WorldWideScience

Sample records for oxidize selected phenolics

  1. Photocatalytic selective oxidation of phenol in suspensions of titanium dioxide with exposed {0 0 1} facets

    International Nuclear Information System (INIS)

    Ye, Hengpeng; Lu, Shaoming

    2013-01-01

    Anatase TiO 2 nanocrystals with exposed {0 0 1} facets were tailored by hydrothermal treatment of Ti(OC 4 H 9 ) 4 –HF–H 2 O mixed solution. The photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption–desorption isotherms and X-ray photoelectron spectroscopy (XPS). The effect of structure of the photocatalyst on the photocatalytic selective oxidation of phenol under UV irradiation was studied. The experiment results showed that (1) the percentage of the exposed {0 0 1} facets of the nanocrystal increases with increasing the nominal atomic ratio of fluorine to titanium (R F ), (2) catechol and hydroquinone are main intermediates detected during photocatalytic oxidation of phenol, and (3) both photocatalytic oxidation of phenol and selectivity (yield) of catechol are positively correlated with the percentage of exposed {0 0 1} facets of the high-energy TiO 2 nanocrystals. The enhanced conversion of phenol and selectivity (yield) of catechol were ascribed to the synergistic effects of the exposed high-energy {0 0 1} facets and surface fluorination. This study may provide new insight into the selective oxidation of organics.

  2. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan

    2010-10-20

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional catalysts such as Ti-containing mesoporous silicas, which convert phenols to the corresponding benzoquinones, gold nanoparticles are very selective to biaryl compounds (3,3′,5,5′-tetra-tert-butyl diphenoquinone and 2,2′,3,3′,5,5′-hexamethyl-4,4′- biphenol, respectively). Products yields and selectivities depend on the solvent used, the best results being obtained in methanol with yields >98%. Au offers the possibility to completely change the selectivity in the oxidation of substituted phenols and opens interesting perspectives in the clean synthesis of biaryl compounds for pharmaceutical applications. © 2010 Elsevier B.V. All rights reserved.

  3. Effect of high-temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCl3. II. Nitrous oxide decomposition, selective oxidation of benzene to phenol, and selective reduction of nitric oxide by isobutane

    NARCIS (Netherlands)

    Zhu, Q.; Teeffelen, van R.M.; Santen, van R.A.; Hensen, E.J.M.

    2004-01-01

    The catalytic performance (nitrous oxide decomposition, hydroxylation of benzene to phenol with nitrous oxide, and selective reduction of nitric oxide by i-butane) was evaluated for a set of HZSM-5 and sublimed Fe/ZSM-5 catalysts, which have been extensively characterized in an earlier contribution

  4. Phenol oxidation with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ramiez Cortina, R.C.; Hernadez Perez, I. [Univ. Autonoma Metropolitana - Azcapotzalco, Div. de CBI, Dept. de Energia, Azcapotzalco (Mexico); Ortiz Lozoya, C.E. [Univ. Autonoma Metropolitana - Azcapotzalco, Div. de CBI, Dept. de Energia, Azcapotzalco (Mexico)]|[Inst. Mexicano del Petroleo (Mexico); Alonso Gutierrez, M.S. [Inst. National Polytechnique, ENSCT, Lab. of Chimie Agro-Industrielle, Toulouse (France)

    2003-07-01

    In this work the process application of advanced oxidation is investigated with hydrogen peroxide, for the phenol destruction. The experiments were carried out in a glass reactor of 750 mL. Three phenol concentrations were studied (2000, 1000 and 500 ppm) being oxidized with H{sub 2}O{sub 2} (1, 2 and 3 M). The tests of oxidation had a reaction time of 48 h at ambient temperature and pressure. The phenol degradation was determined as COD at different reaction times and intermediate oxidation products were analyzed by chromatography. The results of this study show that it is possible to degrade phenol (1000 ppm) until 90% with H{sub 2}O{sub 2} 2M. Being achieved the best efficiency with a good molar relationship of H{sub 2}O{sub 2}/phenol. Intends a reaction outline in the degradation of the phenol. (orig.)

  5. Formation of brominated phenolic contaminants from natural manganese oxides-catalyzed oxidation of phenol in the presence of Br(.).

    Science.gov (United States)

    Lin, Kunde; Song, Lianghui; Zhou, Shiyang; Chen, Da; Gan, Jay

    2016-07-01

    Brominated phenolic compounds (BPCs) are a class of persistent and potentially toxic compounds ubiquitously present in the aquatic environment. However, the origin of BPCs is not clearly understood. In this study, we investigated the formation of BPCs from natural manganese oxides (MnOx)-catalyzed oxidation of phenol in the presence of Br(-). Experiments at ambient temperature clearly demonstrated that BPCs were readily produced via the oxidation of phenol by MnOx in the presence of Br(-). In the reaction of MnOx sand with 0.213 μmol/L phenol and 0.34 mmol/L Br(-) for 10 min, more than 60% of phenol and 56% of Br(-) were consumed to form BPCs. The yield of BPCs increased with increasing concentrations of phenol and Br(-). Overall, a total of 14 BPCs including simple bromophenols (4-bromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol), hydroxylated polybrominated diphenyl ethers (OH-PBDEs), and hydroxylated polybrominated biphenyls (OH-PBBs) were identified. The production of BPCs increased with increasing concentrations of Br(-) or phenol. It was deduced that Br(-) was first oxidized to form active bromine, leading to the subsequent bromination of phenol to form bromophenols. The further oxidation of bromophenols by MnOx resulted in the formation of OH-PBDEs and OH-PBBs. In view of the ubiquity of phenol, Br(-), and MnOx in the environment, MnOx-mediated oxidation may play a role on the natural production of BPCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Plant-derived phenolics inhibit the accrual of structurally characterised protein and lipid oxidative modifications.

    Directory of Open Access Journals (Sweden)

    Arantza Soler-Cantero

    Full Text Available Epidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine-protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins. Mass-spectrometry was then used, evidencing a heterogeneous effect on the accumulation of the structurally characterized protein carbonyl glutamic and aminoadipic semialdehydes as well as for malondialdehyde-lysine in LDL apoprotein. After TOF based lipidomics, we identified the most abundant differential lipids in Cu(++-incubated LDL as 1-palmitoyllysophosphatidylcholine and 1-stearoyl-sn-glycero-3-phosphocholine. Most of selected phenolic compounds prevented the accumulation of those phospholipids and the cellular impairment induced by oxidized LDL. Finally, to validate these effects in vivo, we evaluated the effect of the intake of a phenolic-enriched extract in plasma protein and lipid modifications in a well-established model of atherosclerosis (diet-induced hypercholesterolemia in hamsters. This showed that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake.

  7. Nitration of phenolic compounds and oxidation of hydroquinones ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we have reported a mild, efficient and selective method for the mononitration of phenolic compounds using sodium nitrite in the presence of tetrabutylammonium dichromate (TBAD) and oxidation of hydroquinones to quinones with TBAD in CH2Cl2. Using this method, high yields of nitrophenols and ...

  8. QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants.

    Science.gov (United States)

    Arnold, William A; Oueis, Yan; O'Connor, Meghan; Rinaman, Johanna E; Taggart, Miranda G; McCarthy, Rachel E; Foster, Kimberley A; Latch, Douglas E

    2017-03-22

    Quantitative structure-activity relationships (QSARs) for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed. The predictive variable is the one-electron oxidation potential (E 1 ), which is calculated for each species using density functional theory. The reaction rate constants are obtained from the literature, and for singlet oxygen, are augmented with new experimental data. Calculated E 1 values have a mean unsigned error compared to literature values of 0.04-0.06 V. For singlet oxygen, a single linear QSAR that includes both phenols and phenolates is developed that predicts experimental rate constants, on average, to within a factor of three. Predictions for only 6 out of 87 compounds are off by more than a factor of 10. A more limited data set for carbonate radical reactions with phenols and phenolates also gives a single linear QSAR with prediction of rate constant being accurate to within a factor of three. The data for the reactions of phenols with triplet state sensitizers demonstrate that two sensitizers, 2-acetonaphthone and methylene blue, most closely predict the reactivity trend of triplet excited state organic matter with phenols. Using sensitizers with stronger reduction potentials could lead to overestimation of rate constants and thus underestimation of phenolic pollutant persistence.

  9. Performance of structured lipids incorporating selected phenolic and ascorbic acids.

    Science.gov (United States)

    Gruczynska, Eliza; Przybylski, Roman; Aladedunye, Felix

    2015-04-15

    Conditions applied during frying require antioxidant which is stable at these conditions and provides protection for frying oil and fried food. Novel structured lipids containing nutraceuticals and antioxidants were formed by enzymatic transesterification, exploring canola oil and naturally occurring antioxidants such as ascorbic and selected phenolic acids as substrates. Lipozyme RM IM lipase from Rhizomucor miehei was used as biocatalyst. Frying performance and oxidative stability of the final transesterification products were evaluated. The novel lipids showed significantly improved frying performance compared to canola oil. Oxidative stability assessment of the structured lipids showed significant improvement in resistance to oxidative deterioration compared to original canola oil. Interestingly, the presence of ascorbic acid in an acylglycerol structure protected α-tocopherol against thermal degradation, which was not observed for the phenolic acids. Developed structured lipids containing nutraceuticals and antioxidants may directly affect nutritional properties of lipids also offering nutraceutical ingredients for food formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Phenol by direct hydroxylation of benzene with nitrous oxide - role of surface oxygen species in the reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reitzmann, A.; Klemm, E.; Emig, G. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Chemie 1; Buchholz, S.A.; Zanthoff, H.W. [Bochum Univ. (Germany). Inst. of Technical Chemistry

    1998-12-31

    Transient experiments in a Temporal Analysis of Products (TAP) Reactor were performed to elucidate the role of surface oyxgen species in the oxidation of benzene to phenol on ZSM-5 type zeolites with nitrous oxide as a selective oxidant. It was shown by puls experiments with nitrous oxide that the mean lifetime of the generated surface oxygen species is between 0.2s at 500 C and about 4.2 s at 400 C. Afterwards the surface oxygen species desorb as molecular oxygen into the gas phase where total oxidation will take place if hydrocarbons are present. Dual puls experiments consisting of a nitrous oxide puls followed by a benzene puls allowed studying the reactivity of the surface oxygen species formed during the first puls. The observation of the phenol formation was impeded due to the strong sorption of phenol. Multipulse experiments were necessary to reach a pseudo steady state phenol yield. (orig.)

  11. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan; Caps, Valerie; Tuel, Alain

    2010-01-01

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional

  12. Parabola-like shaped pH-rate profile for phenols oxidation by aqueous permanganate.

    Science.gov (United States)

    Du, Juanshan; Sun, Bo; Zhang, Jing; Guan, Xiaohong

    2012-08-21

    Oxidation of phenols by permanganate in the pH range of 5.0-9.0 generally exhibits a parabola-like shape with the maximum reaction rate obtained at pH close to phenols' pK(a). However, a monotonic increase or decrease is observed if phenols' pK(a) is beyond the pH range of 5.0-9.0. A proton transfer mechanism is proposed in which the undissociated phenol is directly oxidized by permanganate to generate products while a phenolate-permanganate adduct, intermediate, is formed between dissociated phenol and permanganate ion and this is the rate-limiting step for phenolates oxidation by permanganate. The intermediate combines with H(+) and then decomposes to products. Rate equations derived based on the steady-state approximation can well simulate the experimentally derived pH-rate profiles. Linear free energy relationships (LFERs) were established among the parameters obtained from the modeling, Hammett constants, and oxygen natural charges in phenols and phenolates. LFERs reveal that chlorine substituents have opposite influence on the susceptibility of phenols and phenolates to permanganate oxidation and phenolates are not necessarily more easily oxidized than their neutral counterparts. The chlorine substituents regulate the reaction rate of chlorophenolates with permanganate mainly by influencing the natural charges of the oxygen atoms of dissociated phenols while they influence the oxidation of undissociated chlorophenols by permanganate primarily by forming intramolecular hydrogen bonding with the phenolic group.

  13. Human myeloperoxidase (MPO) and horseradish peroxidase (HRP) catalyzed oxidation of phenol

    International Nuclear Information System (INIS)

    Ross, D.; Eastmond, D.A.; Ruzo, L.O.; Smith, M.T.

    1986-01-01

    MPO-catalyzed conversion of phenolic metabolites of benzene may be involved in benzene-induced myelotoxicity. The authors have studied the metabolism and protein binding of phenol - the major metabolite of benzene - during peroxidatic oxidation. The major metabolite observed during MPO- and HRP- catalyzed oxidation was characterized as 4,4 biphenol using HPLC and combined GC-MS. When glutathione (GSH) was added to the incubation mixtures, two additional compounds were observed during HPLC analysis which were characterized as GSH-conjugates of 4,4-diphenoquinone by fast atom bombardment MS and by NMR. ESR spectroscopy showed that both MPO-and HRP-catalyzed oxidation of phenol proceeded via the generation of free radical intermediates. Using 14 C-phenol, both MPO- and HRP-catalyzed oxidations resulted in the production of species which bound covalently to boiled liver microsomal protein. The increase in binding correlated well with removal of substrate. Thus, peroxidatic oxidation of phenolic metabolites of benzene in the bone marrow may be involved in benzene-induced myelotoxicity

  14. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    Science.gov (United States)

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  15. Selective Oxidation of Lignin Model Compounds.

    Science.gov (United States)

    Gao, Ruili; Li, Yanding; Kim, Hoon; Mobley, Justin K; Ralph, John

    2018-05-02

    Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO 2 Cl 2 (DMSO) 2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultra‐high performance supercritical fluid chromatography of lignin‐derived phenols from alkaline cupric oxide oxidation

    Science.gov (United States)

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta

    2016-01-01

    Traditional chromatographic methods for the analysis of lignin‐derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra‐high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin‐derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5–2.5 μM, a limit of quantification of 2.5–5.0 μM, and a dynamic range of 5.0–2.0 mM (R 2 > 0.997). The new ultra‐high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin‐derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin‐derived phenols in complex environmental samples. PMID:27452148

  17. Exploring the Oxidation of Lignin-Derived Phenols by a Library of Laccase Mutants

    Directory of Open Access Journals (Sweden)

    Isabel Pardo

    2015-09-01

    Full Text Available Saturation mutagenesis was performed over six residues delimiting the substrate binding pocket of a fungal laccase previously engineered in the lab. Mutant libraries were screened using sinapic acid as a model substrate, and those mutants presenting increased activity were selected for exploring the oxidation of lignin-derived phenols. The latter comprised a battery of phenolic compounds of interest due to their use as redox mediators or precursors of added-value products and their biological activity. The new laccase variants were investigated in a multi-screening assay and the structural determinants, at both the substrate and the protein level, for the oxidation of the different phenols are discussed. Laccase activity greatly varied only by changing one or two residues of the enzyme pocket. Our results suggest that once the redox potential threshold is surpassed, the contribution of the residues of the enzymatic pocket for substrate recognition and binding strongly influence the overall rate of the catalytic reaction.

  18. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, Yusuf [Anadolu Universitesi, Cevre Sor. Uyg. ve Aras. Merkezi, Eskisehir (Turkey); Koparal, A. Savas [Anadolu Universitesi, Cevre Sor. Uyg. ve Aras. Merkezi, Eskisehir (Turkey)]. E-mail: askopara@anadolu.edu.tr

    2006-08-21

    In this study, electrochemical oxidation of phenol was carried out in a parallel plate reactor using ruthenium mixed metal oxide electrode. The effects of initial pH, temperature, supporting electrolyte concentration, current density, flow rate and initial phenol concentration on the removal efficiency were investigated. Model wastewater prepared with distilled water and phenol, was recirculated to the electrochemical reactor by a peristaltic pump. Sodium sulfate was used as supporting electrolyte. The Microtox'' (registered) bioassay was also used to measure the toxicity of the model wastewater during the study. As a result of the study, removal efficiency of 99.7% and 88.9% were achieved for the initial phenol concentration of 200 mg/L and chemical oxygen demand (COD) of 480 mg/L, respectively. In the same study, specific energy consumption of 1.88 kWh/g phenol removed and, mass transfer coefficient of 8.62 x 10{sup -6} m/s were reached at the current density of 15 mA/cm{sup 2}. Electrochemical oxygen demand (EOD), which can be defined as the amount of electrochemically formed oxygen used for the oxidation of organic pollutants, was 2.13 g O{sub 2}/g phenol. Electrochemical oxidation of petroleum refinery wastewater was also studied at the optimum experimental conditions obtained. Phenol removal of 94.5% and COD removal of 70.1% were reached at the current density of 20 mA/cm{sup 2} for the petroleum refinery wastewater.

  19. Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate.

    Science.gov (United States)

    He, Di; Guan, Xiaohong; Ma, Jun; Yu, Min

    2009-11-01

    The effects of humic acid (HA) and its different nominal molecular weight (NMW) fractions on the phenol oxidation by permanganate were studied. Phenol oxidation by permanganate was enhanced by the presence of HA at pH 4-8, while slightly inhibited at pH 9-10. The effects of HA on phenol oxidation by permanganate were dependent on HA concentration and permanganate/phenol molar ratios. The high NMW fractions of HA enhanced phenol oxidation by permanganate at pH 7 more significantly than the low fractions of HA. The apparent second-order rate constants of phenol oxidation by permanganate in the presence of HA correlated well with their specific ultraviolet absorption (SUVA) at 254 nm and specific violet absorption (SVA) at 465 or 665 nm. High positive correlation coefficients (R(2) > 0.72) implied that pi-electrons of HA strongly influenced the reactivity of phenol towards permanganate oxidation which agreed well with the information provided by fluorescence spectroscopy. The FTIR analysis indicated that the HA fractions rich in aliphatic character, polysaccharide-like substances, and the amount of carboxylate groups had less effect on phenol oxidation by permanganate. The negative correlation between the rate constants of phenol oxidation by permanganate and O/C ratios suggested that the oxidation of phenol increased with a decrease in the content of oxygen-containing functional groups.

  20. Reinvestigation of the role of humic acid in the oxidation of phenols by permanganate.

    Science.gov (United States)

    Sun, Bo; Zhang, Jing; Du, Juanshan; Qiao, Junlian; Guan, Xiaohong

    2013-12-17

    Humic acid (HA) affects the oxidation of phenolic compounds by permanganate, but the role of HA in the oxidation of phenols by permanganate is far from clear. The mechanisms by which HA influences the oxidation of phenols by permanganate at pH 5.0-9.0 were systematically examined in this study. The presence of HA enhanced the oxidation of phenolic compounds by permanganate at pH ≤7.0, with greater enhancement at lower pH values. The presence of HA facilitated the in situ formation of MnO2, implying the importance of reductive moieties of HA in this reaction. This was supported by the finding that HA preoxidized by ozone showed enhancements in the oxidation of phenols by permanganate at pH 5.0-6.0 smaller than those seen with pristine HA. The good correlation between HA-induced improvement in the oxidation rates of phenols by permanganate and those by preformed colloidal MnO2 at pH 5.0 confirmed that contribution of MnO2 formed in situ for the oxidation of phenols under this condition. The differences in the influence of Na2S2O3 and HA on the oxidation of phenol by permanganate revealed the fact that the continuous generation of fresh MnO2 and stabilization of the MnO2 formed in situ by HA were crucial for the HA-induced enhancement of the oxidation of phenols by permanganate at pH ≤7.0. The consumption of permanganate by HA and the poor oxidation ability of in situ-generated MnO2 under alkaline conditions resulted in the slightly negative effect of HA on the degradation rates of phenols by permanganate at pH >7.0.

  1. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    Science.gov (United States)

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples. © 2016 The Authors, Journal of Separation Science Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Selective defunctionalization by TiO2 of monomeric phenolics from lignin pyrolysis into simple phenols.

    Science.gov (United States)

    Mante, Ofei D; Rodriguez, Jose A; Babu, Suresh P

    2013-11-01

    This study is focused on defunctionalizing monomeric phenolics from lignin into simple phenols for applications such as phenol/formaldehyde resins, epoxidized novolacs, adhesives and binders. Towards this goal, Titanium dioxide (TiO2) was used to selectively remove hydroxyl, methoxy, carbonyl and carboxyl functionalities from the monomeric phenolic compounds from lignin to produce mainly phenol, cresols and xylenols. The results showed that anatase TiO2 was more selective and active compared to rutile TiO2. Catechols were found to be the most reactive phenolics and 4-ethylguaiacol the least reactive with anatase TiO2. An overall conversion of about 87% of the phenolics was achieved at 550°C with a catalyst-to-feed ratio of 5 w/w. Over 97% conversion of phenolics is achievable at moderate temperatures (550°C or ≤ 600°C) and a moderate catalyst-to-feed ratio of 6.5:1. The reactivity of catechols on TiO2 suggests that titania is a promising catalyst in the removal of hydroxyl moiety. Published by Elsevier Ltd.

  3. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Science.gov (United States)

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene oxide...

  4. Highly sensitive and selective detection of Bis-phenol A based on hydroxyapatite decorated reduced graphene oxide nanocomposites

    International Nuclear Information System (INIS)

    Alam, Mohammad K.; Rahman, Mohammed M.; Elzwawy, Amir; Torati, Sri Ramulu; Islam, Mohammad S.; Todo, Mitsugu; Asiri, Abdullah M.; Kim, Dojin; Kim, CheolGi

    2017-01-01

    Highlights: •Simple chemical reduction method was used for preparation of reduced graphene oxide/hydroxyapatite (rGO/HAp) nanocomposites. •The rGO/HAp nanocomposites exhibited good biocompatibility with hMSCs. •Selective chemical sensor based on rGO/HAp nanocomposites was developed for detection of Bis-phenol A. •The fabricated rGO/HAp/Nafion/GCE sensor exhibited good detection limit of 60 pmol L −1 . -- Abstract: A facile and cost effective chemical reduction method is employed for the preparation of reduced graphene oxide/hydroxyapatite (rGO/HAp) nanocomposites. The transmission electron microscopy images revealed that the HAp flakes are well decorated on the surface of rGO. The morphological structure of the as-synthesized rGO/HAp nanocomposites was confirmed through X-ray diffraction, Fourier transform infrared spectroscopy and Raman spectroscopy, while the composition and thermal stability were analyzed by energy dispersive spectra and thermogravimetric analysis, respectively. Furthermore, the effect of rGO/HAp nanocomposites for the proliferation of Human Mesenchymal Stem Cell (hMSC) was performed to confirm the biocompatibility. A selective chemical sensor based on rGO/HAp modified glassy carbon electrode (GCE) for sensitive detection of Bis-phenol A (BPA) has been developed. Several important parameters controlling the performance of the BPA chemi-sensor were investigated and optimized at room conditions. The rGO/HAp/Nafion/GCE sensor offers a fast response and highly sensitive BPA detection. Under the optimal conditions, a linear range from 0.2 nmol L −1 to 2.0 mmol L −1 for the detection of BPA was observed with the detection limit of 60.0 pmol L −1 (signal-to-noise ratio, at an SNR of 3) and sensitivity of 18.98 × 10 4 μA.L/μmol.m 2 . Meanwhile, the fabricated chemi-sensor showed an excellent, specific and selective recognition to target BPA molecules among coexistence of other analytes in the buffer system. This novel effort initiated

  5. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity.

    Science.gov (United States)

    Ohno, T

    2001-01-01

    Previous studies have suggested that phenolic acids from legume green manures may contribute to weed control through allelopathy. The objectives of this study were to investigate the oxidation reactions of phenolic acids in soil and to determine the subsequent effects of oxidation upon phytotoxicity. Soils were reacted for 18 h with 0.25 mmol L(-1) benzoic and cinnamic acid derivative solutions and Mn release from the suspension was used as a marker for phenolic acid oxidation. The extent of oxidation in soil suspensions was in the order of 3,4dihydroxy- > 4-hydroxy-3-methoxy- > 4-hydroxy-approximately 2-hydroxy-substituted benzoic and cinnamic acids. The same ranking was observed for cyclic voltammetry peak currents of the cinnamic acid derivatives. This suggests that the oxidation of phenolic acids is controlled by the electron transfer step from the sorbed phenolic acid to the metal oxide. A bioassay experiment showed that the 4-hydroxy-, 4-hydroxy-3-methoxy-, and 3,4-dihydroxy-substituted cinnamic acids were bioactive at 0.25 mmol L(-1) concentration. Reaction with soil for 18 h resulted in the elimination of bioactivity of these three cinnamic acids at the 5% significance level. The oxidative reactivity of phenolic acids may limit the potential of allelopathy as a component of an integrated weed management system. However, the initial phytotoxicity after soil incorporation may coincide with the early, critical stage of weed emergence and establishment, so that allelopathic phenolic acids may still play a role in weed management despite their reactivity in soil systems.

  6. Investigation of Phenol Removal in Aqueous Solutions Using Advanced Photochemical Oxidation (APO

    Directory of Open Access Journals (Sweden)

    Naser Jamshidi

    2010-01-01

    Full Text Available Most organic compounds are resistant to conven­tional chemical and biological treatments. For this reason, other methods are being studied as alter­natives to the biological and classical physico-chemical pro­cesses. In this study, advanced photochemical oxidation (APO processes (UV, UV/H2O2, UV/H2O2/Fe(II, andUV/H2O2/Fe(III were investigated in lab-scale experiments for the degradation of phenol in an aqueous solution. A medium-pressure 300 watt (UV-C mercury ultraviolet lamp was used as the radiation source and H2O2 30% as the oxidant. Phenol (initial concentration= 0.5 mmol/L was selected as the model due to its high use and application. Some important parameters such as pH, H2O2 input concentration, iron catalyst concentration, the type of iron salt, and duration of UV radiation were studied based on the standard methods. The results showed that the Photo-Fenton process was the most effective treatment under acidic conditions producing a higher rate of phenol degradation over a very short radiation time. The process accelerated the oxidation rate by 4-5 times the rate of the UV/H2O2 process. The optimum conditions were obtained at a pH value of 3, with a molar ratio of 11.61 for H2O2/Phenol and molar ratios of 0.083 and 0.067for Iron/H2O2 in the UV/H2O2/Fe (II and the UV/H2O2/Fe (III systems, respectively.

  7. Capillary electrophoretic determination of selected phenolic compounds in humic substances of well waters and fertilizers.

    Science.gov (United States)

    Chen, Mei-Ying; Chang, Yan-Zin; Lu, Fung-Jou; Chen, Jian-Lian

    2010-01-01

    Humic substances (HS) from well waters, fertilizers, and synthetic phenolic polymers were characterized by elemental and UV-VIS spectroscopic analyses. Capillary zone electrophoresis (CZE) with UV absorption detection was used to analyze the lignin-derived phenolic distribution in the degradation residues after alkaline CuO oxidation of HS samples. Eleven phenols with p-acetyl, vanillyl and syringyl substituents were selected to optimize the CZE parameters. For well waters and fertilizers, the content of phenolic fragments was in agreement with the findings of the elemental and spectroscopic measurements. Additionally, parameters derived from the vanillic acid/vanilline, syringyl acid/syringaldehyde, p-hydroxyl/vanillyl and syringyl/vanillyl ratios matched analogous studies on dissolved organic matter from natural waters and on humic acids from terrestrial substances. The amount of phenolic monomer bonded within two synthetic HS polymers was found to be 25.9% protocatechuic acid and 71.3% gallic acid.

  8. Selective oxidation of benzene and cyclohexane using amorphous microporous mixed oxides; Selektive Oxidation von Benzol und Cyclohexan mit amorphen mikroporoesen Mischoxiden

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckmann, M.

    2000-07-01

    Phenol was to be produced by direct oxidation of benzene with environment-friendly oxidants like hydrogen peroxide, oxygen, or ozone. Catalysts were amorphous microporous mixed oxides whose properties can be selected directly in the sol-gel synthesis process. Apart from benzene, also cyclohexane was oxidized with ozone using AMM catalysts in order to get more information on the potential of ozone as oxidant in heterogeneously catalyzed reactions. [German] Ziel dieser Arbeit war die Herstellung von Phenol durch die Direktoxidation von Benzol mit umweltfreundlichen Oxidationsmitteln wie Wasserstoffperoxid, Sauerstoff oder Ozon. Als Katalysatoren dienten amorphe mikroporoese Mischoxide, da deren Eigenschaften direkt in der Synthese durch den Sol-Gel-Prozess gezielt eingestellt werden koennen. Neben Benzol wurde auch Cyclohexan mit Ozon unter der Verwendung von AMM-Katalysatoren oxidiert, um das Potential von Ozon als Oxiationsmittel in heterogen katalysierten Reaktionen naeher zu untersuchen. (orig.)

  9. Influence of humic acids of different origins on oxidation of phenol and chlorophenols by permanganate

    International Nuclear Information System (INIS)

    He Di; Guan Xiaohong; Ma Jun; Yang Xue; Cui Chongwei

    2010-01-01

    The influences of humic acids (HAs) of different origins, including two commercial HAs, three soil HAs and one aquatic HA, on phenols oxidation by permanganate were studied. The apparent second-order rate constants of 2-chlorophenol (2-CP)/phenol oxidation by permanganate in the presence of HAs at pH 7 followed the order of commercial HA (Shanghai) > soil HAs > commercial HA (Fluka) > aquatic HA. Moreover, the commercial HA (Shanghai) could accelerate the oxidation of different chlorophenols (CP) significantly under neutral condition. The FTIR analysis demonstrated greater content of C=C moieties and less amount of carboxylate, aliphatic groups and polysaccharide-like substances in soil HAs than in aqueous HA, suggesting that the increase of aromaticity in HA was beneficial to the oxidation of phenols by permanganate. The apparent second-order rate constants of 2-CP/phenol oxidation by permanganate in the presence of HAs correlated well with specific visible absorption (SVA) at 665 nm of HAs. High positive correlation coefficients (R 2 > 0.75) implied that π-electrons of HA strongly influenced the reactivity of 2-CP/phenol towards permanganate oxidation, which agreed well with positive correlation between Fluorescence Regional Integration (FRI) and the apparent second-order rate constants. The π-π interaction between HAs and phenols, the steric hindrance effect and the dissociation of phenols may affect the oxidation of phenols by permanganate in the presence of HA at pH = 7.0.

  10. Influence of humic acids of different origins on oxidation of phenol and chlorophenols by permanganate.

    Science.gov (United States)

    He, Di; Guan, Xiaohong; Ma, Jun; Yang, Xue; Cui, Chongwei

    2010-10-15

    The influences of humic acids (HAs) of different origins, including two commercial HAs, three soil HAs and one aquatic HA, on phenols oxidation by permanganate were studied. The apparent second-order rate constants of 2-chlorophenol (2-CP)/phenol oxidation by permanganate in the presence of HAs at pH 7 followed the order of commercial HA (Shanghai)>soil HAs>commercial HA (Fluka)>aquatic HA. Moreover, the commercial HA (Shanghai) could accelerate the oxidation of different chlorophenols (CP) significantly under neutral condition. The FTIR analysis demonstrated greater content of CC moieties and less amount of carboxylate, aliphatic groups and polysaccharide-like substances in soil HAs than in aqueous HA, suggesting that the increase of aromaticity in HA was beneficial to the oxidation of phenols by permanganate. The apparent second-order rate constants of 2-CP/phenol oxidation by permanganate in the presence of HAs correlated well with specific visible absorption (SVA) at 665 nm of HAs. High positive correlation coefficients (R(2)>0.75) implied that pi-electrons of HA strongly influenced the reactivity of 2-CP/phenol towards permanganate oxidation, which agreed well with positive correlation between Fluorescence Regional Integration (FRI) and the apparent second-order rate constants. The pi-pi interaction between HAs and phenols, the steric hindrance effect and the dissociation of phenols may affect the oxidation of phenols by permanganate in the presence of HA at pH=7.0. 2010 Elsevier B.V. All rights reserved.

  11. Influence of humic acids of different origins on oxidation of phenol and chlorophenols by permanganate

    Energy Technology Data Exchange (ETDEWEB)

    He Di, E-mail: hedy1997@hotmail.com [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China); Guan Xiaohong, E-mail: hitgxh@126.com [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China); Ma Jun, E-mail: majun@hit.edu.cn [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China); Yang Xue, E-mail: yangxue1_ok@163.com [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China); Cui Chongwei, E-mail: cuichongwei1991@126.com [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China)

    2010-10-15

    The influences of humic acids (HAs) of different origins, including two commercial HAs, three soil HAs and one aquatic HA, on phenols oxidation by permanganate were studied. The apparent second-order rate constants of 2-chlorophenol (2-CP)/phenol oxidation by permanganate in the presence of HAs at pH 7 followed the order of commercial HA (Shanghai) > soil HAs > commercial HA (Fluka) > aquatic HA. Moreover, the commercial HA (Shanghai) could accelerate the oxidation of different chlorophenols (CP) significantly under neutral condition. The FTIR analysis demonstrated greater content of C=C moieties and less amount of carboxylate, aliphatic groups and polysaccharide-like substances in soil HAs than in aqueous HA, suggesting that the increase of aromaticity in HA was beneficial to the oxidation of phenols by permanganate. The apparent second-order rate constants of 2-CP/phenol oxidation by permanganate in the presence of HAs correlated well with specific visible absorption (SVA) at 665 nm of HAs. High positive correlation coefficients (R{sup 2} > 0.75) implied that {pi}-electrons of HA strongly influenced the reactivity of 2-CP/phenol towards permanganate oxidation, which agreed well with positive correlation between Fluorescence Regional Integration (FRI) and the apparent second-order rate constants. The {pi}-{pi} interaction between HAs and phenols, the steric hindrance effect and the dissociation of phenols may affect the oxidation of phenols by permanganate in the presence of HA at pH = 7.0.

  12. Characterization of surfactant/hydrotalcite-like clay/glassy carbon modified electrodes: Oxidation of phenol

    International Nuclear Information System (INIS)

    Hernandez, Maria; Fernandez, Lenys; Borras, Carlos; Mostany, Jorge; Carrero, Hermes

    2007-01-01

    The characteristics of hydrotalcite (HT)-like clay films containing ionic and nonionic surfactants and their ability to oxidize phenol have been examined. The HT clay (Co/Al-NO 3 ) was synthesized by coprecipitation techniques and then modified with surfactants such as sodium dodecylbenzenesulfonate (SDBS), octylphenoxypolyethoxyethanol (TX100) or cetylpyridinium bromide (CPB). X-ray diffraction analysis revealed that the interlayer basal spacing varied depending on the type of surfactant retained by the HT. The presence of SDBS and CPB expanded the HT interlayer, which in the presence of TX100 did not show an appreciable change. Phenol oxidation is favored at surfactant-HT-GC modified electrodes, after a preconcentration time, compared to phenol oxidation at HT-GC or GC electrodes. Surfactant-HT-GC modified electrodes display good stability in continuous electrochemical phenol oxidation. At pH values between 6 and 10.8, both SDBS-HT-GC and TX100-HT-GC modified electrodes seem to be promising electrodes for the detection of phenol in water; while the CPB-HT-GC modified electrode should be affected by the inorganic anions

  13. [Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].

    Science.gov (United States)

    Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan

    2004-05-01

    By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.

  14. Phenol oxidation by mushroom waste extracts: a kinetic and thermodynamic study.

    Science.gov (United States)

    Pigatto, Gisele; Lodi, Alessandra; Aliakbarian, Bahar; Converti, Attilio; da Silva, Regildo Marcio Gonçalves; Palma, Mauri Sérgio Alves

    2013-09-01

    Tyrosinase activity of mushroom extracts was checked for their ability to degrade phenol. Phenol oxidation kinetics was investigated varying temperature from 10 to 60 °C and the initial values of pH, enzyme activity and phenol concentration in the ranges 4.5-8.5, 1.43-9.54 U/mL and 50-600 mg/L, respectively. Thermodynamic parameters of phenol oxidation and tyrosinase reversible inactivation were estimated. Tyrosinase thermostability was also investigated through residual activity tests after extracts exposition at 20-50 °C, whose results allowed exploring the thermodynamics of enzyme irreversible thermoinactivation. This study is the first attempt to separate the effects of reversible unfolding and irreversible denaturation of tyrosinase on its activity. Extracts were finally tested on a real oil mill wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  16. Chemical structure of the adducts formed by the oxidation of benzidine in the presence of phenols

    International Nuclear Information System (INIS)

    Josephy, P.D.; Mason, R.P.; Eling, T.

    1982-01-01

    Bioactivation of carcinogens by peroxidases has received increasing attention since the discovery of the oxidation of carcinogens by prostaglandin hydroperoxidase. Benzidine and 3,5,3',5'-tetramethylbenzidine are oxidized by horseradish peroxidase and prostaglandin synthase to two-electron oxidation products (di-imines). Di-imines readily react with the phenolic anti-oxidant butylated hydroxyanisole to form adducts. In this paper, we have studied the oxidation of benzidine by horseradish peroxidase in the presence of phenolic compounds and characterized the resultant benzidine/phenol adducts. A benzidine/2,6-dimethylphenol adduct was isolated and characterized by mass spectrometry and high field n.m.r. The reaction of [ 14 C]benzidine in the presence of horseradish peroxidase and phenol yielded only the benzidine/phenol adduct. Our results indicate that the benzidine/phenol adducts are analogous to the indoaniline dyes, differing only in substitution of a biphenyl group for a benzene ring. The reaction of benzidine di-imine with endogenous phenols may represent a new pathway for detoxication, removing potentially harmful metabolites of benzidine

  17. Atmospheric oxidation of selected hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Benter, T.; Olariu, R.I.

    2002-02-01

    This work presents investigations on the gas-phase chemistry of phenol and the cresol isomers performed in a 1080 l quartz glass reactor in Wuppertal and in a large-volume outdoor photoreactor EUPHORE in Valencia, Spain. The studies aimed at clarifying the oxidation mechanisms of the reactions of these compounds with OH and NO{sub 3} radicals. Product investigations on the oxidation of phenol and the cresol isomers initiated by OH radicals were performed in the 1080 l quartz glass reactor with analyses by in situ FT-IR absorption spectroscopy. The primary focus of the investigations was on the determination of product yields. This work represents the first determination and quantification of 1,2-dihydroxybenzenes in the OH oxidation of phenolic compounds. Possible reaction pathways leading to the observed products have been elucidated. (orig.)

  18. Changes of turbidity during the phenol oxidation by photo-Fenton treatment.

    Science.gov (United States)

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez, Jonatan

    2014-11-01

    Turbidity presented by phenol solutions oxidized with Fenton reagent shows the tendency of a first order intermediate kinetics. Thus, turbidity can be considered a representative parameter of the presence of intermediate oxidation species, which are generated along the decomposition of toxic and reluctant contaminants, such as phenol. Moreover, that parameter presents a linear dependence with the catalyst dosage, but is also determined by the initial contaminant load. When analyzing the oxidation mechanism of phenol, it is found that the maximum turbidity occurs when the treatment is carried out at oxidant to phenol molar ratios R = 4.0. These oxidation conditions correspond to the presence of a reaction mixture mainly composed of dihydroxylated rings, precursors of the muconic acid formation. The oxidation via "para" comprises the formation reactions of charge transfer complexes (quinhydrone), between the para-dihydroxylated intermediates (hydroquinone) and the para-substituted quinones (p-benzoquinone), which are quite unstable and reactive species, quickly decomposed into hydroxyhydroquinones. Working with oxidant ratios up to R = 6.0, the maximum observed value of turbidity in the oxidized solutions is kept almost constant. It is found that, in these conditions, the pyrogallol formation is maximal, what is generated through the degradation of ortho-species (catechol and ortho-benzoquinone) and meta-substituted (resorcinol). Operating with ratios over R = 6.0, these intermediates are decomposed into biodegradable acids, generating lower turbidity in the solution. Then, the residual turbidity is a function of the molar ratio of the ferrous ions vs. moles of oxidant utilized in the essays, that lets to estimate the stoichiometric dosage of catalyst as 20 mg/L at pH = 3.0, whereas operating in stoichiometric conditions, R = 14.0, the residual turbidity of water results almost null.

  19. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Fortuny, A; Bengoa, C; Font, J; Fabregat, A

    1999-01-29

    Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.

  20. Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs.

    Science.gov (United States)

    Pérez, Ana G; León, Lorenzo; Sanz, Carlos; de la Rosa, Raúl

    2018-01-01

    Olive growing is mainly based on traditional varieties selected by the growers across the centuries. The few attempts so far reported to obtain new varieties by systematic breeding have been mainly focused on improving the olive adaptation to different growing systems, the productivity and the oil content. However, the improvement of oil quality has rarely been considered as selection criterion and only in the latter stages of the breeding programs. Due to their health promoting and organoleptic properties, phenolic compounds are one of the most important quality markers for Virgin olive oil (VOO) although they are not commonly used as quality traits in olive breeding programs. This is mainly due to the difficulties for evaluating oil phenolic composition in large number of samples and the limited knowledge on the genetic and environmental factors that may influence phenolic composition. In the present work, we propose a high throughput methodology to include the phenolic composition as a selection criterion in olive breeding programs. For that purpose, the phenolic profile has been determined in fruits and oils of several breeding selections and two varieties ("Picual" and "Arbequina") used as control. The effect of three different environments, typical for olive growing in Andalusia, Southern Spain, was also evaluated. A high genetic effect was observed on both fruit and oil phenolic profile. In particular, the breeding selection UCI2-68 showed an optimum phenolic profile, which sums up to a good agronomic performance previously reported. A high correlation was found between fruit and oil total phenolic content as well as some individual phenols from the two different matrices. The environmental effect on phenolic compounds was also significant in both fruit and oil, although the low genotype × environment interaction allowed similar ranking of genotypes on the different environments. In summary, the high genotypic variance and the simplified procedure of the

  1. Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs

    Directory of Open Access Journals (Sweden)

    Ana G. Pérez

    2018-02-01

    Full Text Available Olive growing is mainly based on traditional varieties selected by the growers across the centuries. The few attempts so far reported to obtain new varieties by systematic breeding have been mainly focused on improving the olive adaptation to different growing systems, the productivity and the oil content. However, the improvement of oil quality has rarely been considered as selection criterion and only in the latter stages of the breeding programs. Due to their health promoting and organoleptic properties, phenolic compounds are one of the most important quality markers for Virgin olive oil (VOO although they are not commonly used as quality traits in olive breeding programs. This is mainly due to the difficulties for evaluating oil phenolic composition in large number of samples and the limited knowledge on the genetic and environmental factors that may influence phenolic composition. In the present work, we propose a high throughput methodology to include the phenolic composition as a selection criterion in olive breeding programs. For that purpose, the phenolic profile has been determined in fruits and oils of several breeding selections and two varieties (“Picual” and “Arbequina” used as control. The effect of three different environments, typical for olive growing in Andalusia, Southern Spain, was also evaluated. A high genetic effect was observed on both fruit and oil phenolic profile. In particular, the breeding selection UCI2-68 showed an optimum phenolic profile, which sums up to a good agronomic performance previously reported. A high correlation was found between fruit and oil total phenolic content as well as some individual phenols from the two different matrices. The environmental effect on phenolic compounds was also significant in both fruit and oil, although the low genotype × environment interaction allowed similar ranking of genotypes on the different environments. In summary, the high genotypic variance and the

  2. Electrochemical Oxidation of Phenol using a Flow-through Micro ...

    African Journals Online (AJOL)

    The electrochemical oxidation of phenol to benzoquinone followed by the reduction to hydroquinone and catechol was demonstrated by constructing a three-dimensional porous micro-flow cell from lead dioxideand lead. The electrodes were made by using the principles of curing and formation of lead oxide material that ...

  3. Oxidative Degradation of Phenol containing Wastewater using Fenton Reagent, Permanganate and Ultraviolet Radiation

    International Nuclear Information System (INIS)

    Abd El-Rahman, N.M.; Talaat, H.A.; Sorour, M.H.

    1999-01-01

    Phenol containing wastewaters are generated by numerous industrial units including integrated steel mills, textile mills, plastic production, etc. The present work is targeted to explore the viable oxidation techniques for degradation of phenolic wastewater. Three modes of treatment have been adopted in this study, namely, sole oxidant mode using Fenton reagent or permanganate, UV-assisted oxidation and two consequent chemical oxidation steps. Results indicated the superiority of fenton reagent over KMnO 4 oxidation in the sole oxidant mode. On the other hand, UV-assisted KMnO 4 oxidation enables almost complete COD reduction. Dual chemical oxidation mode employing KMnO 4 oxidation followed by Fenton reagent is also an efficient oxidative degradation system

  4. Biocatalytic site- and enantioselective oxidative dearomatization of phenols

    Science.gov (United States)

    Baker Dockrey, Summer A.; Lukowski, April L.; Becker, Marc R.; Narayan, Alison R. H.

    2018-02-01

    The biocatalytic transformations used by chemists are often restricted to simple functional-group interconversions. In contrast, nature has developed complexity-generating biocatalytic reactions within natural product pathways. These sophisticated catalysts are rarely employed by chemists, because the substrate scope, selectivity and robustness of these catalysts are unknown. Our strategy to bridge the gap between the biosynthesis and synthetic chemistry communities leverages the diversity of catalysts available within natural product pathways. Here we show that, starting from a suite of biosynthetic enzymes, catalysts with complementary substrate scope as well as selectivity can be identified. This strategy has been applied to the oxidative dearomatization of phenols, a chemical transformation that rapidly builds molecular complexity from simple starting materials and cannot be accomplished with high selectivity using existing catalytic methods. Using enzymes from biosynthetic pathways, we have successfully developed a method to produce ortho-quinol products with controlled site- and stereoselectivity. Furthermore, we have capitalized on the scalability and robustness of this method in gram-scale reactions as well as multi-enzyme and chemoenzymatic cascades.

  5. Determination of phenols by flow injection and liquid chromatography with on-line quinine-sensitized photo-oxidation and quenched luminol chemiluminescence detection

    International Nuclear Information System (INIS)

    Zhang Wei; Danielson, Neil D.

    2003-01-01

    An on-line quinine-sensitized photo-oxidation with quenched chemiluminescence (CL) detection method is developed for phenols using flow injection (FI) and liquid chromatography (LC). This detection method is based on the decrease of light emission from the luminol CL reaction due to the photo-oxidation of phenols that scavenge the photogenerated reactive oxygen species (e.g. singlet oxygen ( 1 O 2 ) and superoxide (O 2 · - )). On-line photo-oxidation is achieved using a coil photo-reactor made from fluoroethylene-propylene copolymer tubing (3048 mmx0.25 mm i.d.) coiled around a mercury UV lamp. A buffer of pH 7 and a concentration of 350 μM for quinine sulfate are determined optimum for the sensitized photo-oxidation. Using a carrier system flow rate of 60 μl/min, calibration curves taken by FI for 10 phenolic compounds in aqueous solutions showed this decreasing sensitivity order: 4-chlorophenol, phenol, 4-nitrophenol, 3-hydroxy-L-kynurenine, 2-nitrophenol, salicylate, 3-nitrophenol, catechol, 2,4-dinitrophenol, and 2,4-dichlorophenol. This detection method using two tandem coil photo-reactors is also applied for the LC separation of phenol, 4-nitrophenol and 4-chlorophenol on an octadecyl (C18) silica LC column using acetonitrile-H 2 O (40:60, v/v) as a mobile phase. The quenched CL detection limits (about 1 μM or 20 pmol) for phenol and 4-chlorophenol are comparable to those for UV detection at 254 nm. Some selectivity in the quenched CL detection is evident by no interference in the FI phenol response even when benzaldehyde and phenethanol concentrations are 8 and 15 times that of phenol

  6. Phenolic Compounds Protect Cultured Hippocampal Neurons against Ethanol-Withdrawal Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Marianna E. Jung

    2009-04-01

    Full Text Available Ethanol withdrawal is linked to elevated oxidative damage to neurons. Here we report our findings on the contribution of phenolic antioxidants (17β-estradiol, p-octyl-phenol and 2,6-di-tert-butyl-4-methylphenol to counterbalance sudden ethanol withdrawal-initiated oxidative events in hippocampus-derived cultured HT-22 cells. We showed that ethanol withdrawal for 4 h after 24-h ethanol treatment provoked greater levels of oxidative damage than the preceding ethanol exposure. Phenolic antioxidant treatment either during ethanol exposure or ethanol withdrawal only, however, dose-dependently reversed cellular oxidative damage, as demonstrated by the significantly enhanced cell viability, reduced malondialdehyde production and protein carbonylation, compared to untreated cells. Interestingly, the antioxidant treatment schedule had no significant impact on the observed neuroprotection. In addition, the efficacy of the three phenolic compounds was practically equipotent in protecting HT-22 cells in spite of predictions based on an in silico study and a cell free assay of lipid peroxidation. This finding implies that free-radical scavenging may not be the sole factor responsible for the observed neuroprotection and warrants further studies to establish, whether the HT-22 line is indeed a suitable model for in vitro screening of antioxidants against EW-related neuronal damage.

  7. Hydrogen Bonding in Phosphine Oxide/Phosphate-Phenol Complexes

    NARCIS (Netherlands)

    Cuypers, R.; Sudhölter, E.J.R.; Zuilhof, H.

    2010-01-01

    To develop a new solvent-impregnated resin (SIR) system for the removal of phenols and thiophenols from water, complex formation by hydrogen bonding of phosphine oxides and phosphates is studied using isothermal titration calorimetry (ITC) and quantum chemical modeling. Six different computational

  8. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman)

    2015-01-05

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO{sub 2}:I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO{sub 2}:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO{sub 2} nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO{sub 2} nanoparticles under similar illumination conditions.

  9. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    International Nuclear Information System (INIS)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika; Dutta, Joydeep

    2015-01-01

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO 2 :I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO 2 :I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO 2 nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO 2 nanoparticles under similar illumination conditions

  10. Hydrogen sulfide oxidation by a microbial consortium in a recirculation reactor system: sulfur formation under oxygen limitation and removal of phenols.

    Science.gov (United States)

    Alcantara, Sergio; Velasco, Antonio; Muñoz, Ana; Cid, Juan; Revah, Sergio; Razo-Flores, Elías

    2004-02-01

    Wastewater from petroleum refining may contain a number of undesirable contaminants including sulfides, phenolic compounds, and ammonia. The concentrations of these compounds must be reduced to acceptable levels before discharge. Sulfur formation and the effect of selected phenolic compounds on the sulfide oxidation were studied in autotrophic aerobic cultures. A recirculation reactor system was implemented to improve the elemental sulfur recovery. The relation between oxygen and sulfide was determined calculating the O2/S2- loading rates (Q(O2)/Q(S)2- = Rmt), which adequately defined the operation conditions to control the sulfide oxidation. Sulfur-producing steady states were achieved at Rmt ranging from 0.5 to 1.5. The maximum sulfur formation occurred at Rmt of 0.5 where 85% of the total sulfur added to the reactor as sulfide was transformed to elemental sulfur and 90% of it was recovered from the bottom of the reactor. Sulfide was completely oxidized to sulfate (Rmt of 2) in a stirred tank reactor, even when a mixture of phenolic compounds was present in the medium. Microcosm experiments showed that carbon dioxide production increased in the presence of the phenols, suggesting that these compounds were oxidized and that they may have been used as carbon and energy source by heterotrophic microorganisms present in the consortium.

  11. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Quintanilla, A. [Area de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain)]. E-mail: asun.quintanilla@uam.es; Fraile, A.F. [Area de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Casas, J.A. [Area de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Rodriguez, J.J. [Area de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain)

    2007-07-31

    Catalytic wet peroxide oxidation (CWPO) of phenol with a homemade Fe/activated carbon (Fe/AC) catalyst has been studied in a stainless steel fixed-bed reactor at different operating conditions (T = 23-100 deg. C, P {sub T} = 1-8 atm, W = 0-2.5 g, and {tau} = 20-320 g{sub CAT} h/g{sub Phenol}). The results show that, thanks to the incorporation of Fe on the activated carbon, phenol conversion improved dramatically, reaching a 90% at 65 deg. C, 2 atm, and 40 g{sub CAT} h/g{sub Phenol}. However, TOC conversion values remain fairly low, (around 5% at 40 g{sub CAT} h/g{sub Phenol}), and no improvement was obtained with the inclusion of Fe. The presence of Fe seems to promote the nondesirable coupling reactions that take place in CWPO of phenol due to the condensation of the ring intermediates (the primary phenol oxidation products). These condensation products are quite refractory to CWPO at the conditions employed. Taking advantage of the high phenol conversions in CWPO and the high phenol mineralization in CWAO, along with the good stability of the Fe/AC catalyst, a CWPO-CWAO sequential treatment has been successfully performed by using a fixed-bed and trickle-bed reactor in series. A CWPO treatment at ambient conditions followed by a CWAO treatment at mild conditions (100 deg. C and 8 atm) is presented as high efficiency process for the decontamination of phenolic wastewaters.

  12. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst.

    Science.gov (United States)

    Quintanilla, A; Fraile, A F; Casas, J A; Rodríguez, J J

    2007-07-31

    Catalytic wet peroxide oxidation (CWPO) of phenol with a homemade Fe/activated carbon (Fe/AC) catalyst has been studied in a stainless steel fixed-bed reactor at different operating conditions (T=23-100 degrees C, P(T)=1-8atm, W=0-2.5g, and tau=20-320g(CAT)h/g(Phenol)). The results show that, thanks to the incorporation of Fe on the activated carbon, phenol conversion improved dramatically, reaching a 90% at 65 degrees C, 2atm, and 40g(CAT)h/g(Phenol). However, TOC conversion values remain fairly low, (around 5% at 40g(CAT)h/g(Phenol)), and no improvement was obtained with the inclusion of Fe. The presence of Fe seems to promote the nondesirable coupling reactions that take place in CWPO of phenol due to the condensation of the ring intermediates (the primary phenol oxidation products). These condensation products are quite refractory to CWPO at the conditions employed. Taking advantage of the high phenol conversions in CWPO and the high phenol mineralization in CWAO, along with the good stability of the Fe/AC catalyst, a CWPO-CWAO sequential treatment has been successfully performed by using a fixed-bed and trickle-bed reactor in series. A CWPO treatment at ambient conditions followed by a CWAO treatment at mild conditions (100 degrees C and 8atm) is presented as high efficiency process for the decontamination of phenolic wastewaters.

  13. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst

    International Nuclear Information System (INIS)

    Quintanilla, A.; Fraile, A.F.; Casas, J.A.; Rodriguez, J.J.

    2007-01-01

    Catalytic wet peroxide oxidation (CWPO) of phenol with a homemade Fe/activated carbon (Fe/AC) catalyst has been studied in a stainless steel fixed-bed reactor at different operating conditions (T = 23-100 deg. C, P T = 1-8 atm, W = 0-2.5 g, and τ = 20-320 g CAT h/g Phenol ). The results show that, thanks to the incorporation of Fe on the activated carbon, phenol conversion improved dramatically, reaching a 90% at 65 deg. C, 2 atm, and 40 g CAT h/g Phenol . However, TOC conversion values remain fairly low, (around 5% at 40 g CAT h/g Phenol ), and no improvement was obtained with the inclusion of Fe. The presence of Fe seems to promote the nondesirable coupling reactions that take place in CWPO of phenol due to the condensation of the ring intermediates (the primary phenol oxidation products). These condensation products are quite refractory to CWPO at the conditions employed. Taking advantage of the high phenol conversions in CWPO and the high phenol mineralization in CWAO, along with the good stability of the Fe/AC catalyst, a CWPO-CWAO sequential treatment has been successfully performed by using a fixed-bed and trickle-bed reactor in series. A CWPO treatment at ambient conditions followed by a CWAO treatment at mild conditions (100 deg. C and 8 atm) is presented as high efficiency process for the decontamination of phenolic wastewaters

  14. Complexation of Phenol and Thiophenol by Amine N-Oxides: Isothermal Titration Caloritmetry and ab Initio Calculations

    NARCIS (Netherlands)

    Cuypers, R.; Sukumaran, M.; Marcelis, A.T.M.; Sudhölter, E.J.R.; Zuilhof, H.

    2010-01-01

    To develop a new solvent-impregnated resin (SIR) system for removal of phenols from water the complex formation of dimethyldodecylamine. N-oxide (DMDAO), trioctylamine N-oxide (TOAO), and tris(2-ethylhexyl)amine N-oxide (TEHAO) with phenol (PhOH) and thiophenol (PhSH) is studied To this end we use

  15. Palladium-catalyzed aerobic regio- and stereo-selective olefination reactions of phenols and acrylates via direct dehydrogenative C(sp2)-O cross-coupling.

    Science.gov (United States)

    Wu, Yun-Bin; Xie, Dan; Zang, Zhong-Lin; Zhou, Cheng-He; Cai, Gui-Xin

    2018-04-26

    An efficient olefination protocol for the oxidative dehydrogenation of phenols and acrylates has been achieved using a palladium catalyst and O2 as the sole oxidant. This reaction exhibits high regio- and stereo-selectivity (E-isomers) with moderate to excellent isolated yields and a wide substrate scope (32 examples) including ethyl vinyl ketone and endofolliculina.

  16. Facile synthesis of benzofurans via copper-catalyzed aerobic oxidative cyclization of phenols and alkynes.

    Science.gov (United States)

    Zeng, Wei; Wu, Wanqing; Jiang, Huanfeng; Huang, Liangbin; Sun, Yadong; Chen, Zhengwang; Li, Xianwei

    2013-07-28

    Regioselective synthesis of polysubstituted benzofurans using a copper catalyst and molecular oxygen from phenols and alkynes in a one-pot procedure has been reported. The transformation consists of a sequential nucleophilic addition of phenols to alkynes and oxidative cyclization. A wide variety of phenols and alkynes can be used in the same manner.

  17. Synthesis and Characterization of Titanium Supported on High Order Nanoporous Silica and Application for Direct Oxidation of Benzene to Phenol

    OpenAIRE

    Alireza Badiei; Javad Gholami; Yeganeh Khaniani

    2009-01-01

    Direct oxidation of benzene to phenol in liquid phase by H2O2 peroxide was examined over Ti/ LUS-1 catalyst in methanol and acetic acid as solvents. The maximum yield and selectivity of the phenol produced was obtained in the presence of acetic acid. It can be attributed to the stabilization of H2O2 as peroxy acetic acid species in the radical mechanism for this reaction. Acetic acid interacts with hydrogen peroxide over Ti/LUS-1 and produces acetoxy radicals.

  18. Synthesis and Characterization of Titanium Supported on High Order Nanoporous Silica and Application for Direct Oxidation of Benzene to Phenol

    Directory of Open Access Journals (Sweden)

    Alireza Badiei

    2009-01-01

    Full Text Available Direct oxidation of benzene to phenol in liquid phase by H2O2 peroxide was examined over Ti/ LUS-1 catalyst in methanol and acetic acid as solvents. The maximum yield and selectivity of the phenol produced was obtained in the presence of acetic acid. It can be attributed to the stabilization of H2O2 as peroxy acetic acid species in the radical mechanism for this reaction. Acetic acid interacts with hydrogen peroxide over Ti/LUS-1 and produces acetoxy radicals.

  19. Oxidative degradation of phenols in sono-Fenton-like systems upon high-frequency ultrasound irradiation

    Science.gov (United States)

    Aseev, D. G.; Sizykh, M. R.; Batoeva, A. A.

    2017-12-01

    The kinetics of oxidative degradation of phenol and chlorophenols upon acoustic cavitation in the megahertz range (1.7 MHz) is studied experimentally in model systems, and the involvement of in situ generated reactive oxygen species (ROSs) is demonstrated. The phenols subjected to high frequency ultrasound (HFUS) are ranked in terms of their rate of conversion: 2,4,6-trichlorophenol > 2,4-dichlorophenol 2-chlorophenol > 4-chlorophenol phenol. Oxidative degradation upon HFUS irradiation is most efficient at low concentrations of pollutants, due to the low steady-state concentrations of the in situ generated ROSs. A dramatic increase is observed in the efficiency of oxidation in several sonochemical oxidative systems (HFUS in combination with other chemical oxidative factors). The system with added Fe2+ (a sono-Fenton system) derives its efficiency from hydrogen peroxide generated in situ as a result of the recombination of OH radicals. The S2O8 2-/Fe2+/HFUS system has a synergetic effect on substrate oxidation that is attributed to a radical chain mechanism. In terms of the oxidation rates, degrees of conversion, and specific energy efficiencies of 4-chlorophenol oxidation based on the amount of oxidized substance per unit of expended energy the considered sonochemical oxidative systems form the series HFUS < S2O8 2-/HFUS < S2O8 2-/Fe2+/HFUS.

  20. Advanced Oxidation Processes (AOPs for Refinery Wastewater Treatment Contains High Phenol Concentration

    Directory of Open Access Journals (Sweden)

    Azizah Alif Nurul

    2018-01-01

    Full Text Available Petroleum Refinery wastewater is characterized by a high phenol content. Phenol is toxic and resistant to biological processes for treatment of the petroleum refinery wastewater. The combination of an AOP and a biological process can be used for treatment of the refinery wastewater. It is necessary to conduct a study to determine the appropriate condition of AOP to meet the phenol removal level. Two AOP configurations were investigated: H2O2 / UV and H2O2 / UV / O3. From each process samples, COD, phenol and pH were measured. The oxidation was carried out until the targeted phenol concentration of treated effluent were obtained. The better result obtained by using process H2O2 / UV / O3 with the H2O2 concentration 1000 ppm. After 120 minutes, the final target has been achieved in which phenol concentration of 37.5 mg/L or phenol degradation of 93.75%.

  1. Extra virgin olive oil phenols and markers of oxidation in Greek smokers: a randomized cross-over study.

    Science.gov (United States)

    Moschandreas, J; Vissers, M N; Wiseman, S; van Putte, K P; Kafatos, A

    2002-10-01

    To examine the effect of a low phenol olive oil and high phenol olive oil on markers of oxidation and plasma susceptibility to oxidation in normolipaemic smokers. Randomized single-blind cross-over trial with two intervention periods. The Medical School and University Hospital of the University of Crete, Heraklion, Crete, Greece. Twenty-five healthy males and females completed the study. Each intervention was of three weeks duration and intervention periods were separated by a two week washout. Seventy grams of extra virgin olive oil was supplied to each subject per day in the intervention periods. The olive oils supplied differed in their phenol content by 18.6 mg/day. Two fasting venous blood samples were taken at the end of each intervention period. The markers of antioxidant capacity measured in fasting plasma samples (total plasma resistance to oxidation, concentrations of protein carbonyl as a marker of protein oxidation, malondialdehyde and lipid hydroperoxides as markers of lipid oxidation and the ferric reducing ability of plasma) did not differ significantly between the low and high phenol olive oil diets. No effect of olive oil phenols on markers of oxidation in smokers was detected. It may be that the natural concentrations of phenols in olive oil are too low to produce an effect in the post-absorptive phase. Possible reasons for period effects and interactions between diet and administration period need attention to aid further cross-over trials of this kind. Unilever Research Vlaardingen, The Netherlands.

  2. Influence of the growth phenophases on the phenolic composition and anti-oxidant properties of Roscoea procera Wall. in western Himalaya.

    Science.gov (United States)

    Rawat, Sandeep; Jugran, Arun K; Bhatt, Indra D; Rawal, Ranbeer S

    2018-02-01

    Roscoea procera Wall. is one of the important Himalayan medicinal plant used in traditional as well as in modern health care system. The present study aimed to find out the influence of different phenophases on the phenolic compounds and anti-oxidant properties by analysing after every week for over 4 months from shoot bud initiation to the preparation of senescence. Concentration of total phenolic content were found to be about 1.5 times higher in preparation of senescence phase (6.10 mg GAE/g dry weight or dw) as compared to vegetative growth phase. Similarly, total flavonoid concentration ranged from 4.36 to 5.65 mg querectin equivalents/g dw. The concentration of selected phenolic compounds, i.e., gallic acid, catechin and p -coumaric acid was quantified by reverse phase-high performance liquid chromatography and varied significantly among the different phenophases. While, anti-oxidant activity was found 2-3 times higher in preparation of senescence phase as compared to vegetative phase. Thus, these results concluded that in R. procera , November month (preparation of senescence phase) could be recommended for extracting optimum level of total phenolics, flavonoids and anti-oxidant activity. These results will be further helpful for obtaining maximum benefits from the species and to reduce pressure on reproductive phase while ensuring its conservation.

  3. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    Science.gov (United States)

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  4. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    Directory of Open Access Journals (Sweden)

    Elixabet Díaz-de-Cerio

    2016-05-01

    Full Text Available Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high. The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production.

  5. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States.

    Science.gov (United States)

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-05-11

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production.

  6. Extra virgin olive oil phenols and markers of oxidation in Greek smokers: a randomized cross-over study

    NARCIS (Netherlands)

    Moschandreas, J.; Vissers, M.N.; Wiseman, S.; Putte, van K.P.; Kafatos, A.

    2002-01-01

    Objective: To examine the effect of a low phenol olive oil and high phenol olive oil on markers of oxidation and plasma susceptibility to oxidation in normolipaemic smokers. Design: Randomized single-blind cross-over trial with two intervention periods. Setting: The Medical School and University

  7. LIQUID PHASE SELECTIVE OXIDATION OF ETHYLBENZENE OVER ACTIVATED AL2O3 SUPPORTED V2O5 CATALYST

    Science.gov (United States)

    Acetophenone, a very useful industrial chemical for fragrance and flavoring agent and a solvent for plastics and resins, is usually produced as a byproduct of phenol production from cumeme. Aluminia supported vandium oxide catalyst is now explored for the selective oxidation of e...

  8. Palladium catalyzed direct oxidation of benzene with molecular oxygen to phenol

    International Nuclear Information System (INIS)

    Jintoku, Tetsuro; Takaki, Ken; Fujiwara, Yuzo; Fuchita, Yoshio; Hiraki, Katsuma.

    1990-01-01

    Direct phenol synthesis from benzene is currently one of the most important problems in modern chemistry. We have reported new phenol synthesis from benzene and O 2 via direct activation of a C-H aromatic bond by the Pd(OAc) 2 /phenanthroline catalyst system. The evidence for direct oxidation of benzene by O 2 was obtained using 18 O and 2 H isotopes. The mechanism was proposed on the basis of these results and the reactions of Ph-Pd σ complex intermediates. (author)

  9. Wine phenolics.

    Science.gov (United States)

    Waterhouse, Andrew L

    2002-05-01

    Wine contains many phenolic substances, most of which originate in the grape berry. The phenolics have a number of important functions in wine, affecting the tastes of bitterness and astringency, especially in red wine. Second, the color of red wine is caused by phenolics. Third, the phenolics are the key wine preservative and the basis of long aging. Lastly, since phenolics oxidize readily, they are the component that suffers owing to oxidation and the substance that turns brown in wine (and other foods) when exposed to air. Wine phenolics include the non-flavonoids: hydroxycinnamates, hydroxybenzoates and the stilbenes; plus the flavonoids: flavan-3-ols, the flavonols, and the anthocyanins. While polymeric condensed tannins and pigmented tannins constitute the majority of wine phenolics, their large size precludes absorption and thus they are not likely to have many health effects (except, perhaps, in the gut). The total amount of phenols found in a glass of red wine is on the order of 200 mg versus about 40 mg in a glass of white wine.

  10. Solid/liquid extraction equilibria of phenolic compounds with trioctylphosphine oxide impregnated in polymeric membranes.

    Science.gov (United States)

    Praveen, Prashant; Loh, Kai-Chee

    2016-06-01

    Trioctylphosphine oxide based extractant impregnated membranes (EIM) were used for extraction of phenol and its methyl, hydroxyl and chloride substituted derivatives. The distribution coefficients of the phenols varied from 2 to 234, in the order of 1-napthol > p-chlorophenol > m-cresol > p-cresol > o-cresol > phenol > catechol > pyrogallol > hydroquinone, when initial phenols loadings was varied in 100-2000 mg/L. An extraction model, based on the law of mass action, was formulated to predict the equilibrium distribution of the phenols. The model was in excellent agreement (R(2) > 0.97) with the experimental results at low phenols concentrations ( 0.95), which signified high mass transfer resistance in the EIMs. Examination of the effects of ring substitution on equilibrium, and bivariate statistical analysis between the amounts of phenols extracted into the EIMs and factors affecting phenols interaction with TOPO, indicated the dominant role of hydrophobicity in equilibrium determination. These results improve understanding of the solid/liquid equilibrium process between phenols and the EIMs, and these will be useful in designing phenol recovery process from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Understanding the role of manganese dioxide in the oxidation of phenolic compounds by aqueous permanganate.

    Science.gov (United States)

    Jiang, Jin; Gao, Yuan; Pang, Su-Yan; Lu, Xue-Ting; Zhou, Yang; Ma, Jun; Wang, Qiang

    2015-01-06

    Recent studies have shown that manganese dioxide (MnO2) can significantly accelerate the oxidation kinetics of phenolic compounds such as triclosan and chlorophenols by potassium permanganate (Mn(VII)) in slightly acidic solutions. However, the role of MnO2 (i.e., as an oxidant vs catalyst) is still unclear. In this work, it was demonstrated that Mn(VII) oxidized triclosan (i.e., trichloro-2-phenoxyphenol) and its analogue 2-phenoxyphenol, mainly generating ether bond cleavage products (i.e., 2,4-dichlorophenol and phenol, respectively), while MnO2 reacted with them producing appreciable dimers as well as hydroxylated and quinone-like products. Using these two phenoxyphenols as mechanistic probes, it was interestingly found that MnO2 formed in situ or prepared ex situ greatly accelerated the kinetics but negligibly affected the pathways of their oxidation by Mn(VII) at acidic pH 5. The yields (R) of indicative products 2,4-dichlorophenol and phenol from their respective probes (i.e., molar ratios of product formed to probe lost) under various experimental conditions were quantified. Comparable R values were obtained during the treatment by Mn(VII) in the absence vs presence of MnO2. Meanwhile, it was confirmed that MnO2 could accelerate the kinetics of Mn(VII) oxidation of refractory nitrophenols (i.e., 2-nitrophenol and 4-nitrophenol), which otherwise showed negligible reactivity toward Mn(VII) and MnO2 individually, and the effect of MnO2 was strongly dependent upon its concentration as well as solution pH. These results clearly rule out the role of MnO2 as a mild co-oxidant and suggest a potential catalytic effect on Mn(VII) oxidation of phenolic compounds regardless of their susceptibility to oxidation by MnO2.

  12. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  13. The influence of TiO2 and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor

    International Nuclear Information System (INIS)

    Wang Lizhang; Zhao Yuemin; Fu Jianfeng

    2008-01-01

    The electrochemical oxidation of phenolic wastewater in a lab-scale reactor, packed into granular activated carbon (GAC) with Ti/SnO 2 anodes and stainless steel cathodes, was interpreted in this study. GAC saturated rapidly if it was only used as sorbent, but application of suitable electric energy for the system simultaneously could recover the adsorption ability of GAC and maintain the continuous running effectively. The titanium dioxide (TiO 2 ) as catalyst and airflow were also applied to the electrochemical reactor to examine the enhancement for phenol oxidation process. Results revealed that the electrochemical degradation of phenol could be reasonably described by first-order kinetics. In addition, it was illustrated that acid region, increased voltage, more dosage of TiO 2 and higher aeration intensity were all beneficial parameters for phenol oxidation rates. By inspecting the relationship between the rate constants (k) and influencing factors, respectively, an overall kinetic model for phenol oxidation was proposed. The kinetics obtained from the experiments under corresponding electrochemical conditions could provide an accurate estimation of phenol concentration effluent and better design of the packed bed reactor

  14. Kinetics of Phenol Degradation in Aqueous Solution Oxidized under Low Frequency Ultrasonic Irradiation

    Directory of Open Access Journals (Sweden)

    Marwan Marwan

    2014-06-01

    Full Text Available Phenol is categorized as a refractory pollutant and its presence in water stream is strictly limited according to the government regulation. The present study investigated the degra-dation of phenol in aqueous solution by the effect of ultrasound. The process took place in a 500 ml glass reactor equipped with magnetic stirring and irradiated by low frequency (28 kHz ultrasound from a horn type probe. Ultrasonic irradiation was found to enhance oxidation rates at ambient conditions, compared to other approaches. Optimum conditions were observed at a stirring speed of 400 rpm and temperature of 30 C in acidic solution. It was revealed that the phenol degradation was the first order kinetics with respect to phenol. A low value of the activation energy 6.04 kcal/mol suggested that diffusional steps were rate determining during the phenol decomposition. It also confirmed that phenol was mostly degraded in the film region and less occurred in the bulk solution.

  15. The content changes of selected phenolic compounds during processing of medicinal plants

    OpenAIRE

    GROŠAFTOVÁ, Blanka

    2007-01-01

    This work was aimed to the problem of change of the content of selected phenolic substances during treatment and storage of medical plants. Flavonoids represent small, but very important group of phenolic compounds. The biggest attention was paid to quercetin and rutine.Content of phenolic substances was determined by method of micellar electrokinetic capillary chromatography (MECC) in case of 6 medicinal plants usually used in traditional and modern medicine.

  16. Antioxidant activity of selected phenols estimated by ABTS and FRAP methods

    Directory of Open Access Journals (Sweden)

    Izabela Biskup

    2013-09-01

    Full Text Available Introduction: Phenols are the most abundant compounds in nature. They are strong antioxidants. Too high level of free radicals leads to cell and tissue damage, which may cause asthma, Alzheimer disease, cancers, etc. Taking phenolics with the diet as supplements or natural medicines is important for homeostasis of the organism. Materials and methods: The ten most popular water soluble phenols were chosen for the experiment to investigate their antioxidant properties using ABTS radical scavenging capacity assay and ferric reducing antioxidant potential (FRAP assay. Results and discussion: Antioxidant properties of selected phenols in the ABTS test expressed as IC50 ranged from 4.332 μM to 852.713 μM (for gallic acid and 4- hydroxyphenylacetic acid respectively. Antioxidant properties in the FRAP test are expressed as μmol Fe2 /ml. All examined phenols reduced ferric ions at concentration 1.00 x 10-3 mg/ml. Both methods are very useful for determination of antioxidant capacity of water soluble phenols.

  17. Solid state oxidation of phenols to quinones with sodium perborate on wet montmorillonite K10

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Mohammed M.; Eftekhari-Sis, Bagher; Khalili, Behzad; Karimi-Jaberi, Zahed [Sharif University of Technology, Tehran (Iran, Islamic Republic of). Dept. of Chemistry]. E-mail: mhashemi@sharif.edu

    2005-09-15

    Phenols were oxidized to quinones using sodium perborate (SPB) on wet montmorillonite as oxidant. The reaction was carried out at ambient temperature on the solid phase under solvent free conditions. (author)

  18. Solid state oxidation of phenols to quinones with sodium perborate on wet montmorillonite K10

    International Nuclear Information System (INIS)

    Hashemi, Mohammed M.; Eftekhari-Sis, Bagher; Khalili, Behzad; Karimi-Jaberi, Zahed

    2005-01-01

    Phenols were oxidized to quinones using sodium perborate (SPB) on wet montmorillonite as oxidant. The reaction was carried out at ambient temperature on the solid phase under solvent free conditions. (author)

  19. Oxidation of Phenol by Hydrogen Peroxide Catalyzed by Metal-Containing Poly(amidoxime Grafted Starch

    Directory of Open Access Journals (Sweden)

    Hany El-Hamshary

    2011-11-01

    Full Text Available Polyamidoxime chelating resin was obtained from polyacrylonitrile (PAN grafted starch. The nitrile groups of the starch-grafted polyacrylonitrile (St-g-PAN were converted into amidoximes by reaction with hydroxylamine under basic conditions. The synthesized graft copolymer and polyamidoxime were characterized by FTIR, TGA and elemental microanalysis. Metal chelation of the polyamidoxime resin with iron, copper and zinc has been studied. The produced metal-polyamidoxime polymer complexes were used as catalysts for the oxidation of phenol using H2O2 as oxidizing agent. The oxidation of phenol depends on the central metal ion present in the polyamidoxime complex. Reuse of M-polyamidoxime catalyst/H2O2 system showed a slight decrease in catalytic activities for all M-polyamidoxime catalysts.

  20. Phenolic compounds of Triplaris gardneriana can protect cells against oxidative stress and restore oxidative balance.

    Science.gov (United States)

    de Almeida, Thiago Silva; Neto, José Joaquim Lopes; de Sousa, Nathanna Mateus; Pessoa, Igor Parra; Vieira, Leonardo Rogério; de Medeiros, Jackeline Lima; Boligon, Aline Augusti; Hamers, Astrid R M; Farias, Davi Felipe; Peijnenburg, Ad; Carvalho, Ana Fontenele Urano

    2017-09-01

    This work aimed to add value to an underexploited plant species from Brazil, Triplaris gardneriana. To that, the phenolic compounds profile of its seed ethanolic extract and fractions was examined by HPLC and the antioxidant capacity assessed using chemical assays as well as in vitro cell imaging. Twelve compounds were quantified and classified as either phenolic acids or flavonoids. The fractionation process did not generate fractions with different compositions except for chloroformic fraction, which showed only 6 out of 12 standard compounds used. DPPH assay revealed samples with a concentration-dependent radical scavenging activity, being methanolic fraction the one with the largest activity (SC 50 11.45±0.02μg/mL). Lipid peroxidation assessment, in the presence and absence of stress inducer, showed that particularly the ethanol extract (IC 50 26.75±0.08μg/mL) and the ethyl acetate fraction (IC 50 6.14±0.03μg/mL) could inhibit lipid peroxidation. The ethyl acetate fraction performed best in chelating iron (48% complexation at 1000μg/mL). Cell imaging experiments showed that the ethanolic extract could protect cells against oxidative stress as well as restore the oxidative balance upon stress induction. In conclusion, T. gardneriana seeds showed a promising phenolic compounds profile and antioxidant activity that may be further exploited. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Novel Magnetic Zinc Oxide Nanotubes for Phenol Adsorption: Mechanism Modeling

    Directory of Open Access Journals (Sweden)

    Marwa F. Elkady

    2017-11-01

    Full Text Available Considering the great impact of a material’s surface area on adsorption processes, hollow nanotube magnetic zinc oxide with a favorable surface area of 78.39 m2/g was fabricated with the assistance of microwave technology in the presence of poly vinyl alcohol (PVA as a stabilizing agent followed by sonic precipitation of magnetite nano-particles. Scanning electron microscopy (SEM and transmission electron microscopy (TEM micrographs identified the nanotubes’ morphology in the synthesized material with an average aspect ratio of 3. X-ray diffraction (XRD analysis verified the combination of magnetite material with the hexagonal wurtzite structure of ZnO in the prepared material. The immobilization of magnetite nanoparticles on to ZnO was confirmed using vibrating sample magnetometry (VSM. The sorption affinity of the synthesized magnetic ZnO nanotube for phenolic compounds from aqueous solutions was examined as a function of various processing factors. The degree of acidity of the phenolic solution has great influence on the phenol sorption process on to magnetic ZnO. The calculated value of ΔH0 designated the endothermic nature of the phenol uptake process on to the magnetic ZnO nanotubes. Mathematical modeling indicated a combination of physical and chemical adsorption mechanisms of phenolic compounds on to the fabricated magnetic ZnO nanotubes. The kinetic process correlated better with the second-order rate model compared to the first-order rate model. This result indicates the predominance of the chemical adsorption process of phenol on to magnetic ZnO nanotubes.

  2. Oxidation of triclosan by permanganate (Mn(VII)): importance of ligands and in situ formed manganese oxides.

    Science.gov (United States)

    Jiang, Jin; Pang, Su-Yan; Ma, Jun

    2009-11-01

    Experiments were conducted to examine permanganate (Mn(VII); KMnO(4)) oxidation of the widely used biocide triclosan (one phenolic derivative) in aqueous solution at pH values of 5-9. Under slightly acidic conditions, the reactions displayed autocatalysis, suggesting the catalytic role of in situ formed MnO(2). This was further supported by the promoting effects of the addition of preformed MnO(2) colloids on Mn(VII) oxidations of triclosan and two other selected phenolics (i.e., phenol and 2,4-dichlorophenol), as well as p-nitrophenol which otherwise showed negligible reactivity toward Mn(VII) and MnO(2) colloids, respectively. Surprisingly, phosphate buffer significantly enhanced Mn(VII) oxidation of triclosan, as well as phenol and 2,4-dichlorophenol over a wide pH range. Further, several other selected ligands (i.e., pyrophosphate, EDTA, and humic acid) also exerted oxidation enhancement, supporting a scenario where highly active aqueous manganese intermediates (Mn(INT)(aq)) formed in situ upon Mn(VII) reduction might be stabilized to a certain extent in the presence of ligands and subsequently involved in further oxidation of target phenolics, whereas without stabilizing agents Mn(INT)(aq) autodecomposes or disproportionates spontaneously. The effectiveness of Mn(VII) for the oxidative removal of triclosan in natural water and wastewater was confirmed. Their background matrices were also found to accelerate Mn(VII) oxidation of phenolics.

  3. Substituent effect on the oxidation peak potentials of phenol derivatives at ordered mesoporous carbons modified electrode and its application in determination of acidity coefficients (pKa)

    International Nuclear Information System (INIS)

    Zhang, Tingting; Lang, Qiaolin; Zeng, Lingxing; Li, Tie; Wei, Mingdeng; Liu, Aihua

    2014-01-01

    In this paper, the relationship between the electrochemical characteristics and the structure of a series of substituted phenol derivatives with electron-donating or electron-withdrawing groups were studied by voltammetry using ordered mesoporous carbons (OMCs) modified glassy carbon electrode (GCE) (OMCs/GCE). p-Nitrophenol (p-NP) and p-methylphenol were selected as models of electron-withdrawing and electron-donating groups, respectively, to illustrate the electrochemical behavior and reaction mechanism of substituted phenols. Voltammetric study showed that the oxidation peak potential (E pa ) of substituted phenols with an electron-withdrawing group was systematically higher than that of substituted phenols with an electron-donating group. That is, the direct electrochemical oxidation of substituted phenol with an electron-withdrawing group is more difficult than that of substituted phenol with an electron-donating group. The E pa value shifted negatively with the increase of pKa for both p-substituted phenols and o-substituted phenols with the equations of pKa = −6.986 E pa + 13.261 (for p-substituted phenols) and pKa = −7.929 E pa + 13.831 (for o-substituted phenols). Thus, a simple and novel method was proposed for the precise prediction of the pKa of substituted phenols by determining E pa values with voltammetry at OMCs/GCE, which matched fairly with the results calculated from Hammett's constants. Thus, the present work may provide additional strategy to determine pKa values and investigate possible mechanisms of some organic reactions. In addition, by making use of the substituent effect, different p-substituted phenols (or o-substituted phenols) can be well separated and identified at OMCs/GCE by voltametry, which may find possible applications in simultaneous detection of p-substituted phenols (or o-substituted phenols)

  4. Radiation oxidation of phenol in the presence of petrochemical wastewater components

    International Nuclear Information System (INIS)

    Macasek, F.; Mikulaj, V.; Rajek, P.; Matel, L.; Kopunec, R.; Kuruc, J.; Svec, A.

    1995-01-01

    Radiolytical decomposition of phenol was investigated at 60 Co gamma irradiation (1-2 Gy * s -1 , ≤ 10 kGy) of pre- and continuously aerated aqueous solutions at concentrations of phenol 1-100 mg * dm -3 and in the presence of sodium hydroxide, sulphuric acid, sodium and ferrous sulphate, formaldehyde, 2-propanol, n-hexane, xylene, benzene, and commercial gasoline. From the decomposition rate at doses 50-400 Gy, a phenomenological model of linear relation between the dose acquired for 37% decomposition (D 37 ), initial concentration (g * m -3 ) of phenol (p 0 ) and of an admixture (s 0 ) was confirmed in the form D 37 = 52f tr (p 0 + f eq s 0 ), where f's are constants which can be attributed to the relative transformation resistance of phenol towards the OH radicals in given matrix (f tr , for pure water f tr = 1) and relative acceptor capacity of competing substrate (f eq ). In real wastewaters, the efficient decrease of phenols content may be substantially lower than that in the model solutions, obviously due to radiation oxidation of aromates, as proved by irradiation of aqueous solutions of benzene. Technical and economical feasibility of the process is discussed. (author) 27 refs.; 9 figs.; 1 tab

  5. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag"+/TiO_2: Influence of electron donating and withdrawing substituents

    International Nuclear Information System (INIS)

    Xiao, Jiadong; Xie, Yongbing; Han, Qingzhen; Cao, Hongbin; Wang, Yujiao; Nawaz, Faheem; Duan, Feng

    2016-01-01

    Highlights: • A weak EWG benefited photocatalytic oxidation of phenols the most. • Phenolic compounds were dominantly oxidized by ·O_2"−, rather than ·OH, "1O_2 or h"+. • ·O_2"− preferred to nucleophilically attack EDG substituted phenols. • ·O_2"− more likely electrophilically attacked EWG substituted phenols. • ·O_2"− simultaneously nucleophilically and electrophilically assaulted p-chlorophenol. - Abstract: A comparative study was constructed to correlate the electronic property of the substituents with the degradation rates of phenolic compounds and their oxidation pathways under UV with Ag"+/TiO_2 suspensions. It was verified that a weak electron withdrawing substituent benefited photocatalytic oxidation the most, while an adverse impact appeared when a substituent was present with stronger electron donating or withdrawing ability. The addition of p-benzoquinone dramatically blocked the degradation, confirming superoxide radicals (·O_2"−) as the dominant photooxidant, rather than hydroxyl radicals, singlet oxygen or positive holes, which was also independent of the substituent. Hammett relationship was established based on pseudo-first-order reaction kinetics, and it revealed two disparate reaction patterns between ·O_2"− and phenolic compounds, which was further verified by the quantum chemical computation on the frontier molecular orbitals and Mulliken charge distributions of ·O_2"− and phenolic compounds. It was found that electron donating group (EDG) substituted phenols were more likely nucleophilically attacked by ·O_2"−, while ·O_2"− preferred to electrophilically assault electron withdrawing group (EWG) substituted phenols. Exceptionally, electrophilic and nucleophilic attack by ·O_2"− could simultaneously occur in p-chlorophenol degradation, consequently leading to its highest rate constant. Possible reactive positions on the phenolic compounds were also detailedly uncovered.

  6. Ferrate(VI) as a greener oxidant: Electrochemical generation and treatment of phenol.

    Science.gov (United States)

    Sun, Xuhui; Zhang, Qi; Liang, He; Ying, Li; Xiangxu, Meng; Sharma, Virender K

    2016-12-05

    Ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) is a greener oxidant in the treatment of drinking water and wastewater. The electrochemical synthesis of Fe(VI) may be considered environmentally friendly because it involves one-step process to convert Fe(0) to Fe(VI) without using harmful chemicals. Electrolysis was performed by using a sponge iron as an anode in NaOH solution at different ionic strengths. The cyclic voltammetric (CV) curves showed that the sponge iron had higher electrical activity than the grey cast iron. The optimum current density was 0.054mAcm(-2) in 10M NaOH solution, which is much lower than the electrolyte concentrations used in other electrode materials. A comparison of current efficiency and energy consumption was conducted and is briefly discussed. The generated ferrate solution was applied to degrade phenol in water at two levels (2mgL(-1) and 5mgL(-1)). The maximum removal efficiency was ∼70% and the optimum pH for phenol treatment was 9.0. Experiments on phenol removal using conventional coagulants (ferric chloride (FeCl3) and polyaluminium chloride (PAC)) were performed independently to demonstrate that removal of phenol by Fe(VI) occurred mainly by oxidative transformation. A combination of Fe(VI) and coagulant may be advantageous in enhancing removal efficiency, adjusting pH, and facilitating flocculation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The influence of TiO{sub 2} and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lizhang [College of Environment and Spatial Informatics, China University of Mining and Technology, South Jiefang Road, Quanshan District, Xuzhou City, Jiangsu 221008 (China)], E-mail: wlzh0731@126.com; Zhao Yuemin [School of Chemical Engineering and Technology, China University of Mining and Technology, South Jiefang Road, Quanshan District, Xuzhou City, Jiangsu 221008 (China)], E-mail: ymzhao@cumt.edu.cn; Fu Jianfeng [Department of Environmental Engineering, Southeast University, Nanjing City, Jiangsu 210096 (China)

    2008-12-30

    The electrochemical oxidation of phenolic wastewater in a lab-scale reactor, packed into granular activated carbon (GAC) with Ti/SnO{sub 2} anodes and stainless steel cathodes, was interpreted in this study. GAC saturated rapidly if it was only used as sorbent, but application of suitable electric energy for the system simultaneously could recover the adsorption ability of GAC and maintain the continuous running effectively. The titanium dioxide (TiO{sub 2}) as catalyst and airflow were also applied to the electrochemical reactor to examine the enhancement for phenol oxidation process. Results revealed that the electrochemical degradation of phenol could be reasonably described by first-order kinetics. In addition, it was illustrated that acid region, increased voltage, more dosage of TiO{sub 2} and higher aeration intensity were all beneficial parameters for phenol oxidation rates. By inspecting the relationship between the rate constants (k) and influencing factors, respectively, an overall kinetic model for phenol oxidation was proposed. The kinetics obtained from the experiments under corresponding electrochemical conditions could provide an accurate estimation of phenol concentration effluent and better design of the packed bed reactor.

  8. Phenolic Content and Biomolecule Oxidation Protective Activity of Globularia alypum Extracts

    Directory of Open Access Journals (Sweden)

    Hamama Bouriche

    2017-08-01

    Full Text Available ABSTRACT The protective activity of methanolic (Met E and aqueous (Aq E extracts of Globularia alypum L. (G. alypum against DNA, lipid and protein oxidative damage was investigated. Moreover, the scavenging, chelating, and reducing power activities of the extracts were also evaluated. Phytochemical analysis was performed to determine phenolic compounds. Results showed that Met E and Aq E were rich in phenolic compounds, and were able to scavenge DPPH˙ with IC50 values of 48.61 µg/mL and 51.97 µg/mL, respectively. In addition, both extracts were able to chelate ferrous ions. At 300 μg/mL, the chelating activity was 97.53% and 91.02%, respectively. The reducing power of these extracts was also remarkable and concentration dependent. At 100 µg/mL, both extracts inhibited lipid peroxidatin by only 42.45% and 4.03%. However, the DNA oxidation damage was inhibited dose-dependently in the presence of G. alypum extracts. At 1 mg/mL, both extracts suppressed DNA cleavage by 83%-84%. The protein oxidation was also inhibited by G. alypum extracts. At 1 mg/mL, Aq E and Met E protected BSA fragmentation by 77%-99%. The overall results suggest that G. alypum extracts exerted antioxidant activity and protect biomolecules against oxidative damage; hence it may serve as a potential source of natural antioxidants.

  9. Electrochemical treatment of wastewater: A case study of reduction of DNT and oxidation of chlorinated phenols

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, J.D.; Bunce, N.J.; Jedral, W.

    1999-07-01

    Electrochemical treatment is under consideration as a treatment option for several recalcitrant compounds. In this work the authors investigate the oxidation of chlorophenols and the reduction of nitroaromatics. In the case of chlorinated phenols, they explore the problem of anode fouling which has hampered electrolytic treatment of phenolic compounds by examining phenols differing in the extent of chlorination, according to the mechanism of oxidation at different electrode types. Linear sweep voltammograms at a Pt anode were interpreted in terms of deposition of oligomers on the anode surface. Passivation increased in parallel with the uncompensated resistance of the solution and occurred only at potentials at which water is oxidized, suggesting that the formation of the oligomer film involves attack of hydroxyl radicals on electrochemically oxidized substrate. Relative reactivities of congeners were anode-dependent, due to different mechanisms of oxidation: direct electron transfer oxidation at PbO{sub 2} and hydroxyl radical attack at SnO{sub 2} and IrO{sub 2}. Voltammetry of 2,6-dinitrotoluene (DNT) was consistent with literature values. DNT was reduced at several cathodes with the most promising result at Ni-plated Ni wire. At current densities {lt} 0.1 mA cm{sup {minus}2}, current efficiencies {gt} 50% could be achieved with 4-chlorophenol at all three anodes and for 2,6-DNT at Ni-plated Ni wire.

  10. Graphene oxide for solid-phase extraction of bioactive phenolic acids.

    Science.gov (United States)

    Hou, Xiudan; Wang, Xusheng; Sun, Yingxin; Wang, Licheng; Guo, Yong

    2017-05-01

    A solid-phase extraction (SPE) method for the efficient analysis of trace phenolic acids (PAs, caffeic acid, ferulic acid, protocatechuic acid, cinnamic acid) in urine was established. In this work, a graphene oxide (GO) coating was grafted onto pure silica to be investigated as SPE material. The prepared GO surface had a layered and wrinkled structure that was rough and well organized, which could provide more open adsorption sites. Owing to its hydrophilicity and polarity, GO showed higher extraction efficiency toward PAs than reduced GO did, in agreement with the theoretical calculation results performed by Gaussian 09 software. The adsorption mechanism of PAs on GO@Sil was also investigated through static state and kinetic state adsorption experiments, which showed a monolayer surface adsorption. Extraction capacity of the as-prepared material was optimized using the response surface methodology. Under the optimized conditions, the as-established method provided wide linearity range (2-50 μg L -1 for protocatechuic acid and 1-50 μg L -1 for caffeic acid, ferulic acid, and cinnamic acid) and low limits of detection (0.25-1 μg L -1 ). Finally, the established method was applied for the analysis of urine from two healthy volunteers. The results indicate that the prepared material is a practical, cost-effective medium for the extraction and determination of phenolic acids in complex matrices. Graphical Abstract A graphene oxide coating was grafted onto pure silica as the SPE material for the extraction of phenolic acids in urines and the extraction mechanism was also mainly investigated.

  11. Anionic chromogenic chemosensors highly selective for fluoride or cyanide based on 4-(4-Nitrobenzylideneamine)phenol

    Energy Technology Data Exchange (ETDEWEB)

    Nicoleti, Celso R; Marini, Vanderleia G; Zimmermann, Lizandra M; Machado, Vanderlei G., E-mail: vanderlei.machado@ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-08-15

    4-(4-Nitrobenzylideneamine)phenol was used in two strategies allowing the highly selective detection of F{sup -} and CN{sup -}. Firstly, the compound in acetonitrile acts as a chromogenic chemosensor based on the idea that more basic anions cause its deprotonation (colorless solution), generating a colored solution containing phenolate. The discrimination of CN{sup -} over F{sup -} was obtained by adding 1.4% water to acetonitrile: water preferentially solvates F{sup -}, leaving the CN{sup -} free to deprotonate the compound. Another strategy involved an assay comprised of the competition between phenolate dye and the analyte for calyx[4]pyrrole in acetonitrile, a receptor highly selective for F{sup -}. Phenolate and calyx[4]pyrrole form a hydrogen-bonded complex, which changes the color of the medium. On the addition of various anions, only F{sup -} was able to restore the original color corresponding to phenolate in solution due to the fact that the anion dislodges phenolate from the complexation site. (author)

  12. Anionic chromogenic chemosensors highly selective for fluoride or cyanide based on 4-(4-Nitrobenzylideneamine)phenol

    International Nuclear Information System (INIS)

    Nicoleti, Celso R.; Marini, Vanderleia G.; Zimmermann, Lizandra M.; Machado, Vanderlei G.

    2012-01-01

    4-(4-Nitrobenzylideneamine)phenol was used in two strategies allowing the highly selective detection of F - and CN - . Firstly, the compound in acetonitrile acts as a chromogenic chemosensor based on the idea that more basic anions cause its deprotonation (colorless solution), generating a colored solution containing phenolate. The discrimination of CN - over F - was obtained by adding 1.4% water to acetonitrile: water preferentially solvates F - , leaving the CN - free to deprotonate the compound. Another strategy involved an assay comprised of the competition between phenolate dye and the analyte for calyx[4]pyrrole in acetonitrile, a receptor highly selective for F - . Phenolate and calyx[4]pyrrole form a hydrogen-bonded complex, which changes the color of the medium. On the addition of various anions, only F - was able to restore the original color corresponding to phenolate in solution due to the fact that the anion dislodges phenolate from the complexation site. (author)

  13. Effect of phenol-rich extra virgin olive oil on markers of oxidation in healthy volunteers

    NARCIS (Netherlands)

    Vissers, M.N.; Zock, P.L.; Wiseman, S.A.; Meyboom, S.; Katan, M.B.

    2001-01-01

    Objective: We studied whether consumption of phenol-rich extra virgin olive oil affects the susceptibility of low density lipoproteins (LDL) to oxidation and other markers of oxidation in humans. Design: Randomized cross-over intervention trial, stratified according to sex, age and energy intake.

  14. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    Science.gov (United States)

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution

  15. Antioxidant and Antiradical Properties of Selected Flavonoids and Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Zübeyir Huyut

    2017-01-01

    Full Text Available Phenolic compounds and flavonoids are known by their antioxidant properties and one of the most important sources for humans is the diet. Due to the harmful effects of synthetic antioxidants such as BHA and BHT, natural novel antioxidants have become the focus of attention for protecting foods and beverages and reducing oxidative stress in vivo. In the current study, we investigated the total antioxidant, metal chelating, Fe3+ and Cu2+ reduction, and free radical scavenging activities of some phenolic and flavonoid compounds including malvin, oenin, ID-8, silychristin, callistephin, pelargonin, 3,4-dihydroxy-5-methoxybenzoic acid, 2,4,6-trihydroxybenzaldehyde, and arachidonoyl dopamine. The antioxidant properties of these compounds at different concentrations (10–30 μg/mL were compared with those of reference antioxidants such as BHA, BHT, α-tocopherol, and trolox. Each substance showed dose-dependent antioxidant activity. Furthermore, oenin, malvin, arachidonoyl dopamine, callistephin, silychristin, and 3,4-dihydroxy-5-methoxybenzoic acid exhibited more effective antioxidant activity than that observed for the reference antioxidants. These results suggest that these novel compounds may function to protect foods and medicines and to reduce oxidative stress in vivo.

  16. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    International Nuclear Information System (INIS)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J.

    2015-01-01

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl − led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins

  17. Preparation of graphene oxide-wrapped carbon sphere@silver spheres for high performance chlorinated phenols sensor

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Tian, E-mail: gantsjy@163.com [College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000 (China); State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Lv, Zhen; Sun, Junyong; Shi, Zhaoxia; Liu, Yanming [College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000 (China)

    2016-01-25

    Highlights: • Hierarchical CS@Ag@GO composite was obtained by a simple solution route. • Signal amplification is achieved for sensitive detection of chlorinated phenols. • The low-cost method exhibits wide concentration range and acceptable accuracy. • The method can be successfully applied to detect chlorinated phenols in waters. - Abstract: A template-activated strategy was developed to construct core/shell structured carbon sphere@silver composite based on one-pot hydrothermal treatment. The CS@Ag possessed a uniform three-dimensional interconnected microstructure with an enlarged surface area and catalytic activity, which was further mechanically protected by graphene oxide (GO) nanolayers to fabricate intriguing configuration, which was beneficial for efficiently preventing the aggregation and oxidation of AgNPs and improving the electrical conductivity through intimate contact. By immobilizing this special material on electrode surface, the CS@Ag@GO was further used for sensitive determination of chlorinated phenols including 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol. The tailored structure, fast electron transfer ability and facile preparation of CS@Ag@GO made it a promising electrode material for practical applications in phenols sensing.

  18. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J., E-mail: margaret.kupferle@uc.edu

    2015-02-11

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl{sup −} led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins.

  19. CATALYTIC PERFORMANCES OF Fe2O3/TS-1 CATALYST IN PHENOL HYDROXYLATION REACTION

    Directory of Open Access Journals (Sweden)

    Didik Prasetyoko

    2010-07-01

    Full Text Available Hydroxylation reaction of phenol into diphenol, such as hydroquinone and catechol, has a great role in many industrial applications. Phenol hydroxylation reaction can be carried out using Titanium Silicalite-1 (TS-1 as catalyst and H2O2 as an oxidant. TS-1 catalyst shows high activity and selectivity for phenol hydroxylation reaction. However, its hydrophobic sites lead to slow H2O2 adsorption toward the active site of TS-1. Consequently, the reaction rate of phenol hydroxylation reaction is tends to be low. Addition of metal oxide Fe2O3 enhanced hydrophilicity of TS-1 catalyst. Liquid phase catalytic phenol hydroxylation using hydrogen peroxide as oxidant was carried out over iron (III oxide-modified TS-1 catalyst (Fe2O3/TS-1, that were prepared by impregnation method using iron (III nitrate as precursor and characterized by X-ray diffraction, infrared spectroscopy, nitrogen adsorption, pyridine adsorption, and hydrophilicity techniques. Catalysts 1Fe2O3/TS-1 showed maximum catalytic activity of hydroquinone product. In this research, the increase of hydroquinone formation rate is due to the higher hydrophilicity of Fe2O3/TS-1 catalysts compare to the parent catalyst, TS-1.   Keywords: Fe2O3/TS-1, hydrophilic site, phenol hydroxylation

  20. Influence of Laccase and Tyrosinase on the Antioxidant Capacity of Selected Phenolic Compounds on Human Cell Lines

    Directory of Open Access Journals (Sweden)

    Matthias Riebel

    2015-09-01

    Full Text Available Polyphenolic compounds affect the color, odor and taste of numerous food products of plant origin. In addition to the visual and gustatory properties, they serve as radical scavengers and have antioxidant effects. Polyphenols, especially resveratrol in red wine, have gained increasing scientific and public interest due to their presumptive beneficial impact on human health. Enzymatic oxidation of phenolic compounds takes place under the influence of polyphenol oxidases (PPO, including tyrosinase and laccase. Several studies have demonstrated the radical scavenger effect of plants, food products and individual polyphenols in vitro, but, apart from resveratrol, such impact has not been proved in physiological test systems. Furthermore, only a few data exist on the antioxidant capacities of the enzymatic oxidation products of phenolic compounds generated by PPO. We report here first results about the antioxidant effects of phenolic substances, before and after oxidation by fungal model tyrosinase and laccase. In general, the common chemical 2,2-diphenyl-1-picrylhydrazyl assay and the biological tests using two different types of cell cultures (monocytes and endothelial cells delivered similar results. The phenols tested showed significant differences with respect to their antioxidant activity in all test systems. Their antioxidant capacities after enzymatic conversion decreased or increased depending on the individual PPO used.

  1. Heterogeneous photo-Fenton oxidation with natural clays for phenol and tyrosol remediation

    Directory of Open Access Journals (Sweden)

    Djeffal L.

    2013-09-01

    Full Text Available Due to their excellent properties, clays have been widely used in several applications, particularly in catalysis. In this paper, three clays were used as heterogeneous photo-Fenton catalysts for phenol and tyrosol oxidations. Particular attention was given to the effect of the main operating conditions on the process performance. A total conversion was obtained for both organic pollutants with studied catalysts in 20 minutes reaction. For phenol, a total organic carbon (TOC conversion of 93% was obtained using sieved and calcined smectite clay. The TOC conversion was 60% for tyrosol with the same catalyst. Clays were characterized by chemical analysis, BET, XRD, TPR and SEM.

  2. Total catalytic wet oxidation of phenol and its chlorinated derivates with MnO2/CeO2 catalyst in a slurry

    Directory of Open Access Journals (Sweden)

    A. J. Luna

    2009-09-01

    Full Text Available In the present work, a synthetic effluent of phenol was treated by means of a total oxidation process-Catalyzed Wet Oxidation (CWO. A mixed oxide of Mn-Ce (7:3, the catalyst, was synthesized by co-precipitation from an aqueous solution of MnCl2 and CeCl3 in a basic medium. The mixed oxide, MnO2/CeO2, was characterized and used in the oxidation of phenol in a slurry reactor in the temperature range of 80-130ºC and pressure of 2.04-4.76 MPa. A phenol solution containing 2.4-dichlorophenol and 2.4-dichlorophenoxyacetic acid was also degraded with good results. A lumped kinetic model, with two parallel reaction steps, fits precisely with the integrated equation and the experimental data. The kinetic parameters obtained are in agreement with the Arrhenius equation. The activation energies were determined to be 38.4 for the total oxidation and 53.4 kJ/mol for the organic acids formed.

  3. Supplementation of plasma with olive oil phenols and extracts: Influence on LDL oxidation

    NARCIS (Netherlands)

    Leenen, R.; Roodenburg, A.J.C.; Vissers, M.N.; Schuurbiers, J.A.E.; Putte, van K.P.A.M.; Wiseman, S.A.; Put, van de F.H.M.M.

    2002-01-01

    Phenols present in olive oil may contribute to the health effects of the Mediterranean lifestyle. Olive oil antioxidants increase the resistance of low-density lipoproteins (LDL) against oxidation in vitro, but human intervention studies have failed to demonstrate similar consistent effects. To

  4. Interactions between iron, phenolic compounds, emulsifiers, and pH in omega-3-enriched oil-in-water emulsions

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Haahr, Anne-Mette; Becker, E.M.

    2008-01-01

    The behavior of antioxidants in emulsions is influenced by several factors such as pH and emulsifier type. This study aimed to evaluate the interaction between selected food emulsifiers, phenolic compounds, iron, and pH and their effect on the oxidative stability of n-3 polyunsaturated lipids...... products. When iron was present, the pH was crucial for the formation of lipid oxidation products. At pH 3 some phenolic compounds, especially caffeic acid, reduced Fe3+ to Fe2+, and Fe2+ increased lipid oxidation at this pH compared to pH 6. Among the evaluated phenols, caffeic acid had the most...... significant effects, as caffeic acid was found to be prooxidative irrespective of pH, emulsifier type, and presence of iron, although the degrees of lipid oxidation were different at the different experimental conditions. The other evaluated phenols were prooxidative at pH 3 in Citrem-stabilized emulsions...

  5. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  6. Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines

    Science.gov (United States)

    Rhile, Ian J.

    2011-01-01

    To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O⋯N distance (dON) is >0.1 Å longer in 2 than in 1. The difference in dON is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations •OAr–NH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3•+ (3a+) occurs at (1.4 ± 0.1) × 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)•+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG°(2 + 3a+) = +0.078 V vs. ΔG°(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δln(k)/Δln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly

  7. Effect of oxidant stressors and phenolic antioxidants on the ochratoxigenic fungus aspergillus carbonarius

    Science.gov (United States)

    In this work, the effect of oxidant stressors (hydrogen peroxide, menadione) and antioxidants (BHT, phenolic antioxidants) on growth, ROS generation, OTA production and gene expression of antioxidant enzymes of A. carbonarius was studied. In comparison to a nontoxigenic strain, an OTA-producing A. c...

  8. Phenol Contaminated Water Treatment on Several Modified Dimensionally Stable Anodes.

    Science.gov (United States)

    Jayathilaka, Pavithra Bhakthi; Hapuhinna, Kushani Umanga Kumari; Bandara, Athula; Nanayakkara, Nadeeshani; Subasinghe, Nalaka Deepal

    2017-08-01

    Phenolic compounds are some of the most common hazardous organics in wastewater. Removal of these pollutants is important. Physiochemical method such as electrochemical oxidation on dimensionally stable anodes is more convenient in removing such organic pollutants. Therefore, this study focuses on development of three different anodes for phenol contaminated water treatment. The performances of steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes were tested and compared. Nearly 50, 76, and 84% of chemical oxygen demand removal efficiencies were observed for steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes, respectively. The formation of intermediates was monitored for three anodes and the Ti/IrO2-Sb2O3 anode showed the most promising results. Findings suggest that the developed anode materials can enhance phenol oxidation efficiency and that mixed metal oxide layer has major influence on the anode. Among the selected metal oxide mixtures IrO2-Sb2O3 was the most suitable under given experimental conditions.

  9. Hydroxylation of benzene to phenol over magnetic recyclable nanostructured CuFe mixed-oxide catalyst

    CSIR Research Space (South Africa)

    Makgwane, PR

    2015-03-01

    Full Text Available A highly active and magnetically recyclable nanostructured copper–iron oxide (CuFe) catalyst has been synthesized for hydroxylation of benzene to phenol under mild reaction conditions. The obtained catalytic results were correlated with the catalyst...

  10. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag{sup +}/TiO{sub 2}: Influence of electron donating and withdrawing substituents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jiadong [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, Yongbing, E-mail: ybxie@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Han, Qingzhen [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Cao, Hongbin [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Wang, Yujiao [Department of Chemical and Biomedical Engineering, University of Science and Technology Beijing (China); Nawaz, Faheem; Duan, Feng [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-03-05

    Highlights: • A weak EWG benefited photocatalytic oxidation of phenols the most. • Phenolic compounds were dominantly oxidized by ·O{sub 2}{sup −}, rather than ·OH, {sup 1}O{sub 2} or h{sup +}. • ·O{sub 2}{sup −} preferred to nucleophilically attack EDG substituted phenols. • ·O{sub 2}{sup −} more likely electrophilically attacked EWG substituted phenols. • ·O{sub 2}{sup −} simultaneously nucleophilically and electrophilically assaulted p-chlorophenol. - Abstract: A comparative study was constructed to correlate the electronic property of the substituents with the degradation rates of phenolic compounds and their oxidation pathways under UV with Ag{sup +}/TiO{sub 2} suspensions. It was verified that a weak electron withdrawing substituent benefited photocatalytic oxidation the most, while an adverse impact appeared when a substituent was present with stronger electron donating or withdrawing ability. The addition of p-benzoquinone dramatically blocked the degradation, confirming superoxide radicals (·O{sub 2}{sup −}) as the dominant photooxidant, rather than hydroxyl radicals, singlet oxygen or positive holes, which was also independent of the substituent. Hammett relationship was established based on pseudo-first-order reaction kinetics, and it revealed two disparate reaction patterns between ·O{sub 2}{sup −} and phenolic compounds, which was further verified by the quantum chemical computation on the frontier molecular orbitals and Mulliken charge distributions of ·O{sub 2}{sup −} and phenolic compounds. It was found that electron donating group (EDG) substituted phenols were more likely nucleophilically attacked by ·O{sub 2}{sup −}, while ·O{sub 2}{sup −} preferred to electrophilically assault electron withdrawing group (EWG) substituted phenols. Exceptionally, electrophilic and nucleophilic attack by ·O{sub 2}{sup −} could simultaneously occur in p-chlorophenol degradation, consequently leading to its highest rate

  11. Environmental effect and fate of selected phenols in aquatic ecosystems using microcosm approaches

    International Nuclear Information System (INIS)

    Portier, R.J.; Chen, H.M.; Meyers, S.P.

    1983-01-01

    Microbiological studies, together with physicochemical analyses of selected industrial source phenols of environmental significance, were conducted in continuous flow and carbon metabolism microcosms to determine the behavior of these priority pollutants in soil and sediment-water systems typical of coastal wetlands. Phenols used included 4- nitrophenol, 2,4,6-trichlorophenol, 2-chlorophenol, and phenol. The organophosphate, 14 C-UL-Methyl Parathion, was used as a benchmark toxicant control while 14 C-Ring-Phenol was employed for all phenolic compound additions. Microbial diversity, ATP, and specific enzyme systems (i.e., phosphatase, dehydrogenase) were continuously monitored along with 14 CO 2 expiration and 14 C assimilation by the cellular component. Residual analysis of all microcosm tests employed procedures using combined gas chromatography/high-performance liquid chromatography. Statistical analyses were conducted of variations of testing criteria, along with a ranking profile of relative biotransformation and biodegradation potential. Data presented confirm the validity of microcosm approaches and related correlation analysis in toxic substance fate investigations. 17 references, 6 figures, 1 table

  12. 1 - Aromatization of n-hexane and natural gasoline over ZSM-5 zeolite, 2- Wet catalytic oxidation of phenol on fixed bed of active carbon; 1 - Aromatisation de n-hexane et d'essence sur zeolithe ZSM-5, 2 - Oxydation catalytique en voie humide du phenol sur charbon actif

    Energy Technology Data Exchange (ETDEWEB)

    Suwanprasop, S.

    2005-04-15

    I - The production of aromatic hydrocarbons from n-hexane and natural gasoline over Pd loaded ZSM-5 zeolite in a tubular reactor was achieved under the suitable conditions at 400 deg. C, and 0.4 ml/min reactant feeding rate, employing ZSM-5 (0.5% Pd content) as a catalyst. Under these conditions, n-hexane and natural gasoline conversions were found to be 99.7% and 94.3%, respectively (with respective aromatic selectivity of 92.3% and 92.6%). II - Wet catalytic air oxidation of phenol over a commercial active carbon was studied in a three phase fixed bed reactor under mild temperature and oxygen partial pressure. Exit phenol concentration, COD, and intermediates were analysed. Oxidation of phenol was significantly improved when increasing operating temperature, oxygen partial pressure, and liquid space time, while up or down flow modes had only marginal effect. A complete model involving intrinsic kinetics and all mass transfer limitations gave convenient reactor simulation. (author)

  13. IMPROVED SELECTIVE ELECTROCATALYTIC OXIDATION OF PHENOLS BY TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil yielded a greater response to phenol and catechol than those using a higher viscosity oil of s...

  14. The reactivity of phenolic and non-phenolic residual kraft lignin model compounds with Mn(II)-peroxidase from Lentinula edodes.

    Science.gov (United States)

    Crestini, C; D'Annibale, A; Sermanni, G G; Saladino, R

    2000-02-01

    Three phenolic model compounds representing bonding patterns of residual kraft lignin were incubated with manganese peroxidase from Lentinula edodes. Extensive degradation of all the phenolic models, mainly occurring via side-chain benzylic oxidation, was observed. Among the tested model compounds the diphenylmethane alpha-5 phenolic model was found to be the most reactive, yielding several products showing oxidation and fragmentation at the bridging position. The non-phenolic 5-5' biphenyl and 5-5' diphenylmethane models were found unreactive.

  15. Antioxidant Activities of Selected Berries and Their Free, Esterified, and Insoluble-Bound Phenolic Acid Contents

    Science.gov (United States)

    2018-01-01

    To explore the potential of berries as natural sources of bioactive compounds, the quantities of free, esterified, and insoluble-bound phenolic acids in a number of berries were determined. In addition, the antioxidant activities of the berries were determined using 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, ferric reducing antioxidant power, and Trolox equivalent antioxidant capacity assays, in addition to determination of their metal ion chelating activities. Furthermore, several phenolic compounds were detected using high-performance liquid chromatography. Of the 6 tested berries, black chokeberry and blackberry exhibited the strongest antioxidant activities, and the various berry samples were found to contain catechin, caffeic acid, p-coumaric acid, epicatechin, vanillic acid, quercitrin, resveratrol, morin, naringenin, and apigenin. Moreover, the antioxidant activities and total phenolic contents of the fractions containing insoluble-bound phenolic acids were higher than those containing the free and esterified phenolic acids. The results imply that the insoluble-bound fractions of these berries are important natural sources of antioxidants for the preparation of functional food ingredients and preventing diseases associated with oxidative stress. PMID:29662846

  16. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Nor Monica Ahmad

    2016-06-01

    Full Text Available A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB, polyethylene glycol (PEG, and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE. Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM, Electrochemical Impedance Spectroscopy (EIS, and Cyclic voltamogram (CV. The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  17. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER; FINAL

    International Nuclear Information System (INIS)

    Phillip E. Savage

    1999-01-01

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO(sub 2), bulk TiO(sub 2), and CuO supported on Al(sub 2) O(sub 3). We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO(sub 2) yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO(sub 2) and TiO(sub 2) catalysts enhance both the phenol disappearance and CO(sub 2) formation rates during SCWO. MnO(sub 2) does not affect the selectivity to CO(sub 2), or to the phenol dimers at a given phenol conversion. However, the selectivities to CO(sub 2) are increased and the selectivities to phenol dimers are decreased in the presence of TiO(sub 2) , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  18. Rationalization and in vitro modeling of the chemical mechanisms of the enzymatic oxidation of phenolic compounds in planta: from flavonols and stilbenoids to lignins.

    Science.gov (United States)

    Cottyn, Betty; Kollmann, Albert; Waffo-Teguo, Pierre; Ducrot, Paul-Henri

    2011-06-20

    Enzymatic oxidation of phenolic compounds is a widespread phenomenon in plants. It is responsible for the formation of many oligomers and polymers, which are generally described as the result of a combinatorial coupling of the different radicals formed through oxidation of the phenol group and delocalization of the radical. We focused our interest on several phenolic compounds that are present in plants and known to form, under enzymatic oxidation, oligomers with different type of linkages between monomers. To explain this diversity of inter-monomer linkages and their variation according to the experimental procedure used for the enzymatic oxidation, we report an alternative mechanistic pathway involving dismutation of the radicals, leading to the formation of carbocations which, thereafter, react with nucleophilic species present in the medium. This alternative pathway allows the understanding of peculiar linkages between monomeric units in the oligomer and offers new insights for understanding the formation of phenolic biopolymers in plants. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Deuterium isotope effects during formation of phenols by hepatic monoxygenases. Evidence for an alternative to the arene oxide pathway

    International Nuclear Information System (INIS)

    Tomaszewski, J.E.; Jerina, D.M.; Daly, J.W.

    1975-01-01

    The in vivo and in vitro metabolisms of normal and deuterated aromatic substrates have been investigated in rats. Significant isotope effects (k/ sub H//k/sub D/ equals 1.3-1.75) were associated with in vivo formation of meta-hydroxylated metabolites from 1:1 mixtures of normal and perdeuterio-(arylring) nitrobenzene, methyl phenyl sulfide, and methyl phenyl sulfone. Since isotope effects of this magnitude are incompatible with arene oxides as intermediates in the formation of phenols, the results provide evidence that multiple pathways are responsible for the formation of phenols in mammals. Significant isotope effects were not associated with the formation of the other phenolic isomers of nitrobenzene, methyl phenyl sulfone, or methyl phenyl sulfide or with the formation of phenolic products from anisole, bromobenzene, chlorobenzene, fluorobenzene, benzonitrile, naphthalene, zoxazolamine, acetanilide, biphenyl, diphenylhydantoin, benzene, o- and p-xylene, toluene, and mesitylene. Significant isotope effects might not be observable with the latter substrates if the kinetic parameters for oxidation of substrate change or if the arene oxide pathway greatly predominates. Furthermore, extensive in vivo metabolism of any substrate would make isotope effects unobservable by the procedure employed, namely the analysis of isotope content in metabolites formed from 1:1 mixtures of normal and deuterated substrates. (U.S.)

  20. Impact of endogenous canola phenolics on the oxidative stability of oil‐in‐water emulsions

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Friel, James; Winkler‐Moser, Jill K.

    2013-01-01

    The aim of this study was to evaluate the antioxidative effect of phenolics naturally present in canola seeds and meal. Individual phenolics were extracted from ground, defatted canola seeds, and meal. Fractionated extracts rich in sinapic acid, sinapine, or canolol as well as a non......‐fractionated extract were used. These extracts (100 and 350 µM) were evaluated as antioxidants in stripped canola oil‐in‐water (o/w) emulsion. For comparison, the antioxidative effect of phenolic standards for sinapic acid and sinapine (as sinapine thiocyanate) and butylated hydroxytoluene (BTH) as a positive control....... Therefore, these canola extracts can be used for protecting canola oil emulsion or other emulsions against lipid oxidation. However, the results indicate that the antioxidant activity of the extracts rich in sinapine and canolol had a concentration‐sensitive effect. In order to get the best antioxidative...

  1. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  2. Efficient Enzyme-Free Biomimetic Sensors for Natural Phenol Detection

    Directory of Open Access Journals (Sweden)

    Luane Ferreira Garcia

    2016-08-01

    Full Text Available The development of sensors and biosensors based on copper enzymes and/or copper oxides for phenol sensing is disclosed in this work. The electrochemical properties were studied by cyclic and differential pulse voltammetry using standard solutions of potassium ferrocyanide, phosphate/acetate buffers and representative natural phenols in a wide pH range (3.0 to 9.0. Among the natural phenols herein investigated, the highest sensitivity was observed for rutin, a powerful antioxidant widespread in functional foods and ubiquitous in the plant kingdom. The calibration curve for rutin performed at optimum pH (7.0 was linear in a broad concentration range, 1 to 120 µM (r = 0.99, showing detection limits of 0.4 µM. The optimized biomimetic sensor was also applied in total phenol determination in natural samples, exhibiting higher stability and sensitivity as well as distinct selectivity for antioxidant compounds.

  3. Efficient Enzyme-Free Biomimetic Sensors for Natural Phenol Detection.

    Science.gov (United States)

    Ferreira Garcia, Luane; Ribeiro Souza, Aparecido; Sanz Lobón, Germán; Dos Santos, Wallans Torres Pio; Alecrim, Morgana Fernandes; Fontes Santiago, Mariângela; de Sotomayor, Rafael Luque Álvarez; de Souza Gil, Eric

    2016-08-13

    The development of sensors and biosensors based on copper enzymes and/or copper oxides for phenol sensing is disclosed in this work. The electrochemical properties were studied by cyclic and differential pulse voltammetry using standard solutions of potassium ferrocyanide, phosphate/acetate buffers and representative natural phenols in a wide pH range (3.0 to 9.0). Among the natural phenols herein investigated, the highest sensitivity was observed for rutin, a powerful antioxidant widespread in functional foods and ubiquitous in the plant kingdom. The calibration curve for rutin performed at optimum pH (7.0) was linear in a broad concentration range, 1 to 120 µM (r = 0.99), showing detection limits of 0.4 µM. The optimized biomimetic sensor was also applied in total phenol determination in natural samples, exhibiting higher stability and sensitivity as well as distinct selectivity for antioxidant compounds.

  4. Session 6: Water depollution from aniline and phenol by air oxidation and adsorptive-catalytic oxidation in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynkin, N.M.; Batygina, M.V.; Noskov, A.S. [Boreskov Institute of Catalysis of Siberian Branch of Russian Academy of Sciences, Pr. Ak. Lavrentieva (Russian Federation)

    2004-07-01

    This paper is devoted to development of carbon catalysts and application of catalytic wet air oxidation for deep cleaning of polluted waters. The described catalysts and method are solving the problem of development environmentally reliable method for fluids treatment and allow carrying out the adsorption of pollutants on carbon CAPM (catalytically active porous material) with following regeneration of the CAPM without the loss of adsorptive qualities. The experiments have shown a principal capability simultaneously to use carbon CAPM as adsorbent and either as catalyst, or as a catalyst support for oxidation of aniline and phenol in water solutions. (authors)

  5. Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst

    International Nuclear Information System (INIS)

    Zhang, Zhi-bo; Lu, Qiang; Ye, Xiao-ning; Li, Wen-tao; Hu, Bin; Dong, Chang-qing

    2015-01-01

    Highlights: • Phenolic-rich bio-oil was selectively produced from catalytic fast pyrolysis of biomass using magnetic solid base catalyst. • The actual yield of twelve major phenolic compounds reached 43.9 mg/g. • The peak area% of all phenolics reached 68.5% at the catalyst-to-biomass ratio of 7. • The potassium phosphate/ferroferric oxide catalyst possessed promising recycling properties. - Abstract: A magnetic solid base catalyst (potassium phosphate/ferroferric oxide) was prepared and used for catalytic fast pyrolysis of poplar wood to selectively produce phenolic-rich bio-oil. Pyrolysis–gas chromatography/mass spectrometry experiments were conducted to investigate the effects of pyrolysis temperature and catalyst-to-biomass ratio on the product distribution. The actual yields of important pyrolytic products were quantitatively determined by the external standard method. Moreover, recycling experiments were performed to determine the re-utilization abilities of the catalyst. The results showed that the catalyst exhibited promising activity to selectively produce phenolic-rich bio-oil, due to its capability of promoting the decomposition of lignin to generate phenolic compounds and meanwhile inhibiting the devolatilization of holocellulose. The maximal phenolic yield was obtained at the pyrolysis temperature of 400 °C and catalyst-to-biomass ratio of 2. The concentration of the phenolic compounds increased monotonically along with the increasing of the catalyst-to-biomass ratio, with the peak area% value increasing from 28.1% in the non-catalytic process to as high as 68.5% at the catalyst-to-biomass ratio of 7. The maximal total actual yield of twelve quantified major phenolic compounds was 43.9 mg/g, compared with the value of 29.0 mg/g in the non-catalytic process. In addition, the catalyst could be easily recovered and possessed promising recycling properties.

  6. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Laura Bravo

    2013-07-01

    Full Text Available Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  7. Colorimetric biomimetic sensor systems based on molecularly imprinted polymer membranes for highly-selective detection of phenol in environmental samples

    Directory of Open Access Journals (Sweden)

    Sergeyeva T. A.

    2014-05-01

    Full Text Available Aim. Development of an easy-to-use colorimetric sensor system for fast and accurate detection of phenol in envi- ronmental samples. Methods. Technique of molecular imprinting, method of in situ polymerization of molecularly imprinted polymer membranes. Results. The proposed sensor is based on free-standing molecularly imprinted polymer (MIP membranes, synthesized by in situ polymerization, and having in their structure artificial binding sites capable of selective phenol recognition. The quantitative detection of phenol, selectively adsorbed by the MIP membranes, is based on its reaction with 4-aminoantipyrine, which gives a pink-colored product. The intensity of staining of the MIP membrane is proportional to phenol concentration in the analyzed sample. Phenol can be detected within the range 50 nM–10 mM with limit of detection 50 nM, which corresponds to the concentrations that have to be detected in natural and waste waters in accordance with environmental protection standards. Stability of the MIP-membrane-based sensors was assessed during 12 months storage at room temperature. Conclusions. The sensor system provides highly-selective and sensitive detection of phenol in both mo- del and real (drinking, natural, and waste water samples. As compared to traditional methods of phenol detection, the proposed system is characterized by simplicity of operation and can be used in non-laboratory conditions.

  8. Sorption of phenol and phenol derivatives in hydrotalcite

    International Nuclear Information System (INIS)

    Avina G, E.I.

    2002-01-01

    One of the main problems in Mexico and in the World is the waste water pollution of a great variety of industrial processes by organic compounds. Among those ones the phenol compounds which are highly toxic, refractories (to the chemical degradation) and poorly biodegradable. This is due in a large extent to the problem created by the accelerated increase in the environmental pollution in the cities and industrial centers. The phenol compounds are used in a great variety of industries such as the production of resins, plasticizers, antioxidants, pesticides, colourings, disinfectants, etc. These phenol compounds are specially harmful, since they have repercussions on the flora of plants of biological treatment of water affecting its operation. The main objective of this work is to evaluate the capacities of phenol detention and its derivatives in an hydrotalcite type compound and diminishing with it the presence in water, in this case, of solutions prepared in the laboratory. In order to analyse this elimination process was used a methodology based in the carrying out in batch experiments and in the elaboration of a sorption isotherm. It is worth pointing out that this work was realized at laboratory scale, at relatively high phenol concentration ratio. With the obtained results when the sorption properties are evaluated the calcined hydrotalcite (HTC) for detaining phenol and p-chloro phenol it was observed that it is detained greater quantity of p-chloro phenol than phenol in the HTC. The detention of these phenol compounds in the HTC is due to the memory effect by the hydrotalcite regeneration starting from the oxides which are formed by the burning material. (Author)

  9. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  10. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer as well as its complex side chain structures, it has been a challenge to effectively depolymerize lignin and produce high value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) inclduing 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPCs yields obtained were 18% and 22% based on the initial weight of the lignin in SESPL and DACSL respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47%. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  11. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria.

    Science.gov (United States)

    Pacheco-Ordaz, R; Wall-Medrano, A; Goñi, M G; Ramos-Clamont-Montfort, G; Ayala-Zavala, J F; González-Aguilar, G A

    2018-01-01

    Fruit extracts from different tissues (pulp, seed and peel) have shown antimicrobial and prebiotic activities related to their phenolic profile, although structure-specific evaluations have not been reported yet. The effect of five phenolic compounds (catechin and gallic, vanillic, ferulic and protocatechuic acids) identified in different fruits, particularly in mango, was evaluated on the growth of two probiotic (Lactobacillus rhamnosusGG ATCC 53103 and Lactobacillus acidophilusNRRLB 4495) and two pathogenic (Escherichia coli 0157:H7 ATCC 43890 and Salmonella enterica serovar Typhimurium ATCC 14028) bacteria. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of phenolic acids ranged from 15-20 mmol l -1 and 20-30 mmol l -1 against E. coli and S. Typhimurium, respectively. For catechin, the MIC and MBC were 35 mmol l -1 and >35 mmol l -1 against E. coli and S. Typhimurium, respectively. The presence of catechin and gallic, protocatechuic and vanillic acids in MRS broth without dextrose allowed the growth of lactobacilli. Catechin combined with protocatechuic or vanillic acid mildly allowed the growth of both probiotics. In conclusion, phenolic compounds can selectively inhibit the growth of pathogenic bacteria without affecting the viability of probiotics. This study provides relevant information about the effects of phenolic compounds commonly present in fruit and vegetables on the growth of probiotic and pathogenic bacteria. The compounds selectively allowed the growth of probiotic lactobacilli (Lactobacillus rhamnosus GG and Lactobacillus acidophilus) and inhibited pathogenic bacteria (Escherichia coli and Salmonella Typhimurium) at the same concentration (20 mmol l -1 ). These findings can contribute to the formulation of nutraceutical products, such as synbiotics, that can restore or maintain an optimal composition of human microbiota, potentially improving the overall health of the consumer. © 2017 The

  12. The Protective Effect of Whole Honey and Phenolic Extract on Oxidative DNA Damage in Mice Lymphocytes Using Comet Assay.

    Science.gov (United States)

    Cheng, Ni; Wang, Yuan; Cao, Wei

    2017-12-01

    In this study, the antioxidant activity and the protective effect against hydrogen peroxide-induced DNA damage were assessed for five honeys of different botanical origin. Seven phenolic acids were detected in the honey samples. Ferulic acid was the most abundant phenolic acid detected in longan honey, jujube honey and buckwheat honey. Ellagic acid, p-hydroxybenzoic acid and protocatechuic acid were the main phenolic acids detected in vitex honey. Of all honey samples tested, the highest total phenolic content and antioxidant activity were found in buckwheat honey, whereas the lowest total phenolic content and antioxidant activity were found in locust honey. Treatment with hydrogen peroxide induced a 62% increase in tail DNA in mice lymphocytes, and all studied honeys significantly inhibited this effect (P Phenolic extracts of honey displayed greater protective effects than whole honey in comet assay. The hydrogen peroxide-generated increase in 8-hydroxy-2-deoxyguanosine (8-OHdG) was effectively inhibited by the honeys studied (P phenolic acids of honey can penetrate into lymphocytes and protect DNA from oxidative damage by scavenging hydrogen peroxide and/or chelating ferrous ions.

  13. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts.

    Science.gov (United States)

    Hanson, Susan K; Baker, R Tom

    2015-07-21

    This work began as part of a biomass conversion catalysis project with UC Santa Barbara funded by the first NSF Chemical Bonding Center, CATSB. Recognizing that catalytic aerobic oxidation of diol C-C bonds could potentially be used to break down lignocellulose, we began to synthesize oxovanadium complexes and explore their fundamental reactivity. Of course there were theories regarding the oxidation mechanism, but our mechanistic studies soon revealed a number of surprises of the type that keep all chemists coming back to the bench! We realized that these reactions were also exciting in that they actually used the oxygen-on-every-carbon property of biomass-derived molecules to control the selectivity of the oxidation. When we found that these oxovanadium complexes tended to convert sugars predominantly to formic acid and carbon dioxide, we replaced one of the OH groups with an ether and entered the dark world of lignin chemistry. In this Account, we summarize results from our collaboration and from our individual labs. In particular, we show that oxidation selectivity (C-C vs C-O bond cleavage) of lignin models using air and vanadium complexes depends on the ancillary ligands, the reaction solvent, and the substrate structure (i.e., phenolic vs non-phenolic). Selected vanadium complexes in the presence of added base serve as effective alcohol oxidation catalysts via a novel base-assisted dehydrogenation pathway. In contrast, copper catalysts effect direct C-C bond cleavage of these lignin models, presumably through a radical pathway. The most active vanadium catalyst exhibits unique activity for the depolymerization of organosolv lignin. After Weckhuysen's excellent 2010 review on lignin valorization, the number of catalysis studies and approaches on both lignin models and extracts has expanded rapidly. Today we are seeing new start-ups and lignin production facilities sprouting up across the globe as we all work to prove wrong the old pulp and paper chemist

  14. Application of vanadium incorporated phosphomolybdate supported on the modified kaolinin synthesis of diphenyl carbonate by oxidative carbonylation with phenol

    Directory of Open Access Journals (Sweden)

    Peng Meng

    2017-01-01

    Full Text Available Keggin-type molybdophosphoric acid, molybdophosphoric salt and vanadium incorporated molybdophosphoric salt supported on the modified kaolin (MK were investigated as redox co-catalysts for the oxidative carbonylation of phenol to diphenyl carbonate (DPC in the absence of solvent. The 20 wt.% of MnAMPV5 (one kind of vanadium incorporated molybdophosphoric salt loaded on MK showed the highest catalytic activity with the yield of 24.68% and a TON of 306, while the selectivity amounts to nearly 100% in all the carbonylation reactions. The catalysts were characterized by XRD, BET, XPS and H2-TPR. The reusability study showed that the catalysts were stable and active.

  15. Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): Role of catalyst reduction method

    Science.gov (United States)

    Hu, Shuo; Yang, Guangxin; Jiang, Hong; Liu, Yefei; Chen, Rizhi

    2018-03-01

    Selective phenol hydrogenation is a green and sustainable technology to produce cyclohexanone. The work focused on investigating the role of catalyst reduction method in the liquid-phase phenol hydrogenation to cyclohexanone over Pd@CN (N-doped porous carbon). A series of reduction methods including flowing hydrogen reduction, in-situ reaction reduction and liquid-phase reduction were designed and performed. The results highlighted that the reduction method significantly affected the catalytic performance of Pd@CN in the liquid-phase hydrogenation of phenol to cyclohexanone, and the liquid-phase reduction with the addition of appropriate amount of phenol was highly efficient to improve the catalytic activity of Pd@CN. The influence mechanism was explored by a series of characterizations. The results of TEM, XPS and CO chemisorption confirmed that the reduction method mainly affected the size, surface composition and dispersion of Pd in the CN material. The addition of phenol during the liquid-phase reduction could inhibit the aggregation of Pd NPs and promote the reduction of Pd (2+), and then improved the catalytic activity of Pd@CN. The work would aid the development of high-performance Pd@CN catalysts for selective phenol hydrogenation.

  16. Concurrent nitrate and Fe(III) reduction during anaerobic biodegradation of phenols in a sandstone aquifer

    DEFF Research Database (Denmark)

    Broholm, Mette; Crouzet, C.; Arvin, Erik

    2000-01-01

    The biodegradation of phenols (similar to 5, 60, 600 mg 1(-1)) under anaerobic conditions (nitrate enriched and unamended) was studied in laboratory microcosms with sandstone material and groundwater from within an anaerobic ammonium plume in an aquifer, The aqueous phase was sampled and analyzed...... for phenols and selected redox sensitive parameters on a regular basis. An experiment with sandstone material from specific depth intervals from a vertical profile across the ammonium plume was also conducted. The miniature microcosms used in this experiment were sacrificed for sampling for phenols...... and selected redox sensitive parameters at the end of the experiment. The sandstone material was characterized with respect to oxidation and reduction potential and Fe(II) and Fe(III) speciation prior to use for all microcosms and at the end of the experiments for selected microcosms. The redox conditions...

  17. Trickle bed reactor for the oxidation of phenol over active carbon catalyst

    OpenAIRE

    Gabbiye, Nigus; Font Capafons, Josep; Fortuny Sanromá, Agustín; Bengoa, Christophe José; Fabregat Llangotera, Azael; Stüber, Frank Erich

    2009-01-01

    The catalytic wet air oxidation of phenol using activated carbon has been performed in a laboratory trickle bed reactor over a wide range of operating variables (PO2, T, FL and Cph,o) and hydrodynamic conditions. The influence of different start-up procedures (saturation of activated carbon) has also been tested. Further improvement of activity and stability has been checked for by using dynamic TBR operation concept or impregnated Fe/carbon catalyst. The results obtained confi...

  18. Phenolic extract from Ocimum basilicum restores lipid metabolism in Triton WR-1339-induced hyperlipidemic mice and prevents lipoprotein-rich plasma oxidation

    Directory of Open Access Journals (Sweden)

    Ilham Touiss

    2017-03-01

    Full Text Available In this study we investigated the hypolipidemic and anti-lipoprotein-oxidation activities of phenolic extract from sweet basil a popular culinary herb. The hypolipidemic activity was studied in mice model injected intraperitoneally with Triton WR-1339 at a dose of 200 mg/kg body weight. The animals were grouped as follows: normolipidemic control group (n = 8, hyperlipidemic control group (n = 8 and phenolic extract-treated group (n = 8 at a dose of 200 mg/kg body weight. After 7 h and 24 h treatment, the oral administration of the phenolic extract exerts a significant reduction of plasma total cholesterol, triglycerides and LDL-cholesterol concentrations (P < 0.001. On the other hand, we demonstrated that the phenolic extract prevents plasma lipid oxidation by 16% (P < 0.001, 20% (P < 0.001, 32% (P < 0.001 and 44% (P < 0.001 at a doses of 10, 25, 50 and 100 μg/mL, respectively. The results were compared with ascorbic acid used as standard synthetic antioxidant. HPLC analysis shows that the extract contains 4 major phenolics and is especially rich in rosmarinic acid. This finding indicates that the phenolic extract might be beneficial in lowering hyperlipidemia and preventing atherosclerosis.

  19. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  20. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  1. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action

    International Nuclear Information System (INIS)

    Kampa, Marilena; Boskou, Dimitrios; Gravanis, Achille; Castanas, Elias; Alexaki, Vassilia-Ismini; Notas, George; Nifli, Artemissia-Phoebe; Nistikaki, Anastassia; Hatzoglou, Anastassia; Bakogeorgou, Efstathia; Kouimtzoglou, Elena; Blekas, George

    2004-01-01

    The oncoprotective role of food-derived polyphenol antioxidants has been described but the implicated mechanisms are not yet clear. In addition to polyphenols, phenolic acids, found at high concentrations in a number of plants, possess antioxidant action. The main phenolic acids found in foods are derivatives of 4-hydroxybenzoic acid and 4-hydroxycinnamic acid. This work concentrates on the antiproliferative action of caffeic acid, syringic acid, sinapic acid, protocatechuic acid, ferulic acid and 3,4-dihydroxy-phenylacetic acid (PAA) on T47D human breast cancer cells, testing their antioxidant activity and a number of possible mechanisms involved (interaction with membrane and intracellular receptors, nitric oxide production). The tested compounds showed a time-dependent and dose-dependent inhibitory effect on cell growth with the following potency: caffeic acid > ferulic acid = protocatechuic acid = PAA > sinapic acid = syringic acid. Caffeic acid and PAA were chosen for further analysis. The antioxidative activity of these phenolic acids in T47D cells does not coincide with their inhibitory effect on tumoral proliferation. No interaction was found with steroid and adrenergic receptors. PAA induced an inhibition of nitric oxide synthase, while caffeic acid competes for binding and results in an inhibition of aryl hydrocarbon receptor-induced CYP1A1 enzyme. Both agents induce apoptosis via the Fas/FasL system. Phenolic acids exert a direct antiproliferative action, evident at low concentrations, comparable with those found in biological fluids after ingestion of foods rich in phenolic acids. Furthermore, the direct interaction with the aryl hydrocarbon receptor, the nitric oxide synthase inhibition and their pro-apoptotic effect provide some insights into their biological mode of action

  2. Iridium/Bipyridine-Catalyzed ortho-Selective C-H Borylation of Phenol and Aniline Derivatives.

    Science.gov (United States)

    Li, Hong-Liang; Kanai, Motomu; Kuninobu, Yoichiro

    2017-11-03

    An iridium-catalyzed ortho-selective C-H borylation of phenol and aniline derivatives has been successfully developed. Iridium/bipyridine-catalyzed C-H borylation generally occurred at the meta- and para-positions of aromatic substrates. Introduction of an electron-withdrawing substituent on the bipyridine-type ligand and a methylthiomethyl group on the hydroxy and amino groups of the phenol and aniline substrates, however, dramatically altered the regioselectivity, affording exclusively ortho-borylated products. The reaction proceeded in good to excellent yields with good functional group tolerance. C-H borylation was applied to the synthesis of a calcium receptor modulator.

  3. Preparation and activity of Cu-Al mixed oxides via hydrotalcite-like precursors for the oxidation of phenol aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alejandre, A.; Medina, F.; Rodriguez, X.; Salagre, P.; Sueiras, J.E.

    1999-12-10

    The authors performed thermogravimetric analysis (TGA), X-ray diffraction (XRD), BET areas, and FT-IR spectroscopy to characterize copper-aluminium mixed-oxide samples with Cu/Al ratios between 0.5 and 3.0. The thermal stability, crystallinity, and purity of the materials depended on the Cu/Al atomic ratio. The FT-IR and TG detected carbonate (mainly) and nitrate as counteranions which interact in the interlayer region. The authors found loosely bound carbonate and nitrate anions and one strongly bound type of carbonate. They used dynamic XRD experiments to study the evolution of phases during calcination. All the samples after calcination showed well-dispersed CuO and/or CuAl{sub 2}O{sub 4} phases. They also tested their catalytic behavior for the oxidation of 5 g/l phenol aqueous solutions using a triphasic tubular reactor working in a trickle-bed regime and air with an oxygen partial pressure of 0.9 MPa at a temperature reaction of 413 K. Phenol conversion decreased continuously over time for the samples calcined at lower temperatures (673 K). This is because of continuous loss of the CuO phase by elution and the formation of a new phase like copper oxalate on the surface of the copper catalysts which also elutes with time XRD shows that samples calcined at higher temperatures (1,073 K) and after HCl treatment (0.1 M) to avoid the CuO phase, have a pure copper aluminate phase. This CuAl{sub 2}O{sub 4} phase reaches steady activity plateaus in the 55--65% range of phenol conversion. The triphasic tubular reactor using trickle-bed regime largely avoids polymer formation as a catalyst-deactivation process.

  4. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    Science.gov (United States)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties.

    Science.gov (United States)

    Rodríguez-Carpena, Javier-Germán; Morcuende, David; Andrade, María-Jesús; Kylli, Petri; Estévez, Mario

    2011-05-25

    The first aim of the present work (study 1) was to analyze ethyl acetate, 70% acetone, and 70% methanol extracts of the peel, pulp, and seed from two avocado (Persea americana Mill.) varieties, namely, 'Hass' and 'Fuerte', for their phenolic composition and their in vitro antioxidant activity using the CUPRAC, DPPH, and ABTS assays. Their antimicrobial potential was also studied. Peels and seeds had higher amounts of phenolics and a more intense in vitro antioxidant potential than the pulp. Peels and seeds were rich in catechins, procyanidins, and hydroxycinnamic acids, whereas the pulp was particularly rich in hydroxybenzoic and hydroxycinnamic acids and procyanidins. The total phenolic content and antioxidant potential of avocado phenolics was affected by the extracting solvent and avocado variety. The avocado materials also displayed moderate antimicrobial effects against Gram-positive bacteria. Taking a step forward (study 2), extracts (70% acetone) from avocado peels and seeds were tested as inhibitors of oxidative reactions in meat patties. Avocado extracts protected meat lipids and proteins against oxidation with the effect on lipids being dependent on the avocado variety.

  6. Anionic chromogenic chemosensors highly selective for fluoride or cyanide based on 4-(4-Nitrobenzylideneamine)phenol

    OpenAIRE

    Nicoleti,Celso R.; Marini,Vanderléia G.; Zimmermann,Lizandra M.; Machado,Vanderlei G.

    2012-01-01

    4-(4-Nitrobenzylideneamine)phenol was used in two strategies allowing the highly selective detection of F- and CN-. Firstly, the compound in acetonitrile acts as a chromogenic chemosensor based on the idea that more basic anions cause its deprotonation (colorless solution), generating a colored solution containing phenolate. The discrimination of CN- over F- was obtained by adding 1.4% water to acetonitrile: water preferentially solvates F-, leaving the CN- free to deprotonate the compound. A...

  7. Selective phenol methylation to 2,6-dimethylphenol in a fluidized bed of iron-chromium mixed oxide catalyst with o-cresol circulation.

    Science.gov (United States)

    Zukowski, Witold; Berkowicz, Gabriela; Baron, Jerzy; Kandefer, Stanisław; Jamanek, Dariusz; Szarlik, Stefan; Wielgosz, Zbigniew; Zielecka, Maria

    2014-01-01

    2,6-dimethylphenol (2,6-DMP) is a product of phenol methylation, especially important for the plastics industry. The process of phenol methylation in the gas phase is strongly exothermic. In order to ensure good temperature equalization in the catalyst bed, the process was carried out using a catalyst in the form of a fluidized bed - in particular, the commercial iron-chromium catalyst TZC-3/1. Synthesis of 2,6-dimethylphenol from phenol and methanol in fluidized bed of iron-chromium catalyst was carried out and the fluidization of the catalyst was examined. Stable state of fluidized bed of iron-chromium catalyst was achieved. The measured velocities allowed to determine the minimum flow of reactants, ensuring introduction of the catalyst bed in the reactor into the state of fluidization. Due to a high content of o-cresol in products of 2,6-dimethylphenol synthesis, circulation in the technological node was proposed. A series of syntheses with variable amount of o-cresol in the feedstock allowed to determine the parameters of stationary states. A stable work of technological node with o-cresol circulation is possible in the temperature range of350-380°C, and o-cresolin/phenolin molar ratio of more than 0.48. Synthesis of 2,6-DMP over the iron-chromium catalyst is characterized by more than 90% degree of phenol conversion. Moreover, the O-alkylation did not occur (which was confirmed by GC-MS analysis). By applying o-cresol circulation in the 2,6-DMP process, selectivity of more than 85% degree of 2,6-DMP was achieved. The participation levels of by-products: 2,4-DMP and 2,4,6-TMP were low. In the optimal conditions based on the highest yield of 2,6-DMP achieved in the technological node applying o-cresol circulation, there are 2%mol. of 2,4-DMP and 6%mol. of 2,4,6-TMP in the final mixture, whereas 2,4,6-TMP can be useful as a chain stopper and polymer's molar mass regulator during the polymerization of 2,6-DMP.

  8. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    Directory of Open Access Journals (Sweden)

    Jamal Al-Sabahi

    2016-03-01

    Full Text Available Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  9. Efficient Enzymatic Synthesis of Phenolic Ester by Increasing Solubility of Phenolic Acids in Ionic Liquids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Guo, Zheng; Xu, Xuebing

    Compounds from phenolic acid family are well known natural antioxidants, but the application of phenolic acids as antioxidants in industry is limited due to the relatively low solubility in oil-based media. The properties of phenolic acids can be modified through enzymatic lipophilization...... and modified phenolic acids will have amphiphilic property, therefore they can be localized at oil-water or water-oil phase where oxidation is considered to occur frequently. It had been reported that immobilized Candida Antarctica lipase B was the most effective biocatalyst for the various esterification...... reactions, and it had been widely used for esterification of various phenolic acids with fatty alcohol or triglycerides. However, the conversion of phenolic acids is low due to low solubility in hydrophobic solvents and hindrance effect of unsaturated side chain towards the enzyme. Our studies show...

  10. High Selectively Catalytic Conversion of Lignin-Based Phenols into para-/m-Xylene over Pt/HZSM-5

    Directory of Open Access Journals (Sweden)

    Guozhu Liu

    2016-01-01

    Full Text Available High selectively catalytic conversion of lignin-based phenols (m-cresol, p-cresol, and guaiacol into para-/m-xylene was performed over Pt/HZSM-5 through hydrodeoxygenation and in situ methylation with methanol. It is found that the p-/m-xylene selectivity is uniformly higher than 21%, and even increase up to 33.5% for m-cresol (with phenols/methanol molar ratio of 1/8. The improved p-/m-xylene selectivity in presence of methanol is attributed to the combined reaction pathways: methylation of m-cresol into xylenols followed by HDO into p-/m-xylene, and HDO of m-cresol into toluene followed by methylation into p-/m-xylene. Comparison of the product distribution over a series of catalysts indicates that both metals and supporters have distinct effect on the p-/m-xylene selectivity.

  11. Electrochemical Incineration of Phenolic Compounds from the Hydrocarbon Industry Using Boron-Doped Diamond Electrodes

    Directory of Open Access Journals (Sweden)

    Alejandro Medel

    2012-01-01

    Full Text Available Electrochemical incineration using boron-doped diamond electrodes was applied to samples obtained from a refinery and compared to the photo-electro-Fenton process in order to selectively eliminate the phenol and phenolic compounds from a complex matrix. Due to the complex chemical composition of the sample, a pretreatment to the sample in order to isolate the phenolic compounds was applied. The effects of the pretreatment and of pH on the degradation of the phenolic compounds were evaluated. The results indicate that the use of a boron-doped diamond electrode in an electrochemical incineration process mineralizes 99.5% of the phenolic sample content. Working in acidic medium (pH = 1, and applying 2 A at 298 K under constant stirring for 2 hours, also results in the incineration of the reaction intermediates reflected by 97% removal of TOC. In contrast, the photo-electro-Fenton process results in 99.9% oxidation of phenolic compounds with only a 25.69% removal of TOC.

  12. Selective oxidation

    International Nuclear Information System (INIS)

    Cortes Henao, Luis F.; Castro F, Carlos A.

    2000-01-01

    It is presented a revision and discussion about the characteristics and factors that relate activity and selectivity in the catalytic and not catalytic partial oxidation of methane and the effect of variables as the temperature, pressure and others in the methane conversion to methanol. It thinks about the zeolites use modified for the catalytic oxidation of natural gas

  13. Elevated circulating LDL phenol levels in men who consumed virgin rather than refined olive oil are associated with less oxidation of plasma LDL

    DEFF Research Database (Denmark)

    de la Torre-Carbot, Karina; Chávez-Servín, Jorge L; Jaúregui, Olga

    2010-01-01

    In human LDL, the bioactivity of olive oil phenols is determined by the in vivo disposition of the biological metabolites of these compounds. Here, we examined how the ingestion of 2 similar olive oils affected the content of the metabolic forms of olive oil phenols in LDL in men. The oils differed...... in phenol concentrations as follows: high (629 mg/L) for virgin olive oil (VOO) and null (0 mg/L) for refined olive oil (ROO). The study population consisted of a subsample from the EUROLIVE study and a randomized controlled, crossover design was used. Intervention periods lasted 3 wk and were preceded...... acids (P phenol levels (r = -0.296; P = 0.013). Phenols in LDL were not associated with other oxidation markers. In summary, the phenol concentration of olive oil modulates the phenolic metabolite content in LDL after sustained...

  14. Evaluation of Efficacy of Advanced Oxidation Processes Fenton, Fenton-like and Photo-Fenton for Removal of Phenol from Aqueous Solutions

    International Nuclear Information System (INIS)

    Mofrad, M. R.; Akbari, H.; Miranzadeh, M. B.; Nezhad, M. E.; Atharizade, M.

    2015-01-01

    Contamination of water, soil and groundwater caused by aromatic compounds induces great concern in most world areas. Among organic pollutants, phenol is mostly considered dangerous due to its high toxicity for human and animal. Advanced oxidation processes (AOPs) is considered as a most efficient method also the best one for purifying organic compounds which are resistant to conventional physical and chemical processes. This experimental study was carried out in laboratory scale. First, a synthetic solution was made of phenol. Then, Fenton, Fenton-like and photo-Fenton processes were applied removing phenol from aquatic solution. The effects of Hydrogen Peroxide concentration, catalyst, pH and time were studied to phenol removal efficiency. Results showed that Photo-Fenton process with removal efficiency (97.5 percentage) is more efficient than Fenton and Fenton-like processes with removal efficiency (78.7 percentage and 82.5 percentage respectively), in pH=3, (H/sub 2/O/sub 2/)= 3mM, (Fe2+)= 0.1 mM, phenol concentration 100 mg L-1 and time reaction 60 min, the phenol removal was 97.5 percentage. (author)

  15. Dechlorination of chlorinated phenols by subnanoscale Pd 0 /Fe 0 intercalated in smectite: pathway, reactivity, and selectivity.

    Science.gov (United States)

    Jia, Hanzhong; Wang, Chuanyi

    2015-12-30

    Smectite clay was employed as templated matrix to prepare subnanoscale Pd(0)/Fe(0) particles, and their components as well as intercalated architectures were well characterized by X-ray energy dispersive spectroscopy (X-EDS) and X-ray diffraction (XRD). Furthermore, as-prepared Pd(0)/Fe(0) subnanoscale nanoparticles were evaluated for their dechlorination effect using chlorinated phenols as model molecules. As a result, pentachlorophenol (PCP) is selectively transformed to phenol in a stepwise dechlorination pathway within 6h, and the dechlorination rate constants show linearly relationship with contents of Pd as its loadings <0.065%. Comparing with PCP, other chlorinated phenols display similar degradation pattern but within much shorter time frame. The dechlorination rate of chlorinated phenols increases with decreasing in number of -Cl attached to aromatic ring, which can be predicted by the total charge of the aromatic ring, exhibiting an inversely linear relationship with the dechlorination rates. While the selectivity of dechlorination depends on the charges associated with the individual aromatic carbon. Chloro-functional groups at the ortho-position are easier to be dechlorinated than that at meta- and para- positions yielding primarily 3,4,5-TCP as intermediate from PCP, further to phenol. The effective dechlorination warrants their potential utilizations in development of in-situ remediation technologies for organic pollutants in contaminated water. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Retardation of quality changes in camel meat sausages by phenolic compounds and phenolic extracts.

    Science.gov (United States)

    Maqsood, Sajid; Manheem, Kusaimah; Abushelaibi, Aisha; Kadim, Isam Tawfik

    2016-11-01

    Impact of tannic acid (TA), date seed extract (DSE), catechin (CT) and green tea extract (GTE) on lipid oxidation, microbial load and textural properties of camel meat sausages during 12 days of refrigerated storage was investigated. TA and CT showed higher activities in all antioxidative assays compared to DSE and GTE. Lipid oxidation and microbial growth was higher for control sausages when compared to other samples. TA and CT at a level of 200 mg/kg were more effective in retarding lipid oxidation and lowering microbial count (P < 0.05). Sausages treated with TA and DSE were found to have higher hardness, gumminess and chewiness values compared to other treatments (P < 0.05). Addition of different phenolic compounds or extract did not influence the sensory color of sausages. Furthermore, sensory quality was also found to be superior in TA and CT treated sausages. Therefore, pure phenolic compounds (TA and CT) proved to be more effective in retaining microbial and sensorial qualities of camel meat sausages compared to phenolic extracts (GTE and DSE) over 12 days of storage at 4°C. © 2016 Japanese Society of Animal Science.

  17. Laccase/Mediator Systems: Their Reactivity toward Phenolic Lignin Structures.

    Science.gov (United States)

    Hilgers, Roelant; Vincken, Jean-Paul; Gruppen, Harry; Kabel, Mirjam A

    2018-02-05

    Laccase-mediator systems (LMS) have been widely studied for their capacity to oxidize the nonphenolic subunits of lignin (70-90% of the polymer). The phenolic subunits (10-30% of the polymer), which can also be oxidized without mediators, have received considerably less attention. Consequently, it remains unclear to what extent the presence of a mediator influences the reactions of the phenolic subunits of lignin. To get more insight in this, UHPLC-MS was used to study the reactions of a phenolic lignin dimer (GBG), initiated by a laccase from Trametes versicolor , alone or in combination with the mediators HBT and ABTS. The role of HBT was negligible, as its oxidation by laccase occurred slowly in comparison to that of GBG. Laccase and laccase/HBT oxidized GBG at a comparable rate, resulting in extensive polymerization of GBG. In contrast, laccase/ABTS converted GBG at a higher rate, as GBG was oxidized both directly by laccase but also by ABTS radical cations, which were rapidly formed by laccase. The laccase/ABTS system resulted in Cα oxidation of GBG and coupling of ABTS to GBG, rather than polymerization of GBG. Based on these results, we propose reaction pathways of phenolic lignin model compounds with laccase/HBT and laccase/ABTS.

  18. Purified phenolics from hydrothermal treatments of biomass: ability to protect sunflower bulk oil and model food emulsions from oxidation.

    Science.gov (United States)

    Conde, Enma; Moure, Andrés; Domínguez, Herminia; Gordon, Michael H; Parajó, Juan Carlos

    2011-09-14

    The phenolic fractions released during hydrothermal treatment of selected feedstocks (corn cobs, eucalypt wood chips, almond shells, chestnut burs, and white grape pomace) were selectively recovered by extraction with ethyl acetate and washed with ethanol/water solutions. The crude extracts were purified by a relatively simple adsorption technique using a commercial polymeric, nonionic resin. Utilization of 96% ethanol as eluting agent resulted in 47.0-72.6% phenolic desorption, yielding refined products containing 49-60% w/w phenolics (corresponding to 30-58% enrichment with respect to the crude extracts). The refined extracts produced from grape pomace and from chestnut burs were suitable for protecting bulk oil and oil-in-water and water-in-oil emulsions. A synergistic action with bovine serum albumin in the emulsions was observed.

  19. The effects of oxidative stress on phenolic composition and ...

    African Journals Online (AJOL)

    Twenty phenolic compounds (apigenin, caffeic acid, p-coumaric acid, gallic acid, ... quercetin, rutin hydrate, vanillic acid, ferulic acid, salicylic acid, sinapic acid, ... phenolic molecules biosynthesis and activation of antioxidant metabolism on ...

  20. An Efficient Synthesis of Phenols via Oxidative Hydroxylation of Arylboronic Acids Using (NH42S2O8

    Directory of Open Access Journals (Sweden)

    Claudia A. Contreras-Celedón

    2014-01-01

    Full Text Available A mild and efficient method for the ipso-hydroxylation of arylboronic acids to the corresponding phenols was developed using (NH42S2O8 as an oxidizing agent. The reactions were performed under metal-, ligand-, and base-free conditions.

  1. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Science.gov (United States)

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  2. Peroxidase-Catalyzed Oxidative Coupling of Phenols in the Presence of Geosorbents

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qingguo; Weber, Walter J., Jr.

    2003-03-26

    This study focuses on elucidation of the reaction behaviors of peroxidase-mediated phenol coupling in the presence of soil/sediment materials. Our goal is a mechanistic understanding of the influences of geosorbent materials on enzymatic coupling reactions in general and the development of methods for predicting such influences. Extensive experimental investigations of coupling reactions were performed under strategically selected conditions in systems containing model geosorbents having different properties and chemical characteristics. The geosorbents tested were found to influence peroxidase-mediated phenol coupling through one or both of two principal mechanisms; i.e., (1) mitigation of enzyme inactivation and/or (2) participation in cross-coupling reactions. Such influences were found to correlate with the chemical characteristics of the sorbent materials and to be simulated well by a modeling approach designed in this paper. The results of the study have important implications for potential engineering implementation and enhancement of enzymatic coupling reactions in soil/subsurface remediation practice.

  3. Total phenolics and total flavonoids in selected Indian medicinal plants.

    Science.gov (United States)

    Sulaiman, C T; Balachandran, Indira

    2012-05-01

    Plant phenolics and flavonoids have a powerful biological activity, which outlines the necessity of their determination. The phenolics and flavonoids content of 20 medicinal plants were determined in the present investigation. The phenolic content was determined by using Folin-Ciocalteu assay. The total flavonoids were measured spectrophotometrically by using the aluminium chloride colorimetric assay. The results showed that the family Mimosaceae is the richest source of phenolics, (Acacia nilotica: 80.63 mg gallic acid equivalents, Acacia catechu 78.12 mg gallic acid equivalents, Albizia lebbeck 66.23 mg gallic acid equivalents). The highest total flavonoid content was revealed in Senna tora which belongs to the family Caesalpiniaceae. The present study also shows the ratio of flavonoids to the phenolics in each sample for their specificity.

  4. Phenolic compounds and in vitro antioxidant activity of selected species of seaweeds from Danish coast

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Jacobsen, Charlotte

    2013-01-01

    Water and ethanolic extracts of 16 species of seaweeds collected along the Danish coasts were screened for antioxidant activities using four in vitro antioxidant assays (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, reducing power, ferrous ion-chelating and liposome model system......). Furthermore their effectiveness in retarding lipid peroxidation in fish oil was evaluated by an accelerated stability test. Significant differences were observed in total and individual phenolic content and the antioxidant activities of seaweed species evaluated. Ethanol was more efficient for polyphenol...... extraction than water. Polysiphonia fucoides and all the Fucus species tested showed highest radical scavenging activity, reducing power, inhibition of oxidation in liposome model system and in fish oil and were high in phenolic content. These seaweeds could be potential rich sources of natural antioxidants...

  5. Analysis of Protein-Phenolic Compound Modifications Using Electrochemistry Coupled to Mass Spectrometry.

    Science.gov (United States)

    Kallinich, Constanze; Schefer, Simone; Rohn, Sascha

    2018-01-29

    In the last decade, electrochemical oxidation coupled with mass spectrometry has been successfully used for the analysis of metabolic studies. The application focused in this study was to investigate the redox potential of different phenolic compounds such as the very prominent chlorogenic acid. Further, EC/ESI-MS was used as preparation technique for analyzing adduct formation between electrochemically oxidized phenolic compounds and food proteins, e.g., alpha-lactalbumin or peptides derived from a tryptic digestion. In the first step of this approach, two reactant solutions are combined and mixed: one contains the solution of the digested protein, and the other contains the phenolic compound of interest, which was, prior to the mixing process, electrochemically transformed to several oxidation products using a boron-doped diamond working electrode. As a result, a Michael-type addition led to covalent binding of the activated phenolic compounds to reactive protein/peptide side chains. In a follow-up approach, the reaction mix was further separated chromatographically and finally detected using ESI-HRMS. Compound-specific, electrochemical oxidation of phenolic acids was performed successfully, and various oxidation and reaction products with proteins/peptides were observed. Further optimization of the reaction (conditions) is required, as well as structural elucidation concerning the final adducts, which can be phenolic compound oligomers, but even more interestingly, quite complex mixtures of proteins and oxidation products.

  6. Selectivity in inter polymer complexation involving phenolic copolymer, poly electrolytes, non-ionic polymers and transition metal ions

    International Nuclear Information System (INIS)

    Vasheghani Farahani, B.; Hosseinpour Rajabi, F.

    2006-01-01

    Selectivity in inter polymer complex formation involving a typical four-component phenolic copolymer (ρ-chloro phenol-ρ-aminophenol-ρ-toluidine-ρ-cresol- HCHO copolymer), poly electrolytes such as polyethylene imine and polyacrylic acid, a non-ionic homopolymer polyvinyl pyrrolidone, and some transition metal ions (e.g., Cu (II), Ni (11)) have been studied in dimethylformamide-methanol solvents mixture. The coordinating groups of phenolic copolymer form complexes through hydrogen bonding and ion-dipole interactions. The different stages of interactions have been studied by several experimental techniques, e.g., viscometry, potentiometry and conductometry. Some schemes have been suggested to explain the mode of interaction between these components

  7. Multicomponent kinetic analysis and theoretical studies on the phenolic intermediates in the oxidation of eugenol and isoeugenol catalyzed by laccase.

    Science.gov (United States)

    Qi, Yan-Bing; Wang, Xiao-Lei; Shi, Ting; Liu, Shuchang; Xu, Zhen-Hao; Li, Xiqing; Shi, Xuling; Xu, Ping; Zhao, Yi-Lei

    2015-11-28

    Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is

  8. Electro oxidation of Phenol on a Ti/RuO{sub 2} anode: effect of some electrolysis parameters

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Iranildes D. dos; Dutra, Achilles J.B. [Universidade Federal do Rio de Janeiro (PEMM/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais; Afonso, Julio C., E-mail: julio@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2011-07-01

    The influences of electrolysis time, anodic area, current density and supporting electrolyte on phenol and its byproducts degradation on a Ti/RuO{sub 2} anode were investigated. It was observed that phenol and its byproducts were rapidly broken down in the presence of chloride ions. Gas chromatography/mass spectrometry (GC/MS) data have shown that the presence of chloride ions lead to chlorophenols formation, due to reactions with Cl{sub 2} and/or OCl{sup -} generated during electrolysis. However, these intermediate products were also degraded later by the oxidizing agents. The standards established by the CONAMA (Brazilian National Council for the Environment) for phenols and chlorophenols in effluents were achieved after 360 min of electrolysis with a current density of 10 mA cm-2. Cyclic voltammograms obtained with the anodes before and after 436 h of electrolysis under severe salinity conditions (2 mol L-1) and current density (800 mA cm-2) showed that Ti/RuO{sub 2} did not lose its electrocatalytic properties. This fact indicates that Ti/RuO{sub 2} can be used for the treatment of effluents containing phenols in a chloride environment. (author)

  9. Electrochemical remediation of the phenol contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Lazareva, E.V. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study phenol migration induced by electric current is multiple analyze, because determine the governing factor of electrokinetic remediation is one more problem. The governing factor of phenol removal can be electroosmotic water transport, ionic migration or phenol destruction caused by electrolysis or oxidizing agents. Therefore research objective was study mechanism of removal phenol from soils with different mineral composition. To answer on set issue should be studied the effectiveness of electrochemcial remediation for contaminated soil and determination electrokinetic characteristics of interaction clay's particles with phenol solution. (orig.)

  10. Phenolic composition, antioxidant capacity and antibacterial activity of selected Irish Brassica vegetables.

    Science.gov (United States)

    Jaiswal, Amit Kumar; Rajauria, Gaurav; Abu-Ghannam, Nissreen; Gupta, Shilpi

    2011-09-01

    Vegetables belonging to the Brassicaceae family are rich in polyphenols, flavonoids and glucosinolates, and their hydrolysis products, which may have antibacterial, antioxidant and anticancer properties. In the present study, phenolic composition, antibacterial activity and antioxidant capacity of selected Brassica vegetables, including York cabbage, Brussels sprouts, broccoli and white cabbage were evaluated after extraction with aqueous methanol. Results obtained showed that York cabbage extract had the highest total phenolic content, which was 33.5, followed by 23.6, 20.4 and 18.4 mg GAE/g of dried weight (dw) of the extracts for broccoli, Brussels sprouts and white cabbage, respectively. All the vegetable extracts had high flavonoid contents in the order of 21.7, 17.5, 15.4 and 8.75 mg QE/g of extract (dw) for York cabbage, broccoli, Brussels sprouts and white cabbage, respectively. HPLC-DAD analysis showed that different vegetables contain a mixture of distinct groups of phenolic compounds. All the extracts studied showed a rapid and concentration dependent antioxidant capacity in diverse antioxidant systems. The antibacterial activity was determined against Gram-positive and Gram-negative bacteria. York cabbage extract exhibited significantly higher antibacterial activity against Listeria monocytogenes (100%) and Salmonella abony (94.3%), being the most susceptible at a concentration of 2.8%, whereas broccoli, Brussels sprouts and white cabbage had moderate to weak activity against all the test organisms. Good correlation (r2 0.97) was found between total phenolic content obtained by spectrophotometric analysis and the sum of the individual polyphenols monitored by HPLC-DAD.

  11. Inhibition of cholesterol oxidation products (COPs) formation in emulsified porcine patties by phenolic-rich avocado (Persea americana Mill.) extracts.

    Science.gov (United States)

    Rodríguez-Carpena, Javier-Germán; Morcuende, David; Petrón, María Jesus; Estévez, Mario

    2012-03-07

    The effect of phenolic-rich extracts from avocado peel on the formation of cholesterol oxidation products (COPs) in porcine patties subjected to cooking and chill storage was studied. Eight COPs (7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, 20α-hydroxycholesterol, 25-hydroxycholesterol, cholestanetriol, 5,6β-epoxycholesterol, and 5,6α-epoxycholesterol) were identified and quantified by GC-MS. The addition of avocado extracts (∼600 GAE/kg patty) to patties significantly inhibited the formation of COPs during cooking. Cooked control (C) patties contained a larger variety and greater amounts of COPs than the avocado-treated (T) counterparts. COPs sharply increased in cooked patties during the subsequent chilled storage. This increase was significantly higher in C patties than in the T patties. Interestingly, the amount of COPs in cooked and chilled T patties was similar to those found in cooked C patties. The mechanisms implicated in cholesterol oxidation in a processed meat product, the protective effect of avocado phenolics, and the potential implication of lipid and protein oxidation are thoroughly described in the present paper.

  12. PREVENTION OF POLYURETHANE OXIDATIVE DEGRADATION WITH PHENOLIC-ANTIOXIDANTS COVALENTLY ATTACHED TO THE HARD SEGMENTS: STRUCTURE FUNCTION RELATIONSHIPS

    Science.gov (United States)

    Stachelek, Stanley J; Alferiev, Ivan; Ueda, Masako; Eckels, Edward C.; Gleason, Kevin T.; Levy, Robert J

    2010-01-01

    Oxidative degradation of the polyurethane elastomeric (PU) components greatly reduces the efficacy of PU containing cardiovascular devices. Covalently appending the phenol-based antioxidant, 4-substituted 2,6-di-tert-butylphenol (DBP), to PU hard segments effectively reduced oxidative degradation of the PU in vivo and in vitro in prior studies by our group. In these experiments we analyze the contribution of the tethering molecule to the antioxidant capabilities of the DBP modified PU. Bromoalkylation chemistry was used to link DBP to the hard segment of the polyether polyurethane, Tecothane, via our original linker (PU-DBP), or variants containing side chains with 1 (PU-C-DBP) or 3 (PU-3C-DBP) carbons. Two additional DBP variants were fabricated in which the DBP group was appended to the alkyl chain via an oxygen atom (PU-O-DBP) or an amide linkage in the middle of the tether (PU-NHCO-DBP). All DBP variant films and unmodified control films were subject to oxidative degradation via 15 day immersion in a solution of 20% H2O2 + 0.1 M CoCl2. At the end of the oxidation protocol films were analyzed for the presence of oxidation related endpoints via scanning electron microscopy, contact angle measurements and Fourier transformation infrared spectroscopy (FTIR). All DBP containing variants resisted oxidation damage significantly better than the unmodified control PU. SEM analysis of oxidized PU-C-DBP and PU-O-DBP showed evidence of surface cracking consistent with oxidative degradation of the PU surfaces. Similarly there was a trend in increased ether cross-linking, a marker for oxidative degradation, in PU-C-DBP and PU-NHCO-DBP films. Consistent with these FTIR results, both PU-C-DBP and PU-NHCO-DBP had significant reductions in measured surface hydrophobicity as a result of oxidation. These data show for the first time that the choice of linker molecule significantly affects the efficiency of the linked phenolic antioxidant. PMID:20306526

  13. Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: From synthesis to enhanced removal of phenol

    Directory of Open Access Journals (Sweden)

    Hamza A. Asmaly

    2015-09-01

    Full Text Available In this work, ferric oxide nanoparticle decorated carbon fibers and carbon nanotubes (CNF/Fe2O3 and CNT/Fe2O3 were synthesized and characterized by scanning electron microscopy (SEM, thermogravimetric analysis (TGA, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, X-ray diffraction (XRD, zeta potential and BET surface area analyzer. The prepared nanocomposites were evaluated or the removal of phenol ions from aqueous solution. The effects of experimental parameters, such as shaking speed, pH, contact time, adsorbent dosage and initial concentration, were evaluated for the phenol removal efficiency. The adsorption experimental data were represented by both the Langmuir and Freundlich isotherm models. The Langmuir isotherm model best fitted the data on the adsorption of phenol, with a high correlation coefficient. The adsorption capacities, as determined by the Langmuir isotherm model were 0.842, 1.098, 1.684 and 2.778 mg/g for raw CNFs, raw CNTs, CNF–Fe2O3 and CNT–Fe2O3, respectively.

  14. Dechlorination of chlorinated phenols by subnanoscale Pd{sup 0}/Fe{sup 0} intercalated in smectite: pathway, reactivity, and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong; Wang, Chuanyi, E-mail: jiahz0143@aliyun.com

    2015-12-30

    Graphical abstract: Dechlorination process of pentachlorophenol (PCP) by smectite-templated Pd{sup 0}/Fe{sup 0}. - Highlights: • Smectite was employed as templated matrix to prepare subnanoscale Pd{sup 0}/Fe{sup 0} particles. • Dechlorination rate depends linearly on the Pd content as its loadings <0.065 wt.%. • Dechlorination rates correlate with the total charge of C on chlorinated phenols. • The dechlorination selectivity relies on charges of individual C in aromatic ring. - Abstract: Smectite clay was employed as templated matrix to prepare subnanoscale Pd{sup 0}/Fe{sup 0} particles, and their components as well as intercalated architectures were well characterized by X-ray energy dispersive spectroscopy (X-EDS) and X-ray diffraction (XRD). Furthermore, as-prepared Pd{sup 0}/Fe{sup 0} subnanoscale nanoparticles were evaluated for their dechlorination effect using chlorinated phenols as model molecules. As a result, pentachlorophenol (PCP) is selectively transformed to phenol in a stepwise dechlorination pathway within 6 h, and the dechlorination rate constants show linearly relationship with contents of Pd as its loadings <0.065%. Comparing with PCP, other chlorinated phenols display similar degradation pattern but within much shorter time frame. The dechlorination rate of chlorinated phenols increases with decreasing in number of -Cl attached to aromatic ring, which can be predicted by the total charge of the aromatic ring, exhibiting an inversely linear relationship with the dechlorination rates. While the selectivity of dechlorination depends on the charges associated with the individual aromatic carbon. Chloro-functional groups at the ortho-position are easier to be dechlorinated than that at meta- and para- positions yielding primarily 3,4,5-TCP as intermediate from PCP, further to phenol. The effective dechlorination warrants their potential utilizations in development of in-situ remediation technologies for organic pollutants in contaminated

  15. Phenol oxidation of petrol refinery wastewater catalyzed by Laccase

    International Nuclear Information System (INIS)

    Vargas, Maria Carolina; Ramirez, Nubia E.

    2002-01-01

    Laccase has been obtained through two different production systems, the first using Pleurotus ostreatus in solid-state fermentation, the second one using Trametes versicolor in submerged culture. Different substrates (by products from yeast, flour and beverage industries) have been evaluated in both systems. Maximum laccase yield with Pleurotus ostreatus (25 u/ml) was obtained in a wheat bran medium. The maximum enzyme concentration level using Trametes versicolor (25 u/ml) was achieved in a submerged system, containing 10% vinasse, 4,5% wheat bran and 0,2% molasses per liter of waste. Culture filtrate extracted from Pleurotus ostreatus was used to remove phenol from wastewater. The enzymatic treatment is effective over a wide pH and temperature range. The Laccase treatment has been successfully used to dephenolize industrial petrol refinery wastewater. The advantage of Laccase dephenolization is that this enzyme uses molecular oxygen as an oxidant

  16. Mechanistic studies on the OH-initiated atmospheric oxidation of selected aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nehr, Sascha

    2012-07-01

    Benzene, toluene, the xylenes, and the trimethylbenzenes are among the most abundant aromatic trace constituents of the atmosphere mainly originating from anthropogenic sources. The OH-initiated atmospheric photo-oxidation of aromatic hydrocarbons is the predominant removal process resulting in the formation of O{sub 3} and secondary organic aerosol. Therefore, aromatics are important trace constituents regarding air pollution in urban environments. Our understanding of aromatic photo-oxidation processes is far from being complete. This work presents novel approaches for the investigation of OH-initiated atmospheric degradation mechanisms of aromatic hydrocarbons. Firstly, pulsed kinetic studies were performed to investigate the prompt HO{sub 2} formation from OH+ aromatic hydrocarbon reactions under ambient conditions. For these studies, the existing OH reactivity instrument, based on the flash photolysis/laser-induced fluorescence (FP/LIF) technique, was extended to the detection of HO{sub 2} radicals. The experimental design allows for the determination of HO{sub 2} formation yields and kinetics. Results of the pulsed kinetic experiments complement previous product studies and help to reduce uncertainties regarding the primary oxidation steps. Secondly, experiments with aromatic hydrocarbons were performed under atmospheric conditions in the outdoor atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) located at Forschungszentrum Juelich. The experiments were aimed at the evaluation of up-to-date aromatic degradation schemes of the Master Chemical Mechanism (MCMv3.2). The unique combination of analytical instruments operated at SAPHIR allows for a detailed investigation of HO{sub x} and NO{sub x} budgets and for the determination of primary phenolic oxidation product yields. MCMv3.2 deficiencies were identified and most likely originate from shortcomings in the mechanistic representation of ring

  17. Computer-aided design and synthesis of magnetic molecularly imprinted polymers with high selectivity for the removal of phenol from water.

    Science.gov (United States)

    Yang, Wenming; Liu, Lukuan; Ni, Xiaoni; Zhou, Wei; Huang, Weihong; Liu, Hong; Xu, Wanzhen

    2016-02-01

    A molecular simulation method was introduced to compute the phenol-monomer pre-assembled system of a molecularly imprinted polymer. The interaction type and intensity between phenol and monomer were evaluated by combining binding energy and charge transfer with complex conformation. The simulation results indicate that interaction energies are simultaneously affected by the type of monomer and the ratio between phenol and monomers. At the same time, we considered that by increasing the amount of functional monomer is not always better for preparing molecularly imprinter polymers. In this study, three kinds of novel magnetic phenol-imprinted polymers with favorable specific adsorption effects were prepared by the surface imprinting technique combined with atom transfer radical polymerization. Various measures were selected to characterize the structure and morphology to obtain the optimal polymer. The characterization results show that the optimal polymer has suitable features for further adsorption process. A series of static adsorption experiments were conducted to analyze its adsorption performance, which follows the Elovich model from the kinetic analysis and the Sips equation from the isothermal analysis. To further verify the reliability and accuracy of the simulation results, the effects of different monomers on the adsorption selectivity were also determined. They display higher selectivity towards phenol than 4-nitrophenol.The results from the simulation of the pre-assembled complexes are in reasonable agreement with those from the experiment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Stabilization by hals and phenols in γ-irradiated polyproplyene

    International Nuclear Information System (INIS)

    Carlsson, D.J.; Falicki, S.; Cooke, J.M.; Gosciniak, D.J.

    1994-01-01

    The γ-radiation initiated oxidation of polypropylene films and test strips has been studied both immediately after irradiation and also during post-irradiation accelerated aging at 60 degrees C. Stabilizers included blocked and unblocked phenols as well as secondary and tertiary hindered amines (HALS) including an oligomeric HALS. Oxidation product formation, yellowing and embrittlement (as measured in an instrumented bend test) have been compared with product formation. A partial correlation between suppression of oxidation during the irradiation step with long term, post-irradiation oven aging at 60 degrees C was found, but complicated by extensive destruction during irradiation of the active phenolic functionality in some additives, essential for peroxyl radical scavenging. Very long lifetimes with barely detectable yellowing were found for combinations of the amines with completely unhindered or only partially hindered phenols

  19. Octyl Phenol Synthesis Using Natural Clays

    Directory of Open Access Journals (Sweden)

    S. Casuscelli

    2000-03-01

    Full Text Available A series of clay minerals, HB, NB and Al-PILC have been studied in the alkylation reactions of 2-octanol with phenol at 180°C, under conditions of alcohol/phenol = 1 (mole ratio and W/FAo °= 64,27 ghmol-1. The selectivity of Al-PILC was 77,12% for octyl phenol and 16,5% for dioctyl phenol.

  20. Ozone impact on vegetation: phenolic metabolism modification and oxidative alteration of Rubisco in Phaseolus vulgaris L; Impact de l'ozone sur le vegetal: modification du metabolisme phenolique et alteration de la Rubisco chez Phaseolus vulgaris L.

    Energy Technology Data Exchange (ETDEWEB)

    Kanoun, M.

    2002-04-15

    In order to characterize and quantify, in semi-natural situation, the incidence of atmospheric pollution on some physiological and metabolic functions in plants, the aim of our work was to identify sub-cellular impact markers, in bean (Phaseolus vulgaris L.), able to characterize a chronic and realistic ozone pollution climate. Two criteria were chosen: the foliar phenolic metabolism and the Rubisco, the key enzyme of photosynthesis. Using Open Top Chambers system, we demonstrated that, according to concentration, exposure kinetic and leaf type, ozone could induce amount variations of some constitutive soluble phenolic and the synthesis of new phenolic (iso-flavonoids). In some cases, these disturbances were observed jointly with foliar injuries and/or biomass reduction. Concurrently, this chronic and moderate ozone exposure could also induce carbonyl formation in amino acid residues constitutive of Rubisco small subunit (Rubisco-SSU) and a reduction in the amount of the native Rubisco. The amount of a constitutive kaempferol glucuronide and the ozone-induced oxidative alteration of Rubisco-SSU were selected and tested for the construction of dose-response relationships. Whatever the marker, the linear model was able to describe the relation. For the phenolic response, several exposure indexes were tested. According to their mode of calculation, these exposure forms emphasize more or less the contribution of high ozone concentrations. If, for Rubisco oxidation, the use of the exposure index AOT40 seems relevant, in the case of the phenolic marker, the choice of the right index is leaf type dependant. (author)

  1. Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor.

    Science.gov (United States)

    Moghaddam, Hadi Mahmoudi; Beitollahi, Hadi; Tajik, Somayeh; Malakootian, Mohammad; Maleh, Hassan Karimi

    2014-11-01

    The electrochemical oxidation of hydroxylamine on the surface of a carbon paste electrode modified with carbon nanotubes and 2,7-bis(ferrocenyl ethyl)fluoren-9-one is studied. The electrochemical response characteristics of the modified electrode toward hydroxylamine and phenol were investigated. The results showed an efficient catalytic activity of the electrode for the electro-oxidation of hydroxylamine, which leads to lowering its overpotential. The modified electrode exhibits an efficient electron-mediating behavior together with well-separated oxidation peaks for hydroxylamine and phenol. Also, the modified electrode was used for determination of hydroxylamine and phenol in some real samples.

  2. Synthesis of alkyl phenols by means of radiofrequency plasmas

    International Nuclear Information System (INIS)

    Ropero, M.; Armas, F.; Iacocca, D.; Patino, P.

    1992-01-01

    New and promising possibilities in chemical synthesis have been opened through the interactions of oxygen plasmas with liquid alkyl benzene compounds. The alkyl phenols are the main products of the reaction mixtures (> 80%) oxygen, excited by radio-frequency (R.F.) is allowed to reach the surface of the liquid organic compound. The R.F. power supply is a Branson/IPC-PM 118. The substrate we have chosen are: methyl, ethyl, propyl, n-butyl, t-butyl, dimethyl and trimethyl benzenes. Under the same O 2 pressure and a power of 60 W, m-xylene and mesethylene behaved similarly. For all these substrates, values for the temperature of the liquid surface seem to indicate that oxidation tends to an optimum when P O 2 /vapor pressure (substrate) is higher than 20. In our experiments oxygen pressure in the reactor was about 0.2 Torr. Oxidation is basically attributed to O 3 P and the addition to alkyl benzenes selectively takes place on the aromatic rings, at low reactor pressure. The oxygen atom impinges on the liquid surface and epoxy intermediates could be formed. These intermediates then progress to the corresponding phenols. (author)

  3. Chemical analysis of phenolic compounds and determination of anti-oxidant, antimicrobial and cytotoxic activities of organic extracts of Pinus coulteri

    Directory of Open Access Journals (Sweden)

    Soumia Merah

    2018-05-01

    Full Text Available New bioactive natural products, the phenolic composition and the biological activities of organic extracts from the needles of the Algerian Pinus coulteri were investigated. The analysis by HPLC-DAD of crude extract revealed the presence of 10 phenolic acids and nine flavonoids. In vitro anti-oxidant activities were performed using four different tests. The greatest antiradical activity was found in the ethyl acetate fraction (IC50 = 3.2 ± 0.3 µg/mL, whereas the diethyl ether fraction had the higher contents of total phenolics and flavonoids and exhibited a highest activity in reducing power and β-carotene–linoleic acid tests with EC50= 67.1 ± 0.4 μg/mL and 71.5 ± 0.2% of inhibition, respectively. Furthermore, a low to moderate antimicrobial activity according to all extracts was revealed against eight bacteria tested. The MIC value of chloroform fraction showed a strong degree of antibacterial activity (<0.09 mg/mL. The crude extract was found toxic with LC50 value of 15.2 μg/mL by brine shrimp toxicity assay. The needle extract of P. coulteri is rich in valuable biologically active compounds and could represent a new resource of anti-oxidant agents for the treatment of diseases.

  4. A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds.

    Science.gov (United States)

    Alu'datt, Muhammad H; Rababah, Taha; Alhamad, Mohammad N; Al-Mahasneh, Majdi A; Almajwal, Ali; Gammoh, Sana; Ereifej, Khalil; Johargy, Ayman; Alli, Inteaz

    2017-03-01

    Over the last two decades, separation, identification and measurement of the total and individual content of phenolic compounds has been widely investigated. Recently, the presence of a wide range of phenolic compounds in oil-bearing plants has been shown to contribute to their therapeutic properties, including anti-cancer, anti-viral, anti-oxidant, hypoglycemic, hypo-lipidemic, and anti-inflammatory activities. Phenolics in oil-bearing plants are now recognized as important minor food components due to several organoleptic and health properties, and they are used as food or sources of food ingredients. Variations in the content of phenolics in oil-bearing plants have largely been attributed to several factors, including the cultivation, time of harvest and soil types. A number of authors have suggested that the presence phenolics in extracted proteins, carbohydrates and oils may contribute to objectionable off flavors The objective of this study was to review the distribution, identification and occurrence of free and bound phenolic compounds in oil-bearing plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Selectivity in the oxidative dehydrogenation of butene on zinc-iron oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kung, H.H.; Kundalkar, B.; Kung, M.C.; Cheng, W.H.

    1980-02-21

    Adsorption, temperature-programed desorption, and pulse reaction studies of cis-2-butene and butadiene on spinel zinc ferrite by previously described methods provided evidence that the selectivity for oxidative dehydrogenation of butenes increases when zinc is added to the iron oxide catalyst because selective oxidation and complete oxidation proceed on separate sites, as they do on pure iron; because the density of sites for selective oxidation is higher and the density of sites for complete combustion is lower than on pure iron oxide; and because the activity of the combustion sites is lower.

  6. Elevated circulating LDL phenol levels in men who consumed virgin rather than refined olive oil are associated with less oxidation of plasma LDL.

    Science.gov (United States)

    de la Torre-Carbot, Karina; Chávez-Servín, Jorge L; Jaúregui, Olga; Castellote, Ana I; Lamuela-Raventós, Rosa M; Nurmi, Tarja; Poulsen, Henrik E; Gaddi, Antonio V; Kaikkonen, Jari; Zunft, Hans-Franz; Kiesewetter, Holger; Fitó, Montserrat; Covas, María-Isabel; López-Sabater, M Carmen

    2010-03-01

    In human LDL, the bioactivity of olive oil phenols is determined by the in vivo disposition of the biological metabolites of these compounds. Here, we examined how the ingestion of 2 similar olive oils affected the content of the metabolic forms of olive oil phenols in LDL in men. The oils differed in phenol concentrations as follows: high (629 mg/L) for virgin olive oil (VOO) and null (0 mg/L) for refined olive oil (ROO). The study population consisted of a subsample from the EUROLIVE study and a randomized controlled, crossover design was used. Intervention periods lasted 3 wk and were preceded by a 2-wk washout period. The levels of LDL hydroxytyrosol monosulfate and homovanillic acid sulfate, but not of tyrosol sulfate, increased after VOO ingestion (P oil modulates the phenolic metabolite content in LDL after sustained, daily consumption. The inverse relationship of these metabolites with the degree of LDL oxidation supports the in vivo antioxidant role of olive oil phenolics compounds.

  7. Screening of Catalysts for Hydrodeoxygenation of Phenol as Model Compound for Bio-oil

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Grunwaldt, Jan-Dierk; Jensen, Peter Arendt

    2013-01-01

    Four groups of catalysts have been tested for hydrodeoxygenation (HDO) of phenol as a model compound of bio-oil, including: oxide catalysts, methanol synthesis catalysts, reduced noble metal catalysts, and reduced non-noble metal catalysts. In total 23 different catalysts were tested at 100 bar H2...... and 275 °C in a batch reactor. The experiments showed that none of the tested oxides and methanol synthesis catalysts had any significant activity for phenol HDO at the given conditions, which were linked to their inability to hydrogenate the phenol. HDO of phenol over reduced metal catalysts could...... on a carbon support, but more active than the carbon supported noble metal catalysts when supported on ZrO2. This observation indicates that the nickel based catalysts require a metal oxide as carrier on which the activation of the phenol for the hydrogenation can take place through heterolytic dissociation...

  8. Evaluation of phenolic content variability, antioxidant, antimicrobial and cytotoxic potential of selected traditional medicinal plants from India

    Directory of Open Access Journals (Sweden)

    Garima eSingh

    2016-03-01

    Full Text Available Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics, antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma cancer cell lines and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 µg of Gallic Acid equivalent per milligram DW (GAE/mg DW and 3.17 to 102.2 µg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 µg/mL, ABTS (IC50 values ranges from 24.08 to 513.4 µg/mL and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus, gram negative (Escherichia coli, Pseudomonas aeruginosa and yeast (Candida albicans demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2 cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09 and 29.66 µg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.

  9. Selective propene oxidation on mixed metal oxide catalysts

    International Nuclear Information System (INIS)

    James, David William

    2002-01-01

    Selective catalytic oxidation processes represent a large segment of the modern chemical industry and a major application of these is the selective partial oxidation of propene to produce acrolein. Mixed metal oxide catalysts are particularly effective in promoting this reaction, and the two primary candidates for the industrial process are based on iron antimonate and bismuth molybdate. Some debate exists in the literature regarding the operation of these materials and the roles of their catalytic components. In particular, iron antimonate catalysts containing excess antimony are known to be highly selective towards acrolein, and a variety of proposals for the enhanced selectivity of such materials have been given. The aim of this work was to provide a direct comparison between the behaviour of bismuth molybdate and iron antimonate catalysts, with additional emphasis being placed on the component single oxide phases of the latter. Studies were also extended to other antimonate-based catalysts, including cobalt antimonate and vanadium antimonate. Reactivity measurements were made using a continuous flow microreactor, which was used in conjunction with a variety of characterisation techniques to determine relationships between the catalytic behaviour and the properties of the materials. The ratio of Fe/Sb in the iron antimonate catalyst affects the reactivity of the system under steady state conditions, with additional iron beyond the stoichiometric value being detrimental to the acrolein selectivity, while extra antimony provides a means of enhancing the selectivity by decreasing acrolein combustion. Studies on the single antimony oxides of iron antimonate have shown a similarity between the reactivity of 'Sb 2 O 5 ' and FeSbO 4 , and a significant difference between these and the Sb 2 O 3 and Sb 2 O 4 phases, implying that the mixed oxide catalyst has a surface mainly comprised of Sb 5+ . The lack of reactivity of Sb 2 O 4 implies a similarity of the surface with

  10. ANTIOXIDANT ACTIVITIES AND PHENOLIC PROFILE OF SIX MOROCCAN SELECTED HERBS

    Directory of Open Access Journals (Sweden)

    Madiha Bichra

    2013-02-01

    Full Text Available The present work evaluated the antioxidant capacity of six plants commonly used in traditional Moroccan medicine. The antioxidant capacity was estimated by DPPH test, ferrous ion chelating activity and ABTS test. As results, the highest antioxidant activities were found in Mentha suaveolens, Salvia officinalis and Mentha viridis. Different species showed significant differences in their total phenolic content (TPC. The highest level of phenolics was found in Salvia officinalis and the lowest in Pelargonium roseum. Linear correlation was found between TPC, especially the non-flavonoid content (NFC and the antioxidant activity. Qualitative and quantitative analyzes of major phenolics by reverse-phase high-performance liquid chromatography (RP-HPLC were also performed. On the basis of the obtained results, these studied medicinal herbs were found to serve as a potential source of natural antioxidants due to their richness in phenolic compounds and marked antioxidant activity.

  11. Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeum vulgare L.) using seed elicitation strategy.

    Science.gov (United States)

    Ramakrishna, Ramnarain; Sarkar, Dipayan; Manduri, Avani; Iyer, Shreyas Ganesan; Shetty, Kalidas

    2017-10-01

    Sprouts of cereal grains, such as barley ( Hordeum vulgare L.), are a good source of beneficial phenolic bioactives. Such health relevant phenolic bioactives of cereal sprouts can be targeted to manage chronic hyperglycemia and oxidative stress commonly associated with type 2 diabetes (T2D). Therefore improving phenolic bioactives by stimulating plant endogenous defense responses such as protective pentose phosphate pathway (PPP) during sprouting has significant merit. Based on this metabolic rationale, this study aimed to enhance phenolic bioactives and associated antioxidant and anti-hyperglycemic functions in dark germinated barley sprouts using exogenous elicitor treatments. Dark-germinated sprouts of two malting barley cultivars (Pinnacle and Celebration), treated with chitosan oligosaccharide (COS) and marine protein hydrolysate (GP), were evaluated. Total soluble phenolic content (TSP), phenolic acid profiles, total antioxidant activity (TA) and in vitro inhibitory activities of hyperglycemia relevant α-amylase and α-glucosidase enzymes of the dark germinated barley sprouts were evaluated at day 2, 4, and 6 post elicitor treatments. Overall, TSP content, TA, and α-amylase inhibitory activity of dark germinated barley sprouts decreased, while α-glucosidase inhibitory activity and gallic acid content increased from day 2 to day 6. Among barley cultivars, high phenolic antioxidant-linked anti-hyperglycemic bioactives were observed in Celebration. Furthermore, GP and COS seed elicitor treatments in selective doses improved T2D relevant phenolic-linked anti-hyperglycemic bioactives of barley spouts at day 6. Therefore, such seed elicitation approach can be strategically used to develop bioactive enriched functional food ingredients from cereal sprouts targeting chronic hyperglycemia and oxidative stress linked to T2D.

  12. Optimization of Aqueous Phenol Treatment with Persulfate in the Presence of Iron

    Directory of Open Access Journals (Sweden)

    somayeh shahsavan

    2016-01-01

    Full Text Available Phenolic compounds are among the priority pollutants due to their adverse effects on human health and other living organisms. Advanced Oxidation Processes (AOPs offer promising prospects for the removal of pollutants in water and wastewater due to their high efficiency as well as acceptable health and environmental effects. Persulfate, especially when used with iron, is far stronger than many other oxidants with respect to oxidation properties since it produces sulfate radicals which create a higher oxidation potential. In this research, efforts have been made to achieve the best conditions for phenol removal from aqueous environments by activating persulfate with iron ions. The experimental design was accomplished using the Taguchi statistical method and the Minitab 16 software. For the purposes of this study, four factors, each with five levels, were considered to determine the optimal conditions for phenol removal. The optimum conditions for phenol removal by integrated persulfate/iron ions were found to comprise a contact time of 120 minutes, a persulfate/iron molar ratio of 5/4, and PH=3. Phenol removal efficiencies of 94.93%±0.708 and 58.21%±0.675 were obtained under the optimum conditions for the experimental minimum (50 mg/l and maximum (750 mg/l phenol concentrations, respectively. The results revealed that among the parameters affecting the process, environmental pH with 54.80% and persulfate concentration with 11.05% have the highest and lowest effects, respectively. It is expected that this process is also capable of removing phenol from industrial wastewaters with removal efficiencies in the range of 59‒95%.

  13. Arene activation by a nonheme iron(III)-hydroperoxo complex: pathways leading to phenol and ketone products.

    Science.gov (United States)

    Faponle, Abayomi S; Banse, Frédéric; de Visser, Sam P

    2016-07-01

    Iron(III)-hydroperoxo complexes are found in various nonheme iron enzymes as catalytic cycle intermediates; however, little is known on their catalytic properties. The recent work of Banse and co-workers on a biomimetic nonheme iron(III)-hydroperoxo complex provided evidence of its involvement in reactivity with arenes. This contrasts the behavior of heme iron(III)-hydroperoxo complexes that are known to be sluggish oxidants. To gain insight into the reaction mechanism of the biomimetic iron(III)-hydroperoxo complex with arenes, we performed a computational (density functional theory) study. The calculations show that iron(III)-hydroperoxo reacts with substrates via low free energies of activation that should be accessible at room temperature. Moreover, a dominant ketone reaction product is observed as primary products rather than the thermodynamically more stable phenols. These product distributions are analyzed and the calculations show that charge interaction between the iron(III)-hydroxo group and the substrate in the intermediate state pushes the transferring proton to the meta-carbon atom of the substrate and guides the selectivity of ketone formation. These studies show that the relative ratio of ketone versus phenol as primary products can be affected by external interactions of the oxidant with the substrate. Moreover, iron(III)-hydroperoxo complexes are shown to selectively give ketone products, whereas iron(IV)-oxo complexes will react with arenes to form phenols instead.

  14. Selective carbon monoxide oxidation over Ag-based composite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Guldur, C. [Gazi University, Ankara (Turkey). Chemical Engineering Department; Balikci, F. [Gazi University, Ankara (Turkey). Institute of Science and Technology, Environmental Science Department

    2002-02-01

    We report our results of the synthesis of 1 : 1 molar ratio of the silver cobalt and silver manganese composite oxide catalysts to remove carbon monoxide from hydrogen-rich fuels by the catalytic oxidation reaction. Catalysts were synthesized by the co-precipitation method. XRD, BET, TGA, catalytic activity and catalyst deactivation studies were used to identify active catalysts. Both CO oxidation and selective CO oxidation were carried out in a microreactor using a reaction gas mixture of 1 vol% CO in air and another gas mixture was prepared by mixing 1 vol% CO, 2 vol% O{sub 2}, 84 vol% H{sub 2}, the balance being He. 15 vol% CO{sub 2} was added to the reactant gas mixture in order to determine the effect of CO{sub 2}, reaction gases were passed through the humidifier to determine the effect of the water vapor on the oxidation reaction. It was demonstrated that metal oxide base was decomposed to the metallic phase and surface areas of the catalysts were decreased when the calcination temperature increased from 200{sup o}C to 500{sup o}C. Ag/Co composite oxide catalyst calcined at 200{sup o}C gave good activity at low temperatures and 90% of CO conversion at 180{sup o}C was obtained for the selective CO oxidation reaction. The addition of the impurities (CO{sub 2} or H{sub 2}O) decreased the activity of catalyst for selective CO oxidation in order to get highly rich hydrogen fuels. (author)

  15. Chemistry and health of olive oil phenolics.

    Science.gov (United States)

    Cicerale, Sara; Conlan, Xavier A; Sinclair, Andrew J; Keast, Russell S J

    2009-03-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, and certain types of cancer. The apparent health benefits have been partially attributed to the dietary consumption of virgin olive oil by Mediterranean populations. Most recent interest has focused on the biologically active phenolic compounds naturally present in virgin olive oils. Studies (human, animal, in vivo and in vitro) have shown that olive oil phenolics have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, and antimicrobial activity. Presumably, regular dietary consumption of virgin olive oil containing phenolic compounds manifests in health benefits associated with a Mediterranean diet. This paper summarizes current knowledge on the physiological effects of olive oil phenolics. Moreover, a number of factors have the ability to affect phenolic concentrations in virgin olive oil, so it is of great importance to understand these factors in order to preserve the essential health promoting benefits of olive oil phenolic compounds.

  16. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    Science.gov (United States)

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  17. Synthesis and Structure Characterization of Phenol-Urea-Formaldehyde Resins in the Presence of Magnesium Oxide as Catalyst

    Directory of Open Access Journals (Sweden)

    Dong-Bin Fan

    2014-08-01

    Full Text Available The objective of this research was to provide a useful approach of polymer synthesis for accelerating the fast cure of phenol-urea-formaldehyde (PUF resin as wood adhesive by optimizing its structure and composition. The PUF resins containing high contents of very reactive groups such as para-methylol groups were synthesized by reacting methylolurea, phenol, and formaldehyde in the presence of magnesium oxide (MgO as catalyst. The effects of synthesis parameters including F/(P + U, OH/P, and MgO/P mole ratios on the structure, composition, curing characteristics, and their relationships of PUF resins were investigated. The results indicated that MgO seemed to be an efficacious catalyst for PUF resin synthesis and promote its faster cure. The increase in the F/(P + U mole ratio or/and OH/P mole ratio appeared to be beneficial for the formation of para-methylol groups and cocondensed methylene linkages between phenolic methylol groups and urea units, and for the removal of unreacted urea. In case of Catalyst/P mole ratio, an appropriate dosage of added metal-ion was very important for synthesizing the high-content reactive groups of PUF resins, otherwise leading to the reverse effects.

  18. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties

    Directory of Open Access Journals (Sweden)

    Jin Dai

    2010-10-01

    Full Text Available Phenolics are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potent antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. In the last few years, the identification and development of phenolic compounds or extracts from different plants has become a major area of health- and medical-related research. This review provides an updated and comprehensive overview on phenolic extraction, purification, analysis and quantification as well as their antioxidant properties. Furthermore, the anticancer effects of phenolics in-vitro and in-vivo animal models are viewed, including recent human intervention studies. Finally, possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.

  19. Screening plant derived dietary phenolic compounds for bioactivity related to cardiovascular disease.

    Science.gov (United States)

    Croft, Kevin D; Yamashita, Yoko; O'Donoghue, Helen; Shirasaya, Daishi; Ward, Natalie C; Ashida, Hitoshi

    2018-04-01

    The potential health benefits of phenolic acids found in food and beverages has been suggested from a number of large population studies. However, the mechanism of how these compounds may exert biological effects is less well established. It is also now recognised that many complex polyphenols in the diet are metabolised to simple phenolic acids which can be taken up in the circulation. In this paper a number of selected phenolic compounds have been tested for their bioactivity in two cell culture models. The expression and activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells and the uptake of glucose in muscle cells. Our data indicate that while none of the compounds tested had a significant effect on eNOS expression or activation in endothelial cells, several of the compounds increased glucose uptake in muscle cells. These compounds also enhanced the translocation of the glucose transporter GLUT4 to the plasma membrane, which may explain the observed increase in cellular glucose uptake. These results indicate that simple cell culture models may be useful to help understand the bioactivity of phenolic compounds in relation to cardiovascular protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Preparation of pure phenols from tars

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J

    1933-02-07

    A process is disclosed for the preparation of pure phenols from brown coal tar, shale tar, or primary tar, characterized in that the raw oil obtained from the tar is carefully fractionated, in a suitable way without or with a slight pressure decrease, or before the fractionation the raw oil is heated to free the prepared phenolate solution from impurities after successful oxidation by passing in steam at a temperature between 100 and 120/sup 0/C.

  1. Biodegradation of phenolic compounds with oxidases from sorghum and non-defined mixed bacterium media

    International Nuclear Information System (INIS)

    Obame, C. E. L.; Savadogo, P. W.; Mamoudou, D. H.; Dembele, R. H.; Traore, A. S.

    2009-01-01

    The biodegradation of the phenolic compounds is performed using oxidative enzymes, e. g. polyphenol oxidases (PPOs) and peroxidases (POXs). These oxidases displaying a wide spectrum for the oxidation of phenolic compounds were isolated either from sorghum or mixed bacteria. Spectrophotometric methods were used to assess the monophenolase and diphenolase activities of PPOs as well as the hydrogen-dependant oxidation of POXs. (Author)

  2. Biodegradation of phenolic compounds with oxidases from sorghum and non-defined mixed bacterium media

    Energy Technology Data Exchange (ETDEWEB)

    Obame, C. E. L.; Savadogo, P. W.; Mamoudou, D. H.; Dembele, R. H.; Traore, A. S.

    2009-07-01

    The biodegradation of the phenolic compounds is performed using oxidative enzymes, e. g. polyphenol oxidases (PPOs) and peroxidases (POXs). These oxidases displaying a wide spectrum for the oxidation of phenolic compounds were isolated either from sorghum or mixed bacteria. Spectrophotometric methods were used to assess the monophenolase and diphenolase activities of PPOs as well as the hydrogen-dependant oxidation of POXs. (Author)

  3. Comparison of AOPs Efficiencies on Phenolic Compounds Degradation

    Directory of Open Access Journals (Sweden)

    Lourdes Hurtado

    2016-01-01

    Full Text Available In this work, a comparison of the performances of different AOPs in the phenol and 4-chlorophenol (4-CP degradation at lab and pilot scale is presented. It was found that, in the degradation of phenol, the performance of a coupled electro-oxidation/ozonation process is superior to that observed by a photo-Fenton process. Phenol removal rate was determined to be 0.83 mg L−1 min−1 for the coupled process while the removal rate for photo-Fenton process was only 0.52 mg L−1 min−1. Regarding 4-CP degradation, the complete disappearance of the molecule was achieved and the efficiency decreasing order was as follows: coupled electro-oxidation/ozonation > electro-Fenton-like process > photo-Fenton process > heterogeneous photocatalysis. Total organic carbon was completely removed by the coupled electro-oxidation/ozonation process. Also, it was found that oxalic acid is the most recalcitrant by-product and limits the mineralization degree attained by the technologies not applying ozone. In addition, an analysis on the energy consumption per removed gram of TOC was conducted and it was concluded that the less energy consumption is achieved by the coupled electro-oxidation/ozonation process.

  4. Degradation of phenolic compounds by using advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. [Univ. de los Andes, Escuela Basica de Ingenieria, La Hechicera, Merida (Venezuela); Hincapie, M. [Dept. de Ingenieria Sanitaria y Ambiental, Univ. de Antioquia, Medellin (Colombia); Curco, D.; Contreras, S.; Gimenez, J.; Esplugas, S. [Dept. de Ingenieria Quimica, Facultad de Quimica, Univ. de Barcelona, Barcelona (Spain)

    2003-07-01

    A new empirical kinetic equation [r = k{sub 1}c - k{sub 2} (c{sub 0} - c)] is proposed for the photocatalytic degradation of phenolic compounds. This equation considers the influence of the intermediates in the degradation of the pollutant. The correct formulation of the contaminant mass balance in the experimental device that operates in recycle mode was done. The proposed empirical kinetic equation fitted quite well with the experimental results obtained in the TiO{sub 2}-photocatalytic degradation of phenol. (orig.)

  5. Total contents of phenolics, flavonoids, tannins and antioxidant capacity of selected traditional Ethiopian alcoholic beverages

    Directory of Open Access Journals (Sweden)

    A. Debebe

    2016-02-01

    Full Text Available The aim of this study was to determine the total contents of phenolics, tannins and flavonoids and antioxidant capacity and their relationships in traditional Ethiopian alcoholic beverages. They have been determined utilizing Folin–Ciocalteu assay, aluminum chloride precipitating agent and 2,2-diphenyl-1-picrylhydrazyl (DPPH assay, respectively. The most widely consumed beverages and which have many varieties were selected for this study. These are gesho fermented and non-gesho beverages tella, tej, borde, keribo, birz, korefe and areke. The total phenolic content obtained in gallic acid equivalent (GAE μg mL-1 was: areke (0.2–0.62, tella (10.1–19.1, tej (5.8–9.5, keribo (10.4–14.9, birz (10.5–12.2, korefe (9.2–10.7 and borde (8.4–10.6. The majority of phenolic compounds in the alcoholic beverages are non-tannic and non-flavonoid compounds. The antioxidant capacity obtained in ascorbic acid equivalent (AAE μg mL-1 was: areke (-0.28–284, tella (31.6–201, tej (1.73–73.7, keribo (39.21–90.11, birz (41.95–63.08, korefe (58.25–96.45 and borde (180–217. The variation in the antioxidant activity among the beverages is due to the types and amount of ingredients used, disparity in the preparation process and the types of phenolic compounds found. The relationship between total phenolics and antioxidant activities was investigated using Pearson correlation at 95% confidence level. The results obtained indicate that the non-gesho fermented beverages such as keribo (-0.714, birz (-0.686 and borde (-0.212 have negative antioxidant correlation with the total phenolic, whereas, fermented beverages with gesho such as tella (0.539, tej (0.385 and korefe (0.557 have positive correlations. Areke has an overall positive correlation (0.609, but, the cereal areke which does not have medicinal plants has negative correlation. DOI: http://dx.doi.org/10.4314/bcse.v30i1.3

  6. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance.

    Science.gov (United States)

    Ajiboye, Taofeek O; Skiebe, Evelyn; Wilharm, Gottfried

    2018-05-01

    Phenolic acids with catechol groups are good prooxidants because of their low redox potential. In this study, we provided data showing that phenolic acids, caffeic acid, gallic acid and protocatechuic acid, enhanced colistin-mediated bacterial death by inducing redox imbalance. The minimum inhibitory concentrations of these phenolic acids against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between colistin and phenolic acids. The phenolic acids exacerbated colistin-induced oxidative stress in A. baumannii AB5075 through increased superoxide anion generation, NAD + /NADH and ADP/ATP ratio. In parallel, the level of reduced glutathione was significantly lowered. We conclude that phenolic acids potentiate colistin-induced oxidative stress in A. baumannii AB5075 by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Role of ligands in permanganate oxidation of organics.

    Science.gov (United States)

    Jiang, Jin; Pang, Su-Yan; Ma, Jun

    2010-06-01

    We previously demonstrated that several ligands such as phosphate, pyrophosphate, EDTA, and humic acid could significantly enhance permanganate oxidation of triclosan (one phenolic biocide), which was explained by the contribution of ligand-stabilized reactive manganese intermediates in situ formed upon permanganate reduction. To further understand the underlying mechanism, we comparatively investigated the influence of ligands on permanganate oxidation of bisphenol A (BPA, one phenolic endocrine-disrupting chemical), carbamazepine (CBZ, a pharmaceutical containing the olefinic group), and methyl p-tolyl sulfoxide (TMSO, a typical oxygen-atom acceptor). Selected ligands exerted oxidation enhancement for BPA but had negligible influence for CBZ and TMSO. This was mainly attributed to the effects of identified Mn(III) complexes, which would otherwise disproportionate spontaneously in the absence of ligands. The one-electron oxidant Mn(III) species exhibited no reactivity toward CBZ and TMSO for which the two-electron oxygen donation may be the primary oxidation mechanism but readily oxidized BPA. The latter case was a function of pH, the complexing ligand, and the molar [Mn(III)]:[ligand] ratio, generally consistent with the patterns of ligand-affected permanganate oxidation. Moreover, the combination of the one-electron reduction of Mn(III) (Mn(III) + e(-) -->Mn(II)) and the Mn(VII)/Mn(II) reaction in excess ligands (Mn(VII) + 4Mn(II) ----> (ligands) 5Mn(III)) suggested a catalytic role of the Mn(III)/Mn(II) pair in permanganate oxidation of some phenolics in the presence of ligands.

  8. Secondary Organic Aerosol Produced from Aqueous Reactions of Phenols in Fog Drops and Deliquesced Particles

    Science.gov (United States)

    Smith, J.; Anastasio, C.

    2014-12-01

    The formation and evolution of secondary organic aerosol (SOA) in atmospheric condensed phases (i.e., aqueous SOA) can proceed rapidly, but relatively little is known of the important aqueous SOA precursors or their reaction pathways. In our work we are studying the aqueous SOA formed from reactions of phenols (phenol, guaiacol, and syringol), benzene-diols (catechol, resorcinol, and hydroquinone), and phenolic carbonyls (e.g., vanillin and syringaldehyde). These species are potentially important aqueous SOA precursors because they are released in large quantities from biomass burning, have high Henry's Law constants (KH = 103 -109 M-1 atm-1) and are rapidly oxidized. To evaluate the importance of aqueous reactions of phenols as a source of SOA, we first quantified the kinetics and SOA mass yields for 11 phenols reacting via direct photodegradation, hydroxyl radical (•OH), and with an excited organic triplet state (3C*). In the second step, which is the focus of this work, we use these laboratory results in a simple model of fog chemistry using conditions during a previously reported heavy biomass burning event in Bakersfield, CA. Our calculations indicate that under aqueous aerosol conditions (i.e., a liquid water content of 100 μg m-3) the rate of aqueous SOA production (RSOA(aq)) from phenols is similar to the rate in the gas phase. In contrast, under fog/cloud conditions the aqueous RSOA from phenols is 10 times higher than the rate in the gas phase. In both of these cases aqueous RSOA is dominated by the oxidation of phenols by 3C*, followed by direct photodegradation of phenolic carbonyls, and then •OH oxidation. Our results suggest that aqueous oxidation of phenols is a significant source of SOA during fog events and also during times when deliquesced aerosols are present.

  9. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    International Nuclear Information System (INIS)

    Huanosta-Gutiérrez, T.; Dantas, Renato F.; Ramírez-Zamora, R.M.; Esplugas, S.

    2012-01-01

    Highlights: ► We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. ► The copper slag was effective to remove organic pollutants (phenol) from water. ► During experimentation, Cu and Fe leaching were not higher than the acceptable levels. ► Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments promoted biodegradability increment of the contaminated water. ► The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H 2 O 2 (slag/H 2 O 2 ) and H 2 O 2 /UV (slag/H 2 O 2 /UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD 5 /TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  10. Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation.

    Science.gov (United States)

    Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Chen, Jun; Cai, Ye; Zhang, Yi; Yang, Guide; Liu, Yuanyuan; Zhang, Chen; Tang, Wangwang

    2014-11-15

    Herein, we reported here a promising biosensor by taking advantage of the unique ordered mesoporous carbon nitride material (MCN) to convert the recognition information into a detectable signal with enzyme firstly, which could realize the sensitive, especially, selective detection of catechol and phenol in compost bioremediation samples. The mechanism including the MCN based on electrochemical, biosensor assembly, enzyme immobilization, and enzyme kinetics (elucidating the lower detection limit, different linear range and sensitivity) was discussed in detail. Under optimal conditions, GCE/MCN/Tyr biosensor was evaluated by chronoamperometry measurements and the reduction current of phenol and catechol was proportional to their concentration in the range of 5.00 × 10(-8)-9.50 × 10(-6)M and 5.00 × 10(-8)-1.25 × 10(-5)M with a correlation coefficient of 0.9991 and 0.9881, respectively. The detection limits of catechol and phenol were 10.24 nM and 15.00 nM (S/N=3), respectively. Besides, the data obtained from interference experiments indicated that the biosensor had good specificity. All the results showed that this material is suitable for load enzyme and applied to the biosensor due to the proposed biosensor exhibited improved analytical performances in terms of the detection limit and specificity, provided a powerful tool for rapid, sensitive, especially, selective monitoring of catechol and phenol simultaneously. Moreover, the obtained results may open the way to other MCN-enzyme applications in the environmental field. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Two pairs of farnesyl phenolic enantiomers as natural nitric oxide inhibitors from Ganoderma sinense.

    Science.gov (United States)

    Wang, Meng; Wang, Fei; Xu, Feng; Ding, Li-Qin; Zhang, Qian; Li, Hui-Xiang; Zhao, Feng; Wang, Li-Qing; Zhu, Li-Han; Chen, Li-Xia; Qiu, Feng

    2016-07-15

    Four new farnesyl phenolic compounds, ganosinensols A-D (1-4) were isolated from the 95% EtOH extract of the fruiting bodies of Ganoderma sinense. Two pairs of enantiomers, 1/2, and 3/4 were isolated by HPLC using a Daicel Chiralpak IE column. Their structures were elucidated from extensive spectroscopic analyses and comparison with literature data. The absolute configurations of 1-4 were assigned by ECD spectra. All of these isolated compounds showed potent inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages, with IC50 values from 1.15 to 2.26μM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro.

    Science.gov (United States)

    Manquián-Cerda, K; Escudey, M; Zúñiga, G; Arancibia-Miranda, N; Molina, M; Cruces, E

    2016-11-01

    Cadmium (Cd(2+)) can affect plant growth due to its mobility and toxicity. We evaluated the effects of Cd(2+) on the production of phenolic compounds and antioxidant response of Vaccinium corymbosum L. Plantlets were exposed to Cd(2+) at 50 and 100µM for 7, 14 and 21 days. Accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the antioxidant enzyme SOD was determined. The profile of phenolic compounds was evaluated using LC-MS. The antioxidant activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the ferric reducing antioxidant power test (FRAP). Cd(2+) increased the content of MDA, with the highest increase at 14 days. The presence of Cd(2+) resulted in changes in phenolic compounds. The main phenolic compound found in blueberry plantlets was chlorogenic acid, whose abundance increased with the addition of Cd(2+) to the medium. The changes in the composition of phenolic compounds showed a positive correlation with the antioxidant activity measured using FRAP. Our results suggest that blueberry plantlets produced phenolic compounds with reducing capacity as a selective mechanism triggered by the highest activity of Cd(2+). Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Sorption of phenol and phenol derivatives in hydrotalcite; Sorcion de fenol y derivados de fenol en hidrotalcita

    Energy Technology Data Exchange (ETDEWEB)

    Avina G, E I

    2002-07-01

    One of the main problems in Mexico and in the World is the waste water pollution of a great variety of industrial processes by organic compounds. Among those ones the phenol compounds which are highly toxic, refractories (to the chemical degradation) and poorly biodegradable. This is due in a large extent to the problem created by the accelerated increase in the environmental pollution in the cities and industrial centers. The phenol compounds are used in a great variety of industries such as the production of resins, plasticizers, antioxidants, pesticides, colourings, disinfectants, etc. These phenol compounds are specially harmful, since they have repercussions on the flora of plants of biological treatment of water affecting its operation. The main objective of this work is to evaluate the capacities of phenol detention and its derivatives in an hydrotalcite type compound and diminishing with it the presence in water, in this case, of solutions prepared in the laboratory. In order to analyse this elimination process was used a methodology based in the carrying out in batch experiments and in the elaboration of a sorption isotherm. It is worth pointing out that this work was realized at laboratory scale, at relatively high phenol concentration ratio. With the obtained results when the sorption properties are evaluated the calcined hydrotalcite (HTC) for detaining phenol and p-chloro phenol it was observed that it is detained greater quantity of p-chloro phenol than phenol in the HTC. The detention of these phenol compounds in the HTC is due to the memory effect by the hydrotalcite regeneration starting from the oxides which are formed by the burning material. (Author)

  14. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India.

    Science.gov (United States)

    Singh, Garima; Passsari, Ajit K; Leo, Vincent V; Mishra, Vineet K; Subbarayan, Sarathbabu; Singh, Bhim P; Kumar, Brijesh; Kumar, Sunil; Gupta, Vijai K; Lalhlenmawia, Hauzel; Nachimuthu, Senthil K

    2016-01-01

    Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.

  15. Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: Effect of H2O2 dosage and temperature

    International Nuclear Information System (INIS)

    Santos, A.; Yustos, P.; Rodriguez, S.; Simon, E.; Garcia-Ochoa, F.

    2007-01-01

    Catalytic wet oxidation (CWO) of a phenolic mixture containing phenol, o-cresol and p-cresol (500 mg/L on each pollutant) has been carried out using a commercial activated carbon (AC) as catalyst, placed in a continuous three-phase reactor. Total pressure was 16 bar and temperature was 127 deg. C. Pollutant conversion, mineralization, intermediate distribution, and toxicity were measured at the reactor outlet. Under these conditions no detoxification of the inlet effluent was found even at the highest catalyst weight (W) to liquid flow rate (Q L ) ratio used. On the other hand, some Fenton Runs (FR) have been carried out in a batch way using the same phenolic aqueous mixture previously cited. The concentration of Fe 2+ was set to 10 mg/L. The influence of the H 2 O 2 amount (between 10 and 100% of the stoichiometric dose) and temperature (30, 50, and 70 deg. C) on phenols conversion, mineralization, and detoxification have been analyzed. Phenols conversion was near unity at low hydrogen peroxide dosage but mineralization and detoxification achieved an asymptotic value at each temperature conditions. The integration of Fenton reagent as pretreatment of the CWO process remarkably improves the efficiency of the CWO reactor and allows to obtain detoxified effluents at mild temperature conditions and relatively low W/Q L values. For a given phenolic mixture a temperature range of 30-50 deg. C in the Fenton pretreatment with a H 2 O 2 dosage between 20 and 40% of the stoichiometric amount required can be proposed

  16. Computational consideration on advanced oxidation degradation of phenolic preservative, methylparaben, in water: mechanisms, kinetics, and toxicity assessments

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yanpeng [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); An, Taicheng, E-mail: antc99@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Fang, Hansun [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ji, Yuemeng; Li, Guiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2014-08-15

    Graphical abstract: - Highlights: • Computational approach is effective to reveal the transformation mechanism of MPB. • MPB degradation was more dependent on the [{sup •} OH] than temperature during AOPs. • O{sub 2} could enhance MPB degradation, but more harmful products were formed. • The risks of MPB products in natural waters should be considered seriously. • The risks of MPB products can be overlooked in AOPs due to short half-time. - Abstract: Hydroxyl radicals ({sup •} OH) are strong oxidants that can degrade organic pollutants in advanced oxidation processes (AOPs). The mechanisms, kinetics, and toxicity assessment of the {sup •} OH-initiated oxidative degradation of the phenolic preservative, methylparaben (MPB), were systematically investigated using a computational approach, as the supplementary information for experimental data. Results showed that MPB can be initially attacked by {sup •} OH via OH-addition and H-abstraction routes. Among these routes, the {sup •} OH addition to the C atom at the ortho-position of phenolic hydroxyl group was the most significant route. However, the methyl-H-abstraction route also cannot be neglected. Further, the formed transient intermediates, OH-adduct ({sup •} MPB-OH{sub 1}) and dehydrogenated radical ({sup •} MPB(-H)α), could be easily transformed to several stable degradation products in the presence of O{sub 2} and {sup •} OH. To better understand the potential toxicity of MPB and its products to aquatic organisms, both acute and chronic toxicities were assessed computationally at three trophic levels. Both MPB and its products, particularly the OH-addition products, are harmful to aquatic organisms. Therefore, the application of AOPs to remove MPB should be carefully performed for safe water treatment.

  17. Electrochemical Study of Iodide in the Presence of Phenol and o-Cresol: Application to the Catalytic Determination of Phenol and o-Cresol

    Directory of Open Access Journals (Sweden)

    Davood Nematollahi

    2004-11-01

    Full Text Available Abstract: The electrochemical oxidation of iodide in the presence of phenol and o-cresol was investigated at a glassy carbon electrode in buffered media by cyclic voltammetry, linear sweep voltammetry and controlled–potential coulometry. The experimental results indicate that the phenol and o-cresol convert to their derivatives after participating in a halogenation coupled reaction (quasi-catalytic reaction following the oxidation of iodide to iodine. The concentrations of phenol and o-cresol have been determined in aqueous solutions according to the linear dependence of quasi-catalytic peak currents with the concentration. The calibration graphs show two linear sections of 0.0 to 1.0×10-4 M and 2.0×10-4 to 1.0 ×10-3 M for phenol and 4.2×10-5 to 1.0×10-4 M and 2.0×10-4 to 1.0×10-3 M for o-cresol. The theoretical detection limits and the relative standard deviations for ten measurements of phenol and o-cresol are 1.125×10-5 M, 1.06% and 4.201×10-5 M, 1.44%, respectively.

  18. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    Science.gov (United States)

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  19. Flavoenzyme-catalyzed oxygenations and oxidations of phenolic compounds

    NARCIS (Netherlands)

    Moonen, MJH; Fraaije, MW; Rietjens, IMCM; Laane, C; van Berkel, WJH

    2002-01-01

    Flavin-dependent monooxygenases and oxidases play an important role in the mineralization of phenolic compounds. Because of their exquisite regioselectivity and stereoselectivity, these enzymes are of interest for the biocatalytic production of fine chemicals and food ingredients. In our group, we

  20. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2014-03-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O : C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O : C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to depend on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O : C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  1. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy-phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2013-10-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy-phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O:C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O:C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to be dependent on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O:C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  2. Problems of selectivity in liquid-phase oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, N M

    1978-07-01

    Based on a kinetic analysis of a generalized scheme for radical-chain process and on published experimental results, factors determining the selectivities of various liquid-phase oxidations of organic compounds are examined, including the kinetic chain length, molecular and chain decomposition of products, and competing routes in the initiated oxidation or autoxidation of hydrocarbons to peroxides. Also discussed are selective inhibition of undesirable routes in chain reactions, e.g., styrene and acetaldehyde co-oxidation; activation of molecular oxygen by variable-valence metal compounds used as homogeneous catalysts; modeling of fermentative processes by oxidation of hydrocarbons in complex catalytic systems, e.g., hydroxylation of alkanes, epoxidation or carbonylation of olefins, or oxidation of alcohols and ketones to acids; and the mechanisms of heterogeneous catalysis in liquid-phase reactions, e.g., oxidation of alkylaromatic hydrocarbons to peroxides and co-oxidation of propylene and acetaldehyde.

  3. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    International Nuclear Information System (INIS)

    Cho, Eun Sun; Jang, Young Jin; Hwang, Mun Kyung; Kang, Nam Joo; Lee, Ki Won; Lee, Hyong Joo

    2009-01-01

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H 2 O 2 ). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 μg/ml) or CGA (1 and 5 μM) attenuated H 2 O 2 -induced PC12 cell death. H 2 O 2 -induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H 2 O 2 -induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-X L and caspase-3. The accumulation of intracellular ROS in H 2 O 2 -treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H 2 O 2 in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H 2 O 2 -induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs

  4. Phenolic Compounds of Cereals and Their Antioxidant Capacity.

    Science.gov (United States)

    Van Hung, Pham

    2016-01-01

    Phenolic compounds play an important role in health benefits because of their highly antioxidant capacity. In this review, total phenolic contents (TPCs), phenolic acid profile and antioxidant capacity of the extracted from wheat, corn, rice, barley, sorghum, rye, oat, and millet, which have been recently reported, are summarized. The review shows clearly that cereals contain a number of phytochemicals including phenolics, flavonoids, anthocyanins, etc. The phytochemicals of cereals significantly exhibit antioxidant activity as measured by trolox equivalent antioxidant capacity (TEAC), 2,2-diphenyl-1-picrylhydrazyl radical scavenging, reducing power, oxygen radical absorbance capacity (ORAC), inhibition of oxidation of human low-density lipoprotein (LDL) cholesterol and DNA, Rancimat, inhibition of photochemilumenescence (PCL), and iron(II) chelation activity. Thus, the consumption of whole grains is considered to have significantly health benefits in prevention from chronic diseases such as cardiovascular disease, diabetes, and cancer because of the contribution of phenolic compounds existed. In addition, the extracts from cereal brans are considered to be used as a source of natural antioxidants.

  5. Phenolic composition and antioxidant properties of koose, a deep-fat fried cowpea cake.

    Science.gov (United States)

    Apea-Bah, Franklin B; Serem, June C; Bester, Megan J; Duodu, Kwaku G

    2017-12-15

    Koose, a West African delicacy, is a side dish prepared by deep frying thick cowpea paste. The current research determined the effect of deep-fat frying of cowpea paste on its total phenolic content (TPC), phenolic composition and antioxidant properties. Four cowpea cultivars comprising two reddish-brown, a brownish-cream and cream phenotypes were used. Liquid chromatography-mass spectrometry was used to determine phenolic composition of the samples. TPC was determined using Folin-Ciocalteu method while radical scavenging capacities were by Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity and nitric oxide scavenging assays. The phenolic acids identified included benzoic and cinnamic acid derivatives. The predominant flavonoid classes were flavan-3-ols and flavonols. Deep-fat frying of the cowpea pastes decreased their TPC, radical scavenging capacities and total quantified flavonoids. The koose inhibited radical-induced oxidative cellular and DNA damage. It is concluded that koose is a potential functional food that can contribute to alleviating radical-induced oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Novel RGO/α-FeOOH supported catalyst for Fenton oxidation of phenol at a wide pH range using solar-light-driven irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying, E-mail: yingwang@bnu.edu.cn [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875 (China); Fang, Jiasheng, E-mail: fangfangcanfly@163.com [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875 (China); School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189 (China); Crittenden, John C., E-mail: John.Crittenden@ce.gatech.edu [School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30332-0595 (United States); Shen, Chanchan [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2017-05-05

    Graphical abstract: Schematic of the preparation of RF supported catalysts and the reaction mechanism for SLD Fenton catalytic degradation of aqueous phenol. - Highlights: • Novel SLD Fenton catalyst was synthesized via in-situ induced self-assembly process. • RGO improved light-harvesting capacity and enhanced electro-transport performance. • Visible light irradiation accelerated reaction and extended operating pHs (4.0–8.0). • H{sub 2}O{sub 2} reduction and H{sub 2}O oxidation yielded ·OH in Fe{sup Ⅱ}/Fe{sup Ⅲ} and Fe{sup Ⅲ}/Fe{sup Ⅳ} cycling process. - Abstract: A novel solar-light-driven (SLD) Fenton catalyst was developed by reducing the ferrous-ion onto graphene oxide (GO) and forming reduced graphene oxide/α-FeOOH composites (RF) via in-situ induced self-assembly process. The RF was supported on several mesoporous supports (i.e., Al-MCM-41, MCM-41 and γ-Al{sub 2}O{sub 3}). The activity, stability and energy use for phenol oxidation were systematically studied for a wide pH range. Furthermore, the catalytic mechanism at acid and alkaline aqueous conditions was also elucidated. The results showed that Fe(II) was reduced onto GO nanosheets and α-FeOOH crystals were formed during the self-assembly process. Compared with Fenton reaction without SLD irradiation, the visible light irradiation not only dramatically accelerated the rate of Fenton-based reactions, but also extended the operating pH for the Fenton reaction (from 4.0 to 8.0). The phenol oxidation on RF supported catalysts was fitting well with the pseudo-first-order kinetics, and needed low initiating energy, insensitive to the reacting temperature changes (273–318 K). The Al-MCM-41 supported RF was a more highly energy-efficient catalyst with the prominent catalytic activity at wide operating pHs. During the reaction, ·OH radicals were generated by the SLD irradiation from H{sub 2}O{sub 2} reduction and H{sub 2}O oxidation in the Fe{sup Ⅱ}/Fe{sup Ⅲ} and Fe{sup Ⅲ}/Fe{sup

  7. Inhibition of Heme Peroxidase During Phenol Derivatives Oxidation. Possible Molecular Cloaking of the Active Center

    Directory of Open Access Journals (Sweden)

    Juozas Kulys

    2005-10-01

    Full Text Available Abstract: Ab initio quantum chemical calculations have been applied to the study of the molecular structure of phenol derivatives and oligomers produced during peroxidasecatalyzed oxidation. The interaction of substrates and oligomers with Arthromyces ramosus peroxidase was analyzed by docking methods. The most possible interaction site of oligomers is an active center of the peroxidase. The complexation energy increases with increasing oligomer length. However, the complexed oligomers do not form a precise (for the reaction hydrogen bonding network in the active center of the enzyme. It seems likely that strong but non productive docking of the oligomers determines peroxidase inhibition during the reaction.

  8. Two Catalysts for Selective Oxidation of Contaminant Gases

    Science.gov (United States)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  9. Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature.

    Science.gov (United States)

    Ma, Jie; Li, Haiyan; Chi, Liping; Chen, Hongkun; Chen, Changzhao

    2017-12-01

    Persulfate (peroxydisulfate, S 2 O 8 2- ) is the newest oxidant used for the in situ chemical oxidation (ISCO) remediation of soil and groundwater. The present study investigated impacts of solution pH, temperature, and persulfate concentration on the reaction rate constant (k 1 ), activation energy (E a ), and reaction order of the heat-activated persulfate process. Phenol was chosen as the model organic contaminant. As temperature increased from 30 °C to 70 °C, k 1 exhibited a significant increase from 0.003 h -1 ∼0.962 h -1 (pH 1.3-13.9) to 1.184 h -1 ∼9.91 h -1 (pH 1.3-13.9), which corroborated with the activation of persulfate using heat. As pH increased from 1.3 to 13.9, k 1 exhibited a 4.3-fold increase at 70 °C and a 320-fold increase at 30 °C, thereby suggesting that: 1) the phenol oxidation rate increased under alkaline conditions, and 2) the enhancement of reaction rate due to alkaline activation was more pronounced at a lower temperature. Increasing pH significantly reduced E a from 139.7 ± 1.3 kJ/mol at pH 1.3 to 52.0 ± 3.3 kJ/mol at pH 13.9. In contrast to changing pH, increasing persulfate concentration from 20 to 320 mM significantly increased k 1 but did not affect E a . Changes in E a suggest that persulfate oxidation of phenol experienced different reaction pathways or elementary reaction sequences as the pH changed from 1.3 to 13.9. In addition, the k 1 and E a data also suggest that a minimal pH threshold of ∼11 was required for the effective alkaline activation of persulfate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Electrochemical Behavior and Antioxidant and Prooxidant Activity of Natural Phenolics

    Directory of Open Access Journals (Sweden)

    Marija Todorović

    2007-10-01

    Full Text Available We have investigated the electrochemical oxidation of a number natural phenolics (salicylic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, protocatechuic acid, o-coumaric acid, m-coumaric acid, p-coumaric acid, caffeic acid, quercetin and rutin using cyclic voltammetry. The antioxidant properties of these compounds were also studied. A structural analysis of the tested phenolics suggests that multiple OH substitution and conjugation are important determinants of the free radical scavenging activity and electrochemical behavior. Compounds with low oxidation potentials (Epa lower than 0.45 showed antioxidant activity, whereas compounds with high Epa values (>0.45 act as prooxidants.

  11. Interaction of Olive Oil Phenol Antioxidant Components with Low-density Lipoprotein

    Directory of Open Access Journals (Sweden)

    ROSA M LAMUELA-RAVENTÓS

    2004-01-01

    Full Text Available Phenolic compounds have shown to inhibit LDL oxidation in vitro and ex vivo; however, they are hydrosoluble compounds while LDL is a lipoprotein. Analysis of phenolic compounds in LDLs by HPLC is necessary to demonstrate their binding capacity to lipoproteins. We developed and validated a solid phase extraction method (SPE that allowed us the purification of LDL samples and their analysis by HPLC. This methodology allowed us to demonstrate the in vitro binding capacity of tyrosol, one of the main phenolic compounds in olive oil, to LDL. In the intervention dietary study with volunteers, food rich in phenolic compounds affected LDL composition. Changes in LDL phenolics composition are not observed after the short-term ingestion of food rich in phenolic compounds. However, after one week of olive oil consumption and Mediterranean diet there was an increase in phenolics (p=0.021. An accumulative effect seems necessary to observe significative differences in LDL phenolic composition.

  12. Electrochemical oxidation of 4-chloro phenol over a carbon paste electrode modified with Zn Al layered double hydroxides

    International Nuclear Information System (INIS)

    Hernandez F, D.; Palomar P, M.; Licona S, T. de J.; Romero R, M.; Valente, Jaime S.

    2014-01-01

    A study is presented on the electrochemical oxidation of 4-chloro phenol (4cp) in aqueous solution using a bare carbon paste electrode, Cpe, and another one that was modified with Zn Al layered double hydroxides (Cpe/Zn Al-LDH). The electro-oxidation was effected at ph values ranging from 3 up to 11. It was found through cyclic voltammetry that this process was irreversible, namely, there were no reduction peaks, and that depending on the nature of the electrode, the anodic current was limited either by adsorption (Cpe) or diffusion (Cpe/Zn Al-LDH). The energy required and the oxidation reaction rate depended on the ph and on the nature of the electrode, such that the greater rates were obtained when the Cpe/Zn Al-LDH electrode and acid ph were used. The Zn Al-LDH was characterized by means of X-ray diffraction. (Author)

  13. Electrochemical oxidation of 4-chloro phenol over a carbon paste electrode modified with Zn Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez F, D.; Palomar P, M.; Licona S, T. de J.; Romero R, M. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Departamento de Materiales, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D. F. (Mexico); Valente, Jaime S., E-mail: mepp@correo.azc.uam.mx [Instituto Mexicano del Petroleo, Eje Central No. 152, 07730 Mexico D. F. (Mexico)

    2014-07-01

    A study is presented on the electrochemical oxidation of 4-chloro phenol (4cp) in aqueous solution using a bare carbon paste electrode, Cpe, and another one that was modified with Zn Al layered double hydroxides (Cpe/Zn Al-LDH). The electro-oxidation was effected at ph values ranging from 3 up to 11. It was found through cyclic voltammetry that this process was irreversible, namely, there were no reduction peaks, and that depending on the nature of the electrode, the anodic current was limited either by adsorption (Cpe) or diffusion (Cpe/Zn Al-LDH). The energy required and the oxidation reaction rate depended on the ph and on the nature of the electrode, such that the greater rates were obtained when the Cpe/Zn Al-LDH electrode and acid ph were used. The Zn Al-LDH was characterized by means of X-ray diffraction. (Author)

  14. Monochloro non-bridged half-metallocene-type zirconium complexes containing phosphine oxide-(thio)phenolate chelating ligands as efficient ethylene polymerization catalysts.

    Science.gov (United States)

    Tang, Xiao-Yan; Wang, Yong-Xia; Liu, San-Rong; Liu, Jing-Yu; Li, Yue-Sheng

    2013-01-14

    A series of novel monochloro half-zirconocene complexes containing phosphine oxide-(thio)phenolate chelating ligands of the type, ClCp'Zr[X-2-R(1)-4-R(2)-6-(Ph(2)P=O)C(6)H(2)](2) (Cp' = C(5)H(5), 2a: X = O, R(1) = Ph, R(2) = H; 2b: X = O, R(1) = F, R(2) = H; 2c: X = O, R(1) = (t)Bu, R(2) = H; 2d: X = O, R(1) = R(2) = (t)Bu; 2e: X = O, R(1) = SiMe(3), R(2) = H; 2f: X = S, R(1) = SiMe(3), R(2) = H; Cp' = C(5)Me(5), 2g: X = O, R(1) = SiMe(3), R(2) = H), have been synthesized in high yields. These complexes were identified by (1)H {(13)C} NMR and elemental analyses. Structures for 2b, 2c and 2f were further confirmed by X-ray crystallography. Structural characterization of these complexes reveals crowded environments around the zirconium. Complexes 2b and 2c adopt six-coordinate, distorted octahedral geometry around the zirconium center, in which the equatorial positions are occupied by three oxygen atoms of two chelating phosphine oxide-bridged phenolate ligands and a chlorine atom. The cyclopentadienyl ring and one oxygen atom of the ligand are coordinated on the axial position. Complex 2f also folds a six-coordinate, distorted octahedral geometry around the Zr center, consisting of a Cp-Zr-O (in P=O) axis [177.16°] and a distorted plane of two sulfur atoms and one oxygen atom of two chelating phosphine oxide-bridged thiophenolate ligands as well as a chlorine atom. When activated by modified methylaluminoxane (MMAO), all the complexes exhibited high activities towards ethylene polymerization at high temperature (75 °C), giving high molecular weight polymers with unimodal molecular weight distribution. The formation of 14-electron, cationic metal alkyl species might come from the Zr-O (in phenol ring) bond cleavage based on the DFT calculations study.

  15. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ali Nickheslat

    2013-01-01

    Full Text Available Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm. The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal.

  16. Phenolic extract of Parkia biglobosa fruit pulp stalls aflatoxin B1 – mediated oxidative rout in the liver of male rats

    Directory of Open Access Journals (Sweden)

    Taofeek O. Ajiboye

    Full Text Available The effect of phenolic extract of Parkia biglobosa (Jacq. R. Br. ex G. Don, Fabaceae, pulp on aflatoxin B1 induced oxidative imbalance in rat liver was evaluated. Thirty-five male rats were randomized into seven groups of five animals each. Rats in group A served as control and received vehicle for drug administration (0.5% DMSO once daily at 24 h intervals for six weeks. Rats in groups B, D, E, F and G, received aflatoxin B1 (167 μg/kg body weight in 0.5% DMSO for three weeks, starting from the third week of the experimental period. Rats in Group C received 400 mg/kg bodyweight of the extract for six weeks, while groups D, E and F rats were treated with 100, 200 and 400 mg/kg bodyweight of the extract for six weeks respectively. Group G rats received 100 mg/kg body weight of vitamin C. Aflatoxin B1-mediated decrease in the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase were significantly attenuated. Aflatoxin B1 mediated the elevation in malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl, and significantly lowered DNA fragmentation percentage. Overall, the phenolic extract of P. biglobosa pulp stalls aflatoxin B1-mediated oxidative rout by enhancing antioxidant enzyme activities leading to decreased lipid peroxidation, protein oxidation and DNA fragmentation.

  17. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J; Koljonen, T [VTT Energy, Espoo (Finland)

    1997-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  18. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  19. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Huanosta-Gutierrez, T. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Dantas, Renato F., E-mail: falcao@angel.qui.ub.es [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Ramirez-Zamora, R.M. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Esplugas, S. [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. Black-Right-Pointing-Pointer The copper slag was effective to remove organic pollutants (phenol) from water. Black-Right-Pointing-Pointer During experimentation, Cu and Fe leaching were not higher than the acceptable levels. Black-Right-Pointing-Pointer Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments promoted biodegradability increment of the contaminated water. Black-Right-Pointing-Pointer The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H{sub 2}O{sub 2} (slag/H{sub 2}O{sub 2}) and H{sub 2}O{sub 2}/UV (slag/H{sub 2}O{sub 2}/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD{sub 5}/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  20. Content of Total Phenolics, Flavan-3-Ols and Proanthocyanidins, Oxidative Stability and Antioxidant Capacity of Chocolate During Storage

    Science.gov (United States)

    Komes, Draženka; Gorjanović, Stanislava; Belščak-Cvitanović, Ana; Pezo, Lato; Pastor, Ferenc; Ostojić, Sanja; Popov-Raljić, Jovanka; Sužnjević, Desanka

    2016-01-01

    Summary Antioxidant (AO) capacity of chocolates with 27, 44 and 75% cocoa was assessed after production and during twelve months of storage by direct current (DC) polarographic assay, based on the decrease of anodic current caused by the formation of hydroxo-perhydroxyl mercury(II) complex (HPMC) in alkaline solutions of hydrogen peroxide at potentials of mercury oxidation, and two spectrophotometric assays. Relative antioxidant capacity index (RACI) was calculated by taking the average value of the AO assay (the sample mass in all assays was identical). Oxidative stability of chocolate fat was determined by differential scanning calorimetry. Measured parameters and RACI were correlated mutually and with the content of total phenols (Folin-Ciocalteu assay), flavan-3-ols (vanillin and p-dimethylaminocinnamaldehyde assay) and proanthocyanidins (modified Bate-Smith assay). During storage, the studied functional and health-related characteristics remained unchanged. Amongst applied AO assays, the DC polarographic one, whose validity was confirmed by two-way ANOVA and F-test, correlated most significantly with oxidative stability (oxidation onset temperature and induction time). In addition, principal component analysis was applied to characterise chocolate types. PMID:27904388

  1. Content of Total Phenolics, Flavan-3-Ols and Proanthocyanidins, Oxidative Stability and Antioxidant Capacity of Chocolate During Storage

    Directory of Open Access Journals (Sweden)

    Draženka Komes

    2016-01-01

    Full Text Available Antioxidant (AO capacity of chocolates with 27, 44 and 75 % cocoa was assessed after production and during twelve months of storage by direct current (DC polarographic assay, based on the decrease of anodic current caused by the formation of hydroxo-perhydroxyl mercury(II complex (HPMC in alkaline solutions of hydrogen peroxide at potentials of mercury oxidation, and two spectrophotometric assays. Relative antioxidant capacity index (RACI was calculated by taking the average value of the AO assay (the sample mass in all assays was identical. Oxidative stability of chocolate fat was determined by differential scanning calorimetry. Measured parameters and RACI were correlated mutually and with the content of total phenols (Folin-Ciocalteu assay, flavan-3-ols (vanillin and p-dimethylaminocinnamaldehyde assay and proanthocyanidins (modified Bate-Smith assay. During storage, the studied functional and health-related characteristics remained unchanged. Amongst applied AO assays, the DC polarographic one, whose validity was confirmed by two-way ANOVA and F-test, correlated most significantly with oxidative stability (oxidation onset temperature and induction time. In addition, principal component analysis was applied to characterise chocolate types.

  2. Chloroform-assisted phenol extraction improving proteome profiling of maize embryos through selective depletion of high-abundance storage proteins.

    Directory of Open Access Journals (Sweden)

    Erhui Xiong

    Full Text Available The presence of abundant storage proteins in plant embryos greatly impedes seed proteomics analysis. Vicilin (or globulin-1 is the most abundant storage protein in maize embryo. There is a need to deplete the vicilins from maize embryo extracts for enhanced proteomics analysis. We here reported a chloroform-assisted phenol extraction (CAPE method for vicilin depletion. By CAPE, maize embryo proteins were first extracted in an aqueous buffer, denatured by chloroform and then subjected to phenol extraction. We found that CAPE can effectively deplete the vicilins from maize embryo extract, allowing the detection of low-abundance proteins that were masked by vicilins in 2-DE gel. The novelty of CAPE is that it selectively depletes abundant storage proteins from embryo extracts of both monocot (maize and dicot (soybean and pea seeds, whereas other embryo proteins were not depleted. CAPE can significantly improve proteome profiling of embryos and extends the application of chloroform and phenol extraction in plant proteomics. In addition, the rationale behind CAPE depletion of abundant storage proteins was explored.

  3. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Sun; Jang, Young Jin [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Hwang, Mun Kyung; Kang, Nam Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Ki Won [Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)], E-mail: kiwon@konkuk.ac.kr; Lee, Hyong Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of)], E-mail: leehyjo@snu.ac.kr

    2009-02-10

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H{sub 2}O{sub 2}). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 {mu}g/ml) or CGA (1 and 5 {mu}M) attenuated H{sub 2}O{sub 2}-induced PC12 cell death. H{sub 2}O{sub 2}-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H{sub 2}O{sub 2}-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-X{sub L} and caspase-3. The accumulation of intracellular ROS in H{sub 2}O{sub 2}-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H{sub 2}O{sub 2} in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H{sub 2}O{sub 2}-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs.

  4. Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng.

    Science.gov (United States)

    Zhou, Ying; Yang, Zhenming; Gao, Lingling; Liu, Wen; Liu, Rongkun; Zhao, Junting; You, Jiangfeng

    2017-07-01

    Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of H 2 O 2 and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of l-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione- S -transferase activity remained constant. Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound

  5. Phenolic carbonyls undergo rapid aqueous photodegradation to form low-volatility, light-absorbing products

    Science.gov (United States)

    Smith, Jeremy D.; Kinney, Haley; Anastasio, Cort

    2016-02-01

    We investigated the aqueous photochemistry of six phenolic carbonyls - vanillin, acetovanillone, guaiacyl acetone, syringaldehyde, acetosyringone, and coniferyl aldehyde - that are emitted from wood combustion. The phenolic carbonyls absorb significant amounts of solar radiation and decay rapidly via direct photodegradation, with lifetimes (τ) of 13-140 min under Davis, CA winter solstice sunlight at midday (solar zenith angle = 62°). The one exception is guaiacyl acetone, where the carbonyl group is not directly connected to the aromatic ring: This species absorbs very little sunlight and undergoes direct photodegradation very slowly (τ > 103 min). We also found that the triplet excited states (3C*) of the phenolic carbonyls rapidly oxidize syringol (a methoxyphenol without a carbonyl group), on timescales of 1-5 h for solutions containing 5 μM phenolic carbonyl. The direct photodegradation of the phenolic carbonyls, and the oxidation of syringol by 3C*, both efficiently produce low volatility products, with SOA mass yields ranging from 80 to 140%. Contrary to most aliphatic carbonyls, under typical fog conditions we find that the primary sink for the aromatic phenolic carbonyls is direct photodegradation in the aqueous phase. In areas of significant wood combustion, phenolic carbonyls appear to be small but significant sources of aqueous SOA: over the course of a few hours, nearly all of the phenolic carbonyls will be converted to SOA via direct photodegradation, enhancing the POA mass from wood combustion by approximately 3-5%.

  6. The role of iron species on the turbidity of oxidized phenol solutions in a photo-Fenton system.

    Science.gov (United States)

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez-Arce, Jonatan

    2015-01-01

    This work aims at establishing the contribution of the iron species to the turbidity of phenol solutions oxidized with photo-Fenton technology. During oxidation, turbidity increases linearly with time till a maximum value, according to a formation rate that shows a dependence of second order with respect to the catalyst concentration. Next, the decrease in turbidity shows the evolution of second-order kinetics, where the kinetics constant is inversely proportional to the dosage of iron, of order 0.7. The concentration of iron species is analysed at the point of maximum turbidity, as a function of the total amount of iron. Then, it is found that using dosages FeT=0-15.0 mg/L, the majority iron species was found to be ferrous ions, indicating that its concentration increases linearly with the dosage of total iron. This result may indicate that the photo-reaction of ferric ion occurs leading to the regeneration of ferrous ion. The results, obtained by operating with initial dosages FeT=15.0 and 25.0 mg/L, suggest that ferrous ion concentration decreases while ferric ion concentration increases in a complementary manner. This fact could be explained as a regeneration cycle of the iron species. The observed turbidity is generated due to the iron being added as a catalyst and the organic matter present in the system. Later, it was found that at the point of maximum turbidity, the concentration of ferrous ions is inversely proportional to the concentration of phenol and its dihydroxylated intermediates.

  7. Antioxidant Behavior of Olive Phenolics in Oil-in-Water Emulsions.

    Science.gov (United States)

    Paradiso, Vito Michele; Di Mattia, Carla; Giarnetti, Mariagrazia; Chiarini, Marco; Andrich, Lucia; Caponio, Francesco

    2016-07-27

    The effect of the surrounding molecular environment (β-lactoglobulin as an emulsion stabilizer and maltodextrin as a viscosity modifier) on the antioxidant activity of three olive oil phenolic compounds (PCs) in olive oil-in-water emulsions was investigated. Oxidation potential, phenolic partitioning, and radical quenching capacity were assessed in solution and in emulsion for oleuropein, hydroxytyrosol, and tyrosol; the influence of β-lactoglobulin and maltodextrin concentration was also evaluated. Finally, the observed properties were related to the oxidative stability of the emulsions containing the PCs to explain their behavior. The order hydroxytyrosol > oleuropein > tyrosol was observed among the antioxidants for both oxidation potential and radical quenching activity. Radical quenching capacity in emulsion and anodic potential were complementary indices of antioxidant effectiveness. As the intrinsic susceptibility of an antioxidant to oxidation expressed by its anodic potential decreased, the environmental conditions (molecular interactions and changes in continuous phase viscosity) played a major role in the antioxidant effectiveness in preventing hydroperoxide decomposition.

  8. Selective oxidation of propane over cation exchanged zeolites

    NARCIS (Netherlands)

    Xu, J.

    2005-01-01

    This thesis focuses on investigation of the fundamental knowledge on a new method for selective oxidation of propane with O2 at low temperature (< 100°C). The relation between propane catalytic selective oxidation and physicochemical properties of cation exchanged Y zeolite has been studied. An

  9. Oxidation Degradation Study And Use Of Phenol And Amina Antioxidant Compounds In Natural Rubber Cyclical

    Directory of Open Access Journals (Sweden)

    Arofah Megasari Siregar

    2015-08-01

    Full Text Available The research was conducted research into the use of commercial antioxidants Irganox 1010 wingstay to inhibit the oxidative degradation of cyclic polymers of natural rubber and polypropylene nanocomposite with commercial montmorillonite PP MMT-Clay. Proces mixing nanocomposit PPMMT using commercial compatibiliser PP-g-MA PB3200 made in an internal mixer at a temperature of 180 C for 10 minutes and 65 rpm rotor speed. Hyndered phenol antioxidant effectiveness was analyzed using Fourier Transform Infra Red FTIR. Analysis of infrared is done by measuring the broad index absorption of the carbonyl group CO at a wavelength of 1700 cm-1 and a broad index uptake hydroxyl group at a wavelength of 3400 cm-1 before and after heated in an oven temperature of 125oC with variations in exposure time. The results indicate the use of antioxidant Irganox 1010 in nanocomposite PP MMT with a stabilizing factor of 5.5. Further commercial antioxidants will be used to restrain the rate of oxidation degradation of the natural rubber products cyclical CNR.

  10. Phenolic amides from Tribulus terrestris and their inhibitory effects on nitric oxide production in RAW 264.7 cells.

    Science.gov (United States)

    Kim, Hyung Sik; Lee, Jin Woo; Jang, Hari; Le, Thi Phuong Linh; Kim, Jun Gu; Lee, Moon Soon; Hong, Jin Tae; Lee, Mi Kyeong; Hwang, Bang Yeon

    2018-02-01

    A new phenolic amide, named cis-terrestriamide (7), together with ten known compounds (1-6, 8-11), were isolated from the methanolic extract of the fruits of Tribulus terrestris. The structure of 7 was elucidated on the basis of extensive analyses of 1D and 2D nuclear magnetic resonance spectroscopic and high resolution mass spectrometry data. Compounds 1, 2, 5, 6, 8, 9, and 11 exhibited inhibitory effects on the lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 cells, with IC 50 values of 18.7-49.4 μM.

  11. Free radicals quenching potential, protective properties against oxidative mediated ion toxicity and HPLC phenolic profile of a Cameroonian spice: Piper guineensis.

    Science.gov (United States)

    Moukette Moukette, Bruno; Constant Anatole, Pieme; Nya Biapa, Cabral Prosper; Njimou, Jacques Romain; Ngogang, Jeanne Yonkeu

    2015-01-01

    Considerations on antioxidants derived from plants have continuously increased during this decade because of their beneficial effects on human health. In the present study we investigated the free radical scavenging properties of extracts from Piper guineense ( P. guineense ) and their inhibitory potentials against oxidative mediated ion toxicity. The free radical quenching properties of the extracts against [1,1-diphenyl-2-picrylhydrazyl (DPPH•), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS•), hydroxyl radical (HO•), nitric oxide (NO•)] radical and their antioxidant potentials by FRAP and phosphomolybdenum were determined as well as their protective properties on liver enzymes. The phenolic profile was also investigated by HPLC. The results obtained, revealed that the extracts significantly inhibited the DPPH, NO, HO and ABTS radicals in a concentration depending manner. They also showed a significant ferrous ion chelating ability through FRAP and phosphomolybdenum antioxidant potential. Their polyphenol contents varied depending on the type of extracts and the solvent used. The hydroethanolic extracts (FFH) and the ethanolic extracts (FFE) of P. guineense leaves showed the higher level of phenolic compounds respectively of 21.62 ± 0.06 mg caffeic acid/g dried extract (CAE/g DE) and 19.01 ± 0.03 CAE/g DE. The HPLC phenolic compounds profile revealed a higher quantity of Eugenol, quercetin, rutin and catechin in the stem than in the leaves. The presence of these molecules could be responsible of the protective potentials of P. guineense extracts against lipid peroxidation and SOD, catalase and peroxidase. In conclusion, P. guineense extracts demonstrated significant antioxidant property and may be used as a prospective protector against metal related toxicity.

  12. Preparation of pure phenols from tars

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J

    1929-06-18

    A process is disclosed for preparing pure phenols from brown coal and shale tar, characterized in that the alkaline extract obtained from the tar is oxidized and concurrently the alkaline solution is separated from the existing impurities by heating with steam at high temperature, which finally reaches at least 150/sup 0/C.

  13. Preparation, Characterization, and Properties of In Situ Formed Graphene Oxide/Phenol Formaldehyde Nanocomposites

    Directory of Open Access Journals (Sweden)

    Weihua Xu

    2013-01-01

    Full Text Available Graphene oxide (GO has shown great potential to be used as fillers to develop polymer nanocomposites for important applications due to their special 2D geometrical structure as well as their outstanding mechanical, thermal, and electrical properties. In this work, GO was incorporated into phenol formaldehyde (PF resin by in situ polymerization. The morphologies and structures of GO sheets were characterized by FTIR, XRD, and AFM methods. The structure and properties of the GO/PF nanocomposites were characterized using FTIR, XRD, DSC, and TGA methods. Effects of GO content, reactive conditions, and blending methods on the structure and properties of GO/PF nanocomposites were studied. It was found that due to the well dispersion of GO sheets in polymer matrix and the strong interfacial interaction between the GO sheets and PF matrix, the thermal stability and thermal mechanical properties of the GO/PF nanocomposites were greatly enhanced.

  14. Different effectiveness of two pastas supplemented with either lipophilic or hydrophilic/phenolic antioxidants in affecting serum as evaluated by the novel Antioxidant/Oxidant Balance approach.

    Science.gov (United States)

    Laus, Maura N; Soccio, Mario; Alfarano, Michela; Pasqualone, Antonella; Lenucci, Marcello S; Di Miceli, Giuseppe; Pastore, Donato

    2017-04-15

    Effectiveness in improving serum antioxidant status of two functional pastas was evaluated by the novel Antioxidant/Oxidant Balance (AOB) parameter, calculated as Antioxidant Capacity (AC)/Peroxide Level ratio, assessed here for the first time. In particular, Bran Oleoresin (BO) and Bran Water (BW) pastas, enriched respectively with either lipophilic (tocochromanols, carotenoids) or hydrophilic/phenolic antioxidants extracted from durum wheat bran, were studied. Notably, BO pasta was able to improve significantly (+65%) serum AOB during four hours after intake similarly to Lisosan G, a wheat antioxidant-rich dietary supplement. Contrarily, BW pasta had oxidative effect on serum so as conventional pasta and glucose, thus suggesting greater effectiveness of lipophilic than hydrophilic/phenolic antioxidants under our experimental conditions. Interestingly, no clear differences between the two pastas were observed, when AC measurements of either serum after pasta intake or pasta extracts by in vitro assays were considered, thus strengthening effectiveness and reliability of AOB approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Phenolic compounds of green tea: Health benefits and technological application in food

    Directory of Open Access Journals (Sweden)

    José Manuel Lorenzo

    2016-08-01

    Full Text Available Green tea has been an important beverage for humans since ancient times, widely consumed and considered to have health benefits by traditional medicine in Asian countries. Green tea phenolic compounds are predominately composed of catechin derivatives, although other compounds such as flavonols and phenolic acids are also present in lower proportion. The bioactivity exerted by these compounds has been associated with reduced risk of severe illnesses such as cancer, cardiovascular and neurodegenerative diseases. Particularly, epigallocatechin gallate has been implicated in alteration mechanisms with protective effect in these diseases as indicated by several studies about the effect of green tea consumption and mechanistic explanation through in vitro and in vivo experiments. The biological activity of green tea phenolic compounds also promotes a protective effect by antioxidant mechanisms in biological and food systems, preventing the oxidative damage by acting over either precursors or reactive species. Extraction of phenolic compounds influences the antioxidant activity and promotes adequate separation from green tea leaves to enhance the yield and/or antioxidant activity. Application of green tea phenolic compounds is of great interest because the antioxidant status of the products is enhanced and provides the product with additional antioxidant activity or reduces the undesirable changes of oxidative reactions while processing or storing food. In this scenario, meat and meat products are greatly influenced by oxidative deterioration and microbial spoilage, leading to reduced shelf life. Green tea extracts rich in phenolic compounds have been applied to increase shelf life with comparable effect to synthetic compounds, commonly used by food industry. Green tea has great importance in general health in technological application, however more studies are necessary to elucidate the impact in pathways related to other diseases and food

  16. Kinetic model describing the UV/H2O2 photodegradation of phenol from water

    Directory of Open Access Journals (Sweden)

    Rubio-Clemente Ainhoa

    2017-01-01

    Full Text Available A kinetic model for phenol transformation through the UV/H2O2 system was developed and validated. The model includes the pollutant decomposition by direct photolysis and HO•, HO2• and O2 •- oxidation. HO• scavenging effects of CO3 2-, HCO3 -, SO4 2- and Cl- were also considered, as well as the pH changes as the process proceeds. Additionally, the detrimental action of the organic matter and reaction intermediates in shielding UV and quenching HO• was incorporated. It was observed that the model can accurately predict phenol abatement using different H2O2/phenol mass ratios (495, 228 and 125, obtaining an optimal H2O2/phenol ratio of 125, leading to a phenol removal higher than 95% after 40 min of treatment, where the main oxidation species was HO•. The developed model could be relevant for calculating the optimal level of H2O2 efficiently degrading the pollutant of interest, allowing saving in costs and time.

  17. Are colorimetric assays appropriate for measuring phenol oxidase activity in peat soils?

    Science.gov (United States)

    Magdalena M. Wiedermann; Evan S. Kane; Timothy J. Veverica; Erik A. Lilleskov

    2017-01-01

    The activity of extracellular phenol oxidases is believed to play a critical role in decomposition processes in peatlands. The water logged, acidic conditions, and recalcitrant litter from the peatland vegetation, lead to exceptionally high phenolics in the peat. In order to quantify the activity of oxidative enzymes involved in the modification and break down of...

  18. Experimental and theoretical binding affinity between polyvinylpolypyrrolidone and selected phenolic compounds from food matrices.

    Science.gov (United States)

    Durán-Lara, Esteban F; López-Cortés, Xaviera A; Castro, Ricardo I; Avila-Salas, Fabián; González-Nilo, Fernando D; Laurie, V Felipe; Santos, Leonardo S

    2015-02-01

    Polyvinylpolypyrrolidone (PVPP) is a fining agent, widely used in winemaking and brewing, whose mode of action in removing phenolic compounds has not been fully characterised. The aim of this study was to evaluate the experimental and theoretical binding affinity of PVPP towards six phenolic compounds representing different types of phenolic species. The interaction between PVPP and phenolics was evaluated in model solutions, where hydroxyl groups, hydrophobic bonding and steric hindrance were characterised. The results of the study indicated that PVPP exhibits high affinity for quercetin and catechin, moderate affinity for epicatechin, gallic acid and lower affinity for 4-methylcatechol and caffeic acid. The affinity has a direct correlation with the hydroxylation degree of each compound. The results show that the affinity of PVPP towards phenols is related with frontier orbitals. This work demonstrates a direct correlation between the experimental affinity and the interaction energy calculations obtained through computational chemistry methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Yttrium Nitrate mediated Nitration of Phenols at room temperature in ...

    Indian Academy of Sciences (India)

    The described method is selective for phenols. ... the significant cause of post translational modification that can ... decades, significant attention was paid on nitration of phenols to .... Progress of the reaction can be noted visually. Yttrium.

  20. Protective effects of rambutan (Nephelium lappaceum) peel phenolics on H2O2-induced oxidative damages in HepG2 cells and d-galactose-induced aging mice.

    Science.gov (United States)

    Zhuang, Yongliang; Ma, Qingyu; Guo, Yan; Sun, Liping

    2017-10-01

    Rambutan peel phenolic (RPP) extracts were prepared via dynamic separation with macroporous resin. The total phenolic content and individual phenolics in RPP were determined. Results showed that the total phenolic content of RPP was 877.11 mg gallic acid equivalents (GAE)/g extract. The content of geranin (122.18 mg/g extract) was the highest among those of the 39 identified phenolic compounds. RPP protected against oxidative stress in H 2 O 2 -induced HepG2 cells in a dose-response manner. The inhibitory effects of RPP on cell apoptosis might be related to its inhibitory effects on the generation of intracellular reactive oxygen species and increased effects on superoxide dismutase activity. The in vivo anti-aging activity of RPP was evaluated using an aging mice model that was induced by d-galactose (d-gal). The results showed that RPP enhanced the antioxidative status of experimental mice. Moreover, histological analysis indicated that RPP effectively reduced d-gal-induced liver and kidney tissue damage in a dose-dependent manner. Therefore, RPP can be used as a natural antioxidant and anti-aging agent in the pharmaceutical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Selection of optimum ionic liquid solvents for flavonoid and phenolic acids extraction

    Science.gov (United States)

    Rahman, N. R. A.; Yunus, N. A.; Mustaffa, A. A.

    2017-06-01

    Phytochemicals are important in improving human health with their functions as antioxidants, antimicrobials and anticancer agents. However, the quality of phytochemicals extract relies on the efficiency of extraction process. Ionic liquids (ILs) have become a research phenomenal as extraction solvent due to their unique properties such as unlimited range of ILs, non-volatile, strongly solvating and may become either polarity. In phytochemical extraction, the determination of the best solvent that can extract highest yield of solute (phytochemical) is very important. Therefore, this study is conducted to determine the best IL solvent to extract flavonoids and phenolic acids through a property prediction modeling approach. ILs were selected from the imidazolium-based anion for alkyl chains ranging from ethyl > octyl and cations consisting of Br, Cl, [PF6], BF4], [H2PO4], [SO4], [CF3SO3], [TF2N] and [HSO4]. This work are divided into several stages. In Stage 1, a Microsoft Excel-based database containing available solubility parameter values of phytochemicals and ILs including its prediction models and their parameters has been established. The database also includes available solubility data of phytochemicals in IL, and activity coefficient models, for solid-liquid phase equilibrium (SLE) calculations. In Stage 2, the solubility parameter values of the flavonoids (e.g. kaempferol, quercetin and myricetin) and phenolic acids (e.g. gallic acid and caffeic acid) are determined either directly from database or predicted using Stefanis and Marrero-Gani group contribution model for the phytochemicals. A cation-anion contribution model is used for IL. In Stage 3, the amount of phytochemicals extracted can be determined by using SLE relationship involving UNIFAC-IL model. For missing parameters (UNIFAC-IL), they are regressed using available solubility data. Finally, in Stage 4, the solvent candidates are ranked and five ILs, ([OMIM] [TF2N], [HeMIM] [TF2N], [HMIM] [TF2N

  2. Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins

    Directory of Open Access Journals (Sweden)

    Aslı Neslihan Avan

    2016-08-01

    Full Text Available Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET-based total antioxidant capacity (TAC assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC, and ferric reducing antioxidant power (FRAP, were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol and (phenol + protein mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II compounds were added to stabilize the thiol components in the form of Hg(II-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols mixtures.

  3. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates...... sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively....

  4. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    Science.gov (United States)

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.

  5. Purification of bioactive phenolics from Phanerochaete chysosporium biomass extract on selected macroporous resins

    Science.gov (United States)

    Idris, Z. M.; Dzahir, M. I. H. M.; Jamal, P.; Barkat, A. A.; Xian, R. L. W.

    2017-06-01

    In this study, two different types of macroporous resins known as XAD-7HP and HP-20 were evaluated for the adsorption and desorption properties against bioactive phenolics extracted from Phanerochaete chrysosporium. From the previous static sorption studies, it was found that the adsorption capacity for both resins had has no significant difference. Then, the kinetic adsorption data were analyzed with both pseudo-first-order and pseudo-second-order equations and the later performed better. The adsorption isotherm data were fitted well by both Langmuir and Freundlich models. Meanwhile in desorption study, HP-20 and XAD-7HP gave 90.52% and 88.28% recoveries, respectively. Considering the desorption results of the macroporous resins, HP-20 and XAD-7HP were packed in chromatography column to further purify the phenolics. For dynamic adsorption, breakthrough capacity of HP-20 (0.522) was found to be higher than XAD-7HP (0.131). Different ethanol concentrations (30% to 50% (v/v)) were investigated at fixed flowrate (1 ml/min) on phenolics recovery from both types of resins. The highest recovery of bioactive phenolics was 94.3% using XAD-7HP resins at 50% (v/v) of ethanol. Only 77.1% of bioactive phenolics were recovered using HP-20 resin at the same experimental conditions. The purified extract subsequently was analyzed using HPLC. The results showed that three phenolics (gallic acid 3,4-dihydroxybenzoic acid and 4-hydroxybenzoic acid) were identified with higher concentrations as compared to non-purified extract. Finally, the purified extract was tested for scavenging activity against DPPH, and it showed that the activity increased significantly to 90.80% from 59.94% in non-purified extract.

  6. Evolution of Near-Surface Internal and External Oxide Morphology During High-Temperature Selective Oxidation of Steels

    Science.gov (United States)

    Story, Mary E.; Webler, Bryan A.

    2018-05-01

    In this work we examine some observations made using high-temperature confocal scanning laser microscopy (HT-CSLM) during selective oxidation experiments. A plain carbon steel and advanced high-strength steel (AHSS) were selectively oxidized at high temperature (850-900°C) in either low oxygen or water vapor atmospheres. Surface evolution, including thermal grooving along grain boundaries and oxide growth, was viewed in situ during heating. Experiments investigated the influence of the microstructure and oxidizing atmosphere on selective oxidation behavior. Sequences of CSLM still frames collected during the experiment were processed with ImageJ to obtain histograms that showed a general darkening trend indicative of oxidation over time with all samples. Additional ex situ scanning electron microscopy and energy dispersive spectroscopy analysis supported in situ observations. Distinct oxidation behavior was observed for each case. Segregation, grain orientation, and extent of internal oxidation were all found to strongly influence surface evolution.

  7. Photo-assisted Fenton type processes for the degradation of phenol: A kinetic study

    International Nuclear Information System (INIS)

    Kusic, Hrvoje; Koprivanac, Natalija; Bozic, Ana Loncaric; Selanec, Iva

    2006-01-01

    In this study the application of advanced oxidation processes (AOPs), dark Fenton and photo-assisted Fenton type processes; Fe 2+ /H 2 O 2 , Fe 3+ /H 2 O 2 , Fe 0 /H 2 O 2 , UV/Fe 2+ /H 2 O 2 , UV/Fe 3+ /H 2 O 2 and UV/Fe 0 /H 2 O 2 , for degradation of phenol as a model organic pollutant in the wastewater was investigated. A detail kinetic modeling which describes the degradation of phenol was performed. Mathematical models which predict phenol decomposition and formation of primary oxidation by-products: catechol, hydroquinone and benzoquinone, by applied processes were developed. The study also consist the modeling of mineralization kinetic of the phenol solution by applied AOPs. This part, besides well known reactions of Fenton and photo-Fenton chemistry, involves additional reactions which describe removal of iron from catalytic cycle through formation of ferric complexes and its regeneration induced by UV radiation. Phenol decomposition kinetic was monitored by HPLC analysis and total organic carbon content measurements (TOC). Complete phenol removal was obtained by all applied processes. Residual TOC by applied Fenton type processes ranged between 60.2 and 44.7%, while the efficiency of those processes was significantly enhanced in the presence of UV light, where residual TOC ranged between 15.2 and 2.4%

  8. Comparative Analysis of Phenolic Content and Anti oxidative Activities of Eight Malaysian Traditional Vegetables

    International Nuclear Information System (INIS)

    Nur Huda-Faujan; Zulaikha Abdul Rahim; Maryam Mohamed Rehan; Faujan Ahmad

    2015-01-01

    Vegetables have been believed to exhibit antioxidant activities due to its phenolic content. Thus, this study was carried out to determine the total phenolic content of water and ethanolic extracts of Malaysian traditional vegetables and assess their antioxidant activities. Eight samples of Malaysian traditional vegetables were dried and extracted its phenolic compounds using water and ethanolic solvent. Total phenolic content of the extracts were compared and evaluated using Folin-Ciocalteu and Prussian Blue reagent. The antioxidant activity were assessed using ferric thiocyanate assay and DPPH free radical scavenging assays. Results found that total phenolic content of water extracts ranged from 7.08 to 14.76 mg GAE (Folin-Ciocalteu assay) and 3.50 to 7.82 mg GAE (Prussian Blue assay). However, the content of phenolic of ethanolic extracts ranged from 5.21 to 15.86 mg GAE (Folin-Ciocalteu assay), and 1.84 to 11.54 mg GAE (Prussian Blue assay). The highest antioxidant activity was observed in water extracts of Etlingera elatior (75.6 %) and ethanolic extracts of Sauropus androgynus (78.1 %). Results also found that the best half maximal inhibitory concentration or IC 50 were demonstrated by water and ethanolic extracts of Sauropus androgynus which demonstrated 0.077 mg/mL and 0.078 mg/ mL, respectively. Hence, this study obtained that most of the Malaysian traditional vegetables have a potential source of natural antioxidant. (author)

  9. Mycobacterial Phenolic Glycolipids Selectively Disable TRIF-Dependent TLR4 Signaling in Macrophages

    Directory of Open Access Journals (Sweden)

    Reid Oldenburg

    2018-01-01

    Full Text Available Phenolic glycolipids (PGLs are cell wall components of a subset of pathogenic mycobacteria, with immunomodulatory properties. Here, we show that in addition, PGLs exert antibactericidal activity by limiting the production of nitric oxide synthase (iNOS in mycobacteria-infected macrophages. PGL-mediated downregulation of iNOS was complement receptor 3-dependent and comparably induced by bacterial and purified PGLs. Using Mycobacterium leprae PGL-1 as a model, we found that PGLs dampen the toll-like receptor (TLR4 signaling pathway, with macrophage exposure to PGLs leading to significant reduction in TIR-domain-containing adapter-inducing interferon-β (TRIF protein level. PGL-driven decrease in TRIF operated posttranscriptionally and independently of Src-family tyrosine kinases, lysosomal and proteasomal degradation. It resulted in the defective production of TRIF-dependent IFN-β and CXCL10 in TLR4-stimulated macrophages, in addition to iNOS. Our results unravel a mechanism by which PGLs hijack both the bactericidal and inflammatory responses of host macrophages. Moreover, they identify TRIF as a critical node in the crosstalk between CR3 and TLR4.

  10. Phenolic content and anti-hyperglycemic activity of pecan cultivars from Egypt.

    Science.gov (United States)

    El Hawary, Seham S; Saad, Soumaya; El Halawany, Ali Mahmoud; Ali, Zeinab Y; El Bishbishy, Mahitab

    2016-01-01

    Pecans are commonly used nuts with important health benefits such as anti-hyperglycemic and anti-hyperlipidemic effects. A comparative investigation of the antihyperglycemic and total phenolic content of the leaves and shells of four pecan cultivars growing in Egypt was carried out. The selected cultivars (cv.) were Carya illinoinensis Wangneh. K. Koch. cv. Wichita, cv. WesternSchely, cv. Cherokee, and cv. Sioux family Juglandaceae. Total phenolic and flavonoid contents of the leaves and shells of pecan cultivars were carried out using Folin-Ciocalteu's and aluminum chloride assays, respectively. Moreover, HPLC profiling of phenolic and flavonoid contents was carried out using RP-HPLC-UV. In addition, in vivo anti-hyperglycemic activity of the ethanolic extracts (125 mg/kg bw, p.o.) of C. illinoinensis cultivars was carried out using streptozotocin (STZ)-induced diabetes in Sprague-Dawley rats for 4 weeks. Phenolic contents were higher in shells than leaves in all studied cultivars, while flavonoids were higher in leaves. Leaves and shells of cv. Sioux showed the highest phenolics (251.7 µg gallic acid equivalent (GAE)/g), and flavonoid contents (103.27 µg rutin equivalent (RE)/g and 210.67 µg quercetin equivalent (QE)/g), respectively. The HPLC profiling of C. illinoinensis cultivars resulted in the identification of eight flavonoids (five of these compounds are identified for the first time from pecan), and 15 phenolic acids (six are identified for the first time from pecan). Leaves of cv. Sioux revealed the most potent decrease in blood glucose and glycated hemoglobin (HbA1c%) (194.9 mg/dl and 6.52%, respectively), among other tested cultivars. Moreover, leaves of cv. Sioux significantly elevated serum total antioxidant capacity (TAC) and reduced glutathione (GSH) (0.33 mMol/l and 30.68 mg/dl, respectively), and significantly suppressed the markers of both lipid peroxidation (malondialdehyde, MDA) and protein oxidation (protein carbonyl, PC

  11. Continuous phenol removal using Nocardia hydrocarbonoxydans in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-18

    Feb 18, 2009 ... be removed from waste stream before discharge. Biodegradation of phenol is a widely used method as it is economical and easy to operate as compared to chemi- cal, physical, electrochemical or advanced oxidation process. Attached growth processes have advantage of retain- ing more biomass in the ...

  12. Simulation of the selective oxidation process of semiconductors

    International Nuclear Information System (INIS)

    Chahoud, M.

    2012-01-01

    A new approach to simulate the selective oxidation of semiconductors is presented. This approach is based on the so-called b lack box simulation method . This method is usually used to simulate complex processes. The chemical and physical details within the process are not considered. Only the input and output data of the process are relevant for the simulation. A virtual function linking the input and output data has to be found. In the case of selective oxidation the input data are the mask geometry and the oxidation duration whereas the output data are the oxidation thickness distribution. The virtual function is determined as four virtual diffusion processes between the masked und non-masked areas. Each process delivers one part of the oxidation profile. The method is applied successfully on the oxidation system silicon-silicon nitride (Si-Si 3 N 4 ). The fitting parameters are determined through comparison of experimental and simulation results two-dimensionally.(author)

  13. Catalytic Ozonation of Phenolic Wastewater: Identification and Toxicity of Intermediates

    Directory of Open Access Journals (Sweden)

    Mahdi Farzadkia

    2014-01-01

    Full Text Available A new strategy in catalytic ozonation removal method for degradation and detoxification of phenol from industrial wastewater was investigated. Magnetic carbon nanocomposite, as a novel catalyst, was synthesized and then used in the catalytic ozonation process (COP and the effects of operational conditions such as initial pH, reaction time, and initial concentration of phenol on the degradation efficiency and the toxicity assay have been investigated. The results showed that the highest catalytic potential was achieved at optimal neutral pH and the removal efficiency of phenol and COD is 98.5% and 69.8%, respectively. First-order modeling demonstrated that the reactions were dependent on the initial concentration of phenol, with kinetic constants varying from 0.038 min−1  ([phenol]o = 1500 mg/L to 1.273 min−1 ([phenol]o = 50 mg/L. Bioassay analysis showed that phenol was highly toxic to Daphnia magna (LC50 96 h=5.6 mg/L. Comparison of toxicity units (TU of row wastewater (36.01 and the treated effluent showed that TU value, after slightly increasing in the first steps of ozonation for construction of more toxic intermediates, severely reduced at the end of reaction (2.23. Thus, COP was able to effectively remove the toxicity of intermediates which were formed during the chemical oxidation of phenolic wastewaters.

  14. Ionic Liquids in Selective Oxidation: Catalysts and Solvents.

    Science.gov (United States)

    Dai, Chengna; Zhang, Jie; Huang, Chongpin; Lei, Zhigang

    2017-05-24

    Selective oxidation has an important role in environmental and green chemistry (e.g., oxidative desulfurization of fuels and oxidative removal of mercury) as well as chemicals and intermediates chemistry to obtain high-value-added special products (e.g., organic sulfoxides and sulfones, aldehydes, ketones, carboxylic acids, epoxides, esters, and lactones). Due to their unique physical properties such as the nonvolatility, thermal stability, nonexplosion, high polarity, and temperature-dependent miscibility with water, ionic liquids (ILs) have attracted considerable attention as reaction solvents and media for selective oxidations and are considered as green alternatives to volatile organic solvents. Moreover, for easy separation and recyclable utilization, IL catalysts have attracted unprecedented attention as "biphasic catalyst" or "immobilized catalyst" by immobilizing metal- or nonmetal-containing ILs onto mineral or polymer supports to combine the unique properties of ILs (chemical and thermal stability, capacity for extraction of polar substrates and reaction products) with the extended surface of the supports. This review highlights the most recent outcomes on ILs in several important typical oxidation reactions. The contents are arranged in the series of oxidation of sulfides, oxidation of alcohols, epoxidation of alkenes, Baeyer-Villiger oxidation reaction, oxidation of alkanes, and oxidation of other compounds step by step involving ILs as solvents, catalysts, reagents, or their combinations.

  15. Theoretical and Kinetic Tools for Selecting Effective Antioxidants: Application to the Protection of Omega-3 Oils with Natural and Synthetic Phenols

    Directory of Open Access Journals (Sweden)

    Romain Guitard

    2016-07-01

    Full Text Available Radical-scavenging antioxidants play crucial roles in the protection of unsaturated oils against autoxidation and, especially, edible oils rich in omega-3 because of their high sensitivity to oxygen. Two complementary tools are employed to select, among a large set of natural and synthetic phenols, the most promising antioxidants. On the one hand, density functional theory (DFT calculations provide bond dissociation enthalpies (BDEs of 70 natural (i.e., tocopherols, hydroxybenzoic and cinnamic acids, flavonoids, stilbenes, lignans, and coumarins and synthetic (i.e., 2,6-di-tert-butyl-4-methylphenol (BHT, 3-tert-butyl-4-hydroxyanisol (BHA, and tert-butylhydroquinone (TBHQ phenols. These BDEs are discussed on the basis of structure–activity relationships with regard to their potential antioxidant activities. On the other hand, the kinetic rate constants and number of hydrogen atoms released per phenol molecule are measured by monitoring the reaction of phenols with 2,2-diphenyl-1-picrylhydrazyl (DPPH• radical. The comparison of the results obtained with these two complementary methods allows highlighting the most promising antioxidants. Finally, the antioxidant effectiveness of the best candidates is assessed by following the absorption of oxygen by methyl esters of linseed oil containing 0.5 mmol L−1 of antioxidant and warmed at 90 °C under oxygen atmosphere. Under these conditions, some natural phenols namely epigallocatechin gallate, myricetin, rosmarinic and carnosic acids were found to be more effective antioxidants than α-tocopherol.

  16. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components

    Directory of Open Access Journals (Sweden)

    Hong Xie

    2018-01-01

    Full Text Available Tibetan tea (Kangzhuan is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea (LATT was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+-catechin, (−-catechin gallate (CG, (−-epicatechin gallate (ECG, and (−-epigallocatechin gallate. Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO• scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG. Gallic acid and the four catechins were also suggested to chelate Fe2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC−ESI−Q−TOF−MS/MS analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts. In a flow cytometry assay, (+-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H+-transfer, and Fe2+-chelating pathways to exhibit

  17. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components.

    Science.gov (United States)

    Xie, Hong; Li, Xican; Ren, Zhenxing; Qiu, Weimin; Chen, Jianlan; Jiang, Qian; Chen, Ban; Chen, Dongfeng

    2018-01-24

    Tibetan tea (Kangzhuan) is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea ( LATT ) was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+)-catechin, (-)-catechin gallate ( CG ), (-)-epicatechin gallate ( ECG ), and (-)-epigallocatechin gallate). Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•) scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG . Gallic acid and the four catechins were also suggested to chelate Fe 2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF) products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts). In a flow cytometry assay, (+)-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H⁺-transfer, and Fe 2+ -chelating pathways to exhibit antioxidative or

  18. Temperature Dependent Electrical Transport in Al/Poly(4-vinyl phenol/p-GaAs Metal-Oxide-Semiconductor by Sol-Gel Spin Coating Method

    Directory of Open Access Journals (Sweden)

    Şadan Özden

    2016-01-01

    Full Text Available Deposition of poly(4-vinyl phenol insulator layer is carried out by applying the spin coating technique onto p-type GaAs substrate so as to create Al/poly(4-vinyl phenol/p-GaAs metal-oxide-semiconductor (MOS structure. Temperature was set to 80–320 K while the current-voltage (I-V characteristics of the structure were examined in the study. Ideality factor (n and barrier height (ϕb values found in the experiment ranged from 3.13 and 0.616 eV (320 K to 11.56 and 0.147 eV (80 K. Comparing the thermionic field emission theory and thermionic emission theory, the temperature dependent ideality factor behavior displayed that thermionic field emission theory is more valid than the latter. The calculated tunneling energy was 96 meV.

  19. Nitroxide-catalyzed selective oxidation of alcohols and polysaccharides

    International Nuclear Information System (INIS)

    Ponedel'kina, I Yu; Khaibrakhmanova, E A; Odinokov, Viktor N

    2010-01-01

    The use of nitroxide radicals in the selective oxidation of alcohols is considered. Attention is focused on the oxidation of polysaccharides as a method of preparation of polyuronic acids, aldehydes and hemiacetals.

  20. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  1. Phenolic extract of Dialium guineense pulp enhances reactive oxygen species detoxification in aflatoxin B₁ hepatocarcinogenesis.

    Science.gov (United States)

    Adeleye, Abdulwasiu O; Ajiboye, Taofeek O; Iliasu, Ganiyat A; Abdussalam, Folakemi A; Balogun, Abdulazeez; Ojewuyi, Oluwayemisi B; Yakubu, Musa T

    2014-08-01

    This study investigated the effect of Dialium guineense pulp phenolic extract on aflatoxin B1 (AFB1)-induced oxidative imbalance in rat liver. Reactive oxygen species (ROS) scavenging potentials of free and bound phenolic extract of D. guineense (0.2-1.0 mg/mL) were investigated in vitro using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide ion (O2(-)), hydrogen peroxide (H2O2), hydroxyl radical, and ferric ion reducing system. In the in vivo study, 35 animals were randomized into seven groups of five rats each. Free and bound phenolic extract (1 mg/mL) produced 66.42% and 93.08%, 57.1% and 86.0%, 62.0% and 90.05%, and 60.11% and 72.37% scavenging effect on DPPH radical, O2(-) radical, H2O2, and hydroxyl radical, while ferric ion was significantly reduced. An AFB1-mediated decrease in the activities of ROS detoxifying enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose 6 phosphate dehydrogenase) was significantly attenuated (P<.05). AFB1-mediated elevation in the concentrations of oxidative stress biomarkers; malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl, and percentage DNA fragmentation were significantly lowered by D. guineense phenolic extract (P<.05). Overall, the in vitro and in vivo effects suggest that D. guineense phenolic extract elicited ROS scavenging and detoxification potentials, as well as the capability of preventing lipid peroxidation, protein oxidation, and DNA fragmentation.

  2. Antioxidant activities of aqueous extract from Stevia rebaudiana stem waste to inhibit fish oil oxidation and identification of its phenolic compounds.

    Science.gov (United States)

    Yu, Hui; Yang, Gangqiang; Sato, Minoru; Yamaguchi, Toshiyasu; Nakano, Toshiki; Xi, Yinci

    2017-10-01

    We investigated the potential for exploiting Stevia rebaudiana stem (SRS) waste as a source of edible plant-based antioxidants finding for the first time that the hot water extract of SRS had significantly higher antioxidant activity against fish oil oxidation than that of the leaf, despite SRS extract having lower total phenolic content, DPPH radical scavenging activity and ORAC values. To locate the major antioxidant ingredients, SRS extract was fractionated using liquid chromatography. Five phenolic compounds (primary antioxidant components in activity-containing fractions) were identified by NMR and HR-ESI-MS: vanillic acid 4-O-β-d-glucopyranoside (1), protocatechuic acid (2), caffeic acid (3), chlorogenic acid (4) and cryptochlorogenic acid (5). Further analysis showed that, among compounds 2-5, protocatechuic acid had the highest capacity to inhibit peroxides formation, but exhibited the lowest antioxidant activities in DPPH and ORAC assays. These results indicate that SRS waste can be used as strong natural antioxidant materials in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Altering the phenolics profile of a green tea leaves extract using exogenous oxidases

    NARCIS (Netherlands)

    Verloop, A.J.W.; Gruppen, H.; Bisschop, Robbin; Vincken, Jean Paul

    2016-01-01

    Transformation from green tea leaves into black tea involves oxidation of catechins into theaflavins and other complex phenolics by endogenous enzymes in tea leaves. By employing tyrosinase and laccase, both from Agaricus bisporus, on green tea catechins, the oxidation process was directed

  4. HPLC PROFILING OF PHENOLIC ACIDS AND FLAVONOIDS AND EVALUATION OF ANTI-LIPOXYGENASE AND ANTIOXIDANT ACTIVITIES OF AQUATIC VEGETABLE LIMNOCHARIS FLAVA.

    Science.gov (United States)

    Ooh, Keng-fei; Ong, Hean-Chooi; Wong, Fai-Chu; Chai, Tsun-Thai

    2015-01-01

    Limnocharis flava is an edible wetland plant, whose phenolic acid and flavonoid compositions as well as bioactivities were underexplored. This study analyzed the profiles of selected hydroxybenzoic acids, hydroxycinnamic acids and flavonoids in the aqueous extracts of L. flava leaf, rhizome and root by high performance liquid chromatography (HPLC). Anti-lipoxygenase and antioxidant (iron chelating, 2,2-diphenyl-l-picrylhydrazyl (DPPH) radical scavenging, and nitric oxide (NO) scavenging) activities of the extracts were also evaluated. Leaf extract had the highest phenolic contents, being most abundant in p-hydroxybenzoic acid (3861.2 nmol/g dry matter), ferulic acid (648.8 nmol/g dry matter), and rutin (4110.7 nmol/g dry matter). Leaf extract exhibited the strongest anti-lipoxygenase (EC50 6.47 mg/mL), iron chelating (EC50 6.65 mg/mL), DPPH scavenging (EC50 15.82 mg/mL) and NO scavenging (EC50 3.80 mg/mL) activities. Leaf extract also had the highest ferric reducing ability. This is the most extensive HPLC profiling of phenolic acids and flavonoids in L.flava to date. In conclusion, L. flava leaf is a source of health-promoting phenolics, anti-lipoxygenase agents and antioxidants.

  5. Electrochemical detection of phenolic estrogenic compounds at clay modified carbon paste electrode

    Science.gov (United States)

    Belkamssa, N.; Ouattara, L.; Kawachi, A.; Tsujimura, M.; Isoda, H.; Chtaini, A.; Ksibi, M.

    2015-04-01

    A simple and sensitive electroanalytical method was developed to determine the Endocrine Disrupting chemical 4-tert-octylphenol on clay modified carbon paste electrode (Clay/CPE). The electrochemical response of the proposed electrode was studied by means of cyclic and square wave voltammetry. It has found that the oxidation of 4-tert-octylphenol on the clay/CPE displayed a well-defined oxidation peak. Under these optimal conditions, a linear relation between concentrations of 4-tert-octylphenol current response was obtained over range of 7.26×10-6 to 3.87×10-7 with a detection and quantification limit of 9.2×10-7 M and 3.06×10-6 M, respectively. The correlation coefficient is 0.9963. The modified electrode showed suitable sensitivity, high stability and an accurate detection of 4-tert-octylphenol. The modified electrode also relevant suitable selectivity for various phenolic estrogenic compounds.

  6. Antioxidant Capacity of Selected Plant Extracts and Their Essential Oils

    Directory of Open Access Journals (Sweden)

    Charalampos Proestos

    2013-01-01

    Full Text Available The main objective of this study was the screening of some selected aromatic plants very popular in Greece, with respect to their total phenolic content, antioxidant capacity, reducing activity, and oxidative stability. All plants were extracted with the conventional method, reflux with methanol. The essential oils of the plants were also analyzed for their antioxidant properties. The total phenolic content was determined by the Folin-Ciocalteu method using gallic acid as the standard, while the phenolic substances were identified and quantified by High Performance Liquid Chromatography (HPLC coupled with a multi-wavelength ultraviolet-visible (UV-vis detector. The antioxidant capacity of the plant extracts was measured by their ability to scavenge free radicals such as (a DPPH (2,2-diphenyl-1-picrylhydrazyl and, (b ABTS (2,2′-azinobis-(3-ethylbenzothiaziline-6- sulfonate. The Folin-Ciocalteu method proved the existence of antioxidants in the aromatic plant extracts. Taking into account the results of the DPPH and ABTS methods, the free radical scavenging capacity was confirmed. Eventually, all plants exhibited low but noticeable protection levels against lipid oxidation, as determined by the Rancimat test.

  7. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater

    KAUST Repository

    Duan, Xiaonan

    2014-02-20

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater

    KAUST Repository

    Duan, Xiaonan; Corgié , Sté phane C.; Aneshansley, Daniel J.; Wang, Peng; Walker, Larry P.; Giannelis, Emmanuel P.

    2014-01-01

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Catalytic removal of phenol from gas streams by perovskite-type catalysts.

    Science.gov (United States)

    Chen, Dai Ling; Pan, Kuan Lun; Chang, Moo Been

    2017-06-01

    Three perovskite-type catalysts prepared by citric acid method are applied to remove phenol from gas streams with the total flow rate of 300mL/min, corresponding to a GHSV of 10,000/hr. LaMnO 3 catalyst is first prepared and further partially substituted with Sr and Cu to prepare La 0.8 Sr 0.2 MnO 3 and La 0.8 Sr 0.2 Mn 0.8 Cu 0.2 O 3 , and catalytic activities and fundamental characteristics of these three catalysts are compared. The results show that phenol removal efficiency achieved with La 0.8 Sr 0.2 Mn 0.8 Cu 0.2 O 3 reaches 100% with the operating temperature of 200°C and the rate of mineralization at 300°C is up to 100%, while the phenol removal efficiencies achieved with La 0.8 Sr 0.2 MnO 3 and LaMnO 3 are up to 100% with the operating temperature of 300°C and 400°C, respectively. X-ray photoelectron spectroscopy (XPS) analysis shows that the addition of Sr and Cu increases the lattice oxygen of La 0.8 Sr 0.2 Mn 0.8 Cu 0.2 O 3 , and further increases mobility or availability of lattice oxygen. The results indicate that La 0.8 Sr 0.2 Mn 0.8 Cu 0.2 O 3 has the best activity for phenol removal among three catalysts prepared and the catalytic activity of phenol oxidation is enhanced by the introduction of Sr and Cu into LaMnO 3 . Apparent activation energy of 48kJ/mol is calculated by Mars-Van Krevelen Model for phenol oxidation with La 0.8 Sr 0.2 Mn 0.8 Cu 0.2 O 3 as catalyst. Copyright © 2016. Published by Elsevier B.V.

  10. Chemoselective C-benzoylation of phenols by using AlCl3 under ...

    African Journals Online (AJOL)

    Substituted phenols were chemo-selectively reacted with benzoylchloride in presence of aluminum chloride under solvent-free condition to afford the corresponding 2'-hydroxy aryl benzophenones in excellent yields (72-96%). Naphthol benzoylation resulted in lower yields as compared to phenols. Both reactions ...

  11. Study of phenol extraction from coke-chemical sources

    Energy Technology Data Exchange (ETDEWEB)

    Catana, E.; Mateescu, I.; Giurcaneanu, V.; Bota, T.

    1990-09-01

    The paper presents an experimental study of the phase equilibrium in the coke-chemical tarphenols-solvent system (NaOH) solution and (phenolate solution) implied in the extraction of the phenols from coke-chemical sources. The possibility of using the phenolate solution as an extraction agent, thus making possible the improvement of the specific consumption and also simplifying the problem of the corrosion and of the waste water at the same time is presented. The influence of the solvent tar mass ratio on the selectivity of the process is discussed, this criterion being considered for establishing the conditions of the extraction. 2 figs., 7 tabs., 13 refs.

  12. Phenol degradation in aqueous solution by photolytic oxidation with ozone and/or hydrogen peroxide

    International Nuclear Information System (INIS)

    Koepp, T.; Koether, M.; Brueckner, B.; Radeke, K.H.

    1993-01-01

    The removal of phenol in an aqueous solution as a typical pollutant by oxidation using ozone and hydrogen peroxide under ultraviolet irradiation has been studied. Both the O 3 /UV and the H 2 O 2 /UV method can be powerful to decompose the total organic carbon (TOC) to carbon dioxide and water, but the first method is more effective. In the case of H 2 O 2 /UV method a strong overdose on H 2 O 2 is necessary to remove TOC effectively, however, a favourable H 2 O 2 concentration exists. This is probably caused by undesired parallel reactions of hydrogen peroxide. The simultaneous use of ozone and hydrogen peroxide accelerates the removal of TOC in the first third of experiment in comparison to the O 3 /UV method, but the time of total decomposition of TOC is delayed. A change in measured kinetics of ozone consumption by organic molecules corresponds well with the time of total transformation of aromatic into aliphatic substances. (orig.)

  13. Steam-blanched highbush blueberry (Vaccinium corymbosum L.) juice: phenolic profile and antioxidant capacity in relation to cultivar selection.

    Science.gov (United States)

    Brambilla, Ada; Lo Scalzo, Roberto; Bertolo, Gianni; Torreggiani, Danila

    2008-04-23

    High-quality standards in blueberry juice can be obtained only taking into account fruit compositional variability and its preservation along the processing chain. In this work, five highbush blueberry cultivars from the same environmental growing conditions were individually processed into juice after an initial blanching step and the influence was studied of the cultivar on juice phenolic content, distribution and relative antioxidant activity, measured as scavenging capacity on the artificial free-radical 2,2-diphenyl-1-picrylhydrazyl (DPPH*). A chromatographic protocol was developed to separate all main phenolic compounds in berries. A total of 15 glycosylated anthocyanins, catechin, galactoside, glucoside, and rhamnoside quercetin 3-derivatives, and main benzoic and cinnamic acids were identified. The total content and relative distribution in anthocyanins, chlorogenic acid, and quercetin of each juice were dependent upon cultivar, and the total content was highly correlated (rxy=0.97) to the antioxidant capacity. A selective protective effect of berry blanching in juice processing can be observed on more labile anthocyanin compounds.

  14. Caffeic acid, a phenol found in white wine, modulates endothelial nitric oxide production and protects from oxidative stress-associated endothelial cell injury.

    Directory of Open Access Journals (Sweden)

    Massimiliano Migliori

    Full Text Available Several studies demonstrated that endothelium dependent vasodilatation is impaired in cardiovascular and chronic kidney diseases because of oxidant stress-induced nitric oxide availability reduction. The Mediterranean diet, which is characterized by food containing phenols, was correlated with a reduced incidence of cardiovascular diseases and delayed progression toward end stage chronic renal failure. Previous studies demonstrated that both red and white wine exert cardioprotective effects. In particular, wine contains Caffeic acid (CAF, an active component with known antioxidant activities.The aim of the present study was to investigate the protective effect of low doses of CAF on oxidative stress-induced endothelial injury.CAF increased basal as well as acetylcholine-induced NO release by a mechanism independent from eNOS expression and phosphorylation. In addition, low doses of CAF (100 nM and 1 μM increased proliferation and angiogenesis and inhibited leukocyte adhesion and endothelial cell apoptosis induced by hypoxia or by the uremic toxins ADMA, p-cresyl sulfate and indoxyl sulfate. The biological effects exerted by CAF on endothelial cells may be at least in part ascribed to modulation of NO release and by decreased ROS production. In an experimental model of kidney ischemia-reperfusion injury in mice, CAF significantly decreased tubular cell apoptosis, intraluminal cast deposition and leukocyte infiltration.The results of the present study suggest that CAF, at very low dosages similar to those observed after moderate white wine consumption, may exert a protective effect on endothelial cell function by modulating NO release independently from eNOS expression and phosphorylation. CAF-induced NO modulation may limit cardiovascular and kidney disease progression associated with oxidative stress-mediated endothelial injury.

  15. Phenolic composition of selected herbal infusions and their anti-inflammatory effect on a colonic model in vitro in HT-29 cells

    Directory of Open Access Journals (Sweden)

    Elda Herrera-Carrera

    2015-12-01

    Full Text Available Some herbal infusions used in folk medicine in Mexico to treat gastrointestinal disorders were evaluated. Antioxidant activity and phenolic compounds were analyzed on the lyophilized aqueous crude extracts (LACE of arnica (Aster gymnocephalus, chamomile (Chamaemelum nobile, cumin (Cominum cyminum, desert resurrection plant (DRP (Selaginella lepidophylla, laurel (Listea glaucescens, marjoram (Origanum majorana, mint (Mentha spicata, salvilla (Buddleia scordioides and yerbaniz (Tagetes lucida. Total phenolic content ranged from 8.0 to 70.7 μg GAE/mg for DRP and laurel respectively. Major phenolic compounds were identified by gas chromatography–mass spectrometry and high-performance liquid chromatography. The IC50 determined by the degradation of the deoxy-d-ribose ranged from 2,452.53 to 5,097.11 μg/mL. The cytoprotective effect of the LACE alone and on indomethacin-induced oxidative stress in HT-29 cells was tested. The tetrazolium dye MTT assay was performed in concentrations of 0.125–10 mg/mL allowing choosing the lowest concentration for this experimentation. Inflammation markers were measured by Western blotting. None of the extracts inhibited COX-1 by themselves; however, it was observed that extracts have a modulation effect over COX-2, TNFα, NFκB, and IL-8. By the decrease in the expression of pro-inflammatory cytokines, it follows that salvilla, chamomile, and laurel show promising anti-inflammatory effects.

  16. Mechanisms of action of phenolic compounds in olive.

    Science.gov (United States)

    Rafehi, Haloom; Ververis, Katherine; Karagiannis, Tom C

    2012-06-01

    Olive oil, an oil rich in monounsaturated fatty acids (MUFCs) and minor constituents including phenolic compounds, is a major component of the Mediterranean diet. The potential health benefits of the Mediterranean diet were highlighted by the seminal Seven Countries Study, and more contemporary research has identified olive oil as a major element responsible for these effects. It is emerging that the phenolic compounds are the most likely candidates accounting for the cardioprotective and cancer preventative effects of extra virgin olive oil (EVOO). In particular, the phenolic compound, hydroxytyrosol has been identified as one of the most potent antioxidants found in olive oil. This review will briefly consider historical aspects of olive oil research and the biological properties of phenolic compounds in olive oil will be discussed. The focus of the discussion will be related to the mechanisms of action of hydroxytyrosol. Studies have demonstrated that hydroxytyrosol induces apoptosis and cell cycle arrest in cancer cells. Further, research has shown that hydroxytyrosol can prevent cardiovascular disease by reducing the expression of adhesion molecules on endothelial cells and preventing the oxidation of low-density lipoprotein (LDL). The molecular mechanisms accounting for these effects are reviewed.

  17. Evaluation of PAL activity, Phenolic and Flavonoid Contents in Three Pistachio (Pistacia vera L. Cultivars Grafted onto Three Different Rootstocks

    Directory of Open Access Journals (Sweden)

    N. Nadernejad

    2013-08-01

    Full Text Available Phenylalanine ammonia lyase (PAL is a biochemical marker of the environmental stress and plays a pivotal role in phenolic synthesis. The lower ROS level and oxidative damage was observed in grafted plants and the rootstocks have a profound influence on the biochemical composition, especially phenolic compounds. Regarding the importance of the effect rootstocks have on scion in pistachio trees, this study was carried out to assess and compare three pistachio cultivars ("Ahmadaghaii", "Ohadi" and "Kallehghuchi" on three rootstocks (Mutica, Ahli, Sarakhs. PAL activity, phenolic compounds, flavonoid and anthocyanin contents in leaves, flowers and fruits were measured toward the selection of the most suitable and compatible rootstock/scion resistant to environmental stresses. The results showed that PAL activity was different among the cultivars and organs. A positive correlation was observed between PAL activity and phenolic compounds in the leaves and flowers of Mutica- Ahmadaghaii, suggesting that it is more resistant than the others to environmental stresses. PAL activity and total phenolics in fruits of pistachio suffered a decrease when the maturation processes began. The hulls of the pistachio fruits contained high levels of phenolic compounds especially in Mutica-Ahmadaghaii suggesting its function as a protective layer and a defense chemical against ultraviolet radiation and pathogen. Our results indicated the presence of a number of bioactive compounds in kernels with the highest amount belonging to Mutica- Ahmadaghaii, and therefore it is concluded that pistachio rootstocks may affect the antioxidant compounds in kernels.

  18. Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium

    Science.gov (United States)

    Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as a green oxidant. Catalysts could be easily recovered after completion of the reac...

  19. Mini Review - Phenolics for skin photo-aging.

    Science.gov (United States)

    Ali, Atif

    2017-07-01

    Photo-aging is one of the foremost problems caused by generation of reactive oxygen species when skin is exposed on UV irradiation. In view of that, generation of reactive oxygen species intermingle with proteins, DNA, saccharides and fatty acids triggering oxidative mutilation and effects are in the appearance of distressed cell metabolism, morphological and ultra-structural changes, mistreat on the routes and revisions in the demarcation, propagation and skin apoptosis living cells which leads to photo-aging. Plant phenolics are universally found in both edible and inedible plants and have extended substantial interest as photo-protective for human skin due to their antioxidant activities. The objective of this review is to highlight the use of plant phenolics for their antioxidant activities against photo-aging.

  20. Behavior of Phenols and Phenoxyacids on a Bisphenol-A Imprinted Polymer. Application for Selective Solid-Phase Extraction from Water and Urine Samples

    Directory of Open Access Journals (Sweden)

    Eliseo Herrero-Hernández

    2011-05-01

    Full Text Available A molecularly imprinted polymer (MIP, obtained by precipitation polymerisation with 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate as cross-linker, and bisphenol-A (BPA as template, was prepared. The binding site configuration of the BPA-MIP was examined using Scatchard analysis. Moreover, the behaviour of the BPA-MIP for the extraction of several phenolic compounds (bisphenol-A, bisphenol-F, 4-nitrophenol, 3-methyl-4-nitrophenol and phenoxyacid herbicides such as 2,4-D, 2,4,5-T and 2,4,5-TP has been studied in organic and aqueous media in the presence of other pesticides in common use. It was possible to carry out the selective preconcentration of the target analytes from the organic medium with recoveries of higher than 70%. In an aqueous medium, hydrophobic interactions were found to exert a remarkably non-specific contribution to the overall binding process. Several parameters affecting the extraction efficiency of the BPA-MIP were evaluated to achieve the selective preconcentration of phenols and phenoxyacids from aqueous samples. The possibility of using the BPA-MIP as a selective sorbent to preconcentrate these compounds from other samples such as urine and river water was also explored.

  1. Natural phenolics greatly increase flax (Linum usitatissimum) oil stability.

    Science.gov (United States)

    Hasiewicz-Derkacz, Karolina; Kulma, Anna; Czuj, Tadeusz; Prescha, Anna; Żuk, Magdalena; Grajzer, Magdalena; Łukaszewicz, Marcin; Szopa, Jan

    2015-06-30

    Flaxseed oil is characterized by high content of essential polyunsaturated fatty acids (PUFA) promoted as a human dietary supplement protecting against atherosclerosis. The disadvantage of the high PUFA content in flax oil is high susceptibility to oxidation, which can result in carcinogenic compound formation. Linola flax cultivar is characterized by high linoleic acid content in comparison to traditional flax cultivars rich in linolenic acid. The changes in fatty acid proportions increase oxidative stability of Linola oil and broaden its use as an edible oil for cooking. However one of investigated transgenic lines has high ALA content making it suitable as omega-3 source. Protection of PUFA oxidation is a critical factor in oil quality. The aim of this study was to investigate the impact of phenylpropanoid contents on the oil properties important during the whole technological process from seed storage to grinding and oil pressing, which may influence health benefits as well as shelf-life, and to establish guidelines for the selection of new cultivars. The composition of oils was determined by chromatographic (GS-FID and LC-PDA-MS) methods. Antioxidant properties of secondary metabolites were analyzed by DPPH method. The stability of oils was investigated: a) during regular storage by measuring acid value peroxide value p-anisidine value malondialdehyde, conjugated dienes and trienes; b) by using accelerated rancidity tests by TBARS reaction; c) by thermoanalytical - differential scanning calorimetry (DSC). In one approach, in order to increase oil stability, exogenous substances added are mainly lipid soluble antioxidants from the isoprenoid pathway, such as tocopherol and carotene. The other approach is based on transgenic plant generation that accumulates water soluble compounds. Increased accumulation of phenolic compounds in flax seeds was achieved by three different strategies that modify genes coding for enzymes from the phenylpropanoid pathway. The three

  2. Apple juice inhibits human low density lipoprotein oxidation.

    Science.gov (United States)

    Pearson, D A; Tan, C H; German, J B; Davis, P A; Gershwin, M E

    1999-01-01

    Dietary phenolic compounds, ubiquitous in vegetables and fruits and their juices possess antioxidant activity that may have beneficial effects on human health. The phenolic composition of six commercial apple juices, and of the peel (RP), flesh (RF) and whole fresh Red Delicious apples (RW), was determined by high performance liquid chromatography (HPLC), and total phenols were determined by the Folin-Ciocalteau method. HPLC analysis identified and quantified several classes of phenolic compounds: cinnamates, anthocyanins, flavan-3-ols and flavonols. Phloridzin and hydroxy methyl furfural were also identified. The profile of phenolic compounds varied among the juices. The range of concentrations as a percentage of total phenolic concentration was: hydroxy methyl furfural, 4-30%; phloridzin, 22-36%; cinnamates, 25-36%; anthocyanins, n.d.; flavan-3-ols, 8-27%; flavonols, 2-10%. The phenolic profile of the Red Delicious apple extracts differed from those of the juices. The range of concentrations of phenolic classes in fresh apple extracts was: hydroxy methyl furfural, n.d.; phloridzin, 11-17%; cinnamates, 3-27%; anthocyanins, n.d.-42%; flavan-3-ols, 31-54%; flavonols, 1-10%. The ability of compounds in apple juices and extracts from fresh apple to protect LDL was assessed using an in vitro copper catalyzed human LDL oxidation system. The extent of LDL oxidation was determined as hexanal production using static headspace gas chromatography. The apple juices and extracts, tested at 5 microM gallic acid equivalents (GAE), all inhibited LDL oxidation. The inhibition by the juices ranged from 9 to 34%, and inhibition by RF, RW and RP was 21, 34 and 38%, respectively. Regression analyses revealed no significant correlation between antioxidant activity and either total phenolic concentration or any specific class of phenolics. Although the specific components in the apple juices and extracts that contributed to antioxidant activity have yet to be identified, this study

  3. Dietary Phenolic Compounds Interfere with the Fate of Hydrogen Peroxide in Human Adipose Tissue but Do Not Directly Inhibit Primary Amine Oxidase Activity

    Directory of Open Access Journals (Sweden)

    Christian Carpéné

    2016-01-01

    Full Text Available Resveratrol has been reported to inhibit monoamine oxidases (MAO. Many substrates or inhibitors of neuronal MAO interact also with other amine oxidases (AO in peripheral organs, such as semicarbazide-sensitive AO (SSAO, known as primary amine oxidase, absent in neurones, but abundant in adipocytes. We asked whether phenolic compounds (resveratrol, pterostilbene, quercetin, and caffeic acid behave as MAO and SSAO inhibitors. AO activity was determined in human adipose tissue. Computational docking and glucose uptake assays were performed in 3D models of human AO proteins and in adipocytes, respectively. Phenolic compounds fully inhibited the fluorescent detection of H2O2 generated during MAO and SSAO activation by tyramine and benzylamine. They also quenched H2O2-induced fluorescence in absence of biological material and were unable to abolish the oxidation of radiolabelled tyramine and benzylamine. Thus, phenolic compounds hampered H2O2 detection but did not block AO activity. Only resveratrol and quercetin partially impaired MAO-dependent [14C]-tyramine oxidation and behaved as MAO inhibitors. Phenolic compounds counteracted the H2O2-dependent benzylamine-stimulated glucose transport. This indicates that various phenolic compounds block downstream effects of H2O2 produced by biogenic or exogenous amine oxidation without directly inhibiting AO. Phenolic compounds remain of interest regarding their capacity to limit oxidative stress rather than inhibiting AO.

  4. Long-term phenol, cresols and BTEX monitoring in urban air.

    Science.gov (United States)

    Sturaro, Alberto; Rella, Rocco; Parvoli, Giorgio; Ferrara, Daniela

    2010-05-01

    This paper reports the results of a long-term monitoring of benzene, toluene, ethylbenzene, xylenes (BTEX), phenol and cresols in the air of Padua during a wide period of the year 2007 using two radial passive samplers (Radiello system) equipped with BTEX- and phenol-specific cartridges. Two sites were monitored, one in the industrial area and one close to the town centre. Relevant pollution episodes have been observed during both the winter and summer periods. Benzene, together with toluene, ethylbenzene and xylenes showed their maximum concentrations during the winter season, but the secondary pollutant phenol was higher than benzene for a large period of the year when the meteorological conditions blocked the pollutants in the lower layers of the atmosphere and solar radiation increased the benzene photo-oxidation process.

  5. METHODS OF REDUCTION OF FREE PHENOL CONTENT IN PHENOLIC FOAM

    Directory of Open Access Journals (Sweden)

    Bruyako Mikhail Gerasimovich

    2012-12-01

    method aimed at reduction of toxicity of phenolic foams consists in the introduction of a composite mixture of chelate compounds. Raw materials applied in the production of phenolic foams include polymers FRB-1A and VAG-3. The aforementioned materials are used to produce foams FRP-1. Introduction of 1% aluminum fluoride leads to the 40% reduction of the free phenol content in the foam. Introduction of crystalline zinc chloride accelerates the foaming and curing of phenolic foams. The technology that contemplates the introduction of zeolites into the mixture includes pre-mixing with FRB -1A and subsequent mixing with VAG-3; thereafter, the composition is poured into the form, in which the process of foaming is initiated. The content of free phenol was identified using the method of UV spectroscopy. The objective of the research was to develop methods of reduction of the free phenol content in the phenolic foam.

  6. Pulse seed germination improves antioxidative activity of phenolic compounds in stripped soybean oil-in-water emulsions.

    Science.gov (United States)

    Xu, Minwei; Jin, Zhao; Peckrul, Allen; Chen, Bingcan

    2018-06-01

    The purpose of this study was to investigate antioxidative activity of phenolic compounds extracted from germinated pulse seed including chickpeas, lentils and yellow peas. Phenolic compounds were extracted at different germination time and total phenolic content was examined by Folin Ciocalteu's reaction. Antioxidative activity of extracts was characterized by in vitro assay including 2, 2-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH), oxygen radical absorbance capacity (ORAC), iron-binding assay, and in stripped soybean oil-in-water emulsions. The results suggested that germination time is critical for phenolic compounds production. The form variation of phenolic compounds influenced the antioxidative activity of phenolic compounds both in vitro assay and in emulsion systems. Soluble bound phenolic compounds showed higher antioxidative ability in emulsion system with the order of chickpea > yellow pea > lentil. On the basis of these results, soluble bound phenolic compounds may be considered as a promising natural antioxidant to prevent lipid oxidation in foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Application of a Novel Semiconductor Catalyst, CT, in Degradation of Aromatic Pollutants in Wastewater: Phenol and Catechol

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2014-01-01

    Full Text Available Water-soluble phenol and phenolic compounds were generally removed via advanced oxidation processes. A novel semiconductor catalyst, CT, was the first-time employed in the present study to degrade phenol and catechol. The phenolic compounds (initial concentration of 88 mg L−1 were completely mineralized by the CT catalytic nanoparticles (1% within 15 days, under acidic condition and with the presence of mild UV radiation (15 w, the emitted wavelength is 254 nm and the light intensity <26 μw/cm2. Under the same reaction condition, 1% TiO2 (mixture of rutile and anatase, nanopowder, <100 nm and H2O2 had lower removal efficiency (phenol: <42%; catechol: <60%, whereas the control (without addition of catalysts/H2O2 only showed <12% removal. The processes of phenol/catechol removal by CT followed pseudo-zero-order kinetics. The aromatic structures absorbed the UV energy and passed to an excited state, which the CT worked on. The pollutants were adsorbed on the CT’s surface and oxidized via charge-transfer and hydroxyl radical generation by CT. Given low initial concentrations, a circumstance encountered in wastewater polishing, the current set-up should be an efficient and less energy- and chemical-consumptive treatment method.

  8. Phenolic compounds of Triplaris gardneriana can protect cells against oxidative stress and restore oxidative balance

    NARCIS (Netherlands)

    Almeida, de Thiago Silva; Neto, José Joaquim Lopes; Sousa, de Nathanna Mateus; Pessoa, Igor Parra; Vieira, Leonardo Rogério; Medeiros, De Jackeline Lima; Boligon, Aline Augusti; Hamers, Astrid R.M.; Farias, Davi Felipe; Peijnenburg, Ad; Carvalho, Ana Fontenele Urano

    2017-01-01

    This work aimed to add value to an underexploited plant species from Brazil, Triplaris gardneriana. To that, the phenolic compounds profile of its seed ethanolic extract and fractions was examined by HPLC and the antioxidant capacity assessed using chemical assays as well as in vitro cell imaging.

  9. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.

    Science.gov (United States)

    Ohashi, Yasunori; Uno, Yukiko; Amirta, Rudianto; Watanabe, Takahito; Honda, Yoichi; Watanabe, Takashi

    2011-04-07

    Lignin degradation by white-rot fungi proceeds via free radical reaction catalyzed by oxidative enzymes and metabolites. Basidiomycetes called selective white-rot fungi degrade both phenolic and non-phenolic lignin substructures without penetration of extracellular enzymes into the cell wall. Extracellular lipid peroxidation has been proposed as a possible ligninolytic mechanism, and radical species degrading the recalcitrant non-phenolic lignin substructures have been discussed. Reactions between the non-phenolic lignin model compounds and radicals produced from azo compounds in air have previously been analysed, and peroxyl radical (PR) is postulated to be responsible for lignin degradation (Kapich et al., FEBS Lett., 1999, 461, 115-119). However, because the thermolysis of azo compounds in air generates both a carbon-centred radical (CR) and a peroxyl radical (PR), we re-examined the reactivity of the three radicals alkoxyl radical (AR), CR and PR towards non-phenolic monomeric and dimeric lignin model compounds. The dimeric lignin model compound is degraded by CR produced by reaction of 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), which under N(2) atmosphere cleaves the α-β bond in 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol to yield 4-ethoxy-3-methoxybenzaldehyde. However, it is not degraded by the PR produced by reaction of Ce(4+)/tert-BuOOH. In addition, it is degraded by AR produced by reaction of Ti(3+)/tert-BuOOH. PR and AR are generated in the presence and absence of veratryl alcohol, respectively. Rapid-flow ESR analysis of the radical species demonstrates that AR but not PR reacts with the lignin model compound. Thus, AR and CR are primary agents for the degradation of non-phenolic lignin substructures.

  10. Facile Synthesis of Yolk/Core-Shell Structured TS-1@Mesosilica Composites for Enhanced Hydroxylation of Phenol

    KAUST Repository

    Zou, Houbing

    2015-12-14

    © 2015 by the authors. In the current work, we developed a facile synthesis of yolk/core-shell structured TS-1@mesosilica composites and studied their catalytic performances in the hydroxylation of phenol with H2O2 as the oxidant. The core-shell TS-1@mesosilica composites were prepared via a uniform coating process, while the yolk-shell TS-1@mesosilica composite was prepared using a resorcinol-formaldehyde resin (RF) middle-layer as the sacrificial template. The obtained materials were characterized by X-ray diffraction (XRD), N2 sorption, Fourier transform infrared spectoscopy (FT-IR) UV-Visible spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The characterization results showed that these samples possessed highly uniform yolk/core-shell structures, high surface area (560–700 m2 g−1) and hierarchical pore structures from oriented mesochannels to zeolite micropores. Importantly, owing to their unique structural properties, these composites exhibited enhanced activity, and also selectivity in the phenol hydroxylation reaction.

  11. Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro.

    Science.gov (United States)

    Manquián-Cerda, K; Cruces, E; Escudey, M; Zúñiga, G; Calderón, R

    2018-04-15

    To evaluate the potential role of phenolic compounds in Al and Cd stress tolerance mechanisms, Vaccinium corymbosum cv. Legacy plantlets were exposed to different metal concentrations. The present study used an in vitro plant model to test the effects of the following treatments: 100μM Al; 100μMAl + 50μMCd; and 100μMAl + 100μMCd during periods of 7, 14, 21 and 30 days. The oxidative damage was determined by the accumulation of malondialdehyde (MDA) and hydrogen peroxide (H 2 O 2 ). The antioxidant activity values were determined using 1,1-diphenyl-2-picrylhydrazine (DPPH) and the ferric reducing antioxidant power test (FRAP). Additionally, the phenolic compound concentrations were determined using HPLC-DAD. The exposure to Al and Cd increased the MDA and H 2 O 2 contents differentially, while the antioxidant capacity values showed differences between DPPH and FRAP with the largest changes in FRAP relative to Cd. SOD had the highest activity in the first 7 days, leading to a significant increase in phenolic compounds observed after 14 days, and chlorogenic acid was the major compound identified. Our results revealed that phenolic compounds seem to play an important role in the response to ROS. Therefore, the mechanisms of tolerance to Al and Cd in V. corymbosum will be determined by the type of metal and time of exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Efficient photocatalytic degradation of phenol in aqueous solution by SnO2:Sb nanoparticles

    International Nuclear Information System (INIS)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika; Bora, Tanujjal; Dutta, Joydeep

    2016-01-01

    Highlights: • Sb doped SnO 2 nanoparticles were synthesized using sol–gel process. • Photocatalytic degradation of phenol were studies using SnO 2 :Sb nanoparticles. • Under solar light phenol was degraded within 2 h. • Phenol mineralization and intermediates were investigated by using HPLC. - Abstract: Photodegradation of phenol in the presence of tin dioxide (SnO 2 ) nanoparticles under UV light irradiation is known to be an effective photocatalytic process. However, phenol degradation under solar light is less effective due to the large band gap of SnO 2 . In this study antimony (Sb) doped tin dioxide (SnO 2 ) nanoparticles were prepared at a low temperature (80 °C) by a sol–gel method and studied for its photocatalytic activity with phenol as a test contaminant. The catalytic degradation of phenol in aqueous media was studied using high performance liquid chromatography and total organic carbon measurements. The change in the concentration of phenol affects the pH of the solution due to the by-products formed during the photo-oxidation of phenol. The photoactivity of SnO 2 :Sb was found to be a maximum for 0.6 wt.% Sb doped SnO 2 nanoparticles with 10 mg L −1 phenol in water. Within 2 h of photodegradation, more than 95% of phenol could be removed under solar light irradiation.

  13. Oligomerization and hydroxylation of green tea catechins by oxidative enzymes

    NARCIS (Netherlands)

    Verloop, J.W.

    2016-01-01

    Black teas are known for their characteristic brown colour, bitter taste and astringent mouth feel. These sensory characteristics are mainly influenced by the phenolic oxidation products present in black tea. The oxidation of phenolics from green tea leaves during black tea manufacturing is an

  14. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: Horseradish peroxidase immobilized on magnetic beads

    International Nuclear Information System (INIS)

    Bayramoglu, Guelay; Arica, M. Yakup

    2008-01-01

    Horseradish peroxidase was immobilized on the magnetic poly(glycidylmethacrylate-co-methylmethacrylate) (poly(GMA-MMA)), via covalent bonding and used for the treatment of phenolic wastewater in continuous systems. For this purposes, horseradish peroxidase (HRP) was covalently immobilized onto magnetic poly(GMA-MMA) beds using glutaraldehyde (GA) as a coupling agent. The maximum HRP immobilization capacity of the magnetic poly(GMA-MMA)-GA beads was 3.35 mg g -1 . The immobilized HRP retained 79% of the activity of the free HRP used for immobilization. The immobilized HRP was used for the removal of phenol and p-chlorophenol via polymerization of dissolved phenols in the presence of hydrogen peroxide (H 2 O 2 ). The effect of pH and temperature on the phenol oxidation rate was investigated. The results were compared with the free HRP, which showed that the optimum pH value for the immobilized HRP is similar to that for the free HRP. The optimum pH value for free and immobilized HRP was observed at pH 7.0. The optimum temperature for phenols oxidation with immobilized HRP was between 25 and 35 deg. C and the immobilized HRP has more resistance to temperature inactivation than that of the free form. Finally, the immobilized HRP was operated in a magnetically stabilized fluidized bed reactor, and phenols were successfully removed in the enzyme reactor

  15. Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects.

    Science.gov (United States)

    de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Rasera, Gabriela Boscariol; Canniatti-Brazaca, Solange Guidolin; do Prado-Silva, Leonardo; Alvarenga, Verônica Ortiz; Sant'Ana, Anderson S; Shahidi, Fereidoon

    2017-12-15

    Peanut skin (PS) and meal from dry-blanched peanuts (MDBP) were evaluated as sources of phenolic compounds. PS rendered the highest total phenolic content, antioxidant capacity towards ABTS radical cation, DPPH and hydroxyl radicals as well as reducing power. Phenolic acids were present in PS and MDBP whereas proanthocyanidins and monomeric flavonoids were found only in PS as identified by HPLC-DAD-ESI-MS n . Procyanidin-rich extracts prevented oxidation in non-irradiated and gamma-irradiated fish model system. Both extracts inhibited the growth of gram-positive (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Geobacillus stearothermophilus) and gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli). Regardless of the strain, phenolic acid-rich extracts showed the lowest minimum inhibitory capacity (MIC); therefore presenting higher antibacterial effect. The MIC of phenolic acid-rich extracts (24-49μgphenolics/mL) was higher but comparable to Ampicillin (10μg/mL). Thus, phenolics in PS and MDBP may serve as antioxidants and antimicrobial compounds. Copyright © 2017. Published by Elsevier Ltd.

  16. Synthesis and Properties of New Polymer Having Hindered Phenol Antioxidants

    International Nuclear Information System (INIS)

    Kim, Taek Hyeon; Song, Yi Rang; Kim, Jae Nyoung

    2003-01-01

    Polymeric antioxidants was successfully prepared by the copolymerization of monomeric maleimide with MMA. The copolymers possess some stabilizing effect against thermal oxidation with oven aging in air at 120 .deg. C for 5 days and also have the some resistance to water extraction. It is well known that the addition of antioxidants is the most convenient and effective way to block the thermal oxidation of polyolefins. Hindered phenol antioxidants, which contain the 2,6-di-tert-butylphenol functional group, are very effective primary antioxidants. However, low molecular weight (MW) antioxidants are easily lost from the polymers by the physical loss such as migration, evaporation, and extraction by liquid. The effectiveness of low MW antioxidants is limited. Therefore a new trend for antioxidant development is to prepare antioxidant with higher MW. The copolymerization or homopolymerization of the functional monomer bearing hindered phenol antioxidants is a conventional method for preparing polymeric antioxidants

  17. Biofortification (Se: Does it increase the content of phenolic compounds in virgin olive oil (VOO?

    Directory of Open Access Journals (Sweden)

    Roberto D'Amato

    Full Text Available Extra-Virgin Olive Oil (EVOO is a fundamental component of the Mediterranean diet and it may contain several anti-oxidant substances, such as phenols. Previous research has shown that this food may be enriched in phenols by spraying a sodium-selenate solution (100 mg L-1 Se onto the crop canopy before flowering. The aim of this research was to evaluate the effect of this Se-fertilization before flowering (cv. Leccino on the phenolic profile of EVOOs, and test to what extent such effects depend on the weather pattern, as observed in two contrasting experimental seasons (2013 and 2014. Results showed that Se-fertilisation enriched EVOOs both in selenium (up to 120 μg kg-1 and in phenols (up to 401 mg kg-1. This latter enrichment was related to an increase in PAL (L-Phenylalanine Ammonia-Lyase activities and it was largely independent on the climatic pattern. Considering the phenolic profile, oleacein, ligustroside, aglycone and oleocanthal were the most affected compounds and were increased by 57, 50 and 32%, respectively. All these compounds, especially oleacein, have been shown to exert a relevant anti-oxidant activity, contributing both to the shelf-life of EVOOs and to positive effects on human health. It is suggested that Se-fertilisation of olive trees before flowering may be an interesting practice, particularly with poor cultivars and cold and rainy weather patterns, which would normally lead to the production of EVOOs with unfavourable phenolic profile.

  18. Biofortification (Se): Does it increase the content of phenolic compounds in virgin olive oil (VOO)?

    Science.gov (United States)

    D’Amato, Roberto; Proietti, Primo; Onofri, Andrea; Regni, Luca; Esposto, Sonia; Servili, Maurizio; Businelli, Daniela; Selvaggini, Roberto

    2017-01-01

    Extra-Virgin Olive Oil (EVOO) is a fundamental component of the Mediterranean diet and it may contain several anti-oxidant substances, such as phenols. Previous research has shown that this food may be enriched in phenols by spraying a sodium-selenate solution (100 mg L-1 Se) onto the crop canopy before flowering. The aim of this research was to evaluate the effect of this Se-fertilization before flowering (cv. Leccino) on the phenolic profile of EVOOs, and test to what extent such effects depend on the weather pattern, as observed in two contrasting experimental seasons (2013 and 2014). Results showed that Se-fertilisation enriched EVOOs both in selenium (up to 120 μg kg-1) and in phenols (up to 401 mg kg-1). This latter enrichment was related to an increase in PAL (L-Phenylalanine Ammonia-Lyase) activities and it was largely independent on the climatic pattern. Considering the phenolic profile, oleacein, ligustroside, aglycone and oleocanthal were the most affected compounds and were increased by 57, 50 and 32%, respectively. All these compounds, especially oleacein, have been shown to exert a relevant anti-oxidant activity, contributing both to the shelf-life of EVOOs and to positive effects on human health. It is suggested that Se-fertilisation of olive trees before flowering may be an interesting practice, particularly with poor cultivars and cold and rainy weather patterns, which would normally lead to the production of EVOOs with unfavourable phenolic profile. PMID:28448631

  19. Selective oxidation of n-butane to maleic anhydride under oxygen-deficient conditions over V-P-O mixed oxides

    NARCIS (Netherlands)

    Bosch, H.; Bruggink, A.A.; Ross, J.R.H.

    1987-01-01

    The selective oxidation of n-butane to maleic anhydride over V-P-O mixed oxides was studied under oxygen deficient conditions. The mixed oxides were prepared with P/V atomic ratios ranging from 0.7 to 1.0. Catalysts with P/V <1.0 did not show any selectivity to maleic anhydride formation, regardless

  20. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili; Wickens, Zachary K.; Dong, Guangbin; Grubbs, Robert H.

    2012-01-01

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  1. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  2. Effect of antimony oxide on magnesium vanadates for the selective oxidation of hydrogen sulfide to sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.T.; Chi, Z.H. [Department of Chemical Engineering, Tunghai University, ROC Taichung (Taiwan)

    2001-05-17

    The effect of antimony oxide addition to MgV{sub 2}O{sub 6} and Mg{sub 3}V{sub 2}O{sub 8} was studied in the selective oxidation of hydrogen sulfide to sulfur. Significant improvements in sulfur selectivity and yield were observed for the uncalcined mechanical mixtures of magnesium vanadates with {alpha}-Sb{sub 2}O{sub 4}. Calcination of the mechanical mixtures resulted in the much stronger synergy in catalytic activity and sulfur selectivity. For the uncalcined samples, XRD, TPR and XPS studies indicated that antimony reduction behaviors in the mechanical mixtures differed very much from those in {alpha}-Sb{sub 2}O{sub 4} alone, suggested that their selectivity improvements might be due to the interactions (probably oxygen transfer) between {alpha}-Sb{sub 2}O{sub 4} and magnesium vanadates. For the calcined samples, XRD results indicated that their better catalytic performances in H{sub 2}S oxidation were primarily attributed to the formation of VSbO{sub 4} compound from antimony oxide and magnesium vanadates.

  3. Defatted Kenaf (Hibiscus cannabinus L. Seed Meal and Its Phenolic-Saponin-Rich Extract Protect Hypercholesterolemic Rats against Oxidative Stress and Systemic Inflammation via Transcriptional Modulation of Hepatic Antioxidant Genes

    Directory of Open Access Journals (Sweden)

    Kim Wei Chan

    2018-01-01

    Full Text Available The present study aimed to investigate the antioxidant and anti-inflammatory properties of defatted kenaf seed meal (DKSM and its phenolic-saponin-rich extract (PSRE in hypercholesterolemic rats. Hypercholesterolemia was induced using atherogenic diet feeding, and dietary interventions were conducted by incorporating DKSM (15% and 30% or PSRE (at 2.3% and 4.6%, resp., equivalent to the total content of DKSM-phenolics and saponins in the DKSM groups into the atherogenic diets. After ten weeks of intervention, serum total antioxidant capacities of hypercholesterolemic rats were significantly enhanced by DKSM and PSRE supplementation (p<0.05. Similarly, DKSM and PSRE supplementation upregulated the hepatic mRNA expression of antioxidant genes (Nrf2, Sod1, Sod2, Gsr, and Gpx1 of hypercholesterolemic rats (p<0.05, except for Gpx1 in the DKSM groups. The levels of circulating oxidized LDL and proinflammatory biomarkers were also markedly suppressed by DKSM and PSRE supplementation (p<0.05. In aggregate, DKSM and PSRE attenuated the hypercholesterolemia-associated oxidative stress and systemic inflammation in rats, potentially by enhancement of hepatic endogenous antioxidant defense via activation of the Nrf2-ARE pathway, which may be contributed by the rich content of phenolics and saponins in DKSM and PSRE. Hence, DKSM and PSRE are prospective functional food ingredients for the potential mitigation of atherogenic risks in hypercholesterolemic individuals.

  4. Defatted Kenaf (Hibiscus cannabinus L.) Seed Meal and Its Phenolic-Saponin-Rich Extract Protect Hypercholesterolemic Rats against Oxidative Stress and Systemic Inflammation via Transcriptional Modulation of Hepatic Antioxidant Genes

    Science.gov (United States)

    Mohamed Alitheen, Noorjahan Banu; Ooi, Der Jiun; Khong, Nicholas M. H.

    2018-01-01

    The present study aimed to investigate the antioxidant and anti-inflammatory properties of defatted kenaf seed meal (DKSM) and its phenolic-saponin-rich extract (PSRE) in hypercholesterolemic rats. Hypercholesterolemia was induced using atherogenic diet feeding, and dietary interventions were conducted by incorporating DKSM (15% and 30%) or PSRE (at 2.3% and 4.6%, resp., equivalent to the total content of DKSM-phenolics and saponins in the DKSM groups) into the atherogenic diets. After ten weeks of intervention, serum total antioxidant capacities of hypercholesterolemic rats were significantly enhanced by DKSM and PSRE supplementation (p < 0.05). Similarly, DKSM and PSRE supplementation upregulated the hepatic mRNA expression of antioxidant genes (Nrf2, Sod1, Sod2, Gsr, and Gpx1) of hypercholesterolemic rats (p < 0.05), except for Gpx1 in the DKSM groups. The levels of circulating oxidized LDL and proinflammatory biomarkers were also markedly suppressed by DKSM and PSRE supplementation (p < 0.05). In aggregate, DKSM and PSRE attenuated the hypercholesterolemia-associated oxidative stress and systemic inflammation in rats, potentially by enhancement of hepatic endogenous antioxidant defense via activation of the Nrf2-ARE pathway, which may be contributed by the rich content of phenolics and saponins in DKSM and PSRE. Hence, DKSM and PSRE are prospective functional food ingredients for the potential mitigation of atherogenic risks in hypercholesterolemic individuals. PMID:29849908

  5. Bioactivity of Olive Oil Phenols in Neuroprotection

    Science.gov (United States)

    Angeloni, Cristina; Barbalace, Maria Cristina

    2017-01-01

    Neurological disorders such as stroke, Alzheimer’s and Parkinson’s diseases are associated with high morbidity and mortality, and few or no effective options are available for their treatment. These disorders share common pathological characteristics like the induction of oxidative stress, abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, inflammation and apoptosis. A large body of evidence supports the beneficial effects of the Mediterranean diet in preventing neurodegeneration. As the Mediterranean diet is characterized by a high consumption of extra-virgin olive oil it has been hypothesized that olive oil, and in particular its phenols, could be responsible for the beneficial effect of the Mediterranean diet. This review provides an updated vision of the beneficial properties of olive oil and olive oil phenols in preventing/counteracting both acute and chronic neurodegenerative diseases. PMID:29068387

  6. Bioactivity of Olive Oil Phenols in Neuroprotection

    Directory of Open Access Journals (Sweden)

    Cristina Angeloni

    2017-10-01

    Full Text Available Neurological disorders such as stroke, Alzheimer’s and Parkinson’s diseases are associated with high morbidity and mortality, and few or no effective options are available for their treatment. These disorders share common pathological characteristics like the induction of oxidative stress, abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, inflammation and apoptosis. A large body of evidence supports the beneficial effects of the Mediterranean diet in preventing neurodegeneration. As the Mediterranean diet is characterized by a high consumption of extra-virgin olive oil it has been hypothesized that olive oil, and in particular its phenols, could be responsible for the beneficial effect of the Mediterranean diet. This review provides an updated vision of the beneficial properties of olive oil and olive oil phenols in preventing/counteracting both acute and chronic neurodegenerative diseases.

  7. Role of iron species in the photo-transformation of phenol in artificial and natural seawater

    International Nuclear Information System (INIS)

    Calza, Paola; Massolino, Cristina; Pelizzetti, Ezio; Minero, Claudio

    2012-01-01

    The role played by iron oxides (goethite and akaganeite) and iron(II)/(III) species as photo-sensitizers toward the transformation of organic matter was examined in saline water using phenol as a model molecule. The study was carried out in NaCl 0.7 M solution at pH 8, artificial (ASW) and natural (NSW) seawater, in a device simulating solar light spectrum and intensity. Under illumination phenol decomposition occurs in all the investigated cases. Conversely, dark experiments show that no reaction takes place, implying that phenol transformation is a light- activated process. Following the addition of Fe(II) ions to aerated solutions, Fe(II) is easily oxidized to Fe(III) and hydrogen peroxide is formed. Regardless of the addition of Fe(II) or Fe(III) ions, photo-activated degradation is mediated by Fe(III) species. Several (and different) hydroxylated and halogenated intermediates were identified. In ASW, akaganeite promotes the formation of ortho and para chloro derivatives (2- and 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol), while goethite induces the formation of 3-chlorophenol and bromophenols. Conversely, Fe(II) or Fe(III) addition causes the formation of 3- and 4-chlorophenol and 2,3- or 3,4-dichlorophenol. 4-Bromophenol was only identified when irradiating Fe(II) spiked solutions. Natural seawater sampled in the Gulf of Trieste, Italy, has been spiked with phenol and irradiated. Phenol photo-induced transformation in NSW mediated by natural photosensitizers occurs and leads to the formation of numerous halophenols, condensed products and nitrophenols. When NSW is spiked with phenol and iron oxides, Fe(II) or Fe(III), halophenols production is enhanced. A close analogy exists between Fe(III), Fe(II)/goethite in ASW and NSW products. Different halophenols production in the natural seawater samples depends on Fe(II)/goethite (above all for 3-chlorophenol, 2,3-dichlorophenol and 4-bromophenol formation) and on Fe(III) colloidal species (3

  8. Bioavailability and antioxidant effects of olive oil phenols in humans: a review

    NARCIS (Netherlands)

    Vissers, M.N.; Katan, M.B.; Zock, P.L.

    2004-01-01

    Objective: We reviewed the bioavailability and antioxidant effects of phenols from extra virgin olive oil. Search strategy: We searched the MEDLINE database for the years 1966 - 2002. To review the bioavailability of olive oil phenols, we selected animal and human studies that studied the

  9. Astringency, bitterness and color changes in dry red wines before and during oak barrel aging: An updated phenolic perspective review.

    Science.gov (United States)

    Li, Si-Yu; Duan, Chang-Qing

    2018-01-30

    To understand effects of using oak barrels on the astringency, bitterness and color of dry red wines, phenolic reactions in wines before and after barrel aging are reviewed in this paper, which has been divided into three sections. The first section includes an introduction to chemical reactivities of grape-derived phenolic compounds, a summary of the phenolic reactions that occur in dry red wines before barrel aging, and a discussion of the effects of these reactions on wine astringency, bitterness and color. The second section introduces barrel types that determine the oak barrel constituents in wines (primarily oak aldehydes and ellagitannins) and presents reactions between the oak constituents and grape-derived phenolic compounds that may modulate wine astringency, bitterness and color. The final section illustrates the chemical differences between basic oxidation and over-oxidation in wines, discusses oxygen consumption kinetics in wines during barrel aging by comparing different oxygen consumption kinetics observed previously by others, and speculates on the possible preliminary phenolic reactions that occur in dry red wines during oak barrel aging that soften tannins and stabilize pigments via basic oxidation. Additionally, sulfur dioxide (SO 2 ) addition during barrel aging and suitability of adopting oak barrels for aging wines are briefly discussed.

  10. Process for selected gas oxide removal by radiofrequency catalysts

    Science.gov (United States)

    Cha, Chang Y.

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  11. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Khalid Khazzal Hummadi

    2009-06-01

    Full Text Available The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK, 10 atm (1013 kPa, with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a commercial catalyst; maximum selectivity (82.3% was obtained at 573oK when the conversion was 59.7%. Catalysts prepared by reacting iron (III and molybdate by kneading or precipitation followed by evaporation, omitting a filtration stage, were less active and less selective. The selectivity-activity relationships of these catalysts as a function of temperature were discussed in relation to the method of preparation, surface areas and composition. By combing this catalytic data with data from the patent literature we demonstrate a synergy between iron and molybdenum in regard to methanol oxidation to formaldehyde; the optimum composition corresponded to an iron mole fraction 0.2-0.3. The selectivity to formaldehyde was practically constant up to an iron mole fraction 0.3 and then decreased at higher iron concentrations. The iron component can be regarded as the activity promoter. The iron molybdate catalysts can thus be related to other two-component MoO3-based selective oxidation catalysts, e.g. bismuth and cobalt molybdates. The iron oxide functions as a relatively basic oxide abstracting, in the rate-controlling step, a proton from the methyl of a bound methoxy group of chemisorbed methanol. It was proposed that a crucial feature of the sought after iron(III molybdate catalyst is the presence of -O-Mo-O-Fe-O-Mo-O- groups as found in the compound Fe2(MoO43 and for Fe3+ well dispersed in MoO3 generally. At the higher iron(III concentrations the loss of

  12. New polymer for removal of wine phenolics: Poly(N-(3-(N-isobutyrylisobutyramido)-3-oxopropyl)acrylamide) (P-NIOA).

    Science.gov (United States)

    Castro, Ricardo I; Forero-Doria, Oscar; Guzmán, Luis; Laurie, V Felipe; Valdés, Oscar; Ávila-Salas, Fabián; López-Cortés, Xaviera; Santos, Leonardo S

    2016-12-15

    The phenolic compounds of wine contribute to color and astringency, also are responsible for the oxidation state and bitterness. Due the importance of these molecules, different techniques have been used to modulate their concentration such as natural or synthetic polymeric agents. Among the polymeric agents, PVPP is one of the most used, but lacks of selectivity and has a limited pH range. Therefore, the aim of this study was the synthesis of a new polymer, poly(N-(3-(N-isobutyrylisobutyramido)-3-oxopropyl)acrylamide) (P-NIOA), for removal of phenolic compounds, as a potential agent for the fining of wine. The new polymer affinity was studied using HPLC-DAD for different polyphenols using PVPP as a control. The results showed that the new polymer has a similar removal as PVPP, but with lower affinity to resveratrol. The interactions established between polymers and polyphenols were studied using computational chemistry methods demonstrating a direct correlation with the experimental affinity data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Titanium Oxide/Platinum Catalysis: Charge Transfer from a Titanium Oxide Support Controls Activity and Selectivity in Methanol Oxidation on Platinum

    KAUST Repository

    Hervier, Antoine

    2011-11-24

    Platinum films of 1 nm thickness were deposited by electron beam evaporation onto 100 nm thick titanium oxide films (TiOx) with variable oxygen vacancy concentrations and fluorine (F) doping. Methanol oxidation on the platinum films produced formaldehyde, methyl formate, and carbon dioxide. F-doped samples demonstrated significantly higher activity for methanol oxidation when the TiOx was stoichiometric (TiO 2), but lower activity when it was nonstoichiometric (TiO 1.7 and TiO1.9). These results correlate with the chemical behavior of the same types of catalysts in CO oxidation. Fluorine doping of stoichiometric TiO2 also increased selectivity toward partial oxidation of methanol to formaldehyde and methyl formate, but had an opposite effect in the case of nonstoichiometric TiOx. Introduction of oxygen vacancies and fluorine doping both increased the conductivity of the TiO x film. For oxygen vacancies, this occurred by the formation of a conduction channel in the band gap, whereas in the case of fluorine doping, F acted as an n-type donor, forming a conduction channel at the bottom of the conduction band, about 0.5-1.0 eV higher in energy. The higher energy electrons in F-doped stoichiometric TiOx led to higher turnover rates and increased selectivity toward partial oxidation of methanol. This correlation between electronic structure and turnover rate and selectivity indicates that the ability of the support to transfer charges to surface species controls in part the activity and selectivity of the reaction. © 2011 American Chemical Society.

  14. [The content of phenolic acids in the edible parts of selected varieties of apples].

    Science.gov (United States)

    Malik, Agnieszka; Kiczorowska, Bozena; Zdyb, Justyna

    2009-01-01

    Fruits and vegetables are essential sources of many nutritive substances which are necessary for normal function of the organism. One of the mostly consumed fruits in many European countries, including Poland is apples. The prohealthy properties of apples are associated with the contents of polyphenolic compounds, thus including in parts phenolic acids which have antioxidant properties. The concentration of these compounds depends on many factors such as variety climate and soil conditions, maturity as well as agro technical operations. The aim of this investigation was to compare the concentrations of phenolic acids and epicatechin in the varieties of apple Champion and Jonica, which were collected from different orchards around Lublin. The phenolic compounds were assayed using a Symmetry column carrier RP-C18 (Waters) integrated with a high pressure liquid chromatography apparatus. The dominant phenolic acids found in the Champion variety was chlorogenic acid, whereas in the Jonica variety, chlorogenic and homovanilic acids were the dominate once. The highest concentrations of chlorogenic acid was detected in the pulp of an apple (Jonica variety) collected from the orchards around the cities of Puławy and Lublin, whereas homovanilic acid was the highest in the other samples collected from the orchards in the vicinity of Stryjno and Góry Markuszowskie. Among the Jonica and Champion varieties of apples collected from various orchards in the vicinity of Lublin, the highest content of epicatechin (13,12 mg/kg) was found in the pulps of Champions variety collected in Puławy. In general, the Champion variety was the best source of phenolic acids and epicatechin compared to the Jonica variety independent of the harvest zone.

  15. Selective Oxidative Carbonylation of Aniline to Diphenylurea with Ionic Liquids

    DEFF Research Database (Denmark)

    Zahrtmann, Nanette; Claver, Carmen; Godard, Cyril

    2018-01-01

    A catalytic system for the selective oxidative carbonylation of aniline to diphenylurea based on Pd complexes in combination with imidazolium ionic liquids is presented. Both oxidants, Pd complexes and ionic liquids affect the activity of the reaction while the choice of oxidant determines...

  16. PHENOLIC COMPOUNDS OF WATER-ETHANOLIC EXTRACT OF MENTHA LONGIFOLIA L

    Directory of Open Access Journals (Sweden)

    O. A. Grebennikova

    2014-01-01

    Full Text Available The article represents data about qualitative and quantitative composition of phenolic compounds in water-ethanol extract of perspective clone of Mentha longifolia L. of NBE-NSC selection. Phenolic substances content in water-ethanol extract amounted to 3003.3 mg/100g. 13 components were determined in the extract. The extract contains caffeic acid, chlorogenic acid isomers, rosmarinic acid and glycosides of luteolin. Rosmarinic acid (50.2% prevails among phenolic substances of Mentha longifolia extract. The conclusion is that the use of this extract is possible to create products with high biological value

  17. Radiation induced decomposition of chlorinated phenols in water

    Science.gov (United States)

    Getoff, N.; Solar, S.

    Experiments with 4-Cl-phenol as a model compound for pesticides were performed under steady-state conditions using deoxygenated solutions as well as such saturated with air, oxygen or oxygen mixed with ozone. The yield of Cl -ions serviced as an indicator for the degradation process. As main products of the first step of decomposition were identified: polyhydroxybenzenes, aldehydes and acids. The yield of aldehydes was studied as a function of the absorbed dose and substrate concentration. In the presence of ozone a chain-reaction of the oxidative pollutant degradation takes place. Transient absorption spectra and kinetics obtained by preliminary pulse radiolysis studies of 4-Cl-phenol in the presence of oxygen as well as probable reaction mechanisms are also presented.

  18. Radiation induced decomposition of chlorinated phenols in water

    International Nuclear Information System (INIS)

    Getoff, N.; Solar, S.

    1988-01-01

    Experiments with 4-Cl-phenol as a model compound for pesticides were performed under steady-state conditions using deoxygenated solutions as well as solutions saturated with air, oxygen or oxygen mixed with ozone. The yield of Cl - ions served as an indicator for the degradation process. As main products of the first step of decomposition were identified: polyhydroxybenzenes, aldehydes and acids. The yield of aldehydes was studied as a function of the absorbed dose and substrate concentration. In the presence of ozone a chain-reaction of the oxidative pollutant degradation takes place. Transient absorption spectra and kinetics obtained by preliminary pulse radiolysis studies of 4-Cl-phenol in the presence of oxygen as well as probable reaction mechanisms are also presented. (author)

  19. Selected oxidized fragrance terpenes are common contact allergens

    DEFF Research Database (Denmark)

    Matura, Mihaly; Sköld, Maria; Börje, Anna

    2005-01-01

    Terpenes are widely used fragrance compounds in fine fragrances, but also in domestic and occupational products. Terpenes oxidize easily due to autoxidation on air exposure. Previous studies have shown that limonene, linalool and caryophyllene are not allergenic themselves but readily form...... allergenic products on air-exposure. This study aimed to determine the frequency and characteristics of allergic reactions to selected oxidized fragrance terpenes other than limonene. In total 1511 consecutive dermatitis patients in 6 European dermatology centres were patch tested with oxidized fragrance...

  20. Synthesis, Characterization and Catalytic Performance in the Selective Oxidation of Alcohols by Metallophthalocyanines Supported on Zinc Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Amin Ebadi

    2017-01-01

    Full Text Available Unsubstituted phthalocyanines of Co, Fe and Mn supported on zinc oxide nanoparticles were prepared and were well characterized with X-ray diffraction and scanning electron microscopy. The oxidation of alcohols with tert-butylhydroperoxide, in the presence of metallophthalocyanines supported on zinc oxide nanoparticles was investigated. These MPc/ZnO nanocomposites were effective catalysts for the oxidation of alcohols such as cyclohexanol (83.4% conversion; 100% selectivity, benzyl alcohol (70.5% conversion; 100% selectivity and hexanol (62.3% conversion; 100% selectivity. The influences of reaction time, various metals and type of substrates and oxidants on the oxidation of alcohols were also studied, and optimized conditions were investigated. Under these reaction conditions, the activity of the catalysts decreases in the following order:  CoPc/nano-ZnO > FePc/nano-ZnO > MnPc/nano-ZnO. It shows that TBHP is more efficient oxidant due to weaker O-O bond with respect to H2O2 and the following order has been observed for the percentage of conversions of alcohols: 2º > benzylic > 1º.

  1. Characteristics and possibilities of software tool for metal-oxide surge arresters selection

    Directory of Open Access Journals (Sweden)

    Đorđević Dragan

    2012-01-01

    Full Text Available This paper presents a procedure for the selection of metal-oxide surge arresters based on the instructions given in the Siemens and ABB catalogues, respecting their differences and the characteristics and possibilities of the software tool. The software tool was developed during the preparation of a Master's thesis titled, 'Automation of Metal-Oxide Surge Arresters Selection'. An example is presented of the selection of metal-oxide surge arresters using the developed software tool.

  2. Comparison of phenolic compounds and antioxidant capacities of ...

    African Journals Online (AJOL)

    Yomi

    2012-10-09

    Oct 9, 2012 ... Thirty samples of sorghum beers “dolo” were selected from traditionally fermented household manufacturers .... anti-diarrhoeic properties (Awika and Rooney, 2004; ... investigation on levels of phenolic content and antioxidant.

  3. Removal of phenol from aqueous solution using rice straw as adsorbent

    Science.gov (United States)

    Sarker, Nandita; Fakhruddin, A. N. M.

    2017-06-01

    Phenol is an environmental pollutant; the present study was conducted to examine the adsorption of phenol by rice straw. For this purpose raw (untreated), physically treated (boiled and dried) and thermally treated (heated at 230 °C for 3 h to produce ash) rice straw were selected to determine phenol removal efficiency at different contact times and adsorbent dosages for 1 and Percentage of removal of phenol increased as the adsorbent dose increase. The removal efficiency increase in the order of: raw rice straw ash) rice straw. Langmuir and Freundlich isotherm was developed for 1 and ash) treated rice straw. Freundlich isotherm best fit the equilibrium data for 1 mm thermally treated rice straw. The results showed that thermally treated rice straw (ash) can be developed as a potential adsorbent for phenol removal from aqueous solution.

  4. Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina).

    Science.gov (United States)

    Varela, M Celeste; Arslan, Idris; Reginato, Mariana A; Cenzano, Ana M; Luna, M Virginia

    2016-07-01

    Plants exposed to drought stress, as usually occurs in Patagonian shrublands, have developed different strategies to avoid or tolerate the lack of water during their development. Production of phenolic compounds (or polyphenols) is one of the strategies used by some native species of adverse environments to avoid the oxidative damage caused by drought. In the present study the relationship between phenolic compounds content, water availability and oxidative damage were evaluated in two native shrubs: Larrea divaricata (evergreen) and Lycium chilense (deciduous) of Patagonian shrublands by their means and/or by multivariate analysis. Samples of both species were collected during the 4 seasons for the term of 1 year. Soil water content, relative water content, total phenols, flavonoids, flavonols, tartaric acid esters, flavan-3-ols, proanthocyanidins, antioxidant capacity and lipid peroxidation were measured. According to statistical univariate analysis, L. divaricata showed high production of polyphenols along the year, with a phenolic compound synthesis enhanced during autumn (season of greatest drought), while L. chilense has lower production of these compounds without variation between seasons. The variation in total phenols along the seasons is proportional to the antioxidant capacity and inversely proportional to lipid peroxidation. Multivariate analysis showed that, regardless their mechanism to face drought (avoidance or tolerance), both shrubs are well adapted to semi-arid regions and the phenolic compounds production is a strategy used by these species living in extreme environments. The identification of polyphenol compounds showed that L. divaricata produces different types of flavonoids, particularly bond with sugars, while L. chilense produces high amount of non-flavonoids compounds. These results suggest that flavonoid production and accumulation could be a useful indicator of drought tolerance in native species. Copyright © 2016 Elsevier Masson

  5. Bioinspired Syntheses of Dimeric Hydroxycinnamic Acids (Lignans and Hybrids, Using Phenol Oxidative Coupling as Key Reaction, and Medicinal Significance Thereof

    Directory of Open Access Journals (Sweden)

    George E. Magoulas

    2014-11-01

    Full Text Available Lignans are mainly dimers of 4-hydroxycinnamic acids (HCAs and reduced analogs thereof which are produced in Nature through phenol oxidative coupling (POC as the primary C-C or C-O bond-forming reaction under the action of the enzymes peroxidases and laccases. They present a large structural variety and particularly interesting biological activities, therefore, significant efforts has been devoted to the development of efficient methodologies for the synthesis of lignans isolated from natural sources, analogs and hybrids with other biologically interesting small molecules. We summarize in the present review those methods which mimic Nature for the assembly of the most common lignan skeleta by using either enzymes or one-electron inorganic oxidants to effect POC of HCAs and derivatives, such as esters and amides, or cross-POC of pairs of HCAs or HCAs with 4-hydrocycinnamyl alcohols. We, furthermore, provide outlines of mechanistic schemes accounting for the formation of the coupled products and, where applicable, indicate their potential application in medicine.

  6. Accumulation of solvent-soluble and solvent-insoluble antioxidant phenolics in edible bean sprouts: implication of germination

    Directory of Open Access Journals (Sweden)

    Ren-You Gan

    2016-08-01

    Full Text Available Background: Edible bean sprouts are popular fresh vegetables widely recognized for their nutritional quality. However, while their antioxidant capacity and phenolic composition in both solvent-soluble and solvent-insoluble extracts has not been systematically evaluated. Methods: The antioxidant capacity and phenolic composition in both solvent-soluble and solvent-insoluble fractions of 12 cultivars of edible bean sprouts were evaluated, and relationships of antioxidant capacity and total phenolic content were also analyzed. Results: Sprouts demonstrated a wide range of antioxidant capacity and total phenolic content, with lower but substantial antioxidant capacity and total phenolic content in the solvent-insoluble fractions. Highest levels were found in the green mung bean sprout. Phenolic compounds, such as catechin, ellagic acid, ferulic acid, gallic acid and p-coumaric acid were widely detected in these sprouts. Additionally, a positive correlation was discovered between antioxidant capacity and total phenolic content in these edible bean sprouts. Conclusions: Germination generally resulted in the accumulation of antioxidant phenolics in the most edible bean sprouts. Edible bean sprouts with high antioxidant phenolics can be valuable natural sources of dietary antioxidants for the prevention of oxidative stress-related chronic diseases.

  7. Toxicity of Phenol and Salt on the Phenol-Degrading Pseudomonas aeruginosa Bacterium

    Directory of Open Access Journals (Sweden)

    Samaei

    2016-08-01

    Full Text Available Background Phenolic compounds, phenol and phenol derivatives are environmental contaminants in some industrial effluents. Entrance of such substances into the environment causes severe environmental pollution, especially pollution of water resources. Biological treatment is a method that uses the potential of microorganisms to clean up contaminated environments. Among microorganisms, bacteria play an important role in treating wastewater contaminated with phenol. Objectives This study aimed to examine the effects of Pseudomonas aeruginosa on degradation of phenol in wastewater contaminated with this pollutant. Methods In this method, the growth rate of P. aeruginosa bacteria was investigated using different concentrations of salt and phenol. This is an experimental study conducted as a pilot in a batch reactor with different concentrations of phenol (25, 50, 100, 150, 300 and 600 mg L-1 and salt (0%, 0.5%, 1%, 2.5% and 5% during 9, 12 and 15 hours. During three days, from 5 experimental and 3 control samples, 18 samples were taken a day forming a sample size of 54 samples for each phenol concentration. Given the number of phenol concentrations (n = 6, a total of 324 samples were analyzed using a spectrophotometer at a wavelength of 600 nm. Results The phenol concentration of 600 mg L-1 was toxic for P. aeruginosa. However, at a certain concentration, it acts as a carbon source for P. aeruginosa. During investigations, it was found that increasing the concentration of phenol increases the rate of bacteria growth. The highest bacteria growth rate occurred was at the salt concentration of zero and phenol concentration of 600 mg L-1. Conclusions The findings of the current study indicate that at high concentrations of salt, the growth of bacteria reduces so that it stops at a concentration of 50 mg L-1 (5%. Thus, the bacterium is halotolerant or halophilic. With an increase in phenol concentration, the growth rate increased. Phenol toxicity appears

  8. Radiolysis ob benzene, toluene and phenol aqueous solutions utilizing high energy electron beam

    International Nuclear Information System (INIS)

    Gonzalez Vanderhaghen, D.E.

    1998-01-01

    In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 μA). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water

  9. DNA agarose gel electrophoresis for antioxidant analysis: Development of a quantitative approach for phenolic extracts.

    Science.gov (United States)

    Silva, Sara; Costa, Eduardo M; Vicente, Sandra; Veiga, Mariana; Calhau, Conceição; Morais, Rui M; Pintado, Manuela E

    2017-10-15

    Most of the fast in vitro assays proposed to determine the antioxidant capacity of a compound/extract lack either biological context or employ complex protocols. Therefore, the present work proposes the improvement of an agarose gel DNA electrophoresis in order to allow for a quantitative estimation of the antioxidant capacity of pure phenolic compounds as well as of a phenolic rich extract, while also considering their possible pro-oxidant effects. The result obtained demonstrated that the proposed method allowed for the evaluation of the protection of DNA oxidation [in the presence of hydrogen peroxide (H 2 O 2 ) and an H 2 O 2 /iron (III) chloride (FeCl 3 ) systems] as well as for the observation of pro-oxidant activities, with the measurements registering interclass correlation coefficients above 0.9. Moreover, this method allowed for the characterization of the antioxidant capacity of a blueberry extract while demonstrating that it had no perceived pro-oxidant effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Phenol degradation by TiO2 photocatalysts combined with different pulsed discharge systems.

    Science.gov (United States)

    Zhang, Yi; Lu, Jiani; Wang, Xiaoping; Xin, Qing; Cong, Yanqing; Wang, Qi; Li, Chunjuan

    2013-11-01

    Films of TiO2 nanotubes distributed over the inner surface of a discharge reactor cylinder (CTD) or adhered to a stainless steel electrode surface (PTD) in a discharge reactor were compared with a single-discharge (SD) system to investigate their efficiencies in phenol degradation. Morphology studies indicated that the TiO2 film was destroyed in the PTD system, but that there was no change in the CTD system after discharge. X-ray diffraction results revealed that the anatase phase of the original sample was preserved in the CTD system, but that an anatase-to-rutile phase transformation occurred in the PTD system after discharge. The highest efficiencies of phenol degradation and total organic carbon (TOC) mineralization were observed in the CTD system, and there was no decrease in phenol degradation efficiency upon reuse of a TiO2 film, indicating high catalysis activity and stability of the TiO2 photocatalysts in the combined treatment. TiO2 photocatalysts favored the formation of hydrogen peroxide and disfavored the formation of ozone. A greater degree of oxidation of intermediates and higher energy efficiency in phenol oxidation were observed with the TiO2-plasma systems, especially in the CTD system, compared to those with the SD system. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Ultrasound treatment on phenolic metabolism and antioxidant capacity of fresh-cut pineapple during cold storage.

    Science.gov (United States)

    Yeoh, Wei Keat; Ali, Asgar

    2017-02-01

    Ultrasound treatment at different power output (0, 25 and 29W) and exposure time (10 and 15min) was used to investigate its effect on the phenolic metabolism enzymes, total phenolic content and antioxidant capacity of fresh-cut pineapple. Following ultrasound treatment at 25 and 29W, the activity of phenylalanine ammonia lyase (PAL) was increased significantly (Ppineapple was significantly (Ppineapple. Results suggest that hormetic dosage of ultrasound treatment can enhance the activity of PAL and total phenolic content and hence the total antioxidant capacity to encounter with oxidative stress. Copyright © 2016. Published by Elsevier Ltd.

  12. Effect of ultrasonic waves on the water turbidity during the oxidation of phenol. Formation of (hydro)peroxo complexes.

    Science.gov (United States)

    Villota, Natalia; Lomas, Jose M; Camarero, Luis M

    2017-11-01

    Analysis of the kinetics of aqueous phenol oxidation by a sono-Fenton process reveals that the via involving ortho-substituted intermediates prevails: catechol (25.0%), hydroquinone (7.7%) and resorcinol (0.6%). During the oxidation, water rapidly acquires color that reaches its maximum intensity at the maximum concentration of p-benzoquinone. Turbidity formation occurs at a slower rate. Oxidant dosage determines the nature of the intermediates, being trihydroxylated benzenes (pyrogallol, hydroxyhydroquinone) and muconic acid the main precursors causing turbidity. It is found that the concentration of iron species and ultrasonic waves affects the intensity of the turbidity. The pathway of (hydro)peroxo-iron(II) complexes formation is proposed. Operating with 20.0-27.8mgFe 2+ /kW rates leads to formation of (hydro)peroxo-iron(II) complexes, which induce high turbidity levels. These species would dissociate into ZZ-muconic acid and ferrous ions. Applying relationships around 13.9mgFe 2+ /kW, the formation of (hydro)peroxo-iron(III) complexes would occur, which could react with carboxylic acids (2,5-dioxo-3-hexenedioic acid). That reaction induces turbidity slower. This is due to the organic substrate reacting with two molecules of the (hydro)peroxo complex. Therefore, it is necessary to accelerate the iron regeneration, intensifying the ultrasonic irradiation. Afterwards, this complex would dissociate into maleic acid and ferric ions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Gluten-Free Precooked Rice-Yellow Pea Pasta: Effect of Extrusion-Cooking Conditions on Phenolic Acids Composition, Selected Properties and Microstructure.

    Science.gov (United States)

    Bouasla, Abdallah; Wójtowicz, Agnieszka; Zidoune, Mohammed Nasereddine; Olech, Marta; Nowak, Renata; Mitrus, Marcin; Oniszczuk, Anna

    2016-05-01

    Rice/yellow pea flour blend (2/1 ratio) was used to produce gluten-free precooked pasta using a single-screw modified extrusion-cooker TS-45. The effect of moisture content (28%, 30%, and 32%) and screw speed (60, 80, and 100 rpm) on some quality parameters was assessed. The phenolic acids profile and selected pasta properties were tested, like pasting properties, water absorption capacity, cooking loss, texture characteristics, microstructure, and sensory overall acceptability. Results indicated that dough moisture content influenced all tested quality parameters of precooked pasta except firmness. Screw speed showed an effect only on some quality parameters. The extrusion-cooking process at 30% of dough moisture with 80 rpm is appropriate to obtain rice-yellow pea precooked pasta with high content of phenolics and adequate quality. These pasta products exhibited firm texture, low stickiness, and regular and compact interne structure confirmed by high score in sensory overall acceptability. © 2016 Institute of Food Technologists®

  14. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    OpenAIRE

    D?az-de-Cerio, Elixabet; Verardo, Vito; G?mez-Caravaca, Ana Mar?a; Fern?ndez-Guti?rrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds ...

  15. Olive oil and health effects: from epidemiological studies to the molecular mechanisms of phenolic fraction

    Directory of Open Access Journals (Sweden)

    Amiot Marie Josèphe

    2014-09-01

    Full Text Available Olive oil is a key component of the Mediterranean diet which is recognized to contribute to its health benefits. Recent prospective studies point towards a protective effect from an olive oil-rich diet in relation to the incidence of cardiovascular diseases and an improvement of cardiometabolic markers such as blood pressure, glycaemia and dyslipidemia, notably by reducing LDL cholesterol and LDL oxidation. The role of minor phenolic fraction was evidenced in intervention trials where lipid profiles showed greater improvement in participants receiving olive oil with higher phenolic content. The phenolic fraction of olive oil is composed of simple phenols (hydroxytyrosol, phenolic secoiridoids (oleuropein aglycone, lignans (pinoresinol, flavonoids and hydroxyisochromans. All these compounds have diverse biological activities that are described in the present review, supporting the protective effects of olive oil against degenerative diseases found in large cohorts monitored in Southern European countries.

  16. Phenolic Molding Compounds

    Science.gov (United States)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  17. Analysis of phenolic compounds for poultry feed by supercritical fluid chromatography

    Science.gov (United States)

    Phenolic compounds have generated interest as components in functional feed formulations due to their anti-oxidant, anti-microbial, and anti-fungal properties. These compounds may have greater significance in the future as the routine use of antibiotics is reduced and the prevalence of resistant bac...

  18. Isolation and Identification of Phenol Degrader Bacteria from Sirjan Golgohar Mine Effluent

    Directory of Open Access Journals (Sweden)

    Mehdi Hassanshhian

    2016-03-01

    Full Text Available Phenol and phenolic compounds are highly toxic substances that are found as monoaromatic compounds in various industrial effluents from oil refineries, petrochemical plants, (coal mines, and phenol resin plants. Their discharge into the environment, especially in water resources, causes serious toxicity. Traditionally, physicochemical methods have been used for the removal of phenol and phenolic compounds. Nowadays, bioremediation is known to be the best method for phenol removal from wastewater. The objective of the present study was twofold: isolation and identification of phenol degrading bacteria in the effluent from Golgohar Mine in Sirjan. For this purpose, samples were collected from different sections at Golgohar Mine and its effluent. Phenol degrading bacteria were isolated via enrichment of the samples in the Bushnell Hass medium with phenol used as the only source of carbon and energy. The predominant phenol degrader bacteria were selected by measuring turbidity at 600 nm. The bacteria were subsequently identified by amplification of 16S rRNA with specific primers and PCR sequencing. In this study, 17 strains of phenol degrader bacteria were isolated in soil and wastewater samples collected from different zones of the mine. Screening methods confirmed that 4 strains exhibit a better capability for phenol degradation as evidenced by their capability to degrade 0.4 g/l of phenol. Molecular identification showed that these bacteria belong to the species Pesudomonas sp, Nitrratireductor sp., and Salegentibacter sp. The results also show that the effluent from Golgohar Mine in Sirjan contains many phenol degrading bacteria. The use of these bacteria in the treatment process may lead to a significant reduction in phenol pollution in the mineral effluent.

  19. Efficient photocatalytic degradation of phenol in aqueous solution by SnO{sub 2}:Sb nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M., E-mail: Abdullah.Al.Hamdi@lut.fi [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Chemistry Department, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Bora, Tanujjal [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Dutta, Joydeep [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Functional Materials Division, ICT, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 KistaStockholm (Sweden)

    2016-05-01

    Highlights: • Sb doped SnO{sub 2} nanoparticles were synthesized using sol–gel process. • Photocatalytic degradation of phenol were studies using SnO{sub 2}:Sb nanoparticles. • Under solar light phenol was degraded within 2 h. • Phenol mineralization and intermediates were investigated by using HPLC. - Abstract: Photodegradation of phenol in the presence of tin dioxide (SnO{sub 2}) nanoparticles under UV light irradiation is known to be an effective photocatalytic process. However, phenol degradation under solar light is less effective due to the large band gap of SnO{sub 2}. In this study antimony (Sb) doped tin dioxide (SnO{sub 2}) nanoparticles were prepared at a low temperature (80 °C) by a sol–gel method and studied for its photocatalytic activity with phenol as a test contaminant. The catalytic degradation of phenol in aqueous media was studied using high performance liquid chromatography and total organic carbon measurements. The change in the concentration of phenol affects the pH of the solution due to the by-products formed during the photo-oxidation of phenol. The photoactivity of SnO{sub 2}:Sb was found to be a maximum for 0.6 wt.% Sb doped SnO{sub 2} nanoparticles with 10 mg L{sup −1} phenol in water. Within 2 h of photodegradation, more than 95% of phenol could be removed under solar light irradiation.

  20. Effect of solvent on the extraction of phenolic compounds and antioxidant capacity of hazelnut kernel.

    Science.gov (United States)

    Fanali, Chiara; Tripodo, Giusy; Russo, Marina; Della Posta, Susanna; Pasqualetti, Valentina; De Gara, Laura

    2018-03-22

    Hazelnut kernel phenolic compounds were recovered applying two different extraction approaches, namely ultrasound-assisted solid/liquid extraction (UA-SLE) and solid-phase extraction (SPE). Different solvents were tested evaluating total phenolic compounds and total flavonoids contents together to antioxidant activity. The optimum extraction conditions, in terms of the highest value of total phenolic compounds extracted together to other parameters like simplicity and cost were selected for method validation and individual phenolic compounds analysis. The UA-SLE protocol performed using 0.1 g of defatted sample and 15 mL of extraction solvent (1 mL methanol/1 mL water/8 mL methanol 0.1% formic acid/5 mL acetonitrile) was selected. The analysis of hazelnut kernel individual phenolic compounds was obtained by HPLC coupled with DAD and MS detections. Quantitative analysis was performed using a mixture of six phenolic compounds belonging to phenolic classes' representative of hazelnut. Then, the method was fully validated and the resulting RSD% values for retention time repeatability were below 1%. A good linearity was obtained giving R 2 no lower than 0.997.The accuracy of the extraction method was also assessed. Finally, the method was applied to the analysis of phenolic compounds in three different hazelnut kernel varieties observing a similar qualitative profile with differences in the quantity of detected compounds. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pd(II)-Catalyzed Ortho- or Meta-C–H Olefination of Phenol Derivatives

    Science.gov (United States)

    Dai, Hui-Xiong; Li, Gang; Zhang, Xing-Guo; Stepan, Antonia F.

    2013-01-01

    A combination of weakly coordinating auxiliaries and ligand acceleration allows for the development of both ortho- and meta-selective C–H olefination of phenol derivatives. These reactions demonstrate the feasibility of directing C–H functionalizations when functional groups are distal to target C–H bonds. The meta-C–H functionalization of electron-rich phenol derivatives is unprecedented and orthogonal to previous electrophilic substitution of phenols in terms of regioselectivity. These methods are also applied to functionalize α-phenoxyacetic acids, a fibrate class of drug scaffolds. PMID:23614807

  2. Nanocarbons as catalyst for selective oxidation of acrolein to acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Frank, B.; Blume, R.; Rinaldi, A.; Trunschke, A.; Schloegl, R. [Fritz Haber Institute of the Max Planck Society, Berlin (Germany). Dept. of Inorganic Chemistry

    2011-07-01

    Selective oxidations are key steps of industrial oil and gas processing for the synthesis of high-value chemicals. Mixed metal oxides based on redox active V or Mo are frequently used for oxidative C-H bond activation. However, multiple processes require precious metals or suffer from low product selectivity demanding an ongoing search for cost-effective alternatives. Recently, the nanostructured carbon was reported to catalyze the metal-free selective alkane activation by oxidative dehydrogenation (ODH). Electron-rich surface carbonyls coordinate this reaction and mimic the active oxygen species in metal oxide catalysts. Here we show that the graphitic carbon, beyond ODH, has the potential to selectively mediate the insertion of an oxygen atom into an organic molecule, i.e., acrolein. Multi-step atom rearrangements considerably exceed the mechanistic complexity of hydrogen abstraction and were so far believed to be the exclusive domain of metal (oxide) catalysis. In the carbon catalyzed process, the nucleophilic oxygen atoms terminating the graphite (0001) surface abstract the formyl hydrogen and the activated aldehyde gets oxidized by epoxide-type mobile oxygen, thus the sp{sup 2} carbon acts as a bifunctional catalyst. Substantial similarities between the metal oxide- and carbon-catalyzed reactions could be identified. Our results shed light on a rarely known facet of applications of nanostructured carbon materials being decorated with diverse oxygen functionalities to coordinate complex catalytic processes. We could successfully transfer the results obtained from the graphite model to carbon nanotubes (CNTs) providing a higher surface area, defect density, and intrinsic activity, to substantially increase the reactivity per catalyst volume. Indeed, low dimensional nanostructured carbon is a highly flexible and robust material which can be modified in a multiple manner to optimize its properties with respect to the intended application. The exploration of

  3. Revealing the fate of the phenylcoumaran linkage during lignin oxidation reactions.

    Science.gov (United States)

    Lahive, Ciaran W; Lancefield, Christopher S; Codina, Anna; Kamer, Paul C J; Westwood, Nicholas J

    2018-03-14

    The fate of most lignin linkages, other than the β-O-4, under selective oxidation conditions is largely unknown. In this work we use advanced β-5 lignin model compounds to identify the fate of phenylcoumaran units in a softwood lignin during oxidation with DDQ. By using model compounds combined with detailed characterisation of the oxidised lignin polymer using HSQC and HMBC NMR we show that phenylcoumarones are a major product, and therefore constitute a novel non-native β-5 linkage in oxidised lignins. Additionally, the reactivity of these units in lignin led us to further investigate their connectivity in lignin, showing that they are found as both phenolic and etherified units. The findings and approach developed here will help improve the efficiency of selective oxidative lignin depolymerisation processes, particularly those aimed at the upgrading of softwood lignin in which phenylcoumarans are a major linkage.

  4. Degradation of phenol with using of Fenton-like Processes from water

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2015-08-01

    Full Text Available Phenol is one of the serious pollutants from the chemical and petrochemical industries. This pollutant due to its convoluted structure is resistant to biodegradation. One of the methods that are useful to remove this pollutant is advanced oxidation (AOP. A laboratory scale study was done on a synthetic wastewater containing phenol. All experiments were done in batch conditions and effect of variables pH, amount of hydrogen peroxide, iron dosage, contact time and an initial concentration on the phenol removal were tested. The remaining phenol concentration was evaluated using the DR-5000 device. In order to effect of these parameters, the experiment was performance at pH 2 to 6, 5 to 45 ml/ml of peroxide, and time of 5 to 60 minutes with 2 to 15 g/ml iron (Fe˚. The optimum pH, the ratio of hydrogen, Fe˚and time were 3, 15 ml, 8g and 5 minutes respectively. Chemical oxygen demand (COD index was chosen as the parameter for evaluation in this study. Result showed that mineralization of phenol was not complete. The COD removal efficiency was obtained 71%. According to the results of this study, Fenton-like process can be used for conversion organic resistant compounds to other compounds with lower toxicity.

  5. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan; Shevate, Rahul; Kumar, Mahendra; Peinemann, Klaus-Viktor

    2015-01-01

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  6. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan

    2015-07-31

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  7. Total phenolic compounds and tocopherols profiles of seven olive oil varieties grown in the south-west of Spain.

    Science.gov (United States)

    Franco, Maria Nieves; Galeano-Díaz, Teresa; Sánchez, Jacinto; De Miguel, Concha; Martín-Vertedor, Daniel

    2014-01-01

    This article reports about the presence of some of the components of minor fraction of virgin olive oils, polyphenols and tocopherols, in several of the VOO varieties from Extremadura. The relationship between both classes of compounds and the oxidative stability of the oils is also examined. The levels of total phenols, α, β, and γ tocopherols showed significant differences (ptocopherol was the most representative in the seven varieties (95.97 %) and ranged from (288 - 170) to (485 - 244) mg/kg in the Morisca and Carrasqueña varieties respectively. On the other hand, a positive high lineal correlation was observed between oxidative stability and studied along the maturity of the fruit and the total phenolic compounds (natural antioxidants) (r(2)>0.90; ptocopherol (r(2)>0.85; ptocopherol (r(2)>0.70; ptocopherols (r(2)>0.87; ptocopherol fraction contributed equally to the oxidative stability of all the VOO whereas the largest contribution was provided by the oil phenolic fraction, as it was the case of the Carrasqueña variety.

  8. Phenols removal using ozonation-adsorption with granular activated carbon (GAC) in rotating packed bed reactor

    Science.gov (United States)

    Karamah, E. F.; Leonita, S.; Bismo, S.

    2018-01-01

    Synthetic wastewater containing phenols was treated using combination method of ozonation-adsorption with GAC (Granular Activated Carbon) in a packed bed rotating reactor. Ozone reacts quickly with phenol and activated carbon increases the oxidation process by producing hydroxyl radicals. Performance parameters evaluated are phenol removal percentage, the quantity of hydroxyl radical formed, changes in pH and ozone utilization, dissolved ozone concentration and ozone concentration in off gas. The performance of the combination method was compared with single ozonation and single adsorption. The influence of GAC dose and initial pH of phenols were evaluated in ozonation-adsorption method. The results show that ozonation-adsorption method generates more OH radicals than a single ozonation. Quantity of OH radical formation increases with increasing pH and quantity of the GAC. The combination method prove better performance in removing phenols. At the same operation condition, ozonation-adsorption method is capable of removing of 78.62% phenols as compared with single ozonation (53.15%) and single adsorption (36.67%). The increasing percentage of phenol removal in ozonation-adsorption method is proportional to the addition of GAC dose, solution pH, and packed bed rotator speed. Maximum percentage of phenol removal is obtained under alkaline conditions (pH 10) and 125 g of GAC

  9. Radiolysis of Aqueous Benzene Solutions in the Presence of Inorganic Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H

    1964-07-15

    Aqueous 0.1 N alkaline solutions of benzene have been irradiated with Co {gamma}-rays in the presence of various inorganic oxides. The addition to the solution of silica gel, copper(ll) oxide and chromium(lll) oxide did not increase the yield of phenol. When chromium(lll) oxide gel, zinc oxide or titanium dioxide were added, we obtained a 9 - 13 per cent increase, and the addition of uranium dioxide and thorium dioxide caused a 31 and 39 per cent increase respectively. The increase of the phenol yield was related to the energy absorbed by the solid, and G{sub ox} values defined in this way were calculated as follows: G{sub ZnO} = 4.0, G{sub TiO{sub 2}} = 3.7, a G{sub UO{sub 2}} = 6.4, G{sub ThO{sub 2}} = 8.0. The specific surface areas of the oxides were determined and the possibility that the increase of the phenol yield may be dependent on this quantity is discussed.

  10. Radiolysis of Aqueous Benzene Solutions in the Presence of Inorganic Oxides

    International Nuclear Information System (INIS)

    Christensen, H.

    1964-07-01

    Aqueous 0.1 N alkaline solutions of benzene have been irradiated with Co γ-rays in the presence of various inorganic oxides. The addition to the solution of silica gel, copper(ll) oxide and chromium(lll) oxide did not increase the yield of phenol. When chromium(lll) oxide gel, zinc oxide or titanium dioxide were added, we obtained a 9 - 13 per cent increase, and the addition of uranium dioxide and thorium dioxide caused a 31 and 39 per cent increase respectively. The increase of the phenol yield was related to the energy absorbed by the solid, and G ox values defined in this way were calculated as follows: G ZnO = 4.0, G TiO 2 = 3.7, a G UO 2 = 6.4, G ThO 2 = 8.0. The specific surface areas of the oxides were determined and the possibility that the increase of the phenol yield may be dependent on this quantity is discussed

  11. Health promoting and sensory properties of phenolic compounds in food

    Directory of Open Access Journals (Sweden)

    Lívia de Lacerda de Oliveira

    2014-12-01

    Full Text Available Phenolic compounds have been extensively studied in recent years. The presence of these compounds in various foods has been associated with sensory and health promoting properties. These products from the secondary metabolism of plants act as defense mechanisms against environmental stress and attack by other organisms. They are divided into different classes according to their chemical structures. The objective of this study was to describe the different classes of phenolic compounds, the main food sources and factors of variation, besides methods for the identification and quantification commonly used to analyze these compounds. Moreover, the role of phenolic compounds in scavenging oxidative stress and the techniques of in vitro antioxidant evaluation are discussed. In vivo studies to evaluate the biological effects of these compounds and their impact on chronic disease prevention are presented as well. Finally, it was discussed the role of these compounds on the sensory quality of foods.

  12. Modelling the change in the oxidation coefficient during the aerobic ...

    African Journals Online (AJOL)

    In this work the aerobic degradation of phenol by acclimated activated sludge was studied. Results demonstrate that while the phenol removal rate by acclimated activated sludge follows the Monod model, the oxygen uptake rate obeys a Haldane-type equation. The phenol oxidation coefficient obtained at different intial ...

  13. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products.

    Science.gov (United States)

    Liu, Haizhou; Bruton, Thomas A; Li, Wei; Buren, Jean Van; Prasse, Carsten; Doyle, Fiona M; Sedlak, David L

    2016-01-19

    Sulfate radical (SO4(•-)) is a strong, short-lived oxidant that is produced when persulfate (S2O8(2-)) reacts with transition metal oxides during in situ chemical oxidation (ISCO) of contaminated groundwater. Although engineers are aware of the ability of transition metal oxides to activate persulfate, the operation of ISCO remediation systems is hampered by an inadequate understanding of the factors that control SO4(•-) production and the overall efficiency of the process. To address these shortcomings, we assessed the stoichiometric efficiency and products of transition metal-catalyzed persulfate oxidation of benzene with pure iron- and manganese-containing minerals, clays, and aquifer solids. For most metal-containing solids, the stoichiometric efficiency, as determined by the loss of benzene relative to the loss of persulfate, approached the theoretical maximum. Rates of production of SO4(•-) or hydroxyl radical (HO(•)) generated from radical chain reactions were affected by the concentration of benzene, with rates of S2O8(2-) decomposition increasing as the benzene concentration increased. Under conditions selected to minimize the loss of initial transformation products through reaction with radicals, the production of phenol only accounted for 30%-60% of the benzene lost in the presence of O2. The remaining products included a ring-cleavage product that appeared to contain an α,β-unsaturated aldehyde functional group. In the absence of O2, the concentration of the ring-cleavage product increased relative to phenol. The formation of the ring-cleavage product warrants further studies of its toxicity and persistence in the subsurface.

  14. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants

    Czech Academy of Sciences Publication Activity Database

    Kováčik, J.; Grúz, Jiří; Bačkor, M.; Strnad, Miroslav; Repčák, M.

    2009-01-01

    Roč. 28, č. 1 (2009), s. 135-143 ISSN 0721-7714 Institutional research plan: CEZ:AV0Z50380511 Keywords : Chamomile * Oxidative stress * Phenolic metabolism Subject RIV: CE - Biochemistry Impact factor: 2.301, year: 2009

  15. Selected oxidized fragrance terpenes are common contact allergens.

    Science.gov (United States)

    Matura, Mihaly; Sköld, Maria; Börje, Anna; Andersen, Klaus E; Bruze, Magnus; Frosch, Peter; Goossens, An; Johansen, Jeanne D; Svedman, Cecilia; White, Ian R; Karlberg, Ann-Therese

    2005-06-01

    Terpenes are widely used fragrance compounds in fine fragrances, but also in domestic and occupational products. Terpenes oxidize easily due to autoxidation on air exposure. Previous studies have shown that limonene, linalool and caryophyllene are not allergenic themselves but readily form allergenic products on air-exposure. This study aimed to determine the frequency and characteristics of allergic reactions to selected oxidized fragrance terpenes other than limonene. In total 1511 consecutive dermatitis patients in 6 European dermatology centres were patch tested with oxidized fragrance terpenes and some oxidation fractions and compounds. Oxidized linalool and its hydroperoxide fraction were found to be common contact allergens. Of the patients tested, 1.3% showed a positive reaction to oxidized linalool and 1.1% to the hydroperoxide fraction. About 0.5% of the patients reacted to oxidized caryophyllene whereas 1 patient reacted to oxidized myrcene. Of the patients reacting to the oxidized terpenes, 58% had fragrance-related contact allergy and/or a positive history for adverse reaction to fragrances. Autoxidation of fragrance terpenes contributes greatly to fragrance allergy, which emphasizes the need of testing with compounds that patients are actually exposed to and not only with the ingredients originally applied in commercial formulations.

  16. Berry Phenolic Antioxidants – Implications for Human Health?

    Science.gov (United States)

    Olas, Beata

    2018-01-01

    Antioxidants present in the diet may have a significant effect on the prophylaxis and progression of various diseases associated with oxidative stress. Berries contain a range of chemical compounds with antioxidant properties, including phenolic compounds. The aim of this review article is to provide an overview of the current knowledge of such phenolic antioxidants, and to discuss whether these compounds may always be natural gifts for human health, based on both in vitro and in vivo studies. It describes the antioxidant properties of fresh berries (including aronia berries, grapes, blueberries, sea buckthorn berries, strawberries and other berries) and their various products, especially juices and wines. Some papers report that these phenolic compounds may sometimes behave like prooxidants, and sometimes demonstrate both antioxidant and prooxidant activity, while others note they do not behave the same way in vitro and in vivo. However, no unwanted or toxic effects (i.e., chemical, hematological or urinary effect) have been associated with the consumption of berries or berry juices or other extracts, especially aronia berries and aronia products in vivo, and in vitro, which may suggest that the phenolic antioxidants found in berries are natural gifts for human health. However, the phenolic compound content of berries and berry products is not always well described, and further studies are required to determine the therapeutic doses of different berry products for use in future clinical studies. Moreover, further experiments are needed to understand the beneficial effects reported so far from the mechanistic point of view. Therefore, greater attention should be paid to the development of well-controlled and high-quality clinical studies in this area. PMID:29662448

  17. Enzyme-assisted extraction of antioxidative phenols from black current juice press residues (Ribes nigrum)

    DEFF Research Database (Denmark)

    Landbo, Anne-Katrine Regel; Meyer, Anne Boye Strunge

    2001-01-01

    Enzymatic release of phenolic compounds from pomace remaining from black currant (Ribes nigrum) juice production was examined. Treatment with each of the commercial pectinolytic enzyme preparations Grindamyl pectinase, Macer8 FJ, Macer8 R, and Pectinex BE, as well as treatment with Novozym 89 pro...... pomace extracts all exerted a pronounced antioxidant activity against human LDL oxidation in vitro when tested at equimolar phenol concentrations of 7.5-10 muM....... protease, significantly increased plant cell wall breakdown of the pomace. Each of the tested enzyme preparations except Grindamyl pectinase also significantly enhanced the amount of phenols extracted from the pomace. Macer8 FJ and Macer8 R decreased the extraction yields of anthocyanins, whereas Pectinex...

  18. Radiation decomposition of alcohols and chloro phenols in micellar systems

    International Nuclear Information System (INIS)

    Moreno A, J.

    1998-01-01

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  19. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  20. Detection of Total Phenol in Green and Black Teas by Flow Injection System and Unmodified Screen Printed Electrode

    Directory of Open Access Journals (Sweden)

    Ivanildo Luiz de Mattos

    2010-01-01

    Full Text Available A flow injection system using an unmodified gold screen-printed electrode was employed for total phenol determination in black and green teas. In order to avoid passivation of the electrode surface due to the redox reaction, preoxidation of the sample was realized by hexacyanoferrate(III followed by addition of an EDTA solution. The complex formed in the presence of EDTA minimizes or avoids polymerization of the oxidized phenols. The previously filtered tea sample and hexacyanoferrate(III reagent were introduced simultaneously into two-carrier streams producing two reproducible zones. At confluence point, the pre-oxidation of the phenolic compounds occurs while this zone flows through the coiled reactor and receives the EDTA solution before phenol detection. The consumption of ferricyanide was monitorized at 360 mV versus Ag/AgCl and reflected the total amount of phenolic compounds present in the sample. Results were reported as gallic acid equivalents (GAEs. The proposed system is robust, versatile, environmentally-friendly (since the reactive is used only in the presence of the sample, and allows the analysis of about 35–40 samples per hour with detection limit = 1 mg/L without the necessity for surface cleaning after each measurement. Precise results are in agreement with those obtained by the Folin-Ciocalteu method.

  1. Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge.

    Science.gov (United States)

    Xi, Jun; He, Lang; Yan, Liang-Gong

    2017-09-01

    Pomegranate peel, a waste generated from fruit processing industry, is a potential source of phenolic compounds that are known for their anti-oxidative properties. In this study, a continuous high voltage electrical discharge (HVED) extraction system was for the first time designed and optimized for phenolic compounds from pomegranate peel. The optimal conditions for HVED were: flow rate of materials 12mL/min, electrodes gap distance 3.1mm (corresponding to 29kV/cm of electric field intensity) and liquid to solid ratio 35mL/g. Under these conditions, the experimental yield of phenolic compounds was 196.7±6.4mg/g, which closely agreed with the predicted value (199.83mg/g). Compared with the warm water maceration, HVED method possessed higher efficiency for the extraction of phenolic compounds. The results demonstrated that HVED technique could be a very effective method for continuous extraction of natural compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Application of GRA method, dynamic analysis and fuzzy set theory in evaluation and selection of emergency treatment technology for large scale phenol spill incidents

    Science.gov (United States)

    Zhao, Jingjing; Yu, Lean; Li, Lian

    2017-05-01

    Select an appropriate technology in an emergency response is a very important issue with various kinds of chemical contingency spills frequently taking place. Due to the complexity, fuzziness and uncertainties of the chemical contingency spills, the theory of GRA method, dynamic analysis combined with fuzzy set theory will be appropriately applied to selection and evaluation of emergency treatment technology. Finally, a emergency phenol spill accidence occurred in highway is provided to illustrate the applicability and feasibility of the proposed methods.

  3. Daily intake estimation of phenolic compounds in the Spanish population

    Directory of Open Access Journals (Sweden)

    Inma Navarro González

    2017-12-01

    Full Text Available Introduction: Phenolic compounds are a large group of molecules present in plants with a diversity of chemical structures and biological activity. The objective of this study was to quantify the intake of phenolic compounds of the Spanish population. Material and Methods: The most consumed foods from vegetal origin in Spain were selected. These were picked up in the National Survey of Spanish Dietary Intake (ENIDE of 2011, edited by AESAN (Spanish Agency for Food Safety and Nutrition as a basis for quantifying the intake of phenolic compounds of Spaniards using the Phenol-Explorer database. Results: This database has allowed to estimate the average intake of polyphenols per day of Spaniards, which is 1365.1mg. Conclusions: The average intake of total polyphenols of Spaniards could have a protective effect against the mortality rate and exercise a preventive function on some chronic diseases along with other healthy lifestyle habits.

  4. Sorption of a phenols mixture in aqueous solution with activated carbon

    International Nuclear Information System (INIS)

    Mejia M, D.

    2004-01-01

    The constant population growth and the quick industrialization have caused severe damages to our natural aquifer resources for a great variety of organic and inorganic pollutants. Among these they are those phenol compounds that are highly toxic, resistant (to the degradation chemistry) and poorly biodegradable. The phenolic compounds is used in a great variety of industries, like it is the production of resins, nylon, plastifiers, anti-oxidants, oil additives, drugs, pesticides, colorants, explosives, disinfectants and others. The disseminated discharges or effluents coming from the industrial processes toward lakes and rivers are causing a growing adverse effect in the environment, as well as a risk for the health. Numerous studies exist on the phenols removal and phenols substituted for very varied techniques, among them they are the adsorption in activated carbon. This finishes it has been used successfully for the treatment of residual waters municipal and industrial and of drinking waters and it is considered as the best technique available to eliminate organic compounds not biodegradable and toxic present in aqueous solution (US EPA, 1991). However a little information exists on studies carried out in aqueous systems with more of a phenolic compound. The activated carbon is broadly used as adsorbent due to its superficial properties in the so much treatment of water as of aqueous wastes, adsorbent for the removal of organic pollutants. The main objective of this work is the adsorption of a aqueous mixture of phenol-4 chloro phenol of different concentrations in activated carbon of mineral origin of different meshes and to diminish with it their presence in water. The experiments were carried out for lots, in normal conditions of temperature and pressure. The experimental results show that the removal capacity depends so much of the superficial properties of the sorbent like of the physical properties and chemical of the sorbate. The isotherms were carried

  5. Nitrogen-Doped Carbonaceous Materials for Removal of Phenol from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Magdalena Hofman

    2012-01-01

    Full Text Available Carbonaceous material (brown coal modified by pyrolysis, activation, and enrichment in nitrogen, with two different factor reagents, have been used as adsorbent of phenol from liquid phase. Changes in the phenol content in the test solutions were monitored after subsequent intervals of adsorption with selected adsorbents prepared from organic materials. Significant effect of nitrogen present in the adsorbent material on its adsorption capacity was noted. Sorption capacity of these selected materials was found to depend on the time of use, their surface area, and pore distribution. A conformation to the most well-known adsorption isotherm models, Langmuir, and Freundlich ones, confirms the formation of mono- and heterolayer solute (phenol coverage on the surface of the adsorbent applied herein. The materials proposed as adsorbents of the aqueous solution contaminants were proved effective, which means that the waste materials considered are promising activated carbon precursors for liquid phase adsorbents for the environmental protection.

  6. Bioaccessibility and bioavailability of phenolic compounds in bread: a review.

    Science.gov (United States)

    Angelino, Donato; Cossu, Marta; Marti, Alessandra; Zanoletti, Miriam; Chiavaroli, Laura; Brighenti, Furio; Del Rio, Daniele; Martini, Daniela

    2017-07-19

    Cereal-based products, like breads, are a vehicle for bioactive compounds, including polyphenols. The health effects of polyphenols like phenolic acids (PAs) are dependent on their bioaccessibility and bioavailability. The present review summarizes the current understanding of potential strategies to improve phenolic bioaccessibility and bioavailability and the main findings of in vitro and in vivo studies investigating these strategies applied to breads, including the use of raw ingredients with greater phenolic content and different pre-processing technologies, such as fermentation and enzymatic treatment of ingredients. There is considerable variability between in vitro studies, mainly resulting from the use of different methodologies, highlighting the need for standardization. Of the few in vivo bioavailability studies identified, acute, single-dose studies demonstrate that modifications to selected raw materials and bioprocessing of bran could increase the bioavailability, but not necessarily the net content, of bread phenolics. The two medium-term identified dietary interventions also demonstrated greater phenolic content, resulting from the modification of the raw materials used. Overall, the findings suggest that several strategies can be used to develop new bread products with greater phenolic bioaccessibility and bioavailability. However, due to the large variability and the few studies available, further investigations are required to determine better the usefulness of these innovative processes.

  7. Selection criteria for oxidation method in total organic carbon measurement.

    Science.gov (United States)

    Yoon, GeunSeok; Park, Sang-Min; Yang, Heuiwon; Tsang, Daniel C W; Alessi, Daniel S; Baek, Kitae

    2018-05-01

    During the measurement of total organic carbon (TOC), dissolved organic carbon is converted into CO 2 by using high temperature combustion (HTC) or wet chemical oxidation (WCO). However, the criteria for selecting the oxidation methods are not clear. In this study, the chemical structures of organic material were considered as a key factor to select the oxidation method used. Most non-degradable organic compounds showed a similar oxidation efficiency in both methods, including natural organic compounds, dyes, and pharmaceuticals, and thus both methods are appropriate to measure TOC in waters containing these compounds. However, only a fraction of the carbon in the halogenated compounds (perfluorooctanoic acid and trifluoroacetic acid) were oxidized using WCO, resulting in measured TOC values that are considerably lower than those determined by HTC. This result is likely due to the electronegativity of halogen elements which inhibits the approach of electron-rich sulfate radicals in the WCO, and the higher bond strength of carbon-halogen pairs as compared to carbon-hydrogen bonds, which results in a lower degree of oxidation of the compounds. Our results indicate that WCO could be used to oxidize most organic compounds, but may not be appropriate to quantify TOC in organic carbon pools that contain certain halogenated compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Investigation of selective oxidation in bake hardenable steel

    International Nuclear Information System (INIS)

    Madeira, Laureanny; Lins, Vanessa Cunha Freitas; Faria, Guilherme Augusto de; Guimaraes, Juliana Porto; Alvarenga, Evandro de Azevedo; Vilela, Jose Mario Carneiro

    2010-01-01

    The present work aims to characterize a steel bake hardenable (BH), annealed in three different dew points (-60°C, -30°C and 0°C), as the occurrence of selective oxidation, using the techniques of X-ray photo electronic spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES) and atomic force microscopy (AFM). The analysis by XPS showed that the alloying elements oxidized at different intensities for each dew point. Analysis by GDOES revealed that the surface and subsurface concentrations of these elements also varied with the dew point. The AFM images revealed that the size and shape of the oxides were different for each dew point. At the dew points of -30°C and -60°C the formation of oxides was local, while at 0°C the growth of oxides occurred uniform y on the surface of steels. (author)

  9. Phenolation of vegetable oils

    Directory of Open Access Journals (Sweden)

    ZORAN S. PETROVIĆ

    2011-04-01

    Full Text Available Novel bio-based compounds containing phenols suitable for the syn­thesis of polyurethanes were prepared. The direct alkylation of phenols with different vegetable oils in the presence of superacids (HBF4, triflic acid as ca­talysts was studied. The reaction kinetics was followed by monitoring the de­crease of the double bond content (iodine value with time. In order to under­stand the mechanism of the reaction, phenol was alkylated with model com­pounds. The model compounds containing one internal double bond were 9-oc­tadecene and methyl oleate and those with three double bonds were triolein and high oleic safflower oil (82 % oleic acid. It was shown that the best structures for phenol alkylation are fatty acids with only one double bond (oleic acid. Fatty acids with two double bonds (linoleic acid and three double bonds (lino­lenic acid lead to polymerized oils by a Diels–Alder reaction, and to a lesser extent to phenol alkylated products. The reaction product of direct alkylation of phenol with vegetable oils is a complex mixture of phenol alkylated with poly­merized oil (30–60 %, phenyl esters formed by transesterification of phenol with triglyceride ester bonds (<10 % and unreacted oil (30 %. The phenolated vegetable oils are new aromatic–aliphatic bio-based raw materials suitable for the preparation of polyols (by propoxylation, ethoxylation, Mannich reactions for the preparation of polyurethanes, as intermediates for phenolic resins or as bio-based antioxidants.

  10. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe2+-induced pancreatic oxidative stress.

    Science.gov (United States)

    Afolabi, Olakunle Bamikole; Oloyede, Omotade Ibidun; Agunbiade, Shadrack Oludare

    2018-05-01

    The current study was designed to evaluate the various antioxidant potentials and inhibitory effects of phenolic-rich leaf extracts of Bridelia ferruginea (BF) on the in vitro activities of some key enzymes involved in the metabolism of carbohydrates. In this study, BF leaf free and bound phenolic-rich extracts were used. We quantified total phenolic and flavonoid contents, and evaluated several antioxidant activities using assays for ferric reducing antioxidant power, total antioxidant activity (phosphomolybdenum reducing ability), 1,1-diphenyl-2-picrylhydrazyl and thiobarbituric acid reactive species. Also, extracts were tested for their ability to inhibit α-amylase and α-glucosidase activity. The total phenolic and total flavonoid contents in the free phenolic extract of BF were significantly greater than in the bound phenolic extract. Also, all the antioxidant activities considered were significantly greater in the free phenolic extract than in the bound phenolic extract. In the same vein, the free phenolic-rich extract had a significantly higher percentage inhibition against α-glucosidase activity (IC 50  = 28.5 µg/mL) than the bound phenolic extract (IC 50  = 340.0 µg/mL). On the contrary, the free phenolic extract (IC 50  = 210.0 µg/mL) had significantly lower inhibition against α-amylase than the bound phenolic-rich extract (IC 50  = 190.0 µg/mL). The phenolic-rich extracts of BF leaves showed antioxidant potentials and inhibited two key carbohydrate-metabolizing enzymes in vitro. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  11. Influence of gamma irradiation on phenolic compounds of minimally processed baby carrots

    Energy Technology Data Exchange (ETDEWEB)

    Hirashima, Fabiana K.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Nunes, Thaise C.F.; Sabato, Suzy F., E-mail: fmayumi@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Galvao, Natascha S.; Lanfer-Marquez, Ursula M., E-mail: lanferum@usp.br [Universidade de Sao Paulo (FCF/USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas

    2013-07-01

    Consumption of fresh fruits and vegetables provide several health benefits including risk reduction of oxidative stress-related diseases. These benefits have been associated with bioactive compounds, mainly phenolic compounds. Minimally processed products are a growing segment in food retail establishments due its practicality and convenience without significantly altering fresh-like characteristics. To extend the shelf life of these products, an application of ionizing radiation is an alternative, based on a physical and non-thermal method of preservation. The effect of irradiation on phenolic compounds of minimally processed baby carrots have not been reported in literature yet. The aim of this study was to evaluate the levels of phenolic compounds in baby carrots after the irradiation process. Samples of minimally processed baby carrots were purchased at a local supermarket and irradiated with doses of 0.5 and 1.0 kGy. Phenolic compounds were extracted from shredded carrots with MeOH and analyzed spectrophotometrically by the Folin Ciocalteau method using a gallic acid standard curve. The results showed that the phenolic contents decreased significantly (p<0.05) with increasing radiation dose. In non-irradiated baby carrots (control), the levels of phenolic compounds were about 330 μg eq. gallic acid/g, while irradiated samples with 0.5 kGy, showed an approximately 10% reduction when compared with the control. An irradiation dose of 1.0 kGy caused a loss of 20%. Although the radiation has affected the phenolic content, the process seems to be interesting by maintaining their fresh-like characteristics. (author)

  12. Influence of gamma irradiation on phenolic compounds of minimally processed baby carrots

    International Nuclear Information System (INIS)

    Hirashima, Fabiana K.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Nunes, Thaise C.F.; Sabato, Suzy F.; Galvao, Natascha S.; Lanfer-Marquez, Ursula M.

    2013-01-01

    Consumption of fresh fruits and vegetables provide several health benefits including risk reduction of oxidative stress-related diseases. These benefits have been associated with bioactive compounds, mainly phenolic compounds. Minimally processed products are a growing segment in food retail establishments due its practicality and convenience without significantly altering fresh-like characteristics. To extend the shelf life of these products, an application of ionizing radiation is an alternative, based on a physical and non-thermal method of preservation. The effect of irradiation on phenolic compounds of minimally processed baby carrots have not been reported in literature yet. The aim of this study was to evaluate the levels of phenolic compounds in baby carrots after the irradiation process. Samples of minimally processed baby carrots were purchased at a local supermarket and irradiated with doses of 0.5 and 1.0 kGy. Phenolic compounds were extracted from shredded carrots with MeOH and analyzed spectrophotometrically by the Folin Ciocalteau method using a gallic acid standard curve. The results showed that the phenolic contents decreased significantly (p<0.05) with increasing radiation dose. In non-irradiated baby carrots (control), the levels of phenolic compounds were about 330 μg eq. gallic acid/g, while irradiated samples with 0.5 kGy, showed an approximately 10% reduction when compared with the control. An irradiation dose of 1.0 kGy caused a loss of 20%. Although the radiation has affected the phenolic content, the process seems to be interesting by maintaining their fresh-like characteristics. (author)

  13. Comparative Analysis of Total Phenolic Content in Sea Buckthorn Wine and Other Selected Fruit Wines

    OpenAIRE

    Bharti Negi; Gargi Dey

    2009-01-01

    This is the first report from India on a beverage resulting from alcoholic fermentation of the juice of sea buckthorn (Hippophae rhamnoides L) using lab isolated yeast strain. The health promoting potential of the product was evaluated based on its total phenolic content. The most important finding was that under the present fermentation condition, the total phenolic content of the wine product was 689 mg GAE/L. Investigation of influence of bottle ageing on the sea buckthorn wine showed a sl...

  14. Flavonoids and phenolic acids from pearl millet (Pennisetum glaucum based foods and their functional implications

    Directory of Open Access Journals (Sweden)

    Vanisha S Nambiar

    2012-07-01

    Full Text Available Background: Pearl millet (Pennisetum glaucum, considered a poor man’s cereal, may be a repository of dietary antioxidants, especially flavonoids and phenolic acids, which provide bioactive mechanisms to reduce free radical induced oxidative stress and probably play a role in the prevention of ageing and various diseases associated with oxidative stress, such as cancer, cardiovascular, and neurodegenerative diseases.Objective: The present study focused on the identification of individual flavonoids and phenolic acids from seven commercial varieties of pearl millet and five samples of pearl millet-based traditional recipes of Banaskantha, Gujarat, India.Methods: Total phenols were determined by the Folin-Ciocalteu method, and individual polyphenol separation included the isolation and identification of (a flavonoids, (b phenolic acids, and (c glycoflavones involving interaction with diagnostic reagents and paper chromatographic separation of compounds and their UV-visible spectroscopic studies including hypsochromic and bathchromic shifts with reagents such as AlCl3, AlCl3/HCl, NaOMe, NaOAc,and NaOAc/H3PO3. Five traditional recipes consumed in the pearl millet producing belt of Banaskantha, Gujarat, India, were standardized in the laboratory and analyzed for phenol and individual flavonoids. Results: Total phenols in raw samples ranged from 268.5 - 420mg/100g of DW and 247.5 -Functional Foods in Health and Disease 2012, 2(7:251-264335mg/100g of DW in cooked recipes. The commonly identified flavonoids were tricin, acacetin, 3, 4 Di-OMe luteolin, and 4-OMe tricin. Five phenolic acids were identified: namely vanilic acid, syringic acid, melilotic acid, para-hydroxyl benzoic acid, and salicylic acid.Conclusion: The presence of flavonoids, such as tricin, acacetin, 3, 4 Di-OMe luteolin, and 4-OMe tricin, indicate the chemopreventive efficacy of pearl millet. They may be inversely related to mortality from coronary heart disease and to the incidence

  15. Physiological and functional diversity of phenol degraders isolated from phenol-grown aerobic granules: Phenol degradation kinetics and trichloroethylene co-metabolic activities.

    Science.gov (United States)

    Zhang, Yi; Tay, Joo Hwa

    2016-03-15

    Aerobic granule is a novel form of microbial aggregate capable of degrading toxic and recalcitrant substances. Aerobic granules have been formed on phenol as the growth substrate, and used to co-metabolically degrade trichloroethylene (TCE), a synthetic solvent not supporting aerobic microbial growth. Granule formation process, rate limiting factors and the comprehensive toxic effects of phenol and TCE had been systematically studied. To further explore their potential at the level of microbial population and functions, phenol degraders were isolated and purified from mature granules in this study. Phenol and TCE degradation kinetics of 15 strains were determined, together with their TCE transformation capacities and other physiological characteristics. Isolation in the presence of phenol and TCE exerted stress on microbial populations, but the procedure was able to preserve their diversity. Wide variation was found with the isolates' kinetic behaviors, with the parameters often spanning 3 orders of magnitude. Haldane kinetics described phenol degradation well, and the isolates exhibited actual maximum phenol-dependent oxygen utilization rates of 9-449 mg DO g DW(-1) h(-1), in phenol concentration range of 4.8-406 mg L(-1). Both Michaelis-Menten and Haldane types were observed for TCE transformation, with the actual maximum rate of 1.04-21.1 mg TCE g DW(-1) h(-1) occurring between TCE concentrations of 0.42-4.90 mg L(-1). The TCE transformation capacities and growth yields on phenol ranged from 20-115 mg TCE g DW(-1) and 0.46-1.22 g DW g phenol(-1), respectively, resulting in TCE transformation yields of 10-70 mg TCE g phenol(-1). Contact angles of the isolates were between 34° and 82°, suggesting both hydrophobic and hydrophilic cell surface. The diversity in the isolates is a great advantage, as it enables granules to be versatile and adaptive under different operational conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions.

    Science.gov (United States)

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S

    2011-03-30

    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  17. Antioxidant capacity of the phenolic fraction and its effect on the oxidative stability of olive oil varieties grown in the southwest of Spain

    Directory of Open Access Journals (Sweden)

    Franco, M. N.

    2014-03-01

    Full Text Available The characterization of olive oils from seven representative fruit varieties (Arbequina, Carrasqueña, Corniche, Manzanilla Cacereña, Morisca, Picual, and Verdial de Badajoz from the southwest of Spain is carried out according to antioxidant capacity of the phenolic fraction and oxidative stability in different ripening stages. Antioxidant capacity is measured through the reduction of a 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid radical cation previously oxidized with peroxidase/hydrogen peroxide. The decrease in absorbance at 730 nm at 3 min was measured. Values like Trolox Equivalents Antioxidant Capacity and oxidative stability varied from 0.6 to 2.5 mmol Trolox·kg–1 oil and 28.3 to 170.9 hours Rancimat respectively. The best positive correlation between total phenolic compounds and antioxidant capacity were in the Carrasqueña and Arbequina varieties. The rest showed moderated correlations. Correlation between antioxidant capacity and oxidative stability was found in a range from 0.66 to 0.97, depending on varieties.Se caracterizaron Aceites de Oliva Virgen procedentes de siete variedades de aceitunas (Arbequina, Carrasqueña, Corniche, Manzanilla Cacereña, Morisca, Picual y Verdial de Badajoz representativas del sur-oeste de España de acuerdo a la capacidad antioxidante de su fracción fenólica y a su estabilidad oxidativa, en diferentes estados de maduración. La capacidad antioxidante se midió por la disminución de absorbancia a 730 nm, producida por la reducción del radical ácido 2,2′azino-bis-3-etilbenzotiazolin- 6-ácido sulfónico, a 3 min del inicio de la reacción en presencia del extracto fenólico. Los valores de capacidad antioxidante y de estabilidad oxidativa variaron de 0,6 hasta 2,5 mmol Trolox·Kg–1 y de 28,3 hasta 170,9 horas respectivamente. La mejor correlación entre los compuestos fenólicos y la capacidad antioxidante se observó para las variedades Carrasqueña y Arbequina. Por otro lado

  18. Towards semisynthetic natural compounds with a biaryl axis: Oxidative phenol coupling in Aspergillus niger.

    Science.gov (United States)

    Hugentobler, Katharina Gloria; Müller, Michael

    2018-04-01

    Regio- and stereoselective phenol coupling is difficult to achieve using synthetic strategies. However, in nature, cytochrome P450 enzyme-mediated routes are employed to achieve complete axial stereo- and regiocontrol in the biosynthesis of compounds with potent bioactivity. Here, we report a synthetic biology approach whereby the bicoumarin metabolic pathway in Aspergillus niger was specifically tailored towards the formation of new coupling products. This strategy represents a manipulation of the bicoumarin pathway in A. niger via interchange of the phenol-coupling biocatalyst and could be applied to other components of the pathway to access a variety of atropisomeric natural product derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Modification of Colombian clays with pillars mixed Al-Fe and their evaluation in the catalytic oxidation of phenol in diluted watery solution

    International Nuclear Information System (INIS)

    Galeano, Luis A; Moreno G, Sonia

    2002-01-01

    The environmental legislation has become in the last time particularly restrictive with the bio-recalcitrant pollutants manage in the wastewaters. The pillared clays show great versatility to adjust at demands of the environmental reactions. Present study show that is achieve the modification of starting Colombian clays with precursor solutions of Al-Fe mixed pillars, and is found an excellent performance of them in the catalytic oxidation of aqueous solutions with middle contents of Total Organic Carbon TOC (36 mg C/L). The materials prepared in this way reached quantitative conversion of phenol, as model pollutant, in 2 hours of reaction at 20 Celsius degrade and atmospheric pressure; in 4 hours of reaction, the removal reached 62% of TOC in the solution yielding light carboxylic acids as main byproducts, although that CO 2 . The materials are stable under strongly oxidation media of reaction, and the iron leached in the effluent is close to 0,2 mg/L for the material of better catalytic performance

  20. Highly selective oxidation of styrene to benzaldehyde over a tailor-made cobalt oxide encapsulated zeolite catalyst.

    Science.gov (United States)

    Liu, Jiangyong; Wang, Zihao; Jian, Panming; Jian, Ruiqi

    2018-05-01

    A tailor-made catalyst with cobalt oxide particles encapsulated into ZSM-5 zeolites (Co 3 O 4 @HZSM-5) was prepared via a hydrothermal method with the conventional impregnated Co 3 O 4 /SiO 2 catalyst as the precursor and Si source. Various characterization results show that the Co 3 O 4 @HZSM-5 catalyst has well-organized structure with Co 3 O 4 particles compatibly encapsulated in the zeolite crystals. The Co 3 O 4 @HZSM-5 catalyst was employed as an efficient catalyst for the selective oxidation of styrene to benzaldehyde with hydrogen peroxide as a green and economic oxidant. The effect of various reaction conditions including reaction time, reaction temperature, different kinds of solvents, styrene/H 2 O 2 molar ratio and catalyst dosage on the catalytic performance were systematically investigated. Under the optimized reaction condition, the yield of benzaldehyde can achieve 78.9% with 96.8% styrene conversion and 81.5% benzaldehyde selectivity. Such an excellent catalytic performance can be attributed to the synergistic effect between the confined reaction environment and the proper acidic property. In addition, the reaction mechanism with Co 3 O 4 @HZSM-5 as the catalyst for the selective oxidation of styrene to benzaldehyde was reasonably proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones.

    Science.gov (United States)

    Külen, Oktay; Stushnoff, Cecil; Holm, David G

    2013-08-15

    Twelve Colorado-grown specialty potato clones were evaluated for total phenolic content, antioxidant activity and ascorbic acid content at harvest and after 2, 4, 6 and 7 months cold storage at 4 °C. Potato clones were categorized as pigmented ('CO97226-2R/R', 'CO99364-3R/R', 'CO97215-2P/P', 'CO97216-3P/P', 'CO97227-2P/P', 'CO97222-1R/R', 'Purple Majesty', 'Mountain Rose' and 'All Blue'), yellow ('Yukon Gold') and white fleshed ('Russet Nugget', 'Russet Burbank'). Folin-Ciocalteu reagent was used to estimate total phenolic content, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS(•+) ) and 2,2-diphenyl-1-picrylhydrazyl (DPPH(•) ) radical scavenging assays were used to estimate antioxidant capacity. Pigmented potato genotypes had significantly higher total phenolic content and antioxidant activity at all data points than yellow- and white-fleshed cultivars. Vitamin C content was higher in 'Yukon Gold' than in the other clones. The highest level of vitamin C in all clones was at harvest and after 2 months in cold storage. Vitamin C content in all potato clones dropped rapidly with longer intervals of cold storage. Although total phenolic content and antioxidant activity fluctuated during cold storage, after 7 months of cold storage their levels were slightly higher than at harvest. Total phenolic content was better correlated with Trolox equivalent antioxidant capacity (TEAC)/ABTS(•+) than the TEAC/DPPH(•) radical scavenging assay. Pigmented potato clones had significantly higher total phenolic content and antioxidant activity, while the yellow-fleshed potato cultivar 'Yukon Gold' had significantly higher vitamin C content. Vitamin C content decreased in all potato clones during cold storage, while total phenolics increased in pigmented clones. © 2013 Society of Chemical Industry.

  2. Nutritional evaluation, antioxidant studies and quantification of poly phenolics, in Roscoea purpurea tubers.

    Science.gov (United States)

    Misra, Ankita; Srivastava, Sharad; Verma, Shikhar; Rawat, Ajay Kumar Singh

    2015-07-30

    Roscoea purpurea (Zingiberaceae) is commonly known as "kakoli". Traditionally, various parts like leaves, roots and flower etc. are used for the treatment of diabetic, hypertension, diarrhea, fever, inflammation etc. In Nepal tubers are boiled for edible purpose and also used in traditional veterinary medicine. The study aims for nutritional characterization, chemical profiling of R. purpurea (tubers) methanol extract (RPE) along with evaluation of its anti-oxidant activity. Physicochemical and nutritional content were estimated as per standard protocols. Chemical profiling of markers includes method optimization, identification & quantification of bioactive poly phenolics through HPTLC. Anti oxidant potential RPE was analyzed via. Total phenolics (TPC), total flavonoids (TFC), reducing power assay, DPPH and β-carotene bleaching model. Physicochemical and nutritional standards were established. Kaempferol (0.30%), vanillic acid (0.27%), protocatechuic (0.14%), syringic (0.80%) and ferulic acid (0.05%) were identified and then quantified. TPC and TFC content were found to be 7.10 ± 0.115 and 6.10 ± 0.055%, reducing power of extract also increases linearly (r(2) = 0.946) with concentration, similar to standards. IC50 value of extract in DPPH and β-carotene bleaching model was observed at 810.66 ± 1.154 and 600.66 ± 1.154 µg/ml, which is significantly different from standards (p < 0.05). Although there is a positive, significant correlation between the phenolic and flavonoid content with anti oxidant activity of extract. Thus, study will authenticates the identity, utility of herb as nutrient supplement and an important medicinal plant having promising pharmacological activities for further elaborated/extended investigation work.

  3. Biodegradation of high concentrations of phenol by baker’s yeast in anaerobic sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Najafpoor

    2015-06-01

    Full Text Available Background: Phenol, as a pure substance, is used in many fields because of its disinfectant, germicidal, local anesthetic, and peptizing properties. Aqueous solutions of phenol are produced as waste in industries and discharged into the environment. Therefore, elevated concentrations of phenol may be found in air or water because of industrial discharge or the use of phenolic products. Method: The strains of Saccharomyces cerevisiae used in this project were natural strains previously purchased from Razavy company. They were grown at 30°C on Petri plates containing yeast extract glucose (YGC and then purified by being spread onto new plates, and isolated colonies were obtained. These colonies provided the basis of selection. Prepared strains were applied in anaerobic sequencing batch reactors (ASBRs as first seed. The experiment conditions were optimized using response surface methodology (RSM. After the determined runs were performed using Design-Expert software, data were analyzed using mentioned software as well. Results: This study evaluated the capability of baker’s yeast to remove phenol in high concentrations. The tested strains showed excellent tolerance to phenol toxicity at concentrations up to 6100 mg/L. Study of the batch degradation process showed that the phenol removal rate could exceed 99.9% in 24 hours at a concentration of 1000 mg/L. The results showed catechol is the first intermediate product of phenol degradation. In survey results of the Design–Expert software, R2 and Adeq precision were 0.97 and 25.65, respectively. Conclusion: The results demonstrated that ASBR performs robustly under variable influent concentrations of inhibitory compounds. The high removal performance despite the high phenol concentration may be a result of reactor operating strategies. Based on the progressive increase of inlet phenol concentration, allowing for an enhanced biomass acclimation in a short time, results at the microbiological levels

  4. Comparative performance of UASB and anaerobic hybrid reactors for the treatment of complex phenolic wastewater.

    Science.gov (United States)

    Ramakrishnan, Anushuya; Surampalli, Rao Y

    2012-11-01

    The performance of an upflow anaerobic sludge blanket (UASB) reactor and an anaerobic hybrid reactor (AHR) was investigated for the treatment of simulated coal wastewater containing toxic phenolics at different hydraulic retention times (0.75-0.33d). Fast start-up and granulation of biomass could be achieved in an AHR (45d) than UASB (58d) reactor. Reduction of HRT from 1.5 to 0.33d resulted in a decline in phenolics removal efficiency from 99% to 77% in AHR and 95% to 68% in UASB reactor respectively. AHR could withstand 2.5 times the selected phenolics loading compared to UASB reactor that could not withstand even 1.2 times the selected phenolics loading. Residence time distribution (RTD) study revealed a plug flow regime in the AHR and completely mixed regime in UASB reactor respectively. Energy economics of the reactors revealed that 12,159MJd(-1) more energy can be generated using AHR than UASB reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress

    Directory of Open Access Journals (Sweden)

    Sofia Caretto

    2015-11-01

    Full Text Available Higher plants synthesize an amazing diversity of phenolic secondary metabolites. Phenolics are defined secondary metabolites or natural products because, originally, they were considered not essential for plant growth and development. Plant phenolics, like other natural compounds, provide the plant with specific adaptations to changing environmental conditions and, therefore, they are essential for plant defense mechanisms. Plant defensive traits are costly for plants due to the energy drain from growth toward defensive metabolite production. Being limited with environmental resources, plants have to decide how allocate these resources to various competing functions. This decision brings about trade-offs, i.e., promoting some functions by neglecting others as an inverse relationship. Many studies have been carried out in order to link an evaluation of plant performance (in terms of growth rate with levels of defense-related metabolites. Available results suggest that environmental stresses and stress-induced phenolics could be linked by a transduction pathway that involves: (i the proline redox cycle; (ii the stimulated oxidative pentose phosphate pathway; and, in turn, (iii the reduced growth of plant tissues.

  6. Influence of closure, phenolic levels and microoxygenation on Cabernet Sauvignon wine composition after 5 years' bottle storage.

    Science.gov (United States)

    Han, Guomin; Ugliano, Maurizio; Currie, Bruce; Vidal, Stéphane; Diéval, Jean-Baptiste; Waterhouse, Andrew L

    2015-01-01

    Wine aging is generally limited by the amount of oxidation, which is dependent on the amount of oxygen entering via the closure. Cabernet Sauvignon wine is well known for its high concentration of tannin, making it an ideal red wine for aging. The impact of closure type after 5 years' bottle aging has been investigated on a 2007 Cabernet Sauvignon red wine, treated with or without polyvinylpolypyrrolidone (PVPP) and micro-oxygenation (Mox). Two oxygen transfer rate (OTR) conditions (16 and 5 µg per day) into 375 mL bottles were obtained by using different synthetic stoppers. Color was evaluated by UV-visible spectrophotometry, carbonyls by 2,4-dinitrophenylhydrazine derivatization, phenolics by high-performance liquid chromatography and sulfur dioxide by the aspiration method. Closure type strongly influenced color parameters involving SO2 bleaching and some phenolics, particularly quercetin, were affected, but there was little effect on carbonyls other than acetaldehyde. PVPP treatment afforded wines with the lowest levels of phenolics and color density, but highest acetaldehyde. Few effects of Mox could be detected. Closure OTR strongly affects sulfur dioxide levels - the primary antioxidant in wine - in aged wine, but phenolic levels substantially alter the secondary reactions of oxidative aging. © 2014 Society of Chemical Industry.

  7. Electrocatalytic Reduction-oxidation of Chlorinated Phenols using a Nanostructured Pd-Fe Modified Graphene Catalyst

    International Nuclear Information System (INIS)

    Shi, Qin; Wang, Hui; Liu, Shaolei; Pang, Lei; Bian, Zhaoyong

    2015-01-01

    A Pd-Fe modified graphene (Pd-Fe/G) catalyst was prepared by the Hummers oxidation method and bimetallic co-deposition method. The catalyst was then characterized by various characterization techniques and its electrochemical property toward the electrocatalytic reduction-oxidation of chlorinated phenols was investigated by using cyclic voltammetry and differential pulse voltammetry. The results of the characterization show that the Pd-Fe/G catalyst in which the weight proportion of Pd and Fe is 1:1 has an optimal surface performance. The diameter of the Pd-Fe particles is approximately 5.2 ± 0.3 nm, with a uniform distribution on the supporting graphene. This is smaller than the Pd particles of a Pd-modified graphene (Pd/G) catalyst. The Pd-Fe/G catalyst shows a higher electrocatalytic activity than the Pd/G catalyst for reductive dechlorination when feeding with hydrogen gas. The reductive peak potentials of −0.188 V, −0.836 V and −0.956 V in the DPV curves are attributed to the dechlorination of ortho-Cl, meta-Cl, and para-Cl in 2-chlorophenol, 3-chlorophenol and 4-chlorophenol, respectively. In accordance with an analysis of the frontier orbital theory, the order of ease of dechlorination with Pd-Fe/G catalyst is 2-chlorophenol > 3-chlorophenol > 4-chlorophenol. The Pd-Fe/G catalyst has a greater activity than the Pd/G catalyst in accelerating the two-electron reduction of O_2 to H_2O_2, which is attributed to the higher current of the reduction peak at approximately −0.40 V when feeding with oxygen gas. Therefore, the Pd-Fe/G catalyst exhibits a higher electrocatalytic activity than the Pd/G catalyst for the reductive dechlorination and acceleration of the two-electron reduction of O_2 to H_2O_2.

  8. Studies of Deactivation of Methanol to Formaldehyde Selective Oxidation Catalyst

    DEFF Research Database (Denmark)

    Raun, Kristian Viegaard; Schumann, Max; Høj, Martin

    This work presents a study of the deactivation behavior of Fe-Mo oxide catalyst during selective oxidation of methanol to formaldehyde in a period of 5 days. The structural changes in the catalyst have been investigated in situ for the initial 10 h by Raman spectroscopy, and the structure after 5...

  9. Comparative study between phenol and imidazole derivatives in radiolabeling of some steroid hormones

    International Nuclear Information System (INIS)

    Sallam, Kh.M.

    2010-01-01

    A phenol or imidazole ring is rarely present in steroid hormones, So, the molecule of steroid hormone requires chemical modification by addition of an iodinable residue like phenol or imedazole. So that the comparative study between phenol derivatives, include tyrosine methyl ester (TME) and tyramine, and imidazole derivatives, like histamine and histedine methyl ester (HME), for radiolabeling of some steroid hormones include estradiol and testosterone is the aim of the present study. The conjugation step was carried using mixed anhydride method and followed by radioiodination using iodogen as an oxidizing agent. Purification step was carried out using high performance liquid chromatography (HPLC). Optimization and validation of the tracer were carried out. Immunoreactivity of the all obtained tracers was check by using specific polyclonal antibodies. The results indicated that imidazols derivatives are more suitable from immunoreactivity view and storage period.

  10. Phenolic Compounds Present Schinus terebinthifolius Raddi Influence the Lowering of Blood Pressure in Rats.

    Science.gov (United States)

    de Lima Glória, Lorena; Barreto de Souza Arantes, Mariana; Menezes de Faria Pereira, Silvia; de Souza Vieira, Guilherme; Xavier Martins, Camilla; Ribeiro de Carvalho Junior, Almir; Antunes, Fernanda; Braz-Filho, Raimundo; José Curcino Vieira, Ivo; Leandro da Cruz, Larissa; Siqueira de Almeida Chaves, Douglas; de Paiva Freitas, Silvério; Barros de Oliveira, Daniela

    2017-10-23

    This study identified two phenolic compounds in Schinus terebinthifolius Raddi fruits: naringenin (first report in this species) and gallic acid. Their structures were elucidated by nuclear magnetic resonance (NMR) data (¹H-, 13 C-NMR) and a high-performance liquid chromatography (HPLC) technique. A high content of phenolics (659.21 mg of gallic acid equivalents/g of sample-Folin-Ciocalteau method) and total flavonoids (140.69 mg of rutin equivalents/g of sample-aluminum chloride method) were quantified in S. terebinthifolius , as well as high antioxidant activity (77.47%-2,2-diphenyl-1-picrylhydrazyl, DPPH method). The antihypertensive activity related to its phenolic content was investigated. After intravenous infusion in Wistar rats, these phenolics significantly reduced ( p < 0.05) the systolic, median, and diastolic arterial pressures of individuals. The rotarod test was performed to determine the mechanism of action of the sample vasorelaxant effect. It was found that its action exceeded that of the positive control used (diazepam). This confirmed the vasodilatory activity exerted by S. terebinthifolius fruits is related to the phenolic compounds present in the plant, which are potent antioxidants and inhibit oxidative stress, mainly in the central nervous system.

  11. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars.

    Science.gov (United States)

    Petridis, Antonios; Therios, Ioannis; Samouris, Georgios; Koundouras, Stefanos; Giannakoula, Anastasia

    2012-11-01

    The olive tree (Olea europaea L.) is often exposed to severe water stress during the summer season. In this study, we determined the changes in total phenol content, oleuropein and hydroxytyrosol in the leaves of four olive cultivars ('Gaidourelia', 'Kalamon', 'Koroneiki' and 'Megaritiki') grown under water deficit conditions for two months. Furthermore, we investigated the photosynthetic performance in terms of gas exchange and chlorophyll a fluorescence, as well as malondialdehyde content and antioxidant activity. One-year-old self-rooted plants were subjected to three irrigation treatments that received a water amount equivalent to 100% (Control, C), 66% (Field Capacity 66%, FC(66)) and 33% (Field Capacity 33%, FC(33)) of field capacity. Measurements were conducted 30 and 60 days after the initiation of the experiment. Net CO(2) assimilation rate, stomatal conductance and F(v)/F(m) ratio decreased only in FC(33) plants. Photosynthetic rate was reduced mainly due to stomatal closure, but damage to PSII also contributed to this decrease. Water stress induced the accumulation of phenolic compounds, especially oleuropein, suggesting their role as antioxidants. Total phenol content increased in FC(33) treatment and oleuropein presented a slight increase in FC(66) and a sharper one in FC(33) treatment. Hydroxytyrosol showed a gradual decrease as water stress progressed. Malondialdehyde (MDA) content increased due to water stress, mostly after 60 days, while antioxidant activity increased for all cultivars in the FC(33) treatment. 'Gaidourelia' could be considered as the most tolerant among the tested cultivars, showing higher phenolic concentration and antioxidant activity and lower lipid peroxidation and photochemical damage after two months of water stress. The results indicated that water stress affected olive tree physiological and biochemical parameters and magnitude of this effect depended on genotype, the degree of water limitation and duration of treatment

  12. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Science.gov (United States)

    Tarabanko, Valery E.; Tarabanko, Nikolay

    2017-01-01

    This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde) and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde). It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15%) inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali) in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed. PMID:29140301

  13. Response of total phenolic content and antioxidant activities of bush

    African Journals Online (AJOL)

    user

    OF BUSH TEA AND SPECIAL TEA USING DIFFERENT SELECTED. EXTRACTION ... 3,3'digallate and caffeine). Tea leaves have ..... Effects of solvent extraction on phenolic content and ... Critical Reviews in Food Science and Nutrition,.

  14. Identification and characterization of phenol hydroxylase from phenol-degrading Candida tropicalis strain JH8.

    Science.gov (United States)

    Long, Yan; Yang, Sheng; Xie, Zhixiong; Cheng, Li

    2014-09-01

    The gene phhY encoding phenol hydroxylase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The gene phhY contained an open reading frame of 2130 bp encoding a polypeptide of 709 amino acid residues. From its sequence analysis, it is a member of a family of flavin-containing aromatic hydroxylases and shares 41% amino acid identity with phenol hydroxylase from Trichosporon cutaneum. The recombinant phenol hydroxylase exists as a homotetramer structure with a native molecular mass of 320 kDa. Recombinant phenol hydroxylase was insensitive to pH treatment; its optimum pH was at 7.6. The optimum temperature for the enzyme was 30 °C, and its activity was rapidly lost at temperatures above 60 °C. Under the optimal conditions with phenol as substrate, the K(m) and V(max) of recombinant phenol hydroxylase were 0.21 mmol·L(-1) and 0.077 μmol·L(-1)·min(-1), respectively. This is the first paper presenting the cloning and expression in E. coli of the phenol hydroxylase gene from C. tropicalis and the characterization of the recombinant phenol hydroxylase.

  15. Effect of the molecular structure of phenolic novolac precursor resins on the properties of phenolic fibers

    International Nuclear Information System (INIS)

    Ying, Yong-Gang; Pan, Yan-Ping; Ren, Rui; Dang, Jiang-Min; Liu, Chun-Ling

    2013-01-01

    A series of phenolic resins with different weight-average molecular weights (M w ) and ortho/para (O/P) ratios were prepared. The effect of the phenolic precursor resin structure on the structure and properties of the resulting phenolic fibers was investigated. The structures of the resins and fibers were characterized by nuclear magnetic resonance spectroscopy, gel permeation chromatography, melt rheometry, dynamic mechanical analysis, and thermogravimetric analysis. The results show that the O/P ratio, unsubstituted ortho and para carbon ratio (O u /P u ), and M w of the phenolic resins play an important role in determining the properties of the phenolic fibers. The tensile strength of the phenolic fibers increases with increasing novolac precursor O u /P u ratios, corresponding to low O/P ratios, at comparable resin M w values. Also, the tensile strength of the phenolic fibers increases with increasing novolac M w values at comparable O/P ratios. Phenolic fibers with high tensile strength and good flame resistance characteristics were generated from a phenolic precursor resin, possessing a high weight-average molecular weight and a low O/P value. - Highlights: • Phenolic resins with different weight-average molecular weights and ortho/para ratios have been prepared. • The tensile strength of the phenolic fibers increases with reducing novolac O/P ratio. • The tensile strength of the phenolic fibers increases with increasing novolac M w

  16. Thermally modified titania photocatalysts for phenol removal from water

    Directory of Open Access Journals (Sweden)

    Joanna Grzechulska-Damszel

    2006-01-01

    Full Text Available Two kinds of titanium dioxide were used as starting materials for thermal modification: Tytanpol A11 supplied by Chemical Factory “Police” S.A. (Poland and Degussa P25 supplied by Degussa AG (Germany. The photocatalytic activity of titania materials modified by thermal treatment was tested in the reaction of photocatalytic oxidation of phenol. It was found that the highest activity in the reaction of photocatalytic decomposition of phenol, in case of Tytanpol A11, shows the samples of material modified at temperatures of 700 and 750°C. These catalysts were more active than untreated A11, whereas materials modified at higher temperatures show lower activity. In the case of P25, all thermally treated materials were less active than the unmodified material. The photocatalyst samples were characterized by UV-Vis/DR, FTIR/DRS, and XRD methods.

  17. Solvent-Free Selective Oxidation of Toluene with O2 Catalyzed by Metal Cation Modified LDHs and Mixed Oxides

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2016-01-01

    Full Text Available A series of metal cation modified layered-double hydroxides (LDHs and mixed oxides were prepared and used to be the selective oxidation of toluene with O2. The results revealed that the modified LDHs exhibited much higher catalytic performance than their parent LDH and the modified mixed oxides. Moreover, the metal cations were also found to play important roles in the catalytic performance and stabilities of modified catalysts. Under the optimal reaction conditions, the highest toluene conversion reached 8.7% with 97.5% of the selectivity to benzyldehyde; moreover, the catalytic performance remained after nine catalytic runs. In addition, the reaction probably involved a free-radical mechanism.

  18. Alkylperoxyl radical scavenging activity of red leaf lettuce (Lactuca sativa L.) phenolics.

    Science.gov (United States)

    Caldwell, Charles R

    2003-07-30

    Although lettuce may provide relatively low levels of antioxidative phytochemicals which may contribute to human health, lettuce leaf extracts in fact contained compounds with high specific peroxyl radical scavenging activities. After determining the extraction conditions that minimized phenolic oxidation and produced the highest oxygen radical absorbance capacity (ORAC) values, the phenolic compounds from red leaf lettuce were separated by reverse-phase high-performance liquid chromatography (HPLC). The primary phenolic compounds in the leaf tissue extracts were mono- and dicaffeoyltartaric acid (CTA and DCTA), mono- and dicaffeoylquinic acid (CQA and DCQA), quercetin 3-malonylglucoside (QMG), quercetin 3-glucoside (QG), cyanidin 3-malonylglucoside (CMG), and an unknown phenolic ester (UPE). Significant levels of DCQA were only found after wounding. Using the new fluorescein-based ORAC assay procedures, fractions from the HPLC analyses were assayed for peroxyl radical absorbance capacity. Using absorbance to estimate concentration, the decreasing order of contribution to the total ORAC value of an extract from wounded tissue was QMG > DCQA > CMG > DCTA > UPE > QG > CTA. The decreasing order of the specific peroxyl radical scavenging activities was CMG > QG > DCTA > DCQA > QMG > UPE > CQA > CTA. Since the concentrations of plant flavonoid and phenolic acid esters are sensitive to environmental factors, this information may be used to develop pre- and postharvest conditions which increase the dietary benefits of leaf lettuce.

  19. Emulsifying Property and Antioxidative Activity of Cuttlefish Skin Gelatin Modified with Oxidized Linoleic Acid and Oxidized Tannic Acid

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Wierenga, P.A.; Gruppen, H.

    2013-01-01

    Cuttlefish skin gelatins modified with oxidized linoleic acid (OLA) and oxidized tannic acid (OTA) were characterized and determined for emulsifying properties and antioxidative activity. Modification of gelatin with 5% OTA increased the total phenolic content and 1,1-diphenyl-2-picrylhydrazyl,

  20. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  1. Testing and linearity calibration of films of phenol compounds exposed to thermal neutron field for EPR dosimetry.

    Science.gov (United States)

    Gallo, S; Panzeca, S; Longo, A; Altieri, S; Bentivoglio, A; Dondi, D; Marconi, R P; Protti, N; Zeffiro, A; Marrale, M

    2015-12-01

    This paper reports the preliminary results obtained by Electron Paramagnetic Resonance (EPR) measurements on films of IRGANOX® 1076 phenols with and without low content (5% by weight) of gadolinium oxide (Gd2O3) exposed in the thermal column of the Triga Mark II reactor of LENA (Laboratorio Energia Nucleare Applicata) of Pavia (Italy). Thanks to their size, the phenolic films here presented are good devices for the dosimetry of beams with high dose gradient and which require accurate knowledge of the precise dose delivered. The dependence of EPR signal as function of neutron dose was investigated in the fluence range between 10(11) cm(-2) and 10(14) cm(-2). Linearity of EPR response was found and the signal was compared with that of commercial alanine films. Our analysis showed that gadolinium oxide (5% by weight) can enhance the thermal neutron sensitivity more than 18 times. Irradiated dosimetric films of phenolic compound exhibited EPR signal fading of about 4% after 10 days from irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Investigation of optimum conditions and costs estimation for degradation of phenol by solar photo-Fenton process

    Science.gov (United States)

    Gar Alalm, Mohamed; Tawfik, Ahmed; Ookawara, Shinichi

    2017-03-01

    In this study, solar photo-Fenton reaction using compound parabolic collectors reactor was assessed for removal of phenol from aqueous solution. The effect of irradiation time, initial concentration, initial pH, and dosage of Fenton reagent were investigated. H2O2 and aromatic intermediates (catechol, benzoquinone, and hydroquinone) were quantified during the reaction to study the pathways of the oxidation process. Complete degradation of phenol was achieved after 45 min of irradiation when the initial concentration was 100 mg/L. However, increasing the initial concentration up to 500 mg/L inhibited the degradation efficiency. The dosage of H2O2 and Fe+2 significantly affected the degradation efficiency of phenol. The observed optimum pH for the reaction was 3.1. Phenol degradation at different concentration was fitted to the pseudo-first order kinetic according to Langmuir-Hinshelwood model. Costs estimation for a large scale reactor based was performed. The total costs of the best economic condition with maximum degradation of phenol are 2.54 €/m3.

  3. Synthesis of polymer membranes of different porosity and their application for phenol removal from liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Hofman-Bieniek, Magdalena; Jasiewicz, Katarzyna; Pietrzak, Robert [Adam Mickiewicz University in Poznan, Poznan (Poland)

    2014-02-15

    Preparation of polymeric membranes based on polyethersulfone (PES) modified by adding different amounts of a pore-forming agent (PVP) is presented, and potential application of the membranes obtained for removal of phenol from the liquid phase is examined. The addition of various amounts of PVP has been shown to bring about changes in the content of the surface oxygen groups, but has no significant effect on the chemical character of the groups and acidic groups dominate. Filtration by phenol solution leads to significant changes in the total content of surface oxides; however, the acidic groups remain dominant. Membranes characterized by higher porosity exhibited more stable and higher rejection ratio for phenol removal. Although all the membranes were characterized by similar rejection ratios for phenol removal, the cake resistance (Rc) and pore resistance (Rp) values were found to depend significantly on the structure and porosity of the membrane applied for filtration.

  4. Synthesis of polymer membranes of different porosity and their application for phenol removal from liquid phase

    International Nuclear Information System (INIS)

    Hofman-Bieniek, Magdalena; Jasiewicz, Katarzyna; Pietrzak, Robert

    2014-01-01

    Preparation of polymeric membranes based on polyethersulfone (PES) modified by adding different amounts of a pore-forming agent (PVP) is presented, and potential application of the membranes obtained for removal of phenol from the liquid phase is examined. The addition of various amounts of PVP has been shown to bring about changes in the content of the surface oxygen groups, but has no significant effect on the chemical character of the groups and acidic groups dominate. Filtration by phenol solution leads to significant changes in the total content of surface oxides; however, the acidic groups remain dominant. Membranes characterized by higher porosity exhibited more stable and higher rejection ratio for phenol removal. Although all the membranes were characterized by similar rejection ratios for phenol removal, the cake resistance (Rc) and pore resistance (Rp) values were found to depend significantly on the structure and porosity of the membrane applied for filtration

  5. Influence of Halogen Substituents on the Catalytic Oxidation of 2,4,6-Halogenated Phenols by Fe(III-Tetrakis(p-hydroxyphenyl porphyrins and Potassium Monopersulfate

    Directory of Open Access Journals (Sweden)

    Seiya Nagao

    2011-12-01

    Full Text Available The influence of halogen substituents on the catalytic oxidation of 2,4,6-trihalogenated phenols (TrXPs by iron(III-porphyrin/KHSO5 catalytic systems was investigated. Iron(III-5,10,15,20-tetrakis(p-hydroxyphenylporphyrin (FeTHP and its supported variants were employed, where the supported catalysts were synthesized by introducing FeTHP into hydroquinone-derived humic acids via formaldehyde poly-condensation. F (TrFP, Cl (TrCP, Br (TrBP and I (TrIP were examined as halogen substituents for TrXPs. Although the supported catalysts significantly enhanced the degradation and dehalogenation of TrFP and TrCP, the oxidation of TrBP and TrIP was not enhanced, compared to the FeTHP catalytic system. These results indicate that the degree of oxidation of TrXPs is strongly dependent on the types of halogen substituent. The order of dehalogenation levels for halogen substituents in TrXPs was F > Cl > Br > I, consistent with their order of electronegativity. The electronegativity of a halogen substituent affects the nucleophilicity of the carbon to which it is attached. The levels of oxidation products in the reaction mixtures were analyzed by GC/MS after extraction with n-hexane. The most abundant dimer product from TrFP via 2,6-difluoroquinone is consistent with a scenario where TrXP, with a more electronegative halogen substituent, is readily oxidized, while less electronegative halogen substituents are oxidized less readily by iron(III-porphyrin/KHSO5 catalytic systems.

  6. Sulfur- and nitrogen-containing phenol-formaldehyde co-resites for probing the thermal behaviour of heteroatomic forms in solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, K.; Sirkecioglu, O.; Andresen, J.M.; Brown, S.D.; Hall, P.J.; Snape, C.E. [University of Strathclyde, Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1996-09-01

    In order to probe the formation of sulfur- and nitrogen-containing gases during the pyrolysis and combustion of coals and other solid fuels, non-softening model substrates are required. In this respect phenol-formaldehyde (PF) resins are ideal since they readily facilitate the incorporation of individual heteroatomic functions into a highly crosslinked matrix. A series of sulfur- and nitrogen-containing co-resites were prepared using phenol with, as the second component, thiophene, dibenzothiophene, diphenylsulfide, benzyl phenyl sulfide, thioanisole, 8-hydroxyquinoline and 2-hydroxycarbazole. A mole ratio of 3:1 (phenol: heteroatom-containing component) was used. Resoles containing diphenyldisulfide were also prepared but, due to the comparable bond strengths of the S-S and C-O linkages, a curing temperature of only 130{degree}C was used to avoid cleavage of the disulfide bond. The virtually complete elimination of ether and methylol functions from the resoles by curing at 200{degree}C was monitored by solid-state {sup 13}C nuclear magnetic resonance spectroscopy. The resultant resites were also characterized by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy, X-ray photoelectron spectroscopy and differential scanning calorimetry. Simple air oxidation was found to selectively convert the aliphatic-bound sulfur to a mixture of sulfones and sulfoxides. Applications of the resites in fuel science are described.

  7. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    OpenAIRE

    Khalid Khazzal Hummadi; Karim H. Hassan; Phillip C.H. Mitchell

    2009-01-01

    The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK), 10 atm (1013 kPa), with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III) molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a c...

  8. Electrochemical oxidation of selective estrogen receptor modulator raloxifene

    International Nuclear Information System (INIS)

    Li, Xi-Qian; He, Jian-Bo; Liu, Lu; Cui, Ting

    2013-01-01

    Highlights: ► Application and analysis of in situ thin-layer spectroelectrochemistry. ► Cyclic voltabsorptometry used for a drug study. ► Highly pH-dependent oxidative metabolism of raloxifene. ► A complex parallel-consecutive mechanism proposed for oxidation of raloxifene. -- Abstract: Raloxifene is a selective estrogen receptor modulator that may produce toxic oxidative species in metabolism. The oxidation mechanism of raloxifene with different pH values was studied by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), in situ UV–vis spectral analysis and cyclic voltabsorptometry based on a long optical-path thin-layer electrochemical cell. Time-derivative cyclic voltabsorptograms were obtained for comparative discussion with the corresponding cyclic voltammograms. Raloxifene was initially oxidized to reactive phenoxyl radicals, followed by a series of transformation steps leading to different final products in different pH media. A parallel-consecutive reaction mechanism was proposed for the pH-dependent formation of 7-hydroxyraloxifene, raloxifene 6,7-o-quinone and two raloxifene dimers, each pathway following a complex electrochemical-chemical mechanism. Both raloxifene diquinone methide and its N-oxides were not detected by in situ UV–vis spectroscopy and XPS analysis. This work provides an electrochemical viewpoint and comparable information for better understanding of the oxidative metabolism and chemical toxicology of raloxifene under physiological conditions in vivo or in vitro

  9. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors.

    Science.gov (United States)

    Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol

    2017-10-10

    We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2  V -1  s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.

  10. Size-Selective Oxidation of Aldehydes with Zeolite Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane; Laursen, Anders Bo; Kegnæs, Søren

    2011-01-01

    Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies that the a......Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies...... that the active Au is accessible only through the zeolite micropores....

  11. Phenolic content, antioxidant and antibacterial activity of selected natural sweeteners available on the Polish market.

    Science.gov (United States)

    Grabek-Lejko, Dorota; Tomczyk-Ulanowska, Kinga

    2013-01-01

    Seventeen natural sweeteners available on the Polish market were screened for total phenolic content, by the Folin-Ciocalteu method, and for antioxidant activity, using the ferric reducing antioxidant power (FRAP) assay and the 2,2'-Azinobis (3-ethylbenzthiazoline-6-sulphonic acid) radical cation decolorization assay (ABTS(·+)). In addition, we analyzed antibacterial activities against Staphylococcus aureus strains: both those susceptible and those resistant to methicillin (MRSA). The results of the study showed that total phenolic content, antioxidant activity and antibacterial activity differ widely among different samples of sweeteners. Phenolic content, expressed as a gallic acid equivalent, ranged from 0 mg kg(-1) in white, refined sugar, xylitol and wheat malt syrup to 11.4 g kg(-1) in sugarcane molasses. Antioxidant activity was lowest in refined white sugar, xylitol, brown beet sugar, liquid fructose, and rape honey; it was average in spelt syrup and corn syrup, and highest in sugar cane, beet molasses, date and barley syrups. Despite the great variety of sweeteners, a strong correlation was noted between the concentration of phenolics and antioxidant properties, as determined by the ABTS(·+) method (r = 0.97) and the FRAP assay (r = 0.77). The strongest antibacterial activity was observed in sugarcane molasses, which was lethal to S. aureus strains at 2 and 4% concentrations in medium for susceptible and MRSA strains respectively. Other sweeteners kill bacteria in 6-15% solutions, whereas some did not show any antibacterial activities against S. aureus strains, even at 20% concentrations. Due to their high antioxidant and antibacterial activities, some of the tested sweeteners have potential therapeutic value as supporting agents in antibiotic therapy.

  12. Effect of selective removal of organic matter and iron oxides on the ...

    African Journals Online (AJOL)

    The effect of selective removal of organic matter and amorphous and crystalline iron oxides on N2-BET specific surface areas of some soil clays was evaluated. Clay fractions from 10 kaolinitic tropical soils were successively treated to remove organic matter by oxidation with Na hypochlorite, amorphous Fe oxide with acid ...

  13. Rapid and effective sample cleanup based on graphene oxide-encapsulated core–shell magnetic microspheres for determination of fifteen trace environmental phenols in seafood by liquid chromatography–tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Sheng-Dong; Chen, Xiao-Hong [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China); Shen, Hao-Yu [Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang 315100 (China); Li, Xiao-Ping [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China); Cai, Mei-Qiang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Zhao, Yong-Gang [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China); Jin, Mi-Cong, E-mail: jmcjc@163.com [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China)

    2016-05-05

    In this study, graphene oxide-encapsulated core–shell magnetic microspheres (GOE-CS-MM) were fabricated by a self-assemble approach between positive charged poly(diallyldimethylammonium) chloride (PDDA)-modified Fe{sub 3}O{sub 4}@SiO{sub 2} and negative charged GO sheets via electrostatic interaction. The as-prepared GOE-CS-MM was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer analysis (VSM), and X-ray photoelectron spectroscopy (XPS), and was used as a cleanup adsorbent in magnetic solid-phase extraction (MSPE) for determination of 15 trace-level environmental phenols in seafood coupled to liquid chromatography–tandem mass spectrometry (LC–MS/MS). The obtained results showed that the GOE-CS-MM exhibited excellent cleanup efficiency and could availably reduce the matrix effect. The cleanup mechanisms were investigated and referred to π–π stacking interaction and hydrogen bond between GOE-CS-MM and impurities in the extracts. Moreover, the extraction and cleanup conditions of GOE-CS-MM toward phenols were optimized in detail. Under the optimized conditions, the limits of detection (LODs) were found to be 0.003–0.06 μg kg{sup −1}, and satisfactory recovery values of 84.8–103.1% were obtained for the tested seafood samples. It was confirmed that the developed method is simple, fast, sensitive, and accurate for the determination of 15 trace environmental phenols in seafood samples. - Highlights: • Novel graphene oxide-encapsulated core-shell magnetic microspheres (GOE-CS-MM) were fabricated by a self-assemble approach. • The as-prepared material GOE-CS-MM exhibited excellent cleanup efficiency and could availably reduce the matrix effect. • The cleanup mechanisms refer to π–π stacking interaction and hydrogen bond. • The developed MSPE–LC–MS/MS method was simple, fast, sensitive and accurate.

  14. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Science.gov (United States)

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  15. Leaf phenolics and seaweed tannins : analysis, enzymatic oxidation and non-covalent protein binding

    NARCIS (Netherlands)

    Vissers, Anne M.

    2017-01-01

    Upon extraction of proteins from sugar beet leaves (Beta vulgaris L.) and oarweed (Laminaria digitata) for animal food and feed purposes, endogenous phenolics and proteins can interact with each other, which might affect the protein’s applicability. Sugar beet leaf proteins

  16. Total phenol content and antioxidant activity of water solutions of plant extracts

    Directory of Open Access Journals (Sweden)

    Mirela Kopjar

    2009-01-01

    Full Text Available Water solutions of extracts were investigated for total phenol content, flavonoid content and antioxidant activity. Susceptibility to degradation of water solutions of plant extracts, under light and in the dark, during storage at room temperature was investigated in order to determine their stability prior to their application for fortification of food products. Large dispersion of total phenol (TP content in the investigated model solutions of selected extracts (olive leaves, green tea, red grape, red wine, pine bark PE 5:1, pine bark PE 95 %, resveratrol, ranging from 11.10 mg GAE/100 mL to 92.19 mg GAE/100 mL was observed. Consequently, large dispersion of total flavonoids (TF content (8.89 mg to 61.75 mg CTE/100 mL was also observed. Since phenols have been mostly responsible for antioxidant activity of extracts, in most cases, antioxidant activity followed the TP content. That was proven by estimation of correlation coefficient between the total phenol content and antioxidant activity. Correlation coefficients between investigated parameters ranged from 0.5749 to 0.9604. During storage of 5 weeks at room temperature loss of phenols and flavonoids occurred. Antioxidant activity decreased with the decrease of TP and TF content. Degradations of phenols and flavonoids were more pronounced in samples stored at light.

  17. Green tea yogurt: major phenolic compounds and microbial growth.

    Science.gov (United States)

    Amirdivani, Shabboo; Baba, Ahmad Salihin Hj

    2015-07-01

    The purpose of this study was to evaluate fermentation of milk in the presence of green tea (Camellia sinensis) with respect to changes in antioxidant activity, phenolic compounds and the growth of lactic acid bacteria. Pasteurized full fat cow's milk and starter culture were incubated at 41 °C in the presence of two different types of green tea extracts. The yogurts formed were refrigerated (4 °C) for further analysis. The total phenolic content was highest (p yogurt (MGT) followed by steam-treated green tea (JGT) and plain yogurts. Four major compounds in MGTY and JGTY were detected. The highest concentration of major phenolic compounds in both samples was related to quercetin-rhamnosylgalactoside and quercetin-3-O-galactosyl-rhamnosyl-glucoside for MGTY and JGTY respectively during first 7 day of storage. Diphenyl picrylhydrazyl and ferric reducing antioxidant power methods showed highest antioxidant capacity in MGTY, JGTY and PY. Streptococcus thermophillus and Lactobacillus spp. were highest in MGTY followed by JGTY and PY. This paper evaluates the implementation of green tea yogurt as a new product with functional properties and valuable component to promote the growth of beneficial yogurt bacteria and prevention of oxidative stress by enhancing the antioxidant activity of yogurt.

  18. LC-MS phenolic profiling combined with multivariate analysis as an approach for the characterization of extra virgin olive oils of four rare Tunisian cultivars during ripening.

    Science.gov (United States)

    Ben Brahim, Samia; Kelebek, Hasim; Ammar, Sonda; Abichou, Mounir; Bouaziz, Mohamed

    2017-08-15

    In this work, the phenolic composition of four rare cultivars grown under the same agronomical and environmental conditions was studied. This is to test the effects of cultivars and ripening index essentially on phenolic composition in olive oils as well as tocopherols composition, organoleptic profiling and oxidative properties. Furthermore, some agronomical traits were determined in which a general increase in the size of the fruit and oil contents were recorded for all cultivars. The phenolic fractions were identified and quantified using liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry (LC-DAD-ESI-MS/MS) in multiple reaction monitoring mode (MRM). A total of 13 phenolic compounds belonging to different chemical families were determined. Qualitative and quantitative differences in phenolic composition were observed among cultivars and also among sampling times. On the contrary to the agronomical traits, a general decrease (pphenolic compounds was observed during maturation. Likewise, a decrease in tocopherols concentrations and oxidative properties was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Iron Oxide-Cobalt Nanocatalyst for O-tert-Boc Protection and O-Arylation of Phenols

    Directory of Open Access Journals (Sweden)

    Vilas B. Gade

    2018-04-01

    Full Text Available Efficient and general protocols for the O-tert-boc protection and O-arylation of phenols were developed in this paper using a recyclable magnetic Fe3O4-Co3O4 nanocatalyst (Nano-Fe-Co, which is easily accessible via simple wet impregnation techniques in aqueous mediums from inexpensive precursors. The results showed the catalysts were well characterized by XRD (X-ray Diffraction, ICP-AES (Inductive Coupled Plasma Atomic Emission Spectroscopy, TEM (Transmission Electron Microscopy, TOF-SIMS (Time-Of-Flight Secondary Ion Mass Spectrometry and XPS (X-ray Photoelectron Spectroscopy. The O-tert-boc protection and O-arylation of phenols was accomplished in good to excellent yields (85–95% and the catalyst was reusable and recyclable with no loss of catalytic activity for at least six repetitions.

  20. Phenolic Compounds and Antioxidant Activity in Grape Juices: A Chemical and Sensory View

    Directory of Open Access Journals (Sweden)

    Fernanda Cosme

    2018-03-01

    Full Text Available The search for food products that promote health has grown over the years. Phenolic compounds present in grapes and in their derivatives, such as grape juices, represent today a broad area of research, given the benefits that they have on the human health. Grape juice can be produced from any grape variety once it has attained appropriate maturity. However, only in traditional wine producing regions, grape juices are produced from Vitis vinifera grape varieties. For example, Brazilian grape juices are essentially produced from Vitis labrusca grape varieties, known as American or hybrid, as they preserve their characteristics such as the natural flavour after pasteurisation. Grapes are one of the richest sources of phenolic compounds among fruits. Therefore, grape juices have been broadly studied due to their composition in phenolic compounds and their potential beneficial effects on human health, specifically the ability to prevent various diseases associated with oxidative stress, including cancers, cardiovascular and neurodegenerative diseases. Therefore, this review will address grape juices phenolic composition, with a special focus on the potential beneficial effects on human health and on the grape juice sensory impact.

  1. Oxygen contribution to phenolic evolution during aging of red wines

    OpenAIRE

    Picariello, Luigi

    2017-01-01

    Abstract Red wine aging is essentially an oxidative process mainly regulated by wine phenolic composition and storage conditions. Wines contain hydroquinones such as catechol derivatives that undergo redox reactions, reducing oxygen to hydrogen peroxide. These reaction are catalized by metals. Iron(II) species present react with hydrogen peroxide to form hydroxyl radicals in the Fenton reaction. These radicals can then react with alcohols to form aldehydes. Because ethanol is the predomina...

  2. Application of green fluorescent protein for monitoring phenol-degrading strains

    Directory of Open Access Journals (Sweden)

    Ana Milena Valderrama F.

    2001-07-01

    Full Text Available Several methods have been developed for detecting microorganisms in environmental samples. Some systems for incorporating reporter genes, such as lux or the green fluorescent protein (GFP gene, have been developed recently This study describes gfp gene marking of a phenol degrading strain, its evaluation and monitoring in a bioreactor containing refinery sour water. Tagged strains were obtained having the same physiological and metabolic characteristics as the parent strain. Fluorescent expression was kept stable with no selection for more than 50 consecutive generations and tagged strains were recovered from the bioreactor after forty-five days of phenol-degradation treatment.

  3. Antioxidant Capacities and Total Phenolic Contents of 56 Wild Fruits from South China

    Directory of Open Access Journals (Sweden)

    Hua-Bin Li

    2010-11-01

    Full Text Available In order to identify wild fruits possessing high nutraceutical potential, the antioxidant activities of 56 wild fruits from South China were systematically evaluated. The fat-soluble components were extracted with tetrahydrofuran, and the water-soluble ones were extracted with a 50:3.7:46.3 (v/v methanol-acetic acid-water mixture. The antioxidant capacities of the extracts were evaluated using the ferric reducing antioxidant power (FRAP and Trolox equivalent antioxidant capacity (TEAC assays, and their total phenolic contents were measured by the Folin-Ciocalteu method. Most of these wild fruits were analyzed for the first time for their antioxidant activities. Generally, these fruits had high antioxidant capacities and total phenolic contents. A significant correlation between the FRAP value and the TEAC value suggested that antioxidant components in these wild fruits were capable of reducing oxidants and scavenging free radicals. A high correlation between antioxidant capacity and total phenolic content indicated that phenolic compounds could be the main contributors to the measured antioxidant activity. The results showed that fruits of Eucalyptus robusta, Eurya nitida, Melastoma sanguineum, Melaleuca leucadendron, Lagerstroemia indica, Caryota mitis, Lagerstroemia speciosa and Gordonia axillaris possessed the highest antioxidant capacities and total phenolic contents among those tested, and could be potential rich sources of natural antioxidants and functional foods. The results obtained are very helpful for the full utilization of these wild fruits.

  4. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells.

    Science.gov (United States)

    Tang, Jen-Yang; Huang, Hurng-Wern; Wang, Hui-Ru; Chan, Ya-Ching; Haung, Jo-Wen; Shu, Chih-Wen; Wu, Yang-Chang; Chang, Hsueh-Wei

    2018-03-01

    Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells. © 2017 Wiley Periodicals, Inc.

  5. Liquid-liquid and solid-phase extractions of phenols from virgin olive oil and their separation by chromatographic and electrophoretic methods.

    Science.gov (United States)

    Bendini, Alessandra; Bonoli, Matteo; Cerretani, Lorenzo; Biguzzi, Barbara; Lercker, Giovanni; Toschi, Tullia Gallina

    2003-01-24

    The high oxidative stability of virgin olive oil is related to its high monounsaturated/polyunsaturated ratio and to the presence of antioxidant compounds, such as tocopherols and phenols. In this paper, the isolation of phenolic compounds from virgin olive oil, by different methods, was tested and discussed. Particularly liquid-liquid and solid-phase extraction methods were compared, assaying, for the latter, three stationary phases (C8, C18 and Diol) and several elution mixtures. Quantification of phenolic and o-diphenolic substances in the extracts was performed by the traditional Folin-Ciocalteau method and the sodium molybdate reaction, respectively. Furthermore, the quantification of phenolic compounds in the extracts and in a standard mixture was carried out both with diode array and mass spectrometric detection and capillary zone electrophoresis.

  6. Total Phenolic, Flavonoids and Antioxidant Capacity of Some Medicinal and Aromatic Plants

    Directory of Open Access Journals (Sweden)

    Melinda Nagy

    2014-11-01

    Full Text Available Abstract: Antioxidants are substances that protect cells from the induced oxidative stress damage caused by unstable molecules known as free radicals that. Antioxidants neutralize free radicals as a natural by-product of normal cell processes. In the present study,were evaluated  the phenolic and flavonoids contents as well as the antioxidant capacity of seeds from  the Lamiaceae and Apiaceae family: fennel  (Foeniculum vulgare, dill (Anethum graveolens and rosemary (Rosmarinus officinalis . (Sreemoyee Ch. et. al., 2012 The main objective of the study was the comparative assessment of the phenolic and flavonoid compounds from dill, rosemary and fennel methanolic extracts correlated with their  antioxidant activity. Both total phenolic content and flavonoids content of the seeds samples were measured spectrophotometrically using the Folin-Ciocalteu assay and a chromogenic system of NaNO2–Al(NO33–NaOH, respectively.. Antioxidant capacity was determined by 2,2-DPPH method. Results strongly showed that Rosmarinus officinalis extract has the most effective antioxidant capacity in scavenging DPPH radicals, while Foeniculum vulgare and Anethum graveolens were less active. The total phenolic content was within 773,14 and 3367,24mg GAE/ 100g while the concentration in flavonoids was between 231,84 and 1325,53 QEg/100g dry seeds.  

  7. Selective C(sp3 )-H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow.

    Science.gov (United States)

    Laudadio, Gabriele; Govaerts, Sebastian; Wang, Ying; Ravelli, Davide; Koolman, Hannes F; Fagnoni, Maurizio; Djuric, Stevan W; Noël, Timothy

    2018-04-03

    A mild and selective C(sp 3 )-H aerobic oxidation enabled by decatungstate photocatalysis has been developed. The reaction can be significantly improved in a microflow reactor enabling the safe use of oxygen and enhanced irradiation of the reaction mixture. Our method allows for the oxidation of both activated and unactivated C-H bonds (30 examples). The ability to selectively oxidize natural scaffolds, such as (-)-ambroxide, pregnenolone acetate, (+)-sclareolide, and artemisinin, exemplifies the utility of this new method. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Kinetic analysis of polyoxometalate (POM) oxidation of non-phenolic lignin model compound

    Science.gov (United States)

    Tomoya Yokoyama; Hou-min Chang; Ira A. Weinstock; Richard S. Reiner; John F. Kadla

    2003-01-01

    Kinetic and reaction mechanism of non-phenolic lignin model compounds under anaerobic polyoxometalate (POM), Na5(+1.9)[SiV1(-0.1)MoW10(+0.1) 40], bleaching conditions were examined. Analyses using a syringyl type model, 1-(3,4,5-trimethoxyphenyl)ethanol (1), a guaiacyl type, 1-(3,4- imethoxyphenyl)ethanol (2), and 1- (4-ethoxy-3,5-dimethoxyphenyl)ethanol (3) suggest...

  9. Simple Copper Catalysts for the Aerobic Oxidation of Amines: Selectivity Control by the Counterion.

    Science.gov (United States)

    Xu, Boran; Hartigan, Elizabeth M; Feula, Giancarlo; Huang, Zheng; Lumb, Jean-Philip; Arndtsen, Bruce A

    2016-12-19

    We describe the use of simple copper-salt catalysts in the selective aerobic oxidation of amines to nitriles or imines. These catalysts are marked by their exceptional efficiency, operate at ambient temperature and pressure, and allow the oxidation of amines without expensive ligands or additives. This study highlights the significant role counterions can play in controlling selectivity in catalytic aerobic oxidations. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bursting in the Belousov-Zhabotinsky Reaction added with Phenol in a Batch Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cadena, Ariel; Agreda, Jesus, E-mail: jaagredab@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Barragan, Daniel [Escuela de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Medellin (Colombia)

    2013-12-01

    The classic Belousov-Zhabotinski reaction was modified by adding phenol as a second organic substrate that kinetically competes with the malonic acid in the reduction of Ce{sup 4+} to Ce{sup 3+} and in the removal of molecular bromine of the reaction mixture. The oscillating reaction of two substrates exhibited burst firing and an oscillatory period of long duration. Analysis of experimental data shows an increasing of the bursting phenomenon, with a greater spiking in the burst firing and with a longer quiescent state, as a function of the initial phenol concentration increase. It was hypothesized that the bursting phenomenon can be explained introducing a redox cycle between the reduced phenolic species (hydroxyphenols) and the oxidized ones (quinones). The hypothesis was experimentally and numerically tested and from the results it is possible to conclude that the bursting phenomenon exhibited by the oscillating reaction of two substrates is mainly driven by a p-di-hydroxy-benzene/p-benzoquinone redox cycle (author)

  11. Bursting in the Belousov-Zhabotinsky Reaction added with Phenol in a Batch Reactor

    International Nuclear Information System (INIS)

    Cadena, Ariel; Agreda, Jesus; Barragan, Daniel

    2013-01-01

    The classic Belousov-Zhabotinski reaction was modified by adding phenol as a second organic substrate that kinetically competes with the malonic acid in the reduction of Ce 4+ to Ce 3+ and in the removal of molecular bromine of the reaction mixture. The oscillating reaction of two substrates exhibited burst firing and an oscillatory period of long duration. Analysis of experimental data shows an increasing of the bursting phenomenon, with a greater spiking in the burst firing and with a longer quiescent state, as a function of the initial phenol concentration increase. It was hypothesized that the bursting phenomenon can be explained introducing a redox cycle between the reduced phenolic species (hydroxyphenols) and the oxidized ones (quinones). The hypothesis was experimentally and numerically tested and from the results it is possible to conclude that the bursting phenomenon exhibited by the oscillating reaction of two substrates is mainly driven by a p-di-hydroxy-benzene/p-benzoquinone redox cycle (author)

  12. A study of tribological behaviors of the phenolic composite coating reinforced with carbon fibers

    International Nuclear Information System (INIS)

    Song Haojie; Zhang Zhaozhu; Luo Zhuangzhu

    2007-01-01

    The nitric acid treatment was used as a method to bind acidic oxygen functional groups on carbon fiber surfaces, thereafter these fibers (CFO) and unmodified carbon fibers (CF) were incorporated into the phenolic composite coating for wear investigations. Surface analyses of the carbon fibers before and after treatments were performed by FTIR, X-ray photoelectron spectrometer (XPS). Tribological behaviors of carbon fibers filled phenolic coatings were investigated using a ring on block wear tests under dry friction condition, and the worn surfaces and the transfer films formed on the surface of counterpart ring were, respectively, studied by SEM and optical microscope. The results show that the additions of carbon fibers were able to reduce the friction coefficient of the phenolic coating and enhance the wear life of it, especially, the wear life of the phenolic coating was the best when content of carbon fibers is at 10 wt.%. Moreover, we found that the friction and wear behaviors of the phenolic coating reinforced with 10 wt.% CFO were better than those of the coating reinforced with 10 wt.% CF. FTIR and XPS analyses indicated that the oxygen functional groups, such as -OH, O-C=O, C=O, and C-O, were attached on the carbon fiber surfaces after the oxidated treatment. In both cases, appropriate treatments could effectively improve the mechanical and tribological properties in the phenolic composite coating due to the enhanced fiber-matrix interfacial bonding

  13. Stabilization of enzymatically polymerized phenolic chemicals in a model soil organic matter-free geomaterial.

    Science.gov (United States)

    Palomo, Mónica; Bhandari, Alok

    2012-01-01

    A variety of remediation methods, including contaminant transformation by peroxidase-mediated oxidative polymerization, have been proposed to manage soils and groundwater contaminated with chlorinated phenols. Phenol stabilization has been successfully observed during cross polymerization between phenolic polymers and soil organic matter (SOM) for soils with SOM >3%. This study evaluates peroxidase-mediated transformation and removal of 2,4-dichlorophenol (DCP) from an aqueous phase in contact with a natural geomaterial modified to contain negligible (soils with higher SOM. The SOM-free sorbent was generated by removing SOM using a NaOCl oxidation. When horseradish peroxidase (HRP) was used to induce polymerization of DCP, the soil-water phase distribution relationship (PDR) of DCP polymerization products (DPP) was complete within 1 d and PDRs did not significantly change over the 28 d of study. The conversion of DCP to DPP was close to 95% efficient. Extractable solute consisted entirely of DPP with 5% or less of unreacted DCP. The aqueous extractability of DPP from SOM-free geomaterial decreased at longer contact times and at smaller residual aqueous concentrations of DPP. DCP stabilization appeared to have resulted from a combination of sorption, precipitation, and ligand exchange between oligomeric products and the exposed mineral surfaces. Modification of the mineral surface through coverage with DPP enhanced the time-dependent retention of the oligomers. DPP stabilization in SOM-free geomaterial was comparable with that reported in the literature with soil containing SOM contents >1%. Results from this study suggest that the effectiveness of HRP-mediated stabilization of phenolic compounds not only depends on the cross-coupling with SOM, but also on the modification of the surface of the sorbent that can augment affinity with oligomers and enhance stabilization. Coverage of the mineral surface by phenolic oligomers may be analogous to SOM that can potentially

  14. Selective oxidations on vanadiumoxide containing amorphous mixed oxides (AMM-V) with tert.-butylhydroperoxide

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Y.; Hunnius, M.; Storck, S.; Maier, W.F. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    The catalytic oxygen transfer properties of vanadium containing zeolites and vanadium based sol-gel catalysts with hydrogen peroxides are well known. The severe problem of vanadium leaching caused by the presence of the by-product water has been addressed. To avoid any interference with homogeneously catalyzed reactions, our study focusses on selective oxidations in a moisture-free medium with tert.-butylhydroperoxide. We have investigated the catalytic properties of amorphous microporous materials based on SiO{sub 2}, TiO{sub 2}, ZrO{sub 2} and Al{sub 2}O{sub 3} as matrix material and studied the effects of surface polarity on the oxidation of 1-octene and cyclohexane. (orig.)

  15. Immunostimulatory effects of the phenolic compounds from lichens on nitric oxide and hydrogen peroxide production

    Directory of Open Access Journals (Sweden)

    Iracilda Z. Carlos

    Full Text Available The effects of isolated compounds from Brazilian lichens and their derivatives on H2O2 and NO production were studied using murine macrophages as a part of an attempt to understand their possible immunomodulatory properties. The compound cytotoxicity was studied using MTT assay. Macrophage stimulation was evaluated by the determination of NO (Griess assay and H2O2 (horseradish peroxidase/phenol red in supernatants of peritoneal macrophage cultures of Swiss mice. This research demonstrated stimulatory activities of some phenolic compounds isolated from lichens and their derivatives on H2O2 and NO production. Structure-activity relationships suggest several synthetic directions for further improvement of immunological activity.

  16. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Directory of Open Access Journals (Sweden)

    Valery E. Tarabanko

    2017-11-01

    Full Text Available This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde. It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15% inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed.

  17. Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide.

    Science.gov (United States)

    Yuan, Jipei; Guo, Weiwei; Wang, Erkang

    2008-02-15

    In this paper, we attempt to construct a simple and sensitive detection method for both phenolic compounds and hydrogen peroxide, with the successful combination of the unique property of quantum dots and the specificity of enzymatic reactions. In the presence of H2O2 and horseradish peroxidase, phenolic compounds can quench quantum dots' photoluminescence efficiently, and the extent of quenching is severalfold to more than 100-fold increase. Quinone intermediates produced from the enzymatic catalyzed oxidation of phenolic compounds were believed to play the main role in the photoluminescence quenching. Using a quantum dots-enzyme system, the detection limits for phenolic compounds and hydrogen peroxide were detected to be approximately 10(-7) mol L(-1). The coupling of efficient quenching of quantum dot photoluminescence by quinone and the effective enzymatic reactions make this a simple and sensitive method for phenolic compound detection and great potential in the development of H2O2 biosensors for various analytes.

  18. Relationship between red wine grades and phenolics. 1. Tannin and total phenolics concentrations.

    Science.gov (United States)

    Mercurio, Meagan D; Dambergs, Robert G; Cozzolino, Daniel; Herderich, Markus J; Smith, Paul A

    2010-12-08

    Measuring chemical composition is a common approach to support decisions about allocating foods and beverages to grades related to market value. Red wine is a particularly complex beverage, and multiple compositional attributes are needed to account for its sensory properties, including measurement of key phenolic components such as anthocyanins, total phenolics, and tannin, which are related to color and astringency. Color has been shown to relate positively to red wine grade; however, little research has been presented that explores the relationship between astringency-related components such as total phenolic or tannin concentration and wine grade. The aim of this research has been to investigate the relationship between the wine grade allocations of commercial wineries and total phenolic and tannin concentrations, respectively, in Australian Shiraz and Cabernet Sauvignon wines. Total phenolic and tannin concentrations were determined using the methyl cellulose precipitable (MCP) tannin assay and then compared to wine grade allocations made by winemaker panels during the companies' postvintage allocation process. Data were collected from wines produced by one Australian wine company over the 2005, 2006, and 2007 vintages and by a further two companies in 2007 (total wines = 1643). Statistical analysis revealed a positive trend toward higher wine grade allocation and wines that had higher concentrations of both total phenolics and tannin, respectively. This research demonstrates that for these companies, in general, Cabernet Sauvignon and Shiraz wines allocated to higher market value grades have higher total phenolics and higher tannin concentrations and suggests that these compositional parameters should be considered in the development of future multiparameter decision support systems for relevant commercial red wine grading processes. In addition, both tannin and total phenolics would ideally be included because although, in general, a positive relationship

  19. The reactivity of natural phenols

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2009-11-30

    This review surveys physicochemical data of natural phenols published in recent years. The structures of some compounds of this class are given. A complete set of the dissociation energies of the O-H bonds for 71 natural phenols is presented. Kinetic characteristics of the reactions of peroxyl, alkyl and thiyl radicals with natural phenols, exchange reactions of phenoxyl radicals with phenols and reactions of phenoxyl radicals with lipids, hydroperoxides, cysteine and ascorbic acid are compiled and described systematically. The reactivity of phenols in radical reactions and the factors that determine the reactivity (the enthalpy of reaction, triplet repulsion, the electronegativities of atoms at the reaction centre, the presence of pi-electrons adjacent to the reaction centre, the radii of atoms at the reaction centre, steric hindrance, the force constants of the reacting bonds) are discussed. An important role of hydrogen bonding between surrounding molecules and the OH groups of natural phenols in decreasing their reactivities is noted.

  20. Bromination of Phenol

    Science.gov (United States)

    Talbot, Christopher

    2013-01-01

    This "Science note" examines the bromination of phenol, a reaction that is commonly taught at A-level and IB (International Baccalaureate) as an example of electrophilic substitution. Phenol undergoes bromination with bromine or bromine water at room temperature. A white precipitate of 2,4,6-tribromophenol is rapidly formed. This…

  1. Determination of biological activities and total phenolic contents of flowers of jasminum humile and roots of dorema aucheri

    International Nuclear Information System (INIS)

    Khan, A.; Farooq, U.; Ullah, F.; Iqbal, J.

    2014-01-01

    The present study was designed to investigate in vitro antioxidant, NO scavenging, and antibacterial activities as well as total phenolic contents of different extracts of flowers of Jasminum humile and roots of Dorema aucheri. The plant extracts showed significant antioxidant activity, having IC50 values comparable to those of references used in each assay and also inhibited accumulation of nitrite in vitro. The plant extracts yielded phenolic contents and showed significant antibacterial activity. The observed antioxidant potential and phenolic contents of the extracts showed that flowers of J. humile and roots of D. aucheri are potential source of natural antioxidants that may help to retard oxidative degradation and microbial growth in food industry. (author)

  2. THE ROLE OF PHENOLICS IN AGARWOOD FORMATION OF Aquilaria crassna Pierre ex Lecomte AND Aquilaria microcarpa Baill TREES

    Directory of Open Access Journals (Sweden)

    Eka Novriyanti

    2011-12-01

    Full Text Available Phenolic is well known as a secondary metabolite that plays an important role in plant defense system. Information about the fungi-impeded role of secondary metabolite is important in achieving success of artificial agarwood production, in that fungi induction imparted to the selected potential trees will be more effective and efficient. This research was aimed to investigate the correlation of agarwood tree phenolics in relation with the susceptibility of corresponding trees to Fusarium solani attack in the formation of agarwood and observing total phenolics content of Aquilaria crassna and Aquilaria microcarpa trees prior to inoculation. Twenty trees of A. microcarpa at Carita, a Forest Area for Special Function (FASF and ten of A. crassna at Dramaga Research Forest were inoculated with isolate of F. solani in spiral pattern around their stem from ground level to about 1.5 m in height. Prior to inoculation, wood strips were taken off from the stem for total phenolics content. The result revealed that total phenolics content and infection area tended to have a negative correlation. Since the quantity of agarwood is highly related with the infection area, then trees with lower phenolics content should be selected for the more effective and efficient artificial agarwood production.

  3. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  4. ALTERNATIVE FOR PHENOL BIODEGRADATION IN OIL CONTAMINATED WASTEWATERS USING AN ADAPTED BACTERIAL BIOFILM LAYER

    Directory of Open Access Journals (Sweden)

    Maria Kopytko

    2008-12-01

    Full Text Available The project studied the biodegradation potential of phenols in an industrial wastewater from an oil field in the province of Santander, Colombia. An elevated potential was established, according to three important factors: the great abundance of microorganisms found in the wastewater and sludge samples collected, the bacterial adaptation to high phenol concentrations (10 mg/l and the elevated elimination efficiencies (up to 86% obtained in the laboratory tests. The laboratory scale treatment system, which consisted of fixed-bed bioreactors with adapted bacterial biofilm, was optimized using a 22 factorial experimental design. The selected variables, studied in their maximum and minimum level were: HRT (hydraulic retention time and the presence or absence of GAC (granular activated carbon layer. The response variable was phenol concentration. The optimum treatment conditions for low and high phenol concentrations (2.14 y 9.30 mg/l, were obtained with the presence of GAC and 18 hours of HRT. The best result for the intermediate phenol concentration (6.13 mg/l was obtained with a 24 hour HRT and the presence of GAC. Nevertheless, the presence of the GAC layer was not significantly important in terms of phenol removal. Moreover, the increase of HRT from 18 to 24 hours, showed no significant improvement in phenol removal.

  5. Techniques for Analysis of Plant Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Thomas H. Roberts

    2013-02-01

    Full Text Available Phenolic compounds are well-known phytochemicals found in all plants. They consist of simple phenols, benzoic and cinnamic acid, coumarins, tannins, lignins, lignans and flavonoids. Substantial developments in research focused on the extraction, identification and quantification of phenolic compounds as medicinal and/or dietary molecules have occurred over the last 25 years. Organic solvent extraction is the main method used to extract phenolics. Chemical procedures are used to detect the presence of total phenolics, while spectrophotometric and chromatographic techniques are utilized to identify and quantify individual phenolic compounds. This review addresses the application of different methodologies utilized in the analysis of phenolic compounds in plant-based products, including recent technical developments in the quantification of phenolics.

  6. Identificationof Major Phenolic Compounds of Chinese Water Chestnut and their Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Yueming Jiang

    2007-04-01

    Full Text Available Chinese water chestnut (CWC is one of the most popular foods among Asian people due to its special taste and medical function. Experiments were conducted to test the antioxidant activity and then determine the major phenolic compound components present in CWC. CWC phenolic extract strongly inhibited linoleic acid oxidation and exhibited a dose-dependent free-radical scavenging activity against α,α-diphenyl-β-picrylhydrazyl (DPPH radicals, superoxide anions and hydroxyl radicals, which was superior to ascorbic acid and butylated hydroxytoluene (BHT, two commercial used antioxidants. Furthermore, the CWC extract was found to have a relatively higher reducing power, compared with BHT. The major phenolic compounds present in CWC tissues were extracted, purified and identified by high-performance liquid chromatograph (HPLC as (–-gallocatechin gallate, (–-epicatechin gallate and (+-catechin gallate. This study suggests that CWC tissues exhibit great potential for antioxidant activity and may be useful for their nutritional and medicinal functions.

  7. Phenolics and Plant Allelopathy

    Directory of Open Access Journals (Sweden)

    De-An Jiang

    2010-12-01

    Full Text Available Phenolic compounds arise from the shikimic and acetic acid (polyketide metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines in crop yield due to soil sickness, regeneration failure of natural forests, and replanting problems in orchards. Phenolic allelochemical structures and modes of action are diverse and may offer potential lead compounds for the development of future herbicides or pesticides. This article reviews allelopathic effects, analysis methods, and allelopathic mechanisms underlying the activity of plant phenolic compounds. Additionally, the currently debated topic in plant allelopathy of whether catechin and 8-hydroxyquinoline play an important role in Centaurea maculata and Centaurea diffusa invasion success is discussed. Overall, the main purpose of this review is to highlight the allelopacthic potential of phenolic compounds to provide us with methods to solve various ecology problems, especially in regard to the sustainable development of agriculture, forestry, nature resources and environment conservation.

  8. Selective oxidation of dual phase steel after annealing at different dew points

    Science.gov (United States)

    Lins, Vanessa de Freitas Cunha; Madeira, Laureanny; Vilela, Jose Mario Carneiro; Andrade, Margareth Spangler; Buono, Vicente Tadeu Lopes; Guimarães, Juliana Porto; Alvarenga, Evandro de Azevedo

    2011-04-01

    Hot galvanized steels have been extensively used in the automotive industry. Selective oxidation on the steel surface affects the wettability of zinc on steel and the grain orientation of inhibition layer (Fe-Al-Zn alloy) and reduces the iron diffusion to the zinc layer. The aim of this work is to identify and quantify selective oxidation on the surface of a dual phase steel, and an experimental steel with a lower content of manganese, annealed at different dew points. The techniques employed were atomic force microscopy, X-ray photoelectron spectroscopy, and glow discharge optical emission spectroscopy. External selective oxidation was observed for phosphorus on steel surface annealed at 0 °C dp, and for manganese, silicon, and aluminum at a lower dew point. The concentration of manganese was higher on the dual phase steel surface than on the surface of the experimental steel. The concentration of molybdenum on the surface of both steels increased as the depth increased.

  9. Bioavailability of dietary phenolic compounds: Review

    Directory of Open Access Journals (Sweden)

    Erick Gutiérrez-Grijalva Paul Gutiérrez-Grijalva

    2015-12-01

    Full Text Available Phenolic compounds are ubiquitous in plant-based foods. High dietary intake of fruits, vegetables and cereals is related to a decreased rate in chronic diseases. Phenolic compounds are thought to be responsible, at least in part, for those health effects. Nonetheless, phenolic compounds bioaccessibility and biotransformation is often not considered in these studies; thus, a precise mechanism of action of phenolic compounds is not known. In this review we aim to present a comprehensive knowledge of the metabolic processes through which phenolic compounds go after intake.

  10. HETEROGENEOUS PHOTOCATALYTIC DEGRADATION OF PHENOL IN AQUEOUS SUSPENSION OF PERIWINKLE SHELL ASH CATALYST IN THE PRESENCE OF UV FROM SUNLIGHT

    Directory of Open Access Journals (Sweden)

    OSARUMWENSE, J. O.

    2015-12-01

    Full Text Available The batch photocatalytic degradation of phenol in aqueous solution wasinvestigated using periwinkle shell ash (PSA as photocatalyst. Chemical characterisation of the PSA revealed that the major oxides present were calcium oxide (CaO, silica (SiO2 and aluminium oxide (Al2O3 which accounted for 41.3, 33.2 and 9.2% of the weight of PSA characterised. The major elements in PSA were iron (19.2% and zinc (16.5%. FTIR results revealed absorption peaks of 3626.59 cm−1, 1797.58 cm−1, 1561.43 cm−1 and 1374.34 cm−1 in the infrared spectrum of PSA corresponding to O–H, C= O, C= C and C–H bonds respectively. Increasing the initial phenol concentration resulted in a decrease in the degradation efficiency of PSA. Lower catalyst loadings favoured the degradation process. Maximum degradation efficiency was obtained when the initial phenol concentration and catalyst loading were set as 50 g/L and 5 g/L respectively. The kinetics of the degradation process was well described by the pseudo first order equation while the diffusion mechanism was well represented by the intra particle diffusion model (R2>0.90. The adsorption equilibrium data fitted well to the Langmuir isotherm equation with an R2 value of 0.997.

  11. Selective Oxidation of Styrene to Benzaldehyde by Co-Ag Codoped ZnO Catalyst and H2O2 as Oxidant

    Directory of Open Access Journals (Sweden)

    Abderrazak Aberkouks

    2018-01-01

    Full Text Available Various ratio of Co-Ag supported on ZnO have been evaluated in the selective catalytic oxidation of styrene to benzaldehyde, using H2O2 as an oxidant. The catalysts were prepared by a sol-gel process and were characterized using XRD, FT-IR, TG-DTG, BET, and SEM/EDX. The performance of the prepared catalyst was investigated under different parameters such as solvent, temperature, substrate/oxidant molar ratios, reaction time, and doping percent. The Zn1−x−yAgxCoyO catalysts exhibit a good activity and a high selectivity towards benzaldehyde (95% with the formation of only 5% of acetophenone.

  12. Comparative study of the total phenol content and antioxidant activity of some medicinal herbal extracts

    Directory of Open Access Journals (Sweden)

    H. Hajimehdipoor

    2014-08-01

    Full Text Available Herbal medicines can be used as the potential sources of anti-oxidative compounds to help the treatment of diseases associated to oxidative stress. In this paper, the Ferric Reducing Antioxidant Power (FRAP activity of four Lamiaceae herbal extracts, which traditionally applied in oxidative stress related diseases, has been evaluated and total phenolics contents of these extracts determined by using Folin-Ciocalteu reagent. The aqueous methanol extracts were prepared by percolation method and investigated for antioxidant properties and total phenolics content evaluation. All the extracts showed antioxidant effect from 123.6±4.6 mmol of FeSO4.7H2Oequivalent/100 g dried extract in Scutellaria tornefortii to 551.5±16.0 mmol of FeSO4.7H2Oequivalent/100 g dried extract in Satureja sahendica. Interestingly, although Satureja sahendica exhibited the most antioxidant activity, the highest content of polyphenolics belonged to Stachys byzantina. Taking together, antioxidant activity of the mentioned medicinal plants is not necessarily associated with polyphenolic compounds and might be partially due to the presence of other polar constituents like terpenoid-glycosides in aqueous extracts that traditionally used as decoction.

  13. Application of insoluble fibers in the fining of wine phenolics.

    Science.gov (United States)

    Guerrero, Raúl F; Smith, Paul; Bindon, Keren A

    2013-05-08

    The application of animal-derived proteins as wine fining agents has been subject to increased regulation in recent years. As an alternative to protein-based fining agents, insoluble plant-derived fibers have the capacity to adsorb red wine tannins. Changes in red wine tannin were analyzed following application of fibers derived from apple and grape and protein-based fining agents. Other changes in wine composition, namely, color, monomeric phenolics, metals, and turbidity, were also determined. Wine tannin was maximally reduced by application of an apple pomace fiber and a grape pomace fiber (G4), removing 42 and 38%, respectively. Potassium caseinate maximally removed 19% of wine tannin, although applied at a lower dose. Fibers reduced anthocyanins, total phenolics, and wine color density, but changes in wine hue were minor. Proteins and apple fiber selectively removed high molecular mass phenolics, whereas grape fibers removed those of both high and low molecular mass. The results show that insoluble fibers may be considered as alternative fining agents for red wines.

  14. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.; Morandi, Bill; Grubbs, Robert H.

    2013-01-01

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  15. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  16. Uptake and fate of phenol, aniline and quinoline in terrestrial plants

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Bean, R.M.; Fellows, R.J.

    1987-06-01

    The bioavailability and chemical fate of xenobiotics in terrestrial plants can influence the impact of fossil fuel development on the human food chain. To determine the relative behavior of organic residues representing a range of chemical classes, we compared the rates of root absorption, tissue distribution and chemical fate of phenol, aniline and quinoline in soybean plants. Root absorption rates for these compounds were 180, 13 and 30 μg/g (fresh weight) root/day, respectively. Following uptake, aniline was concentrated in the root, while phenol and quinoline were evenly distributed in roots and leaves. After accumulation, phenol was readily decomposed, and its carbon was respired. While aniline was susceptible to oxidative decomposition, it persisted in leaves and roots; 25% of the soluble activity represented aniline, and a significant fraction was bound or conjugated to cell constitutents. Quinoline persisted both in the parent form and as metabolic products. However, in leaves, additional compounds were found that were chemically similar to quinoline; these were not found in unexposed plants. A substantial fraction of the quinoline accumulated by leaves was emitted to the atmosphere by volatilization. 12 refs., 5 tabs., 2 figs

  17. Antioxidant Activity of Brazilian Vegetables and Its Relation with Phenolic Composition

    Directory of Open Access Journals (Sweden)

    Severino M. Alencar

    2012-07-01

    Full Text Available Vegetables are widely consumed in Brazil and exported to several countries. This study was performed to evaluate the phenolic content and antioxidant activity of vegetables commonly consumed in Brazil using five different methods, namely DPPH and ABTS free radical, β-carotene bleaching, reduction of Fe3+ (FRAP, oxidative stability in Rancimat, and the chemical composition using gas chromatography-mass spectrometry (GC-MS. The content of phenolic compounds ranged from 1.2 mg GA/g (carrot to 16.9 mg GA/g (lettuce. Vegetables presenting the highest antioxidant activity were lettuce (77.2 µmol Trolox/g DPPH; 447.1 µmol F2+/g FRAP, turmeric (118.6 µmol Trolox/g ABTS•+; 92.8% β-carotene, watercress and broccoli (protective factor 1.29—Rancimat method. Artichoke, spinach, broccoli, and asparagus also showed considerable antioxidant activity. The most frequent phenolic compounds identified by GC-MS were ferulic, caffeic, p-coumaric, 2-dihydroxybenzoic, 2,5-dihydroxybenzoic acids, and quercetin. We observed antioxidant activity in several vegetables and our results point out their importance in the diet.

  18. Selective oxidation of alkanes and/or alkenes to valuable oxygenates

    Science.gov (United States)

    Lin, Manhua [Maple Glen, PA; Pillai, Krishnan S [North Brunwick, NJ

    2011-02-15

    A catalyst, its method of preparation and its use for producing at least one of methacrolein and methacrylic acid, for example, by subjecting isobutane or isobutylene or a mixture thereof to a vapor phase catalytic oxidation in the presence of air or oxygen. In the case where isobutane alone is subjected to a vapor phase catalytic oxidation in the presence of air or oxygen, the product is at least one of isobutylene, methacrolein and methacrylic acid. The catalyst comprises a compound having the formula A.sub.aB.sub.bX.sub.xY.sub.yZ.sub.zO.sub.o wherein A is one or more elements selected from the group of Mo, W and Zr, B is one or more elements selected from the group of Bi, Sb, Se, and Te, X is one or more elements selected from the group of Al, Bi, Ca, Ce, Co, Fe, Ga, Mg, Ni, Nb, Sn, W and Zn, Y is one or more elements selected from the group of Ag, Au, B, Cr, Cs, Cu, K, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Re, Ru, Sn, Te, Ti, V and Zr, and Z is one or more element from the X or Y groups or from the following: As, Ba, Pd, Pt, Sr, or mixtures thereof, and wherein a=1, 0.05oxidation state of the other elements.

  19. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.).

    Science.gov (United States)

    Chauhan, Reshu; Awasthi, Surabhi; Tripathi, Preeti; Mishra, Seema; Dwivedi, Sanjay; Niranjan, Abhishek; Mallick, Shekhar; Tripathi, Pratibha; Pande, Veena; Tripathi, Rudra Deo

    2017-04-01

    Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Evaluation of pal activity, phenolic and flavonoid contents in three pistachio ( Pistacia vera L. ) cultivars grafted onto three different rootstocks

    OpenAIRE

    Nadernejad, N.; Ahmadimoghadam, A.; Hossyinifard, J.; Poorseyedi, S.

    2013-01-01

    Phenylalanine ammonia lyase (PAL) is a biochemical marker of the environmental stress and plays a pivotal role in phenolic synthesis. The lower ROS level and oxidative damage was observed in grafted plants and the rootstocks have a profound influence on the biochemical composition, especially phenolic compounds. Regarding the importance of the effect rootstocks have on scion in pistachio trees, this study was carried out to assess and compare three pistachio cultivars ("Ahmadaghaii", "Ohadi" ...

  1. Lithium-Vanadium bronzes as model catalysts for the selective reduction of nitric oxide

    NARCIS (Netherlands)

    Bosch, H.; Bongers, Annemie; Enoch, Gert; Snel, Ruud; Ross, Julian R.H.

    1989-01-01

    The effect of alkali metals on the selective reduction of nitric oxide with ammonia has been studied on bulk iron oxide and bulk vanadium oxide. The influence of additions of LiOH, NaOH and KOH on the activity was screened by pulse experiments carried out in the absence of gaseous oxygen; FTIR

  2. Sources and transformations of dissolved lignin phenols and chromophoric dissolved organic matter in Otsuchi Bay, Japan

    Directory of Open Access Journals (Sweden)

    Chia-Jung eLu

    2016-06-01

    Full Text Available Dissolved lignin phenols and optical properties of dissolved organic matter (DOM were measured to investigate the sources and transformations of terrigenous DOM (tDOM in Otsuchi Bay, Japan. Three rivers discharge into the bay, and relatively high values of syringyl:vanillyl phenols (0.73 ± 0.07 and cinnamyl:vanillyl phenols (0.33 ± 0.10 indicated large contributions of non-woody angiosperm tissues to lignin and tDOM. The physical mixing of river and seawater played an important role in controlling the concentrations and distributions of lignin phenols and chromophoric DOM (CDOM optical properties in the bay. Lignin phenol concentrations and the CDOM absorption coefficient at 350 nm, a(350, were strongly correlated in river and bay waters. Measurements of lignin phenols and CDOM in bay waters indicated a variety of photochemical and biological transformations of tDOM, including oxidation reactions, photobleaching and a decrease in molecular weight. Photodegradation and biodegradation of lignin and CDOM were investigated in decomposition experiments with river water and native microbial assemblages exposed to natural sunlight or kept in the dark. There was a rapid and substantial removal of lignin phenols and CDOM during the first few days in the light treatment, indicating transformations of tDOM and CDOM can occur soon after discharge of buoyant river water into the bay. The removal of lignin phenols was slightly greater in the dark (34% than in the light (30% during the remaining 59 days of the incubation. Comparison of the light and dark treatments indicated biodegradation was responsible for 67% of total lignin phenol removal during the 62-day incubation exposed to natural sunlight, indicating biodegradation is a dominant removal process in Otsuchi Bay.

  3. Antineurodegenerative effect of phenolic extracts and caffeic acid derivatives in romaine lettuce on neuron-like PC-12 cells.

    Science.gov (United States)

    Im, Sung-Eun; Yoon, Hyungeun; Nam, Tae-Gyu; Heo, Ho Jin; Lee, Chang Yong; Kim, Dae-Ok

    2010-08-01

    In recent decades, romaine lettuce has been one of the fastest growing vegetables with respect to its consumption and production. An understanding is needed of the effect of major phenolic phytochemicals from romaine lettuce on biological protection for neuron-like PC-12 cells. Phenolics in fresh romaine lettuce were extracted, and then its total phenolics and total antioxidant capacity were measured spectrophotometrically. Neuroprotective effects of phenolic extract of romaine lettuce and its pure caffeic acid derivatives (caffeic, chicoric, chlorogenic, and isochlorogenic acids) in PC-12 cells were evaluated using two different in vitro methods: lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assays. Total phenolics and total antioxidant capacity of 100 g of fresh romaine lettuce averaged 22.7 mg of gallic acid equivalents and 31.0 mg of vitamin C equivalents, respectively. The phenolic extract of romaine lettuce protected PC-12 cells against oxidative stress caused by H(2)O(2) in a dose-dependent manner. Isochlorogenic acid, one of the phenolics in romaine lettuce, showed stronger neuroprotection than the other three caffeic acid derivatives also found in the lettuce. Although romaine lettuce had lower levels of phenolics and antioxidant capacity compared to other common vegetables, its contribution to total antioxidant capacity and antineurodegenerative effect in human diets would be higher because of higher amounts of its daily per capita consumption compared to other common vegetables.

  4. Hydrogenation of Phenol over Pt/CNTs: The Effects of Pt Loading and Reaction Solvents

    OpenAIRE

    Feng Li; Bo Cao; Wenxi Zhu; Hua Song; Keliang Wang; Cuiqin Li

    2017-01-01

    Carbon nanotubes (CNTs)-supported Pt nanoparticles were prepared with selective deposition of Pt nanoparticles inside and outside CNTs (Pt–in/CNTs and Pt–out/CNTs). The effects of Pt loading and reaction solvents on phenol hydrogenation were investigated. The Pt nanoparticles in Pt–in/CNTs versus Pt–out/CNTs are smaller and better dispersed. The catalytic activity and reuse stability toward phenol hydrogenation both improved markedly. The dichloromethane–water mixture as the reaction solvent,...

  5. Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS 2014

    Directory of Open Access Journals (Sweden)

    B. Yuan

    2016-02-01

    Full Text Available We describe the results from online measurements of nitrated phenols using a time-of-flight chemical ionization mass spectrometer (ToF-CIMS with acetate as reagent ion in an oil and gas production region in January and February of 2014. Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Based on known markers (CH4, NOx, CO2, primary emissions of nitrated phenols were not important in this study. A box model was used to simulate secondary formation of phenol, nitrophenol (NP, and dinitrophenols (DNP. The box model results indicate that oxidation of aromatics in the gas phase can explain the observed concentrations of NP and DNP in this study. Photolysis was the most efficient loss pathway for NP in the gas phase. We show that aqueous-phase reactions and heterogeneous reactions were minor sources of nitrated phenols in our study. This study demonstrates that the emergence of new ToF-CIMS (including PTR-TOF techniques allows for the measurement of intermediate oxygenates at low levels and these measurements improve our understanding on the evolution of primary VOCs in the atmosphere.

  6. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    Science.gov (United States)

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  7. Evaluation of Phenolic Compounds and Antioxidant and Antimicrobial Activities of Some Common Herbs

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Qadir

    2017-01-01

    Full Text Available The study was designed to evaluate the phenolic, flavonoid contents and antioxidant and antimicrobial activities of onion (Allium cepa, garlic (Allium sativum, mint (Mentha spicata, thyme (Thymus vulgaris, oak (Quercus, aloe vera (Aloe barbadensis Miller, and ginger (Zingiber officinale. All extracts showed a wide range of total phenolic contents, that is, 4.96 to 98.37 mg/100 g gallic acid equivalents, and total flavonoid contents, that is, 0.41 to 17.64 mg/100 g catechin equivalents. Antioxidant activity (AA was determined by measuring reducing power, inhibition of peroxidation using linoleic acid system, and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH scavenging activity. Different extracts inhibited oxidation of linoleic acid by 16.6–84.2% while DPPH radical scavenging activity (IC50 values ranged from 17.8% to 79.1 μg/mL. Reducing power at 10 mg/mL extract concentration ranged from 0.11 to 0.84 nm. Furthermore the extracts of these medicinal herbs in 80% methanol, 80% ethanol, 80% acetone, and 100% water were screened for antimicrobial activity by disc diffusion method against selected bacterial strains, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pasteurella multocida, and fungal strains, Aspergillus niger, Aspergillus flavus, Rhizopus solani, and Alternaria alternata. The extracts show better antimicrobial activity against bacterial strains as compared to fungal strains. Results of various assays were analyzed statistically by applying appropriate statistical methods.

  8. Crystallization and preliminary X-ray analysis of a bifunctional catalase-phenol oxidase from Scytalidium thermophilum

    International Nuclear Information System (INIS)

    Sutay Kocabas, Didem; Pearson, Arwen R.; Phillips, Simon E. V.; Bakir, Ufuk; Ogel, Zumrut B.; McPherson, Michael J.; Trinh, Chi H.

    2009-01-01

    The bifunctional enzyme catalase-phenol oxidase from S. thermophilum was crystallized by the hanging-drop vapour-diffusion method in space group P2 1 and diffraction data were collected to 2.8 Å resolution. Catalase-phenol oxidase from Scytalidium thermophilum is a bifunctional enzyme: its major activity is the catalase-mediated decomposition of hydrogen peroxide, but it also catalyzes phenol oxidation. To understand the structural basis of this dual functionality, the enzyme, which has been shown to be a tetramer in solution, has been purified by anion-exchange and gel-filtration chromatography and has been crystallized using the hanging-drop vapour-diffusion technique. Streak-seeding was used to obtain larger crystals suitable for X-ray analysis. Diffraction data were collected to 2.8 Å resolution at the Daresbury Synchrotron Radiation Source. The crystals belonged to space group P2 1 and contained one tetramer per asymmetric unit

  9. Quantitative Structure-Activity Relationships Predicting the Antioxidant Potency of 17β-Estradiol-Related Polycyclic Phenols to Inhibit Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Katalin Prokai-Tatrai

    2013-01-01

    Full Text Available The antioxidant potency of 17β-estradiol and related polycyclic phenols has been well established. This property is an important component of the complex events by which these types of agents are capable to protect neurons against the detrimental consequences of oxidative stress. In order to relate their molecular structure and properties with their capacity to inhibit lipid peroxidation, a marker of oxidative stress, quantitative structure-activity relationship (QSAR studies were conducted. The inhibition of Fe3+-induced lipid peroxidation in rat brain homogenate, measured through an assay detecting thiobarbituric acid reactive substances for about seventy compounds were correlated with various molecular descriptors. We found that lipophilicity (modeled by the logarithm of the n-octanol/water partition coefficient, logP was the property that influenced most profoundly the potency of these compounds to inhibit lipid peroxidation in the biological medium studied. Additionally, the important contribution of the bond dissociation enthalpy of the phenolic O-H group, a shape index, the solvent-accessible surface area and the energy required to remove an electron from the highest occupied molecular orbital were also confirmed. Several QSAR equations were validated as potentially useful exploratory tools for identifying or designing novel phenolic antioxidants incorporating the structural backbone of 17β-estradiol to assist therapy development against oxidative stress-associated neurodegeneration.

  10. Syntheses and catalytic oxotransfer activities of oxo molybdenum(vi) complexes of a new aminoalcohol phenolate ligand.

    Science.gov (United States)

    Hossain, M K; Haukka, M; Sillanpää, R; Hrovat, D A; Richmond, M G; Nordlander, E; Lehtonen, A

    2017-05-30

    The new aminoalcohol phenol 2,4-di-tert-butyl-6-(((2-hydroxy-2-phenylethyl)amino)methyl)phenol (H2L) was prepared by a facile solvent-free synthesis and used as a tridentate ligand for new cis-dioxomolybdenum(vi)(L) complexes. In the presence of a coordinating solvent (DMSO, MeOH, pyridine), the complexes crystallise as monomeric solvent adducts while in the absence of such molecules, a trimer with asymmetric Mo[double bond, length as m-dash]O→Mo bridges crystallises. The complexes can catalyse epoxidation of cis-cyclooctene and sulfoxidation of methyl-p-tolylsulfide, using tert-butyl hydroperoxide as oxidant.

  11. Analysis of Chlorogenic Acid Oxidation Pathway in Simulated ...

    African Journals Online (AJOL)

    Purpose: To investigate the pathways involved in the oxidation of chlorogenic acid (CA) and phenol metabolism in honeysuckle buds. Methods: A model that mimics CA oxidation by honeysuckle polyphenol oxidase (PPO) by controlling the reaction temperature or reaction duration was employed, and the resulting products ...

  12. Methyl Jasmonate and Salicylic Acid Induced Oxidative Stress and Accumulation of Phenolics in Panax ginseng Bioreactor Root Suspension Cultures

    Directory of Open Access Journals (Sweden)

    Kee-Yoeup Paek

    2007-03-01

    Full Text Available To investigate the enzyme variations responsible for the synthesis of phenolics, 40 day-old adventitious roots of Panax ginseng were treated with 200 μM methyl jasmonate (MJ or salicylic acid (SA in a 5 L bioreactor suspension culture (working volume 4 L. Both treatments caused an increase in the carbonyl and hydrogen peroxide (H2O2 contents, although the levels were lower in SA treated roots. Total phenolic, flavonoid, ascorbic acid, non-protein thiol (NPSH and cysteine contents and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical reducing activity were increased by MJ and SA. Fresh weight (FW and dry weight (DW decreased significantly after 9 days of exposure to SA and MJ. The highest total phenolics (62%, DPPH activity (40%, flavonoids (88%, ascorbic acid (55%, NPSH (33%, and cysteine (62% contents compared to control were obtained after 9 days in SA treated roots. The activities of glucose 6-phosphate dehydrogenase, phenylalanine ammonia lyase, substrate specific peroxidases (caffeic acid peroxidase, quercetin peroxidase and ferulic acid peroxidase were higher in MJ treated roots than the SA treated ones. Increased shikimate dehydrogenase, chlorogenic acid peroxidase and β-glucosidase activities and proline content were observed in SA treated roots than in MJ ones. Cinnamyl alcohol dehydrogenase activity remained unaffected by both MJ and SA. These results strongly indicate that MJ and SA induce the accumulation of phenolic compounds in ginseng root by altering the phenolic synthesis enzymes.

  13. Adsorption of Phenol from Aqueous Solutions by Carbon Nanomaterials of One and Two Dimensions: Kinetic and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    M. de la Luz-Asunción

    2015-01-01

    Full Text Available Carbon nanomaterials have a great potential in environmental studies; they are considered as superior adsorbents of pollutants due to their physical and chemical properties. Functionalization and dimension play an important role in many functions of these nanomaterials including adsorption. In this research, adsorption process was achieved with one-dimension nanomaterials: single walled and multiwalled carbon nanotubes were used as received and after oxidation treatment also two-dimensional nanomaterials were used: graphene oxide and reduced graphene oxide. Carbon nanotubes were modified by hydrogen peroxide under microwave irradiation. The reduction of graphene oxide was achieved by using ascorbic acid. R2 values obtained with the pseudo-second-order model are higher than 0.99. The results demonstrate that Freundlich isotherm provides the best fit for the equilibrium data (R2>0.94. RL values are between 0 and 1; this represents favorable adsorption between carbon nanomaterials and phenol. The adsorption process occurs by π-π interactions and hydrogen bonding and not by electrostatic interactions. The results indicate that the adsorption of phenol on carbon nanomaterials depends on the adsorbents’ surface area, and it is negatively influenced by the presence of oxygenated groups.

  14. Comparison of Oxidation Characteristics of Selected Nuclear Graphite Grades

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Kim, Gen Chan

    2010-02-01

    The oxidation behavior of some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) were compared in view of their filler coke type and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 ∼ 960 .deg. C in air by using a three-zone vertical tube furnace at a 10 L/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600 ∼ 950 .deg. C, the differences between the grades were not significant. The oxidation rates determined for a 5∼10 % weight loss at the six temperatures were nearly the same except for 702 and 808 .deg. C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608 ∼ 808 .deg. C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control

  15. Design of Highly Selective Gas Sensors via Physicochemical Modification of Oxide Nanowires: Overview

    Directory of Open Access Journals (Sweden)

    Hyung-Sik Woo

    2016-09-01

    Full Text Available Strategies for the enhancement of gas sensing properties, and specifically the improvement of gas selectivity of metal oxide semiconductor nanowire (NW networks grown by chemical vapor deposition and thermal evaporation, are reviewed. Highly crystalline NWs grown by vapor-phase routes have various advantages, and thus have been applied in the field of gas sensors over the years. In particular, n-type NWs such as SnO2, ZnO, and In2O3 are widely studied because of their simple synthetic preparation and high gas response. However, due to their usually high responses to C2H5OH and NO2, the selective detection of other harmful and toxic gases using oxide NWs remains a challenging issue. Various strategies—such as doping/loading of noble metals, decorating/doping of catalytic metal oxides, and the formation of core–shell structures—have been explored to enhance gas selectivity and sensitivity, and are discussed herein. Additional methods such as the transformation of n-type into p-type NWs and the formation of catalyst-doped hierarchical structures by branch growth have also proven to be promising for the enhancement of gas selectivity. Accordingly, the physicochemical modification of oxide NWs via various methods provides new strategies to achieve the selective detection of a specific gas, and after further investigations, this approach could pave a new way in the field of NW-based semiconductor-type gas sensors.

  16. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    Science.gov (United States)

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38°C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Characterization of phenols biodegradation by compound specific stable isotope analysis

    Science.gov (United States)

    Wei, Xi; Gilevska, Tetyana; Wenzig, Felix; Hans, Richnow; Vogt, Carsten

    2015-04-01

    Biodegradation of phenol and alkylphenols has been described under both oxic and anoxic conditions. In the absence of molecular oxygen, the degradation of phenolic compounds is initiated by microorganisms through carboxylation, fumarate addition to the methyl moiety or anoxic hydroxylation of the methyl moiety. Comparatively, under aerobic condition, the initiation mechanisms are revealed to be monoxygenation or dihydroxylation for phenol and ring hydroxylation or methyl group oxidation for cresols. While several studies biochemically characterized the enzymes and reaction mechanisms in the relevant degradation pathways, isotope fractionation patterns were rarely reported possibly due to constraints in current analytical methods. In this study, the carbon isotope fractionation patterns upon the degradation of phenol and cresols by several strains were analyzed by using isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). The corresponding enrichment factors for carbon (ƐC) have been obtained. Cresols degradation by various strains showed generally moderate carbon isotope fractionation patterns with notable differences. For p-cresol degradation, five strains were examined. The aerobic strain Acinetobacter calcoaceticus NCIMB8250 exploits ring hydroxylation by molecular oxygen as initial reaction, and a ƐC value of -1.4±0.2‰ was obtained. Pseudomonas pseudoalcaligenes NCIMB 9867, an aerobic strain initiating cresols degradation via oxygen-dependent side chain hydroxylation, yielded a ƐC value of -2.3±0.2‰. Under nitrate-reducing conditions, Geobacter metallireducens DSM 7210 and Azoarcus buckelii DSM 14744 attacks p-cresol at the side chain by monohydroxylation using water as oxygen source; the two strains produced ƐC values of -3.6±0.4‰ and -2±0.1‰, accordingly. The sulfate-reducing Desulfosarcina cetonica DSM 7267 activating cresols by fumarate addition to the methyl moiety yielded ƐC values of -1.9±0.2‰ for p

  18. Phytochemical phenolics in organically grown vegetables.

    Science.gov (United States)

    Young, Janice E; Zhao, Xin; Carey, Edward E; Welti, Ruth; Yang, Shie-Shien; Wang, Weiqun

    2005-12-01

    Fruit and vegetable intake is inversely correlated with risks for several chronic diseases in humans. Phytochemicals, and in particular, phenolic compounds, present in plant foods may be partly responsible for these health benefits through a variety of mechanisms. Since environmental factors play a role in a plant's production of secondary metabolites, it was hypothesized that an organic agricultural production system would increase phenolic levels. Cultivars of leaf lettuce, collards, and pac choi were grown either on organically certified plots or on adjacent conventional plots. Nine prominent phenolic agents were quantified by HPLC, including phenolic acids (e. g. caffeic acid and gallic acid) and aglycone or glycoside flavonoids (e. g. apigenin, kaempferol, luteolin, and quercetin). Statistically, we did not find significant higher levels of phenolic agents in lettuce and collard samples grown organically. The total phenolic content of organic pac choi samples as measured by the Folin-Ciocalteu assay, however, was significantly higher than conventional samples (p lettuce and collards, the organic system provided an increased opportunity for insect attack, resulting in a higher level of total phenolic agents in pac choi.

  19. Synthesis, characterization and molecular weight monitoring of a novel Schiff base polymer containing phenol group: Thermal stability, conductivity and antimicrobial properties

    Science.gov (United States)

    Yılmaz Baran, Nuray; Saçak, Mehmet

    2017-10-01

    A novel Schiff base polymer containing phenol group, Poly(3-[[4-(dimethylamino)benzylidene]amino]phenol) P(3-DBAP), was prepared by oxidative polycondensation reaction of 3-[[4-(dimethylamino)benzylidene]amino]phenol (3-DBAP) using NaOCl, H2O2, O2 oxidants in aqueous alkaline medium. Yield and molecular weight distribution of P(3-DBAP) were monitored depending on oxidant types and concentration, monomer concentration and as well as polymerization temperature and time. UV-Vis, FTIR and 1HNMR techniques were used to identify the structures of Schiff base monomer and polymer. Thermal behavior of P(3-DBAP), which was determined to be thermally stable up to 1200 °C via TG-DTG techniques, was illuminated by Thermo-IR spectra recorded in the temperature range of 25-800 °C. It was determined that the electrical conductivity value of the P(3-DBAP) increased 108 fold after doped with iodine for 24 h at 60 °C according to undoped form and it was measured 4.6 × 10-4 S/cm. Also, antibacterial and antifungal activities of the monomer and polymer were assayed against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus Feacalis, Klebsiella pneumoniae, Bacillus subtilis bacteria, and Candida albicans, Saccharomyces cerevisiae fungi.

  20. Synthesis and characterization of sulfonated bromo-poly(2,6-dimethyl-1,4-phenylene oxide)-co-(2,6-diphenyl-1,4-phenylene oxide) copolymer as proton exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Gi; Seo, Dong-Wan; Lim, Young-Don; Jin, Hyun-Mi; Islam Mollah, M.S. [Department of Applied Chemistry, Konkuk University/RIC-ReSEM Chungju, 322 Danwol-dong, Chungbuk 380-701 (Korea, Republic of); Ur, Soon-Chul [Department of Materials Science and Engineering/RIC-ReSEM, Chungju National University, Chungju, Chungbuk 380-702 (Korea, Republic of); Pyun, Sang-Yong [Department of Chemistry, Pukyong National University, Pusan 608-737 (Korea, Republic of); Kim, Whan-Gi, E-mail: wgkim@kku.ac.k [Department of Applied Chemistry, Konkuk University/RIC-ReSEM Chungju, 322 Danwol-dong, Chungbuk 380-701 (Korea, Republic of)

    2010-01-25

    Novel polymer electrolyte membranes containing the sulfonic acid groups attached on polymer backbone and side group simultaneously were synthesized. The bromo-poly(2,6-dimethyl-1,4-phenylene oxide)-co-(2,6-diphenyl-1,4-phenylene oxide) copolymer (BrcoPPO) was prepared by oxidative coupling polymerization with 2,6-dimethyl phenol, 2,6-diphenyl phenol, CuCl(I) and pyridine, and followed by bromination with bromine. Copolymer was maintained in 2,6-diphenyl phenol 10 mol% and 2,6-dimethyl phenol 90 mol%. Sulfonation of BrcoPPO (S-BrcoPPO) was carried out in a chlorobenzene solvent using chlorosulfonic acid. The polymeric membranes were cast from dimethylsulfoxide solution. The membranes were studied by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. S-BrcoPPO membranes exhibited proton conductivities from 2.3 x 10{sup -3} to 1.4 x 10{sup -2} S/cm, water uptake from 7.00 to 49.43%, IEC from 0.58 to 1.38 mequiv./g, methanol permeability from 1.9 x 10{sup -7} to 3.5 x 10{sup -7} cm{sup 2}/S.