WorldWideScience

Sample records for oxide-containing multifunctional hybrid

  1. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating

    KAUST Repository

    Estevez, Luis; Kelarakis, Antonios; Gong, Qianming; Da’ as, Eman H.; Giannelis, Emmanuel P.

    2011-01-01

    We report the synthesis of multifunctional hybrids in both films and bulk form, combining electrical and ionic conductivity with porosity and catalytic activity. The hybrids are synthesized by a two-step process: (a) ice templation of an aqueous suspension comprised of Nafion, graphite oxide, and chloroplatinic acid to form a microcellular porous network and (b) mild reduction in hydrazine or monosodium citrate which leads to graphene-supported Pt nanoparticles on a Nafion scaffold. © 2011 American Chemical Society.

  2. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating

    KAUST Repository

    Estevez, Luis

    2011-04-27

    We report the synthesis of multifunctional hybrids in both films and bulk form, combining electrical and ionic conductivity with porosity and catalytic activity. The hybrids are synthesized by a two-step process: (a) ice templation of an aqueous suspension comprised of Nafion, graphite oxide, and chloroplatinic acid to form a microcellular porous network and (b) mild reduction in hydrazine or monosodium citrate which leads to graphene-supported Pt nanoparticles on a Nafion scaffold. © 2011 American Chemical Society.

  3. Graphene Oxide/Silver Nanohybrid as Multi-functional Material for Highly Efficient Bacterial Disinfection and Detection of Organic Dye

    DEFF Research Database (Denmark)

    Tam, L.T.; Dinh, N. X.; Cuong, N. V.

    2016-01-01

    In this work, a multi-functional hybrid system consisting of graphene oxide and silver nanoparticles (GO-Ag NPs) was successfully synthesized by using a two-step chemical process. We firstly demonstrated noticeable bactericidal ability of the GO-Ag hybrid system. We provide more chemo-physical ev......In this work, a multi-functional hybrid system consisting of graphene oxide and silver nanoparticles (GO-Ag NPs) was successfully synthesized by using a two-step chemical process. We firstly demonstrated noticeable bactericidal ability of the GO-Ag hybrid system. We provide more chemo...... media. With the aforementioned properties, the GO-Ag hybrid system is found to be very promising as a multi-functional material for advanced biomedicine and environmental monitoring applications....

  4. Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A.; Dunnill, Charles W.; Goodall, Josie; Darr, Jawwad A.; Binions, Russell, E-mail: uccarbi@ucl.ac.uk

    2011-07-01

    Hybrid atmospheric pressure chemical vapour and aerosol assisted deposition via the reaction of vanadium acetylacetonate and a suspension of preformed titanium dioxide or cerium dioxide nanoparticles, led to the production of vanadium dioxide nanocomposite thin films on glass substrates. The preformed nanoparticle oxides used for the aerosol were synthesised using a continuous hydrothermal flow synthesis route involving the rapid reaction of a metal salt solution with a flow of supercritical water in a flow reactor. Multifunctional nanocomposite thin films from the hybrid deposition process were characterised using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The functional properties of the films were evaluated using variable temperature optical measurements to assess thermochromic behaviour and methylene blue photodecolourisation experiments to assess photocatalytic activity. The tests show that the films are multifunctional in that they are thermochromic (having a large change in infra-red reflectivity upon exceeding the thermochromic transition temperature) and have significant photocatalytic activity under irradiation with 254 nm light.

  5. Performance analysis of hybrid ground-coupled heat pump system with multi-functions

    International Nuclear Information System (INIS)

    You, Tian; Wang, Baolong; Wu, Wei; Shi, Wenxing; Li, Xianting

    2015-01-01

    Highlights: • The hybrid GCHP system with multi-functions is proposed. • The system maintains the soil temperature and heating reliability steady. • The multi-functional operation of HCUT can save more energy of the system. - Abstract: Underground thermal imbalance is a significant problem for ground-coupled heat pump (GCHP) systems that serve predominately heated buildings in cold regions, which extract more heat from the ground and inject less heat, especially in buildings requiring domestic hot water (DHW). To solve this problem, a previously developed heat compensation unit with thermosyphon (HCUT) is integrated with a GCHP unit to build a hybrid GCHP system. To improve the energy savings of this hybrid GCHP system, the HCUT unit is set to have multiple functions (heat compensation, direct DHW and direct space heating) in this paper. To analyze the improved system performance, a hotel requiring air-conditioning and DHW is selected and simulated in three typical cold cities using the dynamic software DeST and TRNSYS. The results indicate that the hybrid GCHP system can maintain the underground thermal balance while keeping the indoor air temperature within the design range. Furthermore, the HCUT unit efficiently reduces the energy consumption via its multi-functional operations. Compared to the previous system that only used HCUT for heat compensation, adding the direct DHW function further saves 7.5–11.0% energy in heat compensation (HC) and DHW (i.e., 3.6–4.8% of the whole system). Simultaneously adding the direct DHW and space heating functions to the HCUT can save 9.8–12.9% energy in HC and DHW (i.e., 5.1–6.0% of the whole system). The hybrid GCHP system with a multi-functional HCUT provides more energy savings while maintaining the underground thermal balance in cold regions that demand both air-conditioning and DHW

  6. Structure–property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes

    Directory of Open Access Journals (Sweden)

    Wang WG

    2014-02-01

    Full Text Available Weiguo Wang,1,* Xiang Sun,1,* Li Huang,2,* Yu Gao,1 Jinghao Ban,1 Lijuan Shen,1 Jihua Chen1 1Department of Prosthodontics, 2Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China*These authors contributed equally to this workAbstract: Organic-inorganic hybrid materials, such as polyhedral oligomeric silsesquioxanes (POSS, have the potential to improve the mechanical properties of the methacrylate-based composites and resins used in dentistry. In this article, nanocomposites of methacryl isobutyl POSS (MI-POSS [bears only one methacrylate functional group] and methacryl POSS (MA-POSS [bears eight methacrylate functional groups] were investigated to determine the effect of structures on the properties of dental resin. The structures of the POSS-containing networks were determined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Monofunctional POSS showed a strong tendency toward aggregation and crystallization, while multifunctional POSS showed higher miscibility with the dimethacrylate monomer. The mechanical properties and wear resistance decreased with increasing amounts of MI-POSS, indicating that the MI-POSS agglomerates act as the mechanical weak point in the dental resins. The addition of small amounts of MA-POSS improved the mechanical and shrinkage properties. However, samples with a higher MA-POSS concentration showed lower flexural strength and flexural modulus, indicating that there is a limited range in which the reinforcement properties of MA-POSS can operate. This concentration dependence is attributed to phase separation at higher concentrations of POSS, which affects the structural integrity, and thus, the mechanical and shrinkage properties of the dental resin. Our results show that resin with 3% MA-POSS is a potential candidate for resin-based dental materials

  7. Rational design of multifunctional devices based on molybdenum disulfide and graphene hybrid nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yi Rang; Lee, Young Bum; Kim, Seong Ku; Kim, Seong Jun [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Kim, Yooseok; Jeon, Cheolho [Nano-Surface Research Group, Korea Basic Science Institute, Daejeon, 302-333 (Korea, Republic of); Song, Wooseok, E-mail: wssong@krict.re.kr [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Myung, Sung; Lee, Sun Sook; An, Ki-Seok [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Lim, Jongsun, E-mail: jslim@krict.re.kr [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Post Office Box 107, Daejeon 305-600 (Korea, Republic of)

    2017-01-15

    Highlights: • We fabricated MoS{sub 2}-graphene hybrid thin films for multifunctional applications. • Large-area, uniform multilayer MoS{sub 2} was synthesized on TCVD-grown graphene. • The mobility and photocurrent of the hybrid devices were improved significantly. - Abstract: We rationally designed a new type of hybrid materials, molybdenum disulfide (MoS{sub 2}) synthesized by Mo pre-deposition followed by subsequent sulfurization process directly on thermal chemical vapor deposition (TCVD)-grown graphene, for applications in a multifunctional device. The synthesis of stoichiometric and uniform multilayer MoS{sub 2} and high-crystalline monolayer graphene was evaluated by X-ray photoelectron spectroscopy and Raman spectroscopy. To examine the electrical transport and photoelectrical properties of MoS{sub 2}-graphene hybrid films, field effect transistors (FETs) and visible-light photodetectors based on MoS{sub 2}-graphene were both fabricated. As a result, the extracted mobility for MoS{sub 2}-graphene hybrid FETs was two times higher than that of MoS{sub 2} FETs. In addition, the MoS{sub 2}-graphene photodetectors revealed a significant photocurrent with abrupt switching behavior under periodic illumination.

  8. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes.

    Science.gov (United States)

    Munuera, J M; Paredes, J I; Villar-Rodil, S; Ayán-Varela, M; Martínez-Alonso, A; Tascón, J M D

    2016-02-07

    Electrolytic--usually referred to as electrochemical--exfoliation of graphite in water under anodic potential holds enormous promise as a simple, green and high-yield method for the mass production of graphene, but currently suffers from several drawbacks that hinder its widespread adoption, one of the most critical being the oxidation and subsequent structural degradation of the carbon lattice that is usually associated with such a production process. To overcome this and other limitations, we introduce and implement the concept of multifunctional electrolytes. The latter are amphiphilic anions (mostly polyaromatic hydrocarbons appended with sulfonate groups) that play different relevant roles as (1) an intercalating electrolyte to trigger exfoliation of graphite into graphene flakes, (2) a dispersant to afford stable aqueous colloidal suspensions of the flakes suitable for further use, (3) a sacrificial agent to prevent graphene oxidation during exfoliation and (4) a linker to promote nanoparticle anchoring on the graphene flakes, yielding functional hybrids. The implementation of this strategy with some selected amphiphiles even furnishes anodically exfoliated graphenes of a quality similar to that of flakes produced by direct, ultrasound- or shear-induced exfoliation of graphite in the liquid phase (i.e., almost oxide- and defect-free). These high quality materials were used for the preparation of catalytically efficient graphene-Pt nanoparticle hybrids, as demonstrated by model reactions (reduction of nitroarenes). The multifunctional performance of these electrolytes is also discussed and rationalized, and a mechanistic picture of their oxidation-preventing ability is proposed. Overall, the present results open the prospect of anodic exfoliation as a competitive method for the production of very high quality graphene flakes.

  9. A finite element modeling of a multifunctional hybrid composite beam with viscoelastic materials

    Science.gov (United States)

    Wang, Ya; Inman, Daniel J.

    2013-04-01

    The multifunctional hybrid composite structure studied here consists of a ceramic outer layer capable of withstanding high temperatures, a functionally graded ceramic layer combining shape memory alloy (SMA) properties of NiTi together with Ti2AlC (called Graded Ceramic/Metal Composite, or GCMeC), and a high temperature sensor patch, followed by a polymer matrix composite laced with vascular cooling channels all held together with various epoxies. Due to the recoverable nature of SMA and adhesive properties of Ti2AlC, the damping behavior of the GCMeC is largely viscoelastic. This paper presents a finite element formulation for this multifunctional hybrid structure with embedded viscoelastic material. In order to implement the viscoelastic model into the finite element formulation, a second order three parameter Golla-Hughes-McTavish (GHM) method is used to describe the viscoelastic behavior. Considering the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. The curve-fitting aspects of both GHM and ADF show good agreement with experimental data obtained from dynamic mechanics analysis. The performance of the finite element of the layered multifunctional beam is verified through experimental model analysis.

  10. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  11. Usefulness of a multifunctional snare designed for colorectal hybrid endoscopic submucosal dissection (with video).

    Science.gov (United States)

    Ohata, Ken; Muramoto, Takashi; Minato, Yohei; Chiba, Hideyuki; Sakai, Eiji; Matsuhashi, Nobuyuki

    2018-02-01

    Since colorectal endoscopic submucosal dissection (ESD) remains technically difficult, hybrid ESD was developed as an alternative therapeutic option to achieve en bloc resection of relatively large lesions. In this feasibility study, we evaluated the safety and efficacy of hybrid colorectal ESD using a newly developed multifunctional snare. From June to August 2016, we prospectively enrolled 10 consecutive patients with non-pedunculated intramucosal colorectal tumors 20 - 30 mm in diameter. All of the hybrid ESD steps were performed using the "SOUTEN" snare. The knob-shaped tip attached to the loop top helps to stabilize the needle-knife, making it less likely to slip during circumferential incision and enables partial submucosal dissection. All of the lesions were curatively resected by hybrid ESD, with a short mean procedure time (16.1 ± 4.8 minutes). The mean diameters of the resected specimens and tumors were 30.5 ± 4.9 and 26.0 ± 3.5 mm, respectively. No perforations occurred, while delayed bleeding occurred in 1 patient. In conclusion, hybrid ESD using a multifunctional snare enables easy, safe, and cost-effective resection of relatively large colorectal tumors to be achieved. UMIN000022545.

  12. Synthesis of Photocrosslinkable and Amine Containing Multifunctional Nanoparticles via Polymerization-Induced Self-Assembly.

    Science.gov (United States)

    Huang, Jianbing; Li, Decai; Liang, Hui; Lu, Jiang

    2017-08-01

    Photo-crosslinkable and amine-containing block copolymer nanoparticles are synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly of a multifunctional core-forming monomer, 2-((3-(4-(diethylamino)phenyl)acryloyl)oxy)ethyl methacrylate (DEMA), using poly(2-hydroxypropyl methacrylate) macromolecular chain transfer agent as a steric stabilizer in methanol at 65 °C. By tuning the chain length of PDEMA, a range of nanoparticle morphologies (sphere, worm, and vesicle) can be obtained. Since cinnamate groups can easily undergo a [2 + 2] cycloaddition of the carbon-carbon double bonds upon UV irradiation, the as-prepared block copolymer nanoparticles are readily stabilized by photo-crosslinking to produce anisotropic nanoparticles. The crosslinked block copolymer nanoparticles can be used as templates for in situ formation polymer/gold hybrid nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multi-functional quantum router using hybrid opto-electromechanics

    Science.gov (United States)

    Ma, Peng-Cheng; Yan, Lei-Lei; Chen, Gui-Bin; Li, Xiao-Wei; Liu, Shu-Jing; Zhan, You-Bang

    2018-03-01

    Quantum routers engineered with multiple frequency bands play a key role in quantum networks. We propose an experimentally accessible scheme for a multi-functional quantum router, using photon-phonon conversion in a hybrid opto-electromechanical system. Our proposed device functions as a bidirectional, tunable multi-channel quantum router, and demonstrates the possibility to route single optical photons bidirectionally and simultaneously to three different output ports, by adjusting the microwave power. Further, the device also behaves as an interswitching unit for microwave and optical photons, yielding probabilistic routing of microwave (optical) signals to optical (microwave) outports. With respect to potential application, we verify the insignificant influence from vacuum and thermal noises in the performance of the router under cryogenic conditions.

  14. Electrically driven hybrid photonic metamaterials for multifunctional control

    Science.gov (United States)

    Kang, Lei; Liu, Liu; Campbell, Sawyer D.; Yue, Taiwei; Ren, Qiang; Mayer, Theresa S.; Werner, Douglas H.

    2017-08-01

    The unique light-matter interaction in metamaterials, a type of artificial medium in which the geometrical features of subunits dominate their optical responses, have been utilized to achieve exotic material properties that are rare or nonexistent in natural materials. Furthermore, to extend their behaviors, active materials have been introduced into metamaterial systems to advance tunability, switchability and nonlinearity. Nevertheless, practical examples of versatile photonic metamaterials remain exceedingly rare for two main reasons. On the one hand, in sharp contrast to the broad material options available at lower frequencies, it is less common to find active media in the optical regime that can provide pronounced dielectric property changes under external stimuli, such as electric and magnetic fields. Vanadium dioxide (VO2), offering a large refractive index variation over a broad frequency range due to its near room temperature insulator-to-metal transition (IMT), has been favored in recent studies on tunable metamaterials. On the other hand, it turns out that regulating responses of hybrid metamaterials to external forces in an integrated manner is not a straightforward task. Recently, metamaterial-enabled devices (i.e., metadevices) with `self-sufficient' or `self-contained' electrical and optical properties have enabled complex functionalities. Here, we present a design methodology along with the associated experimental validation of a VO2 thin film integrated optical metamaterial absorber as a hybrid photonic platform for electrically driven multifunctional control, including reflectance switching, a rewritable memory process and manageable localized camouflage. The nanoengineered topologically continuous metal structure simultaneously supports the optical resonance and electrical functionality that actuates the phase transition in VO2 through the process of Joule heating. This work provides a universal approach to creating self-sufficient and highly

  15. Hybrid materials science: a promised land for the integrative design of multifunctional materials

    Science.gov (United States)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-05-01

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of ``hybrid organic-inorganic'' nanocomposites exploded in the second half of the 20th century with the expansion of the so-called ``chimie douce'' which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  16. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    Science.gov (United States)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  17. Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites.

    Science.gov (United States)

    El Miri, Nassima; El Achaby, Mounir; Fihri, Aziz; Larzek, Mohamed; Zahouily, Mohamed; Abdelouahdi, Karima; Barakat, Abdellatif; Solhy, Abderrahim

    2016-02-10

    Novel functional hybrid nanofillers composed of cellulose nanocrystals (CNC) and graphene oxide nanosheets (GON), at different weight ratios (2:1, 1:1 and 1:2), were successfully prepared and characterized, and their synergistic effect in enhancing the properties of poly(vinyl alcohol) (PVA) nanocomposites was investigated. Due to the synergistic reinforcement, it was found that the Young's modulus, tensile strength and toughness of the PVA nanocomposite containing 5 wt% hybrid nanofiller (1:2) were significantly improved by 320%, 124% and 159%, respectively; and the elongation at break basically remained compared to the neat PVA matrix. In addition, the glass and melting temperatures as well as the moisture sorption of nanocomposites were also enhanced. This synergistic effect improved the dispersion homogeneity by avoiding the agglomeration phenomenon of nanofillers within the polymer matrix, resulting in nanocomposites with largely enhanced properties compared to those prepared from single nanofiller (CNC or GON). The preparation of these hybrid nanofillers and their incorporation into a polymer provided a novel method for the development of novel multifunctional nanocomposites based on the combination of existing nanomaterials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Flexible Pressure Sensor Based on PVDF Nanocomposites Containing Reduced Graphene Oxide-Titania Hybrid Nanolayers

    Directory of Open Access Journals (Sweden)

    Aisha Al-Saygh

    2017-01-01

    Full Text Available A novel flexible nanocomposite pressure sensor with a tensile strength of about 47 MPa is fabricated in this work. Nanolayers of titanium dioxide (titania nanolayers, TNL synthesized by hydrothermal method are used to reinforce the polyvinylidene fluoride (PVDF by simple solution mixing. A hybrid composite is prepared by incorporating the TNL (2.5 wt % with reduced graphene oxide (rGO (2.5 wt % synthesized by improved graphene oxide synthesis to form a PVDF/rGO-TNL composite. A comparison between PVDF, PVDF/rGO (5 wt %, PVDF/TNL (5 wt % and PVDF/rGO-TNL (total additives 5 wt % samples are analyzed for their sensing, thermal and dielectric characteristics. The new shape of additives (with sharp morphology, good interaction and well distributed hybrid additives in the matrix increased the sensitivity by 333.46% at 5 kPa, 200.7% at 10.7 kPa and 246.7% at 17.6 kPa compared to the individual PVDF composite of TNL, confirming its possible application in fabricating low cost and light weight pressure sensing devices and electronic devices with reduced quantity of metal oxides. Increase in the β crystallinity percentage and removal of α phase for PVDF was detected for the hybrid composite and linked to the improvement in the mechanical properties. Tensile strength for the hybrid composite (46.91 MPa was 115% higher than that of the neat polymer matrix. Improvement in the wettability and less roughness in the hybrid composites were observed, which can prevent fouling, a major disadvantage in many sensor applications.

  19. Sunlight-charged electrochromic battery based on hybrid film of tungsten oxide and polyaniline

    Science.gov (United States)

    Chang, Xueting; Hu, Ruirui; Sun, Shibin; Liu, Jingrong; Lei, Yanhua; Liu, Tao; Dong, Lihua; Yin, Yansheng

    2018-05-01

    Electrochromic (EC) energy storage devices that could realize the multifunctional integration of energy storage and electrochromism have gained much recent attention. Herein, an EC battery based on the hybrid film of W18O49 and polyaniline (PANI) is developed and assembled, which integrates energy storage and EC functions in one device. The W18O49/PANI-EC battery delivers a discharging capacity of 52.96 mA h g-1, which is about two times higher than that of the W18O49-EC battery. Sunlight irradiation could greatly promote the oxidation reactions of both W18O49 and PANI during the charging process of the W18O49/PANI-EC battery, thus effectively accelerating the charging rate. This work provides a green, convenient, environmentally friendly, and cost-free charging strategy for the EC energy systems and could further advance the development of the multifunctional EC devices based on the organic/inorganic composites.

  20. Asymmetric Hybrid Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chumanov, George [Clemson Univ., SC (United States)

    2015-11-05

    Hybrid Nanoparticles (AHNs) are rationally-designed multifunctional nanostructures and novel building blocks for the next generation of advanced materials and devices. Nanoscale materials attract considerable interest because of their unusual properties and potential for practical applications. Most of the activity in this field is focused on the synthesis of homogeneous nanoparticles from metals, metal oxides, semiconductors, and polymers. It is well recognized that properties of nanoparticles can be further enhanced if they are made as hybrid structures. This program is concerned with the synthesis, characterization, and application of such hybrid structures termed AHNs. AHNs are composed of a homogeneous core and several caps of different materials deposited on its surface (Fig. 1). Combined properties of the core and the caps as well as new properties that arise from core-cap and cap-cap interactions render AHNs multifunctional. In addition, specific chemical reactivity of the caps enables directional self-assembly of AHNs into complex architectures that are not possible with only spherical nanoparticles.

  1. Horizontally-connected ZnO-graphene hybrid films for multifunctional devices

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yi Rang [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of); School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Song, Wooseok; Lee, Young Bum; Kim, Seong Ku; Han, Jin Kyu; Myung, Sung; Lee, Sun Sook; An, Ki-Seok [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Choi, Chel-Jong [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lim, Jongsun, E-mail: jslim@krict.re.kr [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of)

    2016-08-30

    Highlights: • We designed horizontally-connected ZnO and graphene hybrid nanofilms with improved flexibility for multifunctional nanodevices including high performance TFTs. • The photocurrent on-off ratio, response time, and recovery time of the hybrid photodetectors were estimated to be 10{sup 2}, 34 s, and 27 s, respectively. The photocurrent from the hybrid photodetector decreased only by two-fold, whereas a significant decrease in photocurrent by two orders of magnitude was observed from the ZnO thin film based photodetectors after 10{sup 5} cycles of 5-mm radius bending. • The hybrid thin film transistors exhibited unipolar n-channel transistor behavior with electron mobility of 68.7 cm{sup 2}/V s and on-off ratio of 10{sup 7}. - Abstract: Here we designed horizontally-connected ZnO thin films and graphene in order to combine advantages of ZnO thin films, which are high on/off ratio and photo responsivity, and the superior mobility and sensitivity of graphene for applications in thin film transistors (TFTs) and flexible photodetectors. To synthesize the ZnO/graphene hybrid films, a 70-nm-thick ZnO thin film with a uniformly flat surface deposited by the atomic layer deposition process was horizontally connected with highly crystalline monolayer graphene grown by thermal chemical vapor deposition. The photocurrent on-off ratio, response time, and recovery time of the hybrid photodetectors were estimated to be 10{sup 2}, 34 s, and 27 s, respectively. The photocurrent from the hybrid photodetector decreased only by two-fold, whereas a significant decrease in photocurrent by two orders of magnitude was observed from the ZnO thin film based photodetectors after 10{sup 5} cycles of 5-mm radius bending. The hybrid TFT exhibited unipolar n-channel transistor behavior with electron mobility of 68.7 cm{sup 2}/V s and on-off ratio of 10{sup 7}.

  2. Multifunctional composites for energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  3. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold

    Science.gov (United States)

    Kumar, Sachin; Chatterjee, Kaushik

    2015-01-01

    The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium

  4. Characterization of ureasil-polyethylene oxide/chitosan hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Paredes Zaldivar, M.; Pulcinelli, S.H.; Peniche Covas, C.; Santilli, C.V. [Universidad de la Habana, Havana (Cuba); Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica

    2016-07-01

    Full text: Siloxane-polyether hybrids are an interesting and versatile family of multifunctional organic-inorganic hybrid materials, also named ureasils. Ureasils have been the object of intensive studies in the last years due to their versatility and wide range of applications. Polyethylene oxide (PEO) and chitosan are biocompatible and low toxicity polymers that were used as organic phase while the inorganic phase was siloxane. Therefore, the aim of this work was the characterization of these hybrids that were prepared by the sol–gel route. Hydrochloric and acetic acids were used as catalysts. Due to the insolubility of chitosan in ethanol and organic solvents, water was used in the hydrolysis solution as the main component or alone. The obtained materials were transparent, rubbery, flexible and water-insoluble. They were characterized by different physicochemical techniques such as FTIR (Fourier Transform Infrared Spectroscopy), DSC (Differential Scanning Calorimetry), TG (Thermogravimetric Analysis), XRD (X-Ray Diffraction), SAXS (Small Angle X-ray Scattering) and NMR (Nuclear Magnetic Resonance Spectroscopy). Results showed that chitosan addition did not provoke appreciable changes in the thermal properties but modifies the polycondensation degree and the nanoscopic structure of the materials. Significant changes were not found neither by the hydrolysis solution nor by the type of acid, except in the thermal stability. It depended on the type of acid catalyst, being higher in hybrids prepared with HCl. We can conclude that these materials can be synthesized just with water as the hydrolysis solution and that any of the two acids can be used as catalyst without significantly affect its final properties. (author)

  5. Preparation, characterization and electrocatalytic behavior of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate hybrid film-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chu, H.-W.; Thangamuthu, R. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, S.-M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)], E-mail: smchen78@ms15.hinet.net

    2008-02-15

    Polynuclear mixed-valent hybrid films of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate (ZnO/ZnHCF-RuOHCF) have been deposited on electrode surfaces from H{sub 2}SO{sub 4} solution containing Zn(NO{sub 3}){sub 2}, RuCl{sub 3} and K{sub 3}[Fe(CN){sub 6}] by potentiodynamic cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide and ruthenium oxide hexacyanoferrate (RuOHCF) in the hybrid film. The effect of type of monovalent cations on the redox behavior of hybrid film was investigated. In pure supporting electrolyte, electrochemical responses of Ru{sup II/III} redox transition occurring at negative potential region resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF-RuOHCF hybrid film was investigated towards oxidation of epinephrine, dopamine and L-cysteine, and reduction of S{sub 2}O{sub 8}{sup 2-} and SO{sub 5}{sup 2-} as well as IO{sub 3}{sup -} using cyclic voltammetry and rotating ring disc electrode (RRDE) techniques.

  6. Activation analysis and waste management for blanket materials of multi-functional experimental fusion–fission hybrid reactor (FDS-MFX)

    International Nuclear Information System (INIS)

    Jiang, Jieqiong; Yuan, Baoxin; Zou, Jun; Wu, Yican

    2014-01-01

    The preliminary studies of the activation analysis and waste management for blanket materials of the multi-functional experimental fusion–fission hybrid reactor, i.e. Multi-Functional eXperimental Fusion Driven Subcritical system named FDS-MFX, were performed. The neutron flux of the FDS-MFX blanket was calculated using VisualBUS code and Hybrid Evaluated Nuclear Data Library (HENDL) developed by FDS Team. Based on these calculated neutron fluxes, the activation properties of blanket materials were analyzed by the induced radioactivity, the decay heat and the contact dose rate for different regions of the FDS-MFX blanket. The safety and environment assessment of fusion power (SEAFP) strategy, which was developed in Europe, was applied to FDS-MFX blanket for the management of activated materials. Accordingly, the classification and management strategy of activated materials after different cooling time were proposed for FDS-MFX blanket

  7. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells.

    Science.gov (United States)

    Shi, Yongliang; Pramanik, Avijit; Tchounwou, Christine; Pedraza, Francisco; Crouch, Rebecca A; Chavva, Suhash Reddy; Vangara, Aruna; Sinha, Sudarson Sekhar; Jones, Stacy; Sardar, Dhiraj; Hawker, Craig; Ray, Paresh Chandra

    2015-05-27

    Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(-) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells.

  8. Multifunctional hybrid diode: Study of photoresponse, high responsivity, and charge injection mechanisms

    Science.gov (United States)

    Singh, Jitendra; Singh, R. G.; Gautam, Subodh K.; Singh, Fouran

    2018-05-01

    A multifunctional hybrid heterojunction diode is developed on porous silicon and its current density-voltage characteristics reveal a good rectification ratio along with other superior parameters such as ideality factor, barrier height and series resistance. The diode also functions as an efficient photodiode to manifest high photosensitivity with high responsivity under illumination with broadband solar light, UV light, and green light. The diode is also carefully scrutinized for its sensitivity and repeatability over many cycles under UV and green light and is found to have a quick response and extremely fast recovery times. The notable responsivity is attributed to the generation of high density of excitons in the depletion region by the absorption of incident photons and their separation by an internal electric field besides an additional photocurrent due to the charging of polymer chains. The mechanisms of generation, injection and transport of charge carriers are explained by developing a schematic energy band diagram. The transport phenomenon of carriers is further investigated from room temperature down to a very low temperature of 10 K. An Arrhenius plot is made to determine the Richardson constant. Various diode parameters as mentioned above are also determined and the dominance of the transport mechanism of charge carriers in different temperature regimes such as diffusion across the junction and/or quantum tunneling through the barriers are explained. The developed multifunction heterojunction hybrid diodes have implications for highly sensitive photodiodes in the UV and visible range of electromagnetic spectrum that can be very promising for efficient optoelectronic devices.

  9. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  10. Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur; Shinde, Digambar B.; Wang, Xinbo; Gadwal, Ikhlas; Lai, Zhiping

    2017-01-01

    Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  11. Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur

    2017-12-24

    Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  12. Multifunctional Structures for High-Energy Lightweight Load-Bearing Storage

    Science.gov (United States)

    Loyselle, Patricia L.

    2018-01-01

    This is a pull-up banner of the Multifunctional Structures for High-Energy Lightweight Load-bearing Storage (M-SHELLS) technology that will be on display at the SciTech Conference in January 2018. Efforts in Multifunctional Structures for High Energy Load-Bearing Storage (M-Shells) are pushing the boundaries of development for hybrid electric propulsion for future commercial aeronautical transport. The M-Shells hybrid material would serve as the power/energy storage of the vehicle and provide structural integrity, freeing up usable volume and mass typically occupied by bulky batteries. The ultimate goal is to demonstrate a system-level mass savings with a multifunctional structure with energy storage.

  13. O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation.

    Science.gov (United States)

    Mao, Fei; Huang, Ling; Luo, Zonghua; Liu, Anqiu; Lu, Chuanjun; Xie, Zhiyong; Li, Xingshu

    2012-10-01

    In an effort to identify novel multifunctional drug candidates for the treatment of Alzheimer's disease (AD), a series of hybrid molecules were synthesised by reacting N-(aminoalkyl)tacrine with salicylic aldehyde or derivatives of 2-aminobenzaldehyde. These compounds were then evaluated as multifunctional anti-Alzheimer's disease agents. All of the hybrids are potential biometal chelators, and in addition, most of them were better antioxidants and inhibitors of cholinesterases and amyloid-β (Aβ) aggregation than the lead compound tacrine. Compound 7c has the potential to be a candidate for AD therapy: it is a much better inhibitor of acetylcholinesterase (AChE) than tacrine (IC(50): 0.55 nM vs 109 nM), has good biometal chelation ability, is able to inhibit Aβ aggregation and has moderate antioxidant activity (1.22 Trolox equivalents). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Multifunctional doxorubicin/superparamagnetic iron oxide-encapsulated Pluronic F127 micelles used for chemotherapy/magnetic resonance imaging

    Science.gov (United States)

    Lai, Jian-Ren; Chang, Yong-Wei; Yen, Hung-Chi; Yuan, Nai-Yi; Liao, Ming-Yuan; Hsu, Chia-Yen; Tsai, Jai-Lin; Lai, Ping-Shan

    2010-05-01

    Polymeric micelles are frequently used to transport and deliver drugs throughout the body because they protect against degradation. Research on functional polymeric micelles for biomedical applications has generally shown that micelles have beneficial properties, such as specific functionality, enhanced specific tumor targeting, and stabilized nanostructures. The particular aim of this study was to synthesize and characterize multifunctional polymeric micelles for use in controlled drug delivery systems and biomedical imaging. In this study, a theranostic agent, doxorubicin/superparamagnetic iron oxide (SPIO)-encapsulated Pluronic F127 (F127) micelles, was developed for dual chemotherapy/magnetic resonance imaging (MRI) purposes, and the structure and composition of the micellar SPIO were characterized by transmission electron microscopy and magnetic measurements. Our results revealed that the micellar SPIO with a diameter of around 100 nm led to a significant advantage in terms of T2 relaxation as compared with a commercial SPIO contrast agent (Resovist®) without cell toxicity. After doxorubicin encapsulation, a dose-dependent darkening of MR images was observed and HeLa cells were killed by this theranostic micelle. These findings demonstrate that F127 micelles containing chemotherapeutic agents and SPIO could be used as a multifunctional nanocarrier for cancer treatment and imaging.

  15. Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials.

    Science.gov (United States)

    Bhowmick, Arundhati; Jana, Piyali; Pramanik, Nilkamal; Mitra, Tapas; Banerjee, Sovan Lal; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-10-20

    This paper reports the development of multifunctional zirconium oxide (ZrO2) doped nancomposites having chitosan (CTS), organically modified montmorillonite (OMMT) and nano-hydroxyapatite (HAP). Formation of these nanocomposites was confirmed by various characterization techniques such as Fourier transform infrared spectroscopy and powder X-ray diffraction. Scanning electron microscopy images revealed uniform distribution of OMMT and nano-HAP-ZrO2 into CTS matrix. Powder XRD study and TEM study revealed that OMMT has partially exfoliated into the polymer matrix. Enhanced mechanical properties in comparison to the reported literature were obtained after the addition of ZrO2 nanoparticle into the nanocomposites. In rheological measurements, CMZH I-III exhibited greater storage modulus (G') than loss modulus (G″). TGA results showed that these nanocomposites are thermally more stable compare to pure CTS film. Strong antibacterial zone of inhibition and the lowest minimum inhibition concentration (MIC) value of these nanocomposites against bacterial strains proved that these materials have the ability to prevent bacterial infection in orthopedic implants. Compatibility of these nanocomposites with pH and blood of human body was established. It was observed from the swelling study that the swelling percentage was increased with decreasing the hydrophobic OMMT content. Human osteoblastic MG-63 cell proliferations were observed on the nanocomposites and cytocompatibility of these nanocomposites was also established. Moreover, addition of 5wt% OMMT and 5wt% nano-HAP-ZrO2 into 90wt% CTS matrix provides maximum tensile strength, storage modulus, aqueous swelling and cytocompatibility along with strong antibacterial effect, pH and erythrocyte compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Yuheng Deng

    2010-05-01

    Full Text Available This paper provides a brief review of recent progress in the field of metal coordination polymers assembled from azole-containing carboxylic acids and gives a diagrammatic summary of the diversity of topological structures in the resulting infinite metal-organic coordination networks (MOCNs. Azole-containing carboxylic acids are a favorable kind of multifunctional ligand to construct various metal complexes with isolated complexes and one, two and three dimensional structures, whose isolated complexes are not the focus of this review. An insight into the topology patterns of the infinite coordination polymers is provided. Analyzed topologies are compared with documented topologies and catalogued by the nature of nodes and connectivity pattern. New topologies which are not available from current topology databases are described and demonstrated graphically.

  17. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  18. Design, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer's disease.

    Science.gov (United States)

    Xie, Sai-Sai; Wang, Xiao-Bing; Li, Jiang-Yan; Yang, Lei; Kong, Ling-Yi

    2013-06-01

    A series of tacrine-coumarin hybrids (8a-t) were designed, synthesized and evaluated as multifunctional cholinesterase (ChE) inhibitors against Alzheimer's disease (AD). The screening results showed that most of them exhibited a significant ability to inhibit ChE and self-induced β-amyloid (Aβ) aggregation, and to act as metal chelators. Especially, 8f displayed the greatest ability to inhibit acetylcholinesterase (AChE, IC50 = 0.092 μM) and Aβ aggregation (67.8%, 20 μM). It was also a good butyrylcholinesterase inhibitor (BuChE, IC50 = 0.234 μM) and metal chelator. Besides, kinetic and molecular modeling studies indicated that 8f was a mixed-type inhibitor, binding simultaneously to active, peripheral and mid-gorge sites of AChE. These results suggested that 8f might be an excellent multifunctional agent for AD treatment. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Novel multifunctional NiFe_2O_4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    International Nuclear Information System (INIS)

    Zhu, Hua-Yue; Jiang, Ru; Fu, Yong-Qian; Li, Rong-Rong; Yao, Jun; Jiang, Sheng-Tao

    2016-01-01

    Graphical abstract: - Highlights: • The NiFe_2O_4 was decorated on ZnO surface by a hydrothermal method. • NiFe_2O_4/ZnO hybrids show high adsorption capacity and excellent photostability. • The main active species in dye decolorization by NiFe_2O_4/ZnO hybrids are ·OH and h"+. • NiFe_2O_4/ZnO hybrids can be easily separated by an external magnet. - Abstract: Novel multifunctional NiFe_2O_4/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV–vis DRS. The adsorption and photocatalytic performance of NiFe_2O_4/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe_2O_4, NiFe_2O_4/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g"−"1) of NiFe_2O_4/ZnO hybrids is higher than those of NiFe_2O_4, ZnO and mechanically mixed NiFe_2O_4/ZnO hybrids. The removal of congo red solution (20 mg L"−"1) by NiFe_2O_4/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. ·OH and h"+ play important roles in the decolorization of congo red solution by NiFe_2O_4/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe_2O_4/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO_3"− and Cl"− anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe_2O_4/ZnO hybrids. Moreover, the magnetic NiFe_2O_4/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  20. THE POSSIBILITY OF CREATING MULTIFUNCTIONAL SILVER-CONTAINING DRUGS WITH DETOXIFYING EFFECT

    Directory of Open Access Journals (Sweden)

    T. V. Popova

    2017-01-01

    Full Text Available Modern technology and the level of fundamental studies allow us to create the medical sorbents with the predetermined structural, mechanical and adsorptional properties. Sorption materials are interesting not only as detoxicants that are used to remove toxic agents from the liquid media, but also as carriers for a delivery in zones a therapeutic effect of biologically active substances. The aim of this work is the substantiation of structure of the multifunctional drug with anti-bacterial and detoxifying effects due to the complex of silver and the sorption component – alumina-silica-containing sorbent. Materials and methods. We used physico-chemical (sorption activity of methylene blue dye, specific surface, pH in contact with water, atomic emission spectrometry with inductively coupled plasma and pharmaceutical methods (bulk density, dissolution test for solid dosage forms. Results and discussion. The two-stage method of immobilization of a complex of silver and water repellent on the surface sorptionmatrix was justified. The sample of the optimum composition of silver-containing drugs was selected: aluminium oxide-hydroxide – 99.2%, clustered silver (Argovit – C – 2% – 0.3 %, based on silver and subsidiary substance (repellents – brand PMS P – 841 – 0.5 %. The output of silver into the solution from the specified sample composition for 8 hours did not exceed 1,6 ± 0,3%, the value of specific surface area of 90 m2/ g, the value of pH to 8.1 ± 0.02, bulk density 1.12 ± 0.11 g/cm3. Conclusion. An experimentally substantiated composition of silver-containing drug AlSi/Ag was received, a comprehensive scientific data of its physico-chemical and technological properties were obtained.

  1. Enhanced Performance of Polyurethane Hybrid Membranes for CO2 Separation by Incorporating Graphene Oxide: The Relationship between Membrane Performance and Morphology of Graphene Oxide.

    Science.gov (United States)

    Wang, Ting; Zhao, Li; Shen, Jiang-nan; Wu, Li-guang; Van der Bruggen, Bart

    2015-07-07

    Polyurethane hybrid membranes containing graphene oxide (GO) with different morphologies were prepared by in situ polymerization. The separation of CO2/N2 gas mixtures was studied using these novel membranes. The results from the morphology characterization of GO samples indicated that the oxidation process in the improved Hummers method introduced oxygenated functional groups into graphite, making graphite powder exfoliate into GO nanosheets. The surface defects on the GO sheets increased when oxidation increased due to the introduction of more oxygenated functional groups. Both the increase in oxygenated functional groups on the GO surface and the decrease in the number of GO layers leads to a better distribution of GO in the polymer matrix, increasing thermal stability and gas separation performance of membranes. The addition of excess oxidant destroyed the structure of GO sheets and forms structural defects, which depressed the separation performance of membranes. The hybrid membranes containing well-distributed GO showed higher permeability and permeability selectivity for the CO2. The formation of GO aggregates in the hybrid membranes depressed the membrane performance at a high content of GO.

  2. Multifunctional Organic-Semiconductor Interfacial Layers for Solution-Processed Oxide-Semiconductor Thin-Film Transistor.

    Science.gov (United States)

    Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik

    2017-06-01

    The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nature-inspired multifunctional membrane fabricated by adaptive hybridization of PNIPAm and PPy

    Science.gov (United States)

    Kim, Hyejeong; Kim, Kiwoong; Lee, Sang Joon

    2017-11-01

    Specialized plant organs, such as guard cells of stomata, consist of soft materials with deformability and electrochemical properties in response to various environmental stimuli. Stimulus-responsive hydrogels with electrochemical properties are good candidates for imitating such functionalities having great potential in a wide range of applications. However, conductive hydrogels are usually mechanically rigid and the fabrication technology of structured hydrogels has low reproducibility. Here, inspired by stimulus-responsive functionalities of plants, a thermo-responsive multifunctional hybrid membrane (HM) is synthesized through the in situ hybridization of conductive poly(pyrrole)(PPy) on a photopolymerized poly(N-isopropylacrylamide)(PNIPAm) membrane. The various properties of the HM are investigated to characterize its multiple functions. In terms of morphology, the HM can be easily fabricated into various structures, and exhibits thermo-responsive deformability. In terms of functionality, it exhibits various electrical and charge responses to thermal stimuli. This simple and efficient fabrication method can be used as a promising platform for fabricating a variety of functional devices, such as actuators, biosensors, and filtration membranes. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIP) (No. 2017R1A2B3005415).

  4. Role of plasma activation in tailoring the nanostructure of multifunctional oxides thin films

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, Maria M.; Losurdo, Maria; Capezzuto, Pio [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, and Department of Chemistry, University of Bari, via Orabona, 4-70125 Bari (Italy); Bruno, Giovanni [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, and Department of Chemistry, University of Bari, via Orabona, 4-70125 Bari (Italy)], E-mail: giovanni.bruno@ba.imip.cnr.it

    2009-03-01

    Potential of O{sub 2} remote plasmas for improving structural, morphological and optical properties of various multifunctional oxides thin films both during plasma assisted growth as well as by post-growth treatments is discussed. In particular, an O{sub 2} remote plasma metalorganic chemical vapor deposition (RP-MOCVD) route is presented for tailoring the structural, morphological and optical properties of Er{sub 2}O{sub 3} and ZnO films. Furthermore, post-growth room-temperature remote O{sub 2} plasma treatments of indium-tin-oxides (ITO) films are demonstrated to be effective in improving morphology of ITO films.

  5. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  6. Imprinted Oxide and MIP/Oxide Hybrid Nanomaterials for Chemical Sensors †.

    Science.gov (United States)

    Afzal, Adeel; Dickert, Franz L

    2018-04-20

    The oxides of transition, post-transition and rare-earth metals have a long history of robust and fast responsive recognition elements for electronic, optical, and gravimetric devices. A wide range of applications successfully utilized pristine or doped metal oxides and polymer-oxide hybrids as nanostructured recognition elements for the detection of biologically relevant molecules, harmful organic substances, and drugs as well as for the investigative process control applications. An overview of the selected recognition applications of molecularly imprinted sol-gel phases, metal oxides and hybrid nanomaterials composed of molecularly imprinted polymers (MIP) and metal oxides is presented herein. The formation and fabrication processes for imprinted sol-gel layers, metal oxides, MIP-coated oxide nanoparticles and other MIP/oxide nanohybrids are discussed along with their applications in monitoring bioorganic analytes and processes. The sensor characteristics such as dynamic detection range and limit of detection are compared as the performance criterion and the miniaturization and commercialization possibilities are critically discussed.

  7. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    Science.gov (United States)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  8. Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property.

    Science.gov (United States)

    Liu, Zhikun; Fang, Lei; Zhang, Huan; Gou, Shaohua; Chen, Li

    2017-04-15

    Total sixteen tacrine-curcumin hybrid compounds were designed and synthesized for the purpose of searching for multifunctional anti-Alzheimer agents. In vitro studies showed that these hybrid compounds showed good cholinesterase inhibitory activity. Particularly, the potency of K 3-2 is even beyond tacrine. Some of the compounds exhibited different selectivity on acetylcholinesterase or butyrylcholinesterase due to the structural difference. Thus, the structure and activity relationship is summarized and further discussed based on molecular modeling studies. The ORAC and MTT assays indicated that the hybrid compounds possessed pronounced antioxidant activity and could effectively protect PC12 cells from the H 2 O 2 /Aβ42-induced toxicity. Moreover, the hybrid compounds also showed positive metal ions-chelating ability in vitro, suggesting a potential to halt ion-induced Aβ aggregation. All the obtained results demonstrated that the tacrine-curcumin hybrid compounds, in particular compound K 3-2 , can be considered as potential therapeutic agents for Alzheimer's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Hybrid nanostructures: synthesis, morphology and functional properties

    International Nuclear Information System (INIS)

    Povolotskaya, A V; Povolotskiy, A V; Manshina, A A

    2015-01-01

    Hybrid nanostructures representing combinations of different materials and possessing properties that are absent in separate components forming the hybrid are discussed. Particular attention is given to hybrid structures containing plasmonic and magnetic nanoparticles, methods of their synthesis and the relationship between the composition, structure and properties. The functional features of the hybrid nanomaterials of various morphology (with core–shell structures, with encapsulated metal nanoparticles and with metal nanoparticles on the surface) are considered. The unique properties of these hybrid materials are demonstrated, which are of interest for solving problems of catalysis and photocatalysis, detecting impurities in various media, in vivo visualization, bioanalysis, as well as for the design of optical labels and multifunctional diagnostic nanoplatforms. The bibliography includes 182 references

  10. Increased electrochemical properties of ruthenium oxide and graphene/ruthenium oxide hybrid dispersed by polyvinylpyrrolidone

    International Nuclear Information System (INIS)

    Chen, Yao; Zhang, Xiong; Zhang, Dacheng; Ma, Yanwei

    2012-01-01

    Highlights: ► A good dispersion of RuO 2 and graphene/RuO 2 is obtained by polyvinylpyrrolidone. ► PVP as a dispersant also can prevent the formation of metal Ru in graphene/RuO 2 . ► The max capacitances of the hybrid and RuO 2 reach 435 and 597 F g −1 at 0.2 A g −1 . ► The hybrid shows the best rate capability of 39% at 50 A g −1 . - Abstract: Ruthenium oxide has been prepared by a sol–gel method. Polyvinylpyrrolidone (PVP) as an excellent polymeric dispersant is adopted to prevent aggregation of ruthenium oxide. In order to enhance the rate capability of ruthenium oxide, graphene with residual oxygen functional groups as a 2D support has been merged into ruthenium oxide. These oxygen functional groups not only favor to form stable few layers of graphene colloids, but also offer the sites to anchor ruthenium oxide nanoparticles. X-ray diffraction infers that PVP can also hinder the partial formation of Ru by blocking the direct contact between the Ru 3+ and the graphene in the sol–gel synthesis of the hybrids. The ruthenium oxide and the graphene/ruthenium oxide hybrids dispersed by PVP have superior electrochemical properties due to good dispersing and protecting ability of PVP. Especially, the hybrids using PVP exhibit the best rate capability, indicating that the composites possess an advanced structure of combining sheets and particles in nano-scale.

  11. Multifunctional epitaxial systems on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Prater, John Thomas [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-09-15

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin

  12. Enhanced the performance of graphene oxide/polyimide hybrid membrane for CO2 separation by surface modification of graphene oxide using polyethylene glycol

    Science.gov (United States)

    Wu, Li-guang; Yang, Cai-hong; Wang, Ting; Zhang, Xue-yang

    2018-05-01

    Polyethylene glycol (PEG) with different molecular weights was first used to modify graphene oxide (GO) samples. Subsequently, polyimide (PI) hybrid membranes containing modified-GO were fabricated via in situ polymerization. The separation performance of these hybrid membranes was evaluated using permeation experiments for CO2 and N2 gases. The morphology characterization showed that PEG with suitable molecular weight could be successfully grafted on the GO surface. PEG modification altered the surface properties of GO and introduced defective structures onto GO surface. This caused strong surface polarity and high free volume of membranes containing PEG-modified GO, thereby improving the separation performance of membranes. The addition of PEG-GO with low molecular weight effectively increased gas diffusion through hybrid membranes. The hybrid membranes containing PEG-GO with large molecular weight had high solubility performance for CO2 gas due to the introduction of numerous polar groups into polymeric membranes. With the loading content of modified GO, the CO2 gas permeability of hybrid membranes initially increased but eventually decreased. The optimal content of modified GO in membranes reached 3.0 wt%. When too much PEG added (exceeding 30 g), some impurities formed on GO surface and some aggregates appeared in the resulting hybrid membrane, which depressed the membrane performance.

  13. Novel multifunctional NiFe{sub 2}O{sub 4}/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hua-Yue [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Jiang, Ru, E-mail: jiangru0576@163.com [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Fu, Yong-Qian [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Li, Rong-Rong [College of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Yao, Jun; Jiang, Sheng-Tao [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China)

    2016-04-30

    Graphical abstract: - Highlights: • The NiFe{sub 2}O{sub 4} was decorated on ZnO surface by a hydrothermal method. • NiFe{sub 2}O{sub 4}/ZnO hybrids show high adsorption capacity and excellent photostability. • The main active species in dye decolorization by NiFe{sub 2}O{sub 4}/ZnO hybrids are ·OH and h{sup +}. • NiFe{sub 2}O{sub 4}/ZnO hybrids can be easily separated by an external magnet. - Abstract: Novel multifunctional NiFe{sub 2}O{sub 4}/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV–vis DRS. The adsorption and photocatalytic performance of NiFe{sub 2}O{sub 4}/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe{sub 2}O{sub 4}, NiFe{sub 2}O{sub 4}/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g{sup −1}) of NiFe{sub 2}O{sub 4}/ZnO hybrids is higher than those of NiFe{sub 2}O{sub 4}, ZnO and mechanically mixed NiFe{sub 2}O{sub 4}/ZnO hybrids. The removal of congo red solution (20 mg L{sup −1}) by NiFe{sub 2}O{sub 4}/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. ·OH and h{sup +} play important roles in the decolorization of congo red solution by NiFe{sub 2}O{sub 4}/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe{sub 2}O{sub 4}/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO{sub 3}{sup −} and Cl{sup −} anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe{sub 2}O{sub 4}/ZnO hybrids. Moreover, the magnetic NiFe{sub 2}O{sub 4}/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  14. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hui-Jan Lin

    2012-06-01

    Full Text Available Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH6 with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  15. Novel hybrid materials based on the vanadium oxide nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Zabrodina, G.S., E-mail: kudgs@mail.ru [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Makarov, S.G.; Kremlev, K.V. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Yunin, P.A.; Gusev, S.A. [Institute for Physics of Microstructures Russian Academy of Sciences, Nizhny Novgorod 603087 (Russian Federation); Kaverin, B.S.; Kaverina, L.B. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Ketkov, S.Yu. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation)

    2016-04-15

    Graphical abstract: - Highlights: • Flat and curved vanadium oxide nanobelts have been synthesized. • Hybrid material was prepared via decoration of flexible nanobelts with zinc phthalocyanine. • Investigations of the thermal stability, morphologies and structures were carried out. - Abstract: Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V{sub 2}O{sub 5}·nH{sub 2}O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB – cetyltrimethylammonium bromide, TBAB – tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA){sub 0.33}V{sub 2}O{sub 5} flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA){sub 0.33}V{sub 2}O{sub 5}, (TBA){sub 0.16}V{sub 2}O{sub 5} nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  16. Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging.

    Science.gov (United States)

    Zhu, Lijuan; Wang, Dali; Wei, Xuan; Zhu, Xinyuan; Li, Jianqi; Tu, Chunlai; Su, Yue; Wu, Jieli; Zhu, Bangshang; Yan, Deyue

    2013-08-10

    A multifunctional pH-sensitive superparamagnetic iron-oxide (SPIO) nanocomposite system was developed for simultaneous tumor magnetic resonance imaging (MRI) and therapy. Small-size SPIO nanoparticles were chemically bonded with antitumor drug doxorubicin (DOX) and biocompatible poly(ethylene glycol) (PEG) through pH-sensitive acylhydrazone linkages, resulting in the formation of SPIO nanocomposites with magnetic targeting and pH-sensitive properties. These DOX-conjugated SPIO nanocomposites exhibited not only good stability in aqueous solution but also high saturation magnetizations. Under an acidic environment, the DOX was quickly released from the SPIO nanocomposites due to the cleavage of pH-sensitive acylhydrazone linkages. With the help of magnetic field, the DOX-conjugated SPIO nanocomposites showed high cellular uptake, indicating their magnetic targeting property. Comparing to free DOX, the DOX-conjugated SPIO nanocomposites showed better antitumor effect under magnetic field. At the same time, the relaxivity value of these SPIO nanocomposites was higher than 146s(-1)mM(-1) Fe, leading to ~4 times enhancement compared to that of free SPIO nanoparticles. As a negative contrast agent, these SPIO nanocomposites illustrated high resolution in MRI diagnosis of tumor-bearing mice. All of these results confirm that these pH-sensitive SPIO nanocomposites are promising hybrid materials for synergistic MRI diagnosis and tumor therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment.

    Science.gov (United States)

    Shen, Ai-Jun; Li, Dong-Liang; Cai, Xiao-Jun; Dong, Chun-Yan; Dong, Hai-Qing; Wen, Hui-Yun; Dai, Gong-Hua; Wang, Pei-Jun; Li, Yong-Yong

    2012-09-01

    Because of its unique chemical and physical properties, graphene oxide (GO) has attracted a large number of researchers to explore its biomedical applications in the past few years. Here, we synthesized a novel multifunctional nanocomposite based on GO and systemically investigated its applications for in vitro hepatocarcinoma diagnosis and treatment. This multifunctional nanocomposite named GO-PEG-FA/Gd/DOX was obtained as the following procedures: gadolinium-diethylenetriamine-pentaacetic acid-poly(diallyl dimethylammonium) chloride (Gd-DTPA-PDDA) as magnetic resonance imaging (MRI) probe was applied to modify GO by simple physical sorption with a loading efficiency of Gd(3+) up to 0.314 mg mg(-1). In order to improve its tumor targeting imaging and treatment efficiency, the obtained intermediate product was further modified with folic acid (FA). Finally, the nanocomposite was allowed to load anticancer drug doxorubicin hydrochloride via π-π stacking and hydrophobic interaction with the loading capacity reaching 1.38 mg mg(-1). MRI test revealed that GO-PEG-FA/Gd/DOX exhibit superior tumor targeting imaging efficiency over free Gd(3+). The in vitro release of DOX from the nanocomposite under tumor relevant condition (pH 5.5) was fast at the initial 10 h and then become relatively slow afterward. Moreover, we experimentally demonstrated that the multifunctional nanocomposite exhibited obviously cytotoxic effect upon cancer cells. Above results are promising for the next in vivo experiment and make it possible to be a potential candidate for malignancy early detection and specific treatment. Copyright © 2012 Wiley Periodicals, Inc.

  18. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials

    International Nuclear Information System (INIS)

    Fang, Qun; Zhu, Ming; Yu, Siruo; Sui, Gang; Yang, Xiaoping

    2016-01-01

    Highlights: • Biodegradable filtration membranes were prepared. • Polar groups in the membrane surface helped capture fine particles. • Loading filtration efficiency can reach 99.99% in the case of small pressure drop. • Filtration membrane showed antimicrobial activity to Escherichia coli. - Abstract: A biodegradable and multifunctional air filtration membrane was prepared by electrospinning of soy protein isolate (SPI)/polyvinyl alcohol (PVA) system in this paper. The optimized SPI/PVA proportion in the spinning solution was determined according to the analyses of microstructure, surface chemical characteristic and mechanical property of the hybrid nanofiber membranes. Under the preferred preparation condition, two kinds of polymer materials displayed a good compatibility in the hybrid nanofibers, and a large number of polar groups existed in the membrane surface. The loading filtration efficiency of the nanofiber membrane with optimal material ratio and areal density can reach 99.99% after test of 30 min for fine particles smaller than 2.5 μm in the case of small pressure drop. Besides, this kind of filtration membrane showed an antimicrobial activity to Escherichia coli in the study. The SPI/PVA hybrid nanofiber membrane with proper material composition and microstructure can be used as a new type of high performance eco-friendly filtration materials.

  19. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Qun; Zhu, Ming; Yu, Siruo; Sui, Gang, E-mail: suigang@mail.buct.edu.cn; Yang, Xiaoping

    2016-12-15

    Highlights: • Biodegradable filtration membranes were prepared. • Polar groups in the membrane surface helped capture fine particles. • Loading filtration efficiency can reach 99.99% in the case of small pressure drop. • Filtration membrane showed antimicrobial activity to Escherichia coli. - Abstract: A biodegradable and multifunctional air filtration membrane was prepared by electrospinning of soy protein isolate (SPI)/polyvinyl alcohol (PVA) system in this paper. The optimized SPI/PVA proportion in the spinning solution was determined according to the analyses of microstructure, surface chemical characteristic and mechanical property of the hybrid nanofiber membranes. Under the preferred preparation condition, two kinds of polymer materials displayed a good compatibility in the hybrid nanofibers, and a large number of polar groups existed in the membrane surface. The loading filtration efficiency of the nanofiber membrane with optimal material ratio and areal density can reach 99.99% after test of 30 min for fine particles smaller than 2.5 μm in the case of small pressure drop. Besides, this kind of filtration membrane showed an antimicrobial activity to Escherichia coli in the study. The SPI/PVA hybrid nanofiber membrane with proper material composition and microstructure can be used as a new type of high performance eco-friendly filtration materials.

  20. Synthesis of poly(ethylene oxide)-silica hybrids

    International Nuclear Information System (INIS)

    Ishak Manaf

    2002-01-01

    A hybrid material incorporating silica networks in poly (ethylene oxide) was produced using the sol-gel process from solution mixtures of poly (ethylene oxide) dissolved in water and partially polymerized tetraethylorthosilicate (TEOS) with and without compatibilisation agent. These mixtures were converted into films by solvent evaporation and drying them in an air-circulating oven at 60 degree C. Depending on the alkoxysilane solution composition and several mixing parameters, different morphologies were obtained, varying from semi-interpenetrating networks of PEO within highly cross linked silica chains, to finely dispersed heterogeneous system exhibiting either co-continuous or particulate microstructure. The influence of pH, type of solvents, mixing temperatures and time, as well as the nature of compatibiliser was found to be extremely important in controlling the morphology and properties of the fine hybrid films. It was found that compatibilisation of PEO-SiO 2 hybrid system is achieved exclusively with the use of γ-glycidyloxypropyltrimethoxysilane (GOTMS) coupling agent. (Author)

  1. Fabrication of Te@Au core-shell hybrids for efficient ethanol oxidation

    Science.gov (United States)

    Jin, Huile; Wang, Demeng; Zhao, Yuewu; Zhou, Huan; Wang, Shun; Wang, Jichang

    2012-10-01

    Using Au nanoparticles to catalyze the oxidation of alcohols has garnered increasing attention due to its potential application in direct alcohol fuel cells. In this research Te@Au core-shell hybrids were fabricated for the catalytic oxidation of ethanol, where the preparation procedure involved the initial production of Te crystals with different microstructures and the subsequent utilization of the Te crystal as a template and reducing agent for the production of Te@Au hybrids. The as-prepared core-shell hybrids were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. Electrochemical measurements illustrate that the hybrids have great electrocatalytic activity and stability toward ethanol oxidation in alkaline media. The enhanced electrocatalytic property may be attributed to the cooperative effects between the metal and semiconductor and the presence of a large number of active sites on the hybrids surface.

  2. Multifunctional hybrids for electromagnetic absorption

    International Nuclear Information System (INIS)

    Huynen, I.; Quievy, N.; Bailly, C.; Bollen, P.; Detrembleur, C.; Eggermont, S.; Molenberg, I.; Thomassin, J.M.; Urbanczyk, L.

    2011-01-01

    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  3. Fe2O3-Au hybrid nanoparticles for sensing applications via SERS analysis

    Energy Technology Data Exchange (ETDEWEB)

    Searles, Emily [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Univ. of Georgia, Athens, GA (United States)

    2017-07-27

    Multifunctional iron oxide-gold hybrid nanostructures have been produced via solution chemistries and investigated for analyte detection. Gold nanoparticles of various shapes have been used for probing surface-enhanced Raman scattering (SERS) effects as they display unique optical properties in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies. The “hot spots” were created by using a seeded reaction to increase the gold loading on the iron oxide support by 43% by weight. SERS Nanomaterials were evaluated for their ability to promote surface-enhanced Raman scattering of a model analyte, 4-mercaptophenol. The data shows an enhancement effect of the model analyte on gold decorated iron oxide nanoparticles.

  4. Interlocked graphene-Prussian blue hybrid composites enable multifunctional electrochemical applications

    DEFF Research Database (Denmark)

    Zhang, Minwei; Hou, Chengyi; Halder, Arnab

    2017-01-01

    There has been increasing interest recently in mixed-valence inorganic nanostructure functionalized graphene composites, represented by Prussian blue, because they can cost-effectively apply to biosensors and energy devices. In this work, we present a one-pot green method to synthesize interlocked...... graphene-Prussian Blue hybrid composites as high-performance materials for biosensors and supercapacitor electrodes. Given the fact that graphene oxide (GO) can act as an electron acceptor, we used iron(II) and glucose as co-reducing agents to reduce GO under mild reaction conditions without introducing...

  5. Hierarchical assembly of viral nanotemplates with encoded microparticles via nucleic acid hybridization.

    Science.gov (United States)

    Tan, Wui Siew; Lewis, Christina L; Horelik, Nicholas E; Pregibon, Daniel C; Doyle, Patrick S; Yi, Hyunmin

    2008-11-04

    We demonstrate hierarchical assembly of tobacco mosaic virus (TMV)-based nanotemplates with hydrogel-based encoded microparticles via nucleic acid hybridization. TMV nanotemplates possess a highly defined structure and a genetically engineered high density thiol functionality. The encoded microparticles are produced in a high throughput microfluidic device via stop-flow lithography (SFL) and consist of spatially discrete regions containing encoded identity information, an internal control, and capture DNAs. For the hybridization-based assembly, partially disassembled TMVs were programmed with linker DNAs that contain sequences complementary to both the virus 5' end and a selected capture DNA. Fluorescence microscopy, atomic force microscopy (AFM), and confocal microscopy results clearly indicate facile assembly of TMV nanotemplates onto microparticles with high spatial and sequence selectivity. We anticipate that our hybridization-based assembly strategy could be employed to create multifunctional viral-synthetic hybrid materials in a rapid and high-throughput manner. Additionally, we believe that these viral-synthetic hybrid microparticles may find broad applications in high capacity, multiplexed target sensing.

  6. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  7. Electro-optic and magneto-dielectric properties of multifunctional nitride and oxide materials

    Science.gov (United States)

    Dixit, Ambesh

    Materials that simultaneously exhibit different physical properties provide a rich area of research leading to the development of new devices. For example, materials having a strong coupling between charge and spin degrees of freedom are essential to realizing a new class of devices referred to generally as spintronics. However, these multifunctional systems pose new scientific challenges in understanding the origin and mechanisms for cross-control of different functionalities. The core of this Ph.D. dissertation deals with multifunctional nitride and oxide compound semiconductors as well as multiferroic magnetic oxide systems by investigating structural, optical, electrical, magnetic, magnetodielectric and magnetoelectric properties. Thin films of InN nitride compound semiconductors and closely related alloys have been investigated to understand the effects of intrinsic defects on the materials properties while considering possible applications of highly degenerate InN thin films. As grown rf sputtered InN films on c-axis (0001) sapphire exhibit highly degenerate n-type behaviour due to oxygen defects introduced during growth. The effect of oxygen in InN matrix has been further investigated by intentionally adding oxygen into the films. These studies confirm that oxygen is one of the main sources of donor electrons in degenerate InN. Above some critical concentration of oxygen, secondary phases of In 2O3 and In-O-N complexes were formed. It was also possible to tune the carrier concentration to produce changes in the plasmon frequency, which varied from 0.45 eV to 0.8 eV. This characteristic energy scale suggests that these highly degenerate InN thin films could be used for thermophotovoltaic cells, optical filters, and other IR electro-optic applications. To probe the magnetism in transition metal doped InN system, In 0.98Cr0.02N and In0.95Cr0.05N thin films were fabricated. Our results suggest that these films develop ferromagnetic order above room temperature

  8. Synergistic tungsten oxide/organic framework hybrid nanofibers for electrochromic device application

    Science.gov (United States)

    Dulgerbaki, Cigdem; Komur, Ali Ihsan; Nohut Maslakci, Neslihan; Kuralay, Filiz; Uygun Oksuz, Aysegul

    2017-08-01

    We report the first successful applications of tungsten oxide/conducting polymer hybrid nanofiber assemblies in electrochromic devices. Poly(3,4-ethylenedioxythiophene)/tungsten oxide (PEDOT/WO3) and polypyrrole/tungsten oxide (PPy/WO3) composites were prepared by an in situ chemical oxidative polymerization of monomers in different ionic liquids; 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI). Electrospinning process was used to form hybrid nanofibers from chemically synthesized nanostructures. The electrospun hybrid samples were compared from both morphological and electrochemical perspectives. Importantly, deposition of nanofibers from chemically synthesized hybrids can be achieved homogenously, on nanoscale dimensions. The morphologies of these assemblies were evaluated by SEM, whereas their electroactivity was characterized by cyclic voltammetry. Electrochromic devices made from hybrid nanofiber electrodes exhibited highest chromatic contrast of 37.66% for PEDOT/WO3/BMIMPF6, 40.42% for PPy/WO3/BMIMBF4 and show a strong electrochromic color change from transparent to light brown. Furthermore, the nanofiber devices exhibit outstanding stability when color switching proceeds, which may ensure a versatile platform for color displays, rear-view mirrors and smart windows.

  9. Graphene oxide-Fe2O3 hybrid nanoparticles: a highly efficient sorbent for Am (III) from aqueous solutions

    International Nuclear Information System (INIS)

    Patre, D.K.; Gujar, R.B.; Mohapatra, P.K.; Gadly, T.; Ghosh, S.K.

    2016-01-01

    Recently, carbon nano materials such as carbon nano tubes and graphene oxide (GO) have been widely studied for the treatment of radioactive waste water. GO can be obtained after oxidization of graphene, and there are many oxygen containing surface functional groups such as epoxy (C-O-C), hydroxyl (OH) and carboxyl (COOH) groups on GO surfaces. As a result, GO showed high adsorption capacity for the removal of different kinds of metal ions and organic contaminants in practical applications. In addition to this, the existences of oxygen-containing functional groups make GO participate in various modifications, and thus lots of GO-based multifunctional materials have been prepared and used for the removal of environmental contaminants. The introduction of magnetic materials into GO can combine the high adsorption properties of GO and the separation convenience of magnetic materials. GO-based magnetic materials have caught more attentions in adsorption study due to their unique magnetic and structural characteristics. In this paper, the magnetic GO nanoparticles were used for the sorption of Am(III) from acidic feed solutions in the pH range of 1-6

  10. Metal Oxide Vertical Graphene Hybrid Supercapacitors

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2018-01-01

    A metal oxide vertical graphene hybrid supercapacitor is provided. The supercapacitor includes a pair of collectors facing each other, and vertical graphene electrode material grown directly on each of the pair of collectors without catalyst or binders. A separator may separate the vertical graphene electrode materials.

  11. Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications.

    Science.gov (United States)

    Ma, Tian-Yi; Yuan, Zhong-Yong

    2011-10-17

    The synthesis of porous hybrid materials has been extended to mesoporous non-silica-based organic-inorganic hybrid materials, in which mesoporous metal phosphonates represent an important family. By using organically bridged polyphosphonic acids as coupling molecules, the homogeneous incorporation of a considerable number of organic functional groups into the metal phosphonate hybrid framework has been realized. Small amounts of organic additives and the pH value of the reaction solution have a large impact on the morphology and textural properties of the resultant hybrid mesoporous metal phosphonate solids. Cationic and nonionic surfactants can be used as templates for the synthesis of ordered mesoporous metal phosphonates. The materials are used as efficient adsorbents for heavy metal ions, CO₂, and aldehydes, as well as in the separation of polycyclic aromatic hydrocarbons. They are also useful photocatalysts under UV and simulated solar light irradiation for organic dye degradation. Further functionalization of the synthesized mesoporous hybrids makes them oxidation and acid catalysts, both with impressive performances in the fields of sustainable energy and environment. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Next-Generation Multifunctional Electrochromic Devices.

    Science.gov (United States)

    Cai, Guofa; Wang, Jiangxin; Lee, Pooi See

    2016-08-16

    The rational design and exploration of electrochromic devices will find a wide range of applications in smart windows for energy-efficient buildings, low-power displays, self-dimming rear mirrors for automobiles, electrochromic e-skins, and so on. Electrochromic devices generally consist of multilayer structures with transparent conductors, electrochromic films, ion conductors, and ion storage films. Synthetic strategies and new materials for electrochromic films and transparent conductors, comprehensive electrochemical kinetic analysis, and novel device design are areas of active study worldwide. These are believed to be the key factors that will help to significantly improve the electrochromic performance and extend their application areas. In this Account, we present our strategies to design and fabricate electrochromic devices with high performance and multifunctionality. We first describe the synthetic strategies, in which a porous tungsten oxide (WO3) film with nearly ideal optical modulation and fast switching was prepared by a pulsed electrochemical deposition method. Multiple strategies, such as sol-gel/inkjet printing methods, hydrothermal/inkjet printing methods, and a novel hybrid transparent conductor/electrochromic layer have been developed to prepare high-performance electrochromic films. We then summarize the recent advances in transparent conductors and ion conductor layers, which play critial roles in electrochromic devices. Benefiting from the developments of soft transparent conductive substrates, highly deformable electrochromic devices that are flexible, foldable, stretchable, and wearable have been achieved. These emerging devices have great potential in applications such as soft displays, electrochromic e-skins, deformable electrochromic films, and so on. We finally present a concept of multifunctional smart glass, which can change its color to dynamically adjust the daylight and solar heat input of the building or protect the users' privacy

  13. Microgramma vacciniifolia (Polypodiaceae) fronds contain a multifunctional lectin with immunomodulatory properties on human cells.

    Science.gov (United States)

    de Siqueira Patriota, Leydianne Leite; Procópio, Thamara Figueiredo; de Santana Brito, Jéssica; Sebag, Virginie; de Oliveira, Ana Patrícia Silva; de Araújo Soares, Ana Karine; Moreira, Leyllane Rafael; de Albuquerque Lima, Thâmarah; Soares, Tatiana; da Silva, Túlio Diego; Paiva, Patrícia Maria Guedes; de Lorena, Virgínia Maria Barros; de Melo, Cristiane Moutinho Lagos; de Albuquerque, Lidiane Pereira; Napoleão, Thiago Henrique

    2017-10-01

    In this study, we report the purification and characterization of a multifunctional lectin (MvFL) from Microgramma vacciniifolia fronds as well as its immunomodulatory properties on human peripheral blood mononuclear cells (PBMCs). MvFL (pI 4.51; 54kDa) is a glycoprotein able to inhibit trypsin activity and that has sequence similarities (32% coverage) with a plant RNA-binding protein. Hemagglutinating activity of MvFL was not altered by heating at 100°C for 30min, but was reduced in alkaline pH (8.0 and 9.0). Fluorimetric analyses showed that this lectin did not undergo marked conformational changes when heated. However, the MvFL conformation changed depending on the pH. MvFL at 6.25-25μg/mL was not cytotoxic to lymphocytes present among PBMCs. The PBMCs incubated for 24h with the lectin (12.5μg/mL) showed increased TNF-α, IFN-γ, IL-6, IL-10, and nitric oxide production. MvFL also stimulated T lymphocytes from PBMCs to differentiate into CD8 + cells. The activation (indicated by CD28 expression) of these cells was also stimulated. In conclusion, MvFL is a heat-stable and multifunctional protein, with both lectin and trypsin inhibitor activities, and capable of inducing predominantly a Th1 response in human PBMCs as well as activation and differentiation of T lymphocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Inorganic-organic hybrids based on poly (ε-Caprolactone and silica oxide and characterization by relaxometry applying low-field NMR

    Directory of Open Access Journals (Sweden)

    Mariana Sato de Souza de Bustamante Monteiro

    2012-12-01

    Full Text Available Poly (ε-caprolactone (PCL based hybrids containing different amounts of modified (Aerosil® R972 and unmodified (Aerosil® A200 silica oxide were prepared employing the solution method, using chloroform. The relationships of the amount of nanofillers, organic coating, molecular structure and intermolecular interaction of the hybrid materials were investigated mainly using low-field nuclear magnetic resonance (NMR. The NMR analyses involved the hydrogen spin-lattice relaxation time (T1H and hydrogen spin-lattice relaxation time in the rotating frame (T1ρH. The spin-lattice relaxation time measurements revealed that the PCL/silica oxide hybrids were heterogeneous, meaning their components were well dispersed. X-ray diffraction (XRD, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA were also employed. The DSC data showed that all the materials had lower crystallization temperature (Tc and melting temperature (Tm, so the crystallinity degree of the PCL decreased in the hybrids. The TGA analysis demonstrated that the addition of modified and unmodified silica oxide does not cause considerable changes to PCL's thermal stability, since no significant variations in the maximum temperature (Tmax were observed in relation to the neat polymer.

  15. Development and assessment of the CONTAIN hybrid flow solver

    International Nuclear Information System (INIS)

    Murata, K.K.; Stamps, D.W.

    1996-11-01

    A new gravitational head formulation for the treatment of stratified conditions has been developed for CONTAIN 1.2, a control volume code used primarily for the analyses of postulated accidents in nuclear power plants. The new CONTAIN formulation of gravitational heads, termed the hybrid formulation, is described. This method of calculating stratified conditions is compared with the old, average-density formulation used in code versions prior to CONTAIN 1.2. Both formulations are assessed in this report with experimental data from three large-scale experiments in which stratified conditions formed by injection of a buoyant gas were observed. In general, the hybrid formulation gives a substantially higher degree of stratification than the old formulation. For stable, fully developed stratifications, the hybrid formulation also gives much better agreement with the measured degree of stratification than the old formulation. In addition, the predicted degree of stratification is robust and not sensitive to nodalization, provided a set of nodalization guidelines are followed. However, for stratification behavior controlled by special physics not modeled in CONTAIN, such as momentum convection, plume entrainment, or bulk molecular diffusion, one should not expect good agreement with experiment unless special measures to accommodate the missing physics are taken

  16. Hybrid silica luminescent materials based on lanthanide-containing lyotropic liquid crystal with polarized emission

    Energy Technology Data Exchange (ETDEWEB)

    Selivanova, N.M., E-mail: natsel@mail.ru [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation); Vandyukov, A.E.; Gubaidullin, A.T. [A.E. Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific Center of the Russian Academy of Sciences, 8 Acad. Arbuzov Str., Kazan 420088 (Russian Federation); Galyametdinov, Y.G. [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation)

    2014-11-14

    This paper represents the template method for synthesis of hybrid silica films based on Ln-containing lyotropic liquid crystal and characterized by efficient luminescence. Luminescence films were prepared in situ by the sol–gel processes. Lyotropic liquid crystal (LLC) mesophases C{sub 12}H{sub 25}O(CH{sub 2}CH{sub 2}O){sub 10}H/Ln(NO{sub 3}){sub 3}·6H{sub 2}O/H{sub 2}O containing Ln (III) ions (Dy, Tb, Eu) were used as template. Polarized optical microscopy, X-ray powder diffraction, and FT-IR-spectroscopy were used for characterization of liquid crystal mesophases and hybrid films. The morphology of composite films was studied by the atomic force microscopy method (AFM). The optical properties of the resulting materials were evaluated. It was found that hybrid silica films demonstrate significant increase of their lifetime in comparison with an LLC system. New effects of linearly polarized emission revealed for Ln-containing hybrid silica films. Polarization in lanthanide-containing hybrid composites indicates that silica precursor causes orientation of emitting ions. - Highlights: • We suggest a new simple approach for creating luminescence hybrid silica films. • Ln-containing hybrid silica films demonstrate yellow, green and red emissions. • Tb(III)-containing hybrid film have a high lifetime. • We report effects of linearly polarized emission in hybrid film.

  17. Hybrid Energy Cell with Hierarchical Nano/Micro-Architectured Polymer Film to Harvest Mechanical, Solar, and Wind Energies Individually/Simultaneously.

    Science.gov (United States)

    Dudem, Bhaskar; Ko, Yeong Hwan; Leem, Jung Woo; Lim, Joo Ho; Yu, Jae Su

    2016-11-09

    We report the creation of hybrid energy cells based on hierarchical nano/micro-architectured polydimethylsiloxane (HNMA-PDMS) films with multifunctionality to simultaneously harvest mechanical, solar, and wind energies. These films consist of nano/micro dual-scale architectures (i.e., nanonipples on inverted micropyramidal arrays) on the PDMS surface. The HNMA-PDMS is replicable by facile and cost-effective soft imprint lithography using a nanoporous anodic alumina oxide film formed on the micropyramidal-structured silicon substrate. The HNMA-PDMS film plays multifunctional roles as a triboelectric layer in nanogenerators and an antireflection layer for dye-sensitized solar cells (DSSCs), as well as a self-cleaning surface. This film is employed in triboelectric nanogenerator (TENG) devices, fabricated by laminating it on indium-tin oxide-coated polyethylene terephthalate (ITO/PET) as a bottom electrode. The large effective contact area that emerged from the densely packed hierarchical nano/micro-architectures of the PDMS film leads to the enhancement of TENG device performance. Moreover, the HNMA-PDMS/ITO/PET, with a high transmittance of >90%, also results in highly transparent TENG devices. By placing the HNMA-PDMS/ITO/PET, where the ITO/PET is coated with zinc oxide nanowires, as the top glass substrate of DSSCs, the device is able to add the functionality of TENG devices, thus creating a hybrid energy cell. The hybrid energy cell can successfully convert mechanical, solar, and wind energies into electricity, simultaneously or independently. To specify the device performance, the effects of external pushing frequency and load resistance on the output of TENG devices are also analyzed, including the photovoltaic performance of the hybrid energy cells.

  18. One-pot synthesis of reduced graphene oxide@boron nitride nanosheet hybrids with enhanced oxidation-resistant properties

    Science.gov (United States)

    Sun, Guoxun; Bi, Jianqiang; Wang, Weili; Zhang, Jingde

    2017-12-01

    Reduced graphene oxide@boron nitride nanosheet (RGO@BNNS) hybrids were prepared for the first time using template-assisted autoclave pyrolysis technique at the temperature as low as 600 °C. The developed method can be scaled into gram-scale synthesis of the material. The BNNSs combine with RGO through van der Waals interplanar interaction without damaging the structures of RGO. Such ultrathin BNNSs on the surface of RGO can serve as high-performance oxidation-resistant coatings in oxidizing atmospheres at high temperatures. The RGO@BNNS hybrids can sustain up to 800 °C over a relatively long period of time.

  19. Fe2O3-Au hybrid nanoparticles for sensing applications via sers analysis

    International Nuclear Information System (INIS)

    Murph, Simona Hunyadi; Searles, Emily

    2017-01-01

    Nanoparticles with large amounts of surface area and unique characteristics that are distinct from their bulk material provide an interesting application in the enhancement of inelastic scattering signal. Surface Enhanced Raman Spectroscopy (SERS) strives to increase the Raman scattering effect when chemical species of interest are in the close proximity of metallic nnaostructures. Gold nanoparticles of various shapes have been used for sensing applications via SERS as they demonstrate the greatest effect of plasmonic behavior in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. Multifunctional iron oxide-gold hybrid nanostructures have been created via solution chemistries and investigated for analyte detection of a model analyte. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies.

  20. An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15.

    Science.gov (United States)

    Zhang, Lei; Abbenhuis, Hendrikus C L; Gerritsen, Gijsbert; Bhriain, Nollaig Ní; Magusin, Pieter C M M; Mezari, Brahim; Han, Wei; van Santen, Rutger A; Yang, Qihua; Li, Can

    2007-01-01

    A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active center, was immobilized successfully by in-situ copolymerization on a mesoporous SBA-15-supported polystyrene polymer. The resulting hybrid materials exhibit attractive textural properties (highly ordered mesostructure, large specific surface area (>380 m2 g-1) and pore volume (>or==0.46 cm3 g-1)), and high activity in the epoxidation of alkenes. In the epoxidation of cyclooctene with tert-butyl hydrogen peroxide (TBHP), the hybrid catalysts have rate constants comparable with that of their homogeneous counterpart, and can be recycled at least seven times. They can also catalyze the epoxidation of cyclooctene with aqueous H2O2 as the oxidant. In two-phase reaction media, the catalysts show much higher activity than their homogeneous counterpart due to the hydrophobic environment around the active centers. They behave as interfacial catalysts due to their multifunctionality, that is, the hydrophobicity of polystyrene and the polyhedral oligomeric silsesquioxanes (POSS), and the hydrophilicity of the silica and the mesoporous structure. Combination of the immobilization of homogeneous catalysts on two conventional supports, inorganic solid and organic polymer, is demonstrated to achieve novel heterogeneous catalytic ensembles with the merits of attractive textural properties, tunable surface properties, and optimized environments around the active sites.

  1. A Novel Hybrid Axial-Radial Atmospheric Plasma Spraying Technique for the Fabrication of Solid Oxide Fuel Cell Anodes Containing Cu, Co, Ni, and Samaria-Doped Ceria

    Science.gov (United States)

    Cuglietta, Mark; Kuhn, Joel; Kesler, Olivera

    2013-06-01

    Composite coatings containing Cu, Co, Ni, and samaria-doped ceria (SDC) have been fabricated using a novel hybrid atmospheric plasma spraying technique, in which a multi-component aqueous suspension of CuO, Co3O4, and NiO was injected axially simultaneously with SDC injected radially in a dry powder form. Coatings were characterized for their microstructure, permeability, porosity, and composition over a range of plasma spray conditions. Deposition efficiency of the metal oxides and SDC was also estimated. Depending on the conditions, coatings displayed either layering or high levels of mixing between the SDC and metal phases. The deposition efficiencies of both feedstock types were strongly dependent on the nozzle diameter. Plasma-sprayed metal-supported solid oxide fuel cells utilizing anodes fabricated with this technique demonstrated power densities at 0.7 V as high as 366 and 113 mW/cm2 in humidified hydrogen and methane, respectively, at 800 °C.

  2. Self-Assembling Multifunctional Peptide Dimers for Gene Delivery Systems

    Directory of Open Access Journals (Sweden)

    Kitae Ryu

    2015-01-01

    Full Text Available Self-assembling multifunctional peptide was designed for gene delivery systems. The multifunctional peptide (MP consists of cellular penetrating peptide moiety (R8, matrix metalloproteinase-2 (MMP-2 specific sequence (GPLGV, pH-responsive moiety (H5, and hydrophobic moiety (palmitic acid (CR8GPLGVH5-Pal. MP was oxidized to form multifunctional peptide dimer (MPD by DMSO oxidation of thiols in terminal cysteine residues. MPD could condense pDNA successfully at a weight ratio of 5. MPD itself could self-assemble into submicron micelle particles via hydrophobic interaction, of which critical micelle concentration is about 0.01 mM. MPD showed concentration-dependent but low cytotoxicity in comparison with PEI25k. MPD polyplexes showed low transfection efficiency in HEK293 cells expressing low level of MMP-2 but high transfection efficiency in A549 and C2C12 cells expressing high level of MMP-2, meaning the enhanced transfection efficiency probably due to MMP-induced structural change of polyplexes. Bafilomycin A1-treated transfection results suggest that the transfection of MPD is mediated via endosomal escape by endosome buffering ability. These results show the potential of MPD for MMP-2 targeted gene delivery systems due to its multifunctionality.

  3. Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity

    Science.gov (United States)

    Guo, Jia; Xu, Shicai; Liu, Xiaoyun; Li, Zhe; Hu, Litao; Li, Zhen; Chen, Peixi; Ma, Yong; Jiang, Shouzhen; Ning, Tingyin

    2017-02-01

    In our work, few layers graphene oxide (GO) were directly synthesized on Ag nanoparticles (AgNPs) by spin-coating method to fabricate a GO-AgNPs hybrid structure on a pyramidal silicon (PSi) substrate for surface-enhanced Raman scattering (SERS). The GO-AgNPs-PSi substrate showed excellent Raman enhancement effect, the minimum detected concentration for Rhodamine 6G (R6G) can reach 10-12 M, which is one order of magnitude lower than the AgNPs-PSi substrate and two order of magnitude lower than the GO-AgNPs-flat-Si substrate. The linear fit calibration curve with error bars is presented and the value of R2 of 612 and 773 cm-1 can reach 0.986 and 0.980, respectively. The excellent linear response between the Raman intensity and R6G concentrations prove that the prepared GO-AgNPs-PSi substrates can serve as good SERS substrate for molecule detection. The maximum deviations of SERS intensities from 20 positions of the GO-AgNPs-PSi substrate are less than 8%, revealing the high homogeneity of the SERS substrate. The excellent homogeneity of the enhanced Raman signals can be attributed to well-separated pyramid arrays of PSi, the uniform morphology of AgNPs and multi-functions of GO layer. Besides, the uniform GO film can effectively protect AgNPs from oxidation and endow the hybrid system a good stability and long lifetime. This GO-AgNPs-PSi substrate may provide a new way toward practical applications for the ultrasensitive and label-free SERS detection in areas of medicine, food safety and biotechnology.

  4. Aerogel Hybrid Composite Materials: Designs and Testing for Multifunctional Applications

    Science.gov (United States)

    Williams, Martha K.; Fesmire, James E.

    2016-01-01

    This webinar will introduce the broad spectrum of aerogel composites and their diverse performance properties such as reduced heat transfer to energy storage, and expands specifically on the aerogel/fiber laminate systems and testing methodologies. The multi-functional laminate composite system, AeroFiber, and its construction is designed by varying the type of fiber (e.g. polyester, carbon, Kevlar®, Spectra® or Innegral(TradeMark) and combinations thereof), the aerogel panel type and thickness, and overall layup configuration. The combination and design of materials may be customized and tailored to achieve a range of desired properties in the resulting laminate system. Multi-functional properties include structural strength, impact resistance, reduction in heat transfer, increased fire resistance, mechanical energy absorption, and acoustic energy dampening. Applications include aerospace, aircraft, automotive, boating, building and construction, lightweight portable structures, liquefied natural gas, cryogenics, transportation and energy, sporting equipment, and military protective gear industries.

  5. Hybrid manganese oxide films for supercapacitor application prepared by sol-gel technique

    International Nuclear Information System (INIS)

    Chen, Chin-Yi; Wang, Sheng-Chang; Tien, Yue-Han; Tsai, Wen-Ta; Lin, Chung-Kwei

    2009-01-01

    Hybrid films were prepared by adding various concentrations of meso-carbon microbeads (MCMB) during sol-gel processing of manganese oxide films. The heat-treated films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). In addition, electrochemical performance of the MCMB-added Mn-oxide hybrid coatings was evaluated by cyclic voltammetry (CV) and compared with its unadded counterpart. Experimental results showed that Mn-oxide films exhibited a mixture of Mn 2 O 3 and Mn 3 O 4 phases. The higher the heat-treatment temperature, the more Mn 2 O 3 can be observed. The specific capacitance of the unadded Mn-oxide electrodes is 209 F/g. Because the MCMB particles provide more interfacial surface area for electrochemical reactions, a significant improvement can be noticed by adding MCMB in Mn-oxide coatings. The 300 o C heat-treated hybrid Mn-oxide coating with a Mn/MCMB ratio of 10/1 exhibits the highest value of 350 F/g, showing a ∼ 170% increase in specific capacitance.

  6. Active metal oxides and polymer hybrids as biomaterials

    Science.gov (United States)

    Jarrell, John D.

    Bone anchored prosthetic attachments, like other percutaneous devices, suffer from poor soft tissue integration, seen as chronic inflammation, infection, epithelial downgrowth and regression. We looked at the use of metal oxides as bioactive agents that elicit different bioresponses, ranging from cell attachment, tissue integration and reduction of inflammation to modulation of cell proliferation, morphology and microbe killing. This study presents a novel method for creating titanium oxide and polydimethylsiloxane (PDMS) hybrid coated microplates for high throughput biological, bacterial and photocatalytic screening that overcomes several limitations of using bulk metal samples. Titanium oxide coatings were doped with silver, zinc, vanadium, aluminum, calcium and phosphorous, while PDMS was doped with titanium, vanadium and silver and subjected to hydrothermal heat treatment to determine the influence of chemistry and crystallinity on the viability, proliferation and adhesion of human fibroblasts, keratinocytes and Hela cells. Also explored was the influence of Ag and Zn doping on E. coli proliferation. We determined how titanium concentration in hybrids and silver doping influenced the photocatalytic degradation of methylene blue by coatings. A combined sub/percutaneous, polyurethane device was developed and implanted into the backs of CD hairless rats to investigate how optimized coatings influenced soft tissue integration in vivo. We demonstrate that the bioresponse of cells to coatings is controlled by elemental doping (V & Ag) and that planktonic bacterial growth was greatly reduced or stopped by Ag, but not Zn doping. Hydrothermal heat treatments (65 °C and 121 °C) did not greatly influence cellular bioresponse to coatings. We discovered a range of temperature resistant (up to 400 °C), solid state dispersions with enhanced ability to block full spectrum photon transmission and degrade methylene using medical x-rays, UV, visible and infrared photons. We

  7. Flexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Devices on Flexible Conducting Graphene Substrates

    OpenAIRE

    Wan, Chang Jin; Wang, Wei; Zhu, Li Qiang; Liu, Yang Hui; Feng, Ping; Liu, Zhao Ping; Shi, Yi; Wan, Qing

    2016-01-01

    Flexible metal oxide/graphene oxide hybrid multi-gate neuron transistors were fabricated on flexible graphene substrates. Dendritic integrations in both spatial and temporal modes were successfully emulated, and spatiotemporal correlated logics were obtained. A proof-of-principle visual system model for emulating lobula giant motion detector neuron was investigated. Our results are of great interest for flexible neuromorphic cognitive systems.

  8. Multifunctional materials and composites

    Science.gov (United States)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  9. Molybdenum-containing acidic catalysts to convert cellulosic biomass to glycolic acid

    KAUST Repository

    Han, Yu

    2014-09-30

    Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids and salts as the molybdenum-containing multi-functional catalysts for biomass conversion. In embodiments of the invention, the reactions employ successive hydrolysis, retro-aldol fragmentation, and selective oxidation in a noble metal-free system.

  10. New insight into multifunctional role of peroxiredoxin family protein: Determination of DNA protection properties of bacterioferritin comigratory protein under hyperthermal and oxidative stresses

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmin, E-mail: taeinlee2011@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of); Chung, Jeong Min [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of); Yun, Hyung Joong; Won, Jonghan [Advanced Nano Surface Research Group, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon, 305-333 (Korea, Republic of); Jung, Hyun Suk, E-mail: hsjung@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of)

    2016-01-22

    Bacterioferritin comigratory protein (BCP) is a monomeric conformer acting as a putative thiol-dependent bacterial peroxidase, however molecular basis of DNA-protection via DNA-binding has not been clearly understood. In this study, we characterized the DNA binding properties of BCP using various lengths and differently shaped architectures of DNA. An electrophoretic mobility shift assay and electron microscopy analysis showed that recombinant TkBCP bound to DNA of a circular shape (double-stranded DNA and single-stranded DNA) and a linear shape (16–1000 bp) as well as various architectures of DNA. In addition, DNA protection experiments indicated that TkBCP can protect DNA against hyperthermal and oxidative stress by removing highly reactive oxygen species (ROS) or by protecting DNA from thermal degradation. Based on these results, we suggest that TkBCP is a multi-functional DNA-binding protein which has DNA chaperon and antioxidant functions. - Highlights: • Bacterioferritin comigratory protein (BCP) protects DNA from oxidative stress by reducing ROS. • TkBCP does not only scavenge ROS, but also protect DNA from hyperthermal stress. • BCP potentially adopts the multi-functional role in DNA binding activities and anti-oxidant functions.

  11. New insight into multifunctional role of peroxiredoxin family protein: Determination of DNA protection properties of bacterioferritin comigratory protein under hyperthermal and oxidative stresses

    International Nuclear Information System (INIS)

    Lee, Sangmin; Chung, Jeong Min; Yun, Hyung Joong; Won, Jonghan; Jung, Hyun Suk

    2016-01-01

    Bacterioferritin comigratory protein (BCP) is a monomeric conformer acting as a putative thiol-dependent bacterial peroxidase, however molecular basis of DNA-protection via DNA-binding has not been clearly understood. In this study, we characterized the DNA binding properties of BCP using various lengths and differently shaped architectures of DNA. An electrophoretic mobility shift assay and electron microscopy analysis showed that recombinant TkBCP bound to DNA of a circular shape (double-stranded DNA and single-stranded DNA) and a linear shape (16–1000 bp) as well as various architectures of DNA. In addition, DNA protection experiments indicated that TkBCP can protect DNA against hyperthermal and oxidative stress by removing highly reactive oxygen species (ROS) or by protecting DNA from thermal degradation. Based on these results, we suggest that TkBCP is a multi-functional DNA-binding protein which has DNA chaperon and antioxidant functions. - Highlights: • Bacterioferritin comigratory protein (BCP) protects DNA from oxidative stress by reducing ROS. • TkBCP does not only scavenge ROS, but also protect DNA from hyperthermal stress. • BCP potentially adopts the multi-functional role in DNA binding activities and anti-oxidant functions.

  12. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  13. Multifunctional nanocrystals

    Science.gov (United States)

    Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak

    2010-06-22

    Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.

  14. Multifunctional nanoparticles: Analytical prospects

    International Nuclear Information System (INIS)

    Dios, Alejandro Simon de; Diaz-Garcia, Marta Elena

    2010-01-01

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifuncional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  15. Engineering Interfacial Energetics: A Novel Hybrid System of Metal Oxide Quantum Dots and Cobalt Complex for Photocatalytic Water Oxidation

    International Nuclear Information System (INIS)

    Niu, Fujun; Shen, Shaohua; Wang, Jian; Guo, Liejin

    2016-01-01

    Graphical abstract: A cobalt complex engineers the interfacial energetics of metal oxide quantum dots (n- or p-type) and electrolytes for highly efficient O_2 generation under visible light irradiation. - Highlights: • A noble-metal-free hybrid photocatalytic system using a single-site cobalt catalyst was developed for O_2 generation. • Considerable activity and excellent stability for O_2 production were achieved by this novel system. • CoSlp engineered the QDs/electrolyte interfacical energetics for efficient hole transfer. - Abstract: Here we reported a novel hybrid photocatalytic water oxidation system, containing metal oxide (n-Fe_2O_3 or p-Co_3O_4) quantum dots (QDs) as light harvester, a salophen cobalt(II) complex (CoSlp) as redox catalyst and persulfate (S_2O_8"2"−) as sacrificial electron acceptor, for oxygen generation from fully aqueous solution. The n-Fe_2O_3 QDs/CoSlp and p-Co_3O_4 QDs/CoSlp systems exhibited good O_2 evolution performances, giving turnover numbers (TONs) of ca. 33 and ca. 35 over CoSlp after visible light irradiation for 72 h, respectively. The excellent photocatalytic performance could be ascribed to the efficient hole transfer from QDs to CoSlp catalyst, leading to reduced photogenerated charge recombination, as well as the CoSlp engineered interfacial band bending of QDs, increasing the driving force or decreasing the energy barrier for hole transfer and then benefiting the following O_2 generation at the QDs/electrolyte interface. The present work successfully demonstrated a novel hybrid system for photocatalytic O_2 evolution from fully aqueous solution; and the essential role of cobalt complexes in engineering the interfacial energetics of semiconductors (n- or p-type) and electrolytes could be informative for designing efficient systems for solar water splitting.

  16. Crystallographic and Spectroscopic Characterization of Americium Complexes Containing the Bis[(phosphino)methyl]pyridine-1-oxide (NOPOPO) Ligand Platform

    Energy Technology Data Exchange (ETDEWEB)

    Corbey, Jordan F. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Rapko, Brian M. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Wang, Zheming [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; McNamara, Bruce K. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Surbella, Robert G. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Pellegrini, Kristi L. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Schwantes, Jon M. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States

    2018-02-06

    Abstract The crystal structures of americium species containing a common multi-functional phosphine oxide ligand, reported for its ability to extract f elements from acidic solutions, namely 2,6-[Ph2P(O)CH2]2C5H3-NO, L, have finally been determined after over three decades of separations studies involving these species and their surrogates. The molecular compounds Am(L)(NO3)3, Am 1:1, and [Am(L)2(NO3)][NO3]2, Am 2:1, along with their neodymium and europium analogs were synthesized and characterized using single-crystal X-ray crystallography, attenuated total reflectance Fourier transform infrared (ATR) spectroscopy and luminescence spectroscopy to provide a comprehensive comparison with new and known analogous complexes.

  17. Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: As a bionanomaterials.

    Science.gov (United States)

    Senthilkumar, R P; Bhuvaneshwari, V; Ranjithkumar, R; Sathiyavimal, S; Malayaman, V; Chandarshekar, B

    2017-11-01

    The hybrid chitosan cerium oxide nanoparticles were prepared for the first time by green chemistry approach using plant leaf extract. The intense peak observed around 292nm in the UV-vis spectrum indicate the formation of cerium oxide nanoparticles. The XRD pattern revealed that the hybrid chitosan-cerium oxide nanoparticles have a polycrystalline structure with cubic fluorite phase. The FTIR spectrum of prepared samples showed the formation of Ce-O bonds and chitosan main chains COC and CO. The FESEM image of hybrid chitosan cerium oxide nanoparticles revealed that the particles are spherical in shape with grains size varying from 23.12nm to 89.91nm. EDAX analysis confirmed the presence of Ce, O, C and N elements in the prepared sample. TEM images showed that the prepared hybrid chitosan-cerium oxide nanoparticles are predominantly uniform in size and most of the particles are spherical in shape with less agglomeration and the particles size varies from 3.61nm to 24.40nm. The prepared chitosan cerium oxide nanoparticles of 50μL concentration showed good antibacterial properties against test pathogens, which was confirmed by the FESEM analysis. The prepared small particle size facilitate that these hybrid ChiCO 2 NPs could effectively be used in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hybrid Magnetic Core-Shell Nanophotocatalysts for Environmental Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gaulden, Patrick [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Univ. of Georgia, Athens, GA (United States). Dept. of Physics and Astronomy

    2016-07-29

    This research study describes a facile sol-gel method to creating hybrid iron (III) oxide/silica/titania nanomaterials decorated with gold nanoparticles for use in environmental applications. The multi-functional composition of the nanomaterials allows for photocatalyzed reactions to occur in both the visible and the UV range. The morphologies, elemental composition, and surface charge of the nanoparticles were determined by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Phase Analysis Light Scattering (PALS), respectively. The photocatalytic activity of the synthesized hybrid nanoparticles for breaking down a model analyte, methyl orange (MO), was then evaluated using UV-Vis Spectroscopy. The efficiency of the photocatalyst under UV light irradiation was measured and compared to other well-studied nanophotocatalysts, namely titanium oxide and iron oxide nanoparticles. The concentration dependence of both the photocatalyst and the analyte was also investigated. By utilizing the known UV-active properties of TiO2, the magnetic properties of Fe2O3, the optical properties of gold in the visible range of the spectrum, and the high stability of silica, a novel, highly efficient photocatalyst that is active on a broad range of the spectrum (UV-Vis) can be created to destroy organic pollutants in wastewater streams.

  19. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiao; Huang, Ting; Yang, Jing-hui; Zhang, Nan; Wang, Yong, E-mail: yongwang1976@163.com; Zhou, Zuo-wan

    2017-08-05

    Highlights: • Hybrid GO/MCC aerogels were prepared using LiBr aqueous solution as the solvent. • GO was exfoliated by MCC through the strong interaction between them. • The adsorption ability of GO per unit mass in the hybrid aerogels was greatly enhanced. - Abstract: In this work, we developed a green synthesis method to prepare the hybrid aerogels containing graphene oxide (GO) and microcrystalline cellulose (MCC) using lithium bromide (LiBr) aqueous solution as the solvent, which insured the complete dissolution of MCC. The interaction between GO and MCC was investigated through different methods The results demonstrate that there is a strong interaction between GO and MCC molecules, which promotes the exfoliation of GO in the hybrid aerogels. The hybrid GO/MCC aerogels exhibit typical three dimensional porous structure and the pore morphology can be well adjusted by changing the content of GO. The adsorption ability of the hybrid aerogels was measured using methylene blue (MB) as an adsorbate. The results show that the adsorption ability of GO per unit mass is greatly enhanced compared with the pure GO aerogel, especially at relatively low GO content the adsorption amount of GO per unit mass is enhanced up to 2630 mg/g. Further results demonstrate that the hybrid GO/MCC aerogels still obey the pseudo-second-order adsorption model, which is similar to that of the pure GO aerogel. The mechanism for the amplified adsorption ability of GO in the hybrid GO/MCC aerogels is then analyzed.

  20. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents

    International Nuclear Information System (INIS)

    Wei, Xiao; Huang, Ting; Yang, Jing-hui; Zhang, Nan; Wang, Yong; Zhou, Zuo-wan

    2017-01-01

    Highlights: • Hybrid GO/MCC aerogels were prepared using LiBr aqueous solution as the solvent. • GO was exfoliated by MCC through the strong interaction between them. • The adsorption ability of GO per unit mass in the hybrid aerogels was greatly enhanced. - Abstract: In this work, we developed a green synthesis method to prepare the hybrid aerogels containing graphene oxide (GO) and microcrystalline cellulose (MCC) using lithium bromide (LiBr) aqueous solution as the solvent, which insured the complete dissolution of MCC. The interaction between GO and MCC was investigated through different methods The results demonstrate that there is a strong interaction between GO and MCC molecules, which promotes the exfoliation of GO in the hybrid aerogels. The hybrid GO/MCC aerogels exhibit typical three dimensional porous structure and the pore morphology can be well adjusted by changing the content of GO. The adsorption ability of the hybrid aerogels was measured using methylene blue (MB) as an adsorbate. The results show that the adsorption ability of GO per unit mass is greatly enhanced compared with the pure GO aerogel, especially at relatively low GO content the adsorption amount of GO per unit mass is enhanced up to 2630 mg/g. Further results demonstrate that the hybrid GO/MCC aerogels still obey the pseudo-second-order adsorption model, which is similar to that of the pure GO aerogel. The mechanism for the amplified adsorption ability of GO in the hybrid GO/MCC aerogels is then analyzed.

  1. Highly Controlled Diffusion Drug Release from Ureasil-Poly(ethylene oxide)-Na+-Montmorillonite Hybrid Hydrogel Nanocomposites.

    Science.gov (United States)

    Jesus, Celso R N; Molina, Eduardo F; Pulcinelli, Sandra H; Santilli, Celso V

    2018-06-06

    In this work, we report the effects of incorporation of variable amounts (1-20 wt %) of sodium montmorillonite (MMT) into a siloxane-poly(ethylene oxide) hybrid hydrogel prepared by the sol-gel route. The aim was to control the nanostructural features of the nanocomposite, improve the release profile of the sodium diclofenac (SDCF) drug, and optimize the swelling behavior of the hydrophilic matrix. The nanoscopic characteristics of the siloxane-cross-linked poly(ethylene oxide) network, the semicrystallinity of the hybrid, and the intercalated or exfoliated structure of the clay were investigated by X-ray diffraction, small-angle X-ray scattering, and differential scanning calorimetry. The correlation between the nanoscopic features of nanocomposites containing different amounts of MMT and the swelling behavior revealed the key role of exfoliated silicate in controlling the water uptake by means of a flow barrier effect. The release of the drug from the nanocomposite displayed a stepped pattern kinetically controlled by the diffusion of SDCF molecules through the mass transport barrier created by the exfoliated silicate. The sustained SDCF release provided by the hybrid hydrogel nanocomposite could be useful for the prolonged treatment of painful conditions, such as arthritis, sprains and strains, gout, migraine, and pain after surgical procedures.

  2. An attempt of rationalization of tick-borne disease prevention using a multifunctional container for Tick Twister ®

    Directory of Open Access Journals (Sweden)

    Barbara Oczko-Grzesik

    2013-12-01

    Full Text Available Ticks are reservoir and transmission vectors of many bacteria, viruses and parasites, which are pathogenic for humans. Early and correct tick removal is crucial as prevention of tick-borne diseases. The aim of the study is an attempt at rationalization of tick-borne disease prevention using a multifunctional container for Tick Twister®. In practice, it should enable people to use Tick Twister® in all circumstances contributing to the improvement of efficiency in tick-borne diseases prevention, and as a result, to a decrease in their frequency and after effects.

  3. Hybrid rocket motor testing at Nammo Raufoss A/S

    Science.gov (United States)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  4. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    Science.gov (United States)

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  5. Formulation of Synthesized Zinc Oxide Nanopowder into Hybrid Beads for Dye Separation

    Directory of Open Access Journals (Sweden)

    H. Shokry Hassan

    2014-01-01

    Full Text Available The sol-gel prepared zinc oxide nanopowder was immobilized onto alginate-polyvinyl alcohol polymer blend to fabricate novel biocomposite beads. Various physicochemical characterization techniques have been utilized to identify the crystalline, morphological, and chemical structures of both the fabricated zinc oxide hybrid beads and their corresponding zinc oxide nanopowder. The thermal stability investigations demonstrate that ZnO nanopowder stability dramatically decreased with its immobilization into the polymeric alginate and PVA matrix. The formulated beads had very strong mechanical strength and they are difficult to be broken up to 1500 rpm. Moreover, these hybrid beads are chemically stable at the acidic media (pH < 7 especially within the pH range of 2–7. Finally, the applicability of the formulated ZnO hybrid beads for C.I. basic blue 41 (BB41 decolorization from aqueous solution was examined.

  6. CuO reduction induced formation of CuO/Cu2O hybrid oxides

    Science.gov (United States)

    Yuan, Lu; Yin, Qiyue; Wang, Yiqian; Zhou, Guangwen

    2013-12-01

    Reduction of CuO nanowires results in the formation of a unique hierarchical hybrid nanostructure, in which the parent oxide phase (CuO) works as the skeleton while the lower oxide (Cu2O) resulting from the reduction reaction forms as partially embedded nanoparticles that decorate the skeleton of the parent oxide. Using in situ transmission electron microscopy observations of the reduction process of CuO nanowires, we demonstrate that the formation of such a hierarchical hybrid oxide structure is induced by topotactic nucleation and growth of Cu2O islands on the parent CuO nanowires.

  7. Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jia [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Xu, Shicai [Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University, Dezhou 253023 (China); Liu, Xiaoyun; Li, Zhe; Hu, Litao; Li, Zhen; Chen, Peixi; Ma, Yong [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Jiang, Shouzhen, E-mail: jiang_sz@126.com [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014 (China); Ning, Tingyin [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014 (China)

    2017-02-28

    Highlights: • We directly grown AgNPs on substrate by annealing method in the quartz tube. Compare with spin-coating Ag nanoparticles solution method, we got more uniform distribution of AgNPs and the AgNPs better adsorption on the substrate. • We use a simple and lost-cost method to obtain the pyramidal silicon (PSi). The PSi possessing well-separated pyramid arrays can make contribution to the homogeneity and sensitivity of the substrate. • In our work, graphene oxide (GO) film is uniformly deposited on AgNPs and PSi by using a spin-coating method. The GO films endow the hybrid system a good stability and enhance the homogeneity and sensitivity of the substrate. - Abstract: In our work, few layers graphene oxide (GO) were directly synthesized on Ag nanoparticles (AgNPs) by spin-coating method to fabricate a GO-AgNPs hybrid structure on a pyramidal silicon (PSi) substrate for surface-enhanced Raman scattering (SERS). The GO-AgNPs-PSi substrate showed excellent Raman enhancement effect, the minimum detected concentration for Rhodamine 6G (R6G) can reach 10{sup −12} M, which is one order of magnitude lower than the AgNPs-PSi substrate and two order of magnitude lower than the GO-AgNPs-flat-Si substrate. The linear fit calibration curve with error bars is presented and the value of R{sup 2} of 612 and 773 cm{sup −1} can reach 0.986 and 0.980, respectively. The excellent linear response between the Raman intensity and R6G concentrations prove that the prepared GO-AgNPs-PSi substrates can serve as good SERS substrate for molecule detection. The maximum deviations of SERS intensities from 20 positions of the GO-AgNPs-PSi substrate are less than 8%, revealing the high homogeneity of the SERS substrate. The excellent homogeneity of the enhanced Raman signals can be attributed to well-separated pyramid arrays of PSi, the uniform morphology of AgNPs and multi-functions of GO layer. Besides, the uniform GO film can effectively protect AgNPs from oxidation and endow

  8. Fe2O3-Au hybrid nanoparticles for sensing applications via sers analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Searles, Emily [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-25

    Nanoparticles with large amounts of surface area and unique characteristics that are distinct from their bulk material provide an interesting application in the enhancement of inelastic scattering signal. Surface Enhanced Raman Spectroscopy (SERS) strives to increase the Raman scattering effect when chemical species of interest are in the close proximity of metallic nnaostructures. Gold nanoparticles of various shapes have been used for sensing applications via SERS as they demonstrate the greatest effect of plasmonic behavior in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. Multifunctional iron oxide-gold hybrid nanostructures have been created via solution chemistries and investigated for analyte detection of a model analyte. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies.

  9. Creating and Understanding Hybrid Interfaces of Multifunctional Composite Laminates for Extreme Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — Due to increasing needs for lightweight and multifunctional structures and materials that can operate at and sustain the extreme environment such as high temperature...

  10. Multifunctional carbon-coated magnetic sensing graphene oxide-cyclodextrin nanohybrid for potential cancer theranosis

    Science.gov (United States)

    Hsu, Yu-Hsuan; Hsieh, Hui-Ling; Viswanathan, Geetha; Voon, Siew Hui; Kue, Chin Siang; Saw, Wen Shang; Yeong, Chai Hong; Azlan, Che Ahmad; Imae, Toyoko; Kiew, Lik Voon; Lee, Hong Boon; Chung, Lip Yong

    2017-11-01

    We functionalized graphene oxide (GO) with cyclodextrin (CD) to increase the drug loading and cellular uptake of GO, and bound the GO-CD to carbon-coated iron nanoparticles (Fe@C) with superparamagnetic properties for potential magnetic-directed drug delivery and as a diagnostic agent. The GO-CD/Fe@C was loaded with an anticancer drug, doxorubicin (DOX), to form a multifunctional GO-CD/Fe@C/DOX nanohybrid. A cumulative increase in DOX loading was observed probably due to DOX adsorption to the graphitic domains in Fe@C and also to the GO-CD. In acidic pH that resembles the pH of the tumor environment, a higher amount of DOX was released from the GO-CD/Fe@C/DOX nanohybrid when compared to the amount released at physiological pH. The signal intensity and the contrast enhancement in magnetic resonance imaging of Fe@C decreased with its concentration. Besides, the cellular uptake of GO-CD/Fe@C/DOX nanohybrid was significantly higher by 2.5-fold than that of Fe@C/DOX in MDA-MB-231 human breast cancer model. The nanohybrids were internalized into the tumor cells via an energy-dependent process and localized mainly in the nuclei, where it exerts its cytotoxic effect, and some in the lysosomes and mitochondria. This has resulted in significant cytotoxicity in tumor cells treated with GO-CD/Fe@C/DOX. These findings highlight the potential use of multifunctional GO-CD/Fe@C nanohybrid for magnetic sensing anticancer drug delivery to tumor cells. [Figure not available: see fulltext.

  11. Hybrid functional band gap calculation of SnO6 containing perovskites and their derived structures

    International Nuclear Information System (INIS)

    Lee, Hyewon; Cheong, S.W.; Kim, Bog G.

    2015-01-01

    We have studied the properties of SnO 6 octahedra-containing perovskites and their derived structures using ab initio calculations with different density functionals. In order to predict the correct band gap of the materials, we have used B3LYP hybrid density functional, and the results of B3LYP were compared with those obtained using the local density approximation and generalized gradient approximation data. The calculations have been conducted for the orthorhombic ground state of the SnO 6 containing perovskites. We also have expended the hybrid density functional calculation to the ASnO 3 /A'SnO 3 system with different cation orderings. We propose an empirical relationship between the tolerance factor and the band gap of SnO 6 containing oxide materials based on first principles calculation. - Graphical abstract: (a) Structure of ASnO 3 for orthorhombic ground state. The green ball is A (Ba, Sr, Ca) cation and the small (red) ball on edge is oxygen. SnO 6 octahedrons are plotted as polyhedron. (b) Band gap of ASnO 3 as a function of the tolerance factor for different density functionals. The experimental values of the band gap are marked as green pentagons. (c) ASnO 3 /A'SnO 3 superlattices with two types cation arrangement: [001] layered structure and [111] rocksalt structure, respectively. (d) B3LYP hybrid functional band gaps of ASnO 3 , [001] ordered superlattices, and [111] ordered superlattices of ASnO 3 /A'SnO 3 as a function of the effective tolerance factor. Note the empirical linear relationship between the band gap and effective tolerance factor. - Highlights: • We report the hybrid functional band gap calculation of ASnO 3 and ASnO 3 /A'SnO 3 . • The band gap of ASnO 3 using B3LYP functional reproduces the experimental value. • We propose the linear relationship between the tolerance factor and the band gap

  12. Pressurization of Containment Vessels from Plutonium Oxide Contents

    International Nuclear Information System (INIS)

    Hensel, S.

    2012-01-01

    Transportation and storage of plutonium oxide is typically done using a convenience container to hold the oxide powder which is then placed inside a containment vessel. Intermediate containers which act as uncredited confinement barriers may also be used. The containment vessel is subject to an internal pressure due to several sources including; (1) plutonium oxide provides a heat source which raises the temperature of the gas space, (2) helium generation due to alpha decay of the plutonium, (3) hydrogen generation due to radiolysis of the water which has been adsorbed onto the plutonium oxide, and (4) degradation of plastic bags which may be used to bag out the convenience can from a glove box. The contributions of these sources are evaluated in a reasonably conservative manner.

  13. Multifunctional Graphene-based Hybrid Nanomaterials for Electrochemical Energy Storage.

    Science.gov (United States)

    Gupta, Sanju

    Intense research in renewable energy is stimulated by global demand of electric energy. Electrochemical energy storage and conversion systems namely, supercapacitors and batteries, represent the most efficient and environmentally benign technologies. Moreover, controlled nanoscaled architectures and surface chemistry of electrochemical electrodes is enabling emergent next-generation efficient devices approaching theoretical limit of energy and power densities. This talk will present our recent activities to advance design, development and deployment of composition, morphology and microstructure controlled two- and three-dimensional graphene-based hybrids architectures. They are chemically and molecularly bridged with carbon nanotubes, conducting polymers, transition metal oxides and mesoproprous silicon wrapped with graphene nanosheets as engineered electrodes for supercapacitor cathodes and battery anodes. They showed significant enhancement in terms of gravimetric specific capacitance, interfacial capacitance, charging-discharging rate and cyclability. We will also present fundamental physical-chemical interfacial processes (ion transfer kinetics and diffusion), imaging electroactive sites, and topography at electrode/electrolyte interface governing underlying electrochemical mechanisms via scanning electrochemical microscopy. KY NSF EPSCoR.

  14. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    Science.gov (United States)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  15. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    International Nuclear Information System (INIS)

    Predoi, D.; Ciobanu, C.S.; Radu, M.; Costache, M.; Dinischiotu, A.; Popescu, C.; Axente, E.; Mihailescu, I.N.; Gyorgy, E.

    2012-01-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: ► Hybrid, dextran-iron oxide nanoparticles and thin films. ► Laser immobilization. ► Biocompatibility of dextran-iron oxide nanoparticles.

  16. A highly bioactive poly (amido amine)/70S30C bioactive glass hybrid with photoluminescent and antimicrobial properties for bone regeneration.

    Science.gov (United States)

    Akbari Dourbash, Fakhraddin; Alizadeh, Parvin; Nazari, Shahram; Farasat, Alireza

    2017-09-01

    The field of tissue engineering constantly calls for novel biomaterials that possess intrinsically multifunctional properties such as bioactivity, bioimaging ability and antibacterial properties. In this paper, poly (amido amine) generation 5/bioactive glass inorganic-organic hybrids have been developed through direct hybridization by 3-glycidoxypropyltrimethoxysilane (GPTMS) as coupling agent. Results indicated that the degree of covalent coupling by GPTMS and the weight percent of inorganic and organic constituents highly influence hybrids properties. It was found that nanoscale integration of inorganic and organic chains by GPTMS significantly endows hybrids with high thermal stability. Furthermore, hybrids exhibited photoluminescent ability (emission 400-600nm and 700nm) without incorporating of any organic dyes or quantum dots. In addition, hydrophilicity of our hybrids indicated good cell/material interaction. The biological apatite was formed on the surface of calcium containing hybrids when soaked in simulated body fluid (SBF) for 1week. Hybrids also showed linear biodegradation behavior in SBF that could be controlled by the degree of covalent crosslinking which was indicative of their stable biodegradation ability. High inherent antibacterial properties against Staphylococcus aureus was also observed from poly (amido amine)/silica hybrids. No adverse cytotoxicity for human gingival fibroblast cell lines (HGF) was detected after 4days. It is envisaged that our novel multifunctional hybrid system will confer intriguing potential in advancing the field of tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Amorphous Mn oxide-ordered mesoporous carbon hybrids as a high performance electrode material for supercapacitors.

    Science.gov (United States)

    Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop

    2012-07-01

    A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.

  18. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  19. Organic-inorganic hybrid polyionic liquid based polyoxometalate as nano porous material for selective oxidation of sulfides

    Science.gov (United States)

    Rafiee, Ezzat; Shahebrahimi, Shabnam

    2017-07-01

    Organic-inorganic hybrid nano porous materials based on poly(ionic liquid)-polyoxometalate (PIL-POM) were reported. These hybrid materials were synthesized by the reaction of 4-vinyl pyridine with 1,3-propanesultone, followed by the polymerization and also sulfonate-functionalized cross-linked poly(4-vinylpyridine) and combining these polymers with H5PMo10V2O40 (PMo10V2). Activity of prepared PIL-PMo10V2 hybrids were investigated as catalysts for oxidation of sulfides with H2O2 as oxidant. For understanding catalytic activities of the PIL-PMo10V2 hybrids in oxidation of sulfides, effect of catalyst composition, substrate, and reaction conditions were studied. The results show that the PIL-PMo10V2 hybrids are active as selective heterogeneous catalysts for oxidation of sulfides and can be recovered and reused. The catalyst was characterized by FT-IR, TGA-DSC, XRD, SEM/EDX, BET, CV and zeta potential measurement. Also, average molecular weight of prepared catalysts were measured.

  20. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Predoi, D.; Ciobanu, C.S. [National Institute for Physics of Materials, P.O. Box MG 07, Bucharest, Magurele (Romania); Radu, M.; Costache, M.; Dinischiotu, A. [Molecular Biology Center, University of Bucharest, 91-95 Splaiul Independentei, 76201, Bucharest 5 (Romania); Popescu, C.; Axente, E.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Gyorgy, E., E-mail: egyorgy@cin2.es [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Consejo Superior de Investigaciones Cientificas, Centre d' Investigacions en Nanociencia i Nanotecnologia (CSIC-CIN2), Campus UAB, 08193 Bellaterra (Spain)

    2012-02-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: Black-Right-Pointing-Pointer Hybrid, dextran-iron oxide nanoparticles and thin films. Black-Right-Pointing-Pointer Laser immobilization. Black-Right-Pointing-Pointer Biocompatibility of dextran-iron oxide nanoparticles.

  1. Multifunctional ZnO Nanomaterials for Efficient Energy Conversion and Sensing

    Science.gov (United States)

    2015-12-02

    Final Report: Multifunctional ZnO Nanomaterials for Efficient Energy Conversion and Sensing The views, opinions and/or findings contained in this...ADDRESS. Fisk University 1000 17th Avenue North Nashville, TN 37208 -3045 31-May-2015 ABSTRACT Final Report: Multifunctional ZnO Nanomaterials for...and reproducible nanomaterials growth/synthesis with control of nanostructure size, shape, and functionality, in uniform functionalization with both

  2. Orally active multi-functional antioxidants are neuroprotective in a rat model of light-induced retinal damage.

    Directory of Open Access Journals (Sweden)

    James Randazzo

    Full Text Available Progression of age-related macular degeneration has been linked to iron dysregulation and oxidative stress that induce apoptosis of neural retinal cells. Since both antioxidants and chelating agents have been reported to reduce the progression of retinal lesions associated with AMD in experimental animals, the present study evaluates the ability of multi-functional antioxidants containing functional groups that can independently chelate redox metals and quench free radicals to protect the retina against light-induced retinal degeneration, a rat model of dry atrophic AMD.Proof of concept studies were conducted to evaluate the ability of 4-(5-hydroxypyrimidin-2-yl-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 4 and 4-(5-hydroxy-4,6-dimethoxypyrimidin-2-yl-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 8 to reduce retinal damage in 2-week dark adapted Wistar rats exposed to 1000 lx of light for 3 hours. Assessment of the oxidative stress markers 4- hydroxynonenal and nitrotyrosine modified proteins and Thioredoxin by ELISA and Western blots indicated that these compounds reduced the oxidative insult caused by light exposure. The beneficial antioxidant effects of these compounds in providing significant functional and structural protection were confirmed by electroretinography and quantitative histology of the retina.The present study suggests that multi-functional compounds may be effective candidates for preventive therapy of AMD.

  3. Flexural behavior of the fibrous cementitious composites (FCC) containing hybrid fibres

    Science.gov (United States)

    Ramli, Mahyuddin; Ban, Cheah Chee; Samsudin, Muhamad Fadli

    2018-02-01

    In this study, the flexural behavior of the fibrous cementitious composites containing hybrid fibers was investigated. Waste materials or by product materials such as pulverized fuel ash (PFA) and ground granulated blast-furnace slag (GGBS) was used as supplementary cement replacement. In addition, barchip and kenaf fiber will be used as additional materials for enhance the flexural behavior of cementitious composites. A seven mix design of fibrous cementitious composites containing hybrid fiber mortar were fabricated with PFA-GGBS as cement replacement at 50% with hybridization of barchip and kenaf fiber between 0.5% and 2.0% by total volume weight. The FCC with hybrid fibers mortar will be fabricated by using 50 × 50 × 50 mm, 40 × 40 × 160 mm and 350 × 125 × 30 mm steel mold for assessment of mechanical performances and flexural behavior characteristics. The flexural behavior and mechanical performance of the PFA-GGBS with hybrid fiber mortar block was assessed in terms of load deflection response, stress-strain response, crack development, compressive and flexural strength after water curing for 28 days. Moreover, the specimen HBK 1 and HBK 2 was observed equivalent or better in mechanical performance and flexural behavior as compared to control mortar.

  4. Hybrid functional band gap calculation of SnO{sub 6} containing perovskites and their derived structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyewon [Department of Physics, Pusan National University, Pusan 609-735, Republic of South Korea (Korea, Republic of); Cheong, S.W. [Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Kim, Bog G., E-mail: boggikim@pusan.ac.kr [Department of Physics, Pusan National University, Pusan 609-735, Republic of South Korea (Korea, Republic of)

    2015-08-15

    We have studied the properties of SnO{sub 6} octahedra-containing perovskites and their derived structures using ab initio calculations with different density functionals. In order to predict the correct band gap of the materials, we have used B3LYP hybrid density functional, and the results of B3LYP were compared with those obtained using the local density approximation and generalized gradient approximation data. The calculations have been conducted for the orthorhombic ground state of the SnO{sub 6} containing perovskites. We also have expended the hybrid density functional calculation to the ASnO{sub 3}/A'SnO{sub 3} system with different cation orderings. We propose an empirical relationship between the tolerance factor and the band gap of SnO{sub 6} containing oxide materials based on first principles calculation. - Graphical abstract: (a) Structure of ASnO{sub 3} for orthorhombic ground state. The green ball is A (Ba, Sr, Ca) cation and the small (red) ball on edge is oxygen. SnO{sub 6} octahedrons are plotted as polyhedron. (b) Band gap of ASnO{sub 3} as a function of the tolerance factor for different density functionals. The experimental values of the band gap are marked as green pentagons. (c) ASnO{sub 3}/A'SnO{sub 3} superlattices with two types cation arrangement: [001] layered structure and [111] rocksalt structure, respectively. (d) B3LYP hybrid functional band gaps of ASnO{sub 3}, [001] ordered superlattices, and [111] ordered superlattices of ASnO{sub 3}/A'SnO{sub 3} as a function of the effective tolerance factor. Note the empirical linear relationship between the band gap and effective tolerance factor. - Highlights: • We report the hybrid functional band gap calculation of ASnO{sub 3} and ASnO{sub 3}/A'SnO{sub 3}. • The band gap of ASnO{sub 3} using B3LYP functional reproduces the experimental value. • We propose the linear relationship between the tolerance factor and the band gap.

  5. Polar octahedral rotations: A path to new multifunctional materials

    International Nuclear Information System (INIS)

    Benedek, Nicole A.; Mulder, Andrew T.; Fennie, Craig J.

    2012-01-01

    Perovskite ABO 3 oxides display an amazing variety of phenomena that can be altered by subtle changes in the chemistry and internal structure, making them a favorite class of materials to explore the rational design of novel properties. Here we highlight a recent advance in which rotations of the BO 6 octahedra give rise to a novel form of ferroelectricity – hybrid improper ferroelectricity. Octahedral rotations also strongly influence other structural, magnetic, orbital, and electronic degrees of freedom in perovskites and related materials. Octahedral rotation-driven ferroelectricity consequently has the potential to robustly control emergent phenomena with an applied electric field. The concept of ‘functional’ octahedral rotations is introduced and the challenges for materials chemistry and the possibilities for new rotation-driven phenomena in multifunctional materials are explored. - Graphical abstract: A 3 B 2 O 7 and (A/A′)B 2 O 6 are two types of layered perovskites in which octahedral rotations induce ferroelectricity. Highlights: ► Recent progress on achieving ferroelectricity from rotations of the BO 6 octahedra in ABO 3 perovskite oxides is reviewed. ► The atomic scale layering of Pnma perovskites in two different ways leads to alternative structure realizations. ► The concept of ‘functional’ octahedral rotations is introduced as a path to electric-field control of emergent phenomena.

  6. Multifunctional Shielding and Self-Healing HybridSil Smart Composites for Space, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary multifunctional, super lightweight, self-healing and radiation shielding carbon fiber reinforced polymer (CFRP) composites as a...

  7. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    Science.gov (United States)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  8. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Hu Y

    2017-11-01

    Full Text Available Yan Hu,1 Lei Ke,2 Hao Chen,1 Ma Zhuo,1 Xinzhou Yang,1 Dan Zhao,1 Suying Zeng,1 Xincai Xiao1 1Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities, 2Department of Medicinal Chemistry, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China Abstract: To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs, which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. Keywords: multifunctional, membrane-controlled, natural materials, mesoporous silica nanoparticles, targeted drug delivery

  9. Multifunctional bioactive and improving the performance durability nanocoatings for finishing PET/CO woven fabrics by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, Dorota, E-mail: dkowalczyk@iw.lodz.pl; Brzeziński, Stefan; Kamińska, Irena

    2015-11-15

    The paper presents the results of studies on multifunctional thin-coatings of textiles, simultaneously imparting to them bioactive properties in relations to bacteria and fungi as well as an increased abrasion resistance and anti-pilling effect with the use of modified hybrid materials produced by the sol–gel method from two precursors: (3-glycidoxypropyl)trimethoxysilane (GPTMS) and aluminum isopropoxide (ALIPO). The sol obtained was modified with bioactive particles in the form of nanopowder of metallic silver and copper alloy (Ag/Cu). Al{sub 2}O{sub 3}/SiO{sub 2} sol containing nanoparticles of Ag/Cu alloy was deposited on a polyester/cotton blend woven fabric (PET/CO 67/33) by the padding method. After drying and curing process, a thin and elastic bioactive silica coating was obtained on the fabric fibers surfaces. The fabrics with deposited nanocoatings were characterized by very good bioactive properties and increased resistance to abrasion and formation of pilling. - Highlights: • Multifunctional thin coating layer was prepared on the fabric using sol–gel method. • Modification of the hybrid Al{sub 2}O{sub 3}/SiO{sub 2} sol by Ag/Cu alloy nanoparticles. • Bioactive fabric created by deposition of Al{sub 2}O{sub 3}/SiO{sub 2} sol with Ag/Cu. • 30% increase the abrasion resistance of the thin coating fabric.

  10. Tire containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A tire, tire lining or inner tube, containing a polymer composite, made of at least one rubber and/or at least one elastomer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g.

  11. Enhanced photocatalytic performance of ZnO nanostructures by electrochemical hybridization with graphene oxide

    Science.gov (United States)

    Pruna, A.; Wu, Z.; Zapien, J. A.; Li, Y. Y.; Ruotolo, A.

    2018-05-01

    Synthesis of zinc oxide (ZnO) nanostructures is reported by electrochemical deposition from an aqueous electrolyte in presence of graphene oxide (GO) with varying oxidation degree. The properties of hybrids were investigated by scanning electron microscopy, X-ray diffraction, Raman, Fourier-Transform Infrared and X-ray photoelectron spectroscopy techniques and photocatalytic measurements. The results indicated the electrodeposition of ZnO in presence of GO with increased oxygen content led to marked differences in the morphology while Raman measurements indicated an increased defect level both in the ZnO and the electrochemically reduced GO (ErGO) within the hybrids. The decrease in C/O atomic ratio of GO (from 0.79 to 0.71) employed for the electrodeposition of ZnO resulted in an increase in photocatalytic efficiency for methylene blue degradation under UV irradiation from 4-folds to 10-folds with respect to non-hybridized ZnO. The observed synergetic effect of cathodic deposition potential and oxygen content in GO towards improving the photocatalytic activity of immobilized ZnO is expected to contribute to further development of more effective deposition approaches for the preparation of high performance hybrid nanostructures.

  12. W-containing oxide layers obtained on aluminum and titanium by PEO as catalysts in thiophene oxidation

    Science.gov (United States)

    Rudnev, V. S.; Lukiyanchuk, I. V.; Vasilyeva, M. S.; Morozova, V. P.; Zelikman, V. M.; Tarkhanova, I. G.

    2017-11-01

    W-containing oxide layers fabricated on titanium and aluminum alloys by Plasma electrolytic oxidation (PEO) have been tested in the reaction of the peroxide oxidation of thiophene. Samples with two types of coatings have been investigated. Coatings I contained tungsten oxide in the matrix and on the surface of amorphous silica-titania or silica-alumina layers, while coatings II comprised crystalline WO3 and/or Al2(WO4)3. Aluminum-supported catalyst containing a smallest amount of transition metals in the form of tungsten oxides and manganese oxides in low oxidation levels showed high activity and stability.

  13. Multifunctional Efficiency: Extending the Concept of Atom Economy to Functional Nanomaterials.

    Science.gov (United States)

    Freund, Ralph; Lächelt, Ulrich; Gruber, Tobias; Rühle, Bastian; Wuttke, Stefan

    2018-03-27

    Green chemistry, in particular, the principle of atom economy, has defined new criteria for the efficient and sustainable production of synthetic compounds. In complex nanomaterials, the number of embedded functional entities and the energy expenditure of the assembly process represent additional compound-associated parameters that can be evaluated from an economic viewpoint. In this Perspective, we extend the principle of atom economy to the study and characterization of multifunctionality in nanocarriers, which we define as "multifunctional efficiency". This concept focuses on the design of highly active nanomaterials by maximizing integrated functional building units while minimizing inactive components. Furthermore, synthetic strategies aim to minimize the number of steps and unique reagents required to make multifunctional nanocarriers. The ultimate goal is to synthesize a nanocarrier that is highly specialized but practical and simple to make. Owing to straightforward crystal engineering, metal-organic framework (MOF) nanoparticles are an excellent example to illustrate the idea behind this concept and have the potential to emerge as next-generation drug delivery systems. Here, we highlight examples showing how the combination of the properties of MOFs ( e.g., their organic-inorganic hybrid nature, high surface area, and biodegradability) and induced systematic modifications and functionalizations of the MOF's scaffold itself lead to a nanocarrier with high multifunctional efficiency.

  14. Amine–mixed oxide hybrid materials for carbon dioxide adsorption from CO2/H2 mixture

    Science.gov (United States)

    Ravi, Navin; Aishah Anuar, Siti; Yusuf, Nur Yusra Mt; Isahak, Wan Nor Roslam Wan; Shahbudin Masdar, Mohd

    2018-05-01

    Bio-hydrogen mainly contains hydrogen and high level of carbon dioxide (CO2). High concentration of CO2 lead to a limitation especially in fuel cell application. In this study, the amine-mixed oxide hybrid materials for CO2 separation from bio-hydrogen model (50% CO2:50% H2) have been studied. Fourier-transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) characterizations showed that the amine–mixed oxide hybrid materials successfully adsorbed CO2 physically with no chemical adsorption evidence. The dry gas of CO2/H2 mixture adsorbed physically on amine–CuO–MgO hybrid material. No carbonates were detected after several times of adsorption, which indicated the good recyclability of adsorbents. The adsorbent system of diethanolamine (DEA)/15% CuO–75% MgO showed the highest CO2 adsorption capacity of 21.2 wt% due to the presence of polar substance on MgO surface, which can adsorb CO2 at ambient condition. The alcohol group of DEA can enhance the CO2 solubility on the adsorbent surface. In the 20% CuO–50% MgO adsorbent system, DEA as amine type showed a high CO2 adsorption of 19.4 wt%. The 10% amine loading system showed that the DEA adsorption system provided high CO2 adsorption. The BET analysis confirmed that a high amine loading contributed to the decrease in CO2 adsorption due to the low surface area of the adsorbent system.

  15. Separation medium containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  16. General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2018-02-09

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Catalytic oxidant scavenging by selenium-containing compounds

    DEFF Research Database (Denmark)

    Carroll, Luke; Pattison, David I; Fu, Shanlin

    2017-01-01

    Myeloperoxidase produces strong oxidants during the immune response to destroy invading pathogens. However, these oxidants can also cause tissue damage, which contributes to the development of numerous inflammatory diseases. Selenium containing compounds, including selenomethionine (SeMet) and 1,...

  18. Synthesis and oxidation of some azole-containing thioethers

    Directory of Open Access Journals (Sweden)

    Andrei S. Potapov

    2011-11-01

    Full Text Available Pyrazole and benzotriazole-containing thioethers, namely 1,5-bis(3,5-dimethylpyrazol-1-yl-3-thiapentane, 1,8-bis(3,5-dimethylpyrazol-1-yl-3,6-dithiaoctane and 1,3-bis(1,2,3-benzotriazol-1-yl-2-thiapropane were prepared and fully characterized. Oxidation of the pyrazole-containing thioether by hydrogen peroxide proceeds selectively to provide a sulfoxide or sulfone, depending on the amount of oxidant used. Oxidation of the benzotriazole derivative by hydrogen peroxide is not selective, and sulfoxide and sulfone form concurrently. Selenium dioxide-catalyzed oxidation of benzotriazole thioether by H2O2, however, proceeds selectively and yields sulfoxide only.

  19. Enhancement of ethanol oxidation at Pt and PtRu nanoparticles dispersed over hybrid zirconia-rhodium supports

    Science.gov (United States)

    Rutkowska, Iwona A.; Koster, Margaretta D.; Blanchard, Gary J.; Kulesza, Pawel J.

    2014-12-01

    A catalytic material for electrooxidation of ethanol that utilizes PtRu nanoparticles dispersed over thin films of rhodium-free and rhodium-containing zirconia (ZrO2) supports is described here. The enhancement of electrocatalytic activity (particularly in the potential range as low as 0.25-0.5 V vs. RHE), that has been achieved by dispersing PtRu nanoparticles (loading, 100 μg cm-2) over the hybrid Rh-ZrO2 support composed of nanostructured zirconia and metallic rhodium particles, is clearly evident from comparison of the respective voltammetric and chronoamperometric current densities recorded at room temperature (22 °C) in 0.5 mol dm-3 H2SO4 containing 0.5 mol dm-3 ethanol. Porous ZrO2 nanostructures, that provide a large population of hydroxyl groups in acidic medium in the vicinity of PtRu sites, are expected to facilitate the ruthenium-induced removal of passivating CO adsorbates from platinum, as is apparent from the diagnostic experiments with a small organic molecule such as methanol. Although Rh itself does not show directly any activity toward ethanol oxidation, the metal is expected to facilitate C-C bond splitting in C2H5OH. It has also been found during parallel voltammetric and chronoamperometric measurements that the hybrid Rh-ZrO2 support increases activity of the platinum component itself toward ethanol oxidation in the low potential range.

  20. Electrografting of N’,N’-dimethylphenothiazin-5-ium-3,7-diamine (Azure A) diazonium salt forming electrocatalytic organic films on gold or graphene oxide gold hybrid electrodes

    International Nuclear Information System (INIS)

    Gómez-Anquela, C.; Revenga-Parra, M.; Abad, J.M.; Marín, A. García; Pau, J.L.; Pariente, F.; Piqueras, J.; Lorenzo, E.

    2014-01-01

    Electroactive films containing redox active phenothiazine moieties are covalently bound onto gold and graphene oxide gold hybrid electrodes, using reductive redox grafting of N’,N’-dimethylphenothiazin-5-ium-3,7-diamine (Azure A) diazonium salt. The grafting procedure is based on continuous voltammetric potential sweep of solutions containing the phenothiazine diazonium salt previously generated in situ. Control of the film thickness, electroactivity and stability can easily be exerted through appropriate choice of the concentration and number of potential scans performed. Cyclic Voltammetry, Electrochemical Quartz Crystal Microbalance (EQCM) and Spectroscopic Ellipsometry are used to characterize the growth process as well as the viscoelastic properties of the resulting stable electrografted films. The electron transfer reactions through the films are mediated by the presence of the Azure A redox moieties, which show a quasi-reversible electrochemical response and exhibit a potent electrocatalytic effect toward the oxidation of NADH. This electrocatalytic model has been used to compare the properties of Azure A electrografted films generated on gold electrodes with those obtained on hybrid electrodes composed by graphene oxide modified gold electrodes

  1. Multifunctional hybrid materials for combined photo and chemotherapy of cancer.

    Science.gov (United States)

    Botella, Pablo; Ortega, Ilida; Quesada, Manuel; Madrigal, Roque F; Muniesa, Carlos; Fimia, Antonio; Fernández, Eduardo; Corma, Avelino

    2012-08-21

    Combined chemo and photothermal therapy in in vitro testing has been achieved by means of multifunctional nanoparticles formed by plasmonic gold nanoclusters with a protecting shell of porous silica that contains an antitumor drug. We propose a therapeutic nanoplatform that associates the optical activity of small gold nanoparticles aggregates with the cytotoxic activity of 20(S)-camptothecin simultaneously released for the efficient destruction of cancer cells. For this purpose, a method was used for the controlled assembly of gold nanoparticles into stable clusters with a tailored absorption cross-section in the vis/NIR spectrum, which involves aggregation in alkaline medium of 15 nm diameter gold colloids protected with a thin silica layer. Clusters were further encapsulated in an ordered homogeneous mesoporous silica coating that provides biocompatibility and stability in physiological fluids. After internalization in 42-MG-BA human glioma cells, these protected gold nanoclusters were able to produce effective photothermolysis under femtosecond pulse laser irradiation of 790 nm. Cell death occurred by combination of a thermal mechanism and mechanical disruption of the membrane cell due to induced generation of micrometer-scale bubbles by vaporizing the water inside the channels of the mesoporous silica coating. Moreover, the incorporation of 20(S)-camptothecin within the pores of the external shell, which was released during the process, provoked significant cell death increase. This therapeutic model could be of interest for application in the treatment and suppression of non-solid tumors.

  2. A facile route to porous beta-gallium oxide nanowires-reduced graphene oxide hybrids with enhanced photocatalytic efficiency

    International Nuclear Information System (INIS)

    Xu, X.; Lei, M.; Huang, K.; Liang, C.; Xu, J.C.; Shangguan, Z.C.; Yuan, Q.X.; Ma, L.H.; Du, Y.X.; Fan, D.Y.; Yang, H.J.; Wang, Y.G.; Tang, W.H.

    2015-01-01

    Highlights: • A facile route was developed to fabricate porous β-Ga 2 O 3 NWs-rGO hybrids. • Supercritical water can act as an efficient reductant to situ-reduce GO into RGO. • The Ga 2 O 3 NWs attach on the surface of RGO through a strong coupling forces. • The photocatalytic performance of the hybrids can be obviously improved. - Abstract: A facile route was developed to fabricate porous beta-gallium oxide nanowires (β-Ga 2 O 3 NWs)-reduced graphene oxide (rGO) hybrids using β-Ga 2 O 3 NWs and graphene oxide (GO) as raw materials. The characterization results indicate that supercritical water can act as an efficient reductant to situ-reduce GO into rGO, and porous β-Ga 2 O 3 NWs can further attach on the surface of as-reduced rGO through a strong coupling forces between the β-Ga 2 O 3 NWs and rGO. The photocatalytic performance of the hybrids can be obviously improved (about 74%) for the decomposition of methylene blue (MB) solution after coupling with 1 wt% rGO compared with the pure β-Ga 2 O 3 NWs. The enhanced photocatalytic activity can be attributed to the synergistic effect of extended optical absorption band, the enrichment of MB molecular on the rGO and the valid inhibition of recombination of photo-generated electron–hole pairs induced by the strong coupling interaction between rGO nanosheets and porous β-Ga 2 O 3 NWs

  3. Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

    Directory of Open Access Journals (Sweden)

    Arpita Jana

    2017-03-01

    Full Text Available Single layer graphite, known as graphene, is an important material because of its unique two-dimensional structure, high conductivity, excellent electron mobility and high surface area. To explore the more prospective properties of graphene, graphene hybrids have been synthesised, where graphene has been integrated with other important nanoparticles (NPs. These graphene–NP hybrid structures are particularly interesting because after hybridisation they not only display the individual properties of graphene and the NPs, but also they exhibit further synergistic properties. Reduced graphene oxide (rGO, a graphene-like material, can be easily prepared by reduction of graphene oxide (GO and therefore offers the possibility to fabricate a large variety of graphene–transition metal oxide (TMO NP hybrids. These hybrid materials are promising alternatives to reduce the drawbacks of using only TMO NPs in various applications, such as anode materials in lithium ion batteries (LIBs, sensors, photocatalysts, removal of organic pollutants, etc. Recent studies have shown that a single graphene sheet (GS has extraordinary electronic transport properties. One possible route to connecting those properties for application in electronics would be to prepare graphene-wrapped TMO NPs. In this critical review, we discuss the development of graphene–TMO hybrids with the detailed account of their synthesis. In addition, attention is given to the wide range of applications. This review covers the details of graphene–TMO hybrid materials and ends with a summary where an outlook on future perspectives to improve the properties of the hybrid materials in view of applications are outlined.

  4. Multifunctional ZnO interfaces with hierarchical micro- and nanostructures: bio-inspiration from the compound eyes of butterflies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sha; Yang, Yefeng; Jin, Yizheng; Huang, Jingyun; Zhao, Binghui; Ye, Zhizhen [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Hangzhou (China)

    2010-07-15

    Multifunctional zinc oxide (ZnO) interfaces were fabricated by utilizing the technique of low-temperature metal-organic chemical vapor deposition (MOCVD). The ZnO interfacial material exhibit antiwetting, antireflectance, and photonic properties derived from the unique hierarchical micro- and nanostructures of the compound eye of the butterflies. We demonstrate that the fabrication of the multifunctional interfaces by using biotemplates can be applied to other materials, such as Pt. Our study provides an excellent example to obtain multifunctional interfaces by learning from nature. (orig.)

  5. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen; Didas, Stephanie A.; Jones, Christopher W.

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams

  6. Graphene oxide chemically decorated with hybrid Ag-Ru/chitosan nanoparticles: fabrication and properties

    OpenAIRE

    Veerapandian, Murugan; Neethirajan, Suresh

    2015-01-01

    Hybridization of distinct materials into a single nanoplatform is relevant to advance material’s properties for functional application such as biosensor platform. We report the synthesis and characterization of nanosheets of graphene oxide decorated with hybrid nanoparticles of silver-ruthenium bipyridine complex (Ag@[Ru(bpy)3]2+) core and chitosan shell. Hybrid nanoparticles were first obtained through a sequential wet-chemical approach using in situ reduction, electrostatic and coordination...

  7. Experimental Study of the Swirling Oxidizer Flow in HTPB/N2O Hybrid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Heydari

    2017-01-01

    Full Text Available Effects of swirling oxidizer flow on the performance of a HTPB/N2O Hybrid rocket motor were studied. A hybrid propulsion laboratory has been developed, to characterize internal ballistics characteristics of swirl flow hybrid motors and to define the operating parameters, like fuel regression rate, specific impulse, and characteristics velocity and combustion efficiency. Primitive variables, like pressure, thrust, temperature, and the oxidizer mass flow rate, were logged. A modular motor with 70 mm outer diameter and variable chamber length is designed for experimental analysis. The injector module has four tangential injectors and one axial injector. Liquid nitrous oxide (N2O as an oxidizer is injected at the head of combustion chamber into the motor. The feed system uses pressurized air as the pressurant. Two sets of tests have been performed. Some tests with axial and tangential oxidizer injection and a test with axial oxidizer injection were done. The test results show that the fuel grain regression rate has been improved by applying tangential oxidizer injection at the head of the motor. Besides, it was seen that combustion efficiency of motors with the swirl flow was about 10 percent more than motors with axial flow.

  8. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  9. Thermodynamic analysis of SOFC (solid oxide fuel cell) - Stirling hybrid plants using alternative fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated...... to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes...

  10. Facile Synthesis of Mesocrystalline SnO2 Nanorods on Reduced Graphene Oxide Sheets: An Appealing Multifunctional Affinity Probe for Sequential Enrichment of Endogenous Peptides and Phosphopeptides.

    Science.gov (United States)

    Ma, Wen; Zhang, Feng; Li, Liping; Chen, Shuai; Qi, Limin; Liu, Huwei; Bai, Yu

    2016-12-28

    A novel multifunctional composite comprising mesocrystalline SnO 2 nanorods (NRs) vertically aligned on reduced graphene oxide (rGO) sheets was synthesized and developed for sequential capture of endogenous peptides and phosphopeptides. With the hydrophobicity of rGO and high affinity of SnO 2 nanorods, sequential enrichment of endogenous peptides and phosphopeptides could be easily achieved through a modulation of elution buffer. With this multifunctional nanomaterial, 36 peptides were observed from diluted bovine serum albumin (BSA) tryptic digest and 4 phosphopeptides could be selectively captured from β-casein digest. The detection limit of tryptic digest of β-casein was low to 4 × 10 -10 M, and the selectivity was up to 1:500 (molar ratio of β-casein and BSA digest). The effectiveness and robustness of rGO-SnO 2 NRs in a complex biological system was also confirmed by using human serum as a real sample. Our work is promising for small peptide enrichment and identification especially in complicated biological sample preparation, which also opens a new perspective in the design of multifunctional affinity probes for proteome or peptidome.

  11. Computationally Probing the Performance of Hybrid, Heterogeneous, and Homogeneous Iridium-Based Catalysts for Water Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    García-Melchor, Max [SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford CA (United States); Vilella, Laia [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST),Tarragona (Spain); Departament de Quimica, Universitat Autonoma de Barcelona, Barcelona (Spain); López, Núria [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona (Spain); Vojvodic, Aleksandra [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park CA (United States)

    2016-04-29

    An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity. Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.

  12. Hybrid laser arc welding of a used fuel container

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, C., E-mail: cboyle@nwmo.ca [Nuclear Waste Management Organization, Toronto, ON (Canada); Martel, P. [Novika Solutions, La Pocatiere, QC (Canada)

    2015-07-01

    The Nuclear Waste Management Organization (NWMO) has designed a novel Used Fuel Container (UFC) optimized for CANDU used nuclear fuel. The Mark II container is constructed of nuclear grade pipe for the body and capped with hemi-spherical heads. The head-to-shell joint fit-up features an integral backing designed for external pressure, eliminating the need for a full penetration closure weld. The NWMO and Novika Solutions have developed a partial penetration, single pass Hybrid Laser Arc Weld (HLAW) closure welding process requiring no post-weld heat treatment. This paper will discuss the joint design, HLAW process, associated welding equipment, and prototype container fabrication. (author)

  13. Hybrid laser arc welding of a used fuel container

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, C. [Nuclear Waste Management Organization (NWMO), Toronto, Ontario (Canada); Martel, P. [Novika Solutions, La Pocatiere, Quebec (Canada)

    2015-09-15

    The Nuclear Waste Management Organization (NWMO) has designed a novel Used Fuel Container (UFC) optimized for CANDU used nuclear fuel. The Mark II container is constructed of nuclear grade pipe for the body and capped with hemi-spherical heads. The head-to-shell joint fit-up features an integral backing designed for external pressure, eliminating the need for a full penetration closure weld. The NWMO and Novika Solutions have developed a partial penetration, single pass Hybrid Laser Axe Weld (HLAW) closure welding process requiring no post-weld heat treatment. This paper will discuss the joint design, HLAW process, associated welding equipment, and prototype container fabrication. (author)

  14. Redox reaction between graphene oxide and In powder to prepare In2O3/reduced graphene oxide hybrids for supercapacitors

    Science.gov (United States)

    Xu, Xiaoyang; Wu, Tao; Xia, Fengling; Li, Yi; Zhang, Congcong; Zhang, Lei; Chen, Mingxi; Li, Xichuan; Zhang, Li; Liu, Yu; Gao, Jianping

    2014-11-01

    A facile and quick route for the chemical reduction of graphene oxide (GO) using In powder as a reductant has been established. The reduction of GO by In powder is traced by UV-visible absorption spectroscopy, and the obtained reduced graphene oxide (rGO) is analyzed. The In3+ ions produced during the reaction between the GO and the In powder are chemically transformed to In2O3 and then form In2O3/rGO hybrids. The In2O3/rGO hybrids are used as electrode materials and their electrochemical performance are studied using cyclic voltammetry and galvanostatic charge/discharge. The In2O3/rGO hybrids demonstrate excellent electrochemical performance and their highest specific capacitance is 178.8 F g-1 which is much higher than that of either In2O3 or rGO. In addition, the In2O3/rGO hybrids are also very stable.

  15. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles

    Science.gov (United States)

    Baek, Seonmi; Singh, Rajendra K.; Khanal, Dipesh; Patel, Kapil D.; Lee, Eun-Jung; Leong, Kam W.; Chrzanowski, Wojciech; Kim, Hae-Won

    2015-08-01

    Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.

  16. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids.

    Science.gov (United States)

    Liénard, Marjorie A; Araripe, Luciana O; Hartl, Daniel L

    2016-07-19

    Crosses between closely related animal species often result in male hybrids that are sterile, and the molecular and functional basis of genetic factors for hybrid male sterility is of great interest. Here, we report a molecular and functional analysis of HMS1, a region of 9.2 kb in chromosome 3 of Drosophila mauritiana, which results in virtually complete hybrid male sterility when homozygous in the genetic background of sibling species Drosophila simulans. The HMS1 region contains two strong candidate genes for the genetic incompatibility, agt and Taf1 Both encode unrelated DNA-binding proteins, agt for an alkyl-cysteine-S-alkyltransferase and Taf1 for a subunit of transcription factor TFIID that serves as a multifunctional transcriptional regulator. The contribution of each gene to hybrid male sterility was assessed by means of germ-line transformation, with constructs containing complete agt and Taf1 genomic sequences as well as various chimeric constructs. Both agt and Taf1 contribute about equally to HMS1 hybrid male sterility. Transgenes containing either locus rescue sterility in about one-half of the males, and among fertile males the number of offspring is in the normal range. This finding suggests compensatory proliferation of the rescued, nondysfunctional germ cells. Results with chimeric transgenes imply that the hybrid incompatibilities result from interactions among nucleotide differences residing along both agt and Taf1 Our results challenge a number of preliminary generalizations about the molecular and functional basis of hybrid male sterility, and strongly reinforce the role of DNA-binding proteins as a class of genes contributing to the maintenance of postzygotic reproductive isolation.

  17. Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated. Simulations of the proposed system were conducted using different fuels, which should facilitate the use of a variety of fuels depending on availability. Here, the results for natural gas (NG), ammonia, di-methyl ether (DME), methanol and ethanol are presented and analyzed. The system behavior is further investigated by comparing the effects of key factors, such as the utilization factor and the operating conditions under which these fuels are used. Moreover, the effect of using a methanator on the plant efficiency is also studied. The combined system improves the overall electrical efficiency relative to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes. Additionally, heat is also produced to heat the family home when necessary. - Highlights: • Integrating a solid oxide fuel with a Stirling engine • Design of multi-fuel hybrid plants • Plants running on alternative fuels; natural gas, methanol, ethanol, DME and ammonia • Thermodynamic analysis of hybrid SOFC–Stirling engine plants

  18. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles.

    Science.gov (United States)

    He, Hongkun; Gao, Chao

    2010-11-01

    The amazing properties of graphene are triggering extensive interests of both scientists and engineers, whereas how to fully utilize the unique attributes of graphene to construct novel graphene-based composites with tailor-made, integrated functions remains to be a challenge. Here, we report a facile approach to multifunctional iron oxide nanoparticle-attached graphene nanosheets (graphene@Fe(3)O(4)) which show the integrated properties of strong supraparamagnetism, electrical conductivity, highly chemical reactivity, good solubility, and excellent processability. The synthesis method is efficient, scalable, green, and controllable and has the feature of reduction of graphene oxide and formation of Fe(3)O(4) nanoparticles in one step. When the feed ratios are adjusted, the average diameter of Fe(3)O(4) nanoparticles (1.2-6.3 nm), the coverage density of Fe(3)O(4) nanoparticles on graphene nanosheets (5.3-57.9%), and the saturated magnetization of graphene@Fe(3)O(4) (0.5-44.1 emu/g) can be controlled readily. Because of the good solubility of the as-prepared graphene@Fe(3)O(4), highly flexible and multifunctional films composed of polyurethane and a high content of graphene@Fe(3)O(4) (up to 60 wt %) were fabricated by the solution-processing technique. The graphene@Fe(3)O(4) hybrid sheets showed electrical conductivity of 0.7 S/m and can be aligned into a layered-stacking pattern in an external magnetic field. The versatile graphene@Fe(3)O(4) nanosheets hold great promise in a wide range of fields, including magnetic resonance imaging, electromagnetic interference shielding, microwave absorbing, and so forth.

  19. Multifunctional stannum oxide compact bilayer modified by europium and erbium respectively doped ytterbium fluoride for high-performance dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Yue, Jingyi; Xiao, Yaoming; Li, Yanping; Han, Gaoyi

    2017-01-01

    Graphical abstract: Multifunctional SnO 2 compact bilayer respectively modified by YbF 3 :Eu 3+ (SYEu) and YbF 3 :Er 3+ (SYEr) demonstrates three functions: 1) reducing the recombination rate of electron-hole pairs, 2) improving the utilization of sunlight, and 3) enhancing the long-term stability of the photovoltaic device. Display Omitted -- Highlights: •Multifunctional SYEu/SYEr compact bilayer is designed and fabricated. •The compact bilayer exhibits a reduced electron recombination rate. •The compact bilayer shows enhanced UV and IR light response via light-conversions. •The double layer has no significant influence on arising quenching effect. -- Abstract: Multifunctional stannum oxide compact bilayer modified by europium and erbium respectively doped ytterbium fluoride (SYEu/SYEr) is designed and prepared by a convenient and low-cost spin-coating approach for dye-sensitized solar cell. The most important three functions of the compact bilayer are reducing the recombination rate of electrons as a barrier layer, enlarging the utilization of sunlight as a luminescence material both with down- and up- conversions, and enhancing the long-term stability of the device as a defender of the dye. Besides, the construction of double layer with down- and up- conversion functions has no significant influence on giving rise to quenching effect. Furthermore, these findings offer potential applications for photovoltaic device with a wide range response of sunlight via the variation in rare-earth species and cell structures.

  20. A facile route to porous beta-gallium oxide nanowires-reduced graphene oxide hybrids with enhanced photocatalytic efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Lei, M., E-mail: minglei@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Huang, K.; Liang, C.; Xu, J.C.; Shangguan, Z.C. [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Yuan, Q.X. [Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015 (China); Ma, L.H. [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Du, Y.X., E-mail: duyinxiao@zzia.edu.cn [Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015 (China); Fan, D.Y.; Yang, H.J.; Wang, Y.G.; Tang, W.H. [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2015-02-25

    Highlights: • A facile route was developed to fabricate porous β-Ga{sub 2}O{sub 3} NWs-rGO hybrids. • Supercritical water can act as an efficient reductant to situ-reduce GO into RGO. • The Ga{sub 2}O{sub 3} NWs attach on the surface of RGO through a strong coupling forces. • The photocatalytic performance of the hybrids can be obviously improved. - Abstract: A facile route was developed to fabricate porous beta-gallium oxide nanowires (β-Ga{sub 2}O{sub 3} NWs)-reduced graphene oxide (rGO) hybrids using β-Ga{sub 2}O{sub 3} NWs and graphene oxide (GO) as raw materials. The characterization results indicate that supercritical water can act as an efficient reductant to situ-reduce GO into rGO, and porous β-Ga{sub 2}O{sub 3} NWs can further attach on the surface of as-reduced rGO through a strong coupling forces between the β-Ga{sub 2}O{sub 3} NWs and rGO. The photocatalytic performance of the hybrids can be obviously improved (about 74%) for the decomposition of methylene blue (MB) solution after coupling with 1 wt% rGO compared with the pure β-Ga{sub 2}O{sub 3} NWs. The enhanced photocatalytic activity can be attributed to the synergistic effect of extended optical absorption band, the enrichment of MB molecular on the rGO and the valid inhibition of recombination of photo-generated electron–hole pairs induced by the strong coupling interaction between rGO nanosheets and porous β-Ga{sub 2}O{sub 3} NWs.

  1. Raman Spectra of Luminescent Graphene Oxide (GO-Phosphor Hybrid Nanoscrolls

    Directory of Open Access Journals (Sweden)

    Janardhanan. R. Rani

    2015-12-01

    Full Text Available Graphene oxide (GO-phosphor hybrid nanoscrolls were synthesized using a simple chemical method. The GO-phosphor ratio was varied to find the optimum ratio for enhanced optical characteristics of the hybrid. A scanning electron microscope analysis revealed that synthesized GO scrolls achieved a length of over 20 μm with interior cavities. The GO-phosphor hybrid is extensively analyzed using Raman spectroscopy, suggesting that various Raman combination modes are activated with the appearance of a low-frequency radial breathing-like mode (RBLM of the type observed in carbon nanotubes. All of the synthesized GO-phosphor hybrids exhibit an intense luminescent emission around 540 nm along with a broad emission at approximately 400 nm, with the intensity ratio varying with the GO-phosphor ratio. The photoluminescence emissions were gauged using Commission Internationale d'Eclairage (CIE coordinates and at an optimum ratio. The coordinates shift to the white region of the color spectra. Our study suggests that the GO-phosphor hybrid nanoscrolls are suitable candidates for light-emitting applications.

  2. Inorganic-organic hybrid polymers for food packaging

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2015-09-01

    Full Text Available packaging application. Numerous hybrid inorganic-organic materials have been developed using low temperature sol-gel chemistry, which enables the tailoring of the nanostructure and the resulting material is often multifunctional, offering a wide range...

  3. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Kiyotaka Sasagawa

    2010-12-01

    Full Text Available In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors’ architecture on the basis of the type of electric measurement or imaging functionalities.

  4. Adsorption mechanism of magnetically separable Fe_3O_4/graphene oxide hybrids

    International Nuclear Information System (INIS)

    Ouyang, Ke; Zhu, Chuanhe; Zhao, Ya; Wang, Leichao; Xie, Shan; Wang, Qun

    2015-01-01

    Graphical abstract: A recyclable Fe_3O_4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polylol approach and exhibited an effective adsorption of BPA in aqueous solution. - Highlights: • Magnetically separable Fe_3O_4/GO hybrids were synthesized via a facile one-pot polylol approach. • The Fe_3O_4/GO hybrid could be easily recovered and met the need of magnetic separation, exhibiting excellent reproducibility and reusability. • The hybrids showed excellent adsorption ability for bisphenol A in aqueous solution. • The effect of pH value, temperature and coexisting ions on the adsorption was studied. • π–π interactions were postulated to be the primary mechanisms of adsorption of BPA on Fe_3O_4/GO hybrids. - Abstract: A reclaimable Fe_3O_4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (q_m) of the Fe_3O_4/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π–π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe_3O_4/GO hybrid. Therefore, the Fe_3O_4/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  5. Multifunctional centers in rural areas

    DEFF Research Database (Denmark)

    Svendsen, Gunnar Lind Haase

    2009-01-01

    abandoned. One outcome has been closings of schools in remote rural areas. This evidently contributes to exacerbate depopulation in these areas. To stop this tendency, we need new models for high-quality, cost effective public services in rural areas as those as we find in Denmark. This chapter introduces...... ideological roots in history pointing at 19th c. national civic movements and an early 20th c. transnational Garden City movement within urban planning as crucial. Drawing on contemporary case studies of multifunctional centers in Holland and Denmark, I then suggest that public and private donors should...... invest in multifunctional centers in which the local public school is the dynamo. This in order to increase local levels of social as well as human capital. Ideally, such centers should contain both public services such as school, library and health care, private enterprises as hairdressers and banks...

  6. Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer's disease.

    Science.gov (United States)

    Zhu, Jie; Yang, Hongyu; Chen, Yao; Lin, Hongzhi; Li, Qi; Mo, Jun; Bian, Yaoyao; Pei, Yuqiong; Sun, Haopeng

    2018-12-01

    The cholinergic hypothesis has long been a "polar star" in drug discovery for Alzheimer's disease (AD), resulting in many small molecules and biological drug candidates. Most of the drugs marketed for AD are cholinergic. Herein, we report our efforts in the discovery of cholinesterases inhibitors (ChEIs) as multi-target-directed ligands. A series of tacrine-ferulic acid hybrids have been designed and synthesised. All these compounds showed potent acetyl-(AChE) and butyryl cholinesterase(BuChE) inhibition. Among them, the optimal compound 10g, was the most potent inhibitor against AChE (electrophorus electricus (eeAChE) half maximal inhibitory concentration (IC 50 ) = 37.02 nM), it was also a strong inhibitor against BuChE (equine serum (eqBuChE) IC 50  = 101.40 nM). Besides, it inhibited amyloid β-protein self-aggregation by 65.49% at 25 μM. In subsequent in vivo scopolamine-induced AD models, compound 10g obviously ameliorated the cognition impairment and showed preliminary safety in hepatotoxicity evaluation. These data suggest compound 10g as a promising multifunctional agent in the drug discovery process against AD.

  7. The oxidation of acid azo dye AY 36 by a manganese oxide containing mine waste

    International Nuclear Information System (INIS)

    Clarke, Catherine E.; Kielar, Filip; Johnson, Karen L.

    2013-01-01

    Highlights: ► This study looks at the oxidative breakdown of the amine containing dye acid yellow 36 by a Mn oxide containing mine waste. ► The oxidation proceeds by successive one electron transfers between the dye molecule and the Mn oxide minerals. ► The initial decolorization of the dye is rapid, but does not involve the cleavage of the azo bond. -- Abstract: The oxidative breakdown of acid azo dye acid yellow 36 (AY 36) by a Mn oxide containing mine tailings is demonstrated. The oxidation reaction is pH dependent with the rate of decolorization increasing with decreasing pH. The oxidation reaction mechanism is initiated at the amino moiety and proceeds via successive, one electron transfers from the dye to the Mn oxide minerals. The reaction pathway involves the formation of a number of colorless intermediate products, some of which hydrolyze in a Mn oxide-independent step. Decolorization of the dye is rapid and is observed before the cleavage of the azo-bond, which is a slower process. The terminal oxidation products were observed to be p-benzoquinone and 3-hydroxybenzenesulfonate. The reaction order of the initial decolorization was determined to be pseudo fractional order with respect to pH and pseudo first order with respect to dye concentration and Mn tailings’ surface area

  8. A hybrid monolithic column based on boronate-functionalized graphene oxide nanosheets for online specific enrichment of glycoproteins.

    Science.gov (United States)

    Zhou, Chanyuan; Chen, Xiaoman; Du, Zhuo; Li, Gongke; Xiao, Xiaohua; Cai, Zongwei

    2017-05-19

    A hybrid monolithic column based on aminophenylboronic acid (APBA)-functionalized graphene oxide (GO) has been developed and used for selective enrichment of glycoproteins. The APBA/GO composites were homogeneously incorporated into a polymer monolithic column with the help of oligomer matrix and followed by in situ polymerization. The effect of dispersion of APBA/GO composites in the polymerization mixture on the performance of the monolithic column was explored in detail. The presence of graphene oxide not only enlarged the BET surface area from 6.3m 2 /g to 169.4m 2 /g, but also provided abundant boronic acid moieties for glycoprotein extraction, which improved the enrichment selectivity and efficiency for glycoproteins. The APBA/GO hybrid monolithic column was incorporated into a sequential injection system, which facilitated online extraction of proteins. Combining the superior properties of extraordinary surface area of GO and the affinity interaction of APBA to glycoproteins, the APBA/GO hybrid monolithic column showed higher enrichment factors for glycoproteins than other proteins without cis-diol-containing groups. Also, under comparable or even shorter processing time and without the addition of any organic solvent, it showed higher binding capacity toward glycoproteins compared with the conventional boronate affinity monolithic column. The practical applicability of this system was demonstrated by processing of egg white samples for extraction of ovalbumin and ovotransferrin, and satisfactory results were obtained by assay with SDS-PAGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The modification of nanocomposite hybrid polymer surfaces by exposure to oxygen containing plasmas

    Science.gov (United States)

    Figueiredo, Ashley; Zimmermann, Katherine; Augustine, Brian; Hughes, Chris; Chusuei, Charles

    2006-11-01

    The wetting properties of the surfaces of the nanocomposite hybrid polymer poly[(propylmethacryl-heptaisobutyl- polyhedral oligomeric silsequioxane)-co-(methylmethacrylate)] (POSS-PMMA)has been studied before and after exposure to plasmas containing oxygen. The contact angle of water droplets on the surface showed a substantial decrease after plasma exposure indicating an increase in the hydrophilicity of the surface. A model was developed in which the plasma preferentially removed organic material including both the PMMA backbone and isobutyl groups from the corners of the POSS cages leaving behind a surface characterized by the silicon oxide-like POSS material. Measurements of surface concentrations of oxygen, silicon, and carbon by x-ray photoelectron spectroscopy (XPS) showed an increase in the amount of oxygen and silicon compared to carbon and the appropriate chemical shifts were observed in the XPS data to support the model of Si-O enrichment on the surface. Variable angle spectroscopic ellipsometry (VASE) and atomic force microscopy (AFM) measurements also supported the model and these results will be presented.

  10. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Science.gov (United States)

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  11. Preparation of Biopolymeric Nanofiber Containing Silica and Antibiotic

    Directory of Open Access Journals (Sweden)

    A. Bagheri Pebdeni

    2016-01-01

    Full Text Available The biocompatible and biodegradable polymer nanofiber with high potential for anti-bacterial coating are used for: multi-functional membranes, tissue engineering, wound dressings, drug delivery, artificial organs, vascular grafts and etc. Electrospinning nanofiber made of scaffolding due to characteristics such as high surface to volume ratio, high porosity and very fine pores are used for a wide range of applications. In this study, polymer composite nanofiber Silica/chitosan/poly (ethylene oxide /cefepime antibiotic synthesis and antibacterial properties will be discussed. The optimum conditions for preparation of electrospun nanofiber were: voltage; 21 kV, feed rate; 0.5 mL/h, nozzle-collector distance; 10 cm, and chitosan/poly(ethylene oxide weight ratio 90:10 and the volume ratio of chitosan/silica is 70:30.  The antibacterial activity of composite scaffolds were tested by agar plate method by two type bacteria including Escherichia coli and Staphylococcus aureus. With the addition of the silica to chitosan, the hybrid was more biodegradable and improves the mechanical properties of biopolymer.

  12. Isotope exchange in oxide-containing catalyst

    Science.gov (United States)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  13. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration

    Science.gov (United States)

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-06-01

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self

  14. Advances in Process Intensification through Multifunctional Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    O' Hern, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center; Evans, Lindsay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Miller, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Cooper, Marcia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energetic Components Realization Center; Torczynski, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pena, Donovan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gill, Walt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  15. Assessment of multifunctional bio fertilizers on tomato plants cultivated under a fertigation system

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Ahmad Nazrul Abdul Wahid; Khairuddin Abdul Rahim

    2012-01-01

    Malaysian Nuclear Agency (Nuclear Malaysia) has developed a series of multifunctional bio organic fertilizers, namely, MULTIFUNCTIONAL BIOFERT PG and PA and MF-BIOPELLET, in an effort to reduce dependency on chemical fertilizer for crop production. These products contain indigenous microorganisms that have desired characteristics, which include plant growth promoting, phosphate solubilising, antagonistic towards bacterial wilt disease and enhancing N 2 -fixing activity. These products were formulated as liquid inoculants, and introduced into a fertigation system in an effort to reduce usage of chemical fertilizers. A greenhouse trial was conducted to evaluate the effectiveness of multifunctional bio fertilizers on tomato plants grown under a fertigation system. Multifunctional bio fertilizer products were applied singly and in combination with different rates of NPK in the fertigation system. Fresh and dry weights of tomato plants were determined. Application of multifunctional bio fertilizer combined with 20 g NPK resulted in significantly higher fresh and dry weights as compared to other treatments. (author)

  16. Automotive body panel containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  17. Hybrid ternary rice paper-manganese oxide-carbon nanotube nanocomposites for flexible supercapacitors

    Science.gov (United States)

    Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan

    2013-10-01

    Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two

  18. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method

    Science.gov (United States)

    Cao, Jiliang; Wang, Chaoxia

    2017-05-01

    Multifunctional silk fabrics with electrical conductive, anti-ultraviolet and water repellent were successfully prepared by surface modification with graphene oxide (GO). The yellow-brown GO deposited on the surface of silk fabric was converted into graphitic black reduced graphene (RGO) by sodium hydrosulfite. The surface properties of silk fabrics were changed by repeatedly RGO coating process, which have been proved by SEM and XPS. The SEM results showed that the RGO sheets were successive form a continuously thin film on the surface of silk fabrics, and the deposition of GO or RGO also can be proved by XPS. The electrical conductivity was tested by electrical surface resistance value of the silk fabric, the surface resistance decreased with increasing of RGO surface modification times, and a low surface resistance value reached to 3.24 KΩ cm-1 after 9 times of modification, indicating the silk obtained excellent conductivity. The UPF value of one time GO modification silk fabric (silk-1RGO) was enhanced significantly to 24.45 in comparison to 10.40 of original silk. The contact angle of RGO coating silk samples was all above of 120°. The durability of RGO coated silk fabrics was tested by laundering. The electrical surface resistance of silk-4RGO (65.74 KΩ cm-1), silk-6RGO (15.54 KΩ cm-1) and silk-8RGO (3.86 KΩ cm-1) fabrics was up to 86.82, 22.30 and 6.57 KΩ cm-1 after 10 times of standard washing, respectively. The UPF value, contact angle and color differences of RGO modified silk fabric slightly changed before and after 10 times of standard washing. Therefore, the washing fastness of electric conduction, anti-ultraviolet and water repellent multifunctional silk fabrics was excellent.

  19. Plasmon-enhanced Solar Fuel Production with Gold-metal Oxide Hybrid Nanomaterials

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Law, Matt; Zhang, Jingdong

    , provide new catalytic routes and expands the scope of solar photocatalysis. We prepare metal oxide SNPs, gold PNPs and their hybrids through mild aqueous syntheses to develop efficient photocatalyst for solar fuel production. Focus is placed on the synergetic interplay between SNPs and PNPs, understanding...

  20. Dual-functional Pt-on-Pd supported on reduced graphene oxide hybrids: peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic.

    Science.gov (United States)

    Zhang, Xiahong; Wu, Genghuang; Cai, Zhixiong; Chen, Xi

    2015-03-01

    In this study, a facile hydrothermal method was developed to synthesize Pt-on-Pd supported on reduced graphene oxide (Pt-on-Pd/RGO) hybrids. Because of the synergistic effect between Pt-on-Pd and RGO, the obtained Pt-on-Pd/RGO had superior peroxidase-mimic activities in H2O2 reduction and TMB oxidation. The reaction medium was optimized and a sensing approach for H2O2 was developed with a linear range from 0.98 to 130.7 μM of H2O2. In addition, the characteristic of electrocatalytic oxidation of methanol was investigated. The peak current density value, j(f), for the Pt-on-Pd/RGO hybrid (328 mA mg(Pt)(-1)) was about 1.85 fold higher than that of commercial Pt black (177 mA mg(Pt)(-1)) and, also, more durable electrocatalytic activity could be obtained. For the first time, the dual-functional Pt-on-Pd/RGO with peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic was reported. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Multifunctional polymeric nanoconstructs for biomedical applications (Conference Presentation)

    Science.gov (United States)

    Decuzzi, Paolo

    2016-09-01

    Multifunctional nanoconstructs are particle-based nano-scale systems designed for the `smart' delivery of therapeutic and imaging agents. The Laboratory of Nanotechnology for Precision Medicine at the Italian Institute of Technology synthesizes polymeric nanoconstructs with different sizes, ranging from a few tens of nanometers to a few microns; shapes, including spherical, cubical and discoidal; surface properties, with positive, negative, neutral coatings; and mechanical stiffness, varying from that of cells to rigid, inorganic materials, such as iron oxide. These are the 4S parameters - size, shape, surface, stiffness - which can be precisely tuned in the synthesis process enabling disease- and patient-specific designs of multifunctional nanoconstructs. In this lecture, the application of these nanoconstructs to the detection and treatment of cancer lesions and cardiovascular diseases, such as thrombosis and atherosclerosis, is discussed. The contribution of the 4S parameters in modulating nanoconstruct sequestration by the mononuclear phagocyte system, organ specific accumulation, and blood longevity is also critically presented. These polymeric nanoconstructs can be loaded with a variety of therapeutic payloads - anti-cancer molecules (docetaxel, paclitaxel, doxorubicin), anti-inflammatory molecules (curcumin, diclofenac, celecoxib) and small biologicals (peptides, siRNAs, miRNAs); and imaging agents - optical probes; Gd and iron oxide nanoparticles for MR imaging; and radio-isotopes for Nuclear Imaging.

  2. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite.

    Science.gov (United States)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV-visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (Ks) of GOx at the hybrid biocomposite was calculated to be 11.22s(-1). The higher Ks value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05-23.2mM. The limit of detection (LOD) was estimated to be 28μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. © 2013.

  3. The properties of protective oxide scales containing cerium on alloy 800H in oxidizing and oxidizing/sulphidizing environments

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; Fransen, T.; Geerdink, Bert; Gellings, P.J.; Stroosnijder, M.F.

    1991-01-01

    The corrosion protection of oxide scales formed by electrophoretic deposition in a cerium-containing sol on Alloy 800H, a 32Ni-20Cr steel, followed by firing in air at 1123 K was studied in oxidizing and mixed oxidizing/sulphidizing environments at elevated temperatures. In particular, the influence

  4. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    International Nuclear Information System (INIS)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-01

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  5. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang, E-mail: genghz@tjpu.edu.cn; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-15

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  6. Functional and Multifunctional Polymers: Materials for Smart Structures

    Science.gov (United States)

    Arnold, S.; Pratt, L. M.; Li, J.; Wuagaman, M.; Khan, I. M.

    1996-01-01

    The ultimate goal of the research in smart structures and smart materials is the development of a new generation of products/devices which will perform better than products/devices built from passive materials. There are a few examples of multilayer polymer systems which function as smart structures, e.g. a synthetic muscle which is a multilayer assembly of a poly(ethylene) layer, a gold layer, and a poly(pyrrole) layer immersed in a liquid electrolyte. Oxidation and reductions of the active pyrrole layer causes the assembly to reversibly deflect and mimic biological muscles. The drawback of such a setup is slow response times and the use of a liquid electrolyte. We have developed multifunctional polymers which will eliminate the use of a liquid electrolyte, and also because the functionalities of the polymers are within a few hundred angstroms, an improved response time to changes in the external field should be possible. Such multifunctional polymers may be classified as the futuristic 'smart materials.' These materials are composed of a number of different functionalities which work in a synergistic fashion to function as a device. The device performs on the application of an external field and such multifunctional polymers may be scientifically labeled as 'field responsive polymers.' Our group has undertaken a systematic approach to develop functional and multifunctional polymers capable of functioning as field responsive polymers. Our approach utilizes multicomponent polymer systems (block copolymers and graft copolymers), the strategy involves the preparation of block or graft copolymers where the functionalities are limited to different phases in a microphase separated system. Depending on the weight (or volume) fractions of each of the components, different microstructures are possible. And, because of the intimate contact between the functional components, an increase in the synergism between the functionalities may be observed. In this presentation, three

  7. Synthesis and characterization of multifunctional hybrid-polymeric nanoparticles for drug delivery and multimodal imaging of cancer

    Directory of Open Access Journals (Sweden)

    Tng DJH

    2015-09-01

    Full Text Available Danny Jian Hang Tng,1,* Peiyi Song,1,* Guimiao Lin,2,3,* Alana Mauluidy Soehartono,1 Guang Yang,1 Chengbin Yang,1 Feng Yin,1 Cher Heng Tan,4 Ken-Tye Yong1 1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore; 2The Engineering Lab of Synthetic Biology, 3Research Institute of Uropoiesis and Reproduction, School of Medicine, Shenzhen University, Shenzhen, People’s Republic of China; 4Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore *These authors contributed equally to this work Abstract: In this study, multifunctional hybrid-polymeric nanoparticles were prepared for the treatment of cultured multicellular tumor spheroids (MCTS of the PANC-1 and MIA PaCa-2 pancreatic carcinoma cell lines. To synthesize the hybrid-polymeric nanoparticles, the poly lactic-co-glycolic acid core of the particles was loaded with Rhodamine 6G dye and the chemotherapeutic agent, Paclitaxel, was incorporated into the outer phospholipid layer. The surface of the nanoparticles was coated with gadolinium chelates for magnetic resonance imaging applications. This engineered nanoparticle formulation was found to be suitable for use in guided imaging therapy. Specifically, we investigated the size-dependent therapeutic response and the uptake of nanoparticles that were 65 nm, 85 nm, and 110 nm in size in the MCTS of the two pancreatic cancer cell lines used. After 24 hours of treatment, the MCTS of both PANC-1 and MIA PaCa-2 cell lines showed an average increase in the uptake of 18.4% for both 65 nm and 85 nm nanoparticles and 24.8% for 110 nm nanoparticles. Furthermore, the studies on therapeutic effects showed that particle size had a slight influence on the overall effectiveness of the formulation. In the MCTS of the MIA PaCa-2 cell line, 65 nm nanoparticles were found to produce the greatest therapeutic effect, whereas 12.8% of cells were apoptotic of which 11.4% of cells were apoptotic for 85

  8. Radiolabelled multifunctional nanoparticles for targeted diagnostic and therapeutic applications in oncology

    International Nuclear Information System (INIS)

    Rangger, C.

    2013-01-01

    Nanoparticles, liposomes in particular, have gained great attention as easily engineerable nanoscale systems with distinct properties, offering an ideal platform for a variety of diagnostic and therapeutic applications. The aim of this PhD thesis was the design, synthesis as well as the in vitro and in vivo evaluation of several radiolabelled multifunctional liposomal nanoparticles for the targeted imaging of tumour cells and tumour-induced angiogenesis. Radiolabelling methods for different radionuclides were developed and the liposomes were functionalised with polyethylene glycol (PEG) to improve the pharmacokinetic profile. Targeting sequences such as the tripeptide Arg-Gly-Asp (RGD), the neuropeptide substance P (SP), the somatostatin analogue tyrosine-3-octreotide (TOC), and the vasoactive intestinal peptide (VIP) were tested for their applicability as tools for the targeted delivery of imaging agents. Finally, by the combination of two targeting sequences, namely RGD and SP, on one liposome multireceptor-targeting (hybrid-targeting) was investigated. These multifunctional vehicles were also functionalized with imaging labels for the detection and imaging of tumours by single photon emission computed tomography (SPECT), fluorescence microscopy as well as magnetic resonance (MR) imaging. The liposomes developed in this thesis showed multifunctional properties combining several imaging approaches with specific targeting for oncological applications. In vitro behaviour, e.g., receptor binding could be improved, resulting in optimised targeting shown both by the radiolabel and fluorescent label. However, the in vivo properties, especially the tumour targeting characteristics remained suboptimal, revealing the challenges of targeting approaches in nanoscience. Nonetheless, these results brought important insights for the development and optimisation of multifunctional nanocarriers. (author) [de

  9. Hybrid composite thin films composed of tin oxide nanoparticles and cellulose

    International Nuclear Information System (INIS)

    Mahadeva, Suresha K; Nayak, Jyoti; Kim, Jaehwan

    2013-01-01

    This paper reports the preparation and characterization of hybrid thin films consisting of tin oxide (SnO 2 ) nanoparticles and cellulose. SnO 2 nanoparticle loaded cellulose hybrid thin films were fabricated by a solution blending technique, using sodium dodecyl sulfate as a dispersion agent. Scanning and transmission electron microscopy studies revealed uniform dispersion of the SnO 2 nanoparticles in the cellulose matrix. Reduction in the crystalline melting transition temperature and tensile properties of cellulose was observed due to the SnO 2 nanoparticle loading. Potential application of these hybrid thin films as low cost, flexible and biodegradable humidity sensors is examined in terms of the change in electrical resistivity of the material exposed to a wide range of humidity as well as its response–recovery behavior. (paper)

  10. Hybrid inorganic-organic adsorbents Part 1: Synthesis and characterization of mesoporous zirconium titanate frameworks containing coordinating organic functionalities.

    Science.gov (United States)

    Griffith, Christopher S; De Los Reyes, Massey; Scales, Nicholas; Hanna, John V; Luca, Vittorio

    2010-12-01

    A series of functional hybrid inorganic-organic adsorbent materials have been prepared through postsynthetic grafting of mesoporous zirconium titanate xerogel powders using a range of synthesized and commercial mono-, bis-, and tris-phosphonic acids, many of which have never before been investigated for the preparation of hybrid phases. The hybrid materials have been characterized using thermogravimetric analysis, diffuse reflectance infrared (DRIFT) and 31P MAS NMR spectroscopic techniques and their adsorption properties studied using a 153Gd radiotracer. The highest level of surface functionalization (molecules/nm2) was observed for methylphosphonic acid (∼3 molecules/nm2). The level of functionalization decreased with an increase in the number of potential surface coordinating groups of the phosphonic acids. Spectral decomposition of the DRIFT and 31P MAS NMR spectra showed that each of the phosphonic acid molecules coordinated strongly to the metal oxide surface but that for the 1,1-bis-phosphonic acids and tris-phosphonic acids the coordination was highly variable resulting in a proportion of free or loosely coordinated phosphonic acid groups. Functionalization of a porous mixed metal oxide framework with the tris-methylenephosphonic acid (ATMP-ZrTi-0.33) resulted in a hybrid with the highest affinity for 153Gd3+ in nitric acid solutions across a wide range of acid concentrations. The ATMP-ZrTi-0.33 hybrid material extracted 153Gd3+ with a Kd value of 1×10(4) in 0.01 M HNO3 far exceeding that of the other hybrid phases. The unfunctionalized mesoporous mixed metal oxide had negligible affinity for Gd3+ (KdATMP-ZrTi-0.33 hybrid phase for Gd3+ has been determined to be about 0.005 mmol/g in 0.01 M HNO3. This behavior and that of the other hybrid phases suggests that the surface-bound ATMP ligand functions as a chelating ligand toward 153Gd3+ under these acidic conditions.

  11. Design of multifunctional nanoparticles for combined in-vivo imaging and advanced drug delivery

    Science.gov (United States)

    Leary, James F.

    2018-02-01

    Design of multifunctional nanoparticles for multimodal in-vivo imaging and advanced targeting to diseased single cells for massive parallel processing nanomedicine approaches requires careful overall design and a multilayered approach. Initial core materials can include non-toxic metals which not only serve as an x-ray contrast agent for CAT scan imaging, but can contain T1 or T2 contrast agents for MRI imaging. One choice is superparamagnetic iron oxide NPs which also allow for convenient magnetic manipulation during manufacturing but also for re-positioning inside the body and for single cell hyperthermia therapies. To permit real-time fluorescence-guided surgery, fluorescence molecules can be included. Advanced targeting can be achieved by attaching antibodies, peptides, aptamers, or other targeting molecules to the nanoparticle in a multilayered approach producing "programmable nanoparticles" whereby the "programming" means controlling a sequence of multi-step targeting methods. Addition of membrane permeating peptides can facilitate uptake by the cell. Addition of "stealth" molecules (e.g. PEG or chitosan) to the outer surfaces of the nanoparticles can permit greatly enhanced circulation times in-vivo which in turn lead to lower amounts of drug exposure to the patient which can reduce undesirable side effects. Nanoparticles with incomplete layers can be removed by affinity purification methods to minimize mistargeting events in-vivo. Nanoscale imaging of these manufactured, multifunctional nanoparticles can be achieved either directly through superresolution microscopy or indirectly through single nanoparticle zeta-sizing or x-ray correlation microscopy. Since these multifunctional nanoparticles are best analyzed by technologies permitting analysis in aqueous environments, superresolution microscopy is, in most cases, the preferred method.

  12. Hybrid chemical and nondestructive-analysis technique

    International Nuclear Information System (INIS)

    Hsue, S.T.; Marsh, S.F.; Marks, T.

    1982-01-01

    A hybrid chemical/NDA technique has been applied at the Los Alamos National Laboratory to the assay of plutonium in ion-exchange effluents. Typical effluent solutions contain low concentrations of plutonium and high concentrations of americium. A simple trioctylphosphine oxide (TOPO) separation can remove 99.9% of the americium. The organic phase that contains the separated plutonium can be accurately assayed by monitoring the uranium L x-ray intensities

  13. Multifunctional quantum dots and liposome complexes in drug delivery.

    Science.gov (United States)

    Wang, Qi; Chao, Yi-Min

    2017-09-03

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.

  14. Multifunctional quantum dots and liposome complexes in drug delivery

    Science.gov (United States)

    Wang, Qi; Chao, Yimin

    2018-01-01

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches. PMID:28866655

  15. Facile synthesis of aluminium doped zinc oxide-polyaniline hybrids for photoluminescence and enhanced visible-light assisted photo-degradation of organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India); Ghosh, Amrita; Mondal, Anup [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India); Kargupta, Kajari [Department of Chemical Engineering, Jadavpur University, Kolkata 700032, West Bengal (India); Ganguly, Saibal [Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17 B Bypass Road, Zuarinagar, Sancoale, Goa 403726 (India); Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India)

    2017-04-30

    Graphical abstract: The present work focuses on the synergistic effect of a novel hybrid hetero structure (n-type aluminum doped zinc oxide and p-type polyaniline), combining both sol-gel and in-situ oxidative polymerization method and studying its photoluminescence (PL), photocatalytic, electrochemical impedance spectroscopy (EIS), linear scan voltammetry (LSV) and photocurrent properties. - Highlights: • Aluminium doped zinc oxide-polyaniline (PAZ) hybrids were prepared by polymerization of aniline using aluminium doped zinc oxide nanorod templates. • The hybrids were used as visible light photocatalysts for methyl orange (MO) and rose bengal (RB) dye degradation. • First order rate constants of the photocatalytic process were evaluated as 1.77 × 10{sup −2} min{sup −1} and 2.61 × 10{sup −2} min{sup −1} for MO and RB dyes respectively. • Photoluminescence and electrochemical properties were in accord with the photocatalytic performance of the hybrid. - Abstract: The emergence of organic-inorganic photoactive materials has led to marked progress in the field of heterogeneous visible-light photocatalysis. Visible-light active aluminium doped zinc oxide-polyaniline (PAZ) hybrid was prepared employing in-situ oxidative polymerization of polyaniline (PANI) in the presence of aluminium doped zinc oxide (AlZnO) nanorods, synthesized via sol-gel route. The compositions, structural and optical properties of the synthesized hybrids were characterized. Among various samples, the 22 wt% aluminium doped zinc oxide-polyaniline (PAZ 3) hybrid show the best photocatalytic action for the degradation of methyl orange (MO) and rose bengal (RB) dyes under visible-light illumination, even after repeated use. The performance of the photocatalytic process was determined by the first order rate constant, 1.77 × 10{sup −2} min{sup −1} and 2.61 × 10{sup −2} min{sup −1} for MO and RB dyes, respectively. Scavenger test was used to determine the role of active

  16. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    International Nuclear Information System (INIS)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (K s ) of GOx at the hybrid biocomposite was calculated to be 11.22 s −1 . The higher K s value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination

  17. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming, E-mail: smchen78@ms15.hinet.net

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (K{sub s}) of GOx at the hybrid biocomposite was calculated to be 11.22 s{sup −1}. The higher K{sub s} value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination.

  18. Oxide nanomembrane hybrids with enhanced mechano- and thermo-sensitivity for semitransparent epidermal electronics.

    Science.gov (United States)

    Park, Minjoon; Do, Kyungsik; Kim, Jaemin; Son, Donghee; Koo, Ja Hoon; Park, Jinkyung; Song, Jun-Kyul; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2015-05-01

    Oxide nanomembrane hybrids with enhanced mechano- and thermo-sensitivity for semitransparent epidermal electronics are developed. The use of nanomaterials (single wall nanotubes and silver nanoparticles) embedded in the oxide nanomembranes significantly enhances mechanical and thermal sensitivities. These mechanical and thermal sensors are utilized in wheelchair control and hypothermia detection, which are useful for patients with strokes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Adsorption mechanism of magnetically separable Fe{sub 3}O{sub 4}/graphene oxide hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Ke [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Zhu, Chuanhe [Department of Civil, Construction and Environmental Engineering, Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Zhao, Ya; Wang, Leichao [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Xie, Shan, E-mail: wyuchemxs@126.com [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Wang, Qun, E-mail: qunwang@iastate.edu [Department of Civil, Construction and Environmental Engineering, Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States)

    2015-11-15

    Graphical abstract: A recyclable Fe{sub 3}O{sub 4}/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polylol approach and exhibited an effective adsorption of BPA in aqueous solution. - Highlights: • Magnetically separable Fe{sub 3}O{sub 4}/GO hybrids were synthesized via a facile one-pot polylol approach. • The Fe{sub 3}O{sub 4}/GO hybrid could be easily recovered and met the need of magnetic separation, exhibiting excellent reproducibility and reusability. • The hybrids showed excellent adsorption ability for bisphenol A in aqueous solution. • The effect of pH value, temperature and coexisting ions on the adsorption was studied. • π–π interactions were postulated to be the primary mechanisms of adsorption of BPA on Fe{sub 3}O{sub 4}/GO hybrids. - Abstract: A reclaimable Fe{sub 3}O{sub 4}/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (q{sub m}) of the Fe{sub 3}O{sub 4}/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π–π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe{sub 3}O{sub 4}/GO hybrid. Therefore, the Fe{sub 3}O{sub 4}/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  20. Oxidative Stability and Shelf Life of Foods Containing Oils and Fats

    DEFF Research Database (Denmark)

    and oils and fats-containing foods in the food and pet food industries. Discusses oxidative stability and shelf life of low-moisture (dry) food, including dry pet food. Discusses lipid co-oxidation with protein because a number of food products contain both lipids and proteins. Directed mainly toward......Oxidative Stability and Shelf Life of Foods Containing Oils and Fats focuses on food stability and shelf life, both important factors in the improvement and development of food products. This book, relevant for professionals in the food and pet food industries, presents an evaluation of methods...... for studies on the oxidative stability and shelf life of bulk oils/fats, fried oils and foods, food emulsions, dried foods, meat and meat products, and seafood in food and pet food. Focuses on the application of various evaluation methods to studies of oxidative stability and shelf life in oils and fats...

  1. Basic Principle of Advanced Oxidation Technology : Hybrid Technology Based on Ozone and Titania

    International Nuclear Information System (INIS)

    Widdi Usada; Agus Purwadi

    2007-01-01

    One of problems in health environment is organic liquid waste from many pollutant resources. Environmental friendly technology for degrading this waste is ozone which produced by plasma discharge technology, but its capability is limited. However, it is needed a new environmental friendly technology which has stronger capability. This new technology is so called advanced oxidation technology. Advanced oxidation technology is a hybrid of ozone, peroxide, UV light and photo catalyst. In this paper, it is introduced basic principle of hybrid of ozone and titania photo catalyst semiconductor. The capability of organic liquid degradation will be stronger because there is new radical which is produced by chemical reaction between electron-hole pair from photo catalyst titania and water or oxygen. This new radical then degrades this organic pollutant. This technology is used to degrade phenol. (author)

  2. Synthesis, Characterization And Modeling Of Functionally Graded Multifunctional Hybrid Composites For Extreme Environments

    Science.gov (United States)

    2017-04-04

    Conference on Advanced Computational Engineering and Experimenting(ACE-X2010) July 8-9, 2010, Hotel Concordia La Fayette, Paris, France. 4. J. N...Multifunctional and Functionally Graded Materials, Oct. 19-22, 2014, Taua Resort, SP, Brazil . 25. Reddy, J. N., “Non-classical Theories of Beams...Guest and Plenary Lecture, the Fourth International Symposium on Solid Mechanics - MecSol 2013, Porto Alegre, Rio Grande do Sul, Brazil , 18-19 April

  3. Durable zinc oxide-containing sorbents for coal gas desulfurization

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  4. Keggin type inorganic-organic hybrid material containing Mn(II) monosubstituted phosphotungstate and S-(+)-sec-butyl amine: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Ketan [Chemistry Department, Faculty of Science, M.S. University of Baroda, Vadodara 390 002 (India); Patel, Anjali, E-mail: aupatel_chem@yahoo.com [Chemistry Department, Faculty of Science, M.S. University of Baroda, Vadodara 390 002 (India)

    2012-02-15

    Graphical abstract: A new organic-inorganic hybrid material containing Keggin type manganese substituted phosphotungstate and S-(+)-sec-butyl amine was synthesized and systematically characterized. Highlights: Black-Right-Pointing-Pointer New hybrid material comprising Mn substituted phosphotungstate (PW{sub 11}Mn) and S-(+)-sec-butyl amine (SBA) was synthesized. Black-Right-Pointing-Pointer The spectral studies reveal the attachment of SBA to the PW{sub 11}Mn without any distortion of structure. Black-Right-Pointing-Pointer The synthesized material comprises chirality. Black-Right-Pointing-Pointer The synthesized hybrid material can be used as a heterogeneous catalyst for carrying out asymmetric synthesis. -- Abstract: A new inorganic-organic POM-based hybrid material comprising Keggin type mono manganese substituted phosphotungstate and enantiopure S-(+)-sec-butyl amine was synthesized in an aqueous media by simple ligand substitution method. The synthesized hybrid material was systematically characterized in solid as well as solution by various physicochemical techniques such as elemental analysis, TGA, UV-vis, FT-IR, ESR and multinuclear solution NMR ({sup 31}P, {sup 1}H, {sup 13}C). The presence of chirality in the synthesized material was confirmed by CD spectroscopy and polarimeter. The above study reveals the attachment of S-(+)-sec-butyl amine to Keggin type mono manganese substituted phosphotungstate through N {yields} Mn bond. It also indicates the retainment of Keggin unit and presence of chirality in the synthesized material. An attempt was made to use the synthesized material as a heterogeneous catalyst for carrying out aerobic asymmetric oxidation of styrene using molecular oxygen. The catalyst shows the potential of being used as a stable recyclable catalytic material after simple regeneration without significant loss in conversion.

  5. Multifunctional porphyrinic materials encapsulated into macronets with photo chemotherapeutic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ion, R. -M.; Fierascu, R. -C.; Dimitriu, I. [Valahia University, Materials Science Department, Targoviste (Romania)

    2008-07-01

    Supramolecidar chemistry is expected to keep a high developing advanced of molecular devices based on multifunctional materials. Porphyrins and their analogues should play a significant role as a consequence of their catalytic, electrocatalytic, photochemical and photoelectrochemical properties. Such molecular materials contain a high porosity with large cavities and galleries that can be functionalization yielding to a desired chirality and structure. The functionalization implies inserting into macrocydic cavity, followed by auto-assembling as columnar aggregates. The obtained cavities are used as host for different molecular guests. H and J-aggregates of some porphyrins are based on the intermolecular interactions of 3-5 Kcal/mol per porphyrin face. The columnar structure formed by porphyrins has a length of 5 to 27 porphyrin unities. In this paper we focused on our own strategy based on coordination chemistry for the design and build-up of supermolecules and supra molecular structures constituted by a porphyrin (TSPPJ and a new and revolutionary method for stabilizing porphyrins (as organic part), by their incapsulation into supports with controlled porosity as macronets (as inorganic parts), obtaining some hybrids materials. Included are also their properties and potential applications. Key words: porphyrins, macronets, photochemotherapy.

  6. Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2011-01-01

    Full Text Available Abstract Many methods have been reported to improving the photocatalytic efficiency of organic pollutant and their reliable applications. In this work, we propose a facile pathway to prepare three different types of magnetic iron oxides/TiO2 hybrid nanoparticles (NPs by seed-mediated method. The hybrid NPs are composed of spindle, hollow, and ultrafine iron oxide NPs as seeds and 3-aminopropyltriethyloxysilane as linker between the magnetic cores and TiO2 layers, respectively. The composite structure and the presence of the iron oxide and titania phase have been confirmed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra. The hybrid NPs show good magnetic response, which can get together under an external applied magnetic field and hence they should become promising magnetic recovery catalysts (MRCs. Photocatalytic ability examination of the magnetic hybrid NPs was carried out in methylene blue (MB solutions illuminated under Hg light in a photochemical reactor. About 50% to 60% of MB was decomposed in 90 min in the presence of magnetic hybrid NPs. The synthesized magnetic hybrid NPs display high photocatalytic efficiency and will find recoverable potential applications in cleaning polluted water with the help of magnetic separation.

  7. Soft solution synthesis and intense visible photoluminescence of lamellar zinc oxide hybrids

    International Nuclear Information System (INIS)

    Sağlam, Özge

    2013-01-01

    Graphical abstract: -- In this study, we demonstrate the synthesis of layered zinc oxide films intercalated with dodecyl sulphate ions by a simple soft solution process. The presence of potassium (K + ) and lithium (Li + ) ions in the precursor solution of layered zinc hydroxide resulted in lamellar hybrid zinc oxide films instead of layered zinc hydroxides. On the other hand, the addition of nickel phthalocyanine induces zinc hydroxide host layers which exhibit an intense blue emission. This is also promoted by K + and Li + ions

  8. A magnetic nanoparticle stabilized gas containing emulsion for multimodal imaging and triggered drug release.

    Science.gov (United States)

    Guo, Wei; Li, Diancheng; Zhu, Jia-an; Wei, Xiaohui; Men, Weiwei; Yin, Dazhi; Fan, Mingxia; Xu, Yuhong

    2014-06-01

    To develop a multimodal imaging guided and triggered drug delivery system based on a novel emulsion formulation composed of iron oxide nanoparticles, nanoscopic bubbles, and oil containing drugs. Iron oxide paramagnetic nanoparticles were synthesized and modified with surface conjugation of polyethylenimide (PEI) or Bovine Serum Albumin (BSA). Both particles were used to disperse and stabilize oil in water emulsions containing coumarin-6 as the model drug. Sulfur hexafluoride was introduced into the oil phase to form nanoscopic bubbles inside the emulsions. The resulted gas containing emulsions were evaluated for their magnetic resonance (MR) and ultrasound (US) imaging properties. The drug release profile triggered by ultrasound was also examined. We have successfully prepared the highly integrated multi-component emulsion system using the surface modified iron oxide nanoparticles to stabilize the interfaces. The resulted structure had distinctive MR and US imaging properties. Upon application of ultrasound waves, the gas containing emulsion would burst and encapsulated drug could be released. The integrated emulsion formulation was multifunctional with paramagnetic, sono-responsive and drug-carrying characteristics, which may have potential applications for disease diagnosis and imaging guided drug release.

  9. Multifunctional Nanotechnology Research

    Science.gov (United States)

    2016-03-01

    MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH MARCH 2016 INTERIM TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR...REPORT 3. DATES COVERED (From - To) JAN 2015 – JAN 2016 4. TITLE AND SUBTITLE MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH 5a. CONTRACT NUMBER IN-HOUSE...H. Yoon, and C. S. Hwang, “Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures.,” Nanotechnology , vol

  10. Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, 30, Lenin Avenue, 634500 Tomsk (Russian Federation); Khashirova, Svetlana Yu. [Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nal' chik, 360004 Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V.; Goncharenko, Alexander A. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation)

    2016-07-01

    Guanidine containing co-polymers grafted onto silica nanoparticles to form core-shell structure were prepared by sol-gel method in the presence of γ-Fe{sub 2}O{sub 3} nanoparticles. The morphological features for uncoated and coated silica particles have been characterized with scanning electron microscopy. The results show that the polymer coated silicas exhibit spherical morphology with rough polymeric surface covered by γ-Fe{sub 2}O{sub 3} nanoparticles. The grafting amount of guanidine containing co-polymers evaluated by thermogravimetric analysis was in the range from 17 to 30%. Then, the drug loading properties and cumulative release of silica hybrids modified with guanidine containing co-polymers were evaluated using molsidomine as a model drug. It was shown that after polymer grafting the loading content of molsidomine could reach up to 3.42 ± 0.21 and 2.34 ± 0.14 mg/g respectively. The maximum drug release of molsidomine is achieved at pH 1.6 (approximately 71–75% release at 37 °C), whereas at pH 7.4 drug release is lower (50.4–59.6% release at 37 °C). These results have an important implication that our magneto-controlled silica hybrids modified with guanidine containing co-polymers are promising as drug carriers with controlled behaviour under influence of magnetic field. - Highlights: • Polymer coated silica hybrids containing γ-Fe{sub 2}O{sub 3} were prepared via sol–gel method. • Polymer grafting influences pH-response and surface properties of final products. • Molsidomine as a model drug was effectively loaded into polymer coated silicas. • The drug loading depends on the nature of grafted polymer and its content.

  11. Photoconducting hybrid perovskite containing carbazole moiety as the organic layer: Fabrication and characterization

    International Nuclear Information System (INIS)

    Deng Meng; Wu Gang; Cheng Siyuan; Wang Mang; Borghs, Gustaaf; Chen Hongzheng

    2008-01-01

    PbCl 2 -based thin films of perovskite structure with hole-transporting carbazole derivatives as the organic layer were successfully prepared by spin-coating from dimethylformamide solution containing stoichiometric amounts of organic and inorganic moieties. The crystal structure and optical property of the hybrid perovskite were characterized by Fourier transform infrared (FT-IR) spectrum, X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL). FT-IR spectra confirmed the formation of organic-inorganic hybrid perovskite structure. UV-vis spectra of hybrid perovskite thin films exhibited a wide absorption band in ultraviolet region as well as a sharp peak at 330 nm characteristic of PbCl 2 -based layered perovskite. X-ray diffraction profiles indicated that the layered structure was oriented parallel to the silica glass slide plane. Meanwhile, double-layer photoreceptors of the hybrid perovskite were also fabricated, which showed the enhancement of photoconductivity by carbazole chromophore

  12. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    Science.gov (United States)

    Vinayan, B P; Ramaprabhu, S

    2013-06-07

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.

  13. A simplified computational fluid-dynamic approach to the oxidizer injector design in hybrid rockets

    Science.gov (United States)

    Di Martino, Giuseppe D.; Malgieri, Paolo; Carmicino, Carmine; Savino, Raffaele

    2016-12-01

    Fuel regression rate in hybrid rockets is non-negligibly affected by the oxidizer injection pattern. In this paper a simplified computational approach developed in an attempt to optimize the oxidizer injector design is discussed. Numerical simulations of the thermo-fluid-dynamic field in a hybrid rocket are carried out, with a commercial solver, to investigate into several injection configurations with the aim of increasing the fuel regression rate and minimizing the consumption unevenness, but still favoring the establishment of flow recirculation at the motor head end, which is generated with an axial nozzle injector and has been demonstrated to promote combustion stability, and both larger efficiency and regression rate. All the computations have been performed on the configuration of a lab-scale hybrid rocket motor available at the propulsion laboratory of the University of Naples with typical operating conditions. After a preliminary comparison between the two baseline limiting cases of an axial subsonic nozzle injector and a uniform injection through the prechamber, a parametric analysis has been carried out by varying the oxidizer jet flow divergence angle, as well as the grain port diameter and the oxidizer mass flux to study the effect of the flow divergence on heat transfer distribution over the fuel surface. Some experimental firing test data are presented, and, under the hypothesis that fuel regression rate and surface heat flux are proportional, the measured fuel consumption axial profiles are compared with the predicted surface heat flux showing fairly good agreement, which allowed validating the employed design approach. Finally an optimized injector design is proposed.

  14. Generic Automated Multi-function Finger Design

    Science.gov (United States)

    Honarpardaz, M.; Tarkian, M.; Sirkett, D.; Ölvander, J.; Feng, X.; Elf, J.; Sjögren, R.

    2016-11-01

    Multi-function fingers that are able to handle multiple workpieces are crucial in improvement of a robot workcell. Design automation of multi-function fingers is highly demanded by robot industries to overcome the current iterative, time consuming and complex manual design process. However, the existing approaches for the multi-function finger design automation are unable to entirely meet the robot industries’ need. This paper proposes a generic approach for design automation of multi-function fingers. The proposed approach completely automates the design process and requires no expert skill. In addition, this approach executes the design process much faster than the current manual process. To validate the approach, multi-function fingers are successfully designed for two case studies. Further, the results are discussed and benchmarked with existing approaches.

  15. Activity of molybdenum-containing oxide catalysts in the reaction of ethane oxidation

    International Nuclear Information System (INIS)

    Konovalov, V.I.; Ehpova, T.I.; Shchukin, V.P.; Averbukh, A.Ya.

    1977-01-01

    Investigation results concerning the catalytic activity of molybdenum-containing catalysts in ethane oxidation reaction are presented. It has been found that the greatest activity in the temperature range from 450 to 600 deg C is exhibited by cobalt-molybdenum catalyst; at 600 deg C bismuth-molybdenum catalyst is the most active. Nickel-molybdenum catalyst is selective and active with respect to ethylene. Iron- and manganese-molybdenum catalysts do not show high ethane oxidation rates and their selectivity is insignificant

  16. Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia?

    Science.gov (United States)

    Espinosa, Ana; Bugnet, Mathieu; Radtke, Guillaume; Neveu, Sophie; Botton, Gianluigi A.; Wilhelm, Claire; Abou-Hassan, Ali

    2015-11-01

    Multifunctional hybrid-design nanomaterials appear to be a promising route to meet the current therapeutics needs required for efficient cancer treatment. Herein, two efficient heat nano-generators were combined into a multifunctional single nanohybrid (a multi-core iron oxide nanoparticle optimized for magnetic hyperthermia, and a gold branched shell with tunable plasmonic properties in the NIR region, for photothermal therapy) which impressively enhanced heat generation, in suspension or in vivo in tumours, opening up exciting new therapeutic perspectives.Multifunctional hybrid-design nanomaterials appear to be a promising route to meet the current therapeutics needs required for efficient cancer treatment. Herein, two efficient heat nano-generators were combined into a multifunctional single nanohybrid (a multi-core iron oxide nanoparticle optimized for magnetic hyperthermia, and a gold branched shell with tunable plasmonic properties in the NIR region, for photothermal therapy) which impressively enhanced heat generation, in suspension or in vivo in tumours, opening up exciting new therapeutic perspectives. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06168g

  17. Dry oxidation behaviour of metallic containers during long term interim storages

    International Nuclear Information System (INIS)

    Desgranges, C.; Terlain, A.; Bertrand, N.; Gauvain, D.

    2004-01-01

    Low-alloyed steels or carbon steels are considered candidate materials for the fabrication of some nuclear waste package containers for long term interim storage. The containers are required to remain retrievable for centuries. One factor limiting their performance on this time scale is corrosion. The estimation of the metal thickness lost by dry oxidation over such long periods requires the construction of reliable models from short-time experimental data. Two complementary approaches for modelling dry oxidation have been considered. First, basic models following simple analytical laws from classical oxidation theories have been adjusted on the apparent activation energy of oxidation deduced from experimental data. Their extrapolation to long oxidation periods confirms that the expected damage due to dry oxidation could be small. Second, a numerical model able to take in consideration several mechanisms controlling the oxide scale growth is under development. Several preliminary results are presented. (authors)

  18. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration.

    Science.gov (United States)

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-07-07

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.

  19. Structural effect of monomer type on properties of copolyimides and copolyimide-silica hybrid materials

    Directory of Open Access Journals (Sweden)

    Kizilkaya Canan

    2015-01-01

    Full Text Available In this work, the effect of two different diamine monomers, containing phosphine oxide, on thermal, mechanical and morphological properties of copolyimides and their hybrid materials was investigated. Gas separation properties of the synthesized copolyimides were also analysed. Two different diamine monomers with phosphine oxide were bis(3-aminophenyl phenylphosphine oxide (BAPPO and bis(3-aminophenoxy-4-phenyl phenylphosphine oxide (m-BAPPO. In the synthesis of copolyimides 3,3’-diamino-diphenyl sulfone (DDS was also used as the diamine, as well as 2,2’-bis(3,4-dicarboxyphenylhexafluoropropane dianhydride (6FDA. Copolyimide films were prepared by thermal imidization. Hybrid materials containing 5 % SiO2 were synthesised further by sol-gel technique. The Fourier-transform infrared spectroscopy (FTIR, Nuclear magnetic resonance spectroscopy (NMR confirmed the expected structure. Dynamic mechanical analysis (DMA demonstrated that m-BAPPO based copolyimides had lower glass transition temperatures (Tg than BAPPO based copolyimides. m-BAPPO containing copolyimide without silica shifted the thermal decomposition temperature to a higher value. The moduli and strength values of BAPPO diamine containing copolyimide and its hybrid were higher than those of m-BAPPO containing materials. The contact angle measurements showed the hydrophobicity. Scanning electron microscope (SEM analysis exhibited the silica particles dispersion in the copolyimides. These copolyimides may be used in the coating industry. The CO2 permeability and the permselectivity were the highest among the other values in this study, when m-BAPPO containing copolyimide in the absence of silica was used. The gas permeabilities obtained from this work were in this decreasing order: PCO2 > PO2 > PN2.

  20. Oxidative stability of Liposomes composed of docosahexaenoic acid-containing phospholipids

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Andresen, Thomas Lars; Jørgensen, Kent

    2007-01-01

    Oxidative stability of liposomes made of (Docosahexaenoic acid) DHA-containing phosphatidylcholine (PC) was examined during preparation and storage. After preparation of the liposomes, the concentration of primary (conjugated dienes) and secondary oxidation products (Thiobarbituric acid...

  1. Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection of nitric oxide

    DEFF Research Database (Denmark)

    Liu, Shuiping; Gu, Tianxun; Fu, Jiajia

    2014-01-01

    In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates...... as NO donors, respectively. The nanospheres have spherical outline with dimension of ~ 127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching...

  2. Photoconductivity enhancement and charge transport properties in ruthenium-containing block copolymer/carbon nanotube hybrids.

    Science.gov (United States)

    Lo, Kin Cheung; Hau, King In; Chan, Wai Kin

    2018-04-05

    Functional polymer/carbon nanotube (CNT) hybrid materials can serve as a good model for light harvesting systems based on CNTs. This paper presents the synthesis of block copolymer/CNT hybrids and the characterization of their photocurrent responses by both experimental and computational approaches. A series of functional diblock copolymers was synthesized by reversible addition-fragmentation chain transfer polymerizations for the dispersion and functionalization of CNTs. The block copolymers contain photosensitizing ruthenium complexes and modified pyrene-based anchoring units. The photocurrent responses of the polymer/CNT hybrids were measured by photoconductive atomic force microscopy (PCAFM), from which the experimental data were analyzed by vigorous statistical models. The difference in photocurrent response among different hybrids was correlated to the conformations of the hybrids, which were elucidated by molecular dynamics simulations, and the electronic properties of polymers. The photoresponse of the block copolymer/CNT hybrids can be enhanced by introducing an electron-accepting block between the photosensitizing block and the CNT. We have demonstrated that the application of a rigorous statistical methodology can unravel the charge transport properties of these hybrid materials and provide general guidelines for the design of molecular light harvesting systems.

  3. Photocatalytic self-cleaning poly(L-lactide) materials based on a hybrid between nanosized zinc oxide and expanded graphite or fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Virovska, Daniela [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Paneva, Dilyana, E-mail: panevad@polymer.bas.bg [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Manolova, Nevena [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Rashkov, Iliya, E-mail: rashkov@polymer.bas.bg [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Karashanova, Daniela [Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 109, BG-1113 Sofia (Bulgaria)

    2016-03-01

    New self-cleaning materials of polymer fibers decorated with a hybrid between nanosized zinc oxide and expanded graphite (EG) or fullerene (C{sub 60}) were obtained. The new materials were prepared by applying electrospinning in conjunction with electrospraying. Poly(L-lactide) (PLA) was selected as a biocompatible and (bio)degradable polymer carrier. PLA solution was electrospun in combination with electrospraying of a suspension that contained the ZnO/EG or ZnO/C{sub 60} hybrid. Mats with different content of EG or C{sub 60} were obtained. The new materials were characterized by scanning and transmission electron microscopy (SEM and TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The photocatalytic activity of the materials was evaluated by using model dyes. The formation of a hybrid between ZnO and EG led to enhancement of the photocatalytic activity of the mats at ZnO/EG weight ratios of 90/10 and 85/15. Increase in the photocatalytic activity of the ZnO-containing mats was also achieved by the formation of a hybrid between ZnO and C{sub 60} at a fullerene content of 0.5 and 1.0 wt.% in respect to ZnO weight. The new materials exhibited antibacterial activity as evidenced by the performed studies against Staphylococcus aureus. - Highlights: • New self-cleaning materials are fabricated by electrospinning/electrospraying. • PLA fibers decorated with nanosized ZnO/EG or ZnO/C{sub 60} hybrid are obtained. • Their photocatalytic activity is enhanced as compared to fibers with bare ZnO. • The new materials can be used repeatedly for degradation of MB and RR dyes. • The new self-cleaning materials exhibit antibacterial activity against S. aureus.

  4. Photocatalytic self-cleaning poly(L-lactide) materials based on a hybrid between nanosized zinc oxide and expanded graphite or fullerene

    International Nuclear Information System (INIS)

    Virovska, Daniela; Paneva, Dilyana; Manolova, Nevena; Rashkov, Iliya; Karashanova, Daniela

    2016-01-01

    New self-cleaning materials of polymer fibers decorated with a hybrid between nanosized zinc oxide and expanded graphite (EG) or fullerene (C_6_0) were obtained. The new materials were prepared by applying electrospinning in conjunction with electrospraying. Poly(L-lactide) (PLA) was selected as a biocompatible and (bio)degradable polymer carrier. PLA solution was electrospun in combination with electrospraying of a suspension that contained the ZnO/EG or ZnO/C_6_0 hybrid. Mats with different content of EG or C_6_0 were obtained. The new materials were characterized by scanning and transmission electron microscopy (SEM and TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The photocatalytic activity of the materials was evaluated by using model dyes. The formation of a hybrid between ZnO and EG led to enhancement of the photocatalytic activity of the mats at ZnO/EG weight ratios of 90/10 and 85/15. Increase in the photocatalytic activity of the ZnO-containing mats was also achieved by the formation of a hybrid between ZnO and C_6_0 at a fullerene content of 0.5 and 1.0 wt.% in respect to ZnO weight. The new materials exhibited antibacterial activity as evidenced by the performed studies against Staphylococcus aureus. - Highlights: • New self-cleaning materials are fabricated by electrospinning/electrospraying. • PLA fibers decorated with nanosized ZnO/EG or ZnO/C_6_0 hybrid are obtained. • Their photocatalytic activity is enhanced as compared to fibers with bare ZnO. • The new materials can be used repeatedly for degradation of MB and RR dyes. • The new self-cleaning materials exhibit antibacterial activity against S. aureus.

  5. Multifunction system

    International Nuclear Information System (INIS)

    Wauthier, J.; Fiori, R.

    1990-01-01

    The development, the characteristics and the applications of a multifunction system are presented. The system is used on the RBES laboratory pipes, at Marcoule. The system was developed in order to allow, without time loss, the modification of the circuit function by replacing only one component. The following elements form the multifunction system: a fixed base, which is part of the tube, a removable piece, which is inserted into the base, a cover plate and its locking system. The material, chosen among commercial trade marks, required small modifications in order to be used in the circuit [fr

  6. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation

    Directory of Open Access Journals (Sweden)

    Feng Lili

    2011-01-01

    Full Text Available Abstract In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future.

  7. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

  8. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors.

    Science.gov (United States)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F; Su, Wu

    2015-01-14

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m(2) g(-1)). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.

  9. Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 张明; 周兰香; 中北里志; 井上真一; 冈本弘

    2001-01-01

    The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation.

  10. Hierarchical hybrid of Ni{sub 3}N/N-doped reduced graphene oxide nanocomposite as a noble metal free catalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi; Li, Yingjun; Li, Yetong [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Huang, Keke [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Wang, Qin, E-mail: qinwang@imu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab. of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Zhang, Jun, E-mail: cejzhang@imu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab. of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China)

    2017-04-01

    Highlights: • Hybrid of Ni{sub 3}N/N-RGO catalysts are synthesized by using a two-step method. • The catalysts manifest superior catalytic activity towards the ORR. • High activities are attributed to enhanced electron density and synergistic effects. - Abstract: Novel nickel nitride (Ni{sub 3}N) nanoparticles supported on nitrogen-doped reduced graphene oxide nanosheets (N-RGOs) are synthesized via a facile strategy including hydrothermal and subsequent calcination methods, in which the reduced graphene oxide nanosheets (RGOs) are simultaneously doped with nitrogen species. By varying the content of the RGOs, a series of Ni{sub 3}N/N-RGO nanocomposites are obtained. The Ni{sub 3}N/N-RGO-30% hybrid nanocomposite exhibits superior catalytic activity towards oxygen reduction reaction (ORR) under alkaline condition (0.1 M KOH). Furthermore, this hybrid catalyst also demonstrates high tolerance to methanol poisoning. The RGO containing rich N confers the nanocomposite with large specific surface area and high electronic conduction ability, which can enhance the catalytic efficiency of Ni{sub 3}N nanoparticles. The enhanced catalytic activity can be attributed to the synergistic effect between Ni{sub 3}N and nitrogen doped reduced graphene oxide. In addition, the sufficient contact between Ni{sub 3}N nanoparticles and the N-RGO nanosheets simultaneously promotes good nanoparticle dispersion and provides a consecutive activity sites to accelerate electron transport continuously, which further enhance the ORR performance. The Ni{sub 3}N/N-RGO may be further an ideal candidate as efficient and inexpensive noble metal-free ORR electrocatalyst in fuel cells.

  11. Creation of hydrophobic surfaces using a paint containing functionalized oxide particles

    Science.gov (United States)

    Sino, Paul Albert L.; Herrera, Marvin U.; Balela, Mary Donnabelle L.

    2017-05-01

    Hydrophobic surfaces were created by coating various substrates (aluminum sheet, soda-lime glass, silicon carbide polishing paper, glass with double-sided adhesive) with paint containing functionalized oxide particles. The paint was created by functionalizing oxide particles (ground ZnO, TiO2 nanoparticles, or TiO2 microparticles) with fluorosilane molecules in absolute ethanol. Water contact angle of samples shows that the coated substrate becomes hydrophobic (water contact angle ≥ 90°). Among the oxides that were used, ground ZnO yielded contact angle exemplifying superhydrophobicity (water contact angle ≥ 150°). Scanning electron micrograph of paint-containing TiO2 nanoparticles shows rough functionalized oxides structures which probably increase the hydrophobicity of the surface.

  12. Generation of a panel of somatic cell hybrids containing unselected fragments of human chromosome 10 by X-ray irradiation and cell fusion: Application to isolating the MEN2A region in hybrid cells

    International Nuclear Information System (INIS)

    Goodfellow, P.J.; Povey, S.; Nevanlinna, H.A.; Goodfellow, P.N.

    1990-01-01

    We have used X-ray irradiation and cell fusion to generate somatic cell hybrids containing fragments of human chromosome 10. Our experiments were directed towards isolating the region of the MEN2A gene in hybrids and to use those as the source of DNA for cloning and mapping new markers from near the MEN2A locus. A number of hybrid clones containing human sequences that are tightly linked to the MEN2A gene were identified. Some 25% of our hybrids, however, proved to contain more than one human chromosome 10-derived fragment or showed evidence of deletions and/or rearrangements. A detailed analysis of the human content of X-ray irradiation hybrids is required to assess the integrity and number of human fragments retained. Despite retention of multiple human-derived fragments, these hybrids will prove useful as cloning and mapping resources

  13. A novel anti-influenza copper oxide containing respiratory face mask.

    Science.gov (United States)

    Borkow, Gadi; Zhou, Steve S; Page, Tom; Gabbay, Jeffrey

    2010-06-25

    Protective respiratory face masks protect the nose and mouth of the wearer from vapor drops carrying viruses or other infectious pathogens. However, incorrect use and disposal may actually increase the risk of pathogen transmission, rather than reduce it, especially when masks are used by non-professionals such as the lay public. Copper oxide displays potent antiviral properties. A platform technology has been developed that permanently introduces copper oxide into polymeric materials, conferring them with potent biocidal properties. We demonstrate that impregnation of copper oxide into respiratory protective face masks endows them with potent biocidal properties in addition to their inherent filtration properties. Both control and copper oxide impregnated masks filtered above 99.85% of aerosolized viruses when challenged with 5.66+/-0.51 and 6.17+/-0.37 log(10)TCID(50) of human influenza A virus (H1N1) and avian influenza virus (H9N2), respectively, under simulated breathing conditions (28.3 L/min). Importantly, no infectious human influenza A viral titers were recovered from the copper oxide containing masks within 30 minutes (masks. Similarly, the infectious avian influenza titers recovered from the copper oxide containing masks were masks 5.03+/-0.54 log(10)TCID(50). The copper oxide containing masks successfully passed Bacterial Filtration Efficacy, Differential Pressure, Latex Particle Challenge, and Resistance to Penetration by Synthetic Blood tests designed to test the filtration properties of face masks in accordance with the European EN 14683:2005 and NIOSH N95 standards. Impregnation of copper oxide into respiratory protective face masks endows them with potent anti-influenza biocidal properties without altering their physical barrier properties. The use of biocidal masks may significantly reduce the risk of hand or environmental contamination, and thereby subsequent infection, due to improper handling and disposal of the masks.

  14. Novel route of synthesis for cellulose fiber-based hybrid polyurethane

    Science.gov (United States)

    Ikhwan, F. H.; Ilmiati, S.; Kurnia Adi, H.; Arumsari, R.; Chalid, M.

    2017-07-01

    Polyurethanes, obtained by the reaction of a diisocyanate compound with bifunctional or multifunctional reagent such as diols or polyols, have been studied intensively and well developed. The wide range modifier such as chemical structures and molecular weight to build polyurethanes led to designs of materials that may easily meet the functional product demand and to the extraordinary spreading of these materials in market. Properties of the obtained polymer are related to the chemical structure of polyurethane backbone. A number polyurethanes prepared from biomass-based monomers have been reported. Cellulose fiber, as a biomass material is containing abundant hydroxyl, promising material as chain extender for building hybrid polyurethanes. In previous researches, cellulose fiber was used as filler in synthesis of polyurethane composites. This paper reported a novel route of hybrid polyurethane synthesis, which a cellulose fiber was used as chain extender. The experiment performed by reacting 4,4’-Methylenebis (cyclohexyl isocyanate) (HMDI) and polyethylene glycol with variation of molecular weight to obtained pre-polyurethane, continued by adding micro fiber cellulose (MFC) with variation of type and composition in the mixture. The experiment was evaluated by NMR, FTIR, SEM and STA measurement. NMR and FTIR confirmed the reaction of the hybrid polyurethane. STA showed hybrid polyurethane has good thermal stability. SEM showed good distribution and dispersion of sorghum-based MFC.

  15. Electrochromic device containing metal oxide nanoparticles and ultraviolet blocking material

    Science.gov (United States)

    Garcia, Guillermo; Koo, Bonil; Gregoratto, Ivano; Basu, Sourav; Rosen, Evelyn; Holt, Jason; Thomsen, Scott

    2017-10-17

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant. The electrochromic device also includes nanoparticles containing one or more transparent conducting oxide (TCO), a solid state electrolyte, a counter electrode, and at least one protective layer to prevent degradation of the one or more nanostructured transition metal oxide bronze. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.

  16. Degradation of ciprofloxacin antibiotic by Homogeneous Fenton oxidation: Hybrid AHP-PROMETHEE method, optimization, biodegradability improvement and identification of oxidized by-products.

    Science.gov (United States)

    Salari, Marjan; Rakhshandehroo, Gholam Reza; Nikoo, Mohammad Reza

    2018-09-01

    The main purpose of this experimental study was to optimize Homogeneous Fenton oxidation (HFO) and identification of oxidized by-products from degradation of Ciprofloxacin (CIP) using hybrid AHP-PROMETHEE, Response Surface Methodology (RSM) and High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-MS). At the first step, an assessment was made for performances of two catalysts (FeSO 4 ·7H 2 O and FeCl 2 ·4H 2 O) based on hybrid AHP-PROMETHEE decision making method. Then, RSM was utilized to examine and optimize the influence of different variables including initial CIP concentration, Fe 2+ concentration, [H 2 O 2 ]/[ Fe 2+ ] mole ratio and initial pH as independent variables on CIP removal, COD removal, and sludge to iron (SIR) as the response functions in a reaction time of 25 min. Weights of the mentioned responses as well as cost criteria were determined by AHP model based on pairwise comparison and then used as inputs to PROMETHEE method to develop hybrid AHP-PROMETHEE. Based on net flow results of this hybrid model, FeCl 2 ·4H 2 O was more efficient because of its less environmental stability as well as lower SIR production. Then, optimization of experiments using Central Composite Design (CCD) under RSM was performed with the FeCl 2 ·4H 2 O catalyst. Biodegradability of wastewater was determined in terms of BOD 5 /COD ratio, showing that HFO process is able to improve wastewater biodegradability from zero to 0.42. Finally, the main intermediaries of degradation and degradation pathways of CIP were investigated with (HPLC-MS). Major degradation pathways from hydroxylation of both piperazine and quinolonic rings, oxidation and cleavage of the piperazine ring, and defluorination (OH/F substitution) were suggested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    He Y

    2014-08-01

    Full Text Available Yingna He,1 Linhua Zhang,2 Dunwan Zhu,2 Cunxian Song2 1Laboratory of Chinese Medicine Pharmacology, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China; 2Key Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People’s Republic of China Abstract: Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs as a magnetic resonance imaging (MRI contrast agent and anticancer drug, mitoxantrone (Mit, were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML showed significantly increased uptake in luteinizing hormone–releasing hormone (LHRH receptor overexpressing MCF-7 (Michigan Cancer Foundation-7 breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3 cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer. Keywords: multifunctional liposome, magnetic resonance imaging, theranostic nanomedicine, mitoxantrone, gonadorelin

  18. Ag Nanorods-Oxide Hybrid Array Substrates: Synthesis, Characterization, and Applications in Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Lingwei Ma

    2017-08-01

    Full Text Available Over the last few decades, benefitting from the sufficient sensitivity, high specificity, nondestructive, and rapid detection capability of the surface-enhanced Raman scattering (SERS technique, numerous nanostructures have been elaborately designed and successfully synthesized as high-performance SERS substrates, which have been extensively exploited for the identification of chemical and biological analytes. Among these, Ag nanorods coated with thin metal oxide layers (AgNRs-oxide hybrid array substrates featuring many outstanding advantages have been proposed as fascinating SERS substrates, and are of particular research interest. The present review provides a systematic overview towards the representative achievements of AgNRs-oxide hybrid array substrates for SERS applications from diverse perspectives, so as to promote the realization of real-world SERS sensors. First, various fabrication approaches of AgNRs-oxide nanostructures are introduced, which are followed by a discussion on the novel merits of AgNRs-oxide arrays, such as superior SERS sensitivity and reproducibility, high thermal stability, long-term activity in air, corrosion resistivity, and intense chemisorption of target molecules. Next, we present recent advances of AgNRs-oxide substrates in terms of practical applications. Intriguingly, the recyclability, qualitative and quantitative analyses, as well as vapor-phase molecule sensing have been achieved on these nanocomposites. We further discuss the major challenges and prospects of AgNRs-oxide substrates for future SERS developments, aiming to expand the versatility of SERS technique.

  19. Oxide-Free Bonding of III-V-Based Material on Silicon and Nano-Structuration of the Hybrid Waveguide for Advanced Optical Functions

    Directory of Open Access Journals (Sweden)

    Konstantinos Pantzas

    2015-10-01

    Full Text Available Oxide-free bonding of III-V-based materials for integrated optics is demonstrated on both planar Silicon (Si surfaces and nanostructured ones, using Silicon on Isolator (SOI or Si substrates. The hybrid interface is characterized electrically and mechanically. A hybrid InP-on-SOI waveguide, including a bi-periodic nano structuration of the silicon guiding layer is demonstrated to provide wavelength selective transmission. Such an oxide-free interface associated with the nanostructured design of the guiding geometry has great potential for both electrical and optical operation of improved hybrid devices.

  20. Preparation of layered graphene and tungsten oxide hybrids for enhanced performance supercapacitors.

    Science.gov (United States)

    Xing, Ling-Li; Huang, Ke-Jing; Fang, Lin-Xia

    2016-11-01

    Tungsten oxide (WO 3 ), which was originally poor in capacitive performance, is made into an excellent electrode material for supercapacitors by dispersing it on graphene (Gr). The obtained Gr-WO 3 hybrids are characterized by X-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy and scanning electron microscopy techniques, and evaluated as electrode materials for high-performance supercapacitors by cyclic voltammetry, galvanostatic charge-discharge curves and electrochemical impedance spectroscopy. A great improvement in specific capacitance is achieved with the present hybrids, from 255 F g -1 for WO 3 nanoparticles to 580 F g -1 for Gr-WO 3 hybrids (scanned at 1 A g -1 in 2 M KOH over a potential window of 0 to 0.45 V). The Gr-WO 3 hybrid exhibits an excellent high rate capability and good cycling stability with more than 92% capacitance retention over 1000 cycles at a current density of 5 A g -1 . The enhancement in supercapacitor performance of Gr-WO 3 is not only attributed to its unique nanostructure with large specific surface area, but also its excellent electro-conductivity, which facilitates efficient charge transport and promotes electrolyte diffusion. As a whole, this work indicates that Gr-WO 3 hybrids are a promising electrode material for high-performance supercapacitors.

  1. Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors.

    Science.gov (United States)

    Panek, Dawid; Wichur, Tomasz; Godyń, Justyna; Pasieka, Anna; Malawska, Barbara

    2017-10-01

    The emergence of a multitarget design approach in the development of new potential anti-Alzheimer's disease agents has resulted in the discovery of many multifunctional compounds focusing on various targets. Among them the largest group comprises inhibitors of both cholinesterases, with additional anti-β-amyloid aggregation activity. This review describes recent advances in this research area and presents the most interesting compounds reported over a 2-year span (2015-2016). The majority of hybrids possess heterodimeric structures obtained by linking structurally active fragments interacting with different targets. Multipotent cholinesterase inhibitors with β-amyloid antiaggregating activity may additionally possess antioxidative, neuroprotective or metal-chelating properties or less common features such as anti-β-secretase or τ-antiaggregation activity.

  2. Closed-loop thrust and pressure profile throttling of a nitrous oxide/hydroxyl-terminated polybutadiene hybrid rocket motor

    Science.gov (United States)

    Peterson, Zachary W.

    Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.

  3. Multifunctional structural lithium ion batteries for electrical energy storage applications

    Science.gov (United States)

    Javaid, Atif; Zeshan Ali, Muhammad

    2018-05-01

    Multifunctional structural batteries based on carbon fiber-reinforced polymer composites are fabricated that can bear mechanical loads and act as electrochemical energy storage devices simultaneously. Structural batteries, containing woven carbon fabric anode; lithium cobalt oxide/graphene nanoplatelets coated aluminum cathode; filter paper separator and cross-linked polymer electrolyte, were fabricated through resin infusion under flexible tooling (RIFT) technique. Compression tests, dynamic mechanical thermal analysis, thermogravimetric analysis and impedance spectroscopy were done on the cross-linked polymer electrolytes while cyclic voltammetry, impedance spectroscopy, dynamic mechanical thermal analysis and in-plane shear tests were conducted on the fabricated structural batteries. A range of solid polymer electrolytes with increasing concentrations of lithium perchlorate salt in crosslinked polymer epoxies were formulated. Increased concentrations of electrolyte salt in cross-linked epoxy increased the ionic conductivity, although the compressive properties were compromised. A structural battery, exhibiting simultaneously a capacity of 0.16 mAh L‑1, an energy density of 0.32 Wh L‑1 and a shear modulus of 0.75 GPa have been reported.

  4. Multi-Criteria Approach in Multifunctional Building Design Process

    Science.gov (United States)

    Gerigk, Mateusz

    2017-10-01

    The paper presents new approach in multifunctional building design process. Publication defines problems related to the design of complex multifunctional buildings. Currently, contemporary urban areas are characterized by very intensive use of space. Today, buildings are being built bigger and contain more diverse functions to meet the needs of a large number of users in one capacity. The trends show the need for recognition of design objects in an organized structure, which must meet current design criteria. The design process in terms of the complex system is a theoretical model, which is the basis for optimization solutions for the entire life cycle of the building. From the concept phase through exploitation phase to disposal phase multipurpose spaces should guarantee aesthetics, functionality, system efficiency, system safety and environmental protection in the best possible way. The result of the analysis of the design process is presented as a theoretical model of the multifunctional structure. Recognition of multi-criteria model in the form of Cartesian product allows to create a holistic representation of the designed building in the form of a graph model. The proposed network is the theoretical base that can be used in the design process of complex engineering systems. The systematic multi-criteria approach makes possible to maintain control over the entire design process and to provide the best possible performance. With respect to current design requirements, there are no established design rules for multifunctional buildings in relation to their operating phase. Enrichment of the basic criteria with functional flexibility criterion makes it possible to extend the exploitation phase which brings advantages on many levels.

  5. Sulfonated macro-RAFT agents for the surfactant-free synthesis of cerium oxide-based hybrid latexes.

    Science.gov (United States)

    Garnier, Jérôme; Warnant, Jérôme; Lacroix-Desmazes, Patrick; Dufils, Pierre-Emmanuel; Vinas, Jérôme; van Herk, Alex

    2013-10-01

    Three types of amphiphatic macro-RAFT agents were employed as compatibilizers to promote the polymerization reaction at the surface of nanoceria for the synthesis of CeO2-based hybrid latexes. Macro-RAFT copolymers and terpolymers were first synthesized employing various combinations of butyl acrylate as a hydrophobic monomer and acrylic acid (AA) and/or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as hydrophilic monomers. After characterizing the adsorption of these macro-RAFT agents at the cerium oxide surface by UV-visible spectrometry, emulsion copolymerization reactions of styrene and methyl acrylate were then carried out in the presence of the surface-modified nanoceria. Dynamic Light Scattering and cryo-Transmission Electron Microscopy were employed to confirm the hybrid structure of the final CeO2/polymer latexes, and proved that the presence of acrylic acid units in amphiphatic macro-RAFT agents enabled an efficient formation of hybrid structures, while the presence of AMPS units, when combined with AA units, resulted in a better distribution of cerium oxide nanoclusters between latex particles. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors

    Science.gov (United States)

    Lang, Xingyou; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2011-04-01

    Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO2 could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO2 (10-5-10-6 S cm-1) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO2 have enhanced conductivity, resulting in a specific capacitance of the constituent MnO2 (~1,145 F g-1) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO2, and facilitates fast ion diffusion between the MnO2 and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.

  7. Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen.

    Science.gov (United States)

    Kawaoka, Akiyoshi; Matsunaga, Etsuko; Endo, Saori; Kondo, Shinkichi; Yoshida, Kazuya; Shinmyo, Atsuhiko; Ebinuma, Hiroyasu

    2003-07-01

    We previously demonstrated that overexpression of the horseradish (Armoracia rusticana) peroxidase prxC1a gene stimulated the growth rate of tobacco (Nicotiana tabacum) plants. Here, the cauliflower mosaic virus 35S::prxC1a construct was introduced into hybrid aspen (Populus sieboldii x Populus grandidentata). The growth rate of these transformed hybrid aspen plants was substantially increased under greenhouse conditions. The average stem length of transformed plants was 25% greater than that of control plants. There was no other obvious phenotypic difference between the transformed and control plants. Fast-growing transformed hybrid aspen showed high levels of expression of prxC1a and had elevated peroxidase activities toward guaiacol and ascorbate. However, there was no increase of the endogenous class I ascorbate peroxidase activities in the transformed plants by separate assay and activity staining of native polyacrylamide gel electrophoresis. Furthermore, calli derived from the transformed hybrid aspen grew faster than those from control plants and were resistant to the oxidative stress imposed by hydrogen peroxide. Therefore, enhanced peroxidase activity affects plant growth rate and oxidative stress resistance.

  8. Oxidative stability of diacylglycerol oil and butter blends containing diacylglycerols

    DEFF Research Database (Denmark)

    Kristensen, Janni Brogaard; Nielsen, Nina Skall; Jacobsen, Charlotte

    2006-01-01

    Diacylglycerol (DAG) oils produced from sunflower oil and traditional sunflower oil were stored for 20 wk at 38 degrees C, and their oxidative stability was measured. Moreover, two butter blends were produced containing 40 wt-% DAG oil made from sunflower oil or rapeseed oil, respectively, as well...... as two control butter blends with sunflower oil or rapeseed oil. Their oxidative stability during storage at 5 degrees C for up to 12 wk was examined by similar means as for the pure oils. The storage study of the oils indicated that the DAG oil was oxidatively less stable as compared to sunflower oil......, but that they had similar sensory quality. Storage of the butter blends revealed that blends with the two types of rapeseed oil (triacylglycerol (TAG) or DAG oil) were oxidatively more stable than the blends containing oils from sunflower. There was no unambiguous indication of DAG butter blends having a different...

  9. V2O5 xerogel-poly(ethylene oxide) hybrid material: Synthesis, characterization, and electrochemical properties

    International Nuclear Information System (INIS)

    Guerra, Elidia M.; Ciuffi, Katia J.; Oliveira, Herenilton P.

    2006-01-01

    In this work, we report the synthesis, characterization, and electrochemical properties of vanadium pentoxide xerogel-poly(ethylene oxide) (PEO) hybrid materials obtained by varying the average molecular weight of the organic component as well as the components' ratios. The materials were characterized by X-ray diffraction, ultraviolet/visible and infrared spectroscopies, thermogravimetric analysis, scanning electron microscopy, electron paramagnetic resonance, and cyclic voltammetry. Despite the presence of broad and low intensity peaks, the X-ray diffractograms indicate that the lamellar structure of the vanadium pentoxide xerogel is preserved, with increase in the interplanar spacing, giving evidence of a low-crystalline structure. We found that the electrochemical behaviour of the hybrid materials is quite similar to that found for the V 2 O 5 xerogel alone, and we verified that PEO leads to stabilization and reproducibility of the Li + electrochemical insertion/de-insertion into the V 2 O 5 xerogel structure, which makes these materials potential components of lithium ion batteries. - Graphical abstract: The synthesis, structural and electrochemical properties of vanadium pentoxide xerogel-poly(ethylene oxide) hybrid materials have been described. Despite the presence of broad and low intensity peaks, the X-ray diffractograms indicate that the lamellar structure of the vanadium pentoxide xerogel is preserved. The cyclic voltammetry technique demonstrated that PEO intercalation provides an improvement in the electrochemical properties, mainly with respect to the lithium electroinsertion process into the oxide matrix

  10. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes.

    Science.gov (United States)

    Chen, Po-Chiang; Shen, Guozhen; Shi, Yi; Chen, Haitian; Zhou, Chongwu

    2010-08-24

    In the work described in this paper, we have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on transition-metal-oxide nanowire/single-walled carbon nanotube (SWNT) hybrid thin-film electrodes. These hybrid nanostructured films, with advantages of mechanical flexibility, uniform layered structures, and mesoporous surface morphology, were produced by using a filtration method. Here, manganese dioxide nanowire/SWNT hybrid films worked as the positive electrode, and indium oxide nanowire/SWNT hybrid films served as the negative electrode in a designed ASC. In our design, charges can be stored not only via electrochemical double-layer capacitance from SWNT films but also through a reversible faradic process from transition-metal-oxide nanowires. In addition, to obtain stable electrochemical behavior during charging/discharging cycles in a 2 V potential window, the mass balance between two electrodes has been optimized. Our optimized hybrid nanostructured ASCs exhibited a superior device performance with specific capacitance of 184 F/g, energy density of 25.5 Wh/kg, and columbic efficiency of approximately 90%. In addition, our ASCs exhibited a power density of 50.3 kW/kg, which is 10-fold higher than obtained in early reported ASC work. The high-performance hybrid nanostructured ASCs can find applications in conformal electrics, portable electronics, and electrical vehicles.

  11. Low-voltage protonic/electronic hybrid indium zinc oxide synaptic transistors on paper substrates

    International Nuclear Information System (INIS)

    Wu, Guodong; Wan, Changjin; Wan, Qing; Zhou, Jumei; Zhu, Liqiang

    2014-01-01

    Low-voltage (1.5 V) indium zinc oxide (IZO)-based electric-double-layer (EDL) thin-film transistors (TFTs) gated by nanogranular proton conducting SiO 2 electrolyte films are fabricated on paper substrates. Both enhancement-mode and depletion-mode operation are obtained by tuning the thickness of the IZO channel layer. Furthermore, such flexible IZO protonic/electronic hybrid EDL TFTs can be used as artificial synapses, and synaptic stimulation response and short-term synaptic plasticity function are demonstrated. The protonic/electronic hybrid EDL TFTs on paper substrates proposed here are promising for low-power flexible paper electronics, artificial synapses and bioelectronics. (paper)

  12. Hybrid Nitrous Oxide Production from a Partial Nitrifying Bioreactor: Hydroxylamine Interactions with Nitrite.

    Science.gov (United States)

    Terada, Akihiko; Sugawara, Sho; Hojo, Keisuke; Takeuchi, Yuki; Riya, Shohei; Harper, Willie F; Yamamoto, Tomoko; Kuroiwa, Megumi; Isobe, Kazuo; Katsuyama, Chie; Suwa, Yuichi; Koba, Keisuke; Hosomi, Masaaki

    2017-03-07

    The goal of this study was to elucidate the mechanisms of nitrous oxide (N 2 O) production from a bioreactor for partial nitrification (PN). Ammonia-oxidizing bacteria (AOB) enriched from a sequencing batch reactor (SBR) were subjected to N 2 O production pathway tests. The N 2 O pathway test was initiated by supplying an inorganic medium to ensure an initial NH 4 + -N concentration of 160 mg-N/L, followed by 15 NO 2 - (20 mg-N/L) and dual 15 NH 2 OH (each 17 mg-N/L) spikings to quantify isotopologs of gaseous N 2 O ( 44 N 2 O, 45 N 2 O, and 46 N 2 O). N 2 O production was boosted by 15 NH 2 OH spiking, causing exponential increases in mRNA transcription levels of AOB functional genes encoding hydroxylamine oxidoreductase (haoA), nitrite reductase (nirK), and nitric oxide reductase (norB) genes. Predominant production of 45 N 2 O among N 2 O isotopologs (46% of total produced N 2 O) indicated that coupling of 15 NH 2 OH with 14 NO 2 - produced N 2 O via N-nitrosation hybrid reaction as a predominant pathway. Abiotic hybrid N 2 O production was also observed in the absence of the AOB-enriched biomass, indicating multiple pathways for N 2 O production in a PN bioreactor. The additional N 2 O pathway test, where 15 NH 4 + was spiked into 400 mg-N/L of NO 2 - concentration, confirmed that the hybrid N 2 O production was a dominant pathway, accounting for approximately 51% of the total N 2 O production.

  13. Advanced control approach for hybrid systems based on solid oxide fuel cells

    International Nuclear Information System (INIS)

    Ferrari, Mario L.

    2015-01-01

    Highlights: • Advanced new control system for SOFC based hybrid plants. • Proportional–Integral approach with feed-forward technology. • Good control of fuel cell temperature. • All critical properties maintained inside safe conditions. - Abstract: This paper shows a new advanced control approach for operations in hybrid systems equipped with solid oxide fuel cell technology. This new tool, which combines feed-forward and standard proportional–integral techniques, controls the system during load changes avoiding failures and stress conditions detrimental to component life. This approach was selected to combine simplicity and good control performance. Moreover, the new approach presented in this paper eliminates the need for mass flow rate meters and other expensive probes, as usually required for a commercial plant. Compared to previous works, better performance is achieved in controlling fuel cell temperature (maximum gradient significantly lower than 3 K/min), reducing the pressure gap between cathode and anode sides (at least a 30% decrease during transient operations), and generating a higher safe margin (at least a 10% increase) for the Steam-to-Carbon Ratio. This new control system was developed and optimized using a hybrid system transient model implemented, validated and tested within previous works. The plant, comprising the coupling of a tubular solid oxide fuel cell stack with a microturbine, is equipped with a bypass valve able to connect the compressor outlet with the turbine inlet duct for rotational speed control. Following model development and tuning activities, several operative conditions were considered to show the new control system increased performance compared to previous tools (the same hybrid system model was used with the new control approach). Special attention was devoted to electrical load steps and ramps considering significant changes in ambient conditions

  14. Sulfonated polyimides containing triphenylphosphine oxide for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Arun Kumar; Bera, Debaditya; Banerjee, Susanta, E-mail: susanta@matsc.iitkgp.ernet.in

    2016-09-15

    A series of sulfonated co-polyimides (co-SPI) were prepared by one pot polycondensation reaction of a combination of diamines namely; 4,4′-diaminostilbene-2,2′-disulfonic acid (DSDSA) and prepared non-sulfonated diamine (DATPPO) containing triphenylphosphine oxide with 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA). All these soluble co-SPI gave flexible membranes with high thermal stability and showed good mechanical property. Transmission electron microscopy (TEM) analysis revealed the microphase separated morphology with well-dispersed hydrophilic (cluster size in the range of 5–55 nm) domains. The co-SPI membranes showed high oxidative and hydrolytic stability with higher proton conductivity. All these co-SPI membranes exhibited low water uptake and swelling ratio. The co-SPI membrane TPPO-60 (60% degree of sulfonation) with IEC{sub W} = 1.84 mequiv g{sup −1} showed high proton conductivity (99 mS cm{sup −1} at 80 °C and 107 mS cm{sup −1} at 90 °C) in water with high oxidative (20 h) and hydrolytic stability (only 5% degradation in 24 h). - Highlights: • Triphenylphosphine oxide containing sulfonated polyimides (SPIs) was synthesized. • The SPIs showed good oxidative and hydrolytic stability and high proton conductivity. • TEM analysis revealed well separated morphology of the SPIs.

  15. One-Pot Facile Methodology to Synthesize Chitosan-ZnO-Graphene Oxide Hybrid Composites for Better Dye Adsorption and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Anandhavelu Sanmugam

    2017-11-01

    Full Text Available Novel chitosan–ZnO–graphene oxide hybrid composites were prepared using a one-pot chemical strategy, and their dye adsorption characteristics and antibacterial activity were demonstrated. The prepared chitosan and the hybrids such as chitosan–ZnO and chitosan–ZnO–graphene oxide were characterized by UV-Vis absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The thermal and mechanical properties indicate a significant improvement over chitosan in the hybrid composites. Dye adsorption experiments were carried out using methylene blue and chromium complex as model pollutants with the function of dye concentration. The antibacterial properties of chitosan and the hybrids were tested against Gram-positive and Gram-negative bacterial species, which revealed minimum inhibitory concentrations (MICs of 0.1 µg/mL.

  16. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.

    Science.gov (United States)

    Wang, Hailiang; Dai, Hongjie

    2013-04-07

    The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC-hybrid

  17. Photoanodic Hybrid Semiconductor–Molecular Heterojunction for Solar Water Oxidation

    KAUST Repository

    Joya, Khurram Saleem

    2015-06-29

    Inorganic photo-responsive semiconducting materials have been employed in photoelectrochemical(PEC) water oxidation devicesin pursuit of solar to fuel conversion.[1]The reaction kinetics in semiconductors is limited by poor contact at the interfaces, and charge transfer is impeded by surface defects and the grain boundaries.[2]It has shown that successful surface functionalization of the photo-responsive semiconducting materials with co-catalysts can maximize the charge separation, hole delivery and its effective consumption, and enhances the efficiency and performane of the PEC based water oxidation assembly.[3]We present here unique modification of photoanodic hematite (α-Fe2O3) and bismuth vanadate (BiVO4) with molecular co-catalysts for enhanced photoelectrochemical water oxidation (Figure 1). These hybrid inorganic–organometallic heterojunctions manifest impressive cathodic shifts in the onset potentials, and the photocurrent densities have been enhanced by > 90% at all potentials relative to uncatalyzed α-Fe2O3 or BiVO4, and other catalyst-semiconductor based heterojunctions.This is a novel development in the solar to fuel conversion field, and is crucially important for designing a tandem device where light interfere very little with the catalyst layer on top of semiconducting light absorber.

  18. A novel anti-influenza copper oxide containing respiratory face mask.

    Directory of Open Access Journals (Sweden)

    Gadi Borkow

    Full Text Available BACKGROUND: Protective respiratory face masks protect the nose and mouth of the wearer from vapor drops carrying viruses or other infectious pathogens. However, incorrect use and disposal may actually increase the risk of pathogen transmission, rather than reduce it, especially when masks are used by non-professionals such as the lay public. Copper oxide displays potent antiviral properties. A platform technology has been developed that permanently introduces copper oxide into polymeric materials, conferring them with potent biocidal properties. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that impregnation of copper oxide into respiratory protective face masks endows them with potent biocidal properties in addition to their inherent filtration properties. Both control and copper oxide impregnated masks filtered above 99.85% of aerosolized viruses when challenged with 5.66+/-0.51 and 6.17+/-0.37 log(10TCID(50 of human influenza A virus (H1N1 and avian influenza virus (H9N2, respectively, under simulated breathing conditions (28.3 L/min. Importantly, no infectious human influenza A viral titers were recovered from the copper oxide containing masks within 30 minutes (< or = 0.88 log(10TCID(50, while 4.67+/-1.35 log(10TCID(50 were recovered from the control masks. Similarly, the infectious avian influenza titers recovered from the copper oxide containing masks were < or = 0.97+/-0.01 log(10TCID(50 and from the control masks 5.03+/-0.54 log(10TCID(50. The copper oxide containing masks successfully passed Bacterial Filtration Efficacy, Differential Pressure, Latex Particle Challenge, and Resistance to Penetration by Synthetic Blood tests designed to test the filtration properties of face masks in accordance with the European EN 14683:2005 and NIOSH N95 standards. CONCLUSIONS/SIGNIFICANCE: Impregnation of copper oxide into respiratory protective face masks endows them with potent anti-influenza biocidal properties without altering their physical

  19. Electrochemical Performance of Low-Carbon Steel in Alkaline Model Solutions Containing Hybrid Aggregates

    NARCIS (Netherlands)

    Koleva, D.A.; Hu, J.; De Wit, J.H.W.; Boshkov, N.; Radeva, T.; Milkova, V.; Van Breugel, K.

    2010-01-01

    This work reports on the electrochemical performance of low-carbon steel electrodes in model alkaline solutions in the presence of 4.9.10-4 g/l hybrid aggregates i.e. cement extract, containing PDADMAC (poly (diallyl, dimethyl ammonium chloride) / PAA (Poly (acrylic acid)/ PDADMAC over a CaO core.

  20. Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material

    International Nuclear Information System (INIS)

    Chang, Xueting; Sun, Shibin; Dong, Lihua; Hu, Xiong; Yin, Yansheng

    2014-01-01

    Graphical abstract: Electrochromic mechanism of tungsten oxide nanowires-reduced graphene oxide composite. - Highlights: • A novel inorganic-nano-carbon hybrid composite was prepared. • The hybrid composite has sandwich-like structure. • The hybrid composite exhibited high-quality electrohcromic performance. - Abstract: In this work, we report the synthesis of a novel hybrid electrochromic composite through nucleation and growth of ultrathin tungsten oxide nanowires on graphene oxide sheets using a facile solvothermal route. The competition between the growth of tungsten oxide nanowires and the reduction of graphene oxide sheets leads to the formation of sandwich-structured tungsten oxide-reduced graphene oxide composite. Due to the strongly coupled effect between the ultrathin tungsten oxide nanowires and the reduced graphene oxide nanosheets, the novel electrochromic composite exhibited high-quality electrochromic performance with fast color-switching speed, good cyclic stability, and high coloration efficiency. The present tungsten oxide-reduced graphene oxide composite represents a new approach to prepare other inorganic-reduced graphene oxide hybrid materials for electrochemical applications

  1. Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved?

    Science.gov (United States)

    Boiani, Mariana; Piacenza, Lucia; Hernández, Paola; Boiani, Lucia; Cerecetto, Hugo; González, Mercedes; Denicola, Ana

    2010-06-15

    Chagas disease is caused by the trypanosomatid parasite Trypanosoma cruzi and threatens millions of lives in South America. As other neglected diseases there is almost no research and development effort by the pharmaceutical industry and the treatment relies on two drugs, Nifurtimox and Benznidazole, discovered empirically more than three decades ago. Nifurtimox, a nitrofurane derivative, is believed to exert its biological activity through the bioreduction of the nitro-group to a nitro-anion radical which undergoes redox-cycling with molecular oxygen. This hypothesis is generally accepted, although arguments against it have been presented. In the present work we studied the ability of Nifurtimox and five N-oxide-containing heterocycles to induce oxidative stress in T. cruzi. N-Oxide-containing heterocycles represent a promising group of new trypanosomicidal agents and their mode of action is not completely elucidated. The results here obtained argue against the oxidative stress hypothesis almost for all the studied compounds, including Nifurtimox. A significant reduction in the level of parasitic low-molecular-weight thiols was observed after Nifurtimox treatment; however, it was not linked to the production of reactive oxidant species. Besides, redox-cycling is only observed at high Nifurtimox concentrations (>400microM), two orders of magnitude higher than the concentration required for anti-proliferative activity (5microM). Our results indicate that an increase in oxidative stress is not the main mechanism of action of Nifurtimox. Among the studied N-oxide-containing heterocycles, benzofuroxan derivatives strongly inhibited parasite dehydrogenase activity and affected mitochondrial membrane potential. The indazole derivative raised intracellular oxidants production, but it was the least effective as anti-T. cruzi. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Hybrid materials for optics and photonics.

    Science.gov (United States)

    Lebeau, Benedicte; Innocenzi, Plinio

    2011-02-01

    The interest in organic-inorganic hybrids as materials for optics and photonics started more than 25 years ago and since then has known a continuous and strong growth. The high versatility of sol-gel processing offers a wide range of possibilities to design tailor-made materials in terms of structure, texture, functionality, properties and shape modelling. From the first hybrid material with optical functional properties that has been obtained by incorporation of an organic dye in a silica matrix, the research in the field has quickly evolved towards more sophisticated systems, such as multifunctional and/or multicomponent materials, nanoscale and self-assembled hybrids and devices for integrated optics. In the present critical review, we have focused our attention on three main research areas: passive and active optical hybrid sol-gel materials, and integrated optics. This is far from exhaustive but enough to give an overview of the huge potential of these materials in photonics and optics (254 references).

  3. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams. In particular, these materials are being extensively studied for the adsorption of CO 2 from simulated flue gas streams, with an eye towards utilizing these materials as part of a post-combustion carbon capture process at large flue gas producing installations, such as coal-fired electricity-generating power plants. In this Application Article, the utilization of amine-modified organic-inorganic hybrid materials is discussed, focusing on important attributes of the materials, such as (i) CO 2 adsorption capacities, (ii) adsorption and desorption kinetics, and (iii) material stability, that will determine if these materials may one day be useful adsorbents in practical CO 2 capture applications. Specific research needs and limitations associated with the current body of work are identified. © 2011 The Royal Society of Chemistry.

  4. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  5. Heat and mass transfer analysis for paraffin/nitrous oxide burning rate in hybrid propulsion

    Science.gov (United States)

    Ben-Basat (Sisi), Shani; Gany, Alon

    2016-03-01

    This research presents a physical-mathematical model for the combustion of liquefying fuels in hybrid combustors, accounting for blowing effect on the heat transfer. A particular attention is given to a paraffin/nitrous oxide hybrid system. The use of a paraffin fuel in hybrid propulsion has been considered because of its much higher regression rate enabling significantly higher thrust compared to that of common polymeric fuels. The model predicts the overall regression rate (melting rate) of the fuel and the different mechanisms involved, including evaporation, entrainment of droplets of molten material, and mass loss due to melt flow on the condensed fuel surface. Prediction of the thickness and velocity of the liquid (melt) layer formed at the surface during combustion was done as well. Applying the model for an oxidizer mass flux of 45 kg/(s m2) as an example representing experimental range, it was found that 21% of the molten liquid undergoes evaporation, 30% enters the gas flow by the entrainment mechanism, and 49% reaches the end of the combustion chamber as a flowing liquid layer. When increasing the oxidizer mass flux in the port, the effect of entrainment increases while that of the flowing liquid layer along the surface shows a relatively lower contribution. Yet, the latter is predicted to have a significant contribution to the overall mass loss. In practical applications it may cause reduced combustion efficiency and should be taken into account in the motor design, e.g., by reinforcing the paraffin fuel with different additives. The model predictions have been compared to experimental results revealing good agreement.

  6. Packaging material and flexible medical tubing containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A packaging material or flexible medical tubing containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  7. Hybrid Spintronic Structures With Magnetic Oxides and Heusler Alloys

    DEFF Research Database (Denmark)

    Xu, Y. B.; Hassan, S. S. A.; Wong, P. K. J.

    2008-01-01

    Hybrid spintronic structures, integrating half-metallic magnetic oxides and Heusler alloys with their predicted high spin polarization, are important for the development of second-generation spintronics with high-efficient spin injection. We have synthesized epitaxial magnetic oxide Fe3O4 on Ga......As(100) and the unit cell of the Fe3O4 was found to be rotated by 45 degrees to match the gallium arsenide GaAs. The films were found to have a bulk-like moment down to 3-4 nm and a low coercivity indicating a high-quality magnetic interface. The magnetization hysteresis loops of the ultrathin films...... are controlled by uniaxial magnetic anisotropy. The dynamic response of the sample shows a heavily damped precessional response to the applied field pulses. In the Heusler alloy system of Co-2 MnGa on GaAs, we found that the magnetic moment was reduced for thicknesses down to 10 nm, which may account...

  8. Pseudo-diode based on protonic/electronic hybrid oxide transistor

    Science.gov (United States)

    Fu, Yang Ming; Liu, Yang Hui; Zhu, Li Qiang; Xiao, Hui; Song, An Ran

    2018-01-01

    Current rectification behavior has been proved to be essential in modern electronics. Here, a pseudo-diode is proposed based on protonic/electronic hybrid indium-gallium-zinc oxide electric-double-layer (EDL) transistor. The oxide EDL transistors are fabricated by using phosphorous silicate glass (PSG) based proton conducting electrolyte as gate dielectric. A diode operation mode is established on the transistor, originating from field configurable proton fluxes within the PSG electrolyte. Current rectification ratios have been modulated to values ranged between ˜4 and ˜50 000 with gate electrode biased at voltages ranged between -0.7 V and 0.1 V. Interestingly, the proposed pseudo-diode also exhibits field reconfigurable threshold voltages. When the gate is biased at -0.5 V and 0.3 V, threshold voltages are set to ˜-1.3 V and -0.55 V, respectively. The proposed pseudo-diode may find potential applications in brain-inspired platforms and low-power portable systems.

  9. Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles

    NARCIS (Netherlands)

    Pham, Tuan Anh; Kumar, Nanjundan Ashok; Jeong, Yeon Tae

    An efficient strategy for the preparation of water-dispersible hybrid material containing graphene oxide and polyglycerol for the first time is demonstrated. Pristine graphite was firstly oxidized to obtain graphene oxide with hydroxyl functional groups. Then, the covalent grafting of polyglycerol

  10. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers.

    Science.gov (United States)

    Yan, Xingbin; Chen, Jiangtao; Yang, Jie; Xue, Qunji; Miele, Philippe

    2010-09-01

    In this work, we report a low-cost technique via simple rapid-mixture polymerization of aniline using graphene oxide (GO) and graphene papers as substrates, respectively, to fabricate free-standing, flexible GO-polyaniline (PANI) and graphene-PANI hybrid papers. The morphology and microstructure of the obtained papers were characterized by FESEM, FTIR, Raman, and XRD. As results, nanostructural PANI can be deposited on the surfaces of GO and graphene papers, forming thin, lightweight, and flexible paperlike hybrid papers. The hybrid papers display a remarkable combination of excellent electrochemical performances and biocompatibility, making the paperlike materials attractive for new kinds of applications in biosciences.

  11. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.

    2015-08-25

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic properties by altering the pH. We have utilized the oxygen functional moieties such as carboxylate, epoxide, and hydroxyl groups on the edge and basal planes of the GO for binding the Cu2+ ions through dative bonds. The GO-Cu2+ hybrid materials were characterized by cyclic voltammetry in sodium acetate buffer solution. The morphology of the hybrid GO-Cu2+ was characterized by atomic force microscopy. The GO-Cu2+ hybrid electrodes show good electrocatalytic activity for HER with low overpotential in acidic solution. The Tafel slope for the GO-Cu2+ hybrid electrode implies that the primary discharge step is the rate determining step and HER proceed with Volmer step. © 2015 American Institute of Chemical Engineers Environ Prog.

  12. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    the oxide layers are chemically bonded to graphene (Zhang ... sists of three glass chambers, one to contain the metal halide. (TiCl4, SiCl4 ... In this step, the metal halide reacts with the oxygen function- ... 1·0 g of FeCl3 were vigorously stirred in 30 ml of ethylene ... Reaction with water vapour results in hydrolysis of the un-.

  13. Multifunctional Inverse Opal-Like TiO2 Electron Transport Layer for Efficient Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Chen, Xiao; Yang, Shuang; Zheng, Yi Chu; Chen, Ying; Hou, Yu; Yang, Xiao Hua; Yang, Hua Gui

    2015-09-01

    A novel multifunctional inverse opal-like TiO 2 electron transport layer (IOT-ETL) is designed to replace the traditional compact layer and mesoporous scaffold layer in perovskite solar cells (PSCs). Improved light harvesting efficiency and charge transporting performance in IOT-ETL based PSCs yield high power conversion efficiency of 13.11%.

  14. Syntheses, structures and properties of four organic-inorganic hybrid nicotinate-bridging rare-earth-containing phosphotungstates

    Science.gov (United States)

    Gong, Peijun; Pang, Jingjing; Zhai, Cuiping; Zhao, Junwei

    2018-04-01

    Four novel organic-inorganic hybrid nicotinate-bridging dimeric rare-earth (RE)-containing phosphotungstates [H2N(CH3)2]8[RE(H2O)(NA)(α-HPW11O39)]2·24H2O (RE = HoIII for 1, ErIII for 2, TbIII for 3, DyIII for 4; HNA = nicotinic acid) have been synthesized from the reaction of trivacant Keggin precursor Na9[α-PW9O34]•16H2O, RE(NO3)3·6H2O, HNA by employing dimethylamine hydrochloride as organic solubilizing agent in the conventional aqueous solution system, which have been further characterized by elemental analyses, IR spectra, thermogravimetric analyses and single-crystal X-ray diffraction. Structural analysis indicates that the hybrid dimeric {[RE(H2O)(NA)(α-HPW11O39)]2}8- polyoxoanion in 1-4 can be considered as two head-to-head mono-RE-containing Keggin [RE(H2O)(NA)(α-HPW11O39)]4- subunits bridged by two (η2,μ-1,1)-nicotinate linkers, which stands for the first organic-inorganic hybrid RE-containing phosphotungstates functionalized by nicotinate ligands. What's more, the solid-state photoluminescence properties and lifetime decay behaviors of 1-4 have been measured at room temperature and their photoluminescence spectra display the characteristic emission bands of corresponding trivalent RE cations.

  15. SCALE6 Hybrid Deterministic-Stochastic Shielding Methodology for PWR Containment Calculations

    International Nuclear Information System (INIS)

    Matijevic, Mario; Pevec, Dubravko; Trontl, Kresimir

    2014-01-01

    The capabilities and limitations of SCALE6/MAVRIC hybrid deterministic-stochastic shielding methodology (CADIS and FW-CADIS) are demonstrated when applied to a realistic deep penetration Monte Carlo (MC) shielding problem of full-scale PWR containment model. The ultimate goal of such automatic variance reduction (VR) techniques is to achieve acceptable precision for the MC simulation in reasonable time by preparation of phase-space VR parameters via deterministic transport theory methods (discrete ordinates SN) by generating space-energy mesh-based adjoint function distribution. The hybrid methodology generates VR parameters that work in tandem (biased source distribution and importance map) in automated fashion which is paramount step for MC simulation of complex models with fairly uniform mesh tally uncertainties. The aim in this paper was determination of neutron-gamma dose rate distribution (radiation field) over large portions of PWR containment phase-space with uniform MC uncertainties. The sources of ionizing radiation included fission neutrons and gammas (reactor core) and gammas from activated two-loop coolant. Special attention was given to focused adjoint source definition which gave improved MC statistics in selected materials and/or regions of complex model. We investigated benefits and differences of FW-CADIS over CADIS and manual (i.e. analog) MC simulation of particle transport. Computer memory consumption by deterministic part of hybrid methodology represents main obstacle when using meshes with millions of cells together with high SN/PN parameters, so optimization of control and numerical parameters of deterministic module plays important role for computer memory management. We investigated the possibility of using deterministic module (memory intense) with broad group library v7 2 7n19g opposed to fine group library v7 2 00n47g used with MC module to fully take effect of low energy particle transport and secondary gamma emission. Compared with

  16. Multifunctional Nanocarpets for Cancer Theranostics: Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging

    Science.gov (United States)

    Ramachandra Kurup Sasikala, Arathyram; Thomas, Reju George; Unnithan, Afeesh Rajan; Saravanakumar, Balasubramaniam; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2016-02-01

    A new paradigm in cancer theranostics is enabled by safe multifunctional nanoplatform that can be applied for therapeutic functions together with imaging capabilities. Herein, we develop a multifunctional nanocomposite consisting of Graphene Oxide-Iron Oxide -Doxorubicin (GO-IO-DOX) as a theranostic cancer platform. The smart magnetic nanoplatform acts both as a hyperthermic agent that delivers heat when an alternating magnetic field is applied and a chemotherapeutic agent in a cancer environment by providing a pH-dependent drug release to administer a synergistic anticancer treatment with an enhanced T2 contrast for MRI. The novel GO-IO-DOX nanocomposites were tested in vitro and were observed to exhibit an enhanced tumoricidal effect through both hyperthermia and cancer cell-specific DOX release along with an excellent MRI performance, enabling a versatile theranostic platform for cancer. Moreover the localized antitumor effects of GO-IO-DOX increased substantially as a result of the drug sensitization through repeated application of hyperthermia.

  17. Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions.

    Science.gov (United States)

    Zhang, Chao; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2016-02-10

    Regenerated silk fibroin (RSF)/graphene oxide (GO) hybrid silk fibers were dry-spun from a mixed dope of GO suspension and RSF aqueous solution. It was observed that the presence of GO greatly affect the viscosity of RSF solution. The RSF/GO hybrid fibers showed from FTIR result lower β-sheet content compared to that of pure RSF fibers. The result of synchrotron radiation wide-angle X-ray diffraction showed that the addition of GO confined the crystallization of silk fibroin (SF) leading to the decrease of crystallinity, smaller crystallite size, and new formation of interphase zones in the artificial silks. Synchrotron radiation small-angle X-ray scattering also proved that GO sheets in the hybrid silks and blended solutions were coated with a certain thickness of interphase zones due to the complex interaction between the two components. A low addition of GO, together with the mesophase zones formed between GO and RSF, enhanced the mechanical properties of hybrid fibers. The highest breaking stress of the hybrid fibers reached 435.5 ± 71.6 MPa, 23% improvement in comparison to that of degummed silk and 72% larger than that of pure RSF silk fiber. The hybrid RSF/GO materials with good biocompatibility and enhanced mechanical properties may have potential applications in tissue engineering, bioelectronic devices, or energy storage.

  18. Effect of yttrium on the oxide scale adherence of pre-oxidized silicon-containing heat-resistant alloy

    International Nuclear Information System (INIS)

    Yan Jingbo; Gao Yimin; Shen Yudi; Yang Fang; Yi Dawei; Ye Zhaozhong; Liang Long; Du Yingqian

    2011-01-01

    Highlights: → AE experiment shows yttrium has a beneficial effect on the pre-oxidized HP40 alloy. → Yttrium facilitates the formation of internal oxide after 10 h of oxidation. → Internal oxide changes the rupture behaviour of the oxide scale. → Twins form in the internal oxide and improve the binding strength of the scale. - Abstract: This paper investigates the effect of the rare earth element yttrium on the rupture behaviour of the oxide scale on the silicon-containing heat-resistant alloy during cooling. After 10 h of oxidation, yttrium is found to facilitate the formation of internal oxides (silica) at the scale-matrix interface. Due to the twinning observed by scanning transmission electron microscopy (STEM) in silica, the critical strain value for the scale failure can be dramatically improved, and the formation of cracks at the scale-matrix interface is inhibited.

  19. Multifunctional hybrid coating on titanium towards hydroxyapatite growth: Electrodeposition of tantalum and its molecular functionalization with organophosphonic acids films

    International Nuclear Information System (INIS)

    Arnould, Christelle; Delhalle, Joseph; Mekhalif, Zineb

    2008-01-01

    Titanium and its alloys are base materials used in the dental and orthopaedic fields owing to suitable intrinsic properties: good biocompatibility, high corrosion resistance and excellent mechanical properties. However, the bonding between titanium and bone tissue is not always strong enough and can become a critical problem. In this context, the two main objectives of this paper are the increase of the corrosion resistance and the improvement of the hydroxyapatite (HAp) growth. The surface modification considered here is achieved in three main steps and consists in the elaboration of different inorganic and organic coatings. The first step is the elaboration of electrodeposition of tantalum on the titanium oxide film of a titanium substrate. The second step is the modification of the tantalum oxide coating with organophosphonic acids. The last step is the nucleation and growth of HAP on the outermost layer of the system by immersion in a simulated body fluid. The hybrid coating tantalum oxide/organophosphonic acids/molecular layer is shown to be promising for orthopaedic implants

  20. Novel phosphine-peptide hybrids as selective catalysts

    DEFF Research Database (Denmark)

    Nygaard, David

    (His(Trt), Gln, Gln(Trt), Cys(tBu), Thr(OtBu), azido- Dab, Asp(OtBu), Arg(Pmc))) yielding a range of novel modified peptides. Peptides containing one secondary amine were phosphinylated and captured as either phosphine-boranes or oxides. Both borane and oxide protection of phosphine-peptide hybrids...... was discovered and the compounds were structurally elucidated via NMR and mass spectroscopy. Two of these compounds were incorporated into peptides. An existing method of obtaining peptides containing secondary amines in the peptide backbone have been expanded for incorporation of functional amino acids as well...... palladium chloride dimer did not yield an observable phosphine-palladium complex. A peptide containing two secondary amine sites was synthesized, phosphinylated and complexed to respectively palladium and copper. The palladium complex was utilized successfully as a palladium catalyst in a model Sonogashira...

  1. Multifunctional cellulase and hemicellulase

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Brian G.; Takasuka, Taichi; Bianchetti, Christopher M.

    2015-09-29

    A multifunctional polypeptide capable of hydrolyzing cellulosic materials, xylan, and mannan is disclosed. The polypeptide includes the catalytic core (cc) of Clostridium thermocellum Cthe_0797 (CelE), the cellulose-specific carbohydrate-binding module CBM3 of the cellulosome anchoring protein cohesion region (CipA) of Clostridium thermocellum (CBM3a), and a linker region interposed between the catalytic core and the cellulose-specific carbohydrate binding module. Methods of using the multifunctional polypeptide are also disclosed.

  2. Zinc oxide tetrapod: a morphology with multifunctional applications

    International Nuclear Information System (INIS)

    Modi, Gaurav

    2015-01-01

    Zinc oxide has emerged as a material of great interest due to its unique optical, electrical and magnetic properties. This review comprehensively covers the various aspects of zinc oxide tetrapods. Tetrapod is a one dimensional zinc oxide nano-microstructure and has been found to have very promising applications in diverse fields. The growth model, properties, synthesis methods and variations in the tetrapod morphology by varying the synthesis conditions have been discussed. The promising applications of zinc oxide tetrapod morphology have been also discussed in detail. (review)

  3. Facile synthesis of graphene oxide @ mesoporous carbon hybrid nanocomposites for lithium sulfur battery

    International Nuclear Information System (INIS)

    Bao, Weizhai; Zhang, Zhian; Chen, Wei; Zhou, Chengkun; Lai, Yanqing; Li, Jie

    2014-01-01

    Graphical abstract: - Highlights: • A novel design and synthesis of GO@Meso-C using GO@MOF-5 as precursor. • GO@Meso-C hybrid material as a host material was applied for sulfur cathode. • Electrochemical performances were improved in sulfur cathode using Go@Meso-C. - Abstract: We present a design and synthesis of a hierarchical architecture of graphene oxide @ mesoporous carbon (GO@Meso-C) using graphene oxide @ metal-organic framework hybrid materials (GO@MOF-5) as both the template and precursor. Active sulfur is encapsulated into the GO@Meso-C matrix prepared via carbonize GO@MOF-5 polyhedrons for high performance lithium sulfur battery. The initial and 100th cycle discharge capacity of GO@Meso-C/S sulfur cathode are as high as 1122 mAh g −1 and 820 mAh g −1 at a current rate of 0.2 C. The remarkably high special capacity and capacity retention rate indicate that the GO@Meso-C is a promising host material for the sulfur cathode in the lithium sulfur battery applications

  4. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  5. Electrodeposition of zinc oxide/tetrasulfonated copper phthalocyanine hybrid thin film for dye-sensitized solar cell application

    International Nuclear Information System (INIS)

    Luo Xinze; Xu Lin; Xu Bingbing; Li Fengyan

    2011-01-01

    Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO 3 ) 2 , TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 μA cm -2 , a fill factor of 0.26, and a power conversion efficiency of 0.14%.

  6. Electrodeposition of zinc oxide/tetrasulfonated copper phthalocyanine hybrid thin film for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xinze [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biological Science, Yili Normal University, Yining 835000, (China); Xu Lin, E-mail: linxu@nenu.edu.cn [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); Xu Bingbing; Li Fengyan [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2011-05-15

    Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO{sub 3}){sub 2}, TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 {mu}A cm{sup -2}, a fill factor of 0.26, and a power conversion efficiency of 0.14%.

  7. A Multifunctional Envelope-Type Nano Device Containing a pH-Sensitive Cationic Lipid for Efficient Delivery of Short Interfering RNA to Hepatocytes In Vivo.

    Science.gov (United States)

    Sato, Yusuke; Harashima, Hideyoshi; Kohara, Michinori

    2016-01-01

    Various types of nanoparticles have been developed with the intent of efficiently delivering short interfering RNA (siRNA) to hepatocytes to date. To achieve efficient SiRNA delivery, various aspects of the delivery processes and physical properties need to be considered. We recently developed an original lipid nanoparticle, a multifunctional envelope-type nano device (MEND) containing YSK05, a pH-sensitive cationic lipid (YSK05-MEND). The YSK05-MEND with SiRNA in its formulation showed hepatocyte-specific uptake and robust gene silencing in hepatocytes after intravenous administration. Here, we describe the procedure used in the preparation and characterization method of the YSK05-MEND.

  8. Potential of hybrid functionalized meso-porous materials for the separation and immobilization of radionuclides

    International Nuclear Information System (INIS)

    Luca, V.

    2013-01-01

    Functionalized meso-porous materials are a class of hybrid organic-inorganic material in which a meso-porous metal oxide framework is functionalized with multifunctional organic molecules. These molecules may contain one or more anchor groups that form strong bonds to the pore surfaces of the metal oxide framework and free functional groups that can impart and or modify the functionality of the material such as for binding metal ions in solution. Such materials have been extensively studied over the past decade and are of particular interest in absorption applications because of the tremendous versatility in choosing the composition and architecture of the metal oxide framework and the nature of the functional organic molecule as well as the efficient mass transfer that can occur through a well-designed hierarchically porous network. A sorbent for nuclear applications would have to be highly selective for particular radio nuclides, it would need to be hydrolytically and radiolytically stable, and it would have to possess reasonable capacity and fast kinetics. The sorbent would also have to be available in a form suitable for use in a column. Finally, it would also be desirable if once saturated with radio nuclides, the sorbent could be recycled or converted directly into a ceramic or glass waste form suitable for direct repository disposal or even converted directly into a material that could be used as a transmutation target. Such a cradle-to- grave strategy could have many benefits in so far as process efficiency and the generation of secondary wastes are concerned.This paper will provide an overview of work done on all of the above mentioned aspects of the development of functionalized meso-porous adsorbent materials for the selective separation of lanthanides and actinides and discuss the prospects for future implementation of a cradle-to-grave strategy with such materials. (author)

  9. Electrospray painted article containing thermally exfoliated graphite oxide and method for their manufacture

    Science.gov (United States)

    Korkut, Sibel (Inventor); Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A painted polymer part containing a conductive polymer composition containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the painted polymer part has been electrospray painted.

  10. Enhanced electrocatalytic activity of reduced graphene oxide-Os nanoparticle hybrid films obtained at a liquid/liquid interface

    Science.gov (United States)

    Bramhaiah, K.; Pandey, Indu; Singh, Vidya N.; Kavitha, C.; John, Neena S.

    2018-03-01

    Hybrid films of reduced graphene oxide-osmium nanoparticles (rGO-Os NPs) synthesized at a liquid/liquid interface are explored for their electrocatalytic activity towards the oxidation of rhodamine B (RhB), a popular colourant found in textile industry effluents and a non-permitted food colour. The free-standing nature of the films enables them to be lifted directly on to electrodes without the aid of any binders. The films consist of aggregates of ultra-small Os NPs interspersed with rGO layers. The hybrid film exhibits enhanced RhB oxidation when compared to its constituents arising from the synergic effect between rGO and Os NPs, Os contributing to electrocatalysis and rGO contributing to high surface area and conductance as well as stabilization of Os nanoparticles. The electrochemical sensor based on rGO-Os NP hybrid film on pencil graphite electrode shows a remarkable performance for the quantitative detection of RhB with a linear variation in a wide range of concentrations, 4-1300 ppb (8.3 nM-2.71 μM). The modified electrode presents good stability over more than 6 months, reproducibility and anti-interference capability. The use of developed sensor for adequate detection of RhB in real samples such as food samples and pen markers is also demonstrated.

  11. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

    Science.gov (United States)

    Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Multifunctional organophosphorus extractants: a status report on development and applications

    International Nuclear Information System (INIS)

    Schulz, W.W.; Horwitz, E.P.

    1988-01-01

    Up-to-date state of the development of science and technology of multifunctional organophosphorus extractants is considered. The detailed classification of these extractants is presented. They attracted pasticular interest because of affinity of some bifunctional phosphonates, phosphine oxides, carbamoylalkylphosphonates to trivalent Am, tetravalent and hexavalent actinides, trivalent lanthanides in strong mineral acids, and because of ability of some alkylpyrophosphoric acids to extract effectively U(4) from concentrated solutions of phosphoric acid. Application of these extractants for analytic purposes and in the field of nuclear technology is considered

  13. A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent.

    Science.gov (United States)

    Choi, Yun-Jung; Kim, Eunsu; Han, JaeWoong; Kim, Jin-Hoi; Gurunathan, Sangiliyandi

    2016-03-18

    Graphene oxide (GO) is a monolayer of carbon atoms that form a dense honeycomb structure, consisting of hydroxyl and epoxide functional groups on the two accessible sides and carboxylic groups at the edges. In contrast, graphene is a two-dimensional sheet of sp2-hybridized carbon atoms packed into a honeycomb lattice. Graphene has great potential for use in biomedical applications due to its excellent physical and chemical properties. In this study, we report a facile and environmentally friendly approach for the synthesis of reduced graphene oxide (rGO) using uric acid (UA). The synthesized uric acid-reduced graphene oxide (UA-rGO) was fully characterized by ultraviolet-visible (UV-Vis) absorption spectra, X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and Raman spectroscopy. GO and UA-rGO induced a dose-dependent decrease in cell viability and induced cytotoxicity in human ovarian cancer cells. The results from this study suggest that UA-rGO could cause apoptosis in mammalian cells. The toxicity of UA-rGO is significantly higher than GO. Based on our findings, UA-rGO shows cytotoxic effects against human ovarian cancer cells, and its synthesis is environmentally friendly. UA-rGO significantly inhibits cell viability by increasing lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, activation of caspase-3, and DNA fragmentation. This is the first report to describe the comprehensive effects of UA-rGO in ovarian cancer cells. We believe that the functional aspects of newly synthesized UA-rGO will provide advances towards various biomedical applications in the near future.

  14. A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2016-03-01

    Full Text Available Graphene oxide (GO is a monolayer of carbon atoms that form a dense honeycomb structure, consisting of hydroxyl and epoxide functional groups on the two accessible sides and carboxylic groups at the edges. In contrast, graphene is a two-dimensional sheet of sp2-hybridized carbon atoms packed into a honeycomb lattice. Graphene has great potential for use in biomedical applications due to its excellent physical and chemical properties. In this study, we report a facile and environmentally friendly approach for the synthesis of reduced graphene oxide (rGO using uric acid (UA. The synthesized uric acid-reduced graphene oxide (UA-rGO was fully characterized by ultraviolet-visible (UV-Vis absorption spectra, X-ray diffraction (XRD, dynamic light scattering (DLS, Fourier transform infrared (FTIR, scanning electron microscopy (SEM, and Raman spectroscopy. GO and UA-rGO induced a dose-dependent decrease in cell viability and induced cytotoxicity in human ovarian cancer cells. The results from this study suggest that UA-rGO could cause apoptosis in mammalian cells. The toxicity of UA-rGO is significantly higher than GO. Based on our findings, UA-rGO shows cytotoxic effects against human ovarian cancer cells, and its synthesis is environmentally friendly. UA-rGO significantly inhibits cell viability by increasing lactate dehydrogenase (LDH release, reactive oxygen species (ROS generation, activation of caspase-3, and DNA fragmentation. This is the first report to describe the comprehensive effects of UA-rGO in ovarian cancer cells. We believe that the functional aspects of newly synthesized UA-rGO will provide advances towards various biomedical applications in the near future.

  15. A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Palanimuthu, Duraippandi; Poon, Rachal; Sahni, Sumit; Anjum, Rukhsana; Hibbs, David; Lin, Hsuan-Yu; Bernhardt, Paul V; Kalinowski, Danuta S; Richardson, Des R

    2017-10-20

    Over 44 million people live with Alzheimer's disease (AD) worldwide. Currently, only symptomatic treatments are available for AD and no cure exists. Considering the lack of effective treatments for AD due to its multi-factorial pathology, development of novel multi-target-directed drugs are desirable. Herein, we report the development of a novel series of thiosemicarbazones derived from 1-benzylpiperidine, a pharmacophore within the acetylcholinesterase inhibitor, Donepezil. These thiosemicarbazones were designed to target five major AD hallmarks, including: low acetylcholine levels, dysfunctional autophagy, metal dys-homeostasis, protein aggregation and oxidative stress. Of these thiosemicarbazones, pyridoxal 4-N-(1-benzylpiperidin-4-yl)thiosemicarbazone (PBPT) emerged as the lead compound. This agent demonstrated the most promising multi-functional activity by exhibiting very low anti-proliferative activity, substantial iron chelation efficacy, inhibition of copper-mediated amyloid-β aggregation, inhibition of oxidative stress, moderate acetylcholinesterase inhibitory activity and autophagic induction. These diverse properties highlight the potential of the lead ligand, PBPT, as a promising multi-functional agent for AD treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.; Ravishankar, T.N.; Ramakrishnappa, T.; Nagaraju, Doddahalli H.; Krishna Pai, Ranjith

    2015-01-01

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic

  17. Oxidative Stability of Nano-Microstructures containing fish oil

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Özdemir, N.; Boutrup Stephansen, Karen

    investigated. For that purpose, three different biopolymers namely pullulan, dextran and whey protein concentrate (WPC) were evaluated as encapsulating materials. First, the influence of biopolymer concentration on the physical properties (e.g. viscosity, conductivity and surface tension) of the biopolymer...... solutions and on the morphology of NMS was assayed. Secondly, the oxidative stability of the biopolymer solutions containing emulsified fish oil during storage (14 days at 40 °C) and of NMS loaded with fish oil (e.g. pullulan fibers and dextran and WPC capsules) was determined. Finally, to improve...... the oxidative status of the NMS, pullulan fibers, dextran capsules and WPC capsules were produced by adding neat fish oil instead of emulsified fish oil to the biopolymer solutions. These latter NMS presented a higher oxidative stability, which may be due to a better entrapment of the fish oil into biopolymer...

  18. Near-field effects and energy transfer in hybrid metal-oxide nanostructures.

    Science.gov (United States)

    Herr, Ulrich; Kuerbanjiang, Balati; Benel, Cahit; Papageorgiou, Giorgos; Goncalves, Manuel; Boneberg, Johannes; Leiderer, Paul; Ziemann, Paul; Marek, Peter; Hahn, Horst

    2013-01-01

    One of the big challenges of the 21st century is the utilization of nanotechnology for energy technology. Nanoscale structures may provide novel functionality, which has been demonstrated most convincingly by successful applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the electrical field, which has been utilized in spectroscopy for many years. On the other hand, the excited states in metallic structures decay over very short lifetimes. Longer lifetimes of excited states occur in nonmetallic nanostructures, which makes them attractive for further energy transfer before recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL) and oxide nanoparticles. The oxide particles were doped with rare-earth (RE) ions, which show a large shift between absorption and emission wavelengths, allowing us to investigate the energy-transfer processes in detail. The main focus is on TiO2 nanoparticles doped with Eu(3+), since the material is interesting for applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The experiments are

  19. In Situ Reductive Synthesis of Structural Supported Gold Nanorods in Porous Silicon Particles for Multifunctional Nanovectors.

    Science.gov (United States)

    Zhu, Guixian; Liu, Jen-Tsai; Wang, Yuzhen; Zhang, Dechen; Guo, Yi; Tasciotti, Ennio; Hu, Zhongbo; Liu, Xuewu

    2016-05-11

    Porous silicon nanodisks (PSD) were fabricated by the combination of photolithography and electrochemical etching of silicon. By using PSD as a reducing agent, gold nanorods (AuNR) were in situ synthesized in the nanopores of PSD, forming PSD-supported-AuNR (PSD/AuNR) hybrid particles. The formation mechanism of AuNR in porous silicon (pSi) was revealed by exploring the role of pSi reducibility and each chemical in the reaction. With the PSD support, AuNR exhibited a stable morphology without toxic surface ligands (CTAB). The PSD/AuNR hybrid particles showed enhanced plasmonic property compared to free AuNR. Because high-density "hot spots" can be generated by controlling the distribution of AuNR supported in PSD, surface-enhanced raman scattering (SERS) using PSD/AuNR as particle substrates was demonstrated. A multifunctional vector, PSD/AuNR/DOX, composed of doxorubicin (DOX)-loaded PSD/AuNR capped with agarose (agar), was developed for highly efficient, combinatorial cancer treatment. Their therapeutic efficacy was examined using two pancreatic cancer cell lines, PANC-1 and MIA PaCa-2. PSD/AuNR/DOX (20 μg Au and 1.25 μg DOX/mL) effectively destroyed these cells under near-IR laser irradiation (810 nm, 15 J·cm(-2) power, 90 s). Overall, we envision that PSD/AuNR may be a promising injectable, multifunctional nanovector for biomedical application.

  20. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering.

    Science.gov (United States)

    Jakus, Adam E; Shah, Ramille N

    2017-01-01

    With the emergence of three-dimensional (3D)-printing (3DP) as a vital tool in tissue engineering and medicine, there is an ever growing need to develop new biomaterials that can be 3D-printed and also emulate the compositional, structural, and functional complexities of human tissues and organs. In this work, we probe the 3D-printable biomaterials spectrum by combining two recently established functional 3D-printable particle-laden biomaterial inks: one that contains hydroxyapatite microspheres (hyperelastic bone, HB) and another that contains graphene nanoflakes (3D-graphene, 3DG). We demonstrate that not only can these distinct, osteogenic, and neurogenic inks be co-3D-printed to create complex, multimaterial constructs, but that composite inks of HB and 3DG can also be synthesized. Specifically, the printability, microstructural, mechanical, electrical, and biological properties of a hybrid material comprised of 1:1 HA:graphene by volume is investigated. The resulting HB-3DG hybrid exhibits mixed characteristics of the two distinct systems, while maintaining 3D-printability, electrical conductivity, and flexibility. In vitro assessment of HB-3DG using mesenchymal stem cells demonstrates the hybrid material supports cell viability and proliferation, as well as significantly upregulates both osteogenic and neurogenic gene expression over 14 days. This work ultimately demonstrates a significant step forward towards being able to 3D-print graded, multicompositional, and multifunctional constructs from hybrid inks for complex composite tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 274-283, 2017. © 2016 Wiley Periodicals, Inc.

  1. Graphene/Epoxy Coating as Multifunctional Material for Aircraft Structures

    Directory of Open Access Journals (Sweden)

    Tullio Monetta

    2015-06-01

    Full Text Available Recently, the use of graphene as a conductive nanofiller in the preparation of inorganic/polymer nanocomposites has attracted increasing interest in the aerospace field. The reason for this is the possibility of overcoming problems strictly connected to the aircraft structures, such as electrical conductivity and thus lightning strike protection. In addition, graphene is an ideal candidate to enhance the anti-corrosion properties of the resin, since it absorbs most of the light and provides hydrophobicity for repelling water. An important aspect of these multifunctional materials is that all these improvements can be realized even at very low filler loadings in the polymer matrix. In this work, graphene nanoflakes were incorporated into a water-based epoxy resin, and then the hybrid coating was applied to Al 2024-T3 samples. The addition of graphene considerably improved some physical properties of the hybrid coating as demonstrated by Electrochemical Impedance Spectroscopy (EIS analysis, ameliorating anti-corrosion performances of raw material. DSC measurements and Cross-cut Test showed that graphene did not affect the curing process or the adhesion properties. Moreover, an increment of water contact angle was displayed.

  2. One-step fabrication of multifunctional micromotors

    Science.gov (United States)

    Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-08-01

    Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications. Electronic supplementary information (ESI) available: Videos S1-S4 and Fig. S1-S3. See DOI: 10.1039/c5nr03574k

  3. Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors.

    Science.gov (United States)

    Huang, Haijian; Wang, Xing; Tervoort, Elena; Zeng, Guobo; Liu, Tian; Chen, Xi; Sologubenko, Alla; Niederberger, Markus

    2018-03-27

    A general method for preparing nano-sized metal oxide nanoparticles with highly disordered crystal structure and their processing into stable aqueous dispersions is presented. With these nanoparticles as building blocks, a series of nanoparticles@reduced graphene oxide (rGO) composite aerogels are fabricated and directly used as high-power anodes for lithium-ion hybrid supercapacitors (Li-HSCs). To clarify the effect of the degree of disorder, control samples of crystalline nanoparticles with similar particle size are prepared. The results indicate that the structurally disordered samples show a significantly enhanced electrochemical performance compared to the crystalline counterparts. In particular, structurally disordered Ni x Fe y O z @rGO delivers a capacity of 388 mAh g -1 at 5 A g -1 , which is 6 times that of the crystalline sample. Disordered Ni x Fe y O z @rGO is taken as an example to study the reasons for the enhanced performance. Compared with the crystalline sample, density functional theory calculations reveal a smaller volume expansion during Li + insertion for the structurally disordered Ni x Fe y O z nanoparticles, and they are found to exhibit larger pseudocapacitive effects. Combined with an activated carbon (AC) cathode, full-cell tests of the lithium-ion hybrid supercapacitors are performed, demonstrating that the structurally disordered metal oxide nanoparticles@rGO||AC hybrid systems deliver high energy and power densities within the voltage range of 1.0-4.0 V. These results indicate that structurally disordered nanomaterials might be interesting candidates for exploring high-power anodes for Li-HSCs.

  4. Regeneration of iron oxide containing pellets used for hot gas clean up

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.; Heeney, P.; Furimsky, E. (CANMET, Ottawa, Ontario (Canada). Energy Research Laboratories)

    1989-09-01

    Four iron-containing pelletized solids used for H{sub 2}S removal from hot gas were oxidized in a Cahn electrobalance and in a fixed bed reactor. The main reactions included the sequence in which FeS was oxidized to iron sulphate which then decomposed rapidly yielding SO{sub 2} and iron oxides. The oxidation occurred predominantly on the outer surface of the pellets. 12 refs., 5 figs., 5 tabs.

  5. Riboflavina: uma vitamina multifuncional Riboflavin: a multifunctional vitamin

    Directory of Open Access Journals (Sweden)

    Ana Carolina Santos de Souza

    2005-10-01

    Full Text Available Riboflavin, a component of the B2 vitaminic complex, plays important roles in biochemistry, especially in redox reactions, due to the ability to participate in both one- and two-electron transfers as well as acting as a photosensitizer. Accordingly, low intakes of this vitamin have been associated with different diseases, including cancer and cardiovascular diseases. Riboflavin is thought to contribute to oxidative stress through its capacity to produce superoxide but, interestingly, it can also promote the reduction of hydroperoxides. This peculiar and multifunctional behavior allows riboflavin to take part in various biochemical pathways as a nucleophile and an electrophile, turning it into a versatile and important biological compound.

  6. New hybrid nanofluid containing encapsulated paraffin wax and sand nanoparticles in propylene glycol-water mixture: Potential heat transfer fluid for energy management

    International Nuclear Information System (INIS)

    Manikandan, S.; Rajan, K.S.

    2017-01-01

    Highlights: • Hybrid nanofluid containing sand nanoparticles & encapsulated paraffin wax prepared. • Specific heat of hybrid nanofluid 9% greater than that of PG-water mixture. • Specific heat & thermal conductivity enhanced at optimum paraffin wax concentration. • Hybrid nanofluid with 1 wt.% paraffin wax & 1 vol% sand nanoparticles best suited. - Abstract: The reduction in specific heat commonly encountered due to the addition of nanoparticles to a heat transfer fluid such as propylene glycol-water mixture, can be overcome by co-dispersing surfactant-encapsulated paraffin wax, leading to formation of a hybrid nanofluid. Experimental investigations have been carried out on the preparation and evaluation of thermophysical properties of a hybrid nanofluid containing pluronic P-123 encapsulated paraffin wax (70–120 nm diameter, 1–5 wt.%) and sand nanoparticles (1 vol%) in propylene glycol-water mixture. The comparison of results of differential scanning calorimetry of pure paraffin wax and encapsulated paraffin wax revealed encapsulation efficiency of 84.4%. The specific heat of hybrid nanofluids monotonously increased with paraffin wax concentration, with 9.1% enhancement in specific heat for hybrid nanofluid containing 5 wt.% paraffin wax, in comparison to propylene glycol-water mixture. There exists an optimum paraffin wax concentration (1 wt.%) for the hybrid nanofluid at which the combination of various thermophysical properties such as specific heat, thermal conductivity and viscosity are favorable for use as heat transfer fluid. Such a hybrid nanofluid can be used as a substitute for propylene glycol-water mixture in solar thermal systems.

  7. MULTIFUNCTIONAL ADHESIN PROTEINS AND THEIR DISPLAY IN MICROBIAL CELLS

    DEFF Research Database (Denmark)

    1999-01-01

    Recombinant cells expressing a multifunctional adhesin protein derived from a naturally occurring adhesin, containing a binding domain that is capable of binding to an organic receptor and a binding domain that is capable of binding to a compound to which the naturally occurring adhesin protein...... substantially does not bind. The cells or modified adhesin proteins, optionally in immobilized form, are useful for separating organic and inorganic compounds including toxic or precious metals from an environment....

  8. Investigation of the oxidative ammonolysis of propylene on oxide catalysts containing molybdenum and using the response method

    International Nuclear Information System (INIS)

    Gadzhiev, K.N.; Adzhamov, K.Y.; Alkhazov, T.G.; Khanmamedova, A.K.

    1985-01-01

    The response method has been used to study the oxidative ammonolysis of propylene on MoO 3 and molybdenum oxide systems containing bismuth, silicon, and phosphorous ions. The response curves obtained for ammonia, propylene, CO 2 , acrolein, acrylonitrile in these systems are discussed and compared with individual molybdenum trioxide. It has been shown that the modifying action of ammonia on the catalyst surfaces determines the direction of the oxidative conversion of the propylene

  9. Quantification of syntrophic fatty acid-{beta}-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.H.; Ahring, B.K.; Raskin, L.

    1999-11-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-{beta}-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-{beta}-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-{beta}-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, or which the majority was accounted for by the genus Syntrophomonas.

  10. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling.

    Science.gov (United States)

    Zhou, Chaohui; Wu, Hui; Wang, Mingliang; Huang, Chusen; Yang, Dapeng; Jia, Nengqin

    2017-09-01

    In this work, we developed a T 2 -weighted contrast agent based on graphene oxide (GO)/Fe 3 O 4 hybrids for efficient cellular magnetic resonance imaging (MRI). The GO/Fe 3 O 4 hybrids were obtained by combining with co-precipitation method and pyrolysis method. The structural, surface and magnetic characteristics of the hybrids were systematically characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), AFM, Raman, FT-IR and XRD. The GO/Fe 3 O 4 hybrids were functionalized by modifying with anionic and cationic polyelectrolyte through layer-by-layer assembling. The fluorescence probe fluorescein isothiocyanate (FITC) was further loaded on the surface of functionalized GO/Fe 3 O 4 hybrids to trace the location of GO/Fe 3 O 4 hybrids in cells. Functionalized GO/Fe 3 O 4 hybrids possess good hydrophilicity, less cytotoxicity, high MRI enhancement with the relaxivity (r 2 ) of 493mM -1 s -1 as well as cellular MRI contrast effect. These obtained results indicated that the functionalized GO/Fe 3 O 4 hybrids could have great potential to be utilized as cellular MRI contrast agents for tumor early diagnosis and monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Removal and recovery of nitrogen and sulfur oxides from gaseous mixtures containing them

    International Nuclear Information System (INIS)

    Cooper, H.B.H.

    1984-01-01

    A cyclic process for removing lower valence nitrogen oxides from gaseous mixtures includes treating the mixtures with an aqueous media including alkali metal carbonate and alkali metal bicarbonate and a preoxygen oxidant to form higher valence nitrogen oxides and to capture these oxides as alkali metal salts, expecially nitrites and nitrates, in a carbonate/bicarbonate-containing product aqueous media. Highly selective recovery of nitrates in high purity and yield may then follow, as by crystallization, with the carbonate and bicarbonate alkali metal salts strongly increasing the selectivity and yield of nitrates. The product nitrites are converted to nitrates by oxidation after lowering the product aqueous media pH to below about 9. A cyclic process for removing sulfur oxides from gas mixtures includes treating these mixtures includes treating these mixtures with aqueous media including alkali metal carbonate and alkali metal bicarbonate where the ratio of alkali metal to sulfur dioxide is not less than 2. The sulfur values may be recovered from the resulting carbonate/bicarbonate/-sulfite containing product aqueous media as alkali metal sulfate or sulfite salts which are removed by crystallization from the carbonate-containing product aqueous media. As with the nitrates, the carbonate/bicarbonate system strongly increases yield of sulfate or sulfite during crystallization. Where the gas mixtures include both sulfur dioxide and lower valence nitrogen oxides, the processes for removing lower valence nitrogen oxides and sulfur dioxide may be combined into a single removal/recovery system, or may be effected in sequence

  12. Peptide-micelle hybrids containing fasudil for targeted delivery to the pulmonary arteries and arterioles to treat pulmonary arterial hypertension.

    Science.gov (United States)

    Gupta, Nilesh; Ibrahim, Hany M; Ahsan, Fakhrul

    2014-11-01

    This study investigates the respirability and efficacy of peptide-micelle hybrid nanoparticles as carriers for inhalational therapy of pulmonary arterial hypertension (PAH). CARSKNKDC (CAR), a cell-penetrating and lung-homing peptide, conjugated polyethylene glycol-distearoyl-phosphoethanolamine micelles containing fasudil, an investigational anti-PAH drug, were prepared by solvent evaporation method and characterized for various physicochemical properties. The pharmacokinetics and pharmacological efficacy of hybrid particles containing fasudil were evaluated in healthy rats and monocrotaline-induced PAH rats. CAR micelles containing fasudil had an entrapment efficiency of approximately 58%, showed controlled release of the drug, and were monodispersed with an average size of approximately 14 nm. Nuclear magnetic resonance scan confirmed the drug's presence in the core of peptide-micelle hybrid particles. Compared with plain micelles, CAR peptide increased the cellular uptake by approximately 1.7-fold and extended the drug half-life by approximately fivefold. The formulations were more prone to accumulate in the pulmonary vasculature than in the peripheral blood, which is evident from the ratio of the extent of reduction of pulmonary and systemic arterial pressures. On the whole, this study demonstrates that peptide-polymer hybrid micelles can serve as inhalational carriers for PAH therapy. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Li Qiang, E-mail: guoliqiang@ujs.edu.cn; Ding, Jian Ning; Huang, Yu Kai [Micro/Nano Science & Technology Center, Jiangsu University, Zhenjiang, 212013 (China); Zhu, Li Qiang, E-mail: lqzhu@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-08-15

    Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO{sub 2} electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO) synaptic transistor. In such synaptic transistors, protons within the SiO{sub 2} electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF) behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  14. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    Directory of Open Access Journals (Sweden)

    Li Qiang Guo

    2015-08-01

    Full Text Available Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO2 electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO synaptic transistor. In such synaptic transistors, protons within the SiO2 electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  15. Preparation of Magnetic Iron Oxide Nanoparticles (MIONs with Improved Saturation Magnetization Using Multifunctional Polymer Ligand

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan Majeed

    2016-11-01

    Full Text Available This paper describes the preparation of ultra-small magnetic iron oxide (Fe3O4 nanoparticles (MIONs coated with water-soluble thioether end-functionalized polymer ligand pentaerythritol tetrakis 3-mercaptopropionate-polymethacrylic acid (PTMP-PMAA. The MIONs were prepared by co-precipitation of aqueous iron precursor solution at a high temperature. The polymer modified MIONs were characterized by dynamic light scattering (DLS, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, X-ray powder diffraction (XRD, thermogravimetric analysis (TGA, and vibrating sample magnetometery (VSM. It was found that these MIONs were successfully modified by this water-soluble polymer ligand with a fairly uniform size and narrow size distribution. The dried powder of MIONs could be stored for a long time and re-dispersed well in water without any significant change. Additionally, the polymer concentration showed a significant effect on size and magnetic properties of the MIONs. The saturation magnetization was increased by optimizing the polymer concentration. Furthermore, the 3-(4,5-dimethylthiazol-2-yl-2-5-diphenyltetrazolium bromide (MTT-assay demonstrated that these MIONs were highly biocompatible and they could be successfully coupled with fluorescent dye Rhodamine due to the formation of amide bond between carboxylic acid groups of MIONs and amine groups of dye. The obtained results indicated that these multifunctional MIONs with rich surface chemistry exhibit admirable potential in biomedical applications.

  16. Synthesis of palladium nanoparticle modified reduced graphene oxide and multi-walled carbon nanotube hybrid structures for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jie, E-mail: hujie@tyut.edu.cn [Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi (China); Zhao, Zhenting; Zhang, Jun; Li, Gang; Li, Pengwei; Zhang, Wendong [Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi (China); Lian, Kun, E-mail: liankun@tyut.edu.cn [Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi (China); School of Nano-Science and Nano-Engineering, Suzhou & Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi' an Jiaotong University, Xi' an, 710049 (China); Center for Advanced Microstructures and Devices, Louisiana State University, LA, 70806 (United States)

    2017-02-28

    Graphical abstract: A sensitive hydrazine electrochemical sensor was fabricated by using palladium (Pd) nanoparticle functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotube (MWCNTs) hybrid structures (Pd/rGO-MWCNTs). - Highlights: • rGO-MWCNTs hybrid structures and Pd nanoparticles are prepared using electrochemical methods. • rGO-MWCNTs hybrid films are used as supports and co-catalysts for Pd nanoparticles. • The Pd/rGO-MWCNTs hybrid structure based sensor shows an ultra-high sensitivity of 7.09 μA μM{sup −1} cm{sup −2} and a low detection limit of 0.15 μM. • The proposed electrochemical sensor exhibits excellent selectivity. - Abstract: In this work, palladium (Pd) nanoparticles functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) hybrid structures (Pd/rGO-MWCNTs) were successfully prepared by a combination of electrochemical reduction with electrodeposition method. The morphology, structure, and composition of the Pd/rGO-MWCNTs hybrid were characterized by scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy. The as-synthesized hybrid structures were modified on the glassy carbon electrode (GCE) and further utilized for hydrazine sensing. Electrochemical impedance spectroscopic, cyclic voltammetry and single-potential amperometry experiments were carried out on Pd/rGO-MWCNTs hybrid structures to investigate the interface properties and sensing performance. The measured results demonstrate that the fabricated Pd/rGO-MWCNTs/GCE sensor show a high sensitivity of 7.09 μA μM{sup −1} cm{sup −2} in a large concentration range of 1.0 to 1100 μM and a low detection limit of 0.15 μM. Moreover, the as-prepared sensor exhibits good selectivity and stability for the determination of hydrazine under interference conditions.

  17. Synthesis of palladium nanoparticle modified reduced graphene oxide and multi-walled carbon nanotube hybrid structures for electrochemical applications

    International Nuclear Information System (INIS)

    Hu, Jie; Zhao, Zhenting; Zhang, Jun; Li, Gang; Li, Pengwei; Zhang, Wendong; Lian, Kun

    2017-01-01

    Graphical abstract: A sensitive hydrazine electrochemical sensor was fabricated by using palladium (Pd) nanoparticle functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotube (MWCNTs) hybrid structures (Pd/rGO-MWCNTs). - Highlights: • rGO-MWCNTs hybrid structures and Pd nanoparticles are prepared using electrochemical methods. • rGO-MWCNTs hybrid films are used as supports and co-catalysts for Pd nanoparticles. • The Pd/rGO-MWCNTs hybrid structure based sensor shows an ultra-high sensitivity of 7.09 μA μM"−"1 cm"−"2 and a low detection limit of 0.15 μM. • The proposed electrochemical sensor exhibits excellent selectivity. - Abstract: In this work, palladium (Pd) nanoparticles functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) hybrid structures (Pd/rGO-MWCNTs) were successfully prepared by a combination of electrochemical reduction with electrodeposition method. The morphology, structure, and composition of the Pd/rGO-MWCNTs hybrid were characterized by scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy. The as-synthesized hybrid structures were modified on the glassy carbon electrode (GCE) and further utilized for hydrazine sensing. Electrochemical impedance spectroscopic, cyclic voltammetry and single-potential amperometry experiments were carried out on Pd/rGO-MWCNTs hybrid structures to investigate the interface properties and sensing performance. The measured results demonstrate that the fabricated Pd/rGO-MWCNTs/GCE sensor show a high sensitivity of 7.09 μA μM"−"1 cm"−"2 in a large concentration range of 1.0 to 1100 μM and a low detection limit of 0.15 μM. Moreover, the as-prepared sensor exhibits good selectivity and stability for the determination of hydrazine under interference conditions.

  18. Rationally Designed, Multifunctional Self-Assembled Nanoparticles for Covalently Networked, Flexible and Self-Healable Superhydrophobic Composite Films.

    Science.gov (United States)

    Lee, Yujin; You, Eun-Ah; Ha, Young-Geun

    2018-03-21

    For constructing bioinspired functional films with various superhydrophobic functions, including self-cleaning, anticorrosion, antibioadhesion, and oil-water separation, hydrophobic nanomaterials have been widely used as crucial structural components. In general, hydrophobic nanomaterials, however, cannot form strong chemical bond networks in organic-inorganic hybrid composite films because of the absence of chemically compatible binding components. Herein, we report the rationally designed, multifunctional self-assembled nanoparticles with tunable functionalities of covalent cross-linking and hydrophobicity for constructing three-dimensionally interconnected superhydrophobic composite films via a facile solution-based fabrication at room temperature. The multifunctional self-assembled nanoparticles allow the systematic control of functionalities of composite films, as well as the stable formation of covalently linked superhydrophobic composite films with excellent flexibility (bending radii of 6.5 and 3.0 mm, 1000 cycles) and self-healing ability (water contact angle > 150°, ≥10 cycles). The presented strategy can be a versatile and effective route to generating other advanced functional films with covalently interconnected composite networks.

  19. Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor.

    Science.gov (United States)

    Zhou, Xu; Li, Fei; Li, Xiaona; Li, Hua; Wang, Yong; Sun, Licheng

    2015-01-14

    Photocatalytic oxidation of organic compounds proceeded efficiently in a hybrid system with ruthenium aqua complexes as catalysts, BiVO4 as a light absorber, [Co(NH3)5Cl](2+) as a sacrificial electron acceptor and water as an oxygen source. The photogenerated holes in the semiconductor are used to oxidize molecular catalysts into the high-valent Ru(IV)=O intermediates for 2e(-) oxidation.

  20. Preparation and characterization of hybrid materials of epoxy resin type bisphenol a with silicon and titanium oxides by sol-gel process

    International Nuclear Information System (INIS)

    Carrillo C, A.; Osuna A, J. G.

    2011-01-01

    Hybrid materials were synthesized from epoxy resins as a result bisphenol type A-silicon oxide and epoxy resin bisphenol type A-titanium oxide were obtained. The synthesis was done by sol-gel process using tetraethyl orthosilicate (Teos) and titanium isopropoxide (I Ti) as inorganic precursors. The molar ratio of bisphenol A to the inorganic precursors was the studied variable. The materials were characterized by thermal analysis, infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The hybrid nature of the materials was demonstrated through thermal analysis and infrared spectroscopy. In both systems, as the amount of alkoxide increased, the bands described above were more defined. This behavior indicates the interactions between the resin and the alkoxides. Hybrids with Teos showed a smoother and homogeneous surface in its entirety, without irregularities. Hybrids with titanium isopropoxide had low roughness. Both Teos and I Ti hybrids showed a decrease on the atomic weight percentage of carbon due to a slight reduction of the organic part on the surface. (Author)

  1. Preparation and characterization of hybrid materials of epoxy resin type bisphenol a with silicon and titanium oxides by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo C, A.; Osuna A, J. G., E-mail: acc.carrillo@gmail.com [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza y Jose Cardenas Valdes, 25000 Saltillo, Coahuila (Mexico)

    2011-07-01

    Hybrid materials were synthesized from epoxy resins as a result bisphenol type A-silicon oxide and epoxy resin bisphenol type A-titanium oxide were obtained. The synthesis was done by sol-gel process using tetraethyl orthosilicate (Teos) and titanium isopropoxide (I Ti) as inorganic precursors. The molar ratio of bisphenol A to the inorganic precursors was the studied variable. The materials were characterized by thermal analysis, infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The hybrid nature of the materials was demonstrated through thermal analysis and infrared spectroscopy. In both systems, as the amount of alkoxide increased, the bands described above were more defined. This behavior indicates the interactions between the resin and the alkoxides. Hybrids with Teos showed a smoother and homogeneous surface in its entirety, without irregularities. Hybrids with titanium isopropoxide had low roughness. Both Teos and I Ti hybrids showed a decrease on the atomic weight percentage of carbon due to a slight reduction of the organic part on the surface. (Author)

  2. Selective oxidations on vanadiumoxide containing amorphous mixed oxides (AMM-V) with tert.-butylhydroperoxide

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Y.; Hunnius, M.; Storck, S.; Maier, W.F. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    The catalytic oxygen transfer properties of vanadium containing zeolites and vanadium based sol-gel catalysts with hydrogen peroxides are well known. The severe problem of vanadium leaching caused by the presence of the by-product water has been addressed. To avoid any interference with homogeneously catalyzed reactions, our study focusses on selective oxidations in a moisture-free medium with tert.-butylhydroperoxide. We have investigated the catalytic properties of amorphous microporous materials based on SiO{sub 2}, TiO{sub 2}, ZrO{sub 2} and Al{sub 2}O{sub 3} as matrix material and studied the effects of surface polarity on the oxidation of 1-octene and cyclohexane. (orig.)

  3. Fabrication of mesoporous metal oxide coated-nanocarbon hybrid materials via a polyol-mediated self-assembly process

    Science.gov (United States)

    Feng, Bingmei; Wang, Huixin; Wang, Dongniu; Yu, Huilong; Chu, Yi; Fang, Hai-Tao

    2014-11-01

    After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2 coated-graphene sheet (GS). In the approach, metal oxide precursors, metal glycolates, were first deposited on CNTs or GSs, and subsequently transformed to the metal oxide coatings by pyrolysis or hydrolysis. By a comparison between the characterization of two TiO2-CNT hybrid materials using carboxylated CNTs and pristine CNTs without carboxyl groups, the driving force for initiating the deposition of metal glycolates on the carboxylated CNTs is confirmed to be the hydrogen bonding between the carboxyl groups and the polymer chains in metal glycolate sols. The electrochemical performances of the mesoporous TiO2 coated-carboxylated CNTs and TiO2-pristine CNT hybrid materials were investigated. The results show that the mesoporous TiO2 coated-carboxylated CNT with a uniform core-shell nanostructure exhibits substantial improvement in the rate performance in comparison with its counterpart from 0.5 C to 100 C because of its higher electronic conductivity and shorter diffusion path for the lithium ion. At the extremely high rate of 100 C, the specific capacity of TiO2 of the former reaches 85 mA h g-1, twice as high as that of the latter.After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2

  4. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    Science.gov (United States)

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system.

  5. Graphene oxide reinforced core-shell structured Ag@Cu2O with tunable hierarchical morphologies and their morphology-dependent electrocatalytic properties for bio-sensing applications.

    Science.gov (United States)

    Gan, Tian; Wang, Zhikai; Shi, Zhaoxia; Zheng, Dongyun; Sun, Junyong; Liu, Yanming

    2018-07-30

    In this study, a facile solution approach was developed for the synthesis of a series of core-shell structured Ag@Cu 2 O nanocrystals of various shapes including triangles, spheres, and cubes with well-defined stable heterojunctions. The electrooxidation of dopamine (DA), uric acid (UA), guanine (G), and adenine (A) using these hybrids revealed morphology-dependent sensing properties, with activities and accumulation ability following the order, triangular Ag@Cu 2 O > spherical Ag@Cu 2 O > cubic Ag@Cu 2 O. Further, we constructed a novel graphene oxide (GO) nanosheet-reinforced triangular Ag@Cu 2 O ternary hetero-nanostructure. Such a hybrid with a three-dimensional interconnected hierarchical architecture is suitable for catalysis, since it not only leads to improved interfacial electron transfer, but also readily exposes the highly catalytic Ag@Cu 2 O to the reactants. Therefore, more enhanced electrochemical activities were observed for the oxidation of DA, UA, G, and A. This study provides an efficient way to synthesize morphology-controlled Ag@Cu 2 O heterogeneous catalysts for the fabrication of potential biosensors, and also opens up attractive avenues in the design of multifunctional ternary noble metal-semiconductor-carbon hybrids. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Fabrication of graphene-fullerene hybrid by self-assembly and its application as support material for methanol electrocatalytic oxidation reaction

    Science.gov (United States)

    Zhang, Xuan; Zhang, Jia-Wei; Xiang, Ping-Hua; Qiao, Jinli

    2018-05-01

    Graphene-fullerene hybrids were facilely fabricated by self-assembly of graphene oxide (GO) and multi-substituted fulleropyrrolidines (PyrC60). The hybrids (GO-PyrC60) were applied as support materials to deposit Pd nanoparticle catalyst by a simple hydrothermal co-reduction approach. The as-prepared electrocatalysts (Pd/RGO-PyrC60) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), respectively. The RGO-PyrC60 hybrid supported Pd catalyst with the optimal ratio of RGO to PyrC60, exhibited much enhanced electrocatalytic activity and stability toward methanol oxidation reaction (MOR) compared to the RGO alone supported Pd as well as commercial Pd/C. The introduction of fulleropyrrolidine as spacer between graphene layers could increase the electrocatalytic activity and improve the long-term stability. This strategy may contribute to developing graphene-fullerene hydrids as effective support materials for advanced electrocatalysts.

  7. Oxidation behavior of molten magnesium in atmospheres containing SO2

    International Nuclear Information System (INIS)

    Wang Xianfei; Xiong Shoumei

    2011-01-01

    Graphical abstract: Highlights: → We found the film formed on molten magnesium had a two or three layers structure. → The formation mechanism of film was investigated and a growth model was proposed. → We found the formation of MgSO 4 was critical and promoted the growth of the film. - Abstract: The microchemistry and morphology of the oxide layer formed on molten magnesium in atmospheres containing SO 2 were examined. Based on the results and the thermodynamic and kinetic calculations of oxide-growth process, a schematic oxidation mechanism is presented. The results showed that the oxide scales with network structure were generally composed of MgO, MgS, and MgSO 4 with different layers, depending on the SO 2 content, the time and the temperature. The formation of MgSO 4 was important for the formation of the protective oxide scales. The growth of the oxide scales followed the parabolic law at 973 K and was controlled by diffusion.

  8. A Novel Synthesis of Gold Nanoparticles Supported on Hybrid Polymer/Metal Oxide as Catalysts for p-Chloronitrobenzene Hydrogenation

    Directory of Open Access Journals (Sweden)

    Cristian H. Campos

    2017-01-01

    Full Text Available This contribution reports a novel preparation of gold nanoparticles on polymer/metal oxide hybrid materials (Au/P[VBTACl]-M metal: Al, Ti or Zr and their use as heterogeneous catalysts in liquid phase hydrogenation of p-chloronitrobenzene. The support was prepared by in situ radical polymerization/sol gel process of (4-vinyl-benzyltrimethylammonium chloride and 3-(trimethoxysilylpropyl methacrylate in conjunction with metal-alkoxides as metal oxide precursors. The supported catalyst was prepared by an ion exchange process using chloroauric acid (HAuCl4 as gold precursor. The support provided the appropriate environment to induce the spontaneous reduction and deposition of gold nanoparticles. The hybrid material was characterized. TEM and DRUV-vis results indicated that the gold forms spherical metallic nanoparticles and that their mean diameter increases in the sequence, Au/P[VBTACl]-Zr > Au/P[VBTACl]-Al > Au/P[VBTACl]-Ti. The reactivity of the Au catalysts toward the p-CNB hydrogenation reaction is attributed to the different particle size distributions of gold nanoparticles in the hybrid supports. The kinetic pseudo-first-order constant values for the catalysts in the hydrogenation reaction increases in the order, Au/P[VBTACl]-Al > Au/P[VBTACl]-Zr > Au/P[VBTACl]-Ti. The selectivity for all the catalytic systems was greater than 99% toward the chloroaniline target product. Finally the catalyst supported on the hybrid with Al as metal oxide could be reused at least four times without loss in activity or selectivity for the hydrogenation of p-CNB in ethanol as solvent.

  9. Fabrication of genetically engineered polypeptide@quantum dots hybrid nanogels for targeted imaging

    Science.gov (United States)

    Yang, Jie; Yao, Ming-Hao; Zhao, Dong-Hui; Zhang, Xiao-Shuai; Jin, Rui-Mei; Zhao, Yuan-Di; Liu, Bo

    2017-08-01

    Nanogels have been widely used as multifunctional drug delivery carriers because of high water content, biocompatibility, and high loading capability. We designed and biosynthesized two triblock artificial polypeptides PC10A and PC10ARGD as vehicles for encapsulating hydrophobic materials. These polypeptides can form nanogels by self-assembly when the concentration is below 2% ( w/ v). The physical properties of nanogels, including size, surface potential, and targeting domain, are able to be tuned. Hydrophobic materials from molecular size to nano-size can be loaded into the polypeptide nanogels to form hybrid nanogels. Hydrophobic quantum dots CdSe@ZnS below 10 nM were loaded into the polypeptide nanogels by ultrasonic treatment. Encapsulation endows hydrophobic QDs with good tunability of size, water solubility, stability, targeting, and biocompatibility. PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels showed excellent biocompatibility, which the cellular viabilities of HeLa and MCF-7 cells treated with 1% PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels contained 20 nM QDs were above 90 and 80%, respectively. PC10ARGD@QDs hybrid nanogels with an arginine-glycine-aspartic acid motif present efficient receptor-mediated endocytosis in α v β 3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy. These results demonstrate that such polypeptide nanogels as nanocarriers are expected to have great potential applications in biomedicine.

  10. Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes

    Science.gov (United States)

    Willander, M.; Nur, O.; Zaman, S.; Zainelabdin, A.; Bano, N.; Hussain, I.

    2011-06-01

    Zinc oxide (ZnO) with its deep level defect emission covering the whole visible spectrum holds promise for the development of intrinsic white lighting sources with no need of using phosphors for light conversion. ZnO nanorods (NRs) grown on flexible plastic as substrate using a low temperature approach (down to 50 °C) were combined with different organic semiconductors to form hybrid junction. White electroluminescence (EL) was observed from these hybrid junctions. The configuration used for the hybrid white light emitting diodes (LEDs) consists of two-layers of polymers on the flexible plastic with ZnO NRs on the top. The inorganic/organic hybrid heterojunction has been fabricated by spin coating the p-type polymer poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT : PSS) for hole injection with an ionization potential of 5.1 eV and poly(9, 9-dioctylfluorene) (PFO) is used as blue emitting material with a bandgap of 3.3 eV. ZnO NRs are grown on top of the organic layers. Two other configurations were also fabricated; these are using a single MEH PPV (red-emitting polymer) instead of the PFO and the third configuration was obtained from a blend of the PFO and the MEH PPV. The white LEDs were characterized by scanning electron microscope, x-ray diffraction (XRD), current-voltage (I-V) characteristics, room temperature photoluminescence (PL) and EL. The EL spectrum reveals a broad emission band covering the range from 420 to 800 nm, and the emissions causing this white luminescence were identified.

  11. Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes

    International Nuclear Information System (INIS)

    Willander, M; Nur, O; Zaman, S; Zainelabdin, A; Bano, N; Hussain, I

    2011-01-01

    Zinc oxide (ZnO) with its deep level defect emission covering the whole visible spectrum holds promise for the development of intrinsic white lighting sources with no need of using phosphors for light conversion. ZnO nanorods (NRs) grown on flexible plastic as substrate using a low temperature approach (down to 50 0 C) were combined with different organic semiconductors to form hybrid junction. White electroluminescence (EL) was observed from these hybrid junctions. The configuration used for the hybrid white light emitting diodes (LEDs) consists of two-layers of polymers on the flexible plastic with ZnO NRs on the top. The inorganic/organic hybrid heterojunction has been fabricated by spin coating the p-type polymer poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT : PSS) for hole injection with an ionization potential of 5.1 eV and poly(9, 9-dioctylfluorene) (PFO) is used as blue emitting material with a bandgap of 3.3 eV. ZnO NRs are grown on top of the organic layers. Two other configurations were also fabricated; these are using a single MEH PPV (red-emitting polymer) instead of the PFO and the third configuration was obtained from a blend of the PFO and the MEH PPV. The white LEDs were characterized by scanning electron microscope, x-ray diffraction (XRD), current-voltage (I-V) characteristics, room temperature photoluminescence (PL) and EL. The EL spectrum reveals a broad emission band covering the range from 420 to 800 nm, and the emissions causing this white luminescence were identified.

  12. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.

    Science.gov (United States)

    Zhu, Guizhi; Hu, Rong; Zhao, Zilong; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2013-11-06

    DNA nanotechnology has been extensively explored to assemble various functional nanostructures for versatile applications. Mediated by Watson-Crick base-pairing, these DNA nanostructures have been conventionally assembled through hybridization of many short DNA building blocks. Here we report the noncanonical self-assembly of multifunctional DNA nanostructures, termed as nanoflowers (NFs), and the versatile biomedical applications. These NFs were assembled from long DNA building blocks generated via rolling circle replication (RCR) of a designer template. NF assembly was driven by liquid crystallization and dense packaging of building blocks, without relying on Watson-Crick base-pairing between DNA strands, thereby avoiding the otherwise conventional complicated DNA sequence design. NF sizes were readily tunable in a wide range, by simply adjusting such parameters as assembly time and template sequences. NFs were exceptionally resistant to nuclease degradation, denaturation, or dissociation at extremely low concentration, presumably resulting from the dense DNA packaging in NFs. The exceptional biostability is critical for biomedical applications. By rational design, NFs can be readily incorporated with myriad functional moieties. All these properties make NFs promising for versatile applications. As a proof-of-principle demonstration, in this study, NFs were integrated with aptamers, bioimaging agents, and drug loading sites, and the resultant multifunctional NFs were demonstrated for selective cancer cell recognition, bioimaging, and targeted anticancer drug delivery.

  13. A novel integrated multifunction micro-sensor for three-dimensional micro-force measurements.

    Science.gov (United States)

    Wang, Weizhong; Zhao, Yulong; Qin, Yafei

    2012-01-01

    An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10(-3) KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  14. A Novel Integrated Multifunction Micro-Sensor for Three-Dimensional Micro-Force Measurements

    Directory of Open Access Journals (Sweden)

    Yafei Qin

    2012-03-01

    Full Text Available An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10−3 KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  15. Hyperbranched polyether hybrid nanospheres with CdSe quantum dots incorporated for selective detection of nitric oxide

    DEFF Research Database (Denmark)

    Liu, Shuiping; Jin, Lanming; Chronakis, Ioannis S.

    2014-01-01

    In this work, hybrid nanosphere vehicles consisting of cadmium selenide quantum dots (CdSe QDs) were synthesized for nitric oxide (NO) donating and real-time detecting. The nanospheres with QDs being encapsulation have spherical outline with dimension of ~127 nm. The fluorescence properties...

  16. Designing Multifunctionality into Single Phase and Multiphase Metal-Oxide-Selective Propylene Ammoxidation Catalysts

    Directory of Open Access Journals (Sweden)

    James F. Brazdil

    2018-03-01

    Full Text Available Multifunctionality is the hallmark of most modern commercial heterogeneous catalyst systems in use today, including those used for the selective ammoxidation of propylene to acrylonitrile. It is the quintessential principle underlying commercial catalyst design efforts since petrochemical process development is invariably driven by the need to reduce manufacturing costs. This is in large part achieved through new and improved catalysts that increase selectivity and productivity. In addition, the future feedstocks for chemical processes will be invariably more refractory than those currently in use (e.g., replacing alkenes with alkanes or using CO2, thus requiring a disparate combination of chemical functions in order to effect multiple chemical transformations with the fewest separate process steps. This review summarizes the key chemical phenomena behind achieving the successful integration of multiple functions into a mixed-metal-oxide-selective ammoxidation catalyst. An experiential and functional catalyst design model is presented that consists of one or both of the following components: (1 a mixed-metal-oxide–solid solution where the individual metal components serve separate and necessary functions in the reaction mechanism through their atomic level interaction in the context of a single crystallographic structure; (2 the required elemental components and their catalytic function existing in separate phases, where these phases are able to interact for the purposes of electron and lattice oxygen transfer through the formation of a structurally coherent interface (i.e., epitaxy between the separate crystal structures. Examples are provided from the literature and explained in the context of this catalyst design model. The extension of the model concepts to the design of heterogeneous catalysts in general is also discussed.

  17. Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Aashuri, Hossein; Simchi, Abdolreza; Fan, Zhiyong

    2015-10-07

    Recently, hybrid nanocomposites consisting of graphene/nanomaterial heterostructures have emerged as promising candidates for the fabrication of optoelectronic devices. In this work, we have employed a facile and in situ solution-based process to prepare zinc oxide/graphene quantum dots (ZnO/G QDs) in a hybrid structure. The prepared hybrid dots are composed of a ZnO core, with an average size of 5 nm, warped with graphene nanosheets. Spectroscopic studies show that the graphene shell quenches the photoluminescence intensity of the ZnO nanocrystals by about 72%, primarily due to charge transfer reactions and static quenching. A red shift in the absorption peak is also observed. Raman spectroscopy determines G-band splitting of the graphene shell into two separated sub-bands (G(+), G(-)) caused by the strain induced symmetry breaking. It is shown that the hybrid ZnO/G QDs can be used as a counter-electrode for heterojunction colloidal quantum-dot solar cells for efficient charge-carrier collection, as evidenced by the external quantum efficiency measurement. Under the solar simulated spectrum (AM 1.5G), we report enhanced power conversion efficiency (35%) with higher short current circuit (80%) for lead sulfide-based solar cells as compared to devices prepared by pristine ZnO nanocrystals.

  18. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.

    Science.gov (United States)

    Benvidi, Ali; Rajabzadeh, Nooshin; Mazloum-Ardakani, Mohammad; Heidari, Mohammad Mehdi; Mulchandani, Ashok

    2014-08-15

    The increasing desire for sensitive, easy, low-cost, and label free methods for the detection of DNA sequences has become a vital matter in biomedical research. For the first time a novel label-free biosensor for sensitive detection of Amelogenin gene (AMEL) using reduced graphene oxide modified glassy carbon electrode (GCE/RGO) has been developed. In this work, detection of DNA hybridization of the target and probe DNA was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The optimum conditions were found for the immobilization of probe on RGO surface and its hybridization with the target DNA. CV and EIS carried out in an aqueous solution containing [Fe(CN)6](3-/4-) redox pair have been used for the biosensor characterization. The biosensor has a wide linear range from 1.0×10(-20) to 1.0×10(-14)M with the lower detection limit of 3.2×10(-21)M. Moreover, the present electrochemical detection offers some unique advantages such as ultrahigh sensitivity, simplicity, and feasibility for apparatus miniaturization in analytical tests. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of RGO, which enhances the probe absorption and promotes direct electron transfer between probe and the electrode surface. This electrochemical DNA sensor could be used for the detection of specific ssDNA sequence in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials.

    Science.gov (United States)

    Chen, Hao; Zhou, Shuxue; Wu, Limin

    2014-06-11

    This paper reports the first nickel hydroxide-manganese dioxide-reduced graphene oxide (Ni(OH)2-MnO2-RGO) ternary hybrid sphere powders as supercapacitor electrode materials. Due to the abundant porous nanostructure, relatively high specific surface area, well-defined spherical morphology, and the synergetic effect of Ni(OH)2, MnO2, and RGO, the electrodes with the as-obtained Ni(OH)2-MnO2-RGO ternary hybrid spheres as active materials exhibited significantly enhanced specific capacitance (1985 F·g(-1)) and energy density (54.0 Wh·kg(-1)), based on the total mass of active materials. In addition, the Ni(OH)2-MnO2-RGO hybrid spheres-based asymmetric supercapacitor also showed satisfying energy density and electrochemical cycling stability.

  20. Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment.

    Science.gov (United States)

    Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing

    2015-12-01

    A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Annealing effect of hybrid solar cells based on poly (3-hexylthiophene) and zinc-oxide nanostructures

    CSIR Research Space (South Africa)

    Motaung, DE

    2013-06-01

    Full Text Available The structural growth and optical and photovoltaic properties of the organic–inorganic hybrid structures of zinc oxide (ZnO)-nanorods/poly-3-hexylthiophene (P3HT) and two variations of organic polymer blends of ZnO/P3HT:C(sub60) fullerene and ZnO/P3...

  2. Visibility and oxidation stability of hybrid-type copper mesh electrodes with combined nickel-carbon nanotube coating

    Science.gov (United States)

    Kim, Bu-Jong; Hwang, Young-Jin; Park, Jin-Seok

    2017-04-01

    Hybrid-type transparent conductive electrodes (TCEs) were fabricated by coating copper (Cu) meshes with carbon nanotube (CNT) via electrophoretic deposition, and with nickel (Ni) via electroplating. For the fabricated electrodes, the effects of the coating with CNT and Ni on their transmittance and reflectance in the visible-light range, electrical sheet resistance, and chromatic parameters (e.g., redness and yellowness) were characterized. Also, an oxidation stability test was performed by exposing the electrodes to air for 20 d at 85 °C and 85% temperature and humidity conditions, respectively. It was discovered that the CNT coating considerably reduced the reflectance of the Cu meshes, and that the Ni coating effectively protected the Cu meshes against oxidation. Furthermore, after the coating with CNT, both the redness and yellowness of the Cu mesh regardless of the Ni coating approached almost zero, indicating a natural color. The experiment results confirmed that the hybrid-type Cu meshes with combined Ni-CNT coating improved characteristics in terms of reflectance, sheet resistance, oxidation stability, and color, superior to those of the primitive Cu mesh, and also simultaneously satisfied most of the requirements for TCEs.

  3. Multifunctional Nano-engineered Polymer Surfaces with Enhanced Mechanical Resistance and Superhydrophobicity

    Science.gov (United States)

    Hernández, Jaime J.; Monclús, Miguel A.; Navarro-Baena, Iván; Viela, Felipe; Molina-Aldareguia, Jon M.; Rodríguez, Isabel

    2017-03-01

    This paper presents a multifunctional polymer surface that provides superhydrophobicity and self-cleaning functions together with an enhancement in mechanical and electrical performance. These functionalities are produced by nanoimprinting high aspect ratio pillar arrays on polymeric matrix incorporating functional reinforcing elements. Two distinct matrix-filler systems are investigated specifically, Carbon Nanotube reinforced Polystyrene (CNT-PS) and Reduced Graphene Oxide reinforced Polyvinylidene Difluoride (RGO-PVDF). Mechanical characterization of the topographies by quantitative nanoindentation and nanoscratch tests are performed to evidence a considerable increase in stiffness, Young’s modulus and critical failure load with respect to the pristine polymers. The improvement on the mechanical properties is rationalized in terms of effective dispersion and penetration of the fillers into the imprinted structures as determined by confocal Raman and SEM studies. In addition, an increase in the degree of crystallization for the PVDF-RGO imprinted nanocomposite possibly accounts for the larger enhancement observed. Improvement of the mechanical ruggedness of functional textured surfaces with appropriate fillers will enable the implementation of multifunctional nanotextured materials in real applications.

  4. A new liquid-phase-separation glaze containing neodymium oxide

    International Nuclear Information System (INIS)

    Jing, S.; Xianque, C.; Luxing, K.; Pentecost, J.L.

    1986-01-01

    A color-changeable opaque glaze containing neodymium oxide was investigated. Results show that the glaze is a new example of the liquid-phase-separation type. The discrete phase droplets are from 50 to 500 nm in size. They are rich in Nd, Zn, Ca, and Mg and the continuous phase is rich in Si, Al, and K. The concentration of the discrete phase is approx. =45%. The large number of discrete droplets and the zinc oxide in the glaze increase its opacity to cover the selective light absorption and scattering of the neodymium ion and reduce the opalescence effect

  5. Multifunctional nanopipette for simultaneous ionic current and potential detection of nanoparticles

    Science.gov (United States)

    Panday, Namuna; He, Jin

    Nanopipette has been demonstrated as a nanopore type biosensor for DNA, protein, nanoparticle and virus analysis. In the last two decades, nanopore based technologies have made remarkable progress for single entity detection and analysis. Multifunctional nanopipette for multi-parameter detection is a new trend for nanopore based technique. We have developed a technique to fabricate multifunctional nanopipette which contains both nanopore and carbon nanoelectrode (CNE) at the nanopipette tip. It can be quickly, cheaply and reproducibly fabricated from theta pipettes. We have been able to use this multifunctional nanopieptte for simultaneous detection of ionic current and local electrical potential changes during translocation of charged gold nanoparticles (GNPs) which is used as a model experiment. The CNE functions as a local potential probe. We have demonstrated that it can detect the local potential change during translocation of a single GNP as well as collective potential change due to cluster of GNPs outside the nanopore entrance. From the potential change, we can also have insight of motion of GNPs before entering the nanopore. We have also tested insulating and biological NPs with various size and charge. Observed results have shown correlations between ionic current and potential change during translocation of these NPs. Florida International University.

  6. Tailoring perpendicular magnetic anisotropy with graphene oxide membranes

    KAUST Repository

    Ning, Keyu; Liu, Houfang; Li, Linsen; Li, Huanglong; Feng, Jiafeng; Yang, Baishun; Liu, Xiao; Li, Yuxing; Chen, Yanhui; Wei, Hongxiang; Han, Xiufeng; Mao, Shengcheng; Zhang, Xixiang; Yang, Yi; Ren, Tian-ling

    2017-01-01

    Graphene oxide (GO) membranes have been widely explored for their excellent physical and chemical properties, and abundant functional groups. In this work, we report the improvement of the perpendicular magnetic anisotropy (PMA) of CoFeB thin films by applying a coating of GO membranes. We observe that the PMA of the CoFeB/MgAl–O stacks is strongly enhanced by the coating of GO membranes and even reaches 0.6 mJ m−2 at room temperature after an annealing process. The critical thickness of the membrane-coated CoFeB for switching the magnetization from the out-of-plane to the in-plane axis exceeds 1.6 nm. First-principle calculations are performed to investigate the contribution of the GO membranes to the magnetic anisotropy energy (MAE). Due to changes in the hybridization of 3d orbitals, varying the location of the C atomic layer with Co changes the contribution of the Co–C stacks to PMA. Thus, the large PMA achieved with GO membranes can be attributed to the orbital hybridization of the C and O atoms with the Co orbitals. These results provide a comprehensive understanding of the PMA and point towards opportunities to achieve multifunctional graphene-composite spintronic devices.

  7. Tailoring perpendicular magnetic anisotropy with graphene oxide membranes

    KAUST Repository

    Ning, Keyu

    2017-11-15

    Graphene oxide (GO) membranes have been widely explored for their excellent physical and chemical properties, and abundant functional groups. In this work, we report the improvement of the perpendicular magnetic anisotropy (PMA) of CoFeB thin films by applying a coating of GO membranes. We observe that the PMA of the CoFeB/MgAl–O stacks is strongly enhanced by the coating of GO membranes and even reaches 0.6 mJ m−2 at room temperature after an annealing process. The critical thickness of the membrane-coated CoFeB for switching the magnetization from the out-of-plane to the in-plane axis exceeds 1.6 nm. First-principle calculations are performed to investigate the contribution of the GO membranes to the magnetic anisotropy energy (MAE). Due to changes in the hybridization of 3d orbitals, varying the location of the C atomic layer with Co changes the contribution of the Co–C stacks to PMA. Thus, the large PMA achieved with GO membranes can be attributed to the orbital hybridization of the C and O atoms with the Co orbitals. These results provide a comprehensive understanding of the PMA and point towards opportunities to achieve multifunctional graphene-composite spintronic devices.

  8. Genome-Wide Detection and Analysis of Multifunctional Genes

    Science.gov (United States)

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  9. Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles

    OpenAIRE

    Sotiriou, Georgios A.; Hirt, Ann M.; Lozach, Pierre-Yves; Teleki, Alexandra; Krumeich, Frank; Pratsinis, Sotiris E.

    2011-01-01

    Hybrid plasmonic-magnetic nanoparticles possess properties that are attractive in bioimaging, targeted drug delivery, in vivo diagnosis and therapy. The stability and toxicity, however, of such nanoparticles challenge their safe use today. Here, biocompatible, SiO2-coated, Janus-like Ag/Fe2O3 nanoparticles are prepared by one-step, scalable flame aerosol technology. A nanothin SiO2 shell around these multifunctional nanoparticles leaves intact their morphology, magnetic and plasmonic properti...

  10. Graphene/VO2 hybrid material for high performance electrochemical capacitor

    International Nuclear Information System (INIS)

    Deng, Lingjuan; Zhang, Gaini; Kang, Liping; Lei, Zhibin; Liu, Chunling; Liu, Zong-Huai

    2013-01-01

    Graphical abstract: Graphene/VO 2 hybrid materials are prepared by one-step simultaneous hydrothermal reduction technology. The prepared graphene (1.0)/VO 2 hybrid material shows a specific capacitances of 225 F g −1 in 0.5 mol L −1 K 2 SO 4 solution. Furthermore, an asymmetric electrochemical capacitor with graphene (1.0)/VO 2 as a positive electrode and graphene as a negative electrode is assembled, and it can work in a cell voltage of 1.7 V and show excellent capacitive property. - Highlights: • Graphene/VO 2 hybrid material has been prepared by one-step hydrothermal reduction. • Graphene/VO 2 hybrid material exhibits high specific capacitance. • An asymmetric capacitor working at 1.7 V in aqueous solution is assembled based on graphene/VO 2 electrode. • The asymmetric capacitor exhibits high energy density. - Abstract: Vanadium oxides have attracted significant attention for electrochemical capacitor because of their extensive multifunctional properties. In the present work, graphene/VO 2 (RG/VO 2 ) hybrid materials with different RG amounts are prepared in a mixture of ammonium vanadate, formic acid and graphite oxide (GO) nanosheets by one-step simultaneous hydrothermal reduction technology. The hydrothermal treatment makes the reduction of GO into RG and the formation of VO 2 particles with starfruit morphology. The starfruit-like VO 2 particles are uniformly embedded in the hole constructed by RG nanosheets, which makes the electrode–electrolyte contact better. A high specific capacitance of 225 F g −1 has been achieved for RG(1.0)/VO 2 electrode with RG content of 26 wt% in 0.5 mol L −1 K 2 SO 4 electrolyte. An asymmetrical electrochemical capacitor is assembled by using RG(1.0)/VO 2 as positive electrode and RG as negative electrode, and it can be reversibly charged–discharged at a cell voltage of 1.7 V in 0.5 mol L −1 K 2 SO 4 electrolyte. The asymmetrical capacitor can deliver an energy density of 22.8 Wh kg −1 at a power density

  11. Oxidative Degradation of Phenol containing Wastewater using Fenton Reagent, Permanganate and Ultraviolet Radiation

    International Nuclear Information System (INIS)

    Abd El-Rahman, N.M.; Talaat, H.A.; Sorour, M.H.

    1999-01-01

    Phenol containing wastewaters are generated by numerous industrial units including integrated steel mills, textile mills, plastic production, etc. The present work is targeted to explore the viable oxidation techniques for degradation of phenolic wastewater. Three modes of treatment have been adopted in this study, namely, sole oxidant mode using Fenton reagent or permanganate, UV-assisted oxidation and two consequent chemical oxidation steps. Results indicated the superiority of fenton reagent over KMnO 4 oxidation in the sole oxidant mode. On the other hand, UV-assisted KMnO 4 oxidation enables almost complete COD reduction. Dual chemical oxidation mode employing KMnO 4 oxidation followed by Fenton reagent is also an efficient oxidative degradation system

  12. [Oxidation of sulfur-containing substrates by aboriginal and experimentally designed microbial communities].

    Science.gov (United States)

    Pivovarova, T A; Bulaev, A G; Roshchupko, P V; Belyĭ, A V; Kondrat'eva, T F

    2012-01-01

    Aboriginal and experimental (constructed of pure microbial cultures) communities of acidophilic chemolithotrophs have been studied. The oxidation of elemental sulfur, sodium thiosulfate, and potassium tetrathionate as sole sources of energy has been monitored. The oxidation rate of the experimental community is higher as compared to the aboriginal community isolated from a flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore. The degree of oxidation of the mentioned S substrates amounts to 17.91, 68.30, and 93.94% for the experimental microbial community and to 10.71, 56.03, and 79.50% for the aboriginal community, respectively. The degree of oxidation of sulfur sulfide forms in the ore flotation concentrate is 59.15% by the aboriginal microbial community and 49.40% by the experimental microbial community. Despite a higher rate of oxidation of S substrates as a sole source of energy by the experimental microbial community, the aboriginal community oxidizes S substrates at a higher rate in the flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore, from which it was isolated. Bacterial-chemical oxidation of the flotation concentrate by the aboriginal microbial community allows for the extraction of an additional 32.3% of gold from sulfide minerals, which is by 5.7% larger compared to the yield obtained by the experimental microbial community.

  13. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Chi H

    2017-02-01

    Full Text Available Huibo Chi,1,2,* Yan Gu,1,* Tingting Xu,1 Feng Cao1 1Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 2State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH nanosheets with active targeting to peptide transporter-1 (PepT-1 were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC and retinal pigment epithelial (ARPE-19 cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. Keywords: LDH nanoparticles, LDH nanosheets, ocular drug delivery, human corneal epithelial primary cell, retinal pigment cell, ARPE-19, active targeting

  14. Hydrogen storage behaviors of Ni-doped graphene Oxide/MIL-101 hybrid composites.

    Science.gov (United States)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    In this work, Ni-doped graphene oxide/MIL-101 hybrid composites (Ni--GO/MIL) were prepared to investigate their hydrogen storage behaviors. Ni--GO/MIL was synthesized by adding Ni--GO in situ during the synthesis of MIL-101 using a hydrothermal process, which was conducted by conventional convection heating with Cr(III) ion as a metal center and telephthalic acid as organic ligands. The crystalline structures and morphologies were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area and micropore volume were investigated by N2/77 K adsorption isotherms using the Brunauer-Emmett-Teller (BET) method and Dubinin-Radushkevic (D-R) equation, respectively. The hydrogen storage capacity was investigated by BEL-HP at 77 K and 1 bar. The obtained results show that Ni--GO/MIL presents new directions for achieving novel hybrid materials with higher hydrogen storage capacity.

  15. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin, E-mail: miao2@illinois.edu [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60493 (United States); Cui, Bai [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Chen, Wei-Ying [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Miller, Michael K.; Powers, Kathy A. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); McCreary, Virginia; Gross, David [Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Lemont, IL 60493 (United States); Robertson, Ian M. [Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, WA 53706 (United States); Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-03-15

    This work reports comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y{sub 2}O{sub 3}, fluorite Y{sub 2}O{sub 3}–HfO{sub 2} solid solution and pyrochlore (or fluorite) Y{sub 2}(Ti,Hf){sub 2−x}O{sub 7−x}. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Two different coherency relationships along with one axis-parallel relation between the oxide nanoparticles and the steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. The results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation. - Highlights: • The oxide nanoparticles in a hafnium-containing austenitic ODS were characterized. • The nanoparticles are Y–Hf–Ti–O enriched phases according to APT and STEM–EDS. • Two coherency and an axis-parallel orientation relationships were found by HR-TEM. • Particle size has a prominent effect on the orientation relationship (OR). • Formation mechanism of the oxide nanoparticles was discussed based on the ORs.

  16. Evolution of postmating reproductive isolation: measuring the fitness effects of chromosomal regions containing hybrid male sterility factors.

    Science.gov (United States)

    Johnson, N A; Wu, C I

    1993-08-01

    At least six regions of the X chromosome can cause male sterility when introgressed from Drosophila mauritiana into Drosophila simulans. In this article, we present the results of the other fitness effects caused by two X-linked regions that contain hybrid male sterility factors. In both regions, females that are heterozygous for an introgression with such a sterility factor produce substantially-fewer offspring than females heterozygous for an introgression that lacks the sterility factor. Thus, the hybrid male sterility factors, or other genes nearby, have substantial effects on female productivity. In contrast, hybrid male sterility factors have little or no effect on the relative viabilities of either sex. The evolutionary implications of these findings are discussed.

  17. Polymer/metal oxide hybrid dielectrics for low voltage field-effect transistors with solution-processed, high-mobility semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Held, Martin; Schießl, Stefan P.; Gannott, Florentina [Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058 (Germany); Institute for Physical Chemistry, Universität Heidelberg, Heidelberg D-69120 (Germany); Miehler, Dominik [Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058 (Germany); Zaumseil, Jana, E-mail: zaumseil@uni-heidelberg.de [Institute for Physical Chemistry, Universität Heidelberg, Heidelberg D-69120 (Germany)

    2015-08-24

    Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfO{sub x}) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100–300 nF/cm{sup 2}) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfO{sub x} dielectrics.

  18. Plant species richness and ecosystem multifunctionality in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  19. Nanostructured hybrid films containing nanophosphor: Fabrication and electronic spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, S.A. [Instituto de Biociencias, Letras e Ciencias Exatas, UNESP - Univ Estadual Paulista, Rua Cristovao Colombo, 2265, 15054-000 Sao Jose do Rio Preto, SP (Brazil); Aoki, P.H.B.; Constantino, C.J.L. [Faculdade de Ciencias e Tecnologia, UNESP - Univ Estadual Paulista, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP (Brazil); Aroca, R.F. [Materials and Surface Science Group, University of Windsor, Windsor, Ont., Canada N9B3P4 (Canada); Pires, A.M., E-mail: anapires@fct.unesp.br [Faculdade de Ciencias e Tecnologia, UNESP - Univ Estadual Paulista, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP (Brazil)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Hybrid film containing the cationic polyelectrolyte PAH and Y{sub 2}O{sub 3}: Er, Yb nanophosphor. Black-Right-Pointing-Pointer LbL film growth was monitored by absorbance x concentration in UV-Vis absorption. Black-Right-Pointing-Pointer FTIR indicated existence of secondary interactions between PAH - nanophosphor layers. Black-Right-Pointing-Pointer The morphology and the spatial distribution of the LbL film were analyzed by Raman. Black-Right-Pointing-Pointer We observed intense electronic emission lines from doping ions in the micro-Raman. - Abstract: The intensive research of the optical properties of rare-earth ions is due to the high quantum efficiency of their emission, very narrow bands, and excellent fluorescence monochromaticity. The photoluminescence data presented here show that the nanophosphor remains a green emitter in Layer-by-Layer (LbL) films leading to potential application in optical devices or biological labeling. The LbL technique, an established method for thin film fabrication with molecular architecture control, is used in the manufacture of a hybrid film containing the cationic polyelectrolyte poly (allylamine hydrochloride) (PAH) and Y{sub 2}O{sub 3}: Er, Yb nanophosphor. The spectroscopic properties of this luminescent nanomaterial are extracted from the spectral data of the powder, cast film and LbL films. The growth of the LbL film was monitored by absorbance versus concentration plots in ultraviolet-visible (UV-Vis) absorption spectroscopy. The presence of both PAH and nanophosphor in the LbL film was confirmed by Fourier transform infrared (FTIR) absorption spectroscopy. The FTIR data also ruled out the existence of chemical interactions between the PAH and nanophosphor layers, which means that secondary interactions (like Van der Waals forces) might be the driving forces for LbL film growth. The morphology and the spatial distribution of the LbL film components along the film surface were

  20. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  1. DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance.

    Science.gov (United States)

    Song, Linlin; Jiang, Qiao; Liu, Jianbing; Li, Na; Liu, Qing; Dai, Luru; Gao, Yuan; Liu, Weili; Liu, Dongsheng; Ding, Baoquan

    2017-06-14

    We herein demonstrate that DNA origami can work as a multifunctional platform integrating a chemotherapeutic drug (doxorubicin), gold nanorods and a tumour-specific aptamer MUC-1, to realize the effective circumvention of drug resistance. Doxorubicin (DOX) was loaded efficiently onto DNA origami through base pair intercalation and surface-modified gold nanorods (AuNRs) were assembled onto the DNA origami through DNA hybridization. Due to the active targeting effect of the assembled aptamers, the multifunctional nanostructures achieved increased cellular internalization of DOX and AuNRs. Upon near-infrared (NIR) laser irradiation, the P-glycoprotein (multidrug resistance pump) expression of multidrug resistant MCF-7 (MCF-7/ADR) cells was down-regulated, achieving the synergistically chemotherapeutic (DOX) and photothermal (AuNRs) effects.

  2. Efficacy Evaluation of a Multifunctional Cosmetic Formulation: The Benefits of a Combination of Active Antioxidant Substances

    Directory of Open Access Journals (Sweden)

    Mirela D. Gianeti

    2014-11-01

    Full Text Available This study presents the association of active antioxidants substances in a multifunctional cosmetic formulation with established efficacy against signs of aging. A multifunctional cosmetic formulation containing an association of UV filters and antioxidant substances (liposoluble vitamins A, C and E, Ginkgo biloba and Phorphyra umbilicalis extracts was evaluated. This formulation was submitted to a clinical efficacy study using biophysics techniques and skin images analysis (digital photography imaging systems, 20 MHz ultrasound, and reflectance confocal microscopy. The volunteers applied the formulation containing the UV filters and antioxidant substances during the day and the formulation with antioxidant substances and without the UV filters at night, for 90 days. The formulation increased the hydration and protected the skin barrier function after a single application. At the long term assessment the formulation provided an improvement in skin barrier function and skin hydration to the deeper layers of the epidermis, leading to an improvement in skin appearance by reducing wrinkles and skin roughness. The multifunctional cosmetic formulation studied can be suggested to preventing signs of aging and improving skin conditions. In addition, this study presents the benefits of associating different active antioxidants substances in a single cosmetic formulation to prevent skin aging.

  3. Multifunctional landscape practice and accessibility in manorial landscapes

    DEFF Research Database (Denmark)

    Brandt, Jesper; Svenningsen, Stig Roar; Christensen, Andreas Aagaard

    . However classical manorial estates seems to represent an opposite trend. Allthough working at the same market conditions as other large specialized holdings developed through the process of structural rationalization, they have often maintained and elaborated a land use strategy based on a multifunctional...... use of the potential ecosystem services present within their domain. The targeted combination of agriculture, forestry, hunting rents, rental housing, and a variety of recreational activities influences makes a certain public accessibility to an integrated part of this strategy, diverging from...... the multifunctional landscape strategy supporting a certain public access. A study of this thesis is presented based on an analysis of multifunctionality, landscape development and accessibility in Danish Manorial landscapes and eventual linkages between their multifunctional landscape strategy, their history...

  4. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.R., E-mail: arribeiro@inmetro.gov.br [Department of Periodontology, Araraquara Dental School, University Estadual Paulista, Rua Humaitá 1680, 14801-903 Araraquara, São Paulo (Brazil); Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Oliveira, F., E-mail: fernando@dem.uminho.pt [Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Centre for Mechanical and Materials Technologies, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Boldrini, L.C., E-mail: lcboldrini@inmetro.gov.br [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Leite, P.E., E-mail: leitepec@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Falagan-Lotsch, P., E-mail: prifalagan@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Linhares, A.B.R., E-mail: adrianalinhares@hotmail.com [Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niterói (Brazil); and others

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  5. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    International Nuclear Information System (INIS)

    Ribeiro, A.R.; Oliveira, F.; Boldrini, L.C.; Leite, P.E.; Falagan-Lotsch, P.; Linhares, A.B.R.

    2015-01-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  6. Recommendations for erosion-corrosion allowance for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.; Brehm, W.F.; Larrick, A.P.; Divine, J.R.

    1994-10-01

    The Multi-Function Waste Tank Facility carbon steel tanks will contain mixer pumps that circulate the waste. On the basis of flow characteristics of the system and data from the literature, an erosion allowance of 0.075 mm/y (3 mil/year) was recommended for the tank bottoms, in addition to the 0.025 mm/y (1 mil/year) general corrosion allowance

  7. Nanofibrous nonwovens based on dendritic-linear-dendritic poly(ethylene glycol) hybrids

    DEFF Research Database (Denmark)

    Kikionis, Stefanos; Ioannou, Efstathia; Andren, Oliver C.J.

    2017-01-01

    unsuccessful. Nevertheless, when these DLD hybrids were blended with an array of different biodegradable polymers as entanglement enhancers, nanofibrous nonwovens were successfully prepared by electrospinning. The pseudogeneration degree of the DLDs, the nature of the co-electrospun polymer and the solvent...... nanofibers. Such dendritic nanofibrous scaffolds can be promising materials for biomedical applications due to their biocompatibility, biodegradability, multifunctionality, and advanced structural architecture....

  8. Simulation and analysis of the plutonium oxide/metal storage containers subject to various loading conditions

    International Nuclear Information System (INIS)

    Gong, C.; Miller, R.F.

    1995-05-01

    The structural and functional requirements of the Plutonium Oxide/Metal Storage Containers are specified in the Report ''Complex 21 Plutonium Storage Facility Material Containment Team Technical Data Report'' [Complex 21, 1993]. There are no existing storage containers designed for long term storage of plutonium and current codes, standards or regulations do not adequately cover this case. As there is no extensive experience with the long term (50+ years) storage of plutonium, the design of high integrity storage containers must address many technical considerations. This analysis discusses a few potential natural phenomena that could theoretically adversely affect the container integrity over time. The plutonium oxide/metal storage container consists of a primary containment vessel (the outer container), a bagless transfer can (the inner container), two vertical plates on top of the primary containment vessel, a circular plate (the flange) supported by the two plates, tube for gas sampling operations mounted at the center of the primary containment vessel top and a spring system being inserted in the cavity between the primary containment vessel and the cap of the bagless transfer can. The dimensions of the plutonium oxide/metal storage container assembly can be found in Figure 2-1. The primary container, the bagless transfer can, and all the attached components are made of Type 304L stainless steel

  9. Generalized kinetic model of reduction of molecular oxidant by metal containing redox

    International Nuclear Information System (INIS)

    Kravchenko, T.A.

    1986-01-01

    Present work is devoted to kinetics of reduction of molecular oxidant by metal containing redox. Constructed generalized kinetic model of redox process in the system solid redox - reagent solution allows to perform the general theoretical approach to research and to obtain new results on kinetics and mechanism of interaction of redox with oxidants.

  10. In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures.

    Science.gov (United States)

    Ortgies, Dirk H; de la Cueva, Leonor; Del Rosal, Blanca; Sanz-Rodríguez, Francisco; Fernández, Nuria; Iglesias-de la Cruz, M Carmen; Salas, Gorka; Cabrera, David; Teran, Francisco J; Jaque, Daniel; Martín Rodríguez, Emma

    2016-01-20

    Breakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities. The magnetic-fluorescent HNS are capable of simultaneous magnetic resonance imaging and deep tissue infrared fluorescence imaging, overcoming the tissue penetration limits of classical visible-light based optical imaging as reported here in living mice. Additionally, their applicability for magnetic heating in potential hyperthermia treatments is assessed.

  11. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.

    Science.gov (United States)

    Yong, Yang-Chun; Yu, Yang-Yang; Zhang, Xinhai; Song, Hao

    2014-04-22

    Low extracellular electron transfer performance is often a bottleneck in developing high-performance bioelectrochemical systems. Herein, we show that the self-assembly of graphene oxide and Shewanella oneidensis MR-1 formed an electroactive, reduced-graphene-oxide-hybridized, three-dimensional macroporous biofilm, which enabled highly efficient bidirectional electron transfers between Shewanella and electrodes owing to high biomass incorporation and enhanced direct contact-based extracellular electron transfer. This 3D electroactive biofilm delivered a 25-fold increase in the outward current (oxidation current, electron flux from bacteria to electrodes) and 74-fold increase in the inward current (reduction current, electron flux from electrodes to bacteria) over that of the naturally occurring biofilms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Reactivation of a tin oxide-containing catalyst

    Science.gov (United States)

    Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, Kenneth G. (Inventor); Hess, Robert V. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Paulin, Patricia A. (Inventor)

    1989-01-01

    A method for the reactivation of a tin oxide-containing catalyst of a CO.sub.2 laser is provided. First, the catalyst is pretreated by a standard procedure. When the catalyst experiences diminished activity during usage, the heated zone surrounding the catalyst is raised to a temperature which is the operating temperature of the laser and 400.degree. C. for approximately one hour. The catalyst is exposed to the same laser gas mixture during this period. The temperature of the heated zone is then lowered to the operating temperature of the CO.sub.2 laser.

  13. Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Cao, Li; Sun, Qingqing; Gao, Yahui; Liu, Luntao; Shi, Haifeng

    2015-01-01

    A series of novel acid-base hybrid membranes (SPI/PEI-rGO) based on sulfonated polyimide (SPI) with polyethyleneimine-functionalized reduced graphene oxide (PEI-rGO) are prepared by a solution-casting method for vanadium redox flow battery (VRB). FT-IR and XPS results prove the successful fabrication of PEI-rGO and SPI/PEI-rGO hybrid membranes, which show a dense and homogeneous structure observed by SEM. The physicochemical properties such as water uptake, swelling ratio, ion exchange capacity, proton conductivity and vanadium ion permeability are well controlled by the incorporated PEI-rGO fillers. The interfacial-formed acid-base pairs between PEI-rGO and SPI matrix effectively reduce the swelling ratio and vanadium ion permeability, increasing the stability performance of the hybrid membranes. SPI/PEI-rGO-2 hybrid membrane exhibits a higher coulombic efficiency (CE, 95%) and energy efficiency (EE, 75.6%) at 40 mA cm −2 , as compared with Nafion 117 membrane (CE, 91% and EE, 66.8%). The self-discharge time of the VRB with SPI/PEI-rGO-2 hybrid membrane (80 h) is longer than that of Nafion 117 membrane (26 h), demonstrating the excellent blocking ability for vanadium ion. After 100 charge-discharge cycles, SPI/PEI-rGO-2 membrane exhibits the good stability under strong oxidizing and acid condition, proving that SPI/PEI-rGO acid-base hybrid membranes could be used as the promising candidates for VRB applications

  14. Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein.

    Science.gov (United States)

    Yu, Yang; Zhao, Zhigang; Shi, Yanrong; Tian, Hua; Liu, Linglong; Bian, Xiaofeng; Xu, Yang; Zheng, Xiaoming; Gan, Lu; Shen, Yumin; Wang, Chaolong; Yu, Xiaowen; Wang, Chunming; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Ikehashi, Hiroshi; Jiang, Ling; Wan, Jianmin

    2016-07-01

    Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement. Copyright © 2016 by the Genetics Society of America.

  15. High-performance hybrid complementary logic inverter through monolithic integration of a MEMS switch and an oxide TFT.

    Science.gov (United States)

    Song, Yong-Ha; Ahn, Sang-Joon Kenny; Kim, Min-Wu; Lee, Jeong-Oen; Hwang, Chi-Sun; Pi, Jae-Eun; Ko, Seung-Deok; Choi, Kwang-Wook; Park, Sang-Hee Ko; Yoon, Jun-Bo

    2015-03-25

    A hybrid complementary logic inverter consisting of a microelectromechanical system switch as a promising alternative for the p-type oxide thin film transistor (TFT) and an n-type oxide TFT is presented for ultralow power integrated circuits. These heterogeneous microdevices are monolithically integrated. The resulting logic device shows a distinctive voltage transfer characteristic curve, very low static leakage, zero-short circuit current, and exceedingly high voltage gain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    DEFF Research Database (Denmark)

    Hansen, K.W.; Ahring, Birgitte Kiær; Raskin, L.

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-beta-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYE, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S, wolfei LYE was closely related...... fatty acid-beta-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria-and methanogens were compared to specific methanogenic activities...

  17. Is recreational hunting important for landscape multi-functionality?

    DEFF Research Database (Denmark)

    Lund, Jens Friis; Jensen, Frank Søndergaard

    2017-01-01

    Recreational hunting may be important to the shaping of the agricultural landscape. Land owners who hunt or lease out hunting rights have an incentive to promote landscapes that contain wildlife biotopes, which may serve wider societal values, such as landscape aesthetics, biodiversity, and prese......Recreational hunting may be important to the shaping of the agricultural landscape. Land owners who hunt or lease out hunting rights have an incentive to promote landscapes that contain wildlife biotopes, which may serve wider societal values, such as landscape aesthetics, biodiversity......, and preservation of valued and/or threatened animal and plant species. Recreational hunting may thus contribute to preserve and enhance landscape multifunctionality. Yet, little is known about the importance of hunting interests in motivating such landscape management. In this article, we seek to shed light...

  18. Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries

    Science.gov (United States)

    Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp

    2017-01-01

    All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.

  19. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

    Directory of Open Access Journals (Sweden)

    Shahid Ameer

    Full Text Available The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands. Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands. The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands ( 4 GHz with limited selective bandwidth.

  20. Multifunctional Polymer/Inorganic Nanocomposites

    National Research Council Canada - National Science Library

    Manias, E

    2003-01-01

    ... in multifunctional nanocomposite materials. Understanding the structure/property relations in polymer/clay nanocomposites is of great importance in designing materials with desired sets of properties...

  1. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    International Nuclear Information System (INIS)

    Goubard, F.; Vidal, F.; Bazzi, R.; Tillement, O.; Chevrot, C.; Teyssie, D.

    2007-01-01

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd 2 O 3 . These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films

  2. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    International Nuclear Information System (INIS)

    Torres-Torres, C.; García-Cruz, M.L.; Castañeda, L.; Rangel Rojo, R.; Tamayo-Rivera, L.; Maldonado, A.; Avendaño-Alejo, M.

    2012-01-01

    Chromium doped zinc oxide thin solid films were deposited on soda–lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol–gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: ► Enhancement in photoluminescence for chromium doped zinc oxide films is presented. ► A strong and ultrafast optical Kerr effect seems to result from quantum confinement. ► Photoconductive properties for optical and optoelectronic functions were observed.

  3. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C., E-mail: crstorres@yahoo.com.mx [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF 07738 (Mexico); Garcia-Cruz, M.L. [Centro de Investigacion en Dispositivos Semiconductores, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Castaneda, L., E-mail: luisca@sirio.ifuap.buap.mx [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Rangel Rojo, R. [CICESE/Depto. de Optica, A. P. 360, Ensenada, BC 22860 (Mexico); Tamayo-Rivera, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, DF 01000 (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN-SEES, A. P. 14740, Mexico DF 07000 (Mexico); Avendano-Alejo, M., E-mail: imax_aa@yahoo.com.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, A. P. 70-186, 04510, DF (Mexico); and others

    2012-04-15

    Chromium doped zinc oxide thin solid films were deposited on soda-lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol-gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: Black-Right-Pointing-Pointer Enhancement in photoluminescence for chromium doped zinc oxide films is presented. Black-Right-Pointing-Pointer A strong and ultrafast optical Kerr effect seems to result from quantum confinement. Black-Right-Pointing-Pointer Photoconductive properties for optical and optoelectronic functions were observed.

  4. Oxygen potential of a prototypic Mo-cermet fuel containing plutonium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Shuhei, E-mail: miwa.shuhei@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki, 311-1393 (Japan); Osaka, Masahiko [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki, 311-1393 (Japan); Nozaki, Takahiro; Arima, Tatsumi; Idemitsu, Kazuya [Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 (Japan)

    2015-10-15

    Oxygen potential of a prototypic Mo-cermet fuel containing 50 vol.% PuO{sub 2−x} were investigated by the thermogravimetric analysis in the temperature range from 1273 K to 1473 K. It was shown that the oxygen potential and oxidation rate of the Mo-cermet were the same as those of pure PuO{sub 2−x} below the oxygen potential of Mo/MoO{sub 2} oxidation reaction. The same features of the Mo-cermet sample containing 50 vol.% PuO{sub 2−x} with those of pure PuO{sub 2−x} were discussed in terms of the microstructure. - Highlights: • Oxygen potential of Mo-cermet fuel was investigated by thermogravimetric analysis. • It was the same as that of pure PuO{sub 2−x} below the oxygen potential for Mo/MoO{sub 2}. • Gradual oxidation of Mo matrix occurred only above the oxygen potential for Mo/MoO{sub 2}. • Mo matrix and PuO{sub 2−x} in Mo-cermet fuel can thus be thermochemically individual.

  5. Oxygen potential of a prototypic Mo-cermet fuel containing plutonium oxide

    International Nuclear Information System (INIS)

    Miwa, Shuhei; Osaka, Masahiko; Nozaki, Takahiro; Arima, Tatsumi; Idemitsu, Kazuya

    2015-01-01

    Oxygen potential of a prototypic Mo-cermet fuel containing 50 vol.% PuO_2_−_x were investigated by the thermogravimetric analysis in the temperature range from 1273 K to 1473 K. It was shown that the oxygen potential and oxidation rate of the Mo-cermet were the same as those of pure PuO_2_−_x below the oxygen potential of Mo/MoO_2 oxidation reaction. The same features of the Mo-cermet sample containing 50 vol.% PuO_2_−_x with those of pure PuO_2_−_x were discussed in terms of the microstructure. - Highlights: • Oxygen potential of Mo-cermet fuel was investigated by thermogravimetric analysis. • It was the same as that of pure PuO_2_−_x below the oxygen potential for Mo/MoO_2. • Gradual oxidation of Mo matrix occurred only above the oxygen potential for Mo/MoO_2. • Mo matrix and PuO_2_−_x in Mo-cermet fuel can thus be thermochemically individual.

  6. Large-area self-assembled reduced graphene oxide/electrochemically exfoliated graphene hybrid films for transparent electrothermal heaters

    Science.gov (United States)

    Sun, Hongyan; Chen, Ding; Ye, Chen; Li, Xinming; Dai, Dan; Yuan, Qilong; Chee, Kuan W. A.; Zhao, Pei; Jiang, Nan; Lin, Cheng-Te

    2018-03-01

    Graphene shows great promise as a high-efficiency electrothermal film for flexible transparent defoggers/defrosters. However, it remains a great challenge to achieve a good balance between the production cost and the properties of graphene films. Here, we proposed a cost-effective self-assembly method to fabricate high-performance, large-area graphene oxide/electrochemically exfoliated graphene hybrid films for heater applications. The self-assembled graphene hybrid films with the area of 20 × 20 cm2 could be transferred onto arbitrary substrates with nonplanar surfaces and simply patterned with the hard mask. After reduction by hydrogen iodide vapor followed by 800 °C thermal treatment, the hybrid films with the transmittance of 76.2% exhibit good heating characteristics and defogging performance, which reach a saturation temperature of up to 127.5 °C when 40 V was applied for 60 s.

  7. Platinum-decorated reduced graphene oxide/polyaniline:poly(4-styrenesulfonate) hybrid paste for flexible dipole tag-antenna applications

    Science.gov (United States)

    Lee, Jun Seop; Kim, Minkyu; Lee, Choonghyeon; Cho, Sunghun; Oh, Jungkyun; Jang, Jyongsik

    2015-02-01

    With recent developments in technology, tremendous effort has been devoted to producing materials for flexible device systems. As a promising approach, solution-processed conducting polymers (CPs) have been extensively studied owing to their facile synthesis, high electrical conductivity, and various morphologies with diverse substrates. Here, we report the demonstration of platinum decorated reduced graphene oxide intercalated polyanililne:poly(4-styrenesulfonate) (Pt_rGO/PANI:PSS) hybrid paste for flexible electric devices. First, platinum decorated reduced graphene oxide (Pt_rGO) was fabricated through the chemical reduction of platinum cations and subsequent heat reduction of GO sheets. Then, the Pt_rGO was mixed with PANI:PSS solution dispersed in diethylene glycol (DEG) using sonication to form a hybrid PANI-based paste (Pt_rGO/PANI:PSS). The Pt_rGO/PANI:PSS was printed as a micropattern and exhibited high electrical conductivity (245.3 S cm-1) with flexible stability. Moreover, it was used in a dipole tag antenna application, where it displayed 0.15 GHz bandwidth and high transmitted power efficiency (99.6%).With recent developments in technology, tremendous effort has been devoted to producing materials for flexible device systems. As a promising approach, solution-processed conducting polymers (CPs) have been extensively studied owing to their facile synthesis, high electrical conductivity, and various morphologies with diverse substrates. Here, we report the demonstration of platinum decorated reduced graphene oxide intercalated polyanililne:poly(4-styrenesulfonate) (Pt_rGO/PANI:PSS) hybrid paste for flexible electric devices. First, platinum decorated reduced graphene oxide (Pt_rGO) was fabricated through the chemical reduction of platinum cations and subsequent heat reduction of GO sheets. Then, the Pt_rGO was mixed with PANI:PSS solution dispersed in diethylene glycol (DEG) using sonication to form a hybrid PANI-based paste (Pt_rGO/PANI:PSS). The Pt

  8. Hydrothermal synthesis for new multifunctional materials: A few examples of phosphates and phosphonate-based hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Rueff, Jean-Michel, E-mail: jean-michel.rueff@ensicaen.fr [Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, 6 bd du Maréchal Juin, F-14050 Caen Cedex (France); Poienar, Maria [National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str Nr. 1, 300224 Timisoara (Romania); Guesdon, Anne; Martin, Christine; Maignan, Antoine [Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, 6 bd du Maréchal Juin, F-14050 Caen Cedex (France); Jaffrès, Paul-Alain [Université de Brest, Université Européenne de Bretagne, CNRS UMR 6521, CEMCA, SFR 148 ScInBios, 6 Avenue Victor Le Gorgeu, 29238 Brest (France)

    2016-04-15

    Novel physical or chemical properties are expected in a great variety of materials, in connection with the dimensionality of their structures and/or with their nanostructures, hierarchical superstructures etc. In the search of new advanced materials, the hydrothermal technique plays a crucial role, mimicking the nature able to produce fractal, hyperbranched, urchin-like or snow flake structures. In this short review including new results, this will be illustrated by examples selected in two types of materials, phosphates and phosphonates, prepared by this method. The importance of the synthesis parameters will be highlighted for a magnetic iron based phosphates and for hybrids containing phosphonates organic building units crystallizing in different structural types. - Graphical abstract: Phosphate dendrite like and phosphonate platelet crystals.

  9. Surveillance of sealed containers with plutonium oxide materials (ms163)

    Science.gov (United States)

    Worl, Laura; Berg, John; Ford, Doris; Martinez, Max; McFarlan, Jim; Morris, John; Padilla, Dennis; Rau, Karen; Smith, Coleman; Veirs, Kirk; Hill, Dallas; Prenger, Coyne

    2000-07-01

    DOE is embarking upon a program to store large quantities of plutonium-bearing materials for up to fifty years. Materials destined for long-term storage include metals and oxides that are stabilized and packaged according to the DOE storage standard, where the packaging consists of two nested, welded, stainless steel containers. We have designed instrumented storage containers that mimic the inner storage can specified in the 3013 standard at both full- and small-scale capacities (2.4 liter and 0.005 liter, respectively), Figures 1 and 2. The containers are designed to maintain the volume to material mass ratio while allowing the gas composition and pressure to be monitored over time.

  10. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations.

    Science.gov (United States)

    Pidaparti, Ramana M; Cartin, Charles; Su, Guoguang

    2017-04-25

    In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.

  11. Multifunctional optical sensor

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a multifunctional optical sensor, having at least 2 areas which independently react to different input parameters, the sensor comprising a substrate and a polymeric layer comprising polymerized liquid crystal monomers having an ordered morphology, wherein the color, the

  12. New type of protective hybrid and nanocomposite hybrid coatings containing silver and copper with an excellent antibacterial effect especially against MRSA

    Energy Technology Data Exchange (ETDEWEB)

    Slamborova, Irena [Centre for Nanomaterials, Advanced Technologies and Innovations, Studentska 1402/2, 461 17 Liberec 1 (Czech Republic); Zajicova, Veronika, E-mail: veronika.zajicova@tul.cz [Centre for Nanomaterials, Advanced Technologies and Innovations, Studentska 1402/2, 461 17 Liberec 1 (Czech Republic); Karpiskova, Jana [Institute of Novel Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 2, 461 17 Liberec 1 (Czech Republic); Exnar, Petr; Stibor, Ivan [Centre for Nanomaterials, Advanced Technologies and Innovations, Studentska 1402/2, 461 17 Liberec 1 (Czech Republic)

    2013-01-01

    Epidemics spread many types of pathogenic bacterial strains, especially strains of MRSA (Methicillin-resistant Staphylococcus aureus), which are being increasingly reported in many geographical areas [1]. This is becoming to be a serious global problem, particularly in hospitals. Not only are antibiotics proving to be increasingly ineffective but also the bacteria responsible for more than 70% of hospital-acquired bacterial infections are resistant to at least one of the drugs commonly used to treat them. In this study, hybrid coating A1 and nanocomposite hybrid coating A2 based on TMSPM (3-(trimethoxysilyl)propyl methacrylate, MMA (methyl methacrylate), TEOS (tetraethyl orthosilicate) and IPTI (titanium isopropoxide) containing silver and copper ions with or without nanoparticles of titanium dioxide were prepared by the sol-gel method. They were deposited on glass, poly(methyl methacrylate) and cotton using dip-coating or spin-coating, and then cured at 150 Degree-Sign C for 3 h or, in the case of poly(methyl methacrylate), at 100 Degree-Sign C for 4.5 h. The morphology and microstructure of these hybrid coatings were examined by SEM. The abrasion resistance was tested using a washability tester and found to depend heavily on the curing temperature. Seven types of bacterial strains were used to determine the profile of antibacterial activity, namely Escherichia coli, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus - MRSA (CCM 4223), MRSA-2 (CCM 7112), Acinetobacter baumanii, Pseudomonas aeruginosa, and Proteus vulgaris (according to ALE-G18, CSNI). All the samples were tested by irradiating with either a UV-A or a daylight fluorescent lamp. All types of hybrid coating A1 and nanocomposite hybrid coating A2 were found to possess an excellent antibacterial effect, including against the pathogenic bacterial strains of MRSA, which present a dangerous threat on a global scale.

  13. New type of protective hybrid and nanocomposite hybrid coatings containing silver and copper with an excellent antibacterial effect especially against MRSA

    International Nuclear Information System (INIS)

    Šlamborová, Irena; Zajícová, Veronika; Karpíšková, Jana; Exnar, Petr; Stibor, Ivan

    2013-01-01

    Epidemics spread many types of pathogenic bacterial strains, especially strains of MRSA (Methicillin-resistant Staphylococcus aureus), which are being increasingly reported in many geographical areas [1]. This is becoming to be a serious global problem, particularly in hospitals. Not only are antibiotics proving to be increasingly ineffective but also the bacteria responsible for more than 70% of hospital-acquired bacterial infections are resistant to at least one of the drugs commonly used to treat them. In this study, hybrid coating A1 and nanocomposite hybrid coating A2 based on TMSPM (3-(trimethoxysilyl)propyl methacrylate, MMA (methyl methacrylate), TEOS (tetraethyl orthosilicate) and IPTI (titanium isopropoxide) containing silver and copper ions with or without nanoparticles of titanium dioxide were prepared by the sol–gel method. They were deposited on glass, poly(methyl methacrylate) and cotton using dip-coating or spin-coating, and then cured at 150 °C for 3 h or, in the case of poly(methyl methacrylate), at 100 °C for 4.5 h. The morphology and microstructure of these hybrid coatings were examined by SEM. The abrasion resistance was tested using a washability tester and found to depend heavily on the curing temperature. Seven types of bacterial strains were used to determine the profile of antibacterial activity, namely Escherichia coli, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus — MRSA (CCM 4223), MRSA-2 (CCM 7112), Acinetobacter baumanii, Pseudomonas aeruginosa, and Proteus vulgaris (according to ALE-G18, CSNI). All the samples were tested by irradiating with either a UV-A or a daylight fluorescent lamp. All types of hybrid coating A1 and nanocomposite hybrid coating A2 were found to possess an excellent antibacterial effect, including against the pathogenic bacterial strains of MRSA, which present a dangerous threat on a global scale.

  14. Biotic homogenization can decrease landscape-scale forest multifunctionality

    DEFF Research Database (Denmark)

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago

    2016-01-01

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a ...

  15. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea.

    Science.gov (United States)

    Stieglmeier, Michaela; Mooshammer, Maria; Kitzler, Barbara; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Richter, Andreas; Schleper, Christa

    2014-05-01

    Soil emissions are largely responsible for the increase of the potent greenhouse gas nitrous oxide (N2O) in the atmosphere and are generally attributed to the activity of nitrifying and denitrifying bacteria. However, the contribution of the recently discovered ammonia-oxidizing archaea (AOA) to N2O production from soil is unclear as is the mechanism by which they produce it. Here we investigate the potential of Nitrososphaera viennensis, the first pure culture of AOA from soil, to produce N2O and compare its activity with that of a marine AOA and an ammonia-oxidizing bacterium (AOB) from soil. N. viennensis produced N2O at a maximum yield of 0.09% N2O per molecule of nitrite under oxic growth conditions. N2O production rates of 4.6±0.6 amol N2O cell(-1) h(-1) and nitrification rates of 2.6±0.5 fmol NO2(-) cell(-1) h(-1) were in the same range as those of the AOB Nitrosospira multiformis and the marine AOA Nitrosopumilus maritimus grown under comparable conditions. In contrast to AOB, however, N2O production of the two archaeal strains did not increase when the oxygen concentration was reduced, suggesting that they are not capable of denitrification. In (15)N-labeling experiments we provide evidence that both ammonium and nitrite contribute equally via hybrid N2O formation to the N2O produced by N. viennensis under all conditions tested. Our results suggest that archaea may contribute to N2O production in terrestrial ecosystems, however, they are not capable of nitrifier-denitrification and thus do not produce increasing amounts of the greenhouse gas when oxygen becomes limiting.

  16. Microstructural evolution and mechanical properties of Mg composites containing nano-B4C hybridized micro-Ti particulates

    International Nuclear Information System (INIS)

    Sankaranarayanan, S.; Sabat, R.K.; Jayalakshmi, S.; Suwas, S.; Gupta, M.

    2014-01-01

    In this work, the microstructural evolution and mechanical properties of extruded Mg composites containing micro-Ti particulates hybridized with varying contents of nano-B 4 C are investigated, and compared with Mg-5.6Ti. Microstructural characterization showed the presence of uniformly distributed micro-Ti particles embedded with nano-B 4 C particulates that resulted in significant grain refinement. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + x-B 4 C) BM hybrid composites showed that the addition of hybridized particle resulted in relatively more recrystallized grains, realignment of basal planes and extension of weak basal fibre texture when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated improved strength with ductility retention in Mg-(5.6Ti + x-B 4 C) BM hybrid composites. When compared to Mg-5.6Ti, the superior strength properties of the Mg-(5.6Ti + x-B 4 C) BM hybrid composites are attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles, better interfacial bonding between the matrix and the reinforcement particles and the matrix grain refinement achieved by nano-B 4 C addition. The ductility enhancement obtained in hybrid composites can be attributed to the fibre texture spread and favourable basal plane orientation achieved due to nano B 4 C addition. - Highlights: • Micro-Ti particulates are hybridized with varying weight fractions of nano-B 4 C. • The hybrid mixture was used as hybrid reinforcements in magnesium. • Microstructure and mechanical properties of Mg-(5.6Ti + x-B 4 C) BM are compared with Mg-5.6Ti. • Electron back scattered diffraction (EBSD) analysis conducted to study the microtexture evolution

  17. X-Ray Absorption Studies of Vanadium-Containing Metal Oxide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hohn, Keith, L.

    2006-01-09

    Metal oxide nanocrystals offer significant potential for use as catalysts or catalyst supports due to their high surface areas and unique chemical properties that result from the high number of exposed corners and edges. However, little is known about the catalytic activity of these materials, especially as oxidation catalysts. This research focused on the preparation, characterization and use of vanadium-containing nanocrystals as selective oxidation catalysts. Three vanadium-containing nanocrystals were prepared using a modified sol-gel procedure: V/MgO, V/SiO2, and vanadium phosphate (VPO). These represent active oxidation catalysts for a number of industrially relevant reactions. The catalysts were characterized by x-ray diffraction and Raman, UV-VIS, infrared and x-ray absorption spectroscopies with the goal of determining the primary structural and chemical differences between nanocrystals and microcrystals. The catalytic activity of these catalysts was also studied in oxidative dehydrogenation of butane and methanol oxidation to formaldehyde. V/MgO nanocrystals were investigated for activity in oxidative dehydrogenation of butane and compared to conventional V/MgO catalysts. Characterization of V/MgO catalysts using Raman spectroscopy and x-ray absorption spectroscopy showed that both types of catalysts contained magnesium orthovanadate at vanadium loadings below 15 weight%, but above that loading, magnesium pyrovanadate may have been present. In general, MgO nanocrystals had roughly half the crystal size and double the surface area of the conventional MgO. In oxidative dehydrogenation of butane, nanocrystalline V/MgO gave higher selectivity to butene than conventional V/MgO at the same conversion. This difference was attributed to differences in vanadium domain size resulting from the higher surface areas of the nanocrystalline support, since characterization suggested that similar vanadium phases were present on both types of catalysts. Experiments in

  18. Adsorption and revaporisation studies on iodine oxide aerosols deposited on containment surface materials in LWR

    International Nuclear Information System (INIS)

    Tietze, S.; Foreman, M.R.StJ.; Ekberg, C.; Kaerkelae, T.; Auvinen, A.; Tapper, U.; Lamminmaeki, S.; Jokiniemi, J.

    2012-12-01

    During a hypothetical severe nuclear accident, the radiation field will be very high in the nuclear reactor containment building. As a result gaseous radiolysis products will be formed. Elemental iodine can react in the gaseous phase with ozone to form solid iodine oxide aerosol particles (iodine oxide). Within the AIAS (Adsorption of Iodine oxide Aerosols on Surfaces) project the interactions of iodine oxide (IOx) aerosols with common containment surface materials were investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS, as well as Pt and Pd surfaces from hydrogen recombiners. Non-radioactive and 131 I labelled iodine oxide aerosols were produced with the EXSI CONT facility from elemental iodine and ozone at VTT Technical Research Centre of Finland. The iodine oxide deposits were analysed with microscopic and spectroscopic measurement techniques to identify the kind of iodine oxide formed and if a chemical conversion on the different surface materials occurs. The revaporisation behaviour of the deposited iodine oxide aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 having a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The revaporisated 131 I species from the surfaces were chemically tested for elemental iodine formation. The parameter dominating the degradation of the produced iodine oxide aerosols was humidity. Cu and Zn surfaces were found to react with iodine from the iodine oxide aerosols to form iodides, while no metal iodides were detected for Al and SS samples. Most of the iodine oxide aerosols are assumed to be

  19. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Science.gov (United States)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-07-01

    Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  20. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy.

    Science.gov (United States)

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone-releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer.

  1. Multifunctional Interlayer Based on Molybdenum Diphosphide Catalyst and Carbon Nanotube Film for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Luo, Yufeng; Luo, Nannan; Kong, Weibang; Wu, Hengcai; Wang, Ke; Fan, Shoushan; Duan, Wenhui; Wang, Jiaping

    2018-02-01

    A multifunctional interlayer, composed of molybdenum diphosphide (MoP 2 ) nanoparticles and a carbon nanotube (CNT) film, is introduced into a lithium-sulfur (Li-S) battery system to suppress polysulfide migration. Molybdenum diphosphide acts as the catalyst and can capture polysulfides and improve the polysulfide conversion activity during the discharge/charge processes. The CNT film acts as a conductive skeleton to support the MoP 2 nanoparticles and to ensure their uniform distribution. The CNT film physically hinders polysulfide migration, acts as a current collector, and provides abundant electron pathways. The Li-S battery containing the multifunctional MoP 2 /CNT interlayer exhibits excellent electrochemical performance. It delivers a reversible specific capacity of 905 mA h g -1 over 100 cycles at 0.2 C, with a capacity decay of 0.152% per cycle. These results suggest the introduction of the multifunctional CNT/MoP 2 interlayer as an effective and practical method for producing high-performance Li-S batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Multitarget Molecular Hybrids of Cinnamic Acids

    Directory of Open Access Journals (Sweden)

    Aikaterini Peperidou

    2014-12-01

    Full Text Available In an attempt to synthesize potential new multitarget agents, 11 novel hybrids incorporating cinnamic acids and paracetamol, 4-/7-hydroxycoumarin, benzocaine, p-aminophenol and m-aminophenol were synthesized. Three hybrids—2e, 2a, 2g—and 3b were found to be multifunctional agents. The hybrid 2e derived from the phenoxyphenyl cinnamic acid and m-acetamidophenol showed the highest lipoxygenase (LOX inhibition and analgesic activity (IC50 = 0.34 μΜ and 98.1%, whereas the hybrid 3b of bromobenzyloxycinnamic acid and hymechromone exhibited simultaneously good LOX inhibitory activity (IC50 = 50 μΜ and the highest anti-proteolytic activity (IC50= 5 μΜ. The hybrid 2a of phenyloxyphenyl acid with paracetamol showed a high analgesic activity (91% and appears to be a promising agent for treating peripheral nerve injuries. Hybrid 2g which has an ester and an amide bond presents an interesting combination of anti-LOX and anti-proteolytic activity. The esters were found very potent and especially those derived from paracetamol and m-acetamidophenol. The amides follow. Based on 2D-structure–activity relationships it was observed that both steric and electronic parameters play major roles in the activity of these compounds. Molecular docking studies point to the fact that allosteric interactions might govern the LOX-inhibitor binding.

  3. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Goubard, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)]. E-mail: fabrice.goubard@u-cergy.fr; Vidal, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Bazzi, R. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Tillement, O. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Nano-H, 23 rue Royal, 69001 Lyon (France); Chevrot, C. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Teyssie, D. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)

    2007-10-15

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd{sub 2}O{sub 3}. These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films.

  4. Original Conductive Nano-Co3O4 Investigated as Electrode Material for Hybrid Supercapacitors

    OpenAIRE

    Godillot, Gérôme; Guerlou-Demourgues, Liliane; Taberna, Pierre-Louis; Simon, Patrice; Delmas, Claude

    2011-01-01

    Cobalt oxides have been extensively used as conductive additives for Ni-MH batteries. We report in this paper the performances of an original nanometric cobalt oxide, close to Co3O4, as electrode material for hybrid supercapacitors. This spinel type phase contains hydrogen, lithium, cobalt vacancies, and especially Co4þ ions within the structure, leading to a high electronic conductivity. Cyclic voltammetry and impedance spectroscopy measurements show interesting capacitance (320 F/g in 8M-KO...

  5. Harness: Development of a multifunctional protective ship bulkhead

    NARCIS (Netherlands)

    Wal, R. van der; Meuers, R.J.C.

    2016-01-01

    HARNESS is a joint project between governments, industry and TNO with the objective to develop a multifunctional protective bulkhead for application on naval vessels. The multifunctional bulkhead aims at increasing the resilience of naval vessels, reduce damage and repair time and provide a safer

  6. Industrial applications of multi-functional, multi-phase reactors

    NARCIS (Netherlands)

    Harmsen, G.J.; Chewter, L.A.

    1999-01-01

    To reveal trends in the design and operation of multi-functional, multi-phase reactors, this paper describes, in historical sequence, three industrial applications of multi-functional, multi-phase reactors developed and operated by Shell Chemicals during the last five decades. For each case, we

  7. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Ruiyi, Li; Tengyuan, Chen; Beibei, Sun [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Zaijun, Li [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Zhiquo, Gu; Guangli, Wang; Junkang, Liu [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-10-15

    Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling

  8. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  9. Multifunctional guest-host particles engineered by reversal nanoimprint lithography

    Science.gov (United States)

    Ha, Uh-Myong; Kaban, Burhan; Tomita, Andreea; Krekić, Kristijan; Klintuch, Dieter; Pietschnig, Rudolf; Ehresmann, Arno; Holzinger, Dennis; Hillmer, Hartmut

    2018-03-01

    Particulate polymeric microfibers with incorporated europium(III)oxide (Eu2O3) nanoparticles were introduced as a magneto-photoluminescent multifunctional material fabricated via reversal nanoimprint lithography. To specifically address the volume properties of these guest-host particles, the guest, Eu2O3, was milled down to an average particle size of 350 nm in diameter and mixed with the host-polymer, AMONIL®, before in situ hardening in the imprint stamp. The variation of the fabrication process parameters, i.e. delay time, spin coating speed, as well as the concentration of Eu2O3 nanoparticles was proven to have a significant impact on both the structure quality and the stamp release of the microfibers with respect to the formation of a thinner residual layer. Structural characterization performed by SEM revealed optimum fabrication process parameters for a homogeneous spatial distribution of Eu2O3 nanoparticles within the microfibers while simultaneously avoiding the formation of undesired agglomerates. The magneto-photoluminescent properties of Eu2O3 nanoparticles, i.e. a red emission at 613 nm and a paramagnetic response, were found to be superimposed to the optic and the diamagnetic behaviors of AMONIL®. The results imply that guest-host interdependence of these properties can be excluded and that the suggested technique enables for specific tailoring of particulate multifunctional materials with focus on their volume properties.

  10. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.t [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2010-10-22

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E{sub corr}) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  11. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Kung, Kuan-Chen; Lee, Tzer-Min; Lui, Truan-Sheng

    2010-01-01

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E corr ) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  12. Methods of preparing deposits containing iron oxides for recycling

    Directory of Open Access Journals (Sweden)

    T. Lis

    2013-04-01

    Full Text Available The metallurgical industry is one of the largest sources of wastes. Some of them, however, owing to their content of metals such as zinc or iron, may become valuable secondary raw materials. In order to achieve that purpose, they require appropriate preparation. This article provides a discussion on the methods of preparation of scrap from steelworks, namely deposits containing iron oxides, enabling their recycling.

  13. Bioinspired Multifunctional Membrane for Aquatic Micropollutants Removal

    DEFF Research Database (Denmark)

    Cao, Xiaotong; Luo, Jianquan; Woodley, John

    2016-01-01

    Micropollutants present in water have many detrimental effects on the ecosystem. Membrane technology plays an important role in the removal of micropollutants, but there remain significant challenges such as concentration polarization, membrane fouling, and variable permeate quality. The work...... reported here uses a multifunctional membrane with rejection, adsorption, and catalysis functions to solve these problems. On the basis of mussel-inspired chemistry and biological membrane properties, a multifunctional membrane was prepared by applying "reverse filtration" of a laccase solution...... and subsequent "dopamine coating" on a nanofiltration (NF) membrane support, which was tested on bisphenol A (BPA) removal. Three NF membranes were chosen for the preparation of the multifunctional membranes on the basis of the membrane properties and enzyme immobilization efficiency. Compared with the pristine...

  14. Oxidative stability of pullulan electrospun fibers containing fish oil

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Damberg, Cecilie; Chronakis, Ioannis S.

    2017-01-01

    The effect of oil content and addition of natural antioxidants on the morphology and oxidative stability of pullulan ultra-thin fibers loaded with fish oil and obtained by electrospinning was investigated. Pullulan sub-micron fibers containing 10 and 30wt% fish oil were prepared and both presented...... into food matrices. These results show the feasibility to encapsulate fish oil in pullulan ultra-thin fibers and to improve their oxidative stability by adding natural antioxidants such as δ-tocopherol and rosemary extract. Therefore, this study might open up new opportunities for further technological...... development in the production of omega-3 nanodelivery systems, which have potential applications in different types of fortified foods. Encapsulation of fish oil in electrospun pullulan fibers stabilized by natural antioxidants....

  15. A modified lower hybrid coupler for TPX

    International Nuclear Information System (INIS)

    Bernabei, S.; Greenough, N.

    1995-01-01

    Efforts have concentrated on redesigning the configuration of the Lower Hybrid coupler for TPX tokamak. Several concerns motivated this redesign: reduce the effect of thermal incompatibility between coupler and rf-window material, reduce weight, reduce the risk of wind failure and address the problem of replaceability, increase the reliability by reducing the number connections and finally, reduce the total cost. The result is a highly compact, light and easily serviceable coupler which incorporates some of the simplicity of the multifunction coupler but preserves the spectral flexibility of a conventional coupler

  16. Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO: a spectroscopic and electrochemical study

    Directory of Open Access Journals (Sweden)

    İlknur Gergin

    2017-08-01

    Full Text Available In this study, a precursor for carbon nanofibers (CNF was fabricated via electrospinning and carbonized through a thermal process. Before carbonization, oxidative stabilization should be applied, and the oxidation mechanism also plays an important role during carbonization. Thus, the understanding of the oxidation mechanism is an essential part of the production of CNF. The oxidation process of polyacrylonitrile was studied and nanofiber webs containing graphene oxide (GO are obtained to improve the electrochemical properties of CNF. Structural and morphological characterizations of the webs are carried out by using attenuated total reflectance Fourier transform infrared spectroscopy and Raman spectroscopy, scanning electron microscopy, atomic force microscopy and transmission electron microscopy. Mechanical tests are performed with a dynamic mechanical analyzer, and thermal studies are conducted by using thermogravimetric analysis. Electrochemical impedance spectroscopy, and cyclic voltammetry are used to investigate capacitive behavior of the products. The proposed equivalent circuit model was consistent with charge-transfer processes taking place at interior pores filled with electrolyte.

  17. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection

    OpenAIRE

    Zuo, Peng; Li, XiuJun; Dominguez, Delfina C.; Ye, Bang-Ce

    2013-01-01

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated ...

  18. Designing Hybrids of Graphene Oxide and Gold Nanoparticles for Nonlinear Optical Response

    Science.gov (United States)

    Yadav, Rajesh Kumar; Aneesh, J.; Sharma, Rituraj; Abhiramnath, P.; Maji, Tuhin Kumar; Omar, Ganesh Ji; Mishra, A. K.; Karmakar, Debjani; Adarsh, K. V.

    2018-04-01

    Nonlinear optical absorption of light by materials is weak due to its perturbative nature, although a strong nonlinear response is of crucial importance to applications in optical limiting and switching. Here we demonstrate experimentally and theoretically an extremely efficient scheme of excited-state absorption by charge transfer between donor and acceptor materials as a method to enhance the nonlinear absorption by orders of magnitude. With this idea, we demonstrate a strong excited-state absorption (ESA) in reduced graphene oxide that otherwise shows an increased transparency at high fluence and enhancement of ESA by one order of magnitude in graphene oxide by attaching gold nanoparticles (Au NP) in the tandem configuration that acts as an efficient charge-transfer pair when excited at the plasmonic wavelength. To explain the unprecedented enhancement, we develop a five-level rate-equation model based on the charge transfer between the two materials and numerically simulate the results. To understand the correlation of interfacial charge transfer with the concentration and type of the functional ligands attached to the graphene oxide sheet, we investigate the Au-NP—graphene oxide interface with various possible ligand configurations from first-principles calculations. By using the strong ESA of our hybrid materials, we fabricate liquid cell-based high-performance optical limiters with important device parameters better than that of the benchmark optical limiters.

  19. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors

    Science.gov (United States)

    Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong

    2015-01-01

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...

  20. Hybrid nanocomposite based on cellulose and tin oxide: growth, structure, tensile and electrical characteristics

    International Nuclear Information System (INIS)

    Mahadeva, Suresha K; Kim, Jaehwan

    2011-01-01

    A highly flexible nanocomposite was developed by coating a regenerated cellulose film with a thin layer of tin oxide (SnO 2 ) by liquid-phase deposition. Tin oxide was crystallized in solution and formed nanocrystal coatings on regenerated cellulose. The nanocrystalline layers did not exfoliate from cellulose. Transmission electron microscopy and energy dispersive x-ray spectroscopy suggest that SnO 2 was not only deposited over the cellulose surface, but also nucleated and grew inside the cellulose film. Current-voltage characteristics of the nanocomposite revealed that its electrical resistivity decreases with deposition time, with the lowest value obtained for 24 h of deposition. The cellulose-SnO 2 hybrid nanocomposite can be used for biodegradable and disposable chemical, humidity and biosensors.

  1. New product development: A batik multifunctional chair

    Science.gov (United States)

    Indrawati, Sri; Sukmaningsih, Nias

    2017-11-01

    The biggest challenge facing by Batik industry in ASEAN Economic Community (AEC) era is the greater number of fashion competitors both domestically and internationally. Based on that condition, the development of new product variants by considering product performance and price is needed. This research was conducted to develop batik products with a new target market. Products that being developed is batik multifunctional chair using integrated value engineering and analytic hierarchy process methods. This research has been done in several stages, ie. Information stage, creative stage, value analysis and product prototyping. The results of this research shows that the batik multifunctional chair product criteria are aesthetic (29%), multifunctional (34%) and ergonomic (37%). There are three new product design alternatives that successfully being developed. Based on value analysis, the product design alternatives that have the highest value is alternative design 2, the value is 2,37. The production cost for this design is Rp. 500.000,-. Alternative design 2 specification are using Mahoni wood, Batik parang rusak pattern with natural coloring process, can be used as table and fit with customer's body anthropometry. Then a batik multifunctional chair prototype is developed based on the best alternative design.

  2. Facile analysis of contents and compositions of the chondroitin sulfate/dermatan sulfate hybrid chain in shark and ray tissues.

    Science.gov (United States)

    Takeda, Naoko; Horai, Sawako; Tamura, Jun-ichi

    2016-04-07

    The chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chain was extracted from specific tissues of several kinds of sharks and rays. The contents and sulfation patterns of the CS/DS hybrid chain were precisely analyzed by digestion with chondroitinases ABC and AC. All samples predominantly contained the A- and C-units. Furthermore, all samples characteristically contained the D-unit. Species-specific differences were observed in the contents of the CS/DS hybrid chain, which were the highest in Mako and Blue sharks and Sharpspine skates, but were lower in Hammerhead sharks. Marked differences were observed in the ratio of the C-unit/A-unit between sharks and rays. The contents of the CS/DS hybrid chain and the ratio of the C-unit/A-unit may be related to an oxidative stress-decreasing ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Growth of monosex hybrid tilapia in the labortory and sewage oxidation ponds

    International Nuclear Information System (INIS)

    Suffern, J.S.; Adams, S.M.; Blaylock, B.G.; Coutant, C.C.; Guthrie, C.A.

    1978-01-01

    Studies were conducted to evaluate the potential of monosex hybrid tilapia (female T. mossambica x male T. hornorum) in waste-heat polyculture systems. The optimum growth temperature for this hybrid was found to be 32 0 C in laboratory experiments. Experiments in sewage pond cage culture in the temperature range of 23 to 33 0 C at stocking densities of approximately 53 fish/m 3 were also conducted. At fish sizes between 5 and 12 cm TL, estimated annual production is approximately 50,000 kg/ha/yr (50,000 lb/acre/yr). Fish in the sewage oxidation ponds grew significantly faster than fish fed trout chow at optimum temperature in the laboratory, even though temperatures in the sewage ponds averaged below the optimum growth temperature. Techniques to accelerate growth rates are being explored. Exposure to gamma radiation (500 rads), known to cause significant increases in channel catfish growth rate, was found to have a similar effect on tilapia. After a 20-week growth period, exposed fish weighed an average of 20% more than controls

  4. Direct deposition of inorganic–organic hybrid semiconductors and their template-assisted microstructures

    International Nuclear Information System (INIS)

    Dwivedi, V.K.; Baumberg, J.J.; Prakash, G. Vijaya

    2013-01-01

    A straight-forward method is developed to deposit a new class of self-organized inorganic–organic (IO) hybrid, (C 12 H 25 NH 3 ) 2 PbI 4 . These IO hybrid structures are stacked-up as natural multiple quantum well structures and exhibit strong room-temperature exciton emission and other multifunctional features. Here it is successfully demonstrated that these materials can be directly carved into 2D photonic structures from the inexpensive template-assisted electrochemical deposition followed by solution processing. The applicability of this method for many such varieties of IO-hybrids is also explored. By appropriately controlling the deposition conditions and the self-assembly templates, target structures are developed for new-generation low-cost photonic devices. -- Highlights: ► New fabrication methodology for self-organized inorganic–organic hybrids. ► Strongly confined exciton emission and photoconductive properties. ► Simple bottom-up fabrication for device applications.

  5. Synthesis of hyperbranched polystyrene and its fullerene end-capped derivates with multifunctional atom-transfer radical polymerization initiator

    NARCIS (Netherlands)

    Yang, J.W.; Wang, Changchun; Ming, W.

    2004-01-01

    A novel multifunctional A TRP initiator was synthesized by esterfication of a hyperbranched polyester Z5 [from pentaerythritol and 2, 2-bis Chydroxymethyl) propionic acid]. The macroinitiator contained approximately 19 initiating sites per molecule. It was used for the A TRP of styrene mediated by

  6. Structural qualification of the multifunctional instrument tree for installation in double-shell and 100-series single-shell tanks

    International Nuclear Information System (INIS)

    Strohlow, J.P.

    1995-12-01

    This document provides the technical basis and methodology for qualifying the multifunctional instrument tree (MIT) structure for installation in double-shell and 100-series single-shell tanks. Structural qualification for MIT installations in specific tanks are also contained in this document

  7. Adsorption and revaporisation studies on iodine oxide aerosols deposited on containment surface materials in LWR

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, S.; Foreman, M.R.StJ.; Ekberg, C. [Chalmers Univ. of Technology, Goeteborg (Sweden); Kaerkelae, T.; Auvinen, A.; Tapper, U.; Lamminmaeki, S.; Jokiniemi, J. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-12-15

    During a hypothetical severe nuclear accident, the radiation field will be very high in the nuclear reactor containment building. As a result gaseous radiolysis products will be formed. Elemental iodine can react in the gaseous phase with ozone to form solid iodine oxide aerosol particles (iodine oxide). Within the AIAS (Adsorption of Iodine oxide Aerosols on Surfaces) project the interactions of iodine oxide (IOx) aerosols with common containment surface materials were investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS, as well as Pt and Pd surfaces from hydrogen recombiners. Non-radioactive and {sup 131}I labelled iodine oxide aerosols were produced with the EXSI CONT facility from elemental iodine and ozone at VTT Technical Research Centre of Finland. The iodine oxide deposits were analysed with microscopic and spectroscopic measurement techniques to identify the kind of iodine oxide formed and if a chemical conversion on the different surface materials occurs. The revaporisation behaviour of the deposited iodine oxide aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 having a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The revaporisated {sup 131}I species from the surfaces were chemically tested for elemental iodine formation. The parameter dominating the degradation of the produced iodine oxide aerosols was humidity. Cu and Zn surfaces were found to react with iodine from the iodine oxide aerosols to form iodides, while no metal iodides were detected for Al and SS samples. Most of the iodine oxide aerosols are assumed to

  8. Quantitative characterization of colloidal assembly of graphene oxide-silver nanoparticle hybrids using aerosol differential mobility-coupled mass analyses.

    Science.gov (United States)

    Nguyen, Thai Phuong; Chang, Wei-Chang; Lai, Yen-Chih; Hsiao, Ta-Chih; Tsai, De-Hao

    2017-10-01

    In this work, we develop an aerosol-based, time-resolved ion mobility-coupled mass characterization method to investigate colloidal assembly of graphene oxide (GO)-silver nanoparticle (AgNP) hybrid nanostructure on a quantitative basis. Transmission electron microscopy (TEM) and zeta potential (ZP) analysis were used to provide visual information and elemental-based particle size distributions, respectively. Results clearly show a successful controlled assembly of GO-AgNP by electrostatic-directed heterogeneous aggregation between GO and bovine serum albumin (BSA)-functionalized AgNP under an acidic environment. Additionally, physical size, mass, and conformation (i.e., number of AgNP per nanohybrid) of GO-AgNP were shown to be proportional to the number concentration ratio of AgNP to GO (R) and the selected electrical mobility diameter. An analysis of colloidal stability of GO-AgNP indicates that the stability increased with its absolute ZP, which was dependent on R and environmental pH. The work presented here provides a proof of concept for systematically synthesizing hybrid colloidal nanomaterials through the tuning of surface chemistry in aqueous phase with the ability in quantitative characterization. Graphical Abstract Colloidal assembly of graphene oxide-silver nanoparticle hybrids characterized by aerosol differential mobility-coupled mass analyses.

  9. Preparation and Characterization of Some Nanometal Oxides Using Microwave Technique and Their Application to Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    M. Gouda

    2015-01-01

    Full Text Available The objective of this paper is the synthesis of some nanometal oxides via microwave irradiation technique and their application to augment multifunctional properties of cotton fabric. Cotton fabrics containing nanometal oxides were prepared via a thiol-modification of cotton fabric samples and then dipped into the metal salt solutions precursors and transferred to the microwave oven. The surface morphology and quantitative analysis of the obtained modified cotton fabrics containing nanometal oxides were studied by scanning electron microscopy coupled with high energy dispersive X-ray (SEM-EDX. The shape and distribution of nanometal oxide inside the fabric samples were analyzed by transmission electron microscopy of cross-section fabric samples. The iron oxide nanoparticles had a nanosphere with particle size diameter 15–20 nm, copper oxide nanoparticles had a nanosphere with particle size diameter 25–30 nm, and cobalt oxide nanoparticles had a nanotube-like shape with a length of 100–150 nanometer and a diameter of ~58 nanometer, whereas the manganese oxide nanoparticles had a linear structure forming nanorods with a diameter of 50–55 nanometer and a length of 70–80 nanometers. Antibacterial activity was evaluated quantitatively against gram-positive bacteria such as Staphylococcus aureus and gram-negative bacteria such as Escherichia coli, UV-protection activity was analyzed using UV-DRS spectroscopy, and flame retardation of prepared fabric samples was evaluated according to the limiting oxygen index (LOI. Results revealed that the prepared fabric sample containing nanometal oxide possesses improved antibacterial, LOI, and UV-absorbing efficiency. Moreover, the metal oxide nanoparticles did not leach out the fabrics by washing even after 30 laundering washing cycles.

  10. Method of making Tl-Sr-Ca-Cu-oxide superconductors comprising heating at elevated pressures in a sealed container

    International Nuclear Information System (INIS)

    Lechtev, W.L.; Osofsky, M.S.; Skelton, E.F.; Toth, L.E.

    1992-01-01

    This patent describes a method of forming a Tl-Sr-Ca-Cu-oxide high T c superconductor. It comprises forming a reaction mixture of the oxides of Sr, Cu, Ca, and Tl in stoichiometric proportions to make a Tl-Sr-Ca-Cu-oxide high T c superconducting compound; compressing the reaction mixture into a hard body; placing the hard body into a container for containing thallium vapor; evacuating and sealing the hard body in the container; heating the hard body and the container at a temperature of about 800 degrees C to about 950 degrees C and under pressure of at least about 30,000 psi until the container metal around the hard body and the oxides of Tl, Sr, Ca, and Cu react to form a superconducting compound; and cooling the superconducting compound to room temperature and returning the superconducting compound to atmospheric pressure

  11. Planning multifunctional green infrastructure for compact cities

    DEFF Research Database (Denmark)

    Hansen, Rieke; Olafsson, Anton Stahl; van der Jagt, Alexander P.N.

    2018-01-01

    green space functions or the purposive design and management of multifunctional parks. Based on the findings, we arrive at five recommendations for promoting multifunctional urban green infrastructure in densifying urban areas: 1) undertake systematic spatial assessments of all urban green (and blue....... Further, spatial assessment, strategic planning and site design need to 4) consider synergies, trade-offs and the capacity of urban green spaces to provide functions as part of the wider green infrastructure network; and 5) largely benefit from cooperation between different sectors and public departments......Urban green infrastructure planning aims to develop green space networks on limited space in compact cities. Multifunctionality is considered key to achieving this goal as it supports planning practice that considers the ability of green spaces to provide multiple benefits concurrently. However...

  12. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gen [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Pan, Zhanchang, E-mail: panzhanchang@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Li, Wuyi; Yu, Ke [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Xia, Guowei; Zhao, Qixiang; Shi, Shikun [Victory Giant Technology (Hui Zhou) Co., Ltd., Huizhou 516083 (China); Hu, Guanghui; Xiao, Chumin; Wei, Zhigang [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China)

    2017-07-15

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  13. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    International Nuclear Information System (INIS)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-01-01

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  14. Ternary hybrid polymeric nanocomposites through grafting of polystyrene on graphene oxide-TiO_2 by surface initiated atom transfer radical polymerization (SI-ATRP)

    International Nuclear Information System (INIS)

    Kumar, Arvind; Bansal, Ankushi; Behera, Babita; Jain, Suman L.; Ray, Siddharth S.

    2016-01-01

    A ternary hybrid of graphene oxide-titania-polystyrene (GO-TiO_2-PS) nanocomposite is developed where polystyrene composition is regulated by controlling growth of polymer chains and nanoarchitectonics is discussed. Graphene Oxide-TiO_2 (GO-TiO_2) nanocomposite is prepared by in-situ hydrothermal method and the surface is anchored with α-bromoisobutyryl bromide to activate GO-TiO_2 as initiator for polymerization. In-situ grafting of polystyrene through surface initiated atom transfer radical polymerization (SI- ATRP) on this Br-functionalized nano-composite initiator yields GO-TiO_2-PS ternary hybrid. Varying the monomer amount and keeping the concentration of initiator constant, polystyrene chain growth is regulated with narrow poly-dispersivity to achieve desired composition. This composite is well characterized by various analytical techniques like FTIR, XRD, DSC, SEM, TEM, and TGA. - Highlights: • Nanocomposite of ternary hybrid of GO-TiO_2 with polystyrene. • PS is surface grafted on GO-TiO_2. • Polymer chain lengths are well regulated by SI-ATRP living polymerization. • Thermal stability of this hybrid is relatively high.

  15. Facial Skin Lifting and Brightening Following Sleep on Copper Oxide Containing Pillowcases

    Directory of Open Access Journals (Sweden)

    Gadi Borkow

    2016-07-01

    Full Text Available Copper plays a key role in many of the physiological processes that occur in the skin. Previously it was found that sleeping on pillowcases impregnated with microscopic copper oxide particles results in reduction of wrinkles and fine lines. In the current study, it was examined if sleeping on copper oxide impregnated pillowcases results also in skin lifting and skin brightness. A four week, double blind, randomized study was performed, during which 45 women, aged 37–54, slept on copper oxide containing pillowcases (test group, n = 23 or on control pillowcases without copper oxide (control group, n = 22. Facial and eye skin surface was measured using an F-ray 3D measurement system and surface analysis was conducted using Image-pro® plus. Skin brightness was measured using a tristimulus colorimeter. Sleeping on the test pillowcases resulted in statistically significant skin lifting on the cheek area (p = 0.039 and eye area (p = 0.001 after four weeks of use as compared to baseline. The mean skin brightness in those sleeping on the test pillowcases increased after two (p = 0.024 and four weeks (p = 0.008. No statistically significant changes occurred during the study in the study participants using the control pillowcases. Statistically significant differences between both groups were recorded at two and four weeks for skin brightness and skin lifting, respectively. In conclusion, sleeping on copper oxide containing pillowcases results in facial skin lifting and brightness of the skin.

  16. Characterization and robust filtering of multifunctional surfaces using ISO standards

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Godi, Alessandro; De Chiffre, Leonardo

    2011-01-01

    Engineered surfaces containing lubrication pockets and directional surface texture can decrease wear and friction in sliding or rolling contacts. A new generation of multifunctional (MUFU) surfaces has been created by hard machining followed by robot-assisted polishing. The production method allows...... for a large degree of freedom in specifying surface topography defined by frequency, depth and volume of the lubricant retention valleys, as well as the amount of load bearing area and the surface roughness. The surfaces cannot readily be characterized by means of conventional roughness parameters due...

  17. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoning [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Tian, Mingwei [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Qu, Lijun, E-mail: lijunqu@126.com [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Zhu, Shifeng [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Guo, Xiaoqing [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Han, Guangting [Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); and others

    2014-10-30

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  18. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    International Nuclear Information System (INIS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting

    2014-01-01

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric

  19. Design optimisation of a hybrid solid oxide fuel cell and gas turbine power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.J.; Siddle, A.; Pointon, K.

    2001-07-01

    The objectives of the combined ALSTOM Power Technology and Advantica Technologies project are reported as: (a) to design a gas turbine (GT) unit compatible with a solid oxide fuel cell (SOFC) in a high efficiency power system and aimed at the Distributed Power application range of 1-20MW, and (b) to identify the main features and components of a 'Proof of Concept' hybrid unit of output around 0.1MW, based on existing or near-market technology. The study showed: (i) while the potential for high efficiency SOFC + GT hybrid cycles is clear, little effort has been put into the design of the gas turbine and some other components and (ii) there is room for commercial exploitation in the areas of both component manufacture and system supply.

  20. Sn powder as reducing agents and SnO2 precursors for the synthesis of SnO2-reduced graphene oxide hybrid nanoparticles.

    Science.gov (United States)

    Chen, Mingxi; Zhang, Congcong; Li, Lingzhi; Liu, Yu; Li, Xichuan; Xu, Xiaoyang; Xia, Fengling; Wang, Wei; Gao, Jianping

    2013-12-26

    A facile approach to prepare SnO2/rGO (reduced graphene oxide) hybrid nanoparticles by a direct redox reaction between graphene oxide (GO) and tin powder was developed. Since no acid was used, it is an environmentally friendly green method. The SnO2/rGO hybrid nanoparticles were characterized by ultraviolet-visible spectroscopy, Raman spectroscopy, thermogravimetric analysis, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The microstructure of the SnO2/rGO was observed with scanning electron microscopy and transmission electron microscopy. The tin powder efficiently reduced GO to rGO, and the Sn was transformed to SnO2 nanoparticles (∼45 nm) that were evenly distributed on the rGO sheets. The SnO2/rGO hybrid nanoparticles were then coated on an interdigital electrode to fabricate a humidity sensor, which have an especially good linear impedance response from 11% to 85% relative humidity.

  1. Sol-gel synthesis and characterization of SiO{sub 2}/PEG hybrid materials containing quercetin as implants with antioxidant properties

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina; Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Gloria, Antonio [Institute of Polymers, Composites and Biomaterials - National Research Council of Italy, V.le J. F. Kennedy 54 - Mostra d’Oltremare Pad. 20, 80125 Naples (Italy)

    2016-05-18

    In the present work, Silica/Polyethylene glycol (PEG) hybrid nanocomposites containing an antioxidant agent, the quercetin, were synthesized via sol-gel to be used as implants with antioxidant properties. Fourier transform infrared (FT-IR) analysis proved that a modification of both polymer and quercetin occurs due to synthesis process. Scanning electron microscope (SEM) showed that the proposed materials were hybrid nanocomposites. The bioactivity was ascertained by soaking the samples in a simulated body fluid (SBF).

  2. Simple multifunction discriminator for multichannel triggers

    International Nuclear Information System (INIS)

    Maier, M.R.

    1982-10-01

    A simple version of a multifunction timing discriminator using only two integrated circuits is presented. It can be configured as a leading edge, a constant fraction, a zero cross or a dual threshold timing discriminator. Since so few parts are used, it is well suited for building multichannel timing discriminators. Two versions of this circuit are described: a quadruple multifunction discriminator and an octal constant fraction trigger. The different compromises made in these units are discussed. Results for walk and jitter obtained with these are presented and possible improvements are disussed

  3. Oxidation studies of β-sialon ceramics containing amorphous and / or crystalline intergranular phases

    International Nuclear Information System (INIS)

    Persson, J.; Kall, P.O.; Jansson, K.; Nygren, M.

    1992-01-01

    β-sialon ceramics of equal overall compositions but containing amorphous, partly crystalline and almost completely crystalline intergranular phase(s) have been oxidized in oxygen at 1350 deg C for 20 hours. The obtained weight gain curves do not follow the parabolic rate law (ΔW/A 0 ) 2 = k p t + β. To the extent that crystallization occurs in the oxide scale during the oxidation experiment, the amorphous cross section area through which oxygen most easily diffuses will decrease with time. A brief description of this new rate law is given, and the obtained oxidation curves will be discussed within that framework. 4 refs., 2 tabs., 2 figs

  4. Low Working-Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites.

    Science.gov (United States)

    Qu, Fengdong; Yuan, Yao; Guarecuco, Rohiverth; Yang, Minghui

    2016-06-01

    Transition-metal nitride and oxide composites are a significant class of emerging materials that have attracted great interest for their potential in combining the advantages of nitrides and oxides. Here, a novel class of gas sensing materials based on hybrid Zn3 N2 and ZnO composites is presented. The Zn3 N2 /ZnO (ZnNO) composites-based sensor exhibits selectivity and high sensitivity toward acetone vapor, and the sensitivity is dependent on the nitrogen content of the composites. The ZnNO-11.7 described herein possesses a low working temperature of 200 °C. The detection limit (0.07 ppm) is below the diabetes diagnosis threshold (1.8 ppm). In addition, the sensor shows high reproducibility and long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cyanide Containing Wastewater Treatment by Ozone Enhanced Catalytic Oxidation over Diatomite Catalysts

    Directory of Open Access Journals (Sweden)

    Lin Mingguo

    2018-01-01

    Full Text Available Cyanide containing wastewater that discharged from gold mining process creates environmental problems due to the toxicity of cyanide. As one of the promising advanced oxidation process, catalytic oxidation with ozone is considered to be effective on the purification of cyanide. Diatomite, a natural mineral, was used as catalyst in this study. The effect of O3 dosage, salinity, initial cyanide concentration and initial pH condition were investigated. It was observed that the removal rate of cyanide was much higher in the catalytic oxidation with ozone process than the one in zone alone process. Alkaline condition was especially favorable for cyanide in catalytic oxidation with ozone. The ozone and catalytic oxidation with ozone were simulated by pseudo-first-order kinetics model. The apparent first-order rate constant contribution of the diatomite catalyst was 0.0757 min-1, and the contribution percentage was 65.77%.

  6. Effect of Surface Morphology and Dispersion Media on the Properties of PEDOT:PSS/n-Si Hybrid Solar Cell Containing Functionalized Graphene

    Directory of Open Access Journals (Sweden)

    Pham Van Trinh

    2017-01-01

    Full Text Available We present the results on the effect of surface morphology and dispersion media on the properties of PEDOT:PSS/n-Si hybrid solar cell containing functionalized graphene (Gr. The hybrid solar cells based on SiNWs showed higher power conversion efficiency (PCE compared to the planar based cells due to suppressing the carrier recombination and improving carrier transport efficiency. The PCE of hybrid solar cells could be improved by adding Gr into PEDOT:PSS. Different solvents including deionized (DI water, ethylene glycol (EG, and isopropyl alcohol (IPA were used as media for Gr dispersion. The best performance was obtained for the cell containing Gr dispersed in EG with a measured PCE of 7.33% and nearly 13% and 16% enhancement in comparison with the cells using Gr dispersed in IPA and DI water, respectively. The increase in PCE is attributed to improving the carrier-mobility, electrical conductivity, PEDOT crystallinity, and ordering.

  7. Multifunctional systems in vehicles:a usability evaluation

    OpenAIRE

    Rydström, Annie; Bengtsson, Peter; Grane, Camilla; Broström, Robert; Agardh, Johannes; Nilsson, Jennie

    2005-01-01

    Car Human-Machine Interaction (HMI) is becoming increasingly complex as the extension of functionality necessitates new interface concepts. Various multifunctional systems operated by haptic rotary switches, touch screen, and voice control have been developed. A usability study of multifunctional systems available on the market was carried out to evaluate and compare different manual interaction principles. The systems used in the study were the BMW iDrive and the Audi MMI, both operated by a...

  8. Production of crystalline refractory metal oxides containing colloidal metal precipitates and useful as solar-effective absorbers

    Science.gov (United States)

    Narayan, Jagdish; Chen, Yok

    1983-01-01

    This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.

  9. Carbon Nanotube Enhanced Aerospace Composite Materials A New Generation of Multifunctional Hybrid Structural Composites

    CERN Document Server

    Kostopoulos, V

    2013-01-01

    The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The curre...

  10. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul; Lin, Yirong [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States); Islam, Md Tariqul; Noveron, Juan C. [Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ramabadran, Navaneet [Department of Chemical Engineering, University of California at Santa Barbara, California 93106 (United States)

    2015-09-28

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  11. Synthesis and characterization of water-soluble SiO{sub 1.5}/TiO{sub 2} hybrid nanoparticles by hydrolytic co-condensation of triethoxysilane containing hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Hideharu [Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)], E-mail: h.mori@yz.yamagata-u.ac.jp; Miyamura, Yasushi [Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Endo, Takeshi [Molecular Engineering Institute, Kinki University, Iizuka, Fukuoka 820-8555 (Japan)

    2009-05-15

    Novel R-SiO{sub 1.5}/TiO{sub 2} hybrid nanoparticles were synthesized by hydrolytic co-condensation of titanium alkoxides (Ti(OR'){sub 4}, R' = ethyl, isopropyl, and butyl) with a triethoxysilane precursor, R-Si(OCH{sub 2}CH{sub 3}){sub 3}, R = -CH{sub 2}CH{sub 2}CH{sub 2}N(CH{sub 2}CH{sub 2}COOCH{sub 2}CH{sub 2}OH){sub 2}, derived from 2-hydroxyethyl acrylate. Co-condensation of a titanium alkoxide with the triethoxysilane precursor was investigated at different feed ratios, suggesting that water-soluble nanoparticles were obtained only at less than 30% of Ti(OEt){sub 4} molar ratio in the feed. In contrast, the co-condensation of titanium tetraisopropoxide, Ti(O{sup i}Pr){sub 4}, with the triethoxysilane precursor in the presence of acetylacetone proceeded as a homogeneous system until 70% of Ti(O{sup i}Pr){sub 4} molar ratio to afford water-soluble organic-inorganic hybrid nanoparticles containing titania-silica mixed oxides, as confirmed by NMR, FT-IR, elemental and ICP analyses. Scanning force microscopy (SFM) measurements of the product prepared at Ti(O{sup i}Pr){sub 4}/triethoxysilane = 50/50 mol% with acetylacetone indicated the formation of the nanoparticles having relatively narrow size distribution with average particle diameter less than 2.0 nm without aggregation. The refractive index of the hybrid nanoparticle was 1.571. The isolated nanoparticles distributed homogeneously were visualized by transmission electron microscopy (TEM), and the size of the hybrid nanoparticle (1.9 nm) was determined by X-ray diffraction (XRD)

  12. Multi-functional composite structures

    Science.gov (United States)

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2004-10-19

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  13. Multifunctional centrifugal grinding unit

    Science.gov (United States)

    Sevostyanov, V. S.; Uralskij, V. I.; Uralskij, A. V.; Sinitsa, E. V.

    2018-03-01

    The article presents scientific and engineering developments of multifunctional centrifugal grinding unit in which the selective effect of grinding bodies on the crushing material is realized, depending on its physical and mechanical characteristics and various schemes for organizing the technological process

  14. Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration.

    Science.gov (United States)

    Toskas, Georgios; Cherif, Chokri; Hund, Rolf-Dieter; Laourine, Ezzeddine; Mahltig, Boris; Fahmi, Amir; Heinemann, Christiane; Hanke, Thomas

    2013-05-15

    New hybrid nanofibers prepared with chitosan (CTS), containing a total amount of polyethylene oxide (PEO) down to 3.6wt.%, and silica precursors were produced by electrospinning. The solution of modified sol-gel particles contained tetraethoxysilane (TEOS) and the organosilane 3-glycidyloxypropyltriethoxysilane (GPTEOS). This is rending stable solution toward gelation and contributing in covalent bonding with chitosan. The fibers encompass advantages of biocompatible polymer template silicate components to form self-assembled core-shell structure of the polymer CTS/PEO encapsulated by the silica. Potential applicability of this hybrid material to bone tissue engineering was studied examining its cellular compatibility and bioactivity. The nanofiber matrices were proved cytocompatible when seeded with bone-forming 7F2-cells, promoting attachment and proliferation over 7 days. These found to enhance a fast apatite formation by incorporation of Ca(2+) ions and subsequent immersion in modified simulated body fluid (m-SBF). The tunable properties of these hybrid nanofibers can find applications as active biomaterials in bone repair and regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Multifunctional Hot Structure Heat Shield

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is performing preliminary development of a Multifunctional Hot Structure (HOST) heat shield for planetary entry. Results of this development will...

  16. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products.

    Science.gov (United States)

    Liu, Haizhou; Bruton, Thomas A; Li, Wei; Buren, Jean Van; Prasse, Carsten; Doyle, Fiona M; Sedlak, David L

    2016-01-19

    Sulfate radical (SO4(•-)) is a strong, short-lived oxidant that is produced when persulfate (S2O8(2-)) reacts with transition metal oxides during in situ chemical oxidation (ISCO) of contaminated groundwater. Although engineers are aware of the ability of transition metal oxides to activate persulfate, the operation of ISCO remediation systems is hampered by an inadequate understanding of the factors that control SO4(•-) production and the overall efficiency of the process. To address these shortcomings, we assessed the stoichiometric efficiency and products of transition metal-catalyzed persulfate oxidation of benzene with pure iron- and manganese-containing minerals, clays, and aquifer solids. For most metal-containing solids, the stoichiometric efficiency, as determined by the loss of benzene relative to the loss of persulfate, approached the theoretical maximum. Rates of production of SO4(•-) or hydroxyl radical (HO(•)) generated from radical chain reactions were affected by the concentration of benzene, with rates of S2O8(2-) decomposition increasing as the benzene concentration increased. Under conditions selected to minimize the loss of initial transformation products through reaction with radicals, the production of phenol only accounted for 30%-60% of the benzene lost in the presence of O2. The remaining products included a ring-cleavage product that appeared to contain an α,β-unsaturated aldehyde functional group. In the absence of O2, the concentration of the ring-cleavage product increased relative to phenol. The formation of the ring-cleavage product warrants further studies of its toxicity and persistence in the subsurface.

  17. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  18. Co-encapsulation of magnetic nanoparticles and cisplatin within biocompatible polymers as multifunctional nanoplatforms: synthesis, characterization, and in vitro assays

    Science.gov (United States)

    Ibarra, Jaime; Encinas, David; Blanco, Mateo; Barbosa, Silvia; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2018-01-01

    In this work, we report the synthesis, characterization and biological evaluation of a multifunctional hybrid biocompatible nanoplatform consisting of a biodegradable poly(lactic-co-glycolic acid) (PLGA) matrix functionalized with a polyvinyl alcohol/chitosan mixed surface layer, and co-loaded with superparamagnetic iron oxide nanoparticles (SPIONs) and the anticancer drug cisplatin. In this manner, problems associated with cisplatin low aqueous solubility are precluded as well as a sustained controlled release of the drug is obtained. The hybrid nanoplatforms displayed slightly positive charges and spherical shapes, with an average diameter of ca 100 nm and very low polydispersity. This size range makes these particles suitable a priori to avoid extensive macrophage recognition whilst ensures exploitation of passive targeting in tumoral cells by the enhanced permeation and retention effect and successful interaction with cell surfaces. SPIONs and drug loading extents were determined by inductively coupled plasma mass spectrometry and UV-vis absorption spectroscopy, respectively. The presence of the magnetic nanoparticle in the hybrid platform should enable their intended use as T2 imaging contrast agents as denoted from magnetic imaging measurements in vitro. Furthermore, in vitro release profiles of cisplatin from nanoplatform showed an initial burst release of about 16% in the first 6 h, followed by a sustained release over 10 days ensuring a slow delivery of the drug in the site of action to enhance chemotherapeutic activity. This was confirmed by in vitro cytotoxicity assays denoting that the chemotherapeutic effect of cisplatin on both cervical HeLa and breast MDA-MB-231 cancer cell lines is largely improved when encapsulated in the nanoplatform. Thus, the present characterization and in vitro biological evaluation data indicate that this nanoplatform can be considered as a promising theragnostic nanoplatform for combined imaging and therapy of several tumors

  19. Well-ordered organic–inorganic hybrid layered manganese oxide nanocomposites with excellent decolorization performance

    International Nuclear Information System (INIS)

    Zhou, Junli; Yu, Lin; Sun, Ming; Ye, Fei; Lan, Bang; Diao, Guiqiang; He, Jun

    2013-01-01

    Well-ordered organic–inorganic hybrid layered manganese oxide nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO 2 nanosheets were self-assembled in the presence of CTAB, and subsequently pillared with Keggin ions. The obtained CTAB-Al-MO with the basal spacing of 1.59 nm could be stable at 300 °C for 2 h and also possesses high total pore volumes (0.41 cm³ g −1 ) and high specific BET surface area (161 m 2 g −1 ), which is nine times larger than that of the pristine (19 m 2 g −1 ). Possible formation process for the highly thermal stable CTAB-Al-MO is proposed here. The decolorization experiments of methyl orange showed that the obtained CTAB-Al-MO exhibit excellent performance in wastewater treatment and the decolorization rate could reach 95% within 5 min. - Graphical Abstract: Well-ordered organic–inorganic hybrid LMO nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO 2 nanosheets were self-assembled by CTAB, and subsequently pillared with Keggin ions. Highlights: ► A two-step synthesis method was used to prepare the CTAB-Al-MO. ► The CTAB-Al-MO has the large basal spacing and high specific BET surface area. ► The thermal stability of the well-ordered CTAB-Al-MO could obviously improve. ► The CTAB-Al-MO exhibits excellent oxidation and absorption ability to remove organic pollutants.

  20. Synthesis of Novel Hydrocarbon Soluble Multifunctional Anionic Initiators: Tools for Synthesis of Novel Dendrimer and Molecular Brush Polymer Architectures

    Science.gov (United States)

    2015-02-09

    Synthesis of Novel Dendrimer and Molecular Brush Polymer Architectures. Research Area:7.4 The views, opinions and/or findings contained in this report...journals: Final Report: Synthesis of Novel Hydrocarbon Soluble Multifunctional Anionic Initiators: Tools for Synthesis of Novel Dendrimer and Molecular

  1. Synthesis of well-dispersed magnetic CoFe2O4 nanoparticles in cellulose aerogels via a facile oxidative co-precipitation method.

    Science.gov (United States)

    Wan, Caichao; Li, Jian

    2015-12-10

    With the increasing emphasis on green chemistry, it is becoming more important to develop environmentally friendly matrix materials for the synthesis of nanocomposites. Cellulose aerogels with hierarchical micro/nano-scale three-dimensional network beneficial to control and guide the growth of nanoparticles, are suitable as a class of ideal green nanoparticles hosts to fabricate multifunctional nanocomposites. Herein, a facile oxidative co-precipitation method was carried out to disperse CoFe2O4 nanoparticles in the cellulose aerogels matrixes, and the cellulose aerogels were prepared from the native wheat straw based on a green NaOH/polyethylene glycol solution. The mean diameter of the well-dispersed CoFe2O4 nanoparticles in the hybrid aerogels is 98.5 nm. Besides, the hybrid aerogels exhibit strong magnetic responsiveness, which could be flexibly actuated by a small magnet. And this feature also makes this class of magnetic aerogels possibly useful as recyclable adsorbents and some magnetic devices. Meanwhile, the mild green preparation method could also be extended to fabricate other miscellaneous cellulose-based nanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Evolved Minimal Frustration in Multifunctional Biomolecules.

    Science.gov (United States)

    Röder, Konstantin; Wales, David J

    2018-05-25

    Protein folding is often viewed in terms of a funnelled potential or free energy landscape. A variety of experiments now indicate the existence of multifunnel landscapes, associated with multifunctional biomolecules. Here, we present evidence that these systems have evolved to exhibit the minimal number of funnels required to fulfil their cellular functions, suggesting an extension to the principle of minimum frustration. We find that minimal disruptive mutations result in additional funnels, and the associated structural ensembles become more diverse. The same trends are observed in an atomic cluster. These observations suggest guidelines for rational design of engineered multifunctional biomolecules.

  3. Molecular Design of Low-Density Multifunctional Hybrid Materials

    Science.gov (United States)

    2016-01-01

    scale inversely with the isoelectric point ( IEP ) of the underlying surface (Fig. 19). If the IEP of the substrate surface (e.g. metal oxide) or sol...gel solution ion is less than the solution pH, the surface will take on a net negative charge; conversely, for IEP values greater than the solution pH...as a function of substrate IEP . 1 2 3 4 5 6 7 8 9 10 11 0 10 20 30 40 50 60 70 C ri ti c a l F ra c tu re E n e rg y , G C ( J m -2

  4. Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors

    Science.gov (United States)

    Wang, Wei; Guo, Shirui; Lee, Ilkeun; Ahmed, Kazi; Zhong, Jiebin; Favors, Zachary; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2014-01-01

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO2) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO2 nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g−1, areal capacitance: 1.11 F cm−2) which leads to an exceptionally high energy density of 39.28 Wh kg−1 and power density of 128.01 kW kg−1. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications. PMID:24663242

  5. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [Univ. of California, Riverside, CA (United States); Guo, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lee, I. [Univ. of California, Riverside, CA (United States); Ahmed, K. [Univ. of California, Riverside, CA (United States); Zhong, J. [Univ. of California, Riverside, CA (United States); Favors, Z. [Univ. of California, Riverside, CA (United States); Zaera, F. [Univ. of California, Riverside, CA (United States); Ozkan, M. [Univ. of California, Riverside, CA (United States); Ozkan, C. S [Univ. of California, Riverside, CA (United States)

    2014-03-25

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO₂) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO₂ nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g⁻¹, areal capacitance: 1.11 F cm⁻²) which leads to an exceptionally high energy density of 39.28 Wh kg⁻¹ and power density of 128.01 kW kg⁻¹. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.

  6. Layer-by-Layer Hybrids of MoS2 and Reduced Graphene Oxide for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Jing, Yu; Ortiz-Quiles, Edwin O.; Cabrera, Carlos R.; Chen, Zhongfang; Zhou, Zhen

    2014-01-01

    Highlights: • Layer-by-layer MoS 2 /rGO hybrids were prepared by rGO involved lithiation-exfoliation method. • This hybrid exhibited enhanced electrochemical performances due to the existence of rGO. • The roles of rGO in different charging/discharging processes were interpreted by computations. - Abstract: Two-dimensional MoS 2 shows great potential for effective Li storage due to its good thermal and chemical stability, high theoretical capacity, and experimental accessibility. However, the poor electrical conductivity and the restacking tendency significantly restrict its applications to lithium ion batteries (LIBs). To overcome these problems, we introduced reduced graphene oxides (rGO) to the intercalation-exfoliation preparation process of few-layered MoS 2 and obtained layer-by-layer MoS 2 /rGO hybrids. With the addition of rGO, the restacking of MoS 2 layers was apparently inhibited, and MoS 2 with 1 ∼ 3 layers was obtained in the composite. Due to the positive role of rGO, MoS 2 /rGO hybrids exhibited highly enhanced cyclic stability and high-rate performances as LIB anodes in comparison with bare MoS 2 layers or bulk MoS 2 . Moreover, the experimental results were well interpreted through density functional theory computations

  7. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.; Moganty, Surya S.; Archer, Lynden A.

    2010-01-01

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Application of Pseudomurein Endoisopeptidase to Fluorescence In Situ Hybridization of Methanogens within the Family Methanobacteriaceae▿

    Science.gov (United States)

    Nakamura, Kohei ; Terada, Takeshi; Sekiguchi, Yuji; Shinzato, Naoya; Meng, Xian-Ying; Enoki, Miho; Kamagata, Yoichi

    2006-01-01

    In situ detection of methanogens within the family Methanobacteriaceae is sometimes known to be unsuccessful due to the difficulty in permeability of oligonucleotide probes. Pseudomurein endoisopeptidase (Pei), a lytic enzyme that specifically acts on their cell walls, was applied prior to 16S rRNA-targeting fluorescence in situ hybridization (FISH). For this purpose, pure cultured methanogens within this family, Methanobacterium bryantii, Methanobrevibacter ruminantium, Methanosphaera stadtmanae, and Methanothermobacter thermautotrophicus together with a Methanothermobacter thermautotrophicus-containing syntrophic acetate-oxidizing coculture, endosymbiotic Methanobrevibacter methanogens within an anaerobic ciliate, and an upflow anaerobic sludge blanket (UASB) granule were examined. Even without the Pei treatment, Methanobacterium bryantii and Methanothermobacter thermautotrophicus cells are relatively well hybridized with oligonucleotide probes. However, almost none of the cells of Methanobrevibacter ruminantium, Methanosphaera stadtmanae, cocultured Methanothermobacter thermautotrophicus, and the endosymbiotic methanogens and the cells within UASB granule were hybridized. Pei treatment was able to increase the probe hybridization ratio in every specimen, particularly in the specimen that had shown little hybridization. Interestingly, the hybridizing signal intensity of Methanothermobacter thermautotrophicus cells in coculture with an acetate-oxidizing H2-producing syntroph was significantly improved by Pei pretreatment, whereas the probe was well hybridized with the cells of pure culture of the same strain. We found that the difference is attributed to the differences in cell wall thicknesses between the two culture conditions. These results indicate that Pei treatment is effective for FISH analysis of methanogens that show impermeability to the probe. PMID:16950902

  10. Hyper-Production: A New Metric of Multifunctionality

    Directory of Open Access Journals (Sweden)

    Brouder Patrick

    2015-09-01

    Full Text Available Multifunctionality has emerged as the dominant framework for understanding rural socioeconomic landscapes. The central claim of multifunctionality - that rural regions need to be understood as being made up of more than just traditional uses - has led to the incorporation of new rural activities into regional development plans, e.g., tourism. In some places, such post-productive activity is perceived to be slowly replacing productive uses of the land, e.g., agriculture/forestry. However, there is limited empirical evidence to support such claims. Drawing on previous research and data from the Swedish countryside this paper shows that, even as the number of persons employed within traditional activities decreases, the economic output per areal unit and per labour hour is increasing over time and traditional uses still occupy the majority of rural space. Hyper-production is introduced as a new metric for understanding multifunctional regions going forward. The complementary union of economic mainstays, such as agriculture, and newer activities with more quality-of-life benefits, such as tourism, is highlighted in terms of economic diversification, job creation and local social capital development, while the conflict-prone intersection of these two modes is also acknowledged. Understanding hyper-production as a key metric of multifunctionality is thus argued as integral to planning and developing resilient rural regions now and for the future.

  11. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    Science.gov (United States)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  12. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production

    International Nuclear Information System (INIS)

    Zhou, Hao; Pan, Haixia; Xu, Jianqiang; Xu, Weiping; Liu, Lifen

    2016-01-01

    Highlights: • An efficient Mn(II) oxidation marine sediments microbial community was obtained. • High-throughput sequencing indicated new Mn(II) oxidation associated genus. • Na_3MnPO_4CO_3 and MnCO_3 were synthesized by the consortium. • Consortium exhibited Mn(II) oxidation performance over a range of harsh conditions. - Abstract: Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1 mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5 mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N_2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g"−"1 adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na_3MnPO_4CO_3_. Results suggested the complexity of natural microbe-mediated Mn transformation.

  13. Electromechanical properties of indium–tin–oxide/poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) hybrid electrodes for flexible transparent electrodes

    International Nuclear Information System (INIS)

    Jung, Sunghoon; Lim, Kyounga; Kang, Jae-Wook; Kim, Jong-Kuk; Oh, Se-In; Eun, Kyoungtae; Kim, Do-Geun; Choa, Sung-Hoon

    2014-01-01

    We investigated an indium–tin–oxide (ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid electrode as a potential flexible and transparent electrode. In particular, the mechanical integrity of an ITO/PEDOT:PSS hybrid electrode deposited onto a polyethylene terephthalate (PET) substrate was investigated via outer/inner bending, twisting, stretching, and adhesion tests. A PEDOT:PSS layer was inserted between ITO and PET substrate as a buffer layer to improve the flexibility and electrical properties. When a PEDOT:PSS layer was inserted, the sheet resistance of the 20 nm-thick ITO film decreased from 270 Ω/square to 57 Ω/square. Notably, the ITO/PEDOT:PSS hybrid electrode had a constant resistance change (ΔR/R 0 ) within an outer and inner bending radius of 3 mm. The bending fatigue test showed that the ITO/PEDOT:PSS hybrid electrode can withstand 10,000 bending cycles. Furthermore, the stretched ITO/PEDOT:PSS hybrid electrode showed a fairly constant resistance change up to 4%, which is more stable than the resistance change of the ITO electrode. The ITO/PEDOT:PSS electrode also shows good adhesion strength. The superior flexibility of the ITO/PEDOT:PSS hybrid electrode is attributed to the existence of a flexible PEDOT:PSS layer. This indicates that the hybridization of an ITO and PEDOT:PSS layer is a promising electrode scheme for next-generation flexible transparent electrodes. - Highlights: • We propose a hybrid electrode for flexible electronics. • Electrode made from In 2 O 3 :SnO 2 /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) • PEDOT:PSS as a buffer layer increases flexibility and electrical conductivity. • Hybrid electrode has a superior flexibility. • Hybrid electrode can be a promising flexible transparent electrode scheme

  14. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

    Science.gov (United States)

    Ameer, Shahid; Gul, Iftikhar Hussain

    2016-01-01

    The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth.

  15. Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection of nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuiping; Gu, Tianxun; Fu, Jiajia [Key Laboratory of Eco-Textiles, Ministry of Education (Jiangnan University), Wuxi 214122 (China); College of Textile and Clothing, Jiangnan University, Wuxi 214122 (China); Li, Xiaoqiang, E-mail: leecaiwei@163.com [Key Laboratory of Eco-Textiles, Ministry of Education (Jiangnan University), Wuxi 214122 (China); College of Textile and Clothing, Jiangnan University, Wuxi 214122 (China); Technical University of Denmark, DTU Food, Søltofts plads, B227, 2800 Kgs. Lyngby (Denmark); Chronakis, Ioannis S. [Technical University of Denmark, DTU Food, Søltofts plads, B227, 2800 Kgs. Lyngby (Denmark); Ge, Mingqiao [Key Laboratory of Eco-Textiles, Ministry of Education (Jiangnan University), Wuxi 214122 (China); College of Textile and Clothing, Jiangnan University, Wuxi 214122 (China)

    2014-12-01

    In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates as NO donors, respectively. The nanospheres have spherical outline with dimension of ∼ 127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching mechanism. The low cell-toxicity of QDs-mHP-NO nanospheres was verified by means of MTT assay on L929 cells viability. The QDs-mHP-NO nanospheres provide perspectives for designing a new class of biocompatible NO donating and imaging systems. - Highlights: • QDs-mHP-NO fluorescent probe was prepared. • The QDs-mHP-NO probe is capable of releasing NO. • The QDs-mHP-NO probe can quantitatively detecting the release of NO in real time. • The low cell-toxicity of QDs-mHP-NO nanospheres was verified.

  16. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    International Nuclear Information System (INIS)

    Naslain, R

    2011-01-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  17. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Science.gov (United States)

    Naslain, R.

    2011-10-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  18. Development of redox stable, multifunctional substrates for anode supported SOFCS

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Foghmoes, Søren Preben Vagn; Ramos, Tania

    2017-01-01

    Redox stable solid oxide fuel cells are beneficial in many aspects such as tolerance against system failures e.g fuel cut off and emergency shut down, but also allow for higher fuel utilization, which increases efficiency. State-ofthe-art Ni-cermet based anodes suffer from microstructural changes...... with a multifunctional anode support, the development of a two layer fuel electrode based on a redox stable strontium titanate layer for the electrochemically active layer and a redox stable Ni-YSZ support was pursued. Half-cells with well adhearing strontium titante anode layers on stateof-the-art Ni-YSZ cermet...... supports have been achieved. Redox tolerance of the half-cell depends could be increased by optimizing the redox stability of the cermet support....

  19. Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation.

    Science.gov (United States)

    Chen, Guan-Liang; Shau, Shi-Min; Juang, Tzong-Yuan; Lee, Rong-Ho; Chen, Chih-Ping; Suen, Shing-Yi; Jeng, Ru-Jong

    2011-12-06

    In this study, we used direct molecular exfoliation for the rapid, facile, large-scale fabrication of single-layered graphene oxide nanosheets (GOSs). Using macromolecular polyaniline (PANI) as a layered space enlarger, we readily and rapidly synthesized individual GOSs at room temperature through the in situ polymerization of aniline on the 2D GOS platform. The chemically modified GOS platelets formed unique 2D-layered GOS/PANI hybrids, with the PANI nanorods embedded between the GO interlayers and extended over the GO surface. X-ray diffraction revealed that intergallery expansion occurred in the GO basal spacing after the PANI nanorods had anchored and grown onto the surface of the GO layer. Transparent folding GOSs were, therefore, observed in transmission electron microscopy images. GOS/PANI nanohybrids possessing high conductivities and large work functions have the potential for application as electrode materials in optoelectronic devices. Our dispersion/exfoliation methodology is a facile means of preparing individual GOS platelets with high throughput, potentially expanding the applicability of nanographene oxide materials. © 2011 American Chemical Society

  20. APROS multifunctional simulator applications for VVER-440

    International Nuclear Information System (INIS)

    Porkholm, K.; Kantee, H.; Tiihonen, O.

    2000-01-01

    Fortum Engineering Ltd and the Technical Research Centre of Finland have developed APROS simulation software since 1986. APROS is a multifunctional simulator, which is used for process and automation design, safety analysis and training simulator applications. APROS has unique features and models developed especially for VVER-440 reactors. At first the paper gives a short overview of APROS multifunctional simulator. The rest of the paper deals with different kind of applications of APROS in VVER-440 reactors' improvement and operation development. (author)

  1. Iron-antimony-based hybrid oxides as high-performance anodes for lithium-ion storage

    Science.gov (United States)

    Nguyen, Tuan Loi; Kim, Doo Soo; Hur, Jaehyun; Park, Min Sang; Yoon, Sukeun; Kim, Il Tae

    2018-06-01

    We report a facile approach to synthesize Fe-Sb-based hybrid oxides nanocomposites consisting of Sb, Sb2O3, and Fe3O4 for use as new anode materials for lithium-ion batteries. The composites are synthesized via galvanic replacement between Fe3+ and Sb at high temperature in triethylene glycol medium. The phase, morphology, and composition changes of the composites involved in the various stages of the replacement reaction are characterized using X-ray diffractometry, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy. The as-prepared composites have different compositions with very small particle sizes (interfacial contact area between the nanocomposite and electrolyte, stable structure of the composites owing to a mixture of inactive phases generated by the conversion reaction between Li+ and oxide metal-whose structure serves as an electron conductor, inhibits agglomeration of Sb particles, and acts as an effective buffer against volume change of Sb during cycling-and high Li+ diffusion ability.

  2. Protein-Based Multifunctional Nanocarriers for Imaging, Photothermal Therapy, and Anticancer Drug Delivery.

    Science.gov (United States)

    Pan, Uday Narayan; Khandelia, Rumi; Sanpui, Pallab; Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2017-06-14

    We report a simple approach for fabricating plasmonic and magneto-luminescent multifunctional nanocarriers (MFNCs) by assembling gold nanorods, iron oxide nanoparticles, and gold nanoclusters within BSA nanoparticles. The MFNCs showed self-tracking capability through single- and two-photon imaging, and the potential for magnetic targeting in vitro. Appreciable T 2 -relaxivity exhibited by the MFNCs indicated favorable conditions for magnetic resonance imaging. In addition to successful plasmonic-photothermal therapy of cancer cells (HeLa) in vitro, the MFNCs demonstrated efficient loading and delivery of doxorubicin to HeLa cells leading to significant cell death. The present MFNCs with their multimodal imaging and therapeutic capabilities could be eminent candidates for cancer theranostics.

  3. Multifunctional Converter Drive for Automotive Electric Power Steering Systems

    NARCIS (Netherlands)

    Hackner, T.J.

    2013-01-01

    In this thesis it is shown that in the case of an automotive electric power steering system, critical pulse power loads can be decoupled from the power net with a storage element and a multifunctional converter. A multifunctional converter system is proposed because it uses the motor drive system as

  4. Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide

    Science.gov (United States)

    Li, Mingming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Li, Jing; Lv, Hanming; Qian, Xiaoming; Jiao, Xiaoning

    2017-03-01

    Nanoparticles may have suffered from low modification efficiency in hybrid membranes due to embedding and aggregating in polymer matrix. In order to analyze the modification mechanisms of nanoparticle migration and dispersion on the properties of hybrid membranes, we designed different F/ O ratios ( R F/ O ) of fluorinated graphene oxide (FGO, diameter = 1.5 17.5 μm) by carbon tetrafluoride (CF4) plasma treatment GO for 3, 5, 10, 15, and 20 min and successfully prepared novel PVDF hybrid membranes containing FGO via the phase inversion method. After a prolonged plasma treatment, the R F/ O of FGO was enhanced sharply, indicating an increasing compatibility of FGO with the matrix, especially FGO-20 (GO treated for 20 min). FGO contents in the top layer, sublayer, and the whole of membranes were probed by X-ray photoelectron spectroscopy, energy-dispersive spectrometer, and indirect computation, respectively. In the top layer of membranes, FGO contents declined from 13.14 wt% (PVDF/GO) to 4.00 wt% (PVDF/FGO-10) and 1.96 wt% (PVDF/FGO-20) due to the reduced migration ability of FGO. It is worth mentioning that PVDF/FGO-10 membranes exhibited an excellent water flux and flux recovery rate (up to 406.90 L m-2 h-1 and 88.9%), which were improved by 67.3% and 14.6% and 52.5% and 24.0% compared with those of PVDF/GO and PVDF/FGO-20 membranes, respectively, although the dispersion and migration ability of FGO-10 was maintained at a moderate level. It indicated that the migration and dispersion of FGO in membranes could result in dynamic equilibrium, which played a key role in making the best use of nanomaterials to optimize membrane performance.

  5. Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mingming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei, E-mail: xuzhiwei@tjpu.edu.cn; Li, Jing; Lv, Hanming; Qian, Xiaoming, E-mail: qianxiaoming@tjpu.edu.cn; Jiao, Xiaoning [Tianjin Polytechnic University, State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles (China)

    2017-03-15

    Nanoparticles may have suffered from low modification efficiency in hybrid membranes due to embedding and aggregating in polymer matrix. In order to analyze the modification mechanisms of nanoparticle migration and dispersion on the properties of hybrid membranes, we designed different F/O ratios (R{sub F/O}) of fluorinated graphene oxide (FGO, diameter = 1.5 ~ 17.5 μm) by carbon tetrafluoride (CF{sub 4}) plasma treatment GO for 3, 5, 10, 15, and 20 min and successfully prepared novel PVDF hybrid membranes containing FGO via the phase inversion method. After a prolonged plasma treatment, the R{sub F/O} of FGO was enhanced sharply, indicating an increasing compatibility of FGO with the matrix, especially FGO-20 (GO treated for 20 min). FGO contents in the top layer, sublayer, and the whole of membranes were probed by X-ray photoelectron spectroscopy, energy-dispersive spectrometer, and indirect computation, respectively. In the top layer of membranes, FGO contents declined from 13.14 wt% (PVDF/GO) to 4.00 wt% (PVDF/FGO-10) and 1.96 wt% (PVDF/FGO-20) due to the reduced migration ability of FGO. It is worth mentioning that PVDF/FGO-10 membranes exhibited an excellent water flux and flux recovery rate (up to 406.90 L m{sup −2} h{sup −1} and 88.9%), which were improved by 67.3% and 14.6% and 52.5% and 24.0% compared with those of PVDF/GO and PVDF/FGO-20 membranes, respectively, although the dispersion and migration ability of FGO-10 was maintained at a moderate level. It indicated that the migration and dispersion of FGO in membranes could result in dynamic equilibrium, which played a key role in making the best use of nanomaterials to optimize membrane performance.

  6. Hydrogen storage in hybrid of layered double hydroxides/reduced graphene oxide using spillover mechanism

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Jafari-Asl, Mehdi; Nabiyan, Afshin; Rezaei, Behzad; Dinari, Mohammad

    2016-01-01

    New efficient hydrogen storage hybrids were fabricated based on hydrogen spillover mechanism, including chemisorptions and dissociation of H_2 on the surface of LDH (layered double hydroxides) and diffusion of H to rGO (reduced graphene oxide). The structures and compositions of all of the hybrids (LDHs/rGO) have been verified using different methods including transmission electron microscopy, X ray diffraction spectroscopy, infrared spectroscopy and Brunauer–Emmett–Teller analysis. Then, the abilities of the LDHs/rGOs, as hydrogen spillover, were investigated by electrochemical methods. In addition, the LDHs/rGOs were decorated with palladium, using redox replacement process, and their hydrogen spillover properties were studied. The results showed that the hydrogen adsorption/desorption kinetics, hydrogen storage capacities and stabilities of Pd"#LDH/rGOs are better than Pd/rGO. Finally presence of different polymers (synthesis with monomers, 4–aminophenol, 4–aminothiophenol, o-phenylenediamine and p-phenylenediamine) at the surface of the Pd#LDH/rGOs on hydrogen storage were studied. The results showed that presence of o-phenylenediamine and p-phenylenediamine improves the kinetics of the hydrogen adsorption/desorption and increase the capacity of the hydrogen storage. - Highlights: • Efficient hydrogen storage sorbents are introduced. • The sorbents are synthesized based on hybrids of layered double hydroxide. • The compositions of all of the hybrids are verified using different methods. • Pd nanoparticles modified nanohybrids are investigated for hydrogen storage. • Presence of different polymers beside the hydrogen sorbents are investigated.

  7. Synthesis and characterizations of anion exchange organic-inorganic hybrid materials based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)

    International Nuclear Information System (INIS)

    Zhang Shaoling; Wu Cuiming; Xu Tongwen; Gong Ming; Xu Xiaolong

    2005-01-01

    A series of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based organic-inorganic hybrid materials for anion exchange were prepared through sol-gel process of polymer precursors PPO-Si(OCH 3 ) 3 . PPO-Si(OCH 3 ) 3 were obtained from the reaction of bromomethylated PPO with 3-aminopropyl-trimethoxysilane (A1110). These polymer precursors then underwent hydrolysis and condensation with additional A1110 to generate hybrid materials. The reaction to produce polymer precursors was identified by FTIR; while FTIR, TGA, XRD, SEM, as well as conventional ion exchange capacity (IEC) measurements were conducted for the structures and properties of the prepared hybrids. TGA results show that this series of hybrid materials possess high thermal stability; XRD and SEM indicate that the prepared hybrid materials are amorphous and the inorganic and organic contents show good compatibility if the ratio between them is proper. The IEC values of the hybrid materials due to the amine groups range from 1.13 mmol/gBPPO (material i) to 4.80 mmol/gBPPO (material iv)

  8. Hybrid graphene oxide/DAB-Am-16 dendrimer: Preparation, characterization chemical reactivity and their electrocatalytic detection of L-Dopamine

    Science.gov (United States)

    Do Carmo, Devaney Ribeiro; Fernandes, Daniela Silvestrini

    2017-09-01

    Graphene oxide (GO) was chemically modified with a poly(propylene)imine Generation 3.0 dendrimer (DAB-Am-16). The characterization, structure and properties of hybrid graphene oxide/DAB-Am-16 dendrimer was studied by Raman spectroscopy, Fourier-Transforming Infrared Spectroscopy (FT-IR), X-Ray Photoelectron Spectroscopic (XPS), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Thermogravimetric analysis. After functionalized the hybrid material (GOD) can interact with copper and subsequently with hexacyanoferrate (III) ions (GODHCu). The GODHCu incorporated into a graphite paste electrode (20% w/w) was applied to an electrocatalytic detection of neurotransmitter L-dopamine using differential pulse voltammetry. The analytical curve showed a linear response in the concentration range from 1.0 × 10-7 to 1.0 × 10-5 mol L-1 with a corresponding equation Y(A) = 1.706 × 10-5 + 0.862 [L-dopamine] and a correlation coefficient r2 = 0.998. The detection limit was 6.36 × 10-7 mol L-1 with a relative standard deviation of ±4% (n = 3) and an amperometric sensitivity of 0.862 A/mol L-1.

  9. Unique catalytic properties of a butoxy chain-containing ruthenated porphyrin towards oxidation of uric acid and reduction of dioxygen for visible light-enhanced fuel cells

    International Nuclear Information System (INIS)

    Liu, Junchen; Wang, Yi; Deng, Qiang; Zhu, Licai; Chao, Hui; Li, Hong

    2016-01-01

    Highlights: • Ru(II)PTPP/CdS shows two Ru(II)-based oxidation peaks at 0.296 V and 0.830 V. • Photoelectrocatalytic oxidation of UA exhibits good linear responses. • The butoxy chain endows Ru(II)PTPP with multifunctional catalytic properties. • Ru(II)PTPP on CF electrode can remarkably promote the reduction of oxygen. • The assembled cell has I_S_C of 0.136 mA cm"−"2 and P_m_a_x of 31.50 μW cm"−"2. - Abstract: This paper reports the photoelectrocatalytic activities of a ruthenated porphyrin [Ru(phen)_2(IP-C_4O-TPP)]"2"+ (denoted as Ru(II)PTPP, phen = 1,10-phenanthroline, IP = imidazo[4,5-f][1,10]phenanthroline and TPP = 5,10,15,20-tetraphenylporphyrin) containing a covalently-linked butoxy chain (-C_4O-) between IP and TPP moieties by means of various electrochemical techniques in combination with absorption spectroscopy and scanning electronic microscopy. Ru(II)PTPP is assembled on the surface of CdS nanoparticles, showing two Ru(II)-based peaks at 0.296 V and 0.830 V, where uric acid (UA) can be photoelectrocatalytically oxidized in a linear range of 0.01-10.0 mmol L"−"1. The −C_4O- chain endows the Ru(II)PTPP/carbon felt (CF) electrode with favorable dioxygen (O_2) binding sites to achieve a couple of new redox peaks at −0.213 V, where O_2 involves electrocatalytic reduction reactions. While employing 5.0 mmol L"−"1 UA as fuel, and 60 mL min"−"1 O_2 as oxidant, the proposed photoelectrochemical fuel cell shows open-circuit photovoltage of 0.656 V, short-circuit photocurrent density of 0.136 mA cm"−"2, and maximum power density of 31.50 μW cm"−"2 at 0.497 V under visible-light illumination of 0.18 mW cm"−"2. The present study provides an interesting platform for the utilization of renewable energy sources.

  10. A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors.

    Science.gov (United States)

    Zhang, Guangzhao; Chen, Yunhua; Deng, Yonghong; Wang, Chaoyang

    2017-10-18

    We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly(ethylene oxide) block (A) and terminal poly(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device.

  11. Synthesis and characterization of (zinc-layered hydroxide-hippurate) nano hybrid by direct reaction of zinc oxide under aqueous environment

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Samer Hasan Al Ali; Zulkarnain Zainal

    2011-01-01

    A new method for synthesis of hippurate nano hybrid has been developed. In this method, zinc oxide was added directly into aqueous solution of hippurate anions (A - ). The resulting hippurate nano hybrid (HAN) is composed of the organic moieties sandwiched between zinc layered hydroxide (ZLH) inorganic interlayers. HAN synthesized using 0.2 M hippuric acid showed the best crystallinity compared to other samples synthesized in this work. X-ray powder diffraction shows the basal spacing of the HAN was 21.3 Angstrom indicating that the monolayer of A - was arranged vertically to the ZLH interlayers. (author)

  12. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall

  13. Novel porous graphene oxide and hydroxyapatite nanosheets-reinforced sodium alginate hybrid nanocomposites for medical applications

    International Nuclear Information System (INIS)

    Xiong, Guangyao; Luo, Honglin; Zuo, Guifu; Ren, Kaijing; Wan, Yizao

    2015-01-01

    Graphene oxide (GO) and hydroxyapatite (HAp) are frequently used as reinforcements in polymers to improve mechanical and biological properties. In this work, novel porous hybrid nanocomposites consisting of GO, HAp, and sodium alginate (SA) have been prepared by facile solution mixing and freeze drying in an attempt to obtain a scaffold with desirable mechanical and biological properties. The as-prepared porous GO/HAp/SA hybrid nanocomposites were characterized by SEM, XRD, FTIR, TGA, and mechanical testing. In addition, preliminary cell behavior was assessed by CCK8 assay. It is found that the GO/HAp/SA nanocomposites show improved compressive strength and modulus over neat SA and HAp/SA nanocomposites. CCK8 results reveal that the GO/HAp/SA nanocomposites show enhanced cell proliferation over neat SA and GO/SA nanocomposite. It has been demonstrated that GO/HAp20/SA holds promise in bone tissue engineering. - Graphical abstract: Display Omitted - Highlights: • Graphene oxide (GO), hydroxyapatite (HAp), and alginate (SA) nanocomposites were fabricated. • The novel porous composites were prepared by solution mixture and freeze drying. • The GO/HAp/SA had porous structure with porosity > 85% and pore size > 150 μm. • The GO/HAp/SA exhibited improved mechanical properties over HAp/SA counterparts. • The GO/HAp/SA showed enhanced cell proliferation over GO/SA counterparts

  14. Novel porous graphene oxide and hydroxyapatite nanosheets-reinforced sodium alginate hybrid nanocomposites for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Guangyao [School of Mechanical and Electrical Engineering, East China Jiaotong University, Nanchang 330013 (China); Luo, Honglin [Research Institute of Biomaterials and Transportation, East China Jiaotong University, Nanchang 330013 (China); School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China); Zuo, Guifu [Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, Hebei United University, Tangshan 063009 (China); Ren, Kaijing [Department of Joint Surgery, Tianjin Hospital, Tianjin 300211 (China); Wan, Yizao, E-mail: yzwantju@126.com [Research Institute of Biomaterials and Transportation, East China Jiaotong University, Nanchang 330013 (China); School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-09-15

    Graphene oxide (GO) and hydroxyapatite (HAp) are frequently used as reinforcements in polymers to improve mechanical and biological properties. In this work, novel porous hybrid nanocomposites consisting of GO, HAp, and sodium alginate (SA) have been prepared by facile solution mixing and freeze drying in an attempt to obtain a scaffold with desirable mechanical and biological properties. The as-prepared porous GO/HAp/SA hybrid nanocomposites were characterized by SEM, XRD, FTIR, TGA, and mechanical testing. In addition, preliminary cell behavior was assessed by CCK8 assay. It is found that the GO/HAp/SA nanocomposites show improved compressive strength and modulus over neat SA and HAp/SA nanocomposites. CCK8 results reveal that the GO/HAp/SA nanocomposites show enhanced cell proliferation over neat SA and GO/SA nanocomposite. It has been demonstrated that GO/HAp20/SA holds promise in bone tissue engineering. - Graphical abstract: Display Omitted - Highlights: • Graphene oxide (GO), hydroxyapatite (HAp), and alginate (SA) nanocomposites were fabricated. • The novel porous composites were prepared by solution mixture and freeze drying. • The GO/HAp/SA had porous structure with porosity > 85% and pore size > 150 μm. • The GO/HAp/SA exhibited improved mechanical properties over HAp/SA counterparts. • The GO/HAp/SA showed enhanced cell proliferation over GO/SA counterparts.

  15. Mitochondrial Dysfunction Causes Oxidative Stress and Tapetal Apoptosis in Chemical Hybridization Reagent-Induced Male Sterility in Wheat

    Directory of Open Access Journals (Sweden)

    Shuping Wang

    2018-01-01

    Full Text Available Male sterility in plants has been strongly linked to mitochondrial dysfunction. Chemical hybridization agent (CHA-induced male sterility is an important tool in crop heterosis. Therefore, it is important to better understand the relationship between mitochondria and CHA-induced male sterility in wheat. This study reports on the impairment of mitochondrial function duo to CHA-SQ-1, which occurs by decreasing cytochrome oxidase and adenosine triphosphate synthase protein levels and theirs activities, respiratory rate, and in turn results in the inhibition of the mitochondrial electron transport chain (ETC, excessive production of reactive oxygen species (ROS and disruption of the alternative oxidase pathway. Subsequently, excessive ROS combined with MnSOD defects results in damage to the mitochondrial membrane, followed by ROS release into the cytoplasm. The microspores underwent severe oxidative stress during pollen development. Furthermore, chronic oxidative stress, together with the overexpression of type II metacaspase, triggered premature tapetal apoptosis, which resulted in pollen abortion. Accordingly, we propose a metabolic pathway for mitochondrial-mediated male sterility in wheat, which provides information on the molecular events underlying CHA-SQ-1-induced abortion of anthers and may serve as an additional guide to the practical application of hybrid breeding.

  16. Smart and multifunctional concrete toward sustainable infrastructures

    CERN Document Server

    Han, Baoguo; Ou, Jinping

    2017-01-01

    This book presents the latest research advances and findings in the field of smart/multifunctional concretes, focusing on the principles, design and fabrication, test and characterization, performance and mechanism, and their applications in infrastructures. It also discusses future challenges in the development and application of smart/multifunctional concretes, providing useful theory, ideas and principles, as well as insights and practical guidance for developing sustainable infrastructures. It is a valuable resource for researchers, scientists and engineers in the field of civil-engineering materials and infrastructures.

  17. Tunable Mechanical Metamaterials through Hybrid Kirigami Structures.

    Science.gov (United States)

    Hwang, Doh-Gyu; Bartlett, Michael D

    2018-02-21

    Inspired by the art of paper cutting, kirigami provides intriguing tools to create materials with unconventional mechanical and morphological responses. This behavior is appealing in multiple applications such as stretchable electronics and soft robotics and presents a tractable platform to study structure-property relationships in material systems. However, mechanical response is typically controlled through a single or fractal cut type patterned across an entire kirigami sheet, limiting deformation modes and tunability. Here we show how hybrid patterns of major and minor cuts creates new opportunities to introduce boundary conditions and non-prismatic beams to enable highly tunable mechanical responses. This hybrid approach reduces stiffness by a factor of ~30 while increasing ultimate strain by a factor of 2 (up to 750% strain) relative to single incision patterns. We present analytical models and generate general design criteria that is in excellent agreement with experimental data from nanoscopic to macroscopic systems. These hybrid kirigami materials create new opportunities for multifunctional materials and structures, which we demonstrate with stretchable kirigami conductors with nearly constant electrical resistance up to >400% strain and magnetoactive actuators with extremely rapid response (>10,000% strain s -1 ) and high, repeatable elongation (>300% strain).

  18. Efficient Photocatalytic Degradation of Malachite Green in Seawater by the Hybrid of Zinc-Oxide Nanorods Grown on Three-Dimensional (3D Reduced Graphene Oxide(RGO/Ni Foam

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2018-06-01

    Full Text Available A hybrid of ZnO nanorods grown onto three-dimensional (3D reduced graphene oxide (RGO@Ni foam (ZnO/RGO@NF is synthesized by a facile hydrothermal method. The as-prepared hybrid material is physically characterized by SEM, XRD, Raman, and X-ray photoelectron spectroscopy (XPS. When the as-prepared 3D hybrid is investigated as a photocatalyst, it demonstrates significant high photocatalytic activity for the degradation of methylene blue (MB, rhodamine (RhB, and mixed MB/RhB as organic dye pollutants. In addition, the practical application and the durability of the as-prepared catalyst to degradation of malachite green (MG in seawater are firstly assessed in a continuous flow system. The catalyst shows a high degradation efficiency and stable photocatalytic activity for 5 h continuous operation, which should be a promising catalyst for the degradation of organic dyes in seawater.

  19. Bivalent ligands incorporating curcumin and diosgenin as multifunctional compounds against Alzheimer's disease.

    Science.gov (United States)

    Chojnacki, Jeremy E; Liu, Kai; Saathoff, John M; Zhang, Shijun

    2015-11-15

    In an effort to combat the multifaceted nature of Alzheimer's disease (AD) progression, a series of multifunctional, bivalent compounds containing curcumin and diosgenin were designed, synthesized, and biologically characterized. Screening results in MC65 neuroblastoma cells established that compound 38 with a spacer length of 17 atoms exhibited the highest protective potency with an EC50 of 111.7 ± 9.0 nM. A reduction in protective activity was observed as spacer length was increased up to 28 atoms and there is a clear structural preference for attachment to the methylene carbon between the two carbonyl moieties of curcumin. Further study suggested that antioxidative ability and inhibitory effects on amyloid-β oligomer (AβO) formation may contribute to the neuroprotective outcomes. Additionally, compound 38 was found to bind directly to Aβ, similar to curcumin, but did not form complexes with the common biometals Cu, Fe, and Zn. Altogether, these results give strong evidence to support the bivalent design strategy in developing novel compounds with multifunctional ability for the treatment of AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The economic impact of multifunctional agriculture in Dutch regions: An input-output model

    NARCIS (Netherlands)

    Heringa, P.W.; Heide, van der C.M.; Heijman, W.J.M.

    2013-01-01

    Multifunctional agriculture is a broad concept lacking a precise definition. Moreover, little is known about the societal importance of multifunctional agriculture. This paper is an empirical attempt to fill this gap. To this end, an input-output model was constructed for multifunctional agriculture