at all scales, from the use of muon tomography to image the inside of volcanoes to the use of seismic tomography to image magmatic bodies in the crust, and most recently, we have added synchrotron-based x-ray tomography to image the inside of material as we test it under controlled conditions. Here, we will explore some of the novel findings made on the evolution of magma during shearing. These will include observations and discussions of magma flow and failure as well as petrological reaction kinetics.

  8. Io's theothermal (sulfur) - Lithosphere cycle inferred from sulfur solubility modeling of Pele's magma supply

    Science.gov (United States)

    Battaglia, Steven M.; Stewart, Michael A.; Kieffer, Susan W.

    2014-06-01

    Surface deposits of volatile compounds such as water (Earth) or sulfur (Io) on volcanically active bodies suggest that a magmatic distillation process works to concentrate volatiles in surface reservoirs. On Earth, this is the combined hydrologic and tectonic cycle. On Io, sulfurous compounds are transferred from the interior to the surface reservoirs through a combination of a mantle-sourced magmatic system, vertical cycling of the lithosphere, and a sulfur-dominated crustal thermal system that we here call the "theothermal" system. We present a geochemical analysis of this process using previously inferred temperature and oxygen fugacity constraints of Pele's basaltic magma to determine the behavior of sulfur in the ionian magmas. Sulfate to sulfide ratios of Pele's magma are -4.084 ± 0.6 and -6.442 ± 0.7 log10 units, comparable to or lower than those of mid-ocean ridge basalts. This reflects the similarity of Io's oxidation state with Earth's depleted mantle as previously suggested by Zolotov and Fegley (Zolotov, M.Y., Fegley, B. [2000]. Geophys. Res. Lett. 27, 2789-2792). Our calculated limits of sulfur solubility in melts from Pele's patera (˜1100-1140 ppm) are also comparable to terrestrial mid-ocean ridge basalts, reflecting a compositional similarity of mantle sources. We propose that the excess sulfur obvious on Io's surface comes from two sources: (1) an insoluble sulfide liquid phase in the magma and (2) theothermal near-surface recycling.

  9. The Acoculco caldera magmas: genesis, evolution and relation with the Acoculco geothermal system

    Science.gov (United States)

    Sosa-Ceballos, G.; Macías, J. L.; Avellán, D.

    2017-12-01

    The Acoculco Caldera Complex (ACC) is located at the eastern part of the Trans Mexican Volcanic Belt; México. This caldera complex have been active since 2.7 Ma through reactivations of the system or associated magmatism. Therefore the ACC is an excellent case scenario to investigate the relation between the magmatic heat supply and the evolution processes that modified magmatic reservoirs in a potential geothermal field. We investigated the origin and the magmatic processes (magma mixing, assimilation and crystallization) that modified the ACC rocks by petrography, major oxides-trace element geochemistry, and isotopic analysis. Magma mixing is considered as the heat supply that maintain active the magmatic system, whereas assimilation yielded insights about the depth at which processes occurred. In addition, we performed a series of hydrothermal experiments in order to constrain the storage depth for the magma tapped during the caldera collapse. Rocks from the ACC were catalogued as pre, syn and post caldera. The post caldera rocks are peralkaline rhyolites, in contrast to all other rocks that are subalkaline. Our investigation is focus to investigate if the collapse modified the plumbing system and the depth at which magmas stagnate and recorded the magmatic processes.

  10. Pressure waves in a supersaturated bubbly magma

    Science.gov (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  11. Yamato 980459: Crystallization of Martian Magnesian Magma

    Science.gov (United States)

    Koizumi, E.; Mikouchi, T.; McKay, G.; Monkawa, A.; Chokai, J.; Miyamoto, M.

    2004-01-01

    Recently, several basaltic shergottites have been found that include magnesian olivines as a major minerals. These have been called olivinephyric shergottites. Yamato 980459, which is a new martian meteorite recovered from the Antarctica by the Japanese Antarctic expedition, is one of them. This meteorite is different from other olivine-phyric shergottites in several key features and will give us important clues to understand crystallization of martian meteorites and the evolution of Martian magma.

  12. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    Science.gov (United States)

    Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.

    2008-01-01

    Mn mineralization. Factor analyses indicate various mixtures of two dominant components: hydrothermal Mn oxide for the stratabound Mn and detrital aluminosilicate for the Mn-cemented sandstone; and two minor components, hydrothermal Fe oxyhydroxide and biocarbonate/biosilica. Our conceptual model shows that Mn mineralization was produced by hydrothermal convection cells within arc volcanoes and sedimentary prisms that occur along, the flanks and within calderas. The main source of hydrothermal fluid was seawater that penetrated through fractures, faults, and permeable volcanic edifices. The fluids were heated by magma, enriched in metals by leaching of basement rocks and sediments, and mixed with magmatic fluids and gases. Dikes and sills may have been another source of heat that drove small-scale circulation within sedimentary prisms. Copyright 2008 by the American Geophysical Union.

  13. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    Science.gov (United States)

    Hein, James R.; Schulz, Marjorie S.; Dunham, Rachel E.; Stern, Robert J.; Bloomer, Sherman H.

    2008-08-01

    Mn mineralization. Factor analyses indicate various mixtures of two dominant components: hydrothermal Mn oxide for the stratabound Mn and detrital aluminosilicate for the Mn-cemented sandstone; and two minor components, hydrothermal Fe oxyhydroxide and biocarbonate/biosilica. Our conceptual model shows that Mn mineralization was produced by hydrothermal convection cells within arc volcanoes and sedimentary prisms that occur along the flanks and within calderas. The main source of hydrothermal fluid was seawater that penetrated through fractures, faults, and permeable volcanic edifices. The fluids were heated by magma, enriched in metals by leaching of basement rocks and sediments, and mixed with magmatic fluids and gases. Dikes and sills may have been another source of heat that drove small-scale circulation within sedimentary prisms.

  14. Toward Assessing the Causes of Volcanic Diversity in the Cascades Arc

    Science.gov (United States)

    Till, C. B.; Kent, A. J.; Abers, G. A.; Pitcher, B.; Janiszewski, H. A.; Schmandt, B.

    2017-12-01

    A fundamental unanswered question in subduction system science is the cause of the observed diversity in volcanic arc style at an arc-segment to whole-arc scale. Specifically, we have yet to distinguish the predominant mantle and crustal processes responsible for the diversity of arc volcanic phenomenon, including the presence of central volcanoes vs. dispersed volcanism; episodicity in volcanic fluxes in time and space; variations in magma chemistry; and differences in the extent of magmatic focusing. Here we present a thought experiment using currently available data to estimate the relative role of crustal magmatic processes in producing the observed variations in Cascades arc volcanism. A compilation of available major element compositions of Quaternary arc volcanism and estimates of eruptive volumes are used to examine variations in the composition of arc magmas along strike. We then calculate the Quaternary volcanic heat flux into the crust, assuming steady state, required to produce the observed distribution of compositions via crystallization of mantle-derived primitive magmas vs. crustal melting using experiment constraints on possible liquid lines of descent and crustal melting scenarios. For pure crystallization, heat input into the crust scales with silica content, with dacitic to rhyolite compositions producing significantly greater latent heat relative to basalts to andesites. In contrast, the heat required to melt lower crustal amphibolite decreases with increasing silica and is likely provided by the latent heat of crystallization. Thus we develop maximum and minimum estimates for heat added to the crust at a given SiO2 range. When volumes are considered, we find that the average Quaternary volcanic heat flux at latitudes south of South Sister to be more than twice that to the north. Distributed mafic volcanism produces only a quarter to half the heat flux calculated for the main edifices at a given latitude because of their lesser eruptive volumes

  15. Magma storage constrains by compositional zoning of plagioclase from dacites of the caldera forming eruptions of Vetrovoy Isthmus and Lvinaya Past’ Bay (Iturup Island, Kurile Islands)

    Science.gov (United States)

    Maksimovich, I. A.; Smirnov, S. Z.; Kotov, A. A.; Timina, T. Yu; Shevko, A. V.

    2017-12-01

    The Vetrovoy Isthmus and the Lvinaya Past’ Bay on the Iturup island (Kuril island arc) are the results of large Plinian eruptions of compositionally similar dacitic magmas. This study is devoted to a comparative analysis of the storage and crystallization conditions for magma reservoirs, which were a source of large-scale explosive eruptions. The plagioclase is most informative mineral in studying of the melt evolution. The studied plagioclases possess a complex zoning patterns, which are not typical for silicic rocks in island-arc systems. It was shown that increase of Ca in the plagioclase up to unusually high An95 is related to increase of H2O pressure in both volcanic magma chambers. The study revealed that minerals of the Vetrovoy Isthmus and Lvinaya Past’ crystallized from compositionally similar melts. Despite the compositional similarity of the melts, the phenocryst assemblage of the Lvinaya Past’ differs from the Vetrovoy Isthmus by the presence of the amphibole, which indicates that the pressure in the magmatic chamber exceeded 1-2 kbar at a 4-6 wt. % of H2O in the melt. The rocks of the Vetrovoy Isthmus do not contain amphibole phenocrysts, but melt and fluid inclusions assemblages in plagioclase demonstrate that the magma degassed in the course of evolution. This is an indication that the pressure did not exceed significantly 1-2 kbar.

  16. U-Pb zircon geochronology, Sr-Nd isotope geochemistry, and petrogenesis of oxidant granitoids at Keybarkuh, southwest of Khaf

    Directory of Open Access Journals (Sweden)

    Ehsan Salati

    2012-10-01

    Full Text Available Keybarkuh area is located 70 km southwest of Khaf, Khorasan Razavi province. The study area is situated in northeastern Lut block. The rock units in the area are Paleozoic metamorphic rocks and Cretaceous to Tertiary subvolcanic intrusions intruded as dike, stock and batholith; their composition varies from granite to diorite. Based on magnetic susceptibility, the intrusive rocks are divided into oxidant and reduced series. In this study, the oxidant intrusions are discussed. These intrusions are mostly high-K to shoshonitic and also meta-aluminous type. Their magma formed in subduction magmatic arc and they belong to I-type granitoid series. Enrichment of Large Ion Lithophile Elements (LILE such as Rb, Cs, K, Ba, and Th relative to High Field Stength Elements (HFSE such as Nb, Zr, and Ti supported the idea. Enrichment of Light Rare Earth Elements (LREE and depletion of Heavy Rare Earth Elements (HREE are also typical of subduction magmatism. Negative anomalies of Eu/Eu* can be attributed to the presence of residual plagioclase in a mantle source and contamination of magma by reduced continental crust. The amount of Nb > 11 ppm, lower ratio of Zr/Nb 0.706, initial 143Nd/144Nd (> 0.512 and εNd (< -3.5 indicate that magma contaminated by reduced continental crust. Hornblende biotite granodiorite porphyry dated using U-Pb zircon geochronology at 43.44 Ma (Middle Eocene. Based on calculated TDM, magma derived from ancient slab with 820 Ma age in the Keybarkuh area, was affected by the highest continental crust contamination during its ascent.

  17. Redox Evolution in Magma Oceans Due to Ferric/Ferrous Iron Partitioning

    Science.gov (United States)

    Schaefer, L.; Elkins-Tanton, L. T.; Pahlevan, K.

    2017-12-01

    A long-standing puzzle in the evolution of the Earth is that while the present day upper mantle has an oxygen fugacity close to the QFM buffer, core formation during accretion would have occurred at much lower oxygen fugacities close to IW. We present a new model based on experimental evidence that normal solidification and differentiation processes in the terrestrial magma ocean may explain both core formation and the current oxygen fugacity of the mantle without resorting to a change in source material or process. A commonly made assumption is that ferric iron (Fe3+) is negligible at such low oxygen fugacities [1]. However, recent work on Fe3+/Fe2+ ratios in molten silicates [2-4] suggests that the Fe3+ content should increase at high pressure for a given oxygen fugacity. While disproportionation was not observed in these experiments, it may nonetheless be occurring in the melt at high pressure [5]. Therefore, there may be non-negligible amounts of Fe3+ formed through metal-silicate equilibration at high pressures within the magma ocean. Homogenization of the mantle and further partitioning of Fe2+/Fe3+ as the magma ocean crystallizes may explain the oxygen fugacity of the Earth's mantle without requiring additional oxidation mechanisms. We present here models using different parameterizations for the Fe2+/Fe3+ thermodynamic relationships in silicate melts to constrain the evolution of the redox state of the magma ocean as it crystallizes. The model begins with metal-silicate partitioning at high pressure to form the core and set the initial Fe3+ abundance. Combined with previous work on oxygen absorption by magma oceans due to escape of H from H2O [6], we show that the upper layers of solidifying magma oceans should be more oxidized than the lower mantle. This model also suggests that large terrestrial planets should have more oxidized mantles than small planets. From a redox perspective, no change in the composition of the Earth's accreting material needs to be

  18. Consolidating NASA's Arc Jets

    Science.gov (United States)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  19. ALICE-ARC integration

    International Nuclear Information System (INIS)

    Anderlik, C; Gregersen, A R; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites

  20. Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism

    Science.gov (United States)

    Lee, C.-T.A.; Morton, D.M.; Kistler, R.W.; Baird, A.K.

    2007-01-01

    Mesozoic continental arcs in the North American Cordillera were examined here to establish a baseline model for Phanerozoic continent formation. We combine new trace-element data on lower crustal xenoliths from the Mesozoic Sierra Nevada Batholith with an extensive grid-based geochemical map of the Peninsular Ranges Batholith, the southern equivalent of the Sierras. Collectively, these observations give a three-dimensional view of the crust, which permits the petrogenesis and tectonics of Phanerozoic crust formation to be linked in space and time. Subduction of the Farallon plate beneath North America during the Triassic to early Cretaceous was characterized by trench retreat and slab rollback because old and cold oceanic lithosphere was being subducted. This generated an extensional subduction zone, which created fringing island arcs just off the Paleozoic continental margin. However, as the age of the Farallon plate at the time of subduction decreased, the extensional environment waned, allowing the fringing island arc to accrete onto the continental margin. With continued subduction, a continental arc was born and a progressively more compressional environment developed as the age of subducting slab continued to young. Refinement into a felsic crust occurred after accretion, that is, during the continental arc stage, wherein a thickened crustal and lithospheric column permitted a longer differentiation column. New basaltic arc magmas underplate and intrude the accreted terrane, suture, and former continental margin. Interaction of these basaltic magmas with pre-existing crust and lithospheric mantle created garnet pyroxenitic mafic cumulates by fractional crystallization at depth as well as gabbroic and garnet pyroxenitic restites at shallower levels by melting of pre-existing lower crust. The complementary felsic plutons formed by these deep-seated differentiation processes rose into the upper crust, stitching together the accreted terrane, suture and former

  1. The influence of magma viscosity on convection within a magma chamber

    Science.gov (United States)

    Schubert, M.; Driesner, T.; Ulmer, P.

    2012-12-01

    Magmatic-hydrothermal ore deposits are the most important sources of metals like Cu, Mo, W and Sn and a major resource for Au. It is well accepted that they are formed by the release of magmatic fluids from a batholith-sized magma body. Traditionally, it has been assumed that crystallization-induced volatile saturation (called "second boiling") is the main mechanism for fluid release, typically operating over thousands to tens of thousands of years (Candela, 1991). From an analysis of alteration halo geometries caused by magmatic fluids, Cathles and Shannon (2007) suggested much shorter timescales in the order of hundreds of years. Such rapid release of fluids cannot be explained by second boiling as the rate of solidification scales with the slow conduction of heat away from the system. However, rapid fluid release is possible if convection is assumed within the magma chamber. The magma would degas in the upper part of the magma chamber and volatile poor magma would sink down again. Such, the rates of degassing can be much higher than due to cooling only. We developed a convection model using Navier-Stokes equations provided by the computational fluid dynamics platform OpenFOAM that gives the possibility to use externally derived meshes with complex (natural) geometries. We implemented a temperature, pressure, composition and crystal fraction dependent viscosity (Ardia et al., 2008; Giordano et al., 2008; Moore et al., 1998) and a temperature, pressure, composition dependent density (Lange1994). We found that the new viscosity and density models strongly affect convection within the magma chamber. The dependence of viscosity on crystal fraction has a particularly strong effect as the steep viscosity increase at the critical crystal fraction leads to steep decrease of convection velocity. As the magma chamber is cooling from outside to inside a purely conductive layer is developing along the edges of the magma chamber. Convection continues in the inner part of the

  2. Arc generation from sputtering plasma-dielectric inclusion interactions

    CERN Document Server

    Wickersham, C E J; Fan, J S

    2002-01-01

    Arcing during sputter deposition and etching is a significant cause of particle defect generation during device fabrication. In this article we report on the effect of aluminum oxide inclusion size, shape, and orientation on the propensity for arcing during sputtering of aluminum targets. The size, shape, and orientation of a dielectric inclusion plays a major role in determining the propensity for arcing and macroparticle emission. In previous studies we found that there is a critical inclusion size required for arcing to occur. In this article we used high-speed videos, electric arc detection, and measurements of particle defect density on wafers to study the effect of Al sub 2 O sub 3 inclusion size, shape, and orientation on arc rate, intensity, and silicon wafer particle defect density. We found that the cross-sectional area of the inclusion exposed to the sputtering plasma is the critical parameter that determines the arc rate and rate of macroparticle emission. Analysis of the arc rate, particle defect...

  3. Miocene shoshonite volcanism in Sardinia: Implications for magma sources and geodynamic evolution of the central-western Mediterranean

    Science.gov (United States)

    Beccaluva, Luigi; Bianchini, Gianluca; Mameli, Paola; Natali, Claudio

    2013-11-01

    In this paper we document the existence of a Miocene shoshonite (SHO) volcanism in Northern Sardinia (Anglona). This occurrence completes the spectrum of orogenic magmas related to the subduction process which developed from the Eocene along the Palaeo-European continental margin, in concert with the opening of the Ligurian-Balearic back-arc basin and southeastward drift/rotation of the Sardinia-Corsica continental block. K-Ar ages show that the oldest volcanics of the area are calcalkaline (CA) basalts and andesites (~ 21 Ma), overlain by 19.7-18.4 Ma-old more potassic products such as high-potassium calcalkaline (HK-CA) and SHO lavas. CA, HK-CA and SHO suites include basalts and differentiated lavas of andesite and latite composition, respectively, that (according to the PELE software modelling) represent ~ 40-45% residual liquid fraction after shallow fractional crystallization. Application of the "Arc Magma Simulator" software suggests that the generation of primary melts of the distinct suites may occur at similar degrees of partial melting (5-8%) and melting pressures (2-2.2 GPa, ~ 60-70 km depth) in the mantle wedge. By contrast, the potassic character of parental melts of CA, HK-CA and SHO suites is controlled by 1) the amount of subducted continental components (possibly terrigenous sediments) and 2) the pressure (depth) at which these metasomatic agents are released from the slab. Results suggest that the slab depth beneath the volcanic district increased from ~ 80-100 to 100-120 km for CA and SHO magmas, respectively. Accordingly, the evolution from CA to SHO magmatism in the same plumbing system could be related to slab deepening and increase of the subduction angle of ~ 5-10° in the time span of 2-3 Ma. This tectono-magmatic scenario conforms to the major anticlockwise rotation (~ 30°) event of the Sardinia block (between 20.5 and 18 Ma). This geodynamic evolution preludes the development of the volcanism in the Apennine-Tyrrhenian domains, where the

  4. Along and Across Arc Variation of the Central Andes by Single Crystal Trace Element Analaysis

    Science.gov (United States)

    Michelfelder, G.; Sundell, T.; Wilder, A.; Salings, E. E.

    2017-12-01

    Along arc and across arc geochemical variations at continental volcanic arcs are influenced by a number of factors including the composition and thickness of the continental crust, mantle heterogeneity, and fluids from the subducted slab. Whole rock geochemical trends along and across the arc front of the Central Volcanic Zone (CVZ) have been suggested to be primarily influenced by the composition and thickness of the crust. In the CVZ, Pb isotopic domains relate volcanic rock compositions to the crustal basement and systematically varies with crustal age. It has been shown repeatedly that incompatible trace element trends and trace element ratios can be used to infer systematic geochemical changes. However, there is no rule linking magmatic process or chemical heterogeneity/ homogeneity as a result of large crustal magma storage reservoirs such as MASH zones to the observed variation. Here we present a combination of whole rock major- and trace element data, isotopic data and in situ single crystal data from plagioclase, pyroxene and olivine for six stratovolcanoes along the arc front and in the back arc of the CVZ. We compare geochemical trends at the whole and single crystal scale. These volcanoes include lava flows and domes from Cerro Uturuncu in the back-arc, Aucanquilcha, Ollagüe, San Pedro-San Pablo, Lascar, and Lazufre from the arc front. On an arc-wide scale, whole rock samples of silicic lavas from these six composite volcanoes display systematically higher K2O, LILE, REE and HFSE contents and 87Sr/86Sr ratios with increasing distance from the arc-front. In contrast, the lavas have systematically lower Na2O, Sr, and Ba contents; LILE/HFSE ratios; 143Nd/144Nd ratios; and more negative Eu anomalies. Silicic magmas along the arc-front reflecting melting of young, mafic composition source rocks with the continental crust becoming increasingly older and more felsic toward the east. These trends are paralleled in the trace element compositions of plagioclase

  5. Cost-benefit analyses for the development of magma power

    International Nuclear Information System (INIS)

    Haraden, John

    1992-01-01

    Magma power is the potential generation of electricity from shallow magma bodies in the crust of the Earth. Considerable uncertainty still surrounds the development of magma power, but most of that uncertainty may be eliminated by drilling the first deep magma well. The uncertainty presents no serious impediments to the private drilling of the well. For reasons unrelated to the uncertainty, there may be no private drilling and there may be justification for public drilling. In this paper, we present cost-benefit analyses for private and public drilling of the well. Both analyses indicate there is incentive for drilling. (Author)

  6. Conditions of deep magma chamber beneath Fuji volcano estimated from high- P experiments

    Science.gov (United States)

    Asano, K.; Takahashi, E.; Hamada, M.; Ushioda, M.; Suzuki, T.

    2012-12-01

    boundary, shallow level magma chamber is difficult to maintain for long time due to the large stress and deformation. Accordingly, the magma composition of Fuji volcano is buffered by the large AFC magma chamber in the lower crust (Takahashi et al., this conference). Fig.1 SiO2-K2O diagram for Fuji volcano products (diamonds) and volcanoes in Izu-arc. Melt compositional trend obtained by 4 kbar and 7 kbar experiments are shown with arrows.

  7. Outgassing From Open And Closed Magma Foams

    Science.gov (United States)

    von Aulock, Felix W.; Kennedy, Ben M.; Maksimenko, Anton; Wadsworth, Fabian B.; Lavallée, Yan

    2017-06-01

    During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The volcanic system opens and closes as bubble walls reorganize, seal or fail. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950 ºC for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens nonlinearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e. skin removal) occurs, then rapid outgassing and consequent foam collapse modulate gas pressurisation in the vesiculated magma.

  8. Experimental Constraints on a Vesta Magma Ocean

    Science.gov (United States)

    Hoff, C.; Jones, J. H.; Le, L.

    2014-01-01

    A magma ocean model was devised to relate eucrites (basalts) and diogenites (orthopyroxenites), which are found mixed together as clasts in a suite of polymict breccias known as howardites. The intimate association of eucritic and diogenitic clasts in howardites argues strongly that these three classes of achondritic meteorites all originated from the same planetoid. Reflectance spectral evidence (including that from the DAWN mission) has long suggested that Vesta is indeed the Eucrite Parent Body. Specifically, the magma ocean model was generated as follows: (i) the bulk Vesta composition was taken to be 0.3 CV chondrite + 0.7 L chondrite but using only 10% of the Na2O from this mixture; (ii) this composition is allowed to crystallize at 500 bar until approx. 80% of the system is solid olivine + low-Ca pyroxene; (iii) the remaining 20% liquid crystallizes at one bar from 1250C to 1110C, a temperature slightly above the eucrite solidus. All crystallization calculations were performed using MELTS. In this model, diogenites are produced by cocrystallization of olivine and pyroxene in the >1250C temperature regime, with Main Group eucrite liquids being generated in the 1300-1250C temperature interval. Low-Ca pyroxene reappears at 1210C in the one-bar calculations and fractionates the residual liquid to produce evolved eucrite compositions (Stannern Trend). We have attempted to experimentally reproduce the magma ocean. In the MELTS calculation, the change from 500 bar to one bar results in a shift of the olivine:low-Ca pyroxene boundary so that the 1250C liquid is now in the olivine field and, consequently, olivine should be the first-crystallizing phase, followed by low-Ca pyroxene at 1210C, and plagioclase at 1170C. Because at one bar the olivine:low-Ca pyroxene boundary is a peritectic, fractional crystallization of the 1210C liquid proceeds with only pyroxene crystallization until plagioclase appears. Thus, the predictions of the MELTS calculation are clear and

  9. Outgassing from Open and Closed Magma Foams

    Directory of Open Access Journals (Sweden)

    Felix W. von Aulock

    2017-06-01

    Full Text Available During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The reorganization, failing and sealing of bubble walls may contribute to the opening and closing of the volcanic system. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950°C for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens non-linearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace to allow open system outgassing, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e., skin removal occurs, then rapid outgassing and consequent foam collapse modulate gas pressurization in the vesiculated magma. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas.

  10. Radioactive equilibria and disequilibria of U-series nuclides in the products from Izu arc volcanoes, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, Y.; Sato, J. [Meiji Univ., Kawasaki, Kanagawa (Japan). Dept. of Applied Chemistry; Takahashi, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan). Radiation Safety Research Center

    2011-07-01

    Activity ratios among {sup 238}U-{sup 230}Th-{sup 226}Ra in the products from Izu arc volcanoes, Japan, were observed in order to estimate the time scale of magmatic processes and the magma generation for Izu arc volcanism. Activity ratios of {sup 238}U/{sup 230}Th and {sup 226}Ra/{sup 230}Th in the basaltic and andesitic products from Izu arc volcanoes were greater than unity, being enriched in {sup 238}U and {sup 226}Ra relative to {sup 230}Th. The {sup 226}Ra/{sup 230}Th activity ratio versus {sup 238}U/{sup 230}Th activity ratio diagram for these products showed positive correlation, suggesting that the {sup 238}U-{sup 230}Th-{sup 226}Ra disequilibria occurred during the magma genesis by the additions of U- and Ra-rich fluids derived from the subducting slab by dehydration to the mantle wedge. The {sup 230}Th-{sup 226226}Ra radioactive disequilibria observed in the basaltic and andesitic products imply a short period of time (<8000 years) between the magma genesis and the eruption. The majority of rhyolitic products was considered to be almost in equilibrium of {sup 238}U={sup 230}Th={sup 226}Ra. The observation that {sup 238}U-{sup 230}Th-{sup 226}Ra for the rhyolite are in radioactive equilibrium suggested that the rhyolitic magma from Izu arc was generated in the partial melting of the earth crust heated by the basaltic magma of high temperature. (orig.)

  11. Vacuum Arc Ion Sources

    CERN Document Server

    Brown, I.

    2013-12-16

    The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the source has grown, so also have the operational characteristics been improved in a variety of different ways. Here we review the principles, design, and performance of vacuum arc ion sources.

  12. Special relativity derived from spacetime magma.

    Science.gov (United States)

    Greensite, Fred

    2014-01-01

    We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid) existing on the union of spacetime frame components [Formula: see text] and Euclidean [Formula: see text] which is consistent with an "inversion symmetry" constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of "inverse norms" which play major roles with respect to various unital [Formula: see text]-algebras more generally.

  13. Special relativity derived from spacetime magma.

    Directory of Open Access Journals (Sweden)

    Fred Greensite

    Full Text Available We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid existing on the union of spacetime frame components [Formula: see text] and Euclidean [Formula: see text] which is consistent with an "inversion symmetry" constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of "inverse norms" which play major roles with respect to various unital [Formula: see text]-algebras more generally.

  14. Dynamics of differentiation in magma reservoirs

    Science.gov (United States)

    Jaupart, Claude; Tait, Stephen

    1995-09-01

    In large magma chambers, gradients of temperature and composition develop due to cooling and to fractional crystallization. Unstable density differences lead to differential motions between melt and crystals, and a major goal is to explain how this might result in chemical differentiation of magma. Arriving at a full description of the physics of crystallizing magma chambers is a challenge because of the large number of processes potentially involved, the many coupled variables, and the different geometrical shapes. Furthermore, perturbations are caused by the reinjection of melt from a deep source, eruption to the Earth's surface, and the assimilation of country rock. Physical models of increasing complexity have been developed with emphasis on three fundamental approaches. One is, given that large gradients in temperature and composition may occur, to specify how to apply thermodynamic constraints so that coexisting liquid and solid compositions may be calculated. The second is to leave the differentiation trend as the solution to be found, i.e., to specify how cooling occurs and to predict the evolution of the composition of the residual liquid and of the solid forming. The third is to simplify the physics so that the effects of coupled heat and mass transfer may be studied with a reduced set of variables. The complex shapes of magma chambers imply that boundary layers develop with density gradients at various angles to gravity, leading to various convective flows and profiles qf liquid stratification. Early studies were mainly concerned with describing fluid flow in the liquid interior of large reservoirs, due to gradients developed at the margins. More recent work has focused on the internal structure and flow field of boundary layers and in particular on the gradients of solid fraction and interstitial melt composition which develop within them. Crystal settling may occur in a surprisingly diverse range of regimes and may lead to intermittent deposition

  15. Tracing crustal contamination along the Java segment of the Sunda Arc, Indonesia

    Science.gov (United States)

    Jolis, E. M.; Troll, V.; Deegan, F.; Blythe, L.; Harris, C.; Freda, C.; Hilton, D.; Chadwick, J.; Van Helden, M.

    2012-04-01

    Arc magmas typically display chemical and petrographic characteristics indicative of crustal input. Crustal contamination can take place either in the mantle source region or as magma traverses the upper crust (e.g. [1]). While source contamination is generally considered the dominant process (e.g. [2]), late-stage crustal contamination has been recognised at volcanic arcs too (e.g. [3]). In light of this, we aim to test the extent of upper crustal versus source contamination along the Java segment of the Sunda arc, which, due its variable upper crustal structure, is an exemplary natural laboratory. We present a detailed geochemical study of 7 volcanoes along a traverse from Anak-Krakatau in the Sunda strait through Java and Bali, to characterise the impact of the overlying crust on arc magma composition. Using rock and mineral elemental geochemistry, radiogenic (Sr, Nd and Pb) and, stable (O) isotopes, we show a correlation between upper crustal composition and the degree of upper crustal contamination. We find an increase in 87Sr/86Sr and δ18O values, and a decrease in 143Nd/144Nd values from Krakatau towards Merapi, indicating substantial crustal input from the thick continental basement present. Volcanoes to the east of Merapi and the Progo-Muria fault transition zone, where the upper crust is thinner, in turn, show considerably less crustal input in their isotopic signatures, indicating a stronger influence of the mantle source. Our new data represent a systematic and high-resolution arc-wide sampling effort that allows us to distinguish the effects of the upper crust on the compositional spectrum of individual volcanic systems along the Sunda arc. [1] Davidson, J.P, Hora, J.M, Garrison, J.M & Dungan, M.A 2005. Crustal Forensics in Arc Magmas. J. Geotherm. Res. 140, 157-170; [2] Debaille, V., Doucelance, R., Weis, D., & Schiano, P. 2005. Geochim. Cosmochim. Acta, 70,723-741; [3] Gasparon, M., Hilton, D.R., & Varne, R. 1994. Earth Planet. Sci. Lett., 126, 15-22.

  16. Geological constraints on continental arc activity since 720 Ma: implications for the link between long-term climate variability and episodicity of continental arcs

    Science.gov (United States)

    Cao, W.; Lee, C. T.

    2016-12-01

    Continental arc volcanoes have been suggested to release more CO2 than island arc volcanoes due to decarbonation of wallrock carbonates in the continental upper plate through which the magmas traverse (Lee et al., 2013). Continental arcs may thus play an important role in long-term climate. To test this hypothesis, we compiled geological maps to reconstruct the surface distribution of granitoid plutons and the lengths of ancient continental arcs. These results were then compiled into a GIS framework and incorporated into GPlates plate reconstructions. Our results show an episodic nature of global continental arc activity since 720 Ma. The lengths of continental arcs were at minimums during most of the Cryogenian ( 720-670 Ma), the middle Paleozoic ( 460-300 Ma) and the Cenozoic ( 50-0 Ma). Arc lengths were highest during the Ediacaran ( 640-570 Ma), the early Paleozoic ( 550-430 Ma) and the entire Mesozoic with peaks in the Early Triassic ( 250-240 Ma), Late Jurassic-Early Cretaceous ( 160-130 Ma), and Late Cretaceous ( 90-65 Ma). The extensive continental arcs in the Ediacaran and early Paleozoic reflect the Pan-African events and circum-Gondwana subduction during the assembly of the Gondwana supercontinent. The Early Triassic peak is coincident with the final closure of the paleo-Asian oceans and the onset of circum-Pacific subduction associated with the assembly of the Pangea supercontinent. The Jurassic-Cretaceous peaks reflect the extensive continental arcs established in the western Pacific, North and South American Cordillera, coincident with the initial dispersal of the Pangea. Continental arcs are favored during the final assembly and the early-stage dispersal of a supercontinent. Our compilation shows a temporal match between continental arc activity and long-term climate at least since 720 Ma. For example, continental arc activity was reduced during the Cryogenian icehouse event, and enhanced during the Early Paleozoic and Jurassic-Cretaceous greenhouse

  17. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  18. Magma evolution inside the 1631 Vesuvius magma chamber and eruption triggering

    Science.gov (United States)

    Stoppa, Francesco; Principe, Claudia; Schiazza, Mariangela; Liu, Yu; Giosa, Paola; Crocetti, Sergio

    2017-03-01

    Vesuvius is a high-risk volcano and the 1631 Plinian eruption is a reference event for the next episode of explosive unrest. A complete stratigraphic and petrographic description of 1631 pyroclastics is given in this study. During the 1631 eruption a phonolite was firstly erupted followed by a tephritic phonolite and finally a phonolitic tephrite, indicating a layered magma chamber. We suggest that phonolitic basanite is a good candidate to be the primitive parental-melt of the 1631 eruption. Composition of apatite from the 1631 pyroclastics is different from those of CO2-rich melts indicating negligible CO2 content during magma evolution. Cross checking calculations, using PETROGRAPH and PELE software, accounts for multistage evolution up to phonolite starting from a phonolitic basanite melt similar to the Vesuvius medieval lavas. The model implies crystal settling of clinopyroxene and olivine at 6 kbar and 1220°C, clinopyroxene plus leucite at a pressure ranging from 2.5 to 0.5 kbar and temperature ranging from 1140 to 940°C. Inside the phonolitic magma chamber K-feldspar and leucite would coexist at a temperature ranging from from 940 to 840°C and at a pressure ranging from 2.5 to0.5 kbar. Thus crystal fractionation is certainly a necessary and probably a sufficient condition to evolve the melt from phono tephritic to phonolitic in the 1631 magma chamber. We speculate that phonolitic tephrite magma refilling from deeper levels destabilised the chamber and triggered the eruption, as testified by the seismic precursor phenomena before 1631 unrest.

  19. Magma evolution inside the 1631 Vesuvius magma chamber and eruption triggering

    Directory of Open Access Journals (Sweden)

    Stoppa Francesco

    2017-03-01

    Full Text Available Vesuvius is a high-risk volcano and the 1631 Plinian eruption is a reference event for the next episode of explosive unrest. A complete stratigraphic and petrographic description of 1631 pyroclastics is given in this study. During the 1631 eruption a phonolite was firstly erupted followed by a tephritic phonolite and finally a phonolitic tephrite, indicating a layered magma chamber. We suggest that phonolitic basanite is a good candidate to be the primitive parental-melt of the 1631 eruption. Composition of apatite from the 1631 pyroclastics is different from those of CO2-rich melts indicating negligible CO2 content during magma evolution. Cross checking calculations, using PETROGRAPH and PELE software, accounts for multistage evolution up to phonolite starting from a phonolitic basanite melt similar to the Vesuvius medieval lavas. The model implies crystal settling of clinopyroxene and olivine at 6 kbar and 1220°C, clinopyroxene plus leucite at a pressure ranging from 2.5 to 0.5 kbar and temperature ranging from 1140 to 940°C. Inside the phonolitic magma chamber K-feldspar and leucite would coexist at a temperature ranging from from 940 to 840°C and at a pressure ranging from 2.5 to0.5 kbar. Thus crystal fractionation is certainly a necessary and probably a sufficient condition to evolve the melt from phono tephritic to phonolitic in the 1631 magma chamber. We speculate that phonolitic tephrite magma refilling from deeper levels destabilised the chamber and triggered the eruption, as testified by the seismic precursor phenomena before 1631 unrest.

  20. Storage conditions of the mafic and silicic magmas at Cotopaxi, Ecuador

    Science.gov (United States)

    Martel, Caroline; Andújar, Joan; Mothes, Patricia; Scaillet, Bruno; Pichavant, Michel; Molina, Indira

    2018-04-01

    The 2015 reactivation of the Cotopaxi volcano urges us to understand the complex eruptive dynamics of Cotopaxi for better management of a potential major crisis in the near future. Cotopaxi has commonly transitioned from andesitic eruptions of strombolian style (lava flows and scoria ballistics) or nuées ardentes (pyroclastic flows and ash falls) to highly explosive rhyolitic ignimbrites (pumiceous pyroclastic flows), which entail drastically different risks. To better interpret geophysical and geochemical signals, Cotopaxi magma storage conditions were determined via existing phase-equilibrium experiments that used starting materials chemically close to the Cotopaxi andesites and rhyolites. The results suggest that Cotopaxi's most mafic andesites (last erupted products) can be stored over a large range of depth from 7 km to ≥16 km below the summit (pressure from 200 to ≥400 MPa), 1000 °C, NNO +2, and contain 4.5-6.0±0.7 wt% H2O dissolved in the melt in equilibrium with 30-40% phenocrysts of plagioclase, two pyroxenes, and Fe-Ti oxides. These mafic andesites sometimes evolve towards more silicic andesites by cooling to 950 °C. Rhyolitic magmas are stored at 200-300 MPa (i.e. 7-11 km below the summit), 750 °C, NNO +2, and contain 6-8 wt% H2O dissolved in a nearly aphyric melt (<5% phenocrysts of plagioclase, biotite, and Fe-Ti oxides). Although the andesites produce the rhyolitic magmas by fractional crystallization, the Cotopaxi eruptive history suggests reactivation of either reservoirs at distinct times, likely reflecting flux or time fluctuations during deep magma recharge.

  1. Electric contact arcing

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1976-01-01

    Electrical contacts must function properly in many types of components used in nuclear weapon systems. Design, application, and testing of these components require detailed knowledge of chemical and physical phenomena associated with stockpile storage, stockpile testing, and operation. In the past, investigation of these phenomena has led to significant discoveries on the effects of surface contaminants, friction and wear, and the mechanics of closure on contact performance. A recent investigation of contact arcing phenomena which revealed that, preceding contact closure, arcs may occur at voltages lower than had been previously known is described. This discovery is important, since arcing may damage contacts, and repetitive testing of contacts performed as part of a quality assurance program might produce cumulative damage that would yield misleading life-test data and could prevent proper operation of the contacts at some time in the future. This damage can be avoided by determining the conditions under which arcing occurs, and ensuring that these conditions are avoided in contact testing

  2. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  3. Circular arc structures

    KAUST Repository

    Bo, Pengbo; Pottmann, Helmut; Kilian, Martin; Wang, Wen Ping; Wallner, Johannes

    2011-01-01

    and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where

  4. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva

    2008-01-01

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...

  5. Thermal Arc Spray Overview

    International Nuclear Information System (INIS)

    Malek, Muhamad Hafiz Abd; Saad, Nor Hayati; Abas, Sunhaji Kiyai; Shah, Noriyati Mohd

    2013-01-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  6. THE ARC TRAIL

    African Journals Online (AJOL)

    INTRODUCTION. The project, carried out by the 1985 Conservation. Team at Durban Girls1 High School, consisted of three main aims- Awareness, Recreation and conservation, which were incorporated into the naming of the ARC trail. The trail is situated in suburban Durban where it was felt that it was important to ...

  7. ARC Software and Models

    Science.gov (United States)

    Archives RESEARCH ▼ Research Areas Ongoing Projects Completed Projects SOFTWARE CONTACT ▼ Primary Contacts Researchers External Link MLibrary Deep Blue Software Archive Most research conducted at the ARC produce software code and methodologies that are transferred to TARDEC and industry partners. These

  8. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  9. Formation process of micro arc oxidation coatings obtained in a sodium phytate containing solution with and without CaCO{sub 3} on binary Mg-1.0Ca alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.F. [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Zhang, Y.Q. [Zhejiang DunAn Light Alloy Technology CO,.LTD, Zhuji 311835 (China); Hunan University of Science and Technology, Xiangtan 411201 (China); Zhang, S.F.; Qu, B. [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Guo, S.B. [Hunan University of Science and Technology, Xiangtan 411201 (China); Xiang, J.H., E-mail: xiangjunhuai@163.com [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China)

    2015-01-15

    Highlights: • Compared to the Mg phase, the area of Mg{sub 2}Ca phase is much smaller. • The coatings are preferentially developed on the area adjacent to Mg{sub 2}Ca phase. • During MAO process, some sodium phytate molecules are hydrolyzed. • Anodic coatings are developed from uneven to uniform. - Abstract: Micro arc oxidation (MAO) is an effective method to improve the corrosion resistance of magnesium alloys. In order to reveal the influence of alloying element Ca and CaCO{sub 3} electrolyte on the formation process and chemical compositions of MAO coatings on binary Mg-1.0Ca alloy, anodic coatings after different anodizing times were prepared on binary Mg-1.0Ca alloy in a base solution containing 3 g/L sodium hydroxide and 15 g/L sodium phytate with and without addition of CaCO{sub 3}. The coating formation was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that Mg-1.0Ca alloy is composed of two phases, the Mg phase and Mg{sub 2}Ca phase. After treating for 5 s, the coating began to develop and was preferentially formed on the area nearby Mg{sub 2}Ca phase, which may be resulted from the intrinsic electronegative potential of the Mg phase than that of Mg{sub 2}Ca phase. Anodic coatings unevenly covered the total surface after 20 s. After 80 s, the coatings were uniformly developed on Mg-1.0Ca alloy with micro pores. During MAO process, some sodium phytate molecules are hydrolyzed into inorganic phosphate. CaCO{sub 3} has minor influence on the calcium content of the obtained MAO coatings.

  10. Contribution to the study of the behavior of K, U and Th in magma evolution

    International Nuclear Information System (INIS)

    Cheminee, J.L.

    1973-01-01

    The behavior of K, U and Th in lava at different space and time levels was studied by geodynamic methods. Examples of well-defined volcanic series bond up with characteristic magmatic processes were chosen for this purpose. Various cases were studied, corresponding to either general or particular problems and distributed over three of the large structural domains of the earth's crust: oceanic zone (oceanic islands, Afar rift); insular volcanic arcs (Japan, the lesser Antilles); Continental zone (mediterranean volcanism, basalts and associated derivatives). K, U and Th averages are given for certain of the commonest types of lava found on the earth's surface. Certain hypotheses on the genesis of magmas are confirmed or invalidated and a structural model is proposed for the sub-Afar layers [fr

  11. Intrusion of basaltic magma into a crystallizing granitic magma chamber: The Cordillera del Paine pluton in southern Chile

    Science.gov (United States)

    Michael, Peter J.

    1991-10-01

    The Cordillera del Paine pluton in the southernmost Andes of Chile represents a deeply dissected magma chamber where mafic magma intruded into crystallizing granitic magma. Throughout much of the 10x15 km pluton, there is a sharp and continuous boundary at a remarkably constant elevation of 1,100 m that separates granitic rocks (Cordillera del Paine or CP granite: 69 77% SiO2) which make up the upper levels of the pluton from mafic and comingled rocks (Paine Mafic Complex or PMC: 45 60% SiO2) which dominate the lower exposures of the pluton. Chilled, crenulate, disrupted contacts of mafic rock against granite demonstrate that partly crystallized granite was intruded by mafic magma which solidified prior to complete crystallization of the granitic magma. The boundary at 1,100 m was a large and stable density contrast between the denser, hotter mafic magma and cooler granitic magma. The granitic magma was more solidified near the margins of the chamber when mafic intrusion occurred, and the PMC is less disrupted by granites there. Near the pluton margins, the PMC grades upward irregularly from cumulate gabbros to monzodiorites. Mafic magma differentiated largely by fractional crystallization as indicated by the presence of cumulate rocks and by the low levels of compatible elements in most PMC rocks. The compositional gap between the PMC and CP granite indicates that mixing (blending) of granitic magma into the mafic magma was less important, although it is apparent from mineral assemblages in mafic rocks. Granitic magma may have incorporated small amounts of mafic liquid that had evolved to >60% SiO2 by crystallization. Mixing was inhibited by the extent of crystallization of the granite, and by the thermal contrast and the stable density contrast between the magmas. PMC gabbros display disequilibrium mineral assemblages including early formed zoned olivine (with orthopyroxene coronas), clinopyroxene, calcic plagioclase and paragasite and later-formed amphibole

  12. Mercury and Iodine systematics of volcanic arc fluids

    Science.gov (United States)

    Varekamp, J. C.; Kading, T.; Fehn, U.; Lu, Z.

    2008-12-01

    The mantle has low Mercury and Iodine concentrations, but these elements occur in volcanic gases and hydrothermal fluids at ppb (Hg) and ppm (Iodine) levels. Possibly, the Hg and Iodine concentrations in volcanic fluids reflect subducted sediment sources in arc magmas. Iodine is a biophilic element, and I129/I values indicate that subducted sediment (especially organic matter) is an important Iodine source for arc magmas. It is uncertain if this is true for Hg as well, although in the surface environment Hg is commonly associated with organic matter. We present 60 new analyses of Hg and I in fluids from volcanoes in Central America, New Zealand, Japan, and the Cascades. A first assessment suggests that Iodine is released to some degree in the early stage of subduction in the forearc, whereas Hg may be released largely below the main volcanic arc. Isotope and trace element signatures of volcanic rocks of the investigated volcanoes show no simple correlation with Hg or Iodine abundances. The acid hot spring fluids of Copahue volcano (Argentina) carried ~ 200 ppt Hg in January 1999, ~80 ppt Hg in March 2008, and 90 ppt Hg in the crater lake in March 1997. The dissolved Hg fluxes from the Copahue hydrothermal system are ~300 gr Hg/year in 1999 and ~130 gr Hg/year in 2008. The bulk hydrothermal Hg flux (particle bound+dissolved) in 2008 was ~ 350 gr Hg/year. The potential Mercury evasion from these hydrothermal spring fluids into the air has not yet been incorporated in these estimates.

  13. Tempo of magma degassing and the genesis of porphyry copper deposits.

    Science.gov (United States)

    Chelle-Michou, Cyril; Rottier, Bertrand; Caricchi, Luca; Simpson, Guy

    2017-01-12

    Porphyry deposits are copper-rich orebodies formed by precipitation of metal sulphides from hydrothermal fluids released from magmatic intrusions that cooled at depth within the Earth's crust. Finding new porphyry deposits is essential because they are our largest source of copper and they also contain other strategic metals including gold and molybdenum. However, the discovery of giant porphyry deposits is hindered by a lack of understanding of the factors governing their size. Here, we use thermal modelling and statistical simulations to quantify the tempo and the chemistry of fluids released from cooling magmatic systems. We confirm that typical arc magmas produce fluids similar in composition to those that form porphyry deposits and conclude that the volume and duration of magmatic activity exert a first order control on the endowment (total mass of deposited copper) of economic porphyry copper deposits. Therefore, initial magma enrichment in copper and sulphur, although adding to the metallogenic potential, is not necessary to form a giant deposit. Our results link the respective durations of magmatic and hydrothermal activity from well-known large to supergiant deposits to their metal endowment. This novel approach can readily be implemented as an additional exploration tool that can help assess the economic potential of magmatic-hydrothermal systems.

  14. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    Science.gov (United States)

    Ruch, J.; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V.

    2016-02-01

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10 km long × 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  15. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    KAUST Repository

    Ruch, Joel

    2016-01-23

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic and structural field data along the strike-slip Central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion; consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activity steadily migrated eastward and currently focus on a 10 km long x 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter-term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the Central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  16. Discovering Mathematics with Magma Reducing the Abstract to the Concrete

    CERN Document Server

    Bosma, Wieb

    2006-01-01

    With a design based on the ontology and semantics of algebra, Magma enables users to rapidly formulate and perform calculations in the more abstract parts of mathematics. This book introduces the role Magma plays in advanced mathematical research through 14 case studies which, in most cases, describe computations underpinning theoretical results.

  17. Zircons reveal magma fluxes in the Earth's crust.

    Science.gov (United States)

    Caricchi, Luca; Simpson, Guy; Schaltegger, Urs

    2014-07-24

    Magma fluxes regulate the planetary thermal budget, the growth of continents and the frequency and magnitude of volcanic eruptions, and play a part in the genesis and size of magmatic ore deposits. However, because a large fraction of the magma produced on the Earth does not erupt at the surface, determinations of magma fluxes are rare and this compromises our ability to establish a link between global heat transfer and large-scale geological processes. Here we show that age distributions of zircons, a mineral often present in crustal magmatic rocks, in combination with thermal modelling, provide an accurate means of retrieving magma fluxes. The characteristics of zircon age populations vary significantly and systematically as a function of the flux and total volume of magma accumulated in the Earth's crust. Our approach produces results that are consistent with independent determinations of magma fluxes and volumes of magmatic systems. Analysis of existing age population data sets using our method suggests that porphyry-type deposits, plutons and large eruptions each require magma input over different timescales at different characteristic average fluxes. We anticipate that more extensive and complete magma flux data sets will serve to clarify the control that the global heat flux exerts on the frequency of geological events such as volcanic eruptions, and to determine the main factors controlling the distribution of resources on our planet.

  18. Slab melting beneath the Cascades Arc driven by dehydration of altered oceanic peridotite

    Science.gov (United States)

    Walowski, Kristina J; Wallace, Paul J.; Hauri, E.H.; Wada, I.; Clynne, Michael A.

    2015-01-01

    Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water—subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate—is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab—hydrated mantle peridotite in the slab interior—compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.

  19. Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini-geodynamic implications

    Science.gov (United States)

    Briqueu, L.; Javoy, M.; Lancelot, J.R.; Tatsumoto, M.

    1986-01-01

    In this comparative study of variations in the isotopic compositions (Sr, Nd, O and Hf) of the calc-alkaline magmas of the largest two volcanoes, Milos and Santorini, of the Aegean arc (eastern Mediterranean) we demonstrate the complexity of the processes governing the evolution of the magmas on the scale both of the arc and of each volcano. On Santorini, the crustal contamination processes have been limited, effecting the magma gradually during its differentiation. The most differentiated lavas (rhyodacite and pumice) are also the most contaminated. On Milos, by contrast, these processes are very extensive. They are expressed in the 143Nd/144Nd vs. 87Sr/86Sr diagram as a continuous mixing curve between a mantle and a crustal end member pole defined by schists and metavolcanic rocks outcropping on these volcanoes. In contrast with Santorini, the least differentiated lavas on Milos are the most contaminated. These isotopic singularities can be correlated with the geodynamic evolution of the Aegean subduction zone, consisting of alternating tectonic phases of distension and compression. The genesis of rhyolitic magmas can be linked to the two phases of distension, and the contamination of the calc-alkaline mantle-derived magmas with the intermediate compressive phase. The isotopic characteristics of uncontaminated calc-alkaline primitive magmas of Milos and Santorini are directly comparable to those of magmas generated in subduction zones for which a contribution of subducted sediments to partial melts from the mantle is suggested, such as in the Aleutian, Sunda, and lesser Antilles island arcs. However, in spite of the importance of the sediment pile in the eastern Mediterranen oceanic crust (6-10 km), the contribution of the subducted terrigenous materials remains of limited amplitude. ?? 1986.

  20. Arc melter demonstration baseline test results

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O'Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process

  1. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia

    Science.gov (United States)

    Wei, Ruihua; Gao, Yongfeng; Xu, Shengchuan; Santosh, M.; Xin, Houtian; Zhang, Zhenmin; Li, Weilong; Liu, Yafang

    2018-05-01

    The architecture and tectonic evolution of the Hegenshan accretionary belt in the Central Asian Orogenic Belt (CAOB) remains debated. Here we present an integrated study of zircon U-Pb isotopic ages, whole rock major-trace elements, and Sr-Nd-Pb isotopic data from the Hegenshan volcanic-plutonic belt in central Inner Mongolia. Field observations and zircon U-Pb ages allow us to divide the intrusive complex into an early phase at 329-306 Ma and a late phase at 304 to 299 Ma. The intrusive bodies belong to two magma series: calc-alkaline rocks with I-type affinity and A-type granites. The early intrusions are composed of granodiorite, monzogranite and porphyritic granite, and the late calc-alkaline intrusions include gabbro though diorite to granodiorite. The calc-alkaline intrusive rocks exhibit a well-defined compositional trend from gabbro to granite, reflecting continuous fractional crystallization. These rocks show obvious enrichment in LILEs and LREEs and relative depletion of HFSEs, typical of subduction-related magma. They also exhibit isotopic characteristics of mantle-derived magmas such as low initial 87Sr/86Sr (0.7029-0.7053), positive ɛNd(t) values (0.06-4.76) and low radiogenic Pb isotopic compositions ((206Pb/204Pb)I = 17.907-19.198, (207Pb/204Pb)I = 15.474-15.555, (208Pb/204Pb)I = 37.408-38.893). The marked consistency in geochemical and isotopic compositions between the intrusive rocks and the coeval Baoligaomiao volcanic rocks define a Carboniferous continental arc. Together with available regional data, we infer that this east-west trending continental arc was generated by northward subduction of the Hegenshan ocean during Carboniferous. The late alkali-feldspar granites and the high-Si rhyolites of the Baoligaomiao volcanic succession show similar geochemical compositions with high SiO2 and variable total alkali contents, and low TiO2, MgO and CaO. These rocks are characterized by unusually low Sr and Ba, and high abundances of Zr, Th, Nb, HREEs

  2. On the time-scales of magmatism at island-arc volcanoes.

    Science.gov (United States)

    Turner, S P

    2002-12-15

    Precise information on time-scales and rates of change is fundamental to an understanding of natural processes and the development of quantitative physical models in the Earth sciences. U-series isotope studies are revolutionizing this field by providing time information in the range 10(2)-10(4) years, which is similar to that of many modern Earth processes. I review how the application of U-series isotopes has been used to constrain the time-scales of magma formation, ascent and storage beneath island-arc volcanoes. Different elements are distilled-off the subducting plate at different times and in different places. Contributions from subducted sediments to island-arc lava sources appear to occur some 350 kyr to 4 Myr prior to eruption. Fluid release from the subducting oceanic crust into the mantle wedge may be a multi-stage process and occurs over a period ranging from a few hundred kyr to less than one kyr prior to eruption. This implies that dehydration commences prior to the initiation of partial melting within the mantle wedge, which is consistent with recent evidence that the onset of melting is controlled by an isotherm and thus the thermal structure within the wedge. U-Pa disequilibria appear to require a component of decompression melting, possibly due to the development of gravitational instabilities. The preservation of large (226)Ra disequilibria permits only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. The evolution from basalt to basaltic andesite probably occurs rapidly during ascent or in magma reservoirs inferred from some geophysical data to lie within the lithospheric mantle. The flux across the Moho is broadly andesitic, and some magmas subsequently stall in more shallow crustal-level magma chambers, where they evolve to more differentiated compositions on time-scales of a few thousand years or less.

  3. Magma heating by decompression-driven crystallization beneath andesite volcanoes.

    Science.gov (United States)

    Blundy, Jon; Cashman, Kathy; Humphreys, Madeleine

    2006-09-07

    Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals to develop a method for tracking pressure-temperature-crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase-melt geothermometry to determine the temperature. These data are allied to ilmenite-magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 degrees C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

  4. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Science.gov (United States)

    Groves, David I.; Goldfarb, Richard J.; Santosh, M.

    2016-01-01

    It is quite evident that it is not anomalous metal transport, nor unique depositional conditions, nor any single factor at the deposit scale, that dictates whether a mineral deposit becomes a giant or not. A hierarchical approach thus is required to progressively examine controlling parameters at successively decreasing scales in the total mineral system to understand the location of giant gold deposits in non-arc environments. For giant orogenic, intrusion-related gold systems (IRGS) and Carlin-type gold deposits and iron oxide-copper-gold (IOCG) deposits, there are common factors among all of these at the lithospheric to crustal scale. All are sited in giant gold provinces controlled by complex fundamental fault or shear zones that follow craton margins or, in the case of most Phanerozoic orogenic giants, define the primary suture zones between tectonic terranes. Giant provinces of IRGS, IOCG, and Carlin-type deposits require melting of metasomatized lithosphere beneath craton margins with ascent of hybrid lamprophyric to granitic magmas and associated heat flux to generate the giant province. The IRGS and IOCG deposits require direct exsolution of volatile-rich magmatic-hydrothermal fluids, whereas the association of such melts with Carlin-type ores is more indirect and enigmatic. Giant orogenic gold provinces show no direct relationship to such magmatism, forming from metamorphic fluids, but show an indirect relationship to lamprophyres that reflect the mantle connectivity of controlling first-order structures.

  5. Longevity of magma in the near subsurface

    International Nuclear Information System (INIS)

    Marsh, B.D.; Resmini, R.G.

    1992-01-01

    Small, sporadic occurrences of basaltic volcanism are particularly difficult to evaluate in terms of long term threat to mankind because of their short overall eruptive history. Insight into future eruptive vigor and possible subsurface magma storage may be furnished by studying the ages of crystals in the eruptive products themselves. In this paper, the authors do this by applying the method of crystal size distribution theory (CSD) to a stack of basaltic lavas within the Nevada test site; namely the Dome Mtn. lavas. Preliminary results suggest a pre-eruptive residence time of 10 - 20 years, decreasing with decreasing age of lava within the sequence. These times are similar to those found by M.T. Mangan for the 1959 Kilauea (Hawaii) eruptions, and may suggest a relatively vigorous magmatic system at this time some 8 m.y. ago. Work is progressing on a greatly expanded CSD analysis of the Dome Mtn. lavas

  6. Underwater plasma arc cutting

    International Nuclear Information System (INIS)

    Leautier, R.; Pilot, G.

    1991-01-01

    This report describes the work done to develop underwater plasma arc cutting techniques, to characterise aerosols from cutting operations on radioactive and non-radioactive work-pieces, and to develop suitable ventilation and filtration techniques. The work has been carried out in the framework of a contract between CEA-CEN Cadarache and the Commission of European Communities. Furthermore, this work has been carried out in close cooperation with CEA-CEN Saclay mainly for secondary emissions and radioactive analysis. The contract started in May 1986 and was completed in December 1988 by a supplementary agreement. This report has been compiled from several progress reports submitted during the work period, contains the main findings of the work and encloses the results of comparative tests on plasma arc cutting

  7. Permeability During Magma Expansion and Compaction

    Science.gov (United States)

    Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.

    2017-12-01

    Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.

  8. Arc cathode spots

    International Nuclear Information System (INIS)

    Schrade, H.O.

    1989-01-01

    Arc spots are usually highly unstable and jump statistically over the cathode surface. In a magnetic field parallel to the surface, preferably they move in the retrograde direction; i.e., opposite to the Lorentzian rule. If the field is inclined with respect to the surface, the spots drift away at a certain angle with respect to the proper retrograde direction (Robson drift motion). These well-known phenomena are explained by one stability theory

  9. Variations in magma supply rate at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Dvorak, John J.; Dzurisin, Daniel

    1993-01-01

    When an eruption of Kilauea lasts more than 4 months, so that a well-defined conduit has time to develop, magma moves freely through the volcano from a deep source to the eruptive site at a constant rate of 0.09 km3/yr. At other times, the magma supply rate to Kilauea, estimated from geodetic measurements of surface displacements, may be different. For example, after a large withdrawal of magma from the summit reservoir, such as during a rift zone eruption, the magma supply rate is high initially but then lessens and exponentially decays as the reservoir refills. Different episodes of refilling may have different average rates of magma supply. During four year-long episodes in the 1960s, the annual rate of refilling varied from 0.02 to 0.18 km3/yr, bracketing the sustained eruptive rate of 0.09 km3/yr. For decade-long or longer periods, our estimate of magma supply rate is based on long-term changes in eruptive rate. We use eruptive rate because after a few dozen eruptions the volume of magma that passes through the summit reservoir is much larger than the net change of volume of magma stored within Kilauea. The low eruptive rate of 0.009 km3/yr between 1840 and 1950, compared to an average eruptive rate of 0.05 km3/yr since 1950, suggests that the magma supply rate was lower between 1840 and 1950 than it has been since 1950. An obvious difference in activity before and since 1950 was the frequency of rift zone eruptions: eight rift zone eruptions occurred between 1840 and 1950, but more than 20 rift zone eruptions have occurred since 1950. The frequency of rift zone eruptions influences magma supply rate by suddenly lowering pressure of the summit magma reservoir, which feeds magma to rift zone eruptions. A temporary drop of reservoir pressure means a larger-than-normal pressure difference between the reservoir and a deeper source, so magma is forced to move upward into Kilauea at a faster rate.

  10. Drilling Magma for Science, Volcano Monitoring, and Energy

    Science.gov (United States)

    Eichelberger, J. C.; Lavallée, Y.; Blankenship, D.

    2017-12-01

    Magma chambers are central to understanding magma evolution, formation of continental crust, volcanism, and renewal of hydrothermal systems. Information from geology, petrology, laboratory experiments, and geophysical imagery has led to little consensus except a trend to see magma systems as being crystal-dominant (mush) rather than melt dominant. At high melt viscosities, crystal-liquid fractionation may be achieved by separation of melt from mush rather than crystals from liquid suspension. That the dominant volume has properties more akin to solid than liquid might explain the difficulty in detecting magma geophysically. Recently, geothermal drilling has intersected silicic magma at the following depths and SiO2 contents are: Puna, Hawaii, 2.5 km, 67 wt%; Menengai, Kenya 2.1 km, 67 wt%; Krafla, Iceland, 2.1 km, 75 wt%. Some similarities are: 1) Drillers encountered a "soft", sticky formation; 2) Cuttings or chips of clear quenched glass were recovered; 3) The source of the glass flowed up the well; 4) Transition from solid rock to recovering crystal-poor glass occurred in tens of meters, apparently without an intervening mush zone. Near-liquidus magma at the roof despite rapid heat loss there presents a paradox that may be explained by very recent intrusion of magma, rise of liquidus magma to the roof replacing partially crystallized magma, or extremely skewed representation of melt over mush in cuttings (Carrigan et al, this session). The latter is known to occur by filter pressing of ooze into lava lake coreholes (Helz, this session), but cannot be verified in actual magma without coring. Coring to reveal gradients in phase composition and proportions is required for testing any magma chamber model. Success in drilling into and controlling magma at all three locations, in coring lava lakes to over 1100 C, and in numerical modeling of coring at Krafla conditions (Su, this session) show this to be feasible. Other unprecedented experiments are using the known

  11. Aperture modulated arc therapy

    International Nuclear Information System (INIS)

    Crooks, S M; Wu, Xiaodong; Takita, C; Watzich, M; Xing Lei

    2003-01-01

    We show that it is possible to translate an intensity modulated radiation therapy (IMRT) treatment plan and deliver it as a single arc. This technique is referred to in this paper as aperture modulation arc therapy (AMAT). During this arc, the MLC leaves do not conform to the projection of the target PTV and the machine output of the accelerator has a constant value. Dose was calculated using the CORVUS 4.0 IMRT system, which uses a pencil beam dose algorithm, and treatments were delivered using a Varian 2100C/D Clinac. Results are presented for a head and neck and a prostate case, showing the equivalence of the IMRT and the translated AMAT delivery. For a prostate AMAT delivery, coronal plane film dose for the IMRT and AMAT deliveries agreed within 7.19 ± 6.62%. For a meningioma the coronal plane dose distributions were similar to a value of 4.6 ± 6.62%. Dose to the isocentre was measured as being within 2% of the planned value in both cases

  12. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  13. The Upper- to Middle-Crustal Section of the Alisitos Oceanic Arc, (Baja, Mexico): an Analog of the Izu-Bonin-Marianas (IBM) Arc

    Science.gov (United States)

    Medynski, S.; Busby, C.; DeBari, S. M.; Morris, R.; Andrews, G. D.; Brown, S. R.; Schmitt, A. K.

    2016-12-01

    The Rosario segment of the Cretaceous Alisitos arc in Baja California is an outstanding field analog for the Izu-Bonin-Mariana (IBM) arc, because it is structurally intact, unmetamorphosed, and has superior three-dimensional exposures of an upper- to middle-crustal section through an extensional oceanic arc. Previous work1, done in the pre-digital era, used geologic mapping to define two phases of arc evolution, with normal faulting in both phases: (1) extensional oceanic arc, with silicic calderas, and (2) oceanic arc rifting, with widespread diking and dominantly mafic effusions. Our new geochemical data match the extensional zone immediately behind the Izu arc front, and is different from the arc front and rear arc, consistent with geologic relations. Our study is developing a 3D oceanic arc crustal model, with geologic maps draped on Google Earth images, and GPS-located outcrop information linked to new geochemical, geochronological and petrographic data, with the goal of detailing the relationships between plutonic, hypabyssal, and volcanic rocks. This model will be used by scientists as a reference model for past (IBM-1, 2, 3) and proposed IBM (IBM-4) drilling activities. New single-crystal zircon analysis by TIMS supports the interpretation, based on batch SIMS analysis of chemically-abraded zircon1, that the entire upper-middle crustal section accumulated in about 1.5 Myr. Like the IBM, volcanic zircons are very sparse, but zircon chemistry on the plutonic rocks shows trace element compositions that overlap to those measured in IBM volcanic zircons by A. Schmitt (unpublished data). Zircons have U-Pb ages up to 20 Myr older than the eruptive age, suggesting remelting of older parts of the arc, similar to that proposed for IBM (using different evidence). Like IBM, some very old zircons are also present, indicating the presence of old crustal fragments, or sediments derived from them, in the basement. However, our geochemical data show that the magmas are

  14. MAGMA: analysis of two-channel microarrays made easy.

    Science.gov (United States)

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  15. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    Science.gov (United States)

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-10-28

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  16. Crystallization Conditions at Cascade and Other Arc Volcanoes: The Role of Recharge, and Ultimate, Proximal and Immediate Causes of Eruption

    Science.gov (United States)

    Putirka, K. D.

    2016-12-01

    A number of hypotheses have been offered to explain why volcanoes erupt. These include magma mixing, mafic recharge, or partial crystallization, any of which can drive parts or all of a system to vapor saturation, and so add to a magma's buoyancy. Age dates indicate long pre-eruption storage times for felsic magmas erupted at arcs, indicating that mafic recharge magmas, which can reinvigorate such systems, is a possible eruption trigger. However, plutonic systems reveal numerous recharge events that have no obvious ties to eruption (Coint et al. 2013; Putirka et al. 2014). And crystallization conditions at some arc systems support the implicit view, that recharge might be a necessary, but not a sufficient condition for eruption. At several Cascade volcanoes, Cpx and Amp crystals record coolings of 100-300oC. The Cpx grains derive exclusively from mafic enclaves, while Amp grains derive from both host and enclave materials. These considerable coolings call for a time lag following recharge, and indicate that vapor saturation is a proximal, although not necessarily an immediate cause of eruption. But we cannot discount recharge altogether. At the Cascades and at other arcs, Cpx crystalizes throughout the middle and upper crust, mostly from the surface down to 15 km. And high Fo olivine grains provide evidence for very hot magmas that intrude the upper mantle and lower crust, and possibly the middle crust, if hydrous. Volcanic pathways thus clearly extend into the middle crust, and at times, well below the Moho. It is unclear to what extent these deep pathways are hydraulically connected to the surface, or the role of deep-seated processes in initiating or sustaining eruptions. Progress in understanding these pathways, and triggering mechanisms, requires our differentiating "ultimate", "proximal" and "immediate" causes, and determining which of various magmatic processes provide necessary or sufficient conditions for eruption.

  17. Bonding of xenon to oxygen in magmas at depth

    Science.gov (United States)

    Leroy, Clémence; Sanloup, Chrystèle; Bureau, Hélène; Schmidt, Burkhard C.; Konôpková, Zuzana; Raepsaet, Caroline

    2018-02-01

    The field of noble gases chemistry has witnessed amazing advances in the last decade with over 100 compounds reported including Xe oxides and Xe-Fe alloys stable at the pressure-temperature conditions of planetary interiors. The chemistry of Xe with planetary materials is nonetheless still mostly ignored, while Xe isotopes are used to trace a variety of key planetary processes from atmosphere formation to underground nuclear tests. It is indeed difficult to incorporate the possibility of Xe reactivity at depth in isotopic geochemical models without a precise knowledge of its chemical environment. The structure of Xe doped hydrous silica-rich melts is investigated by in situ high energy synchrotron X-ray diffraction using resistive heating diamond anvil cells. Obtained pair distribution functions reveal the oxidation of Xe between 0.2 GPa and 4 GPa at high T up to 1000 K. In addition to the usual interatomic distances, a contribution at 2.05 ± 0.05 Å is observed. This contribution is not observed in the undoped melt, and is interpreted as the Xe-O bond, with a coordination number of about 12 consistent with Xe insertion in rings of the melt structure. Xe solubility measurements by electron microprobe and particle induced X-rays emission analysis confirm that Xe and Ar have similar solubility values in wt% in silicate melts. These values are nonetheless an order of magnitude higher than those theoretically calculated for Xe. The formation of Xe-O bonds explains the enhanced solubility of Xe in deep continental crust magmas, revealing a mechanism that could store Xe and fractionate its isotopes. Xenon is indeed atypical among noble gases, the atmosphere being notably depleted in elemental Xe, and very strongly depleted in Xe light isotopes. These observations are known as the 'missing' Xe paradox, and could be solved by the present findings.

  18. Magma paths at Piton de la Fournaise Volcano

    OpenAIRE

    Michon , Laurent; Ferrazzini , Valérie; Di Muro , Andrea

    2016-01-01

    International audience; Several patterns of magma paths have been proposed since the 1980s for Piton de la Fournaise volcano. Given the significant differences, which are presented here, we propose a reappraisal of the magma intrusion paths using a 17-years-long database of volcano-tectonic seismic events and a detailed mapping of the scoria cones. At the edifice scale, the magma propagates along two N120 trending rift zones. They are wide, linear, spotted by small to large scoria cones and r...

  19. Magma Expansion and Fragmentation in a Propagating Dike (Invited)

    Science.gov (United States)

    Jaupart, C. P.; Taisne, B.

    2010-12-01

    The influence of magma expansion due to volatile exsolution and gas dilation on dike propagation is studied using a new numerical code. Many natural magmas contain sufficient amounts of volatiles for fragmentation to occur well below Earth's surface. Magma fragmentation has been studied for volcanic flows through open conduits but it should also occur within dikes that rise towards Earth's surface. We consider the flow of a volatile-rich magma in a hydraulic fracture. The mixture of melt and gas is treated as a compressible viscous fluid below the fragmentation level and as a gas phase carrying melt droplets above it. A numerical code solves for elastic deformation of host rocks, the flow of the magmatic mixture and fracturing at the dike tip. With volatile-free magma, a dike fed at a constant rate in a uniform medium adopts a constant shape and width and rises at a constant velocity. With volatiles involved, magma expands and hence the volume flux of magma increases. With no fragmentation, this enhanced flux leads to acceleration of the dike. Simple scaling laws allow accurate predictions of dike width and ascent rate for a wide range of conditions. With fragmentation, dike behavior is markedly different. Due to the sharp drop of head loss that occurs in gas-rich fragmented material, large internal overpressures develop below the tip and induce swelling of the nose region, leading to deceleration of the dike. Thus, the paradoxical result is that, with no viscous impediment on magma flow and a large buoyancy force, the dike stalls. This process may account for some of the tuffisite veins and intrusions that are found in and around magma conduits, notably in the Unzen drillhole, Japan. We apply these results to the two-month long period of volcanic unrest that preceded the May 1980 eruption of Mount St Helens. An initial phase of rapid earthquake migration from the 7-8 km deep reservoir to shallow levels was followed by very slow progression of magma within the

  20. Short-circuiting magma differentiation from basalt straight to rhyolite?

    Science.gov (United States)

    Ruprecht, P.; Winslow, H.

    2017-12-01

    Silicic magmas are the product of varying degrees of crystal fractionation and crustal assimilation/melting. Both processes lead to differentiation that is step-wise rather than continuous for example during melt separation from a crystal mush (Dufek and Bachmann, 2010). However, differentiation is rarely efficient enough to evolve directly from a basaltic to a rhyolitic magma. At Volcán Puyehue-Cordón Caulle, Chile, the magma series is dominated by crystal fractionation where mixing trends between primitive and felsic end members in the bulk rock compositions are almost absent (e.g. P, FeO, TiO2 vs. SiO2). How effective fraction is in this magmatic system is not well-known. The 2011-12 eruption at Cordón Caulle provides new constraints that rhyolitic melts may be derived directly from a basaltic mush. Minor, but ubiquitous mafic, crystal-rich enclaves co-erupted with the predominantly rhyolitic near-aphyric magma. These enclaves are among the most primitive compositions erupted at Puyehue-Cordón Caulle and geochemically resemble closely basaltic magmas that are >10 ka old (Singer et al. 2008) and that have been identified as a parental tholeiitic mantle-derived magma (Schmidt and Jagoutz, 2017) for the Southern Andean Volcanic Zone. The vesiculated nature, the presence of a microlite-rich groundmass, and a lack of a Eu anomaly in these encalves suggest that they represent recharge magma/mush rather than sub-solidus cumulates and therefore have potentially a direct petrogenetic link to the erupted rhyolites. Our results indicate that under some conditions crystal fractionation can be very effective and the presence of rhyolitic magmas does not require an extensive polybaric plumbing system. Instead, primitive mantle-derived magmas source directly evolved magmas. In the case, of the magma system beneath Puyehue-Cordón Caulle, which had three historic rhyolitic eruptions (1921-22, 1960, 2011-12) these results raise the question whether rhyolite magma extraction

  1. Genesis of felsic plutonic magmas and their igneous enclaves

    DEFF Research Database (Denmark)

    Clemens, John D.; Maas, Roland; Waight, Tod Earle

    2016-01-01

    -type Pyalong pluton was emplaced, apparently along an east-west-orientated fracture zone. Around 367 Ma, the main I-type Baynton pluton intruded as numerous shallow-dipping sheets. The last plutonic event was the intrusion of the broad, thin, flat-lying, and crosscutting sheet of the I-type Beauvallet pluton...... the relatively high abundance of igneous-textured microgranular enclaves (MEs). The MEs show neither chemical nor isotope mixing trends with each other or with the host magmas. Variations in the Baynton magmas were derived from the heterogeneity of the source terrane, with individual magma batches formed from...

  2. Modified IRC bench-scale arc melter for waste processing

    International Nuclear Information System (INIS)

    Eddy, T.L.; Sears, J.W.; Grandy, J.D.; Kong, P.C.; Watkins, A.D.

    1994-03-01

    This report describes the INEL Research Center (IRC) arc melter facility and its recent modifications. The arc melter can now be used to study volatilization of toxic and high vapor pressure metals and the effects of reducing and oxidizing (redox) states in the melt. The modifications include adding an auger feeder, a gas flow control and monitoring system, an offgas sampling and exhaust system, and a baghouse filter system, as well as improving the electrode drive, slag sampling system, temperature measurement and video monitoring and recording methods, and oxidation lance. In addition to the volatilization and redox studies, the arc melter facility has been used to produce a variety of glass/ceramic waste forms for property evaluation. Waste forms can be produced on a daily basis. Some of the melts performed are described to illustrate the melter's operating characteristics

  3. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  4. Why Is There an Abrupt Transition from Solid Rock to Low Crystallinity Magma in Drilled Magma Bodies?

    Science.gov (United States)

    Eichelberger, J. C.; Carrigan, C. R.; Sun, Y.; Lavallée, Y.

    2017-12-01

    We report on a preliminary evaluation, from basic principles of heat and mass transfer, on the unexpectedly abrupt transition from cuttings of solid rock to fragments of crystal poor glass during drilling into magma bodies. Our analysis is based on conditions determined and inferred for the 2009 IDDP-1 well in Krafla Caldera, which entered apparently liquidus rhyolite magma at about 900oC at a depth of 2104 m. Simple conduction would predict some 30 m of crystallization and partial crystallization since the latest time the magma could have been intruded, approximately 30 years prior to discovery by drilling. Option 1: The expected crystallization of magma has occurred but interstitial melt remains. The pressure difference between lithostatic load of about 50 MPa on the mush and 20 MPa hydrostatic pressure in the well causes pore melt to flow from the permeable mush into the borehole, where it becomes the source of the quenched melt chips. To be viable, this mechanism must work over the time frame of a day. Option 2: The expected crystallization is occurring, but high Rayleigh number thermal convection in the magma chamber continuously displaces crystallizing roof magma by liquidus magma from the interior of the body. To be viable, this mechanism must result in overturning magma in the chamber on a time scale that is much shorter than that of crystallization. Option 3: Flow-induced crystal migration away from zones of high shear created during drilling into magma may preferentially produce low-crystal-content melt at the boundary of the borehole, which is then sampled.

  5. 226Ra-230Th Disequilibria in Magmas from Llaima and Lonquimay Volcanoes, Chile: On the Roles and Rates of Subvolcanic Magmatic Processes.

    Science.gov (United States)

    Reubi, O.; Cooper, L. B.; Dungan, M. A.; Bourdon, B.

    2014-12-01

    226Ra excesses in mafic arc magmas are generally attributed to recent (contamination had a secondary influence on 226Ra-230Th disequilibria. Magmas with the highest AFC contribution have 226Ra-230Th close to equilibrium, implying that (226Ra-230Th) are mostly affected by either differentiation on time scales of ~8 kyr, or more likely, mixing with mush bodies several kyr old. Lonquimay magmas (52 to 64 wt% SiO2) are almost aphyric. Their evolution was controlled by fractional crystallization with limited crustal contamination. (226Ra-230Th) range from moderate 226Ra excesses to small deficits, and are negatively correlated with Ba/Th and MgO. These observations are difficult to reconcile with only slab-fluid addition and mantle melting. We posit that this (226Ra-230Th) range results from diffusive Ra-exchange between young recharge melts and an old crystal mush. A similar process may also explain 226Ra deficits at some other SVZ volcanoes. Thus (226Ra-230Th) in erupted magmas reflect modification of mantle-derived signatures by open-system magmatic processes in the crust. 1Sigmarsson et al., 2002, Earth and Planet. Sc. Lett. 196, 189-196. 2 Reubi et al., 2011, Earth and Planet. Sc. Lett. 303, 37-47.

  6. Physical and chemical consequences of crustal melting in fossil mature intra-oceanic arcs

    Science.gov (United States)

    Berger, J.; Burg, J.-P.

    2012-04-01

    Seismic velocity models of active intra-oceanic arcs show roots with densities and P-wave velocities intermediate to classical lower oceanic crust (density; ~3.0, Vp: ~7.0 km/s) and uppermost harzburgitic mantle (density: 3.2-3.3, Vp: 7.9-8.0 km/s). Most studies on active and fossil exhumed island arcs interpret the petrological nature of this root as ultramafic cumulates crystallized from primitive melts and/or as pyroxenites formed via basalt-peridotite reactions. Igneous cumulates and pyroxenites have densities close to or above that of uppermost mantle rocks; they can consequently undergo gravity-driven delamination, a process thought to drive the bulk composition of the arc toward an andesitic, continental crust-like composition. Dehydration and melting reactions are reported from exposed arc roots (Jijal complex in Kohistan; Amalaoulaou arc in Mali; Fiordland arc in New-Zealand). Intense influx of mantle-derived basaltic magmas at high pressure in a thickening island arc can enable lower crustal rocks to locally cross the dehydration-melting solidus of hydrous subalkaline basalts. Thermodynamic modeling using Perple_X, geochemical analysis and compilation of experimental and field data have been combined to constrain processes, conditions and consequences of intra-arc melting. The position of the solidus in a P-T grid is strongly dependent of the bulk water content: at 1 GPa, it is as low as 750 °C for water saturated hornblende-gabbros (>1 wt% H2O) and 830°C for gabbros with 0.1 wt% H2O. Incipient melting (F conditions to trigger gravity-driven delamination of the root and could lead to introduction of fertile arc garnet pyroxenites within the upper mantle. However, in Kohistan and at Amalaoulaou, the dense garnet-clinopyroxene residues are dispersed in the arc roots; they are intermingled with hornblendite and pyroxenite bodies. The small density contrast between garnet granulites and the harzburgitic mantle, and the low volumes of garnet

  7. Correlation methods in cutting arcs

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L; Kelly, H, E-mail: prevosto@waycom.com.ar [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina)

    2011-05-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  8. Correlation methods in cutting arcs

    International Nuclear Information System (INIS)

    Prevosto, L; Kelly, H

    2011-01-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  9. Gas tungsten arc welder

    International Nuclear Information System (INIS)

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable grinder, co-axial with the electrode, is provided in the enclosure for refurbishing the used electrode between welds. The specification also discloses means for loading of the cladding with fuel pellets and for placement of reflectors, gas capsules and end caps. Gravity feed conveyor and inerting means are also described. (author)

  10. Community Structure Comparisons of Hydrothermal Vent Microbial Mats Along the Mariana Arc and Back-arc

    Science.gov (United States)

    Hager, K. W.; Fullerton, H.; Moyer, C. L.

    2015-12-01

    Hydrothermal vents along the Mariana Arc and back-arc represent a hotspot of microbial diversity that has not yet been fully recognized. The Mariana Arc and back-arc contain hydrothermal vents with varied vent effluent chemistry and temperature, which translates to diverse community composition. We have focused on iron-rich sites where the dominant primary producers are iron oxidizing bacteria. Because microbes from these environments have proven elusive in culturing efforts, we performed culture independent analysis among different microbial communities found at these hydrothermal vents. Terminal-restriction fragment length polymorphism (T-RFLP) and Illumina sequencing of small subunit ribosomal gene amplicons were used to characterize community members and identify samples for shotgun metagenomics. Used in combination, these methods will better elucidate the composition and characteristics of the bacterial communities at these hydrothermal vent systems. The overarching goal of this study is to evaluate and compare taxonomic and metabolic diversity among different communities of microbial mats. We compared communities collected on a fine scale to analyze the bacterial community based on gross mat morphology, geography, and nearby vent effluent chemistry. Taxa richness and evenness are compared with rarefaction curves to visualize diversity. As well as providing a survey of diversity this study also presents a juxtaposition of three methods in which ribosomal small subunit diversity is compared with T-RFLP, next generation amplicon sequencing, and metagenomic shotgun sequencing.

  11. Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans

    Science.gov (United States)

    Ikoma, M.; Elkins-Tanton, L.; Hamano, K.; Suckale, J.

    2018-06-01

    The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.

  12. Understanding the rheology of two and three-phase magmas

    Science.gov (United States)

    Coats, R.; Cai, B.; Kendrick, J. E.; Wallace, P. A.; Hornby, A. J.; Miwa, T.; von Aulock, F. W.; Ashworth, J. D.; Godinho, J.; Atwood, R. C.; Lee, P. D.; Lavallée, Y.

    2017-12-01

    The rheology of magma plays a fundamental role in determining the style of a volcanic eruption, be it explosive or effusive. Understanding how magmas respond to changes in stress/ strain conditions may help to enhance eruption forecast models. The presence of crystals and bubbles in magmas alter the viscosity of suspensions and favor a non-Newtonian response. Thus, with the aim of grasping the rheological behavior of volcanic materials, uniaxial compressive tests were performed on natural and synthetic samples. A suite of variably porous (10-32 vol.%), highly crystalline ( 50 vol.%) dacite from the 1991-95 eruption of Mt Unzen, Japan, was selected as the natural material, while synthetic samples were sintered with desired porosities (Diamond Light Source. Unexpectedly, these observations suggest that fractures nucleate in crystals due to crystal interactions, before propagating through the interstitial melt. This ongoing study promises to uncover the way crystal-bearing magmas flow or fail, necessary to constrain magmatic processes and volcanic hazards.

  13. Implications of magma transfer between multiple reservoirs on eruption cycling.

    Science.gov (United States)

    Elsworth, Derek; Mattioli, Glen; Taron, Joshua; Voight, Barry; Herd, Richard

    2008-10-10

    Volcanic eruptions are episodic despite being supplied by melt at a nearly constant rate. We used histories of magma efflux and surface deformation to geodetically image magma transfer within the deep crustal plumbing of the Soufrière Hills volcano on Montserrat, West Indies. For three cycles of effusion followed by discrete pauses, supply of the system from the deep crust and mantle was continuous. During periods of reinitiated high surface efflux, magma rose quickly and synchronously from a deflating mid-crustal reservoir (at about 12 kilometers) augmented from depth. During repose, the lower reservoir refilled from the deep supply, with only minor discharge transiting the upper chamber to surface. These observations are consistent with a model involving the continuous supply of magma from the deep crust and mantle into a voluminous and compliant mid-crustal reservoir, episodically valved below a shallow reservoir (at about 6 kilometers).

  14. Production and Preservation of Sulfide Layering in Mercury's Magma Ocean

    Science.gov (United States)

    Boukare, C.-E.; Parman, S. W.; Parmentier, E. M.; Anzures, B. A.

    2018-05-01

    Mercury's magma ocean (MMO) would have been sulfur-rich. At some point during MMO solidification, it likely became sulfide saturated. Here we present physiochemical models exploring sulfide layer formation and stability.

  15. Seismic Tremors and Three-Dimensional Magma Wagging

    Science.gov (United States)

    Liao, Y.; Bercovici, D.

    2015-12-01

    Seismic tremor is a feature shared by many silicic volcanoes and is a precursor of volcanic eruption. Many of the characteristics of tremors, including their frequency band from 0.5 Hz to 7 Hz, are common for volcanoes with very different geophysical and geochemical properties. The ubiquitous characteristics of tremor imply that it results from some generation mechanism that is common to all volcanoes, instead of being unique to each volcano. Here we present new analysis on the magma-wagging mechanism that has been proposed to generate tremor. The model is based on the suggestion given by previous work (Jellinek & Bercovici 2011; Bercovici et.al. 2013) that the magma column is surrounded by a compressible, bubble-rich foam annulus while rising inside the volcanic conduit, and that the lateral oscillation of the magma inside the annulus causes observable tremor. Unlike the previous two-dimensional wagging model where the displacement of the magma column is restricted to one vertical plane, the three-dimensional model we employ allows the magma column to bend in different directions and has angular motion as well. Our preliminary results show that, without damping from viscous deformation of the magma column, the system retains angular momentum and develops elliptical motion (i.e., the horizontal displacement traces an ellipse). In this ''inviscid'' limit, the magma column can also develop instabilities with higher frequencies than what is found in the original two-dimensional model. Lateral motion can also be out of phase for various depths in the magma column leading to a coiled wagging motion. For the viscous-magma model, we predict a similar damping rate for the uncoiled magma column as in the two-dimensional model, and faster damping for the coiled magma column. The higher damping thus requires the existence of a forcing mechanism to sustain the oscillation, for example the gas-driven Bernoulli effect proposed by Bercovici et al (2013). Finally, using our new 3

  16. Magma chamber interaction giving rise to asymmetric oscillations

    Science.gov (United States)

    Walwer, D.; Ghil, M.; Calais, E.

    2017-12-01

    Geodetic time series at four volcanoes (Okmok, Akutan, Shishaldin, and Réunion) are processed using Multi-channel Singular Spectrum Analysis (M-SSA) and reveal sawtooth-shaped oscillations ; the latter are characterized by short intervals of fast inflations followed by longer intervals of slower deflations. At Okmok and Akutan, the oscillations are first damped and then accentuated. At Okmok, the increase in amplitude of the oscillations is followed by an eruption. We first show that the dynamics of these four volcanoes bears similarities with that of a simple nonlinear, dissipative oscillator, indicating that the inflation-deflation episodes are relaxation oscillations. These observations imply that ab initio dynamical models of magma chambers should possess an asymmetric oscillatory regime. Next, based on the work of Whitehead and Helfrich [1991], we show that a model of two magma chambers — connected by a cylindrical conduit in which the magma viscosity depends on temperature — gives rise to asymmetric overpressure oscillations in the magma reservoirs. These oscillations lead to surface deformations that are consistent with those observed at the four volcanoes in this study. This relaxation oscillation regime occurs only when the vertical temperature gradient in the host rock between the two magma chambers is large enough and when the magma flux entering the volcanic system is sufficiently high. The magma being supplied by a deeper source region, the input flux depends on the pressure difference between the source and the deepest reservoir. When this difference is not sufficiently high, the magma flux exponentially decreases, leading to damped oscillations as observed at Akutan and Okmok. The combination of observational and modeling results clearly supports the role of relaxation oscillations in the dynamics of volcanic systems.

  17. Crystalline heterogeneities and instabilities in thermally convecting magma chamber

    Science.gov (United States)

    Culha, C.; Suckale, J.; Qin, Z.

    2016-12-01

    A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.

  18. Experimental Fractional Crystallization of the Lunar Magma Ocean

    Science.gov (United States)

    Rapp, J. F.; Draper, D. S.

    2012-01-01

    The current paradigm for lunar evolution is of crystallization of a global scale magma ocean, giving rise to the anorthositic crust and mafic cumulate interior. It is thought that all other lunar rocks have arisen from this differentiated interior. However, until recently this paradigm has remained untested experimentally. Presented here are the first experimental results of fractional crystallization of a Lunar Magma Ocean (LMO) using the Taylor Whole Moon (TWM) bulk lunar composition [1].

  19. Magma Dynamics at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2005-01-01

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event

  20. Magma Dynamics at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2005-08-29

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event.

  1. The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma

    Science.gov (United States)

    Huppert, Herbert E.; Sparks, R. Stephen J.

    1981-09-01

    This paper describes a fluid dynamical investigation of the influx of hot, dense ultrabasic magma into a reservoir containing lighter, fractionated basaltic magma. This situation is compared with that which develops when hot salty water is introduced under cold fresh water. Theoretical and empirical models for salt/water systems are adapted to develop a model for magmatic systems. A feature of the model is that the ultrabasic melt does not immediately mix with the basalt, but spreads out over the floor of the chamber, forming an independent layer. A non-turbulent interface forms between this layer and the overlying magma layer across which heat and mass are transferred by the process of molecular diffusion. Both layers convect vigorously as heat is transferred to the upper layer at a rate which greatly exceeds the heat lost to the surrounding country rock. The convection continues until the two layers have almost the same temperature. The compositions of the layers remain distinct due to the low diffusivity of mass compared to heat. The temperatures of the layers as functions of time and their cooling rate depend on their viscosities, their thermal properties, the density difference between the layers and their thicknesses. For a layer of ultrabasic melt (18% MgO) a few tens of metres thick at the base of a basaltic (10% MgO) magma chamber a few kilometres thick, the temperature of the layers will become nearly identical over a period of between a few months and a few years. During this time the turbulent convective velocities in the ultrabasic layer are far larger than the settling velocity of olivines which crystallise within the layer during cooling. Olivines only settle after the two layers have nearly reached thermal equilibrium. At this stage residual basaltic melt segregates as the olivines sediment in the lower layer. Depending on its density, the released basalt can either mix convectively with the overlying basalt layer, or can continue as a separate

  2. Electric arc welding gun

    Science.gov (United States)

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  3. Increase in the efficiency of electric melting of pellets in an arc furnace with allowance for the energy effect of afterburning of carbon oxide in slag using fuel-oxygen burners

    Science.gov (United States)

    Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.

    2015-12-01

    The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.

  4. Calculation of gas release from DC and AC arc furnaces in a foundry

    Science.gov (United States)

    Krutyanskii, M. M.; Nekhamin, S. M.; Rebikov, E. M.

    2016-12-01

    A procedure for the calculation of gas release from arc furnaces is presented. The procedure is based on the stoichiometric ratios of the oxidation of carbon in liquid iron during the oxidation heat period and the oxidation of iron from a steel charge by oxygen in the period of solid charge melting during the gas exchange of the furnace cavity with the external atmosphere.

  5. The inception of a Paleotethyan magmatic arc in Iberia

    Directory of Open Access Journals (Sweden)

    M.F. Pereira

    2015-03-01

    Full Text Available This paper presents a compilation of recent U-Pb (zircon ages of late Carboniferous–early Permian (LC–EP calc-alkaline batholiths from Iberia, together with a petrogenetic interpretation of magma generation based on comparisons with Mesozoic and Tertiary Cordilleran batholiths and experimental melts. Zircon U-Pb ages distributed over the range ca. 315–280 Ma, indicate a linkage between calc-alkaline magmatism, Iberian orocline generation and Paleotethys subduction. It is also shown that Iberian LC–EP calc-alkaline batholiths present unequivocal subduction-related features comparable with typical Cordilleran batholiths of the Pacific Americas active margin, although geochemical features were partially obscured by local modifications of magmas at the level of emplacement by country rock assimilation. When and how LC–EP calc-alkaline batholiths formed in Iberia is then discussed, and a new and somewhat controversial interpretation for their sources and tectonic setting (plume-assisted relamination is suggested. The batholiths are proposed to have formed during the subduction of the Paleotethys oceanic plate (Pangaea self-subduction and, consequently, they are unrelated to Variscan collision. The origin of the Iberian batholiths is related to the Eurasian active margin and probably represents the inception of a Paleotethyan arc in the core of Pangaea.

  6. Remnants of Eoarchean continental crust derived from a subducted proto-arc.

    Science.gov (United States)

    Ge, Rongfeng; Zhu, Wenbin; Wilde, Simon A; Wu, Hailin

    2018-02-01

    Eoarchean [3.6 to 4.0 billion years ago (Ga)] tonalite-trondhjemite-granodiorite (TTG) is the major component of Earth's oldest remnant continental crust, thereby holding the key to understanding how continental crust originated and when plate tectonics started in the early Earth. TTGs are mostly generated by partial melting of hydrated mafic rocks at different depths, but whether this requires subduction remains enigmatic. Recent studies show that most Archean TTGs formed at relatively low pressures (≤1.5 GPa) and do not require subduction. We report a suite of newly discovered Eoarchean tonalitic gneisses dated at ~3.7 Ga from the Tarim Craton, northwestern China. These rocks are probably the oldest high-pressure TTGs so far documented worldwide. Thermodynamic and trace element modeling demonstrates that the parent magma may have been generated by water-fluxed partial melting of moderately enriched arc-like basalts at 1.8 to 1.9 GPa and 800° to 830°C, indicating an apparent geothermal gradient (400° to 450°C GPa -1 ) typical for hot subduction zones. They also locally record geochemical evidence for magma interaction with a mantle wedge. Accordingly, we propose that these high-pressure TTGs were generated by partial melting of a subducted proto-arc during arc accretion. Our model implies that modern-style plate tectonics was operative, at least locally, at ~3.7 Ga and was responsible for generating some of the oldest continental nuclei.

  7. S-wave attenuation structure beneath the northern Izu-Bonin arc

    Science.gov (United States)

    Takahashi, Tsutomu; Obana, Koichiro; Kodaira, Shuichi

    2016-04-01

    To understand temperature structure or magma distribution in the crust and uppermost mantle, it is essential to know their attenuation structure. This study estimated the 3-D S-wave attenuation structure in the crust and uppermost mantle at the northern Izu-Bonin arc, taking into account the apparent attenuation due to multiple forward scattering. In the uppermost mantle, two areas of high seismic attenuation (high Q -1) imaged beneath the volcanic front were mostly colocated with low-velocity anomalies. This coincidence suggests that these high- Q -1 areas in low-velocity zones are the most likely candidates for high-temperature regions beneath volcanoes. The distribution of random inhomogeneities indicated the presence of three anomalies beneath the volcanic front: Two were in high- Q -1 areas but the third was in a moderate- Q -1 area, indicating a low correlation between random inhomogeneities and Q -1. All three anomalies of random inhomogeneities were rich in short-wavelength spectra. The most probable interpretation of such spectra is the presence of volcanic rock, which would be related to accumulated magma intrusion during episodes of volcanic activity. Therefore, the different distributions of Q -1 and random inhomogeneities imply that the positions of hot regions in the uppermost mantle beneath this arc have changed temporally; therefore, they may provide important constraints on the evolutionary processes of arc crust and volcanoes.

  8. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc:A review

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa

    2014-01-01

    Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources (input) and arc or back-arc magmas (output) in the Philippine Sea Plate-Ryukyu Arc-Okinawa Trough system (PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Oki-nawa Trough lavas:sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt (MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and sub-continental lithospheric mantle (SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the“seafloor spreading”process in the southwest segment,“rift propagation”process in the middle seg-ment, and

  9. Autonomous Reactivity Control (ARC) — Principles, geometry and design process

    Energy Technology Data Exchange (ETDEWEB)

    Qvist, Staffan A., E-mail: staffan.qvist@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Department of Nuclear Engineering, University of California Berkeley (United States); Hellesen, Carl [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Thiele, Roman [Division of Reactor Technology, Royal Institute of Technology, Stockholm (Sweden); Dubberley, Allen E. [General Electric Advanced Reactor Systems Department (retired), Sunnyvale, CA (United States); Gradecka, Malwina; Greenspan, Ehud [Department of Nuclear Engineering, University of California Berkeley (United States)

    2016-10-15

    Highlights: • Here we define the principles of the operation and design of ARC systems. • ARC systems can provide inherent safety during and following unprotected transients. • A manufacturing and assembly method was developed and presented. - Abstract: The Autonomous Reactivity Control (ARC) system was developed to ensure inherent safety performance of Generation-IV reactors while having a minimal impact on reactor performance and economic viability. Here we present in detail the principles of how the ARC system operates, what materials should be used, what components make up the system and how they are interconnected. The relevant equations regarding how to design the system for a certain response are developed and defined, and the most important aspects determining the speed of actuation of the systems are analyzed. Thus, this study serves as the general reference material for all of the fundamental principles behind the ARC idea. Finally, we present a step-by-step guide to how a fast reactor fuel subassembly with an ARC system installed would be manufactured, using a full 3D-CAD model. For an ARC installation in a 1000 MWth sodium-cooled oxide-fueled fast reactor core, the system constitutes a relatively minor adjustment to a typical fuel assembly, increasing its total axial extent by ∼5–10% and the total primary coolant pressure drop by ∼1%. The main finding of this study is that it is possible to design, manufacture (using existing methods) and implement ARC systems in the fuel assemblies of fast reactor cores to provide inherent safety in all anticipated unprotected transients with only a modest increase in the length of the assembly and the pressure drop across the core.

  10. Re-appraisal of the Magma-rich versus Magma-poor Paradigm at Rifted Margins: consequences for breakup processes

    Science.gov (United States)

    Tugend, J.; Gillard, M.; Manatschal, G.; Nirrengarten, M.; Harkin, C. J.; Epin, M. E.; Sauter, D.; Autin, J.; Kusznir, N. J.; McDermott, K.

    2017-12-01

    Rifted margins are often classified based on their magmatic budget only. Magma-rich margins are commonly considered to have excess decompression melting at lithospheric breakup compared with steady state seafloor spreading while magma-poor margins have suppressed melting. New observations derived from high quality geophysical data sets and drill-hole data have revealed the diversity of rifted margin architecture and variable distribution of magmatism. Recent studies suggest, however, that rifted margins have more complex and polyphase tectono-magmatic evolutions than previously assumed and cannot be characterized based on the observed volume of magma alone. We compare the magmatic budget related to lithospheric breakup along two high-resolution long-offset deep reflection seismic profiles across the SE-Indian (magma-poor) and Uruguayan (magma-rich) rifted margins. Resolving the volume of magmatic additions is difficult. Interpretations are non-unique and several of them appear plausible for each case involving variable magmatic volumes and mechanisms to achieve lithospheric breakup. A supposedly 'magma-poor' rifted margin (SE-India) may show a 'magma-rich' lithospheric breakup whereas a 'magma-rich' rifted margin (Uruguay) does not necessarily show excess magmatism at lithospheric breakup compared with steady-state seafloor spreading. This questions the paradigm that rifted margins can be subdivided in either magma-poor or magma-rich margins. The Uruguayan and other magma-rich rifted margins appear characterized by an early onset of decompression melting relative to crustal breakup. For the converse, where the onset of decompression melting is late compared with the timing of crustal breakup, mantle exhumation can occur (e.g. SE-India). Our work highlights the difficulty in determining a magmatic budget at rifted margins based on seismic reflection data alone, showing the limitations of margin classification based solely on magmatic volumes. The timing of

  11. Oxygen isotope geochemistry of the lassen volcanic center, California: Resolving crustal and mantle contributions to continental Arc magmatism

    Science.gov (United States)

    Feeley, T.C.; Clynne, M.A.; Winer, G.S.; Grice, W.C.

    2008-01-01

    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates (mainly plagioclase) from basaltic andesitic to rhyolitic composition volcanic rocks erupted from the Lassen Volcanic Center (LVC), northern California. Plagioclase separates from nearly all rocks have ??18O values (6.1-8.4%) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the arc front and back-arc regions of the southernmost Cascades during the late Cenozoic. Most LVC magmas must therefore contain high 18O crustal material. In this regard, the ??18O values of the volcanic rocks show strong spatial patterns, particularly for young rhyodacitic rocks that best represent unmodified partial melts of the continental crust. Rhyodacitic magmas erupted from vents located within 3.5 km of the inferred center of the LVC have consistently lower ??18 O values (average 6.3% ?? 0.1%) at given SiO2 contents relative to rocks erupted from distal vents (>7.0 km; average 7.1% ?? 0.1%). Further, magmas erupted from vents situated at transitional distances have intermediate values and span a larger range (average 6.8% ?? 0.2%). Basaltic andesitic to andesitic composition rocks show similar spatial variations, although as a group the ??18O values of these rocks are more variable and extend to higher values than the rhyodacitic rocks. These features are interpreted to reflect assimilation of heterogeneous lower continental crust by mafic magmas, followed by mixing or mingling with silicic magmas formed by partial melting of initially high 18O continental crust (??? 9.0%) increasingly hybridized by lower ??18O (???6.0%) mantle-derived basaltic magmas toward the center of the system. Mixing calculations using estimated endmember source ??18O values imply that LVC magmas contain on a molar oxygen basis approximately 42 to 4% isotopically heavy continental crust, with proportions declining in a broadly regular fashion toward the

  12. Arc-weld pool interactions

    International Nuclear Information System (INIS)

    Glickstein, S.S.

    1978-08-01

    The mechanisms involved in arc-weld pool interactions are extremely complex and no complete theory is presently available to describe much of the phenomena observed during welding. For the past several years, experimental and analytical studies have been undertaken at the Bettis Atomic Power Laboratory to increase basic understanding of the gas tungsten arc welding process. These studies have included experimental spectral analysis of the arc in order to determine arc temperature and analytical modeling of the arc and weld puddle. The investigations have been directed toward determining the cause and effects of variations in the energy distribution incident upon the weldment. In addition, the effect of weld puddle distortion on weld penetration was investigated, and experimental and analytical studies of weld process variables have been undertaken to determine the effects of the variables upon weld penetration and configuration. A review of the results and analysis of these studies are presented

  13. A cascade of magmatic events during the assembly and eruption of a super-sized magma body

    Science.gov (United States)

    Allan, Aidan. S. R.; Barker, Simon J.; Millet, Marc-Alban; Morgan, Daniel J.; Rooyakkers, Shane M.; Schipper, C. Ian; Wilson, Colin J. N.

    2017-07-01

    We use comprehensive geochemical and petrological records from whole-rock samples, crystals, matrix glasses and melt inclusions to derive an integrated picture of the generation, accumulation and evacuation of 530 km3 of crystal-poor rhyolite in the 25.4 ka Oruanui supereruption (New Zealand). New data from plagioclase, orthopyroxene, amphibole, quartz, Fe-Ti oxides, matrix glasses, and plagioclase- and quartz-hosted melt inclusions, in samples spanning different phases of the eruption, are integrated with existing data to build a history of the magma system prior to and during eruption. A thermally and compositionally zoned, parental crystal-rich (mush) body was developed during two periods of intensive crystallisation, 70 and 10-15 kyr before the eruption. The mush top was quartz-bearing and as shallow as 3.5 km deep, and the roots quartz-free and extending to >10 km depth. Less than 600 year prior to the eruption, extraction of large volumes of 840 °C low-silica rhyolite melt with some crystal cargo (between 1 and 10%), began from this mush to form a melt-dominant (eruptible) body that eventually extended from 3.5 to 6 km depth. Crystals from all levels of the mush were entrained into the eruptible magma, as seen in mineral zonation and amphibole model pressures. Rapid translation of crystals from the mush to the eruptible magma is reflected in textural and compositional diversity in crystal cores and melt inclusion compositions, versus uniformity in the outermost rims. Prior to eruption the assembled eruptible magma body was not thermally or compositionally zoned and at temperatures of 790 °C, reflecting rapid cooling from the 840 °C low-silica rhyolite feedstock magma. A subordinate but significant volume (3-5 km3) of contrasting tholeiitic and calc-alkaline mafic material was co-erupted with the dominant rhyolite. These mafic clasts host crystals with compositions which demonstrate that there was some limited pre-eruptive physical interaction of mafic

  14. Temporal geochemical trends in northern Luzon arc lavas (Philippines): implications on metasomatic processes in the island arc mantle

    International Nuclear Information System (INIS)

    Maury, R.C.; Bellon, H.; Jacques, D.; Defant, J.; Joron, J.L.; Mcdermott, F.; Vidal, Ph.

    1998-01-01

    Neogene and Quaternary lavas from Batan, Babuyan de Claro, Camiguin and Calayan islands (northern Luzon arc) display temporal increases in incompatible elements including Cs, Rb, Ba, K, La, Ce, Th, U, Ta, Hf and Zr from volcanoes older than 3 Ma to younger ones. These enrichments occur either within a single island (Batan) or within an island group (from Calayan to Camiguin and Babuyan). We show that these enrichments result from incompatible element input into the mantle wedge rather than from partial melting or fractionation effects. The fact that highly incompatible elements display temporal enrichment patterns in Batan lavas whatever their chemical properties indicates that hydrous fluids are not the only metasomatic agents operating in the mantle wedge and that slab-derived melts (adakitic magmas) may also be involved. The coupled temporal variation patterns of large ion lithophile elements and Sr-Nd isotopes suggest that the metasomatic budgets beneath the southern group of islands are mainly controlled by hydrous fluids inputs. In contrast, young Batan lavas likely derive from a mantle source mostly metasomatized by adakitic magmas. (authors)

  15. Across and along arc geochemical variations in altered volcanic rocks: Evidence from mineral chemistry of Jurassic lavas in northern Chile, and tectonic implications

    Science.gov (United States)

    Rossel, Pablo; Oliveros, Verónica; Ducea, Mihai N.; Hernandez, Laura

    2015-12-01

    Postmagmatic processes mask the original whole-rock chemistry of most Mesozoic igneous rocks from the Andean arc and back-arc units preserved in Chile. Mineral assemblages corresponding to subgreenschist metamorphic facies and/or propylitic hydrothermal alteration are ubiquitous in volcanic and plutonic rocks, suggesting element mobility at macroscopic and microscopic scale. However, fresh primary phenocrysts of clinopyroxene and plagioclase do occur in some of the altered rocks. We use major and trace element chemistry of such mineral phases to infer the geochemical variations of four Jurassic arc and four back-arc units from northern Chile. Clinopyroxene belonging to rocks of the main arc and two units of the bark-arc are augites with low contents of HFSE and REE; they originated from melting of an asthenospheric mantle source. Clinopyroxenes from a third back-arc unit show typical OIB affinities, with high Ti and trace element contents and low Si. Trace elemental variations in clinopyroxenes from these arc and back-arc units suggest that olivine and clinopyroxene were the main fractionating phases during early stages of magma evolution. The last back-arc unit shows a broad spectrum of clinopyroxene compositions that includes depleted arc-like augite, high Al and high Sr-Ca diopside (adakite-like signature). The origin of these lavas is the result of melting of a mixture of depleted mantle plus Sr-rich sediments and subsequent high pressure fractionation of garnet. Thermobarometric calculations suggest that the Jurassic arc and back-arc magmatism had at least one crustal stagnation level where crystallization and fractionation took place, located at ca. ~ 8-15 km. The depth of this stagnation level is consistent with lower-middle crust boundary in extensional settings. Crystallization conditions calculated for high Al diopsides suggest a deeper stagnation level that is not consistent with a thinned back-arc continental crust. Thus minor garnet fractionation

  16. The Chinese North Tianshan Orogen was a rear-arc (or back-arc) environment in the Late Carboniferous: constraint from the volcanic rocks in the Bogda Mountains

    Science.gov (United States)

    Xie, W.

    2017-12-01

    The Tianshan Orogen is a key area for understanding the Paleozoic tectonics and long-lasting evolution of the Central Asian Orogenic Belt (CAOB). However, considerable debate persists as to its tectonic setting during the late Paleozoic, with active subduction system and intraplate large igneous provinces as two dominant schools (Ma et al., 1997; Gu et al., 2000; Xiao et al., 2004; Han et al., 2010; Shu et al., 2011; Chen et al., 2011; Xia et al., 2012). With aims of providing constraints on this issue, petrology, mineralogy, geochronological and geochemistry for the Late Carboniferous volcanics from the Bogda Mountains have been carried out. We find two suits of high-Al basalt (HAB, 315-319 Ma) and a suit of submarine pillow basalt ( 311 Ma) in this region. Both of the two basalts belong to the tholeiitic magma (the tholeiitic index THI > 1) and contain low pre-eruptive magmatic H2O (coexisted with the Bogda HABs is I-type intermediate ignimbrites and rhyolite lavas. The rhyolites are formed by partial melting of a hydrated and juvenile arc crust and the ignimbrites are affected by magma mingling and feldspar fractionation (Xie et al., 2016c). The two basalts both have the MORB-like Sr-Nd-Hf-Pb isotopes and arc-like trace element compositions. We discuss that they may have been generated from a dry and depleted mantle source metasomatized by coexisted felsic volcanics were likely formed in a rear-arc or back-arc environment, probably related to southward subduction of the Paleo-Tianshan Ocean (Xie et al., 2016a, b, c).

  17. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change.

    Directory of Open Access Journals (Sweden)

    David W Farris

    Full Text Available Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21-25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of <1 wt. %, and plot in mid-ocean ridge/back-arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5-0.1 kbar crystallization depths of hot (1100-1190°C magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5. However, the most silicic lavas (Las Cascadas Fm. require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the

  18. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change

    Science.gov (United States)

    Cardona, Agustin; Montes, Camilo; Foster, David; Jaramillo, Carlos

    2017-01-01

    Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21–25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5–0.1 kbar crystallization depths of hot (1100–1190°C) magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5). However, the most silicic lavas (Las Cascadas Fm.) require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the idea that Panama arc crust fractured during collision

  19. The Magma Chamber Simulator: Modeling the Impact of Wall Rock Composition on Mafic Magmas during Assimilation-Fractional Crystallization

    Science.gov (United States)

    Creamer, J. B.; Spera, F. J.; Bohrson, W. A.; Ghiorso, M. S.

    2012-12-01

    Although stoichiometric titration is often used to model the process of concurrent Assimilation and Fractional Crystallization (AFC) within a compositionally evolving magma body, a more complete treatment of the problem involves simultaneous and self-consistent determination of stable phase relationships and separately evolving temperatures of both Magma (M) and Wall Rock (WR) that interact as a composite M-WR system. Here we present results of M-WR systems undergoing AFC forward modeled with the Magma Chamber Simulator (MCS), which uses the phase modeling capabilities of MELTS (Ghiorso & Sack 1995) as the thermodynamic basis. Simulations begin with one of a variety of mafic magmas (e.g. HAB, MORB, AOB) intruding a set mass of Wall Rock (e.g. lherzolite, gabbro, diorite, granite, metapelite), and heat is exchanged as the M-WR system proceeds towards thermal equilibrium. Depending on initial conditions, the early part of the evolution can involve closed system FC while the WR heats up. The WR behaves as a closed system until it is heated beyond the solidus to critical limit for melt fraction extraction (fc), ranging between 0.08 and 0.12 depending on WR characteristics including composition and, rheology and stress field. Once fc is exceeded, a portion of the anatectic liquid is assimilated into the Magma. The MCS simultaneously calculates mass and composition of the mineral assemblage (Magma cumulates and WR residue) and melt (anatectic and Magma) at each T along the equilibration trajectory. Sensible and latent heat lost or gained plus mass gained by the Magma are accounted for by the MCS via governing Energy Constrained- Recharge Assimilation Fractional Crystallization (EC-RAFC) equations. In a comparison of two representative MCS results, consider a granitic WR intruded by HAB melt (51 wt. % SiO2) at liquidus T in shallow crust (0.1 GPa) with a WR/M ratio of 1.25, fc of 0.1 and a QFM oxygen buffer. In the first example, the WR begins at a temperature of 100o

  20. Late Neoproterozoic to Carboniferous genesis of A-type magmas in Avalonia of northern Nova Scotia: repeated partial melting of anhydrous lower crust in contrasting tectonic environments

    Science.gov (United States)

    Murphy, J. Brendan; Shellnutt, J. Gregory; Collins, William J.

    2018-03-01

    Avalonian rocks in northern mainland Nova Scotia are characterized by voluminous 640-600 Ma calc-alkalic to tholeiitic mafic to felsic magmas produced in a volcanic arc. However, after the cessation of arc activity, repeated episodes of felsic magmatism between ca. 580 Ma and 350 Ma are dominated by A-type geochemical characteristics. Sm-Nd isotopic data, combined with zircon saturation temperature estimates, indicate that these magmas were formed by high temperature (800-1050 °C) melting of the same anhydrous crustal source. Regional tectonic considerations indicate that A-type felsic magmatism was produced (1) at 580 Ma in a San Andreas-type strike slip setting, (2) at 495 Ma as Avalonia rifted off Gondwana, (3) at 465 and 455 in an ensialic island arc environment and (4) at 360-350 Ma during post-collisional, intra-continental strike-slip activity as Avalonia was translated dextrally along the Laurentian margin. These results attest to the importance of crustal source, rather than tectonic setting, in the generation of these A-type magmas and are an example of how additional insights are provided by comparing the geochemical and isotopic characteristics of igneous suites of different ages within the same terrane. They also suggest that the shallow crustal rocks in northern mainland Nova Scotia were not significantly detached from their lower crustal source between ca. 620 Ma and 350 Ma, a time interval that includes the separation of Avalonia from Gondwana, its drift and accretion to Laurentia as well as post-accretionary strike-slip displacement.

  1. Arc fault detection system

    Science.gov (United States)

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  2. Arc fault detection system

    Science.gov (United States)

    Jha, Kamal N.