WorldWideScience

Sample records for oxide-coated composite adsorbent

  1. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    Science.gov (United States)

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  2. A note on chemical composition and origin of ferromanganese oxide coated and uncoated pumice samples from central Indian Ocean basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Parthiban, G.; Moraes, C.; Rajalakshmi, R.; Lekshmi, S.; Athira, S.; JaiSankar, S.

    version: J. Geol. Soc. India, vol.87(1); 2016; 62-68 A note on Chemical Composition and Origin of Ferromanganese Oxide Coated and Uncoated Pumice samples from Central Indian Ocean Basin J. N. PATTAN1*, G. PARTHIBAN1, C. MORAES1, R...

  3. Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Arifin, Eric; Lee, Jiukyu [Interdisciplinary Program in Nanoscience and Technology, Virginia (United States); Cha, Jinmyung [Seoul National Univ., Seoul (Korea, Republic of)

    2013-08-15

    Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite (AsO{sup 2-}) and arsenate (AsO{sub 4}{sup -3}), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of 10 μg/L without adjusting pH and temperature, which would be highly advantageous for practical field application.

  4. FORMATION AND RESEARCH OF MULTI-LAYER COMPOSITE PLASMA OXIDE COATINGS BASED ON ELEMENTS OF SCREEN METEROID PTOTECTION

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2016-01-01

    Full Text Available The paper presents results of research for influence of plasma jet parameters (current, spraying distance, plasmasupporting nitrogen gas consumption, fractional composition of an initial powder and cooling degree by compressed air on characteristics of anti-meteorite coatings, subsequent processing modes by pulsed plasma. Properties of the obtained coatings and results of ballistic tests have been given in the paper. The proposed methodology has been based on complex metallographic, X-ray diffraction and electron microscopic investigations of anti-meteorite aluminum oxide coating. Optimization of air plasma spraying parameters for NiAl and Al2O3 materials has been carried out in the paper. The spraying parameters optimization has been executed on the basis of obtaining maximum materials utilization factor. Surface treatment of model screen elements with a double-layer composite coating (adhesive metal NiAl layer and hard ceramic oxide Al2O3 layer has been fulfilled while using compression plasma stream. Nitrogen has been used as working gas. Composite hard ceramic oxide Al2O3 coating is represented by porous structure consisting of 10–15 µm-size fused Al2O3 particles. Metallic inclusions formed due to erosion of plasmatron electrodes have been observed in the space between the particles. Surface of bilayer composite coatings has been processed by a compression plasma stream and due to nonsteady processes of melting and recrystallization high strength polycrystalline layer has been formed on their surface. In this context, those areas of the polycrystalline layer which had metal inclusions have appeared to be painted in various colors depending on chemical composition of the inclusions.

  5. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells

    Science.gov (United States)

    Lee, Jong Ho; Shin, Yong Cheol; Jin, Oh Seong; Kang, Seok Hee; Hwang, Yu-Shik; Park, Jong-Chul; Hong, Suck Won; Han, Dong-Wook

    2015-07-01

    Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 +/- 476 nm and 438 +/- 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential.Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite

  6. Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

    KAUST Repository

    Sinha, Shahnawaz

    2011-09-30

    The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated mic - rosand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of C eq = 10 μg/L were 500 mg/L for AA and GFH, 520–1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60–95 % .

  7. Effect of current density on the structure, composition and corrosion resistance of plasma electrolytic oxidation coatings on Mg-Li alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijun [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Yuan, Yi, E-mail: yi.yuan@hrbeu.edu.cn [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Jing, Xiaoyan [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The PEO coatings exhibit tunable characteristics by controlling the current density. Black-Right-Pointing-Pointer The coating formed at 5 A/dm{sup 2} exhibits the highest corrosion resistance. Black-Right-Pointing-Pointer Anti-corrosion properties of PEO coatings are related to coating surface composition. - Abstract: The effect of current density on the oxidation process, morphology, composition and anti-corrosion properties of coatings are elucidated. X-ray photoelectron spectroscopy and X-ray diffraction analysis of coatings show that coatings prepared at different current densities are composed of MgO and {gamma}-Mg{sub 2}SiO{sub 4} and {alpha}-Mg{sub 2}SiO{sub 4} phase. The chemical composition of PEO coatings varies from surface to the interior of the oxide coating. The PEO coatings exhibit tunable thickness, composition ratio, and porosity by controlling the current density, which ultimately affects film morphology and anti-corrosion properties. The superior corrosion resistance of coating obtained at 5 A/dm{sup 2} is attributed to the compactness of the barrier layer and the highest MgO/Mg{sub 2}SiO{sub 4} ratio.

  8. Effect of current density on the structure, composition and corrosion resistance of plasma electrolytic oxidation coatings on Mg–Li alloy

    International Nuclear Information System (INIS)

    Highlights: ► The PEO coatings exhibit tunable characteristics by controlling the current density. ► The coating formed at 5 A/dm2 exhibits the highest corrosion resistance. ► Anti-corrosion properties of PEO coatings are related to coating surface composition. - Abstract: The effect of current density on the oxidation process, morphology, composition and anti-corrosion properties of coatings are elucidated. X-ray photoelectron spectroscopy and X-ray diffraction analysis of coatings show that coatings prepared at different current densities are composed of MgO and γ-Mg2SiO4 and α-Mg2SiO4 phase. The chemical composition of PEO coatings varies from surface to the interior of the oxide coating. The PEO coatings exhibit tunable thickness, composition ratio, and porosity by controlling the current density, which ultimately affects film morphology and anti-corrosion properties. The superior corrosion resistance of coating obtained at 5 A/dm2 is attributed to the compactness of the barrier layer and the highest MgO/Mg2SiO4 ratio.

  9. Graphene oxide coated coordination polymer nanobelt composite material: a new type of visible light active and highly efficient photocatalyst for Cr(VI) reduction.

    Science.gov (United States)

    Shi, Gui-Mei; Zhang, Bin; Xu, Xin-Xin; Fu, Yan-Hong

    2015-06-28

    A visible light active photocatalyst was synthesized successfully by coating graphene oxide (GO) on a coordination polymer nanobelt (CPNB) using a simple colloidal blending process. Compared with neat CPNB, the resulting graphene oxide coated coordination polymer nanobelt composite material (GO/CPNB) exhibits excellent photocatalytic efficiency in the reduction of K2Cr2O7 under visible light irradiation. In the composite material, GO performs two functions. Firstly, it cuts down the band gap (E(g)) of the photocatalyst and extends its photoresponse region from the ultraviolet to visible light region. Secondly, GO exhibits excellent electron transportation ability that impedes its recombination with holes, and this can enhance photocatalytic efficiency. For GO, on its surface, the number of functional groups has a great influence on the photocatalytic performance of the resulting GO/CPNB composite material and an ideal GO"coater" to obtain a highly efficient GO/CPNB photocatalyst has been obtained. As a photocatalyst that may be used in the treatment of Cr(VI) in wastewater, GO/CPNB exhibited outstanding stability during the reduction of this pollutant.

  10. Influence of Material Composition on Structural and Optical Properties of HfO2-TiO2 Mixed Oxide Coatings

    Directory of Open Access Journals (Sweden)

    Michal Mazur

    2016-03-01

    Full Text Available In this paper the influence of material composition on the structural, surface and optical properties of HfO2-TiO2 mixed oxide coatings was investigated and discussed. Five sets of thin films were deposited using reactive magnetron sputtering: HfO2, TiO2 and three sets of mixed HfO2-TiO2 coatings with various titanium content. The change in the material composition had a significant influence on the structural, surface and optical properties. All of the deposited coatings, except for (Hf0.55Ti0.45Ox, were nanocrystalline with crystallites ranging from 6.7 nm to 10.8 nm in size. Scanning electron microscopy measurements revealed that surface of nanocrystalline thin films consisted of grains with different shapes and sizes. Based on optical transmission measurements, it was shown that thin films with higher titanium content were characterized by a higher cut-off wavelength, refractive index and lower optical band gap energy. The porosity and packing density were also determined.

  11. Dual-protection of a graphene-sulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithium-sulfur battery.

    Science.gov (United States)

    Yu, Mingpeng; Wang, Aiji; Tian, Fuyang; Song, Hongquan; Wang, Yinshu; Li, Chun; Hong, Jong-Dal; Shi, Gaoquan

    2015-03-12

    A reduced graphene oxide (rGO)-sulfur composite aerogel with a compact self-assembled rGO skin was further modified by an atomic layer deposition (ALD) of ZnO or MgO layer, and used as a free-standing electrode material of a lithium-sulfur (Li-S) battery. The rGO skin and ALD-oxide coating worked as natural and artificial barriers to constrain the polysulfides within the cathode region. As a result, the Li-S battery based on this electrode material exhibited superior cycling stability, good rate capability and high coulombic efficiency. Furthermore, ALD-ZnO coating was tested for performance improvement and found to be more effective than ALD-MgO coating. The ZnO modified G-S electrode with 55 wt% sulfur loading delivered a maximum discharge capacity of 998 mA h g(-1) at a current density of 0.2 C. A high capacity of 846 mA h g(-1) was achieved after charging/discharging for 100 cycles with a coulombic efficiency of over 92%. In the case of using LiNO3 as a shuttle inhibitor, this electrode showed an initial discharge capacity of 796 mA h g(-1) and a capacity retention of 81% after 250 cycles at a current density of 1 C with an average coulombic efficiency higher than 99.7%.

  12. Study on the adsorption performance of composite adsorbent of CaCl2 and expanded graphite with ammonia as adsorbate

    International Nuclear Information System (INIS)

    A novel constant volume test unit was built to study the adsorption performance of a new type composite adsorbent. This test unit can measure the adsorption isosteres of the working pairs. The adsorption isosteres are the curves of the adsorption pressure variation with the adsorption temperatures at constant adsorption quantities. Compared to the former test results of isothermals and isobars, the isosteres are better for the calculation of the adsorption heat, desorption heat and the selection the adsorption working pairs. Three experimental results were obtained: the first result was that the expanded graphite powders were superior to the expandable graphite powders to facilitate the transportation of working fluid in the composite adsorbent. The second one was that the composite adsorbent treated by solution is more homogeneous than the simple mixed composite adsorbent and the treated composite adsorbent has a better mass transfer performance. The last one was that the adsorption isosteres was the same one not only in the heating process but also in the cooling process and this performance was not relevant to the homogeneity of the composite adsorbent

  13. Oxide coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.

    1995-06-01

    Monolithic SiC heat exchangers and fiber-reinforced SiC-matrix composite heat exchangers and filters are susceptible to corrosion by alkali metals at elevated temperatures. Protective coatings are currently being developed to isolate the SiC materials from the corrodants. Unfortunately, these coatings typically crack and spall when applied to SiC substrates. The purpose of this task is to determine the feasibility of using a compliant material between the protective coating and the substrate. The low-modulus compliant layer could absorb stresses and eliminate cracking and spalling of the protective coatings.

  14. Electrochemical niobium oxide coating in molten NaNO3-KNO3

    International Nuclear Information System (INIS)

    Kinetics of anodic oxide film growth on niobium in molten NaNO3-KNO3 (50 mol %) is studied in galvanostatic and potentiostatic conditions. Basic kinetic parameters of the oxide-coating process are determined. Chemical composition of the oxide coatings is established

  15. Characterization and adsorption behavior of a novel triolein-embedded activated carbon composite adsorbent

    Institute of Scientific and Technical Information of China (English)

    RU Jia; LIU Huijuan; QU Jiuhui; WANG Aimin; DAI Ruihua

    2005-01-01

    A novel triolein-embedded activated carbon composite adsorbent was developed. Experiments were carried out in areas such as the preparation method, the characterization of physicochemical properties, and the adsorption behavior of the composite adsorbent in removing dieldrin from aqueous solution. Results suggested that the novel composite adsorbent was composed of the supporting activated carbon and the surrounding triolein-embedded cellulose acetate membrane. The adsorbent was stable in water, for no triolein leakage was detected after soaking the adsorbent for five weeks. The adsorbent had good adsorption capability to dieldrin, which was indicated by a residual dieldrin concentration of 0.204 μg·L-1. The removal efficiency of the composite adsorbent was higher than the traditional activated carbon adsorbent.

  16. Design and performance prediction of a new generation adsorption chiller using composite adsorbent

    International Nuclear Information System (INIS)

    Research highlights: → Composite adsorbent 'employing lithium chloride in silica gel' and water as working pair. → A new type adsorbent bed is used to accommodate the composite adsorbent. → A dynamic model of the adsorption chiller is built. → The coefficient of performance (COP) and the cooling capacity will be improved. -- Abstract: This paper presents a novel adsorption chiller using composite adsorbent 'employing lithium chloride in silica gel' as adsorbent and water as adsorbate. A new type adsorbent bed is used to accommodate the composite adsorbent. The mass recovery between two adsorbent beds usually results in the adsorbate unbalance. So a novel auto water makeup unite is used to solve the problem. A dynamic model of the adsorption chiller is built based on the adsorption isotherms to predict the performance. The simulation result shows that the coefficient of performance (COP) and the cooling capacity will increase by using this new composite adsorbent. When the temperatures of hot water inlet, cooling water inlet, and chilled water inlet are 363, 303 and 293 K, COP will be 0.43, and the cooling capacity will be 5.295 kW. Also operation strategy is optimized. Different temperatures of hot water inlet, cooling water inlet and chilling water inlet will result in different COP and cooling capacity.

  17. Effective thermal conductivity of expanded graphite-CaCl2 composite adsorbent for chemical adsorption chillers

    International Nuclear Information System (INIS)

    This paper presents experimental data on the thermal conductivity for three types of adsorbent, namely, pure CaCl2 powder, simple composite adsorbent and consolidated composite adsorbent. The thermal conductivities were measured by the 'hot wire method' at a fixed pressure and temperature under an ammonia atmosphere. Effective thermal conductivities of the expanded graphite-CaCl2 . nNH3 (n = 2, 4, 8) consolidated composite adsorbent are in the range of 7.05-9.2 W m-1 K-1, which are significant higher values than those of the powders bed of 0.3-0.4 W m-1 K-1. The obtained results show that the composite adsorbent thermal conductivity λ has a strong dependence on the bulk density, the weight fraction of expanded graphite and the ammoniated state of CaCl2

  18. Removing Cd2+ by Composite Adsorbent Nano-Fe3O4/Bacterial Cellulose

    Institute of Scientific and Technical Information of China (English)

    LU Min; GUAN Xiao-hui; WEI De-zhou

    2011-01-01

    A new composite adsorbent,nano-Fe3O4/bacterial cellulose(BC),was prepared through blending method.The process of adsorbing Cd2+ including its isotherm and kinetics measured was studied.The results show that the adsorption efficiency is improved because of huge surface area and surface coordination of nano-Fe3O4 particles.Its adsorption capacity is 27.97 mg/g and the maximum of Cd2+ removal is 74%.The adsorption kinetics can be described by pseudo-second rate model and the adsorption equilibrium by Langmuir type.The superparamagnetism of nano-Fe3O4 particles can help to solve the difficult separation of single BC adsorbent and lead to the quick separation of composite adsorbent from the liquid if a magnetic field was applied.Cd2+ can be desorbed effectively by EDTA and HCl from the composite adsorbent,which can make it be reused.

  19. In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(l-lactic acid) Composite Coating on Mg-1Li-1Ca Alloy for Orthopedic Implants.

    Science.gov (United States)

    Zeng, Rong-Chang; Cui, Lan-Yue; Jiang, Ke; Liu, Rui; Zhao, Bao-Dong; Zheng, Yu-Feng

    2016-04-20

    Manipulating the degradation rate of biomedical magnesium alloys poses a challenge. The characteristics of a microarc oxidation (MAO), prepared in phytic acid, and poly(l-lactic acid) (PLLA) composite coating, fabricated on a novel Mg-1Li-1Ca alloy, were studied through field emission scanning electron microscopy (FE-SEM), electron probe X-ray microanalysis (EPMA), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The corrosion behaviors of the samples were evaluated via hydrogen evolution, potentiodynamic polarization and electrochemical impedance spectroscopy in Hanks' solution. The results indicated that the MAO/PLLA composite coatings significantly enhanced the corrosion resistance of the Mg-1Li-1Ca alloy. MTT and ALP assays using MC3T3 osteoblasts indicated that the MAO/PLLA coatings greatly improved the cytocompatibility, and the morphology of the cells cultured on different samples exhibited good adhesion. Hemolysis tests showed that the composite coatings endowed the Mg-1Li-1Ca alloys with a low hemolysis ratio. The increased solution pH resulting from the corrosion of magnesium could be tailored by the degradation of PLLA. The degradation mechanism of the composite coatings was discussed. The MAO/PLLA composite coating may be appropriate for applications on degradable Mg-based orthopedic implants. PMID:27022831

  20. Effect of sandblasting intensity on microstructures and properties of pure titanium micro-arc oxidation coatings in an optimized composite technique

    Science.gov (United States)

    Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; He, Kun; Yuan, Y. F.; Ma, Xiao-Ni; Li, Ying

    2014-02-01

    Sandblasting is one of the most effective methods to modify a metal surface and improve its properties for application. Micro-arc oxidation (MAO) could produce a ceramic coating on a dental implant, facilitating cellular differentiation and osseocomposite on it. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by an optimum composite technique to improve the bioactive performance. The effect of sandblasting intensity on microstructures and properties of the implant coatings is examined, and the modified surfaces are characterized in terms of their topography, phase, chemical composition, mechanical properties and hydroxyapatite (HA)-inducing ability. The results show that a moderate sandblasting micromachines the substrate in favorable combination of rough and residual stresses; its MAO coating deposits nano-hydroxyapatite after immersion in simulated body fluid (SBF) for 5 days exhibiting better bioactivity. The further improvement of the implant surface performance is attributed to an optimized composite technique.

  1. AMMONIA AND COD REMOVAL FROM SYNTHETIC LEACHATE USING RICE HUSK COMPOSITE ADSORBENT

    Directory of Open Access Journals (Sweden)

    Azhar Abdul Halim

    2011-06-01

    Full Text Available Ammonia and chemical oxygen demand (COD were the most two problematic parameters in the landfill leachate. In this study, a new composite adsorbent derived from rice husk ash waste is evaluated with respect to its ability to remove these contaminants from synthetic leachate. Results indicate that the new composite adsorbent is able to adsorb both ammonia and COD. It has a higher adsorption capacity for ammonia (Q = 2.2578 mg/g and an almost equal adsorption capacity for COD (Q = 2.8893 when compared with commercially activated carbon. The adsorption kinetics of this new product for ammonia and COD were primarily represented by the pseudo second-order mechanism. The overall adsorption rate of the ammonia and COD adsorption processes appears to be determined by chemisorption process. The regenerated composite adsorbent indicated higher adsorption capacities of ammonia and COD, i.e. 12.9366 mg/g and 3.1162 mg/g, respectively.

  2. Bioinspired Polyelectrolyte-Assembled Graphene-Oxide-Coated C18 Composite Solid-Phase Microextraction Fibers for In Vivo Monitoring of Acidic Pharmaceuticals in Fish.

    Science.gov (United States)

    Qiu, Junlang; Chen, Guosheng; Liu, Shuqin; Zhang, Tianlang; Wu, Jiayi; Wang, Fuxin; Xu, Jianqiao; Liu, Yan; Zhu, Fang; Ouyang, Gangfeng

    2016-06-01

    A novel solid-phase microextraction (SPME) fiber was prepared by gluing poly(diallyldimethylammonium chloride) (PDDA) assembled graphene oxide (GO)-coated C18 composite particles (C18@GO@PDDA) onto a quartz fiber with polyaniline (PANI). The fiber surface coating was sequentially modified with bioinspired polynorepinephrine, which provided a smooth biointerface and makes the coating suitable for in vivo sampling. The novel custom-made coating was used to extract acidic pharmaceuticals, and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) was employed for analysis. The custom-made coating exhibited a much higher extraction efficiency than the previously used commercial polydimethylsiloxane (PDMS) and polyacrylate (PA) coatings. The custom-made coating also possessed satisfactory stability (the relative standard deviations (RSDs) ranged from 1.60% to 10.3% for six sampling-desorption cycles), interfiber reproducibility (the RSDs ranged from 2.61% to 11.5%), and resistance to matrix effects. The custom-made fibers were used to monitor the presence of acid pharmaceuticals in dorsal-epaxial muscle of living fish, and satisfactory sensitivities (limits of detection ranged from 0.13 ng/g to 7.56 ng/g) were achieved. The accuracies were verified by the comparison with liquid extraction. Moreover, the novel fibers were successfully used to monitor the presence of acidic pharmaceuticals in living fish, which demonstrated that the custom-made fibers were feasible for possible long-term in vivo continuous pharmaceutical monitoring. PMID:27189112

  3. In situ toughened SiC ceramics with Al-B-C additions and oxide-coated SiC platelet/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-12-01

    This work aimed at fabrication and characterization of high toughness SiC ceramics through the applications of in situ toughening and SiC platelet reinforcement. The processing-microstructure-property relations of hot pressed SiC with Al, B, and C additions (designated as ABC-SiC) were investigated. Through a liquid phase sintering mechanism, dense SiC was obtained by hot pressing at a temperature as low as 1,700 C with 3 wt% Al, 0.6 wt% B, and 2 wt% C additions. These sintering aids also enhanced the {beta}-to-{alpha} (3C-to-4H) phase transformation, which promoted SiC grains to grow into plate-like shapes. Under optimal processing conditions, the microstructure exhibited high-aspect-ratio plate-shaped grains with a thin (< 1 nm) Al-containing amorphous grain boundary film. The mechanical properties of the toughened SiC and the composites were evaluated in comparison with a commercial Hexoloy SiC under identical test conditions. The C-curve behavior was examined using the strength-indentation load relationship and compared with that directly measured using precracked compact tension specimens. The in situ toughened ABC-SiC exhibited much improved flaw tolerance and a significantly rising R-curve behavior. A steady-state toughness in excess of 9 MPam{sup 1/2} was recorded for the ABC-SiC in comparison to a single valued toughness below 3 MPam{sup 1/2} for the Hexoloy. Toughening in the ABC-SiC was mainly attributed to grain bridging and subsequent pullout of the plate-shaped grains. The high toughness ABC-SiC exhibited a bend strength of 650 MPa with a Weibull modulus of 19; in comparison, the commercial SiC showed a bend strength of 400 MPa with a Weibull modulus of 6. Higher fracture toughness was also achieved by the reinforcement of SiC platelets, encapsulated with alumina, yttria, or silica, in a SiC matrix.

  4. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj, E-mail: torajmohammadi@iust.ac.ir

    2015-08-15

    Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized with concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water.

  5. Studies on broad spectrum corrosion resistant oxide coatings

    Indian Academy of Sciences (India)

    Someswar Datta

    2001-12-01

    The corrosion resistant oxide coatings, developed and applied by the conventional vitreous enamelling techniques, showed superior resistance to a range of mineral acids at various strengths and temperatures, alkaline solutions, boiling water and chrome plating solutions. These coatings possess considerable abrasion and impact resistance as well as high thermal shock resistance. The properties of the coating system have been studied in detail and found to be strongly dependent on composition and processing parameters. These coatings have been characterized by X-ray diffraction analysis and SEM studies. Some of the coating materials have been found to be biocompatible.

  6. Sorption of U(VI) on natural sepiolite and sepiolite-agar agar composite adsorbent

    International Nuclear Information System (INIS)

    Adsorption of uranium (VI) ions onto clay minerals is one of the significant reactions affecting the transport of uranium in the environment. The use of composite adsorbents for the removal of metal ions and radionuclide from industrial wastes has attracted great interest to researchers in recent years[1]. In this study, natural sepiolite type clay and an organic compound, agar agar, were chosen as the adsorbent material. Composite adsorbent was prepared from sepiolite and agar agar. Adsorption of uranium (VI) on this composite and on natural sepiolite adsorbent was investigated. Thermodynamic investigations were carried out to get more information about the adsorption of uranium. Adsorption of U (VI) has been studied as a function of solution pH, time, temperature and initial concentration of uranium on natural sepiolite and agar agar composite. The maximum sorption yield of U (VI) on composite and on sepiolite from batch experiments is calculated approximately 89% and 76% respectively in the optimum experimental adsorption condition. The adsorption data were fitted to Freundlich and Dubinin-Radushkevich (D-R) adsorption isotherms. Using the experimental data obtained different temperatures, thermodynamic constants ΔHdegree, ΔSdegree and ΔGdegree were calculated. The results show that the adsorption process on natural sepiolite and sepiolite-agar agar composite are both egzothermic natures. [1] S. M. Hasany, M. M. Saeed, M. Ahmed, J. Radioanal. Nucl. Chem. Vol. 252 (3), 477-484 (2002)

  7. Desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent, (1)

    International Nuclear Information System (INIS)

    An investigation was carried out on the desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent by the batch process. The rate of desorption of uranium with acidic eluent depended on temperature, showing an increase as the temperature was raised. But the rate of desorption with acidic eluent was less dependent on temperature than that obtained when mixed eluent of sodium carbonate-sodium hydrogencarbonate was used. The difference of the rate of desorption of uranium in the range of concentration from 0.3 to 0.5N was not found, and the rate of desorption with sulfuric acid was slightly higher than that obtained when hydrochloric acid was used. The amount of dissolved titanium decreased as the ratio of adsorbent to eluent (RAE) was increased. At RAE of 10%, the percentage of dissolved titanium (DTI) was below 0.38% with sulfuric acid, below 0.7% with hydrochloric acid. These values were found to be higher than the ones with the carbonate eluent. The elements except uranium, which were adsorbed on the adsorbent, were eluted simultaneously with acidic eluent. The regeneration of the adsorbent after desorption, therefore, was found to be unnecessary. In a repeated test of adsorption-desorption treatment up to five times, the percentage of uranium adsorbed from natural sea water was approximately constant of 85%. From these results, the application of column process to the desorption of uranium with acidic eluent at room temperature was proposed to be feasible. (author)

  8. Alumina-Activated Carbon Composite as Adsorbent of Procion Red Dye from Wastewater Songket Industry

    OpenAIRE

    Poedji Loekitowati Hariani; Fatma Fatma; Zulfikar Zulfikar

    2015-01-01

    Alumina-activated carbon composite has been synthesized and studied for adsorption procion red dye. Composite was prepared by precipitation method aluminium hydroxide on the surface of activated carbon followed by calcinations. The Fourier transform Infra Red (FTIR), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) and Brunaeur Emmet Teller (BET) surface are being used to characterize the adsorbent. Batch adsorption experiments were carried out for the adsorption of...

  9. Characterization of microarc oxidation coatings on pure titanium

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The morphology, composition, and phase structure of the oxide coatings produced on the surface of pure titaniumby alternating-current microarc discharge in aluminate solution were investigated by X-ray diffraction and scanning electronmicroscopy. The profiles of the hardness H and the elastic modulus E in the coatings were determined using a nanoindenta-tion method. The concentration distributions of Ti, Al, and O in the coating show that this coating over 30 μm thick containstwo layers: an outer layer and an inner layer. The oxide coating is mainly composed of TiO2 rutile and Al2TiO5 compounds.During oxidation, the temperature in the microarc discharge channel was very high to make the local coating molten. Fromthe surface to the interior of the coating, H and E increase gradually, and then reach maximum values of 9.78 GPa and 176GPa respectively at a distance of 7 μm from the coating/titanium interface. They are also rather high near the interface.

  10. The comparison of Cu(Ⅱ) adsorption capability of baker's yeast, nano-titania and their composite adsorbent

    Institute of Scientific and Technical Information of China (English)

    ZHANG YunSong; WANG RenGuo; WANG XianXiang; LEI SanZhong; TONG DongMei

    2008-01-01

    The anatase nano-TiO2 powder, with crystal size between 40 and 80 nm, was prepared by the liquid phase hydrolysis of TiOCI4. At the same time, the nano-TiO2was utilized with the baker's yeast biomass as a composite adsorbent to adsorb the Cu ions in the artificial aqueous solution. The investigation showed that the composite adsorbent had a fine adsorption efficiency. The TiO2 in the composite ad-sorbent could cooperate well with baker's yeast to improve the adsorbing capability of Cu2+ under the following experimental conditions as well: a quantity of composite adsorbent of 5 g·L-1, pH≥4.0, an adsorption time of 40 rain and an initial concentration of Cu ions of 10 mg·L-1. In addition, the results of measurements, obtained with a scanning electron microscope, an infrared spectrophotometer and a Zeta potential analyzer, revealed that the baker's yeast and nano-TiO2 produced the composite ad-sorbent through coordination and hydrogen bonds in particular, etc. The stability of the composite adsorbent and the amount of titania loaded were largely dependent on the concentration of hydrogen ion in the solution.

  11. Moisture transport and adsorption on silica gel-calcium chloride composite adsorbents

    International Nuclear Information System (INIS)

    A measurement of moisture uptake curves in silica gel-calcium composite adsorbents is performed by using the thermal gravimetrical method in a relative vapor pressure range from 0.5 to 0.9 at different temperature levels of 25, 35 and 45 deg. C, respectively. Also, dynamic adsorption curves individually corresponding to the temperature and relative pressure conditions of (25 deg. C, 0.7) (35 deg. C, 0.7) and (35 deg. C, 0.5) have been measured. This experimental study shows that the sorption rate is highest for non-impregnated macroporous silica gel; however, the same silica gel impregnated with calcium chloride has a much greater final water loading. This confirms that composite adsorbents result in a better adsorption performance compared with non-impregnated silica gel, leading to a trade off in finalizing the content of CaCl2 in the composite. Through theoretical analysis on the experimental data, it is found that the saturated adsorption data can be well fitted by the FHH model and the dynamic adsorption data well fitted by the Crank diffusion model, simultaneously yielding the effective solid side mass diffusivities. A comparison with these obtained diffusion coefficients further supports that the mass diffusivity in the composite adsorbent also increases with an increase in temperature, as well as in humidity, but drastically decreases due to the presence of salt inside the matrix pores compared with the non-impregnated host matrix

  12. Ethanol adsorption onto carbonaceous and composite adsorbents for adsorptive cooling system

    International Nuclear Information System (INIS)

    The aim of the present paper is the experimental characterization of adsorbent materials suitable for practical applications in adsorption refrigeration systems, employing ethanol as refrigerant. Different commercial activated carbons as well as a properly synthesized porous composite, composed of LiBr inside a silica gel host matrix, have been tested. A complete thermo-physical characterization, comprising nitrogen physi-sorption, specific heat and thermo-gravimetric equilibrium curves of ethanol adsorption over the sorbents, has been carried out. The equilibrium data have been fitted by means of the Dubinin – Astakhov equation. On the basis of the experimental data, a thermodynamic evaluation of the achievable performance of each adsorbent pair has been estimated by calculating the maximum COP (Coefficient of Performance) under typical working boundary conditions for refrigeration and air conditioning applications. The innovative composite material shows the highest thermodynamic performances of 0.64–0.72 for both tested working conditions. Nevertheless, the best carbonaceous material reaches COP value comparable with the synthesized composite. The results have demonstrated the potential of the chosen adsorbents for utilization in adsorption cooling systems. - Highlights: • We studied ethanol adsorption for adsorption cooling systems. • Commercial activated carbons and composite sorbent, LiBr/SiO2, are tested by complete thermo-physical characterization. • A thermodynamic evaluation has been carried out on each working pairs to estimate the performance of a refrigeration cycle

  13. Development of Composite Adsorbents for LLW Treatment and Their Adsorption Properties for Cs and Sr - 13127

    Energy Technology Data Exchange (ETDEWEB)

    Susa, Shunsuke; Mimura, Hitoshi [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Aramaki-Aza-Aoba 6-6-01-2, Sendai, 980-8579 (Japan); Ito, Yoshiyuki; Saito, Yasuo [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata Shirone, Naka-gun, Ibaraki, 319-1195 (Japan)

    2013-07-01

    In this study, the composite adsorbents (KCoFC-NM (NM: natural mordenite), KCoFC-SG (SG: porous silica gel), AMP-SG and so on) were prepared by impregnation-precipitation methods. As for the distribution properties, the largest K{sub d,Cs} value of 3.8 x 10{sup 4} cm{sup 3}/g was obtained for KCoFC-SG (Davi.) composite. KCoFC-SG (NH, MB5D) and T-KCFC also had relatively large K{sub d,Cs} values above 1.0 x 10{sup 4} cm{sup 3}/g. The uptake rate of Cs{sup +} ions was examined by batch method. KCoFC-SG (NH, MB5D) and AMP-SG (Davi.) had relatively large uptake rate of Cs{sup +}, and the uptake attained equilibrium within 1 h. The maximum uptake capacity of Cs{sup +} ions was estimated to be above 0.5 mmol/g for KCoFC-NM and KCoFC-CP composites. KCoFC-X composite had a relatively large uptake capacity of Cs{sup +} ions (0.23 mmol/g > 0.17 mmol/g (T-KCFC)) and this composite also had a selectivity towards Sr{sup 2+} ions; KCoFC-X is effective adsorbent for both Cs{sup +} and Sr{sup 2+} ions. The largest value of K{sub d,Sr} was estimated to be 218 cm{sup 3}/g for titanic acid-PAN. Titanic acid-PAN had the largest uptake rate of Sr{sup 2+} ions, and the uptake attained equilibrium within 8 h. Adsorbability of other nuclides was further examined by batch method. All adsorbents had adsorbability for Rb{sup +} and RuNO{sup 3+} ions. KCoFC-SG (NH), KCoFC-CP and T-KCFC had higher selectivity towards Cs{sup +} than other adsorbents; these adsorbents had adsorbability to Cs{sup +} ions even in the presence of Ba{sup 2+}, Ca{sup 2+} and Mg{sup 2+} ions. The separation factor of K{sub d,Sr}/K{sub d,Ba} for titanic acid-PAN was about 1, indicating that the K{sub d,Sr} for titanic acid-PAN tends to decrease with Ba{sup 2+} concentration. As for the breakthrough properties, the largest 5 % breakpoint and 5 % breakthrough capacity of Cs{sup +} ions were estimated to be 47.1 cm{sup 3} and 0.07 mmol/g for the column of KCoFC-SG (NH), respectively. The order of 5 % breakthrough capacity

  14. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qiaoli [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092 (China); School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China)], E-mail: qiaolizh@yahoo.com.cn; Lin, Y.C. [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China)], E-mail: linyongcheng@163.com; Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Gao Naiyun [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092 (China)

    2007-09-30

    Iron oxide/activated carbon (FeO/AC) composite adsorbent material, which was used to modify the coal-based activated carbon (AC) 12 x 40, was prepared by the special ferric oxide microcrystal in this study. This composite can be used as the adsorbent to remove arsenic from drinking water, and Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Then, the arsenic desorption can subsequently be separated from the medium by using a 1% aqueous NaOH solution. The apparent characters and physical chemistry performances of FeO/AC composite were investigated by X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Batch and column adsorption experiments were carried out to investigate and compare the arsenic removal capability of the prepared FeO/AC composite material and virgin activated carbon. It can be concluded that: (1) the main phase present in this composite are magnetite (Fe{sub 3}O{sub 4}), maghemite ({gamma}-Fe{sub 2}O{sub 3}), hematite ({alpha}-Fe{sub 2}O{sub 3}) and goethite ({alpha}-FeO(OH)); (2) the presence of iron oxides did not significantly affect the surface area or the pore structure of the activated carbon; (3) the comparisons between the adsorption isotherms of arsenic from aqueous solution onto the composite and virgin activated carbon showed that the FeO/AC composite behave an excellent capacity of adsorption arsenic than the virgin activated carbon; (4) column adsorption experiments with FeO/AC composite adsorbent showed that the arsenic could be removed to below 0.01 mg/L within 1250 mL empty bed volume when influent concentration was 0.5 mg/L.

  15. Modeling of fixed-bed column studies for the adsorption of cadmium onto novel polymer-clay composite adsorbent

    International Nuclear Information System (INIS)

    Kaolinite clay was treated with polyvinyl alcohol to produce a novel water-stable composite called polymer-clay composite adsorbent. The modified adsorbent was found to have a maximum adsorption capacity of 20,400 ± 13 mg/L (1236 mg/g) and a maximum adsorption rate constant of ∼7.45 x 10-3 ± 0.0002 L/(min mg) at 50% breakthrough. Increase in bed height increased both the breakpoint and exhaustion point of the polymer-clay composite adsorbent. The time for the movement of the Mass Transfer Zone (δ) down the column was found to increase with increasing bed height. The presence of preadsorbed electrolyte and regeneration were found to reduce this time. Increased initial Cd2+ concentration, presence of preadsorbed electrolyte, and regeneration of polymer-clay composite adsorbent reduced the volume of effluent treated. Premodification of polymer-clay composite adsorbent with Ca- and Na-electrolytes reduced the rate of adsorption of Cd2+ onto polymer-clay composite and lowered the breakthrough time of the adsorbent. Regeneration and re-adsorption studies on the polymer-clay composite adsorbent presented a decrease in the bed volume treated at both the breakpoint and exhaustion points of the regenerated bed. Experimental data were observed to show stronger fits to the Bed Depth Service Time (BDST) model than the Thomas model.

  16. Study on the adsorption isosteres of the composite adsorbent CaCl2 and expanded graphite

    International Nuclear Information System (INIS)

    A test setup was built to study the adsorption performance of the composite adsorbent used in the adsorption system. The isovolume measurement method is adopted in the test setup to measure the adsorption isosteres of the composite adsorbent and ammonia working pair. The adsorption isosteres are the curves of the adsorption pressures variation with adsorption temperatures at constant adsorption quantity, which are convenient for the calculation of the adsorption heat and selection of the adsorption working pairs. The adsorption heats were calculated according to the adsorption isosteres, three clear crest values indicate that there were three types of reaction during the reaction processes of ammoniate calcium chloride and ammonia. The kinetic model of adsorption isosteres is obtained by the Temkin model, it is useful to estimate the adsorption performance of the working pairs and useful to guide the design of adsorption system.

  17. Novel Nanosized Adsorbing Composite Cathode Materials for the Next Generational Lithium Battery

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; ZHENG Wei; ZHANG Ping; WANG Lizhen; XIA Tongchi; HU Xinguo; YU Zhenxing

    2007-01-01

    A novel carbon-sulfur nano-composite material was synthesized by heating sublimed sulfur and high surface area activated carbon (HSAAC) under certain conditions. The physical and chemical performances of the novel carbon-sulfur nano-composite were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and X-ray diffraction (XRD). The electrochemical performances of nano-composite were characterized by charge-discharge characteristic, cyclic voltammetry and electrochemical impendence spectroscopy (EIS). The experimental results indicate that the electrochemical capability of nanocomposite material was superior to that of traditional S-containing composite material. The cathode made by carbon-sulfur nano-composite material shows a good cycle ability and a high specific charge-discharge capacity. The HSAAC shows a vital role in adsorbing sublimed sulfur and the polysulfides within the cathode and is an excellent electric conductor for a sulfur cathode and prevents the shuttle behavior of the lithium-sulfur battery.

  18. The development of composite adsorbent for organic waste decomposion treatment and chemical recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gun, Shul Yong; Jung, Kyeong Taek; Kim, Hyung Tae; Kim, Ki Wook; Kim, Hyun Jong [Yonsei University, Seoul (Korea); Kim, Jong [Konyang University, Nonsan (Korea)

    1999-01-01

    Up to now inorganic adsorbents has been known to effective for treatment of radioactive waste containing metal ions due to their high selectivity toward the specific ions(Cs{sup +}, Sr{sup 2+}, Co{sup 2+}, Ag{sup +} ...). The draw back of this adsorption system is in the operation difficulties such as separation of fine solids (adsorbents) and pressure drop ({delta}p) problem. To come over these problems, preparation of composite adsorbents has been attempted. In our study, PAN-inorganic ion exchanger(Ni{sub 2}Fe(Cn){sub 6}, K{sub 2}Ti{sub 4}O{sub 9}) composite beads were prepared in the range of 0.5 {approx} 3.5mm in size. The selectivity for Ag{sup +}, Sr{sup 2+}, Cs{sup +} and Co{sup 2+} ions in binary and tertiary systems in composite beads was Sr{sup 2+}>Ag{sup +}, Ag{sup +}>Co{sup 2+}, Co{sup 2+}>Sr{sup 2+} and Sr{sup 2+}>Co{sup 2+}>Ag{sup +} respectively. As an selective Cs{sup +} adsorbent, 1,3-Dipropyloxycalix(4)arene crown ether (CCE1) and 1,3-Dipropyl-oxycalix(4)arene dibenzo crown ethers(CCE2) were also successfully synthesized in the fixed 1,3-alternate conformation with good yields by the reaction of corresponding 1,3-Dipropyloxy-calix(4)arenes 3 with pentaethylene glycol ditosylate and dibenzodimesylate 7, respectively in acetonitrile in the presence of cesium carbonate as a base. Solvent extraction of cesium picrates and cesium nitrate from aqueous solutions into chloroform were investigated. (author). 37 refs., 60 figs., 7 tabs.

  19. Bio sorption process for uranium (VI) by using algae-yeast-silica gel composite adsorbent

    International Nuclear Information System (INIS)

    Many yeast, algae, bacteria and various aquatic flora are known to be capable of concentrating metal species from dilute aqueous solution. Many researcher have found that non-living biomaterials can be used to accumulate metal ions from environment. In recent studies, mainly two process are used in biosorption experiments. These are the use of free cells and the use of immobilized cells on a solid support. A variety of inert supports have been used to immobilize biomaterials either by adsorption or physical entrapment. This uptake is often considerable and frequently selective, and occurs via a variety of mechanisms including active transport, ion exchange or complexation, and adsorption or inorganic precipitation. Biosorbent may be used as an ion exchange material. Adsorption occurs through interaction of the metal ions with functional groups that are found in the cell wall biopolymers of either living or dead organisms. In this study, the algae-yeast-silica gel composite adsorbent was tested for its ability to recover U(VI) from diluted aqueous solutions. Macro marine algae (Jania rubens.), yeast (Saccharomyces cerevisiae) and silica gel were used to prepare composite adsorbent. The ability of the composite biosorbent to adsorb uranium (VI) from aqueous solution has been studied at different optimized conditions of pH, concentration of U(VI), temperature, contact time and matrix ion effect was also investigated. The adsorption patterns of uranium on the composite biosorbent were investigated by the Langmuir, Freundlich and Dubinin-Radushkhevic isotherms. The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated. The results suggested that the macro algae-yeast-silica gel composite sorbent is suitable as a new biosorbent material for removal of uranium ions from aqueous solutions

  20. Removal of hydrogen sulfide at ambient conditions on cadmium/GO-based composite adsorbents.

    Science.gov (United States)

    Florent, Marc; Wallace, Rajiv; Bandosz, Teresa J

    2015-06-15

    Cadmium-based materials with various hydroxide to carbonate ratios and their composites with graphite oxide were synthesized by a fast and simple precipitation procedure and then used as H2S adsorbents at ambient conditions in the dark or upon a visible light exposure. The structural properties and chemical features of the adsorbents were analyzed before and after hydrogen sulfide adsorption. The results showed that the high ratio of hydroxide to carbonate led to an improved H2S adsorption capacity. In moist conditions cadmium hydroxide was the best adsorbent. Moreover, it showed photoactive properties. While the incorporation of a graphene-based phase slightly decreased the extent of the improvement in the H2S adsorption capacity in moist conditions caused by photoactivity, its presence in the composites enhanced the performance in dry conditions. This was linked to photoactivity of CdS that can split H2S resulting in the formation of water in the system. The graphene-based phase enhanced the electron transfer and delayed the recombination of photoinduced charges. Carbonate-based materials showed a very good adsorption capacity in dark conditions in the presence of moisture. Upon the light exposure, CdS likely photocatalyzes the reduction of carbonate ions to formates/formaldehydes. Their deposition on the surface limits the number of sites available to H2S adsorption. PMID:25792480

  1. Alumina-Activated Carbon Composite as Adsorbent of Procion Red Dye from Wastewater Songket Industry

    Directory of Open Access Journals (Sweden)

    Poedji Loekitowati Hariani

    2015-03-01

    Full Text Available Alumina-activated carbon composite has been synthesized and studied for adsorption procion red dye. Composite was prepared by precipitation method aluminium hydroxide on the surface of activated carbon followed by calcinations. The Fourier transform Infra Red (FTIR, Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS and Brunaeur Emmet Teller (BET surface are being used to characterize the adsorbent. Batch adsorption experiments were carried out for the adsorption of procion red dye. Effect of the mass of composite, stirrer speed, contact times and pH of the solution on the adsorption capacity were studied. The obtained optimum conditions applied to adsorp of procion red dye from wastewater songket industry. The result showed that the adsorption optimum at mass of alumina-activated carbon composite 0.1 g, stirrer speed 150 rpm, contact times 2 hours at pH of the solution 9. The adsorption isotherm data according to Langmuir isotherm. The alumina-activated carbon composite can be removal of procion red dye from wastewater songket industry with effectiveness adsorption of 88.21 %.

  2. Large charge-storage-capacity iridium/ruthenium oxide coatings as promising material for neural stimulating electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Nehar, E-mail: nehar.ullah@mail.mcgill.ca; Omanovic, Sasha

    2015-06-01

    Electrochemical and topographical/structural/morphological properties of thermally prepared Ir/Ru-oxide coatings of various compositions formed on a Ti substrate were investigated. An apparent electrochemically active surface area (AEASA) and charge storage capacity (CSC) were determined. The freshly-prepared Ir{sub 0.6}Ru{sub 0.4}-oxide coating was found to offer the largest AEASA and CSC; however, after exposing all the coatings to prolonged extreme electrochemical cycling in phosphate buffered saline pH 7.4, within a 5 V potential window (“torturing”), the Ir{sub 0.8}Ru{sub 0.2}-oxide coating yielded both the largest AEASA (1540 cm{sup 2}) and CSC (27 mC cm{sup −2}). Under the same experimental condition, the Ir{sub 0.8}Ru{sub 0.2}-oxide coating was found to yield by a 56% higher CSC than the current state-of-the-art neural stimulating electrode, Ir-oxide, making it a good candidate for further optimization and possible application as a neural stimulating electrode. - Highlights: • Ir/Ru-oxide coatings were formed thermally on a Ti substrate. • Electrochemical properties of Ir/Ru-oxide coatings were investigated. • Ir{sub 0.8}–Ru{sub 0.2}-oxide yielded highest apparent electrochemically-active surface area. • Ir{sub 0.8}–Ru{sub 0.2}-oxide yielded highest charge storage capacity. • Charge storage capacity is by 56% higher than current state-of-the-art, Ir-oxide.

  3. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  4. Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite.

    Science.gov (United States)

    Mostafa, M G; Chen, Yen-Hua; Jean, Jiin-Shuh; Liu, Chia-Chuan; Lee, Yao-Chang

    2011-03-15

    This study discussed the adsorption kinetics of As(V) onto nanosized iron oxide-coated perlite. The effects of pH, initial concentration of As(V) and common anions on the adsorption efficiency were also investigated. It was observed that a 100% As(V) adsorption was achieved at pH value of 4-8 from the initial concentration containing 1.0 mg-As(V)L(-1) and the adsorption percentage depended on the initial concentration; the phosphate and silicate ions would not interfere with the adsorption efficiency. Furthermore, nanosized iron oxide-coated perlite (IOCP) has been shown to be an effective adsorbent for the removal of arsenate from water. The adsorption kinetics were studied using pseudo-first- and pseudo-second-order models, and the experimental data fitted well with the pseudo-second-order model. Moreover, it suggests that the Langmuir isotherm is more adequate than the Freundlich isotherm in simulating the adsorption isotherm of As(V). The adsorption rate constant is 44.84 L mg(-1) and the maximum adsorption capacity is 0.39 mg g(-1). These findings indicate that the adsorption property of IOCP gives the compound a great potential for applications in environmental remediation.

  5. The Overcoat Oil Lubrication of Microarc Oxidation Coating on Al Alloy by Liquid Plasma Technique

    Institute of Scientific and Technical Information of China (English)

    LUO Zhuang-zi; ZHANG Zhao-zhu; LIU Wei-ming; WANG Wen-jing; TIAN Jun

    2004-01-01

    Ceramic coatings were deposited on 2Al2 alloy with a 100 kW micro-arc oxidation equipment consisting of a potential adjustable ac power supply and alkali electrolyte. The structure of the micro-arc oxidiation coatings was examined using scanning electron microscopy and transmission electron microscopy. The tribological properties of the coatings sliding against steel under the drop and adsorption lubrication of liquid paraffin were evaluated with a Timken tester. The lower friction coefficient of 0.14 and longer wear life of 2450 m of overcoat were observed for the polished micro-arc oxidation coating of 180μm thick at a sliding speed 2. 50 m/s and load 1500 N. This is because the coating has an interlayer of suitable porosity and thickness, which helps to improve the deposition of lubricants and endure the higher load. In other words, the oil is able to adsorb in the porous holes of the overcoat and provided the lubrication of micro reservoir during friction, and the compact and relatively hard interlayer of oxidation coating is able to support heavy load and prevent the oil lubricating film from damage.

  6. Electrochemical combustion of indigo at ternary oxide coated titanium anodes

    Directory of Open Access Journals (Sweden)

    María I. León

    2014-12-01

    Full Text Available The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5 deposited on a Ti substrate (mesh obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.

  7. Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Nano-composite containing zinc oxide-tin oxide was obtained by a facile co-precipitation route using tin chloride tetrahydrate and zinc chloride as precursors and coated on glass by Doctor Blade deposition. The crystalline structure and morphology of composites were evaluated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed peaks relative to zinc oxide with hexagonal wurtzite structure and tin oxide with tetragonal structure. FESEM observations showed that the nano-composite consisted of aggregates of particles with an average particle size of 18 nm. The photocatalytic activity of the pure SnO2, pure ZnO, ZnSnO3-Zn2SnO4 and ZnO-SnO2 nano-structure thin films was examined using the degradation of a textile dye Reactive Blue 160 (KE2B). ZnO-SnO2 nano-composite showed enhanced photo-catalytic activity than the pure zinc oxide and tin oxide. The enhanced photo-catalytic activity of the nano-composite was ascribed to an improved charge separation of the photo-generated electron-hole pairs. PMID:25265524

  8. An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent

    International Nuclear Information System (INIS)

    We report a novel multi-functional magnesium oxide (MgO) immobilized chitosan (CS) composite was prepared by chemical precipitation method. The CS–MgO composite was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and zeta potential. The composite was applied as a novel adsorbent for removal of methyl orange model dye and the effect of adsorbent dosage, pH and contact time were studied. The adsorption kinetics followed a pseudo second order reaction. The adsorbent efficiency was unaltered even after five cycles of reuse. In addition, the composite exhibited a superior antibacterial efficacy of 93% within 24 h against Escherichia coli as measured by colony forming units. Based on the data of present investigation the composite being a biocompatible, eco-friendly and low-cost adsorbent with antibacterial activity could find potential applications in variety of fields and in particular environmental applications.

  9. An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Haldorai, Yuvaraj; Shim, Jae-Jin, E-mail: jjshim@yu.ac.kr

    2014-02-15

    We report a novel multi-functional magnesium oxide (MgO) immobilized chitosan (CS) composite was prepared by chemical precipitation method. The CS–MgO composite was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and zeta potential. The composite was applied as a novel adsorbent for removal of methyl orange model dye and the effect of adsorbent dosage, pH and contact time were studied. The adsorption kinetics followed a pseudo second order reaction. The adsorbent efficiency was unaltered even after five cycles of reuse. In addition, the composite exhibited a superior antibacterial efficacy of 93% within 24 h against Escherichia coli as measured by colony forming units. Based on the data of present investigation the composite being a biocompatible, eco-friendly and low-cost adsorbent with antibacterial activity could find potential applications in variety of fields and in particular environmental applications.

  10. Effects of MAR-M247 substrate (modified) composition on coating oxidation coating/substrate interdiffusion. M.S. Thesis. Final Report; [protective coatings for hot section components of gas turbine engines

    Science.gov (United States)

    Pilsner, B. H.

    1985-01-01

    The effects of gamma+gamma' Mar-M247 substrate composition on gamma+beta Ni-Cr-Al-Zr coating oxidation and coating/substrate interdiffusion were evaluated. These results were also compared to a prior study for a Ni-Cr-Al-Zr coated gamma Ni-Cr-Al substrate with equivalent Al and Cr atomic percentages. Cyclic oxidation behavior at 1130 C was investigated using change in weight curves. Concentration/distance profiles were measured for Al, Cr, Co, W, and Ta. The surface oxides were examined by X-ray diffraction and scanning electron microscopy. The results indicate that variations of Ta and C concentrations in the substrate do not affect oxidation resistance, while additions of grain boundary strengthening elements (Zr, Hf, B) increase oxidation resistance. In addition, the results indicate that oxidation phenomena in gamma+beta/gamma+gamma' Mar-M247 systems have similar characteristics to the l gamma+beta/gamma Ni-Cr-Al system.

  11. Water-insoluble sericin/β-cyclodextrin/PVA composite electrospun nanofibers as effective adsorbents towards methylene blue.

    Science.gov (United States)

    Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Jiang, Ziqiao; Wang, Ce

    2015-12-01

    A novel water-insoluble sericin/β-cyclodextrin/poly (vinyl alcohol) composite nanofiber adsorbent was prepared by electrospinning and followed by thermal crosslinking for removal of cationic dye methylene blue from aqueous solution. Fourier transform infrared spectroscopy and solubility experiments confirmed that sericin and β-cyclodextrin were incorporated into the nanofibers and the crosslinking reaction occurred successfully. Kinetics, isotherms and thermodynamics analysis were studied for adsorption of methylene blue. The adsorption process is better fitted with the pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacities are 187.97, 229.89, and 261.10mg/g at the temperatures 293, 313 and 333 K, respectively. Thermodynamic parameters showed that methylene blue adsorption was endothermic and spontaneous. In addition, the fiber membrane adsorbent could be easily separated from dye solution and showed high recyclable removal efficiency. All these results suggest that crosslinked sericin/β-cyclodextrin/poly(vinyl alcohol) composite nanofibers could be potential recyclable adsorbents in dye wastewater treatment. PMID:26433644

  12. Arsenic removal from aqueous solutions using Fe3O4-HBC composite: effect of calcination on adsorbents performance.

    Directory of Open Access Journals (Sweden)

    Shams Ali Baig

    Full Text Available The presence of elevated concentration of arsenic in water sources is considered to be health hazard globally. Calcination process is known to change the surface efficacy of the adsorbent. In current study, five adsorbent composites: uncalcined and calcined Fe3O4-HBC prepared at different temperatures (400°C and 1000°C and environment (air and nitrogen were investigated for the adsorptive removal of As(V and As(III from aqueous solutions determining the influence of solution's pH, contact time, temperature, arsenic concentration and phosphate anions. Characterizations from FTIR, XRD, HT-XRD, BET and SEM analyses revealed that the Fe3O4-HBC composite at higher calcination temperature under nitrogen formed a new product (fayalite, Fe2SiO4 via phase transformation. In aqueous medium, ligand exchange between arsenic and the effective sorbent site ( = FeOOH was established from the release of hydroxyl group. Langmuir model suggested data of the five adsorbent composites follow the order: Fe3O4-HBC-1000°C(N2>Fe3O4-HBC (uncalcined>Fe3O4-HBC-400°C(N2>Fe3O4-HBC-400°C(air>Fe3O4-HBC-1000°C(air and the maximum As(V and As(III adsorption capacities were found to be about 3.35 mg g(-1 and 3.07 mg g(-1, respectively. The adsorption of As(V and As(III remained stable in a wider pH range (4-10 using Fe3O4-HBC-1000°C(N2. Additionally, adsorption data fitted well in pseudo-second-order (R2>0.99 rather than pseudo-first-order kinetics model. The adsorption of As(V and As(III onto adsorbent composites increase with increase in temperatures indicating that it is an endothermic process. Phosphate concentration (0.0l mM or higher strongly inhibited As(V and As(III removal through the mechanism of competitive adsorption. This study suggests that the selective calcination process could be useful to improve the adsorbent efficiency for enhanced arsenic removal from contaminated water.

  13. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  14. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  15. Antibacterial activity of zinc oxide-coated nanoporous alumina

    International Nuclear Information System (INIS)

    Highlights: ► Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. ► Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. ► Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  16. A DRIFTS STUDY OF THE MORPHOLOGY AND SURFACE ADSORBATE COMPOSITION OF AN OPERATING METHANOL SYNTHESIS CATALYST

    NARCIS (Netherlands)

    BAILEY, S; FROMENT, GF; SNOECK, JW; WAUGH, KC

    1995-01-01

    The nature of the species adsorbed on a Cu/ZnO/Al2O3 catalyst while it was producing methanol has been elucidated in this study using DRIFTS. The species are carbonates, formate, CO, oxygen atoms (similar to 2% of a monolayer) and methoxy on the Cu and methoxy on the ZnO. The frequencies observed fo

  17. Influence of potential on structure and properties of microarc oxidation coating on Mg alloy

    Institute of Scientific and Technical Information of China (English)

    DENG Shu-hao; YI Dan-qing; GONG Zhu-qing; SU Yu-chang

    2005-01-01

    In order to obtain optimizing microarc oxidation coating on Mg alloy from a friendly-enviormental electrolyte free of Cr6+ and PO43-, constant potential regime was applied to produce it. The influence of potential on the morphology, composition, structure and other properties, such as microhardness and corrosion resistance were investigated by scanning electron microscopy (SEM), energy dispersive spectroscope (EDS), X-ray diffraction (XRD), hardness tester and electrochemical method. The results clearly show that oxidation potential plays an important role in the formation of coating's structure and properties. The microarc oxidation coating is smooth and white, which consists of two layers. The external layer is loose and porous and enriched in Al and Si. Moreover, its content of Al and Si increases with the increasing operated potential. While the inner layer is compact and the content of Al and Si are lower than that of the external layer. The coating is composed of several phases and the major phases are MgA12O4 and MgO, and the minor phases are Al2O3 and SiO2 when the potential is higher. The microhardness of coating is obtained the maximum at the potential of 45 V, so does the corrosion resistance.

  18. Novel Fe/glass composite adsorbent and its property for arsenic(V) removal

    Institute of Scientific and Technical Information of China (English)

    Wang Ying; Zhu Kongjun; Wang Fen; Yanagisawa Kazumichi

    2009-01-01

    An effective adsorbent for arsenic removal was synthesized by hydrothermal treatment of waste glass powder (HGP), followed by loading iron(III) oxyhydorxide on the surface of waste glass powder (GP). The ?Si-O-H group was formed on the surface of GP and the specific surface area of GP powder was slightly increased after hydrothermal treatment. FeOOH was loaded on the surface of HGP by the hydrolysis of FeCl3. The formation conditions of FeOOH were also investigated. The ability of this new adsorbent for arsenic removal was tested. The results indicate that the highest arsenic removal efficiency is about 97% for 1 mg/L As(V) solution at pH 6 and keeping time 2h.

  19. Chitosan/Graphene Oxide Composite as an Effective Adsorbent for Reactive Red Dye Removal.

    Science.gov (United States)

    Guo, Xiaoqing; Qu, Lijun; Tian, Mingwei; Zhu, Shifeng; Zhang, Xiansheng; Tang, Xiaoning; Sun, Kaikai

    2016-07-01

    Chitosan, modified with different dosages of graphene oxide (GO) and reduced graphene oxide (rGO), was first prepared, and its adsorption capacity for reactive red (RR) dye in aqueous solutions was investigated, in this paper. The structure and morphology of the adsorbents were characterized by FT-IR, XRD, SEM, EDX, BET, and TGA. The effect of varying parameters (pH, temperature, adsorbent loading, and contact time) was also investigated. The maximum adsorption capacity based on the Langmuir model was found to be 32.16 mg/g. In addition, experimental kinetic data were analyzed by the psuedo-first order and psuedo-second order equation models. The psuedo-second order model proved to be the best model for the adsorption system, which suggested that adsorption might be controlled by the chemical rate-limiting step through sharing of electrons or by covalent forces. PMID:27329054

  20. As(V) adsorption onto nanoporous titania adsorbents (NTAs): effects of solution composition.

    Science.gov (United States)

    Han, Dong Suk; Batchelor, Bill; Park, Sung Hyuk; Abdel-Wahab, Ahmed

    2012-08-30

    This study has focused on developing two nanoporous titania adsorbents (NTA) to enhance removal efficiency of adsorption process for As(V) by characterizing the effects of pH and phosphate concentration on their sorption capacities and behaviors. One type of adsorbent is a mesoporous titania (MT) solid phase and the other is group of a highly ordered mesoporous silica solids (SBA-15) that can incorporate different levels of reactive titania sorption sites. Microscopic analysis showed that Ti((25))-SBA-15 (Ti/SBA=0.25 g/g) had titania nanostructured mesopores that do not rupture the highly ordered hexagonal silica framework. However, MT has disordered, wormhole-like mesopores that are caused by interparticle porosity. Adsorption experiments showed that Ti((25))-SBA-15 had a greater sorption capacity for As(V) than did Ti((15))-SBA-15 or Ti((35))-SBA-15 and the amount of As(V) adsorbed generally decreased as pH increased. Higher removal of As(V) was observed with Ti((25))-SBA-15 than with MT at pH 4, but MT had higher removals at higher pH (7, 9.5), even though MT has a lower specific surface area. However, in the presence of phosphate, MT showed higher removal of As(V) at low pH rather than did Ti((25))-SBA-15. As expected, the NTAs showed very fast sorption kinetics, but they followed a bi-phasic sorption pattern. PMID:22727482

  1. Preparation of composites immobilizing highly selective adsorbents and their application to the separation of nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, Hitoshi [Tohoku Univ., Sendai (Japan); Onodera, Yoshio

    2001-03-01

    Radionuclides in high-level liquid waste are classified into four groups such as transuranic elements (TRU) group, technetium - platinum group, strontium - cesium group, and others group. Cesium showed high adsorption selectivity to AMP [(NH{sub 4}){sub 3}PO{sub 4}12MoO{sub 3}3H{sub 2}O], AWP [(NH{sub 4}){sub 3}PO{sub 4}12WO{sub 3}3H{sub 2}O], and KNiFC(K{sub 2-x}Ni{sub x/2}[NiFe(CN){sub 6}]nH{sub 2}O). These inorganic ion exchangers with selectivity of cesium are possible to be supported by porous materials and to be immobilized by polymer. Some examples (AMP/Al{sub 2}O{sub 3}, AMP/alginate, and KNiFC/zeolite) are shown in this paper. KCuFC/alginate can adsorb Pd into KCuFC, Ru into alginate, but can not adsorb Rh. Accordingly, platinum metals (Pd, Ru and Rh) are separated by it. Pd, Ru and Rh in their mixed solution are mutually separated by using Cyanex 302/alginate and chromatography. Eu and Am adsorbed by Cyanex 301-alginate acid gel microcapsule were separated by gradient elution. Then, 98.8% of Eu and 91.3% of Am were eluted at pH 2 and pH 1, respectively. (S.Y.)

  2. Pore structure of new composite adsorbent SiO2·xH2O·yCaCl2 with high uptake of water from air

    Institute of Scientific and Technical Information of China (English)

    LIU; Yefeng; (刘业凤); WANG; Ruzhu; (王如竹)

    2003-01-01

    A new composite adsorbent SiO2@xH2O@yCaCl2 which is composed of macro-porous silica gel and calcium chloride is introduced. In order to analyze its adsorption theory, adsorption and desorption isotherms, BET surface areas, pore volumes and average pore diameters of macro-porous silica gel and four composite adsorbent samples with different CaCl2 content are measured using SEM and Asap2010 apparatus. From the adsorption isotherms, desorption isotherms and lag loops, it can be deduced that the main pore structure in macro-porous silica gel and the new composite adsorbent have two shapes: taper with one top open and taper or hyperbolic taper with both ends open. Based on the analysis of pore diameter distribution and lag loop, a sketch map showing calcium chloride filled in pore of macro-porous silica gel is presented. The adsorption isotherms at 25℃ are measured. Experimental results show that the new composite adsorbent can adsorb more water than common adsorbents (macro-porous silica gel, micro-porous silica gel and synthetic zeolite 13X). In the light of the results of pore structure, adsorption isotherms and lyolysis phenomenon are analyzed.

  3. Mesoporous silica/polyacrylamide composite: Preparation by UV-graft photopolymerization, characterization and use as Hg(II) adsorbent

    Science.gov (United States)

    Saad, Ali; Bakas, Idriss; Piquemal, Jean-Yves; Nowak, Sophie; Abderrabba, Manef; Chehimi, Mohamed M.

    2016-03-01

    MCM-41 ordered mesoporous silica was prepared, aminosilanized and grafted with polyacrylamide (PAAM) through in situ radical photopolymerization process. The resulting composite, denoted PAAM-NH2-MCM-41, the calcined and silanized reference MCM-41s were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N2 physisorption at 77 K. These complementary techniques brought strong supporting evidence for the silanization process followed by PAAM grafting. The surface composition was found to be PAAM-rich as judged by XPS. The composite was then employed for the uptake of Hg(II) from aqueous solutions. Adsorption was monitored versus pH, time, and temperature. The maximum adsorption capacity at 25 °C and pH 5.2 was 177 mg g-1. Kinetically, the equilibrium was reached within 60 min for a 100 mg L-1 mercury solution. The adsorption of Hg(II) on PAAM-NH2-MCM-41 composites followed second order kinetics. Thermodynamic parameters suggested that the favorable adsorption process is exothermic in nature and the adsorption is ascribed to a decrease in the degree of freedom of adsorbed ions which results in the entropy change. This work conclusively shows that mesoporous silica-polymer hybrid metal ion adsorbents (with robust silica-polymer interface) can be prepared in a simple way by in situ radical photopolymerization in the presence of aminosilanized silica acting as a support and a macro-hydrogen donor simultaneously.

  4. Hydrophilicity of titanium oxide coatings with the addition of silica

    International Nuclear Information System (INIS)

    This work investigated hydrophilicity between titanium oxide coatings with and without addition of silica. A sol of titania and silica was prepared for sol-gel coating. The sol of titanium oxide is aqueous, and the mixed sol is transparent with a pH value of 8.0. Coating was prepared by spraying mixed sol over a heated substrate. The titanium oxide sol was prepared by using an inorganic titanium salt. A silica sol was then added to titanium oxide sol obtain the mixed sol. Thickness of the coatings were between 20 and 80 nm. The sols were characterized by IR spectroscopy. AFM was used to investigate the coating surface structure and roughness. The crystalline size of coating surface for the mixed oxides was little greater than for the pure titanium oxide. The crystalline phase was investigated using X-ray diffraction. The hydrophilicity of coatings was studied with UV and sunlight exposure and by measurement of contact angle change of droplets of water. Through the investigation of change of contact angle and water droplets on the surface after UV exposure and sunlight radiation, it can be concluded that hydrophilicity of mixed coatings with low temperature heat-treatment of titanium oxide and silica are much better than a pure titanium oxide coating. This effect makes for an improved self-cleaning coating

  5. Hybrid Adsorptive and Oxidative Removal of Natural Organic Matter Using Iron Oxide-Coated Pumice Particles

    Directory of Open Access Journals (Sweden)

    Sehnaz Sule Kaplan Bekaroglu

    2016-01-01

    Full Text Available The aim of this work was to combine adsorptive and catalytic properties of iron oxide surfaces in a hybrid process using hydrogen peroxide and iron oxide-coated pumice particles to remove natural organic matter (NOM in water. Experiments were conducted in batch, completely mixed reactors using various original and coated pumice particles. The results showed that both adsorption and catalytic oxidation mechanisms played role in the removal of NOM. The hybrid process was found to be effective in removing NOM from water having a wide range of specific UV absorbance values. Iron oxide surfaces preferentially adsorbed UV280-absorbing NOM fractions. Furthermore, the strong oxidants produced from reactions among iron oxide surfaces and hydrogen peroxide also preferentially oxidized UV280-absorbing NOM fractions. Preloading of iron oxide surfaces with NOM slightly reduced the further NOM removal performance of the hybrid process. Overall, the results suggested that the tested hybrid process may be effective for removal of NOM and control disinfection by-product formation.

  6. Method of forming oxide coatings. [for solar collector heating panels

    Science.gov (United States)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  7. Oxide coatings on flexible substrates for electrochromic applications

    International Nuclear Information System (INIS)

    One of the most studied classes of materials in the modern microelectronic devices are the metal oxides. There are different metal oxide films, such as electrodes, charge injecting and electrochromic coatings for displays or ''smart'' windows applications. This paper aims to describe the recent achievements for oxide coating deposition for flexible electrochromic displays. Although many deposition methods for production of such films have been developed, some of the achievements in the field of RF sputtering of transparent electrodes from indium-tin oxide on low-cost polyethyleneterephthalate substrate are presented. Attention is paid on some critical issues, such as films electro-optical parameters (sheet resistance, transparency in the visible range), adhesion, degradation due to stress and patterning ability

  8. Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent.

    Science.gov (United States)

    Li, Kun; Li, Pei; Cai, Jun; Xiao, Shoujun; Yang, Hu; Li, Aimin

    2016-07-01

    A quaternary ammonium salt modified chitosan magnetic composite adsorbent (CS-CTA-MCM) was prepared by combination of Fe3O4 nanoparticles. Various techniques were used to characterize the molecular structure, surface morphology, and magnetic feature of this composite adsorbent. CS-CTA-MCM was employed for the removal of Cr(VI) and methyl orange (MO), an anionic dye, from water in respective single and binary systems. Compared with chitosan magnetic adsorbent (CS-MCM) without modification, CS-CTA-MCM shows evidently improved adsorption capacities for both pollutants ascribed to the additional quaternary ammonium salt groups. Based on the adsorption equilibrium study, MO bears more affinity to CS-CTA-MCM than Cr(VI) causing a considerable extent of preferential adsorption of dye over metal ions in their aqueous mixture. However, at weak acidic solutions, Cr(VI) adsorption is evidently improved due to more efficient Cr(VI) forms, i.e. dichromate and monovalent chromate, binding to this chitosan-based adsorbent. Thus chromium could be efficient removal together with MO at suitable pH conditions. The adsorption isotherms and kinetics indicate that adsorptions of Cr(VI) and MO by CS-CTA-MCM both follow a homogeneous monolayer chemisorption process. This magnetic adsorbent after saturated adsorption could be rapidly separated from water and easily regenerated using dilute NaOH aqueous solutions then virtually reused with little adsorption capacity loss. PMID:27060639

  9. Novel low density granular adsorbents - properties of a composite matrix from zeolitisation of vermiculite.

    Science.gov (United States)

    Johnson, Christopher D; Worrall, Fred

    2007-06-01

    This paper reports the preparation and properties of a new low density granular absorbent material based on a zeolite/vermiculite composite. The composite prepared addresses a number of important issues relating to the use of zeolites in environmental and waste management applications. The material prepared has large particle size due to binderless adhesion of zeolite crystals within the protective lamellar matrix provided by the vermiculite granule. Additionally, the porous nature of new material ensures that it outperforms natural zeolite grains in ion-exchange tests. The material was shown to have a low bulk density (0.75 g cm(-3)) adding the benefit that the majority of grains float on water for over 15 h. The conclusion of the study is that the use of composite matrices enable the preparation of materials which show the physical properties of the host, (e.g., granular and low density), whilst maintaining the powder-like properties (e.g., high ion-exchange and small crystal size) of the active component. The resulting material can be easily handled and separated from aqueous waste streams using either flotation or exploiting its granular nature. PMID:17368511

  10. Composite membranes modified with recognition-able nanobeads as potential adsorbers for purification of biological fluids.

    Science.gov (United States)

    Silvestri, D; Cristallini, C; Borrelli, C; Barbani, N; Giusti, P; Ciardelli, G

    2007-01-01

    Therapeutic approaches in the clinical field require advanced properties for delivery or recognition of clinical species. The molecular imprinting method allows selective cavities to be inserted into a polymeric material built "around" a stamp molecule (template) through polymerization or phase inversion. This study focuses on the application of both methods in the realization of polymeric membranes with selective recognition and adsorption properties. Imprinted polymethacrylic acid (PMAA) particles, exhibiting specific binding sites for cholesterol molecule (template), were realized via precipitation polymerization in the shape of nanobeads and loaded in the bulk or on the surface of methylmethacrylate-acrylic acid P(MMA-co-AA) membranes obtained by the non-solvent induced phase separation (NIPS) technique. In this way, specific cavities were introduced into the membrane network to enhance and specialize uptake performances of the porous membranes taking advantage of the particle characteristics. Rebinding performances towards cholesterol in a physiological environment were tested showing very interesting results: the adsorption of cholesterol molecules from physiological solution was increased by using composite membrane-nanobead systems instead of control membranes (a quantitative increase of 14 mg of cholesterol per g of polymer matrix in respect of blank membrane was detected). The results obtained showed an improved performance of composite membranes, but also an unmodified behavior of loaded nanobeads (with respect to free ones) concerning the recognition capability in aqueous medium, which is the most difficult obstacle to overcome in molecular imprinting. The absolute rebinding capacity and the imprinting efficiency of membranes were in the range (and in some case higher) of other efficient systems, but the real improvement was that molecularly imprinted embranes showed an excellent recognition capacity in physiological medium instead of organic solvents

  11. Adsorption of Th4+, U6+, Cd2+, and Ni2+ from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning

    Science.gov (United States)

    Dastbaz, Abolfazl.; Keshtkar, Ali Reza.

    2014-02-01

    In this study, SiO2 nanoparticles were modified by 3-aminopropyltriethoxysilane (APTES) and then applied to prepare a novel polyacrylonitrile (PAN) composite nanofiber adsorbent by the electrospinning method. In addition, the adsorbent was characterized by SEM, BET, and FTIR analyses. Then the effects of pH, SiO2 and APTES content, adsorbent dosage, contact time and temperature were investigated. Moreover, adsorption experiments were carried out with initial concentrations in the range of 30-500 mg L-1 and the adsorbent affinity for metal ions was in order of Th4+ > U6+ > Cd2+ > Ni2+. Furthermore, it was observed that the optimum pH for adsorption was different for each metal. Some isotherm and kinetic models were applied to analyze the experimental data, among which the Langmuir and pseudo-second order models were better than the others. The regeneration study showed that the adsorbent could be used for industrial processes repeatedly without any significant reduction in its adsorption capacity. Based on the Langmuir model, the maximum adsorption capacity of Th4+, U6+, Cd2+, and Ni2+ at 45 °C was 249.4, 193.1, 69.5 and 138.7 mg g-1, respectively. Besides, the calculated thermodynamic parameters showed an endothermic as well as chemical nature through the adsorption process.

  12. Laccase immobilized on a PAN/adsorbents composite nanofibrous membrane for catechol treatment by a biocatalysis/adsorption process.

    Science.gov (United States)

    Wang, Qingqing; Cui, Jing; Li, Guohui; Zhang, Jinning; Li, Dawei; Huang, Fenglin; Wei, Qufu

    2014-03-19

    The treatment of catechol via biocatalysis and adsorption with a commercial laccase immobilized on polyacrylonitrile/montmorillonite/graphene oxide (PAN/MMT/GO) composite nanofibers was evaluated with a homemade nanofibrous membrane reactor. The properties in this process of the immobilized laccase on PAN, PAN/MMT as well as PAN/MMT/GO with different weight ratios of MMT and GO were investigated. These membranes were successfully applied for removal of catechol from an aqueous solution. Scanning electron microscope images revealed different morphologies of the enzyme aggregates on different supports. After incorporation of MMT or MMT/GO, the optimum pH showed an alkaline shift to 4, compared to 3.5 for laccase immobilized on pure PAN nanofibers. The optimum temperature was at 55 °C for all the immobilized enzymes. Besides, the addition of GO improved the operational stability and storage stability. A 39% ± 2.23% chemical oxygen demand (COD) removal from the catechol aqueous solution was achieved. Experimental results suggested that laccase, PAN, adsorbent nanoparticles (MMT/GO) can be combined together for catechol treatment in industrial applications.

  13. Laccase Immobilized on a PAN/Adsorbents Composite Nanofibrous Membrane for Catechol Treatment by a Biocatalysis/Adsorption Process

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-03-01

    Full Text Available The treatment of catechol via biocatalysis and adsorption with a commercial laccase immobilized on polyacrylonitrile/montmorillonite/graphene oxide (PAN/MMT/GO composite nanofibers was evaluated with a homemade nanofibrous membrane reactor. The properties in this process of the immobilized laccase on PAN, PAN/MMT as well as PAN/MMT/GO with different weight ratios of MMT and GO were investigated. These membranes were successfully applied for removal of catechol from an aqueous solution. Scanning electron microscope images revealed different morphologies of the enzyme aggregates on different supports. After incorporation of MMT or MMT/GO, the optimum pH showed an alkaline shift to 4, compared to 3.5 for laccase immobilized on pure PAN nanofibers. The optimum temperature was at 55 °C for all the immobilized enzymes. Besides, the addition of GO improved the operational stability and storage stability. A 39% ± 2.23% chemical oxygen demand (COD removal from the catechol aqueous solution was achieved. Experimental results suggested that laccase, PAN, adsorbent nanoparticles (MMT/GO can be combined together for catechol treatment in industrial applications.

  14. XPS characterisation of plasma treated and zinc oxide coated PET

    International Nuclear Information System (INIS)

    At first, X-ray photoelectron spectroscopy (XPS) analyses of reference and carbon dioxide plasma treated polyethylene terephthalate (PET) were carried out. Significant chemical modifications were outlined in the treated PET surface in comparison with the reference one. The formation of new oxygenated groups was evidenced. These modifications heighten the level of interactions between the polymer substrate and the deposited coating. In a second stage, zinc oxide thin films were elaborated by r.f. magnetron sputtering from a ceramic target and with a reactive gas (mixture of argon-1% oxygen) under optimised conditions on CO2 plasma treated PET. The interfacial chemistry between the plasma treated PET and the zinc oxide was also studied by XPS. The line shape changes in the high-resolution core level spectra of carbon C1s, oxygen O1s, and zinc (Zn2p3/2, Zn3p), with the progressive deposition of zinc oxide coatings being recorded. The obtained spectra were fitted to mixed Gaussian-Lorentzian components using XPS CASA software. An interaction scheme between the zinc oxide thin layer and its polymer substrate, in the first stage of deposition, was proposed and checked by corroborating the findings of the different XPS spectra and their decompositions. It suggests the formation of Zn-O-C complexes at the interface, which are promoted by an electron transfer from zinc to oxygen in oxygenated species, mainly alcohol groups, generated by the CO2 plasma treatment of PET.

  15. Adsorption kinetics for the removal of soluble manganese by oxide- coated filter media

    OpenAIRE

    Hungate, Robert W.

    1988-01-01

    This study was conducted to examine the kinetics of manganese sorption on oxide-coated filter media. Initial experimentation confirmed the findings of other investigators, the Mn2+ sorption capacity of oxide-coated media increases as solution pH increases. Further study revealed that uptake rate kinetics could be described by first order kinetics and also increased with increasing solution pH. The addition of free chlorine (HOCl) to solution greatly enhanced Mn2+ uptak...

  16. Preparation and Characterization of a Carbon/Fly Ash Composite Adsorbent%C/粉煤灰复合吸附材料的制备及表征

    Institute of Scientific and Technical Information of China (English)

    张德懿; 马颖; 王毅; 冯辉霞; 雒和明; 满新伟; 郝远

    2011-01-01

    以粉煤灰和蔗糖为原料,浓硫酸为炭化剂,制备了一种新型的C/粉煤灰复合吸附材料.采用X光电子能谱、红外吸收光谱、场发射扫描电子显微镜、X射线衍射及N2气吸附实验对所制备复合材料进行了表征.结果表明,粉煤灰表面被类石墨态炭纳米颗粒所包裹,复合材料表面密集分布着大量的介孔,Brunauer-Emmett-Teller(BET)比表面积SBET =5.4 m2/g,并且在该复合材料表面含有丰富的-SO3H、-COOH和-OH等含氧官能团.考察了所制备的复合材料对典型阳离子型染料亚甲基蓝及重金属离子的吸附能力,结果表明,该复合材料具有优异的吸附性能,其对亚甲基蓝的吸附能力达到活性炭的83.7%,对典型重金属离子的吸附能力优于市售活性炭.所制备复合材料可作为活性炭的一种替代品,用于水中有机染料和重金属离子的吸附处理.%Fly ash, a kind of industrial solid waste material produced during the combustion of coal in the electricity generation, was utilized to prepare a novel carbon/fly ash composite adsorbent with core-shell structures by a partial carbonization and sulfonation process. The prepared composite adsorbent was characterized with XPS, FT-IR, SEM, XRD and gas adsorption experiments. The results showed that fly ash was coated by graphite-like carbon nanoparticles. The carbon, oxygen, silica and sulfur are the main elements on the surface of the prepared composite adsorbent. Among them, the carbon and oxygen elements are the dominant superficial elements. An abundant of mesopores existed on the surface of the composite adsorbent. The Brunauer Emmett Teller ( BET) surface area SBET is 5.4 mVg. Meanwhile, an abundant of oxygen functional groups, such as carboxyl, hydroxyl and sulfonic groups, which were very effective in capturing cationic organic dyes and heavy metal ions and acted as the main adsorption sites of the composite adsorbent, were successfully introduced on the composite

  17. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples.

    Science.gov (United States)

    Anirudhan, T S; Deepa, J R; Christa, J

    2016-04-01

    A novel adsorbent, poly(itaconic acid/methacrylic acid)-grafted-nanocellulose/nanobentonite composite [P(IA/MAA)-g-NC/NB] with multi carboxyl functional groups for the effective removal of Cobalt(II) [Co(II)] from aqueous solutions. The adsorbent was characterized using FTIR, XRD, SEM-EDS, AFM and potentiometric titrations before and after adsorption of Co(II) ions. FTIR spectra revealed that Co(II) adsorption on to the polymer may be due to the involvement of COOH groups. The surface morphological changes were observed by the SEM images. The pH was optimized as 6.0. An adsorbent dose of 2.0g/L found to be sufficient for the complete removal of Co(II) from 100mg/L at room temperature. Pseudo-first-order and pseudo-second-order models were tested to describe kinetic data and adsorption of Co(II) follows pseudo-second-order model. The equilibrium attained at 120min. Isotherm studies were conducted and data were analyzed using Langmuir, Freundlich and Sips isotherm models and best fit was Sips model. Thermodynamic study confirmed endothermic and physical nature of adsorption of the Co(II) onto the adsorbent. Desorption experiments were done with 0.1MHCl proved that without significant loss in performance adsorbent could be reused for six cycles. The practical efficacy and effectiveness of the adsorbent were tested using nuclear industrial wastewater. A double stage batch adsorption system was designed from the adsorption isotherm data of Co(II) by constructing operating lines. PMID:26844393

  18. Adsorption of HSA, IgG and laminin-1 on model titania surfaces--effects of glow discharge treatment on competitively adsorbed film composition.

    Science.gov (United States)

    Santos, Olga; Svendsen, Ida E; Lindh, Liselott; Arnebrant, Thomas

    2011-10-01

    This study investigated the effect of glow discharge treatment of titania surfaces on plasma protein adsorption, by means of ellipsometry and mechanically assisted SDS elution. The adsorption and film elution of three plasma proteins, viz. human serum albumin (HSA), human immunoglobulin G (IgG) and laminin-1, as well as competitive adsorption from a mixture of the three proteins, showed that the adsorbed amount of the individual proteins after 1 h increased in the order HSA adsorbed films. No difference in the total adsorbed amounts of individual proteins, or from the mixture, was observed between untreated and glow discharge treated titania surfaces. However, the composition of the adsorbed films from the mixture differed between the untreated and glow discharge treated substrata. On glow discharge-treated titania the fraction of HSA increased, the fraction of laminin-1 decreased and the fraction of IgG was unchanged compared to the adsorption on the untreated titania, which was attributed to protein-protein interactions and competitive/associative adsorption behaviour.

  19. Lead isotopes in iron and manganese oxide coatings and their use as an exploration guide for concealed mineralization

    Science.gov (United States)

    Gulson, B.L.; Church, S.E.; Mizon, K.J.; Meier, A.L.

    1992-01-01

    Lead isotopes from Fe and Mn oxides that coat stream pebbles from around the Mount Emmons porphyry molybdenum deposit in Colorado were studied to assess the feasibility of using Pb isotopes to detect concealed mineral deposits. The Fe/Mn oxide coatings were analyzed to determine their elemental concentrations using ICP-AES. The Pb isotope compositions of solutions from a selected suite of samples were measured, using both thermal ionization and ICP mass spectrometry, to compare results determined by the two analytical methods. Heavy mineral concentrates from the same sites were also analyzed to compare the Pb isotope compositions of the Fe/Mn coatings with those found in panned concentrates. The Fe/Mn and 206Pb/204Pb ratios of the oxide coatings are related to the lithology of the host rocks; Fe/Mn oxide coatings on pebbles of black shale have higher Fe/Mn values than do the coatings on either sandstone or igneous rocks. The shale host rocks have a more radiogenic signature (e.g. higher 206Pb/ 204Pb) than the sandstone or igneous host rocks. The Pb isotope data from sandstone and igneous hosts can detect concealed mineralized rock on both a regional and local scale, even though there are contributions from: (1) metals from the main-stage molybdenite ore deposit; (2) metals from the phyllic alteration zone which has a more radiogenic Pb isotope signature reflecting hydrothermal leaching of Pb from the Mancos Shale; (3) Pb-rich base metal veins with a highly variable Pb isotope signature; and (4) sedimentary country rocks which have a more radiogenic Pb isotope signature. An investigation of within-stream variation shows that the Pb isotope signature of the molybdenite ore zone is retained in the Fe/Mn oxide coatings and is not camouflaged by contributions from Pb-rich base-metal veins that crop out upstream. In another traverse, the Pb isotope data from Fe/Mn oxide coatings reflect a complex mixing of Pb from the molybdenite ore zone and its hornfels margin, Pb

  20. RhB Adsorption Performance of Magnetic Adsorbent Fe3O4/RGO Composite and Its Regeneration through A Fenton-like Reaction

    Institute of Scientific and Technical Information of China (English)

    Yalin Qin; Mingce Long∗; Beihui Tan; Baoxue Zhou

    2014-01-01

    Adsorption is one of the most effective technologies in the treatment of colored matter containing wastewater. Graphene related composites display potential to be an effective adsorbent. However, the adsorp-tion mechanism and their regeneration approach are still demanding more efforts. An effective magnetically separable absorbent, Fe3O4 and reduced graphene oxide (RGO) composite has been prepared by an in situ coprecipitation and reduction method. According to the characterizations of TEM, XRD, XPS, Raman spectra and BET analyses, Fe3O4 nanoparticles in sizes of 10-20 nm are well dispersed over the RGO nanosheets, re-sulting in a highest specific area of 296.2 m2/g. The rhodamine B adsorption mechanism on the composites was investigated by the adsorption kinetics and isotherms. The isotherms are fitting better by Langmuir model, and the adsorption kinetic rates depend much on the chemical components of RGO. Compared to active carbon, the composite shows 3.7 times higher adsorption capacity and thirty times faster adsorption rates. Furthermore, with Fe3O4 nanoparticles as the in situ catalysts, the adsorption performance of composites can be restored by carrying out a Fenton-like reaction, which could be a promising regeneration way for the adsorbents in the organic pollutant removal of wastewater.

  1. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    Science.gov (United States)

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  2. Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation.

    Science.gov (United States)

    Bajat, Jelena; Mišković-Stanković, Vesna; Vasilić, Rastko; Stojadinović, Stevan

    2014-01-01

    The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte. PMID:25125114

  3. Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents.

    Science.gov (United States)

    Vecino, X; Devesa-Rey, R; Moldes, A B; Cruz, J M

    2014-09-01

    The cellulosic fraction of vineyard pruning waste (free of hemicellulosic sugars) was entrapped in calcium alginate beads and evaluated as an eco-friendly adsorbent for the removal of different nutrients and micronutrients (Mg, P, Zn, K, N-NH4, SO4, TN, TC and PO4) from an agroindustrial effluent (winery wastewater). Batch adsorption studies were performed by varying the amounts of cellulosic adsorbent (0.5-2%), sodium alginate (1-5%) and calcium chloride (0.05-0.9M) included in the biocomposite. The optimal formulation of the adsorbent composite varied depending on the target contaminant. Thus, for the adsorption of cationic contaminants (Mg, Zn, K, N-NH4 and TN), the best mixture comprised 5% sodium alginate, 0.05M calcium chloride and 0.5% cellulosic vineyard pruning waste, whereas for removal of anionic compounds (P, SO4 and PO4), the optimal mixture comprised 1% sodium alginate, 0.9M calcium chloride and 0.5% cellulosic vineyard pruning waste. To remove TC from the winery wastewater, the optimal mixture comprised 3% of sodium alginate, 0.475M calcium chloride and 0.5% cellulosic vineyard pruning waste.

  4. Studies on anodic oxide coating with low absorptance and high emittance on aluminum alloy 2024

    Energy Technology Data Exchange (ETDEWEB)

    Siva Kumar, C. [Department of Post-graduate studies in Chemistry, Central College, Bangalore (India); Sharma, A.K. [Thermal Process Section, ISRO Satellite Centre, Vimanapura Post, Bangalore (India); Mahendra, K.N.; Mayanna, S.M. [Department of Post-graduate studies in Chemistry, Central College, Bangalore (India)

    2000-01-01

    Anodization of AA 2024 in sulfuric acid bath containing glycerol, lactic acid and ammonium metavenadate has been studied to develop white anodic oxide coating. Investigation on the influence of various operating parameters - coating thickness, current density and ammonium metavenadate concentration on the optical properties was carried out to optimize the process. Infrared, atomic absorption spectroscopic techniques and scanning electron micrograph were used to characterize the coating. The obtained oxide coating provides a ratio of solar absorptance ({alpha}) to infrared emittance ({epsilon}), as low as 0.2. The optical properties and hardness values measured under optimum experimental conditions support its use as a thermal control coating.

  5. Synthesis and electrochemical characterization of porous niobium oxide coated 316L SS for orthopedic applications

    International Nuclear Information System (INIS)

    Niobium oxide was prepared using sol-gel process and coated on 316L stainless steel (SS) substrate via dip-coating technique. The surface characterization results after a thermal treatment revealed that the coated surface was porous, uniform and well crystalline on the substrate. The corrosion resistance and bioactivity of the porous niobium oxide coated 316L SS in simulated body fluid (SBF) solution was evaluated. The in vitro test revealed a layer of carbonate-containing apatite formation over the coated porous surface. The results indicated that the porous niobium oxide coated 316L SS exhibited a high corrosion resistance and an enhanced biocompatibility in SBF solution.

  6. CoxFe1-x oxide coatings on metallic interconnects for solid oxide fuel cells

    Science.gov (United States)

    Shen, Fengyu; Lu, Kathy

    2016-10-01

    In order to improve the performance of Cr-containing steel as an interconnect material for solid oxide fuel cells, CoFe alloy coatings with Co:Fe ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 are deposited by electrodeposition and then oxidized to CoxFe1-x oxide coatings with a thickness of ∼6 μm as protective layers on the interconnect. The area specific resistance of the coated interconnect increases with the Fe content. Higher Co content oxide coatings are more effective in limiting the growth of the chromia scale while all coatings are effective in inhibiting Cr diffusion and evaporation. With the Co0.8Fe0.2 oxide coated interconnect, the electrochemical performance of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode is improved. Only 1.54 atomic percentage of Cr is detected on the surface of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode while no Cr is detected 0.66 μm or more into the cathode. CoxFe1-x oxide coatings are promising candidates for solid oxide fuel cell interconnects with the advantage of using existing cathode species for compatibility and performance enhancement.

  7. Manganese-oxide-coated redox bars as an indicator of reducing conditions in soils.

    Science.gov (United States)

    Dorau, Kristof; Mansfeldt, Tim

    2015-03-01

    Identification of reducing conditions in soils is of concern not only for pedogenesis but also for nutrient and pollutant dynamics. We manufactured manganese (Mn)-oxide-coated polyvinyl chloride bars and proved their suitability for the identification of reducing soil conditions. Birnessite was synthesized and coated onto white polyvinyl chloride bars. The dark brown coatings were homogenous and durable. As revealed by microcosm devices with adjusted redox potentials (E), under oxidizing conditions (E ∼450 mV at pH 7) there was no Mn-oxide removal. Reductive dissolution of Mn-oxides, which is expressed by the removal of the coatings, started under weakly reducing conditions (E ∼175 mV) and was more intensive under moderately reducing conditions (∼80 mV). According to thermodynamics, the removal of Mn-oxide coatings (225 mm d) exceeded the removal of iron (Fe)-oxide coatings (118 mm d) in soil column experiments. This was confirmed in a soil with a shallow and strongly fluctuating water table where both types of redox bars were inserted. Consequently, it was possible to identify reducing conditions in soils using Mn-oxide-coated bars. We recommend this methodology for short-term monitoring because tri- and tetravalent Mn is the preferred electron acceptor compared with trivalent Fe, and this additionally offers the possibility of distinguishing between weakly and moderately reducing conditions. If dissolved Fe is abundant in soils, the possibility of nonenzymatic reduction of Mn has to be taken into account.

  8. Evaluating the performance of modified adsorbent of zero valent iron nanoparticles – Chitosan composite for arsenate removal from aqueous solutions

    Directory of Open Access Journals (Sweden)

    K Yaghmaeian

    2016-03-01

    Full Text Available Background and Objective: Arsenic is one of the most toxic pollutants in groundwater and surface water. Arsenic could have lots of adverse impacts on human health. Therefore, access to new technologies is required to achieve the arsenic standard. Materials and Methods: The present study was conducted at laboratory scale in non-continuous batches. The adsorbent of zero-valent iron nanoparticles -Chitosan was produced through reducing ferric iron by sodium borohydride (NaBH4 in the presence of chitosan as a stabilizer. At first, the effect of various parameters such as contact time (5-120 min, pH (3-10, adsorbent dose (0.3-3.5 g/L and initial concentration of arsenate (2-10 mg/L were investigated on process efficiency. Then optimum conditions in terms of contact time, pH, adsorbent dose and initial concentration of arsenate were determined by RSM method. Freundlich and Langmuir isotherm model equilibrium constant, pseudo-first and second order kinetic constants were calculated. The residual arsenate was measured y using ICP-AES. Results: The optimum values based on RSM for pH, absorbent dose, contact time, and initial concentration of arsenate were 7.16, 3.04 g/L, 91.48 min, and 9.71 mg/L respectively. Langmuir isotherm with R2= 0.9904 for Arsenate was the best graph for the experimental data. According to Langmuir isotherm model, the maximum amount of arsenate adsorption was 135.14mg/g. . The investigation of arsenate adsorption kinetics showed that arsenate adsorption follows the pseudo-second kinetics model. Conclusion: This research showed that the adsorption process is depended on pH. With increasing pH, the ability of amine groups in chitosan are decreased to protonation, caused to decrease the efficiency of arsenate removal at high pH.

  9. Tungsten bronze-based nuclear waste form ceramics. Part 2: Conversion of granular microporous tungstate polyacrylonitrile (PAN) composite adsorbents to leach resistant ceramics

    Science.gov (United States)

    Griffith, Christopher S.; Sebesta, Ferdinand; Hanna, John V.; Yee, Patrick; Drabarek, Elizabeth; Smith, Mark E.; Luca, Vittorio

    2006-11-01

    Conversion of a granular molybdenum-doped, hexagonal tungsten bronze (MoW-HTB)-polyacrylonitrile (PAN) composite adsorbent to a leach resistant ceramic waste form capable of immobilizing adsorbed Cs + and Sr 2+ has been achieved by heating in air at temperatures in the range 600-1200 °C. Thermal treatment of the Cs- and Sr-loaded composite material at 1000 °C was sufficient to invoke a 60% reduction in volume of the composite while still retaining its spherical morphology. Cs-133 MAS NMR studies of this sample suite at 9.4 T and 14.1 T showed that multiple Cs sites are present throughout the entire thermal treatment range. Scanning electron microscopy investigations of the phase assemblages resulting from thermal treatment demonstrated that the full complement of Cs, and the majority of Sr, partitions into HTB phases (A 0.16-0.3MO 3; A = Cs +, Sr 2+ and Na +; M = Mo, W). The potentially reducing conditions resulting from the removal of the PAN matrix or the presence of high concentrations of Na + relative to either Cs + or Sr 2+ does not retard the formation of the high temperature HTB phases. The fraction of Cs + and Sr 2+ leached from the tungstate phase assemblages was superior or comparable with cesium hollandite (Cs 0.8Ba 0.4Ti 8O 18; f = ≈8 × 10 -5; rate = <1.2 × 10 -4 g/m 2/day) and strontium titanate (SrTiO 3; f = 3.1 × 10 -3; rate = 2.63 × 10 -4 g/m 2/day), respectively, using a modified PCT test in Millipore water at 90 °C. Furthermore, where aggressive leaching conditions were employed (0.1 M HNO 3; 150 °C; 4 days), the tungstate phase assemblages displayed leach resistance almost two orders of magnitude greater than the reference phases.

  10. Adsorption of drinking water fluoride on a micron-sized magnetic Fe3O4@Fe-Ti composite adsorbent

    Science.gov (United States)

    Zhang, Chang; Li, Yingzhen; Wang, Ting-Jie; Jiang, Yanping; Wang, Haifeng

    2016-02-01

    A micron-sized magnetic adsorbent (MMA) for fluoride removal from drinking water was prepared by spray drying and subsequent calcination of a magnetic Fe3O4@Fe-Ti core-shell nanoparticle slurry. The MMA granules had high mechanical strength and stability against water scouring, can be easily separated from the water by a magnet, and had a high selectivity for fluoride versus common co-existing ions and high fluoride removal efficiency in a wide range of initial pH of 3-11. Abundant hydroxyl groups on the MMA surface acted as the active sites for fluoride adsorption, which resulted in a high affinity of the MMA for fluoride. The pH in the adsorption process affected the adsorption significantly. At neutral initial pH, the adsorption isotherm was well fitted with the Langmuir model, and the maximum adsorption capacity reached a high value of 41.8 mg/g. At a constant pH of 3, multilayer adsorption of fluoride occurred due to the abundant positive surface charges on the MMA, and the adsorption isotherm was well fitted with the Freundlich model. The MMA had a fast adsorption rate, and adsorption equilibrium was achieved within 2 min. The adsorption kinetics followed a quasi-second order model. The regeneration of the MMA was easy and fast, and can be completed within 2 min. After 10 recycles, the fluoride removal efficiency of the MMA still remained high. These properties showed that the MMA is a promising adsorbent for fluoride removal.

  11. Preparation and characterization of niobium oxide coated cellulose fiber

    International Nuclear Information System (INIS)

    Hydrous niobium(V) oxide has been investigated with respect to its surface acid strength, ion exchange capacity, and use as specific sorbent for many metal ions. The Nb2O5/cellulose composite was prepared by reacting α-cellulose with NbCl5-n (OC2H5)n, in nonaqueous solvent, under nitrogen atmosphere and submitting the obtained material to hydrolysis. An increase in the crystallinity degree is observed in the composite material because the precursor reagent reacts with the amorphous phase of the cellulose fibers. Loadings between 4.5 and 16.0% of the oxide were achieved and in every case the oxide particles uniformly cover the fiber surface. Lewis and Broensted acid sites were determined by using pyridine as the basic molecular probe

  12. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    Science.gov (United States)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-03-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products.

  13. Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique

    International Nuclear Information System (INIS)

    An exhaustive characterization of the biogas from some waste disposal facilities has been carried out. The analysis includes the main components (methane, carbon dioxide, nitrogen and oxygen) as well as trace components such as hydrogen sulphide, ammonia and VOCs (volatile organic compounds) including siloxanes and halogenated compounds. VOCs were measured by GC/MS (Gas Chromatography/Mass Spectrometry) using two different procedures: thermal desorption of the Tenax TA and Carbotrap 349 tubes and SPME (Solid Phase Micro-Extraction). A method has been established to measure the total halogen content of the biogas with the AOX (adsorbable organically bound halogens) technique. The equipment used to analyze the samples was a Total Organic Halogen Analyzer (TOX-100). Similar results were obtained when comparing the TOX (Total Organic Halogen) values with those obtained by GC/MS. The halogen content in all the samples was under 22 mg Cl/Nm3 which is below the limit of 150 mg/Nm3 proposed in the Spanish Regulations for any use of the biogas. The low chlorine content in the biogas studied, as well as the low content of other trace compounds, makes it suitable for use as a fuel for electricity generating engines

  14. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Ji-Lai, E-mail: jilaigong@gmail.com [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Zhang, Yong-Liang; Jiang, Yan [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Zeng, Guang-Ming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Cui, Zhi-Hui; Liu, Ke; Deng, Can-Hui; Niu, Qiu-Ya; Deng, Jiu-Hua [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Huan, Shuang-Yan [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2015-03-01

    Highlights: • GO-sand was prepared by coating GO on the surface of sand. • Pb(II) and MB were efficiently removed by GO-sand filter in column. • The removal of MB was enhanced with the presence of Pb(II). • GO-sand is low-cost and convenient for its application as packed bed filter. - Abstract: The mixture of several effluents, caused by the improper handling and management of effluents, generated multi-component wastewater containing both metals and dyes, leading to the complicated treatment process. In this study, a continuous adsorption of Pb(II) and methylene blue (MB) has been studied in single and binary solutions by using graphite oxide coated sand (GO-sand) as an adsorbent in a fixed-bed column. GO-sand was analyzed by X-ray photoelectron spectroscopy before and after analyte adsorption. Compared with sand filter, adsorption quantity and capacity for Pb(II) and MB by GO-sand filter were greatly increased. In Pb(II) and MB single solutions, the experimental parameters were investigated in detail including initial concentration, flow rate, bed depth and pH. Exhaustion time decreased with increasing initial concentration and flow rate, and increased with increasing bed depth and pH. In the Pb(II)-MB binary solution, exhaustion time significantly decreased for Pb(II) adsorption, but increased for MB adsorption. The reason was explained that the more favorable adsorption for MB onto the surface of GO-sand than that for Pb(II), which was derived from π–π interaction between MB and GO on sand surface in packed filter. The Yoon–Nelson model was applied at different concentration of Pb(II) and MB to predict the breakthrough curves. The experimental data were well fit with the model indicating that it was suitable for this column design.

  15. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column

    International Nuclear Information System (INIS)

    Highlights: • GO-sand was prepared by coating GO on the surface of sand. • Pb(II) and MB were efficiently removed by GO-sand filter in column. • The removal of MB was enhanced with the presence of Pb(II). • GO-sand is low-cost and convenient for its application as packed bed filter. - Abstract: The mixture of several effluents, caused by the improper handling and management of effluents, generated multi-component wastewater containing both metals and dyes, leading to the complicated treatment process. In this study, a continuous adsorption of Pb(II) and methylene blue (MB) has been studied in single and binary solutions by using graphite oxide coated sand (GO-sand) as an adsorbent in a fixed-bed column. GO-sand was analyzed by X-ray photoelectron spectroscopy before and after analyte adsorption. Compared with sand filter, adsorption quantity and capacity for Pb(II) and MB by GO-sand filter were greatly increased. In Pb(II) and MB single solutions, the experimental parameters were investigated in detail including initial concentration, flow rate, bed depth and pH. Exhaustion time decreased with increasing initial concentration and flow rate, and increased with increasing bed depth and pH. In the Pb(II)-MB binary solution, exhaustion time significantly decreased for Pb(II) adsorption, but increased for MB adsorption. The reason was explained that the more favorable adsorption for MB onto the surface of GO-sand than that for Pb(II), which was derived from π–π interaction between MB and GO on sand surface in packed filter. The Yoon–Nelson model was applied at different concentration of Pb(II) and MB to predict the breakthrough curves. The experimental data were well fit with the model indicating that it was suitable for this column design

  16. Surface characteristics and electrochemical corrosion behavior of a pre-anodized microarc oxidation coating on titanium alloy.

    Science.gov (United States)

    Cui, W F; Jin, L; Zhou, L

    2013-10-01

    A porous bioactive titania coating on biomedical β titanium alloy was prepared by pre-anodization followed by micro arc oxidation technology. The effects of pre-anodization on the phase constituent, morphology and electrochemical corrosion behavior of the microarc oxidation coating were investigated. The results show that pre-anodization has less influence on the phase constituent and the surface morphology of the microarc oxidation coating, but improves the inner layer density of the microarc oxidation coating. The decrease of plasma discharge strength due to the presence of the pre-anodized oxide film contributes to the formation of the compact inner layer. The pre-anodized microarc oxidation coating effectively inhibits the penetration of the electrolyte in 0.9% NaCl solution and thus increases the corrosion resistance of the coated titanium alloy in physiological solution.

  17. One-Step Fabrication of Microchannels Lined with a Metal Oxide Coating.

    Science.gov (United States)

    Patil, Sandip; Ranjan, Amit; Maitra, Tanmoy; Sharma, Ashutosh

    2016-04-27

    We demonstrate a simple, single-step method for metal/metal oxide coating on interior walls of microchannels in an elastomeric material like PDMS, which is the mainstay of microfluidic devices. The fabrication process involves electrodeposition of cuprous oxide on a metallic wire or a sheet, embedding it inside a PDMS matrix along with the cross-linker, curing and then swelling the PDMS elastomer, and finally pulling out the template metal wire or the metal sheet from the PDMS matrix. Stronger attachment of the metal oxide layer to PDMS allows the transfer of the metal oxide coating originally present on the template surface (wire or sheet) to the channel wall resulting in a microchannel/microslit lined with the metal/metal oxide layer. In view of the catalytic activity associated with transition metal oxides, this simple method offers a cost-effective and versatile technique to fabricate microfluidic and lab-on-a-chip devices which can be utilized as microcatalytic reactors or chemical filters. As a proof of concept, we have successfully tested the metal oxide coated microchannels and microslits as active sites for adsorption of iodide ions. PMID:27035524

  18. Micro-arc oxidation coatings on Mg-Li alloys

    Institute of Scientific and Technical Information of China (English)

    XU Yongjun; LI Kang; YAO Zhongping; JIANG Zhaohua; ZHANG Milin

    2009-01-01

    Micro-arc oxidation (MAO) method was used for the surface modification of an Mg-5wt.%Li alloy. Ceramic coatings were in-situ fabricated on the Mg-Li alloy. The morphology feature, phase composition, and corrosion-resistance of the formed ceramic coatings were studied by SEM, XRD, and electrochemical methods, respectively. The results showed that the coatings produced in a sodium silicate solution system were composed of MgO and Mg2SiO4. The ceramic coating became thicker and the content of Mg2SiO4 phase increased as the concentration of Na2SiO3 increased in the solution. The coating was loose at the low concentration of Na2SiO3 and was compact at the high concentration of Na2SiO3. The coated samples had a better corrosion resistance than the Mg-Li substrate in terms of the Tafel polarization curves and the cyclic voltammetry curves (CV).

  19. Cavitation erosion resistance of microarc oxidation coating on aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng [School of Mechanical Engineering, Southeast University, Nanjing, 211189 (China); Jiang, Shuyun, E-mail: jiangshy@seu.edu.cn [School of Mechanical Engineering, Southeast University, Nanjing, 211189 (China); Liang, Jun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2013-09-01

    Two ceramic coatings are prepared on 2124 aluminum alloy by microarc oxidation (MAO) technology. To explore the cavitation erosion resistance of the MAO coating, cavitation tests were performed by using a rotating-disk test rig. The mass losses, surface morphologies, chemical compositions and the phase constituents of the samples after cavitation tests were examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the MAO coatings can extend the incubation period of aluminum alloy, and thus enhance the cavitation erosion resistance as compared to the untreated aluminum alloy samples. After duration of 63 h cavitation test, a lot of erosion pits and the particles in various shapes can be observed on the surfaces of the aluminum alloy samples, while only a few erosion pits are observed on the MAO coatings. Moreover, the mean depths of erosion on the MAO coatings are lower in the first 30 h and are independent on erosion time. The results show that the cavitation erosion of MAO coating is governed by water mechanical impaction, resulting from the effects of brittle fracture of the MAO coating.

  20. Tungsten bronze-based nuclear waste form ceramics. Part 2: Conversion of granular microporous tungstate-polyacrylonitrile (PAN) composite adsorbents to leach resistant ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Christopher S. [Australian Nuclear Science and Technology Organisation, Institute of Materials and Engineering Sciences, PMB 1, Menai, NSW 2234 (Australia); Sebesta, Ferdinand [Czech Technical University in Prague, Department of Nuclear Chemistry, Brehova 7, 115 19 Prague 1 (Czech Republic); Hanna, John V. [Australian Nuclear Science and Technology Organisation, Institute of Materials and Engineering Sciences, PMB 1, Menai, NSW 2234 (Australia); Yee, Patrick [Australian Nuclear Science and Technology Organisation, Institute of Materials and Engineering Sciences, PMB 1, Menai, NSW 2234 (Australia); Drabarek, Elizabeth [Australian Nuclear Science and Technology Organisation, Institute of Materials and Engineering Sciences, PMB 1, Menai, NSW 2234 (Australia); Smith, Mark E. [Department of Physics, University of Warwick, Gibbett Hill Road, Coventry CV47AL (United Kingdom); Luca, Vittorio [Australian Nuclear Science and Technology Organisation, Institute of Materials and Engineering Sciences, PMB 1, Menai, NSW 2234 (Australia)]. E-mail: vlu@ansto.gov.au

    2006-11-30

    Conversion of a granular molybdenum-doped, hexagonal tungsten bronze (MoW-HTB)-polyacrylonitrile (PAN) composite adsorbent to a leach resistant ceramic waste form capable of immobilizing adsorbed Cs{sup +} and Sr{sup 2+} has been achieved by heating in air at temperatures in the range 600-1200 deg. C. Thermal treatment of the Cs- and Sr-loaded composite material at 1000 deg. C was sufficient to invoke a 60% reduction in volume of the composite while still retaining its spherical morphology. Cs-133 MAS NMR studies of this sample suite at 9.4 T and 14.1 T showed that multiple Cs sites are present throughout the entire thermal treatment range. Scanning electron microscopy investigations of the phase assemblages resulting from thermal treatment demonstrated that the full complement of Cs, and the majority of Sr, partitions into HTB phases (A{sub 0.16-0.3}MO{sub 3}; A = Cs{sup +}, Sr{sup 2+} and Na{sup +}; M = Mo, W). The potentially reducing conditions resulting from the removal of the PAN matrix or the presence of high concentrations of Na{sup +} relative to either Cs{sup +} or Sr{sup 2+} does not retard the formation of the high temperature HTB phases. The fraction of Cs{sup +} and Sr{sup 2+} leached from the tungstate phase assemblages was superior or comparable with cesium hollandite (Cs{sub 0.8}Ba{sub 0.4}Ti{sub 8}O{sub 18}; f = {approx}8 x 10{sup -5}; rate = <1.2 x 10{sup -4} g/m{sup 2}/day) and strontium titanate (SrTiO{sub 3}; f = 3.1 x 10{sup -3}; rate = 2.63 x 10{sup -4} g/m{sup 2}/day), respectively, using a modified PCT test in Millipore water at 90 deg. C. Furthermore, where aggressive leaching conditions were employed (0.1 M HNO{sub 3}; 150 deg. C; 4 days), the tungstate phase assemblages displayed leach resistance almost two orders of magnitude greater than the reference phases.

  1. Investigation of rare earth sealing of porous micro-arc oxidation coating formed on AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    M.Laleh; Farzad Kargar; A.Sabour Rouhaghdam

    2012-01-01

    Magnesium and its alloys have been used in many industries,but they are reactive and require protection against aggressive environments.In this study,oxide coatings were applied on AZ91D magnesium alloy using micro-arc oxidation (MAO) process.Then,in order to seal the pores of the MAO coatings,the samples were immersed in cerium bath for different times.The surface morphologies and compositions of the coatings were analyzed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS),respectively.The corrosion behavior of the coatings was investigated with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution.The amount of the porosity of the coating was measured by electrochemical method.It was found that the sealing treatments by immersion in cerium bath successfully sealed the pores of the MAO coatings.The results of the corrosion tests showed that the MAO coating which was sealed in Ce bath for 10 min enhanced the corrosion resistance of the substrate significantly.Furthermore,this coating had the lowest amount of the porosity among the coatings.

  2. Characteristics of element composition of aerosols adsorbed on leaves by radioactivation analysis and their effects on plants

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Takejiro; Koshikawa, Masami [National Inst. for Environmental Studies, Tsukuba, Ibaraki (Japan); Sase, Hiroyuki; Masuzawa, Toshiyuki; Kawashima, Munetsugu; Takada, Jitsuya; Matsushita, Rokuji

    1999-01-01

    Aerosol deposits on leaves of various trees, especially cedar in different regions of Japan were collected to characterize the elemental composition using neutron activation analysis, ICP-AES, etc. and also investigate the effects of deposit aerosols on plants and the efficacy as an indicator for air pollution. Compared with the elemental composition of the soil, Se, Cr, Au, Br, As, Sb, Ag, etc. were more abundant in aerosols on cedar leaves. Especially, Sb is thought to be mostly derived from combustion of fossil fuels (exhaust gas from cars, etc.). Since Sb was accumulated on leaves at high levels and the analytical precision for Sb by neutron radioactivation was very high, the element was thought useful as an indicator for air pollution. If the amounts of Sb on the leaves of cedar and pine trees, which are widely distributed in Japan are determined, the degrees of pollution in all regions of Japan would be determined. In cedar trees of Saitama Prefecture where the deposit amounts of aerosols were comparatively larger, 42% of stoma was covered with the deposits, resulting that the rate of cuticular transpiration was increased and the amounts of basic elements leached from the leave surface was also increased. Thus, it was suggested that these changes might be the cause of recent declining of cedars in Japanese urban regions. (M.N.)

  3. Characteristics of element composition of aerosols adsorbed on leaves by radioactivation analysis and their effects on plants

    International Nuclear Information System (INIS)

    Aerosol deposits on leaves of various trees, especially cedar in different regions of Japan were collected to characterize the elemental composition using neutron activation analysis, ICP-AES, etc. and also investigate the effects of deposit aerosols on plants and the efficacy as an indicator for air pollution. Compared with the elemental composition of the soil, Se, Cr, Au, Br, As, Sb, Ag, etc. were more abundant in aerosols on cedar leaves. Especially, Sb is thought to be mostly derived from combustion of fossil fuels (exhaust gas from cars, etc.). Since Sb was accumulated on leaves at high levels and the analytical precision for Sb by neutron radioactivation was very high, the element was thought useful as an indicator for air pollution. If the amounts of Sb on the leaves of cedar and pine trees, which are widely distributed in Japan are determined, the degrees of pollution in all regions of Japan would be determined. In cedar trees of Saitama Prefecture where the deposit amounts of aerosols were comparatively larger, 42% of stoma was covered with the deposits, resulting that the rate of cuticular transpiration was increased and the amounts of basic elements leached from the leave surface was also increased. Thus, it was suggested that these changes might be the cause of recent declining of cedars in Japanese urban regions. (M.N.)

  4. High capacity magnetic mesoporous carbon-cobalt composite adsorbents for removal of methylene green from aqueous solutions.

    Science.gov (United States)

    Dai, Mingzhi; Vogt, Bryan D

    2012-12-01

    Mesoporous carbons containing cobalt nanoparticles are synthesized by tri-or quad-constituent self assembly of Pluronic F127, phenol-formaldehyde oligomer (resol), cobalt acetylacetonate (acac), and optionally tetraethyl orthosilicate (TEOS, optional). Upon pyrolysis in N(2) atmosphere, the resol provides sufficient carbon yield to maintain the ordered structure, while decomposition of the Co(acac) yields cobalt nanoparticles. To provide increased surface area, the dispersed silicate from condensation of TEOS can be etched after carbonization to yield micropores, Without silica templated micropores, the surface area decreases as the cobalt content increases, but there is a concurrent increase in the volume-average pore diameter (BHJ) and a dramatic increase in the adsorption capacity of methylene green with the equilibrium adsorption capacity from 2 to 90 mg/g with increasing Co content. Moreover, the surface area and pore size of mesoporous composites can be dramatically increased by addition of TEOS and subsequent etching. These composites exhibit extremely high adsorption capacity up to 1151 mg/g, which also increases with increases in the Co content. Additionally, the inclusion of cobalt nanoparticles provides magnetic separation from aqueous suspension. The in situ synthesis of the Co nanoparticles yields to a carbon shell that can partially protect the Co from leaching in acidic media; after 96 h in 2 M HCl, the powders remain magnetic.

  5. Chitosan-Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm.

    Science.gov (United States)

    Konwar, Achyut; Kalita, Sanjeeb; Kotoky, Jibon; Chowdhury, Devasish

    2016-08-17

    We report a robust biofilm with antimicrobial properties fabricated from chitosan-iron oxide coated graphene oxide nanocomposite hydrogel. For the first time, the coprecipitation method was used for the successful synthesis of iron oxide coated graphene oxide (GIO) nanomaterial. After this, films were fabricated by the gel-casting technique aided by the self-healing ability of the chitosan hydrogel network system. Both the nanomaterial and the nanocomposite films were characterized by techniques such as scanning electron microscopy, FT-IR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. Measurements of the thermodynamic stability and mechanical properties of the films indictaed a significant improvement in their thermal and mechanical properties. Moreover, the stress-strain profile indicated the tough nature of the nanocomposite hydrogel films. These improvements, therefore, indicated an effective interaction and good compatibility of the GIO nanomaterial with the chitosan hydrogel matrix. In addition, it was also possible to fabricate films with tunable surface properties such as hydrophobicity simply by varying the loading percentage of GIO nanomaterial in the hydrogel matrix. Fascinatingly, the chitosan-iron oxide coated graphene oxide nanocomposite hydrogel films displayed significant antimicrobial activities against both Gram-positive and Gram-negative bacterial strains, such as methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, and Escherichia coli, and also against the opportunistic dermatophyte Candida albicans. The antimicrobial activities of the films were tested by agar diffusion assay and antimicrobial testing based on direct contact. A comparison of the antimicrobial activity of the chitosan-GIO nanocomposite hydrogel films with those of individual chitosan-graphene oxide and chitosan-iron oxide nanocomposite films demonstrated a higher antimicrobial activity for the former in both types of tests. In vitro hemolysis

  6. Preparation and properties of poly(vinylidene fluoride nanocomposites blended with graphene oxide coated silica hybrids

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2012-04-01

    Full Text Available Graphene oxide coated silica hybirds (SiO2-GO were fabricated through electrostatic assembly in this work, then blended with poly(vinylidene fluoride (PVDF by solution mixing to make PVDF nanocomposites. The interfacial interaction was investigated by scanning electron microscopy (SEM, polarized optical microscopy (POM and Fourier transform infrared spectroscopy (FTIR. The results showed that the interfacial interaction was enhanced by adding of SiO2-GO and strong hydrogen bonds were observed. The as-made nanocomposites were investigated using standard tensile test and dynamic mechanical analysis (DMA measurements, mechanical properties of PVDF with SiO2-GO hybrids showed limited improvement.

  7. The origin of ferro-manganese oxide coated pumice from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Pearce, N.J.G.; Parthiban, G.; Smith, V.C.; Mudholkar, A.V.; Rao, N.R.

    respectively. 4. Discussion The occurrence of fully Fe-Mn oxide coated pumice with partially coated and fresh/uncoated one at the sediment-water interface could be the result of the so-called “Brazil Nut Effect”, where larger grains are kept... at the sediment–water interface while smaller grains sink because of shaking/tectonic effects (Rosato et al., 1987). In addition to Brazil Nut Effect, bioturbation, benthic organisms and bottom water currents might have helped to keep the older pumice (Fe...

  8. Adsorption of Th{sup 4+}, U{sup 6+}, Cd{sup 2+}, and Ni{sup 2+} from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Dastbaz, Abolfazl [Department of Chemical engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Keshtkar, Ali Reza, E-mail: akeshtkar@aeoi.org.ir [Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2014-02-28

    In this study, SiO{sub 2} nanoparticles were modified by 3-aminopropyltriethoxysilane (APTES) and then applied to prepare a novel polyacrylonitrile (PAN) composite nanofiber adsorbent by the electrospinning method. In addition, the adsorbent was characterized by SEM, BET, and FTIR analyses. Then the effects of pH, SiO{sub 2} and APTES content, adsorbent dosage, contact time and temperature were investigated. Moreover, adsorption experiments were carried out with initial concentrations in the range of 30–500 mg L{sup −1} and the adsorbent affinity for metal ions was in order of Th{sup 4+} > U{sup 6+} > Cd{sup 2+} > Ni{sup 2+}. Furthermore, it was observed that the optimum pH for adsorption was different for each metal. Some isotherm and kinetic models were applied to analyze the experimental data, among which the Langmuir and pseudo-second order models were better than the others. The regeneration study showed that the adsorbent could be used for industrial processes repeatedly without any significant reduction in its adsorption capacity. Based on the Langmuir model, the maximum adsorption capacity of Th{sup 4+}, U{sup 6+}, Cd{sup 2+}, and Ni{sup 2+} at 45 °C was 249.4, 193.1, 69.5 and 138.7 mg g{sup −1}, respectively. Besides, the calculated thermodynamic parameters showed an endothermic as well as chemical nature through the adsorption process.

  9. AM50镁合金表面含氧化锆的微弧氧化复合涂层的形成过程%Formation process of composite plasma electrolytic oxidation coating containing zirconium oxides on AM50 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    刘锋; 单大勇; 宋影伟; 韩恩厚

    2011-01-01

    The formation processes of a composite ceramic coating on AM50 magnesium alloy prepared by plasma electrolytic oxidation (PEO) in a K2ZrF6 electrolyte solution were studied by scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDX). Electrochemical impedance spectroscopy (EIS) tests were used to study the variation of the corrosion resistance of the coating during the PEO treatment. The results show that the coating formed on Mg alloy is mainly composed of MgO and MgF2 when the applied voltage is lower than the sparking voltage, and zirconium oxides start to be deposited on Mg substrate after the potential exceeding the sparking voltage. The corrosion resistance of the coating increases with increasing the applied voltage.%采用扫描电镜(SEM)和电子衍射能谱(EDX)研究在含K2ZrF6的溶液中AM50镁合金表而复合微弧体氧化涂层的形成过程.采用电化学阻抗谱(EIS)研究在微弧体氧化制备膜层过程中膜层耐腐蚀性能的变化.结果表明:当电压小于起弧电压时,合金表面膜层的主要成分为MgO和MgF3;当施加电压超过起弧电压时,锆氧化物开始在合金表面沉积,且膜层的耐腐蚀性随着电压的升高而提高.

  10. Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(Ⅱ) from aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    Maryam Irani; Hanafi Ismail; Zulkifli Ahmad; Maohong Fan

    2015-01-01

    The purpose of this work is to remove Pb(Ⅱ) from the aqueous solution using a type of hydrogel composite.A hydrogel composite consisting of waste linear low density polyethylene,acrylic acid,starch,and organo-montmorillonite was prepared through emulsion polymerization method.Fourier transform infrared spectroscopy (FTIR),Solid carbon nuclear magnetic resonance spectroscopy (CNMR)),silicon-29 nuclear magnetic resonance spectroscopy (Si NMR)),and X-ray diffraction spectroscope ((XRD) were applied to characterize the hydrogel composite.The hydrogel composite was then employed as an adsorbent for the removal of Pb(Ⅱ) from the aqueous solution.The Pb(Ⅱ)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy (FTIR)),scanning electron microscopy (SEM)),and X-ray photoelectron spectroscopy ((XPS)).From XPS results,it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(Ⅱ).Kinetic studies indicated that the adsorption of Pb(Ⅱ)followed the pseudo-second-order equation.It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm.The maximum removal capacity of the hydrogel composite for Pb(Ⅱ) ions was 430 mg/g.Thus,the waste linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(Ⅱ) adsorbent.

  11. Anticorrosion properties of tin oxide coatings for carbonaceous bipolar plates of proton exchange membrane fuel cells

    Science.gov (United States)

    Kinumoto, Taro; Nagano, Keita; Yamamoto, Yuji; Tsumura, Tomoki; Toyoda, Masahiro

    2014-03-01

    An anticorrosive surface treatment of a carbonaceous bipolar plate used in proton exchange membrane fuel cells (PEMFCs) was demonstrated by addition of a tin oxide surface coating by liquid phase deposition (LPD), and its effectiveness toward corrosion prevention was determined. The tin oxide coating was deposited by immersion in tin fluoride and boric acid solutions, without any observable decrease in the bipolar plate electrical conductivity. Anticorrosion properties of a flat carbonaceous bipolar plate were investigated in an aqueous HClO4 electrolyte solution (10 μmol dm-3) at 80 °C. CO2 release due to corrosion was significant for the bare specimen above 1.3 V, whereas no CO2 release was noted for the tin-oxide-coated specimen, even approaching 1.5 V. Moreover, minimal changes in contact angle against a water droplet before and after treatment indicated suppressed corrosion of the surface-coated specimen. Anticorrosion properties were also confirmed for a model bipolar plate having four gas flow channels. The tin oxide layer remained on the channel surfaces (inner walls, corners and intersections) after durability tests. Based on these results, tin-oxide-based surface coatings fabricated by LPD show promise as an anticorrosion technique for carbonaceous bipolar plates for PEMFCs.

  12. Tribological properties of solid lubricating film/microarc oxidation coating on Al alloys

    Institute of Scientific and Technical Information of China (English)

    LUO Zhuang-zi; ZHANG Zhao-zhu; LIU Wei-min; TIAN Jun

    2005-01-01

    A process for preparation of solid lubricating films on micro-arc oxidation(MAO) coating was introduced to provide self-lubricating and wear-resistant multilayer coatings for aluminum alloys. The friction and wear behavior of various burnished and bonded solid lubricating films on the as-deposited and polished micro-arc oxidation coatings sliding against steel and ceramic counterparts was evaluated with a Timken tester and a reciprocating friction and wear tester, respectively. The burnished and bonded solid lubricating films on the polished micro-arc oxidation coatings are superior to the as-deposited ones in terms of the wear resistant behavior, because they lead to strengthened interfacial adhesion between the soft lubricating top-film and the hard polished MAO sub-coating, which helps increase the wear resistance of the solid lubricating film on multilayer coating. Thus the multilayer coatings are potential candidates as self-lubricating and wear-resistant coatings for Al alloy parts in engineering applications.

  13. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P. [Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, CA (United States); Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); NASA Ames Research Center, Moffett Field, CA (United States); Wei, Min [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); School of Micro-Electronics and Solid-Electronics, University of Electronic Science and Technology of China, Chengdu (China)

    2014-07-15

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Mn oxide coated catalytic membranes for a hybrid ozonation-membrane filtration: comparison of Ti, Fe and Mn oxide coated membranes for water quality.

    Science.gov (United States)

    Byun, S; Davies, S H; Alpatova, A L; Corneal, L M; Baumann, M J; Tarabara, V V; Masten, S J

    2011-01-01

    In this study the performance of catalytic membranes in a hybrid ozonation-ceramic membrane filtration system was investigated. The catalytic membranes were produced by coating commercial ceramic ultrafiltration membranes with manganese or iron oxide nanoparticles using a layer-by-layer self-assembly technique. A commercial membrane with a titanium oxide filtration layer was also evaluated. The performance of the coated and uncoated membranes was evaluated using water from a borderline eutrophic lake. The permeate flux and removal of the organic matter was found to depend on the type of the metal oxide present on the membrane surface. The performance of the manganese oxide coated membrane was superior to that of the other membranes tested, showing the fastest recovery in permeate flux when ozone was applied and the greatest reduction in the total organic carbon (TOC) in the permeate. The removal of trihalomethanes (THMs) and haloacetic acids (HAAs) precursors using the membrane coated 20 times with manganese oxide nanoparticles was significantly better than that for the membranes coated with 30 or 40 times with manganese oxide nanoparticles or 40 times with iron oxide nanoparticles. PMID:20822791

  15. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  16. Influence of sodium silicate concentration on structural and tribological properties of microarc oxidation coatings on 2017A aluminum alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Aytekin, E-mail: apolat@nigde.edu.t [Department of Mechanical Engineering, Nigde University, Nigde 51100 (Turkey); Makaraci, Murat [Department of Mechanical Engineering, Kocaeli University, Kocaeli (Turkey); Usta, Metin [Department of Materials Science and Engineering, Gebze Institute of Technology, Kocaeli (Turkey)

    2010-08-20

    In this paper, thick and hard oxide coatings resistant to wear were produced on 2017A-T6 Al alloy by the microarc oxidation (MAO) technique in an alkali electrolyte consisting of different sodium silicate concentrations (0-8 g/l). The coatings were characterized by means of optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and surface profilometry. Microhardness, scratch adhesion and pin-on-disk sliding wear tests were also performed to evaluate the tribological properties of the coatings. The influence of sodium silicate concentration on the structural and tribological properties of the MAO coatings was discussed. Results reveal that increasing sodium silicate concentration from 0 to 8 g/l in the electrolyte caused an increase in the electrolyte conductivity (from 7.71 to 18.1 mS/cm) and a decrease in positive final voltage (from 627 to 590 V) in the MAO process. In response to the increase in sodium silicate concentration, the thickness, surface roughness (R{sub a}) and critical load (L{sub c}) corresponding to adhesive failure of the coatings were increased simultaneously from 74 to 144 {mu}m, and 4.4 to 6.58 {mu}m, and 127.76 to 198.54 N, respectively. At the same time, the phase structure and composition of the coatings also varied by the participation of silicate ions in the reactions and their incorporation into the coating structure. Moreover, it was observed that the coating formed in the low sodium silicate concentration (4 g/l) had higher surface hardness (2020 HV) and improved wear resistance than the one (1800 HV) formed in the high sodium silicate concentration (8 g/l). The coatings produced in three different electrolytic solutions provided an excellent wear resistance and a load carrying capacity compared to the uncoated aluminum alloy.

  17. Influence of the Structure of the Titanium Oxide Coating Surface on Immunocompetent Tumor Cells

    Science.gov (United States)

    Khlusov, I. A.; Sharkeev, Yu. P.; Pichugin, V. F.; Legostaeva, E. V.; Litvinova, L. S.; Shupletsova, V. V.; Sokhonevich, N. A.; Khaziakhmatova, O. G.; Khlusova, M. Yu.; Gutor, S. S.; Tolkacheva, T. V.

    2016-03-01

    Results of a study of the properties of titanium oxide based coatings deposited on titanium substrates by microarc oxidation are presented that establish a relationship between physical and mechanical properties of the coating surface and their medical and biological properties. The required surface topography is formed by sandblasting of the substrate and is controlled by values of the roughness index Ra. A linear dependence of the amplitude of negative electrostatic potential of the oxide coating on the Ra value is established. The topography of the micro-arc coating surface determines its negative surface potential that apparently reduces the viability of the leukemia T cells of the Jurkat line via electrostatic and biological mechanisms unrelated to the generation of intracellular reactive oxygen species.

  18. Evaluation of the mechanical properties of microarc oxidation coatings and 2024 aluminium alloy substrate

    CERN Document Server

    Xue Wen Bin; Deng Zhi Wei; Chen Ru Yi; Li Yong Liang; Zhang Ton Ghe

    2002-01-01

    A determination of the phase constituents of ceramic coatings produced on Al-Cu-Mg alloy by microarc discharge in alkaline solution was performed using x-ray diffraction. The profiles of the hardness, H, and elastic modulus, E, across the ceramic coating were determined by means of nanoindentation. In addition, a study of the influence of microarc oxidation coatings on the tensile properties of the aluminium alloy was also carried out. The results show that the H-and E-profiles are similar, and both of them exhibit a maximum value at the same depth of coating. The distribution of the alpha-Al sub 2 O sub 3 phase content determines the H- and E-profiles of the coatings. The tensile properties of 2024 aluminium alloy show less change after the alloy has undergone microarc discharge surface treatment.

  19. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content

    International Nuclear Information System (INIS)

    Tantalum (Ta) oxides and their coatings have been proved to increase their applications in the biomedical fields by improving osseointegration and wear resistance. In this study, Ta oxide coatings containing different proportions of Ag are deposited on SS304 materials. A twin-gun magnetron sputtering system is used to deposit the tantalum oxide-Ag coating. In this study, Staphylococcus aureus, which exhibits physiological commensalism on the human skin, nares, and mucosal and oral areas, is chosen as the model for in vitro antibacterial analyses via a fluorescence staining method using Syto9. The cytocompatibility and adhesive morphology of human skin fibroblast cells (CCD-966SK) on the coatings are also determined by using the microculture tetrazolium assay. This study shows that Ta2O5 and Ta2O5-Ag coatings with 12.5 at. % of Ag exhibit improved antibacterial effects against S. aureus and have good skin fibroblast cell cellular biocompatibility

  20. Enhanced Rate Capability of Oxide Coated Lithium Titanate within Extended Voltage Ranges

    Directory of Open Access Journals (Sweden)

    Dongjoon eAhn

    2015-06-01

    Full Text Available Lithium titanate (Li4Ti5O12 or LTO is a promising negative electrode material of high power lithium-ion batteries, due to its superior rate capability and excellent capacity retention. However, the specific capacity of LTO is less than one half of that of graphite electrode. In this work, we applied ultrathin oxide coating on LTO by the atomic layer deposition (ALD technique, aiming for increasing the energy density by extending the cell voltage window and specific capacity of LTO. We demonstrated that a few nanometer thick Al2O3 coating can suppress the mechanical distortion of LTO cycled at low potential, which enable the higher specific capacity and excellent capacity retentio. Furthermore, the surface coating can facilitate the charge transfer, leading to significantly improved rate capabilities, comparing with the uncoated LTO.

  1. Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface

    Directory of Open Access Journals (Sweden)

    Nie Yining

    2010-09-01

    Full Text Available Abstract Background Aluminum-made settings are widely used in healthcare, schools, public facilities and transit systems. Frequently-touched surfaces of those settings are likely to harbour bacteria and be a potential source of infection. One method to utilize the effectiveness of copper (Cu in eliminating pathogens for these surfaces would be to coat the aluminum (Al items with a Cu coating. However, such a combination of Cu and Al metals is susceptible to galvanic corrosion because of their different electrochemical potentials. Methods In this work, a new approach was proposed in which electrolytic plasma oxidation (EPO of Al was used to form an oxide surface layer followed by electroplating of Cu metal on the top of the oxide layer. The oxide was designed to function as a corrosion protective and biocompatible layer, and the Cu in the form of dots was utilized as an antibacterial material. The antibacterial property enhanced by superhydrophilicity of the Cu-dotted oxide coating was evaluated. Results A superhydrophilic surface was successfully prepared using electrolytic plasma oxidation of aluminum (Al followed by electroplating of copper (Cu in a Cu-dotted form. Both Cu plate and Cu-dotted oxide surfaces had excellent antimicrobial activities against E. coli ATCC 25922, methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300 and vancomycin-resistant Enterococcus faecium (VRE ATCC 51299. However, its Cu-dotted surface morphology allowed the Cu-dotted oxide surface to be more antibacterial than the smooth Cu plate surface. The enhanced antibacterial property was attributed to the superhydrophilic behaviour of the Cu-dotted oxide surface that allowed the bacteria to have a more effective killing contact with Cu due to spreading of the bacterial suspension media. Conclusion The superhydrophilic Cu-dotted oxide coating surface provided an effective method of controlling bacterial growth and survival on contact surfaces and thus reduces the

  2. Improving the scratch resistance of sol-gel metal oxide coatings cured at 250 C through use of thermogenerated amines

    NARCIS (Netherlands)

    Langanke, J.; Arfsten, N.; Buskens, P.; Habets, R.; Klankermayer, J.; Leitner, W.

    2013-01-01

    Scratch resistant sol-gel metal oxide coatings typically require a thermal post-treatment step (curing process) at temperatures between 400 and 700 C. In this report, we demonstrate that the in situ generation of amines within sol-gel films facilitates the preparation of scratch resistant metal oxid

  3. Design of A Large Oxide Coated Cathode Plasma Source for Operation in High Magnetic Fields at the New LAPD

    Science.gov (United States)

    Leneman, David

    2001-10-01

    We use a Barium Oxide coated cathode to supply accelerated electrons as an energy source to from our plasma. Oxide coated cathodes have been used for decades in vacuum tubes and plasma research. Most of these have been small (1 cm dia.) or designed to operate in a low magnetic field where the J×B \\unboldmath forces on them are negligible. At the new LAPD we will have large diameter plasma sources at both ends of the machine which must operate in a 3.5 kG ambient magnetic field. We have designed and built one such source which is 72 cm in diameter. It will supply up to 20 kA of pulsed beam current and uses a 1 m by 1 m, 2.5 kA (dc), 150 kW heater. Solutions to various engineering issues will be discussed. These pertain to differential thermal expansion over 1 m distances, J×B \\unboldmath forces on the heater and cathode, heat containment and uniformity of the oxide coating and of plasma production. These issues are important to any experimenter who plans to build an oxide coated plasma source.

  4. Reduction of ripening time of full-scale manganese removal filters with manganese oxide-coated media

    NARCIS (Netherlands)

    Bruins, J.H.; Petrusevski, B.; Slokar, Y.M.; Huysman, K.; Joris, K.; Kruithof, J.C.; Kennedy, M.D.

    2015-01-01

    Effective manganese removal by conventional aeration-filtration with virgin filter media requires a long ripening time. The aim of this study was to assess the potential of manganese oxide-coated media to shorten the ripening time of filters with virgin media, under practical conditions. A full scal

  5. 淀粉/凹凸棒粘土复合吸附絮凝材料的研究%Study on Starch/Attapulgite Adsorbent and Flocculent Composite

    Institute of Scientific and Technical Information of China (English)

    朱忠湛; 马喜君

    2015-01-01

    采用接枝聚合法在硅烷化凹凸棒粘土(OATP)表面接枝淀粉,制备淀粉/凹凸棒粘土(ATP)复合吸附絮凝材料.采用傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)对淀粉/ATP进行了表征,并对其制备条件进行了优化.结果表明,当淀粉质量分数(相对OATP质量)为100%,聚合反应时间为3 h,引发剂质量分数为0.003%,反应温度为60℃时,制备的淀粉/ATP对镉离子的最大吸附容量可达到36.78 mg/g.与ATP、OATP相比,淀粉/ATP对镉离子的吸附容量增大了2倍以上.复合材料具有比OATP更强的捕获能力,所形成的絮凝体大而密实,比淀粉絮凝剂具有更好的沉降性能.%Graft polymerization, starch/attapulgite( ATP) adsorbent was synthesized by grafting starch onto the silane coupling reagent modified ATP( OATP).The preparing conditions of the starch/ATP were investigated, and the analysis by FT/IR and SEM were conducted to characterize the synthesized starch/ATP.Fourier transform infrared spectroscopy( FT-IR) , scanning e-lectron microscopy( SEM) of starch/ATP were characterized and optimized its preparation conditions.The results show that the prepared starch/ATP gives a maximum Cd2+ adsorption capacity of 36.78 mg·g-1 under following conditions:starch mass con-centration of 100.0%( relative to OATP mass, the same hereinafter) , reaction time of 3 h, initiator dosage of 0.003%( weight) and reaction temperature of 60℃.It was found that the Cd2+ adsorption capacity of the Starch/ATP prepared under the above con-ditions is more than 2 folds compared with those of the ATP and OATP.The captured ability of the composite material is better than OATP, forming large and dense flocs, its settlement capacity is superior to starch flocculants.

  6. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    Science.gov (United States)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  7. Effect of pore size of silica gel on the water uptake and refrigeration of composite adsorbent%硅胶孔径对吸附剂吸湿性能及制冷特性的影响

    Institute of Scientific and Technical Information of China (English)

    卜宪标; 王令宝; 马伟斌

    2012-01-01

    为开发出一种适用于吸附制冷的高性能吸附剂,选择了3种不同孔径的商用硅胶,孔径分别是2~3、4~7、8~10 nm,利用浸泡的方法将氯化钙嵌入硅胶微孔内来制备复合吸附剂,并对吸附剂的吸附性能进行了实验测试.测试结果表明:对于2~3 nm的硅胶,由于孔径较小,氯化钙的浸入堵塞或者部分堵塞了水进入硅胶的传质通道,导致复合吸附剂不论是吸附量还是吸附速率与纯硅胶相比都没有提高;而对于4 ~7 nm和8~ 10 nm的硅胶,其复合吸附剂不论是吸附量还是吸附速率都较其相应的纯硅胶有大幅提高.复合吸附剂在20%湿度下吸附20 min和2h的吸附量分别是8.08 g/100 g和15.7 g/100 g,在同等工况下,纯硅胶的吸附量分别是1.96 g/100 g和2.0 g/100 g.用制备的复合吸附剂制作了一台小型吸附制冷机并进行了测试,当热源温度为90℃,冷却水温度为35℃时,在整个循环周期内(15 min),制冷功率为1.03 kW,单位质量吸附剂的制冷功率(SCP)为128.3 W/kg,性能系数(COP)为0.27.%To develop a high performance adsorbent for adsorption refrigeration, three kinds of commercial silica gel with pore sizes of 2 -3 nrn, 4-7 nra, and 8 ~10 nm, respectively, were used for preparing composite adsorbents by soaking them into the solution of calcium chloride. After that, the performances of composite adsorbents were tested by the experimental method. The testing results indicate that both the adsorption amount and adsorption rate of composite adsorbents for the 4 ~7nm and 8 ~ l0nm silica gel improve greatly compared to pure silica gel, but does not improve for the 2 ~ 3 nm silica gel due to the much smaller pore size which may block the inner channel when the pore is filled by CaCl2. The water uptake of the composite adsorbent is 8. 08 g/100 g and 15, 7 g/100 g, respectively, at a relative humidity of 20% and adsorption time of 20 min and 2 hours, but the water uptake of pure silica gel

  8. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Heng-Li [School of Dentistry, China Medical University, Taichung 404, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@mail2000.com.tw; Chen, Hung-Jui; Chou, Yu-Kai [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Lai, Chih-Ho [School of Medicine, China Medical University, Taichung 404, Taiwan (China); Chen, Michael Y. C. [Division of Oral and Maxillofacial Surgery, China Medical University Hospital, Taichung 404, Taiwan (China)

    2014-03-15

    Tantalum (Ta) oxides and their coatings have been proved to increase their applications in the biomedical fields by improving osseointegration and wear resistance. In this study, Ta oxide coatings containing different proportions of Ag are deposited on SS304 materials. A twin-gun magnetron sputtering system is used to deposit the tantalum oxide-Ag coating. In this study, Staphylococcus aureus, which exhibits physiological commensalism on the human skin, nares, and mucosal and oral areas, is chosen as the model for in vitro antibacterial analyses via a fluorescence staining method using Syto9. The cytocompatibility and adhesive morphology of human skin fibroblast cells (CCD-966SK) on the coatings are also determined by using the microculture tetrazolium assay. This study shows that Ta{sub 2}O{sub 5} and Ta{sub 2}O{sub 5}-Ag coatings with 12.5 at. % of Ag exhibit improved antibacterial effects against S. aureus and have good skin fibroblast cell cellular biocompatibility.

  9. Reconstruction mechanisms of tantalum oxide coatings with low concentrations of silver for high temperature tribological applications

    Science.gov (United States)

    Stone, D. S.; Gao, H.; Chantharangsi, C.; Paksunchai, C.; Bischof, M.; Martini, A.; Aouadi, S. M.

    2014-11-01

    Silver tantalate (AgTaO3) coatings have been found to exhibit outstanding tribological properties at elevated temperatures. To understand the mechanisms involved in the tribological behavior of the Ag-Ta-O system, tantalum oxide coatings with a small content of silver were produced to investigate the metastable nature of this self-lubricating material. The coatings were produced by unbalanced magnetron sputtering, ball-on-disk wear tested at 750 °C, and subsequently characterized by X-ray diffraction, Scanning Auger Nanoprobe, cross-sectional Scanning Electron Microscopy, and Transmission Electron Microscopy. Complementary molecular dynamic simulations were carried out to investigate changes in the chemical and structural properties at the interface due to sliding for films with varying silver content. Both the experimental characterization and the theoretical modeling showed that silver content affects friction and wear, through the role of silver in film reconstruction during sliding. The results suggest that the relative amount of silver may be used to tune film performance for a given application.

  10. Stress controlled gas-barrier oxide coatings on semi-crystalline polymers

    International Nuclear Information System (INIS)

    Thin silicon oxide (SiOx) barrier coatings formed by plasma enhanced chemical vapor deposition on poly(ethylene terephthalate) (PET) substrates were subjected to post-deposition annealing treatments in the temperature range for orientation relaxation of the polymer. The resulting change in coating internal stress state was measured by means of thermo-mechanical analyses, and its effect on the coating cohesive properties and coating/polymer adhesion was determined from the analysis of uniaxial fragmentation tests in situ in a scanning electron microscope, assuming a Weibull-type probability of failure and a perfectly plastic stress transfer at the SiOx/PET interface. The strain to failure and intrinsic fracture toughness of the ultrathin oxide coating were found to be as high as 5.7% and 10 J/m2, respectively, and its interfacial shear strength with PET was found to be close to 100 MPa. Annealing for 10 min at 150 deg. C did not modify the oxygen permeation properties of the SiOx/PET film, which suggests that the defect population of the oxide was not affected by the thermal treatment. In contrast, the coating internal compressive stress resulting from annealing was shown to increase by 40% the apparent coating cohesive properties and adhesion to the polymer

  11. Corrosion properties of steel protected by nanometre-thick oxide coatings

    International Nuclear Information System (INIS)

    Highlights: • 40–50 nm mixed alumina–tantala coatings were grown by atomic layer deposition. • Effects of substrate surface finish and oxide mix were analysed. • Nanolaminate stacks are better resistant to breakdown. • Localised corrosion occurs at pre-existing coating defects exposing substrate sites. • Substrate brushing and H2–Ar plasma pre-treatment hinder pit initiation. - Abstract: A comprehensive study of the corrosion properties of low alloy steel protected by 40–50 nm aluminium and tantalum mixed oxide coatings grown by atomic layer deposition is reported. Electrochemical and surface analysis was performed to address the effect of substrate surface finish and whether an oxide mixture or nanolaminate was used. There was no dissolution or breakdown for nanolaminate alumina/tantala stacks in acidic NaCl solution. Localised corrosion (pitting) took place when defects exposing the substrate pre-existed in the coating. Substrate pre-treatment by brushing and H2–Ar plasma was instrumental to block or slow down pit initiation by reducing the defect dimensions

  12. Study on electrolytic plasma discharging behavior and its influence on the plasma electrolytic oxidation coatings

    Science.gov (United States)

    Hussein, Riyad Omran

    In this study, aluminum oxide was deposited on a pure aluminum substrate to produce hard ceramic coatings using a Plasma Electrolytic Oxidation (PEO) process. The process utilized DC, unipolar pulsed DC in the frequency range (0.2 KHz -- 20 KHz) and bipolar pulsed DC current modes. The effects of process parameters (i.e., electrolyte concentration, current density and treatment time) on the plasma discharge behavior during the PEO treatment were investigated using optical emission spectroscopy (OES) in the visible and near ultraviolet (NUV) band (285 nm -- 900 nm). The emission spectra were recorded and plasma temperature profile versus processing time was constructed using the line intensity ratios method. Scanning Electron Microscopy (SEM) with energy dispersive x-ray analysis (EDS) was used to study the coating microstructure. It was found that the plasma discharge behavior significantly influenced the microstructure and the morphology of the oxide coatings. The main effect came from the strongest discharges which were initiated at the interface between the substrate and the coating. Through manipulation of process parameters to control or reduce the strongest discharge, the density and quality of the coating layers could be modified. This work demonstrated that by adjusting the ratio of the positive to negative pulse currents as well as their timing in order to eliminate the strongest discharges, the quality of the coatings was considerably improved.

  13. Wear resistance of micro-arc oxidation coatings on biomedical NiTi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F., E-mail: ryuufuku@hotmail.co [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xu, J.L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yu, D.Z. [Stomatological Medicine Center, Harbin Institute of Technology, Harbin 150001 (China); Wang, F.P. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhao, L.C. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2009-11-13

    Protective coatings were successfully formed on biomedical NiTi alloy by micro-arc oxidation (MAO) using pulsed bipolar power supply. The coating surface exhibits a typical MAO porous structure, and the coating mainly consists of O, Al, Ti and Ni, with the atomic concentration of 65.11%, 27.77%, 2.20% and 2.8%, respectively. The thickness of MAO coating is about 24.0 {mu}m when the duration time of the MAO treatment was 90 min at 400 V constant voltage treatment. XRD analysis showed that micro-arc oxidation coating is composed of {gamma}-Al{sub 2}O{sub 3} and {alpha}-Al{sub 2}O{sub 3}. The wear resistance of the coatings was investigated by ball-on-disk friction test. The microhardness of the NiTi alloy is greatly enhanced due to the formation of Al{sub 2}O{sub 3} coating after micro-arc oxidation treatment. The friction coefficient of the coated NiTi is stable at 0.85 and the wear resistance is increased by 9 times compared with uncoated NiTi. The wear mechanism transforms from abrasive-dominant for the uncoated sample to adhesive-dominant for the coated sample.

  14. Reduced bleaching in organic nanofibers by bilayer polymer/oxide coating

    DEFF Research Database (Denmark)

    Tavares, Luciana; Kjelstrup-Hansen, Jakob; Rubahn, Horst-Günter;

    2010-01-01

    Organic semiconductors based on small molecules are receiving increased attention due in part to their application potential within various opto-electronic devices such as transistors, light-emitting diodes, and solar cells, but also due to their relative ease of processing, low price, and tunabi......Organic semiconductors based on small molecules are receiving increased attention due in part to their application potential within various opto-electronic devices such as transistors, light-emitting diodes, and solar cells, but also due to their relative ease of processing, low price......, and tunability through synthetic chemistry. Phenylene-based molecules such as para-hexaphenylene (p6P) are of particular interest due to their ability to self-assemble into elongated, nanoscale, crystalline aggregates or ‘nanofibers’ [1]. Such nanofibers can emit polarized light with a highly anisotropic...... the technological use of the nanofibers problematic. In order to investigate the photoinduced reaction in nanofibers, optical bleaching experiments have been performed by irradiating both pristine and coated nanofibers with UV light. Oxide coating materials (SiOx [2] and Al2O3) were applied onto p6P nanofibers...

  15. Effects of oxide coating on the growth of single grain YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.D.; Jun, B.-H. [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Park, B.J.; Jung, S.Y. [Superconductivity and Applications Group, Korea Electric Power Research Institute (KEPRI), Daejeon 305-380 (Korea, Republic of); Seong, B.S. [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, C.-J., E-mail: cjkim2@kaeri.re.k [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of)

    2009-10-15

    Surface oxide coating and bottom inserting of oxide plates have been conducted to top seeded melt growth (TSMG) processed YBa{sub 2}Cu{sub 3}O{sub 7-y} (Y123) bulk superconductors with an aim of controlling the Y123 nucleation and growth. The coating medium for surfaces was Yb{sub 2}O{sub 3} solution and the bottom inserts were Yb{sub 2}O{sub 3}/Y{sub 2}O{sub 3} powder compact. Many vertical cracks were found to develop at the compact/insert interfaces when an Yb{sub 2}O{sub 3} insert was used, but the crack evolution was greatly reduced when a (Yb{sub 2}O{sub 3} + Y{sub 2}O{sub 3}) insert was used. The formation of the vertical cracks is ascribed to the difference in thermal expansion between the YBCO compact and bottom insert. Presence of vertical cracks was found to be crucial to the trapped magnetic field and levitation forces of single grain YBCO bulk superconductors. The Y123 nucleation and growth in TSMG-processed YBCO bulk superconductors were successfully controlled by conducting surface coating and bottom plating using a (Yb{sub 2}O{sub 3} + Y{sub 2}O{sub 3}) insert and as a result, the levitation properties were much enhanced.

  16. Influence of mechanical abrasion of carbon adsorbents on aerodynamic resistance of filters of system of ventilation of NPS

    International Nuclear Information System (INIS)

    Influence of mechanical abrasion of granules on aerodynamic resistance of different carbon adsorbents at conditions similar to work of filters AU-1500 is studied. The change of fractional composition of the probed adsorbents by abrasion is determined. The obtained experimental data allow making conclusion about practicability using mixture of adsorbent Norit with different fractional composition for renewal of adsorbers of ventilation system of NPS.

  17. Nanostructured hydrophobic DC sputtered inorganic oxide coating for outdoor glass insulators

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Deposition of contamination on outdoor glass insulators and its physical and economical consequences were discussed. • Synthesis of nanostructured hydrophobic HfO2 film on glass as a remedial measure by varying DC sputtering power. • Investigated and correlated structural, optical, electrical and hydrophobic properties of HfO2 films with respect to power. • Optimum results were obtained at a 50 W DC sputtering power. - Abstract: We report the structural, optical and electrical properties of nanostructured hydrophobic inorganic hafnium oxide coating for outdoor glass insulator using DC sputtering technique to combat contamination problem. The properties were studied as a function of DC power. The characterization of the films was done using X-ray diffraction, EDS, surface profilometer, AFM, impedance analyser and water contact angle measurement system. The DC power was varied from 30 to 60 W and found to have a great impact on the properties of hafnium oxide. All the deposited samples were polycrystalline with nanostructured hydrophobic surfaces. The intensity of crystallinity of the film was found to be dependent on sputtering power and hydrophobicity was correlated to the nanoscale roughness of the films. The optical property reveals 80% average transmission for all the samples. The refractive index was found in the range of 1.85–1.92, near to the bulk value. The band gap calculated from transmission data was >5.3 eV for all deposited samples ensuring dielectric nature of the films. Surface energy calculated by two methods was found minimum for the film deposited at 50 W sputtering power. The resistivity was also high enough (∼104 Ω cm) to hinder the flow of leakage current through the film. The dielectric constant (ε) was found to be thickness dependent and also high enough (εmax = 23.12) to bear the large electric field of outdoor insulators

  18. Nanostructured hydrophobic DC sputtered inorganic oxide coating for outdoor glass insulators

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V. [Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Institute Instrumentation Centre, Indian Institute of Technology, Roorkee, Roorkee 247667 (India); Gupta, H.O. [Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Chandra, R., E-mail: ramesfic@gmail.com [Institute Instrumentation Centre, Indian Institute of Technology, Roorkee, Roorkee 247667 (India)

    2014-03-01

    Graphical abstract: - Highlights: • Deposition of contamination on outdoor glass insulators and its physical and economical consequences were discussed. • Synthesis of nanostructured hydrophobic HfO{sub 2} film on glass as a remedial measure by varying DC sputtering power. • Investigated and correlated structural, optical, electrical and hydrophobic properties of HfO{sub 2} films with respect to power. • Optimum results were obtained at a 50 W DC sputtering power. - Abstract: We report the structural, optical and electrical properties of nanostructured hydrophobic inorganic hafnium oxide coating for outdoor glass insulator using DC sputtering technique to combat contamination problem. The properties were studied as a function of DC power. The characterization of the films was done using X-ray diffraction, EDS, surface profilometer, AFM, impedance analyser and water contact angle measurement system. The DC power was varied from 30 to 60 W and found to have a great impact on the properties of hafnium oxide. All the deposited samples were polycrystalline with nanostructured hydrophobic surfaces. The intensity of crystallinity of the film was found to be dependent on sputtering power and hydrophobicity was correlated to the nanoscale roughness of the films. The optical property reveals 80% average transmission for all the samples. The refractive index was found in the range of 1.85–1.92, near to the bulk value. The band gap calculated from transmission data was >5.3 eV for all deposited samples ensuring dielectric nature of the films. Surface energy calculated by two methods was found minimum for the film deposited at 50 W sputtering power. The resistivity was also high enough (∼10{sup 4} Ω cm) to hinder the flow of leakage current through the film. The dielectric constant (ε) was found to be thickness dependent and also high enough (ε{sub max} = 23.12) to bear the large electric field of outdoor insulators.

  19. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes.

    Science.gov (United States)

    Huang, Li-Zhi; Hansen, Hans Christian B; Bjerrum, Morten Jannik

    2016-04-01

    Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30μAcm(-2) was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400μM of the nitroaromatic compound at a potential of -0.7V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant=0.28h(-1)) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant=6.9μM h(-1)). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and low over potential. PMID:26716570

  20. Structural, electrochemical and optical comparisons of tungsten oxide coatings derived from tungsten powder-based sols

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Dilek, E-mail: e145342@metu.edu.t [Department of Metallurgical and Materials Engineering, METU, 06531 Ankara (Turkey); Ak, Metin, E-mail: metinak@pamukkale.edu.t [Department of Chemistry, Pamukkale University, 20017 Denizli (Turkey); Durucan, Caner, E-mail: cdurucan@metu.edu.t [Department of Metallurgical and Materials Engineering, METU, 06531 Ankara (Turkey)

    2009-11-02

    Tungsten trioxide (WO{sub 3}) electrochromic coatings have been formed on indium tin oxide-coated glass substrates by aqueous routes. Coating sols are obtained by dissolving tungsten powder in acetylated (APTA) or plain peroxotungstic acid (PTA) solutions. The structural evolution and electrochromic performance of the coatings as a function of calcination temperature (250 {sup o}C and 400 {sup o}C) have been reported. Differential scanning calorimetry and X-ray diffraction have shown that amorphous WO{sub 3} films are formed after calcination at 250 {sup o}C for both processing routes; however, the coatings that calcined at 400 {sup o}C were crystalline in both cases. The calcination temperature-dependent crystallinity of the coatings results in differences in optical properties of the coatings. Higher coloration efficiencies can be achieved with amorphous coatings than could be seen in the crystalline coatings. The transmittance values (at 800 nm) in the colored state are 35% and 56% for 250 {sup o}C and 400 {sup o}C-calcined coatings, respectively. The electrochemical properties are more significantly influenced by the method of sol preparation. The ion storage capacities designating the electrochemical properties are found in the range of 1.62-2.74 x 10{sup -3} (mC cm{sup -2}) for APTA coatings; and 0.35-1.62 x 10{sup -3} (mC cm{sup -2}) for PTA coatings. As a result, a correlation between the microstructure and the electrochromic performance has been established.

  1. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  2. Molecular Adsorber Coating

    Science.gov (United States)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  3. PENGARUH KOMPOSOSI LAPISAN PADA PERMUKAAN GLOBULA MINYAK EMULSI SEBELUM PENGERINGAN SEMPROT TERHADAP SIFAT-SIFAT MIKROKAMSUL TRIGLISERIDA KAYA ASAM LEMAK W-3 [The Effect of the Composition of Adsorbed Layer at Globule Interface of -3 Fatty Acids Enriched Triglyceride Prior to Spray Drying on its Microcapsule Properties

    Directory of Open Access Journals (Sweden)

    Moch Adnan2

    2005-04-01

    Full Text Available Emulsification is the critical factor in microencapsulation by spray drying method. Sodium caseinate is a protein with good emulsifying properties. The properties could be improved by phospholipids addition in the emulsification. Phospholipids addition which stabilized oil globule might change the composition of adsorbed layer.This research was conducted to analyze the changes in composition at oil globule interface by analyzing emulsion systems of triglyceride enriched by -3 fatty acids at 5% (w/v stabilized by sodium caseinate (10% w/v and addition of phospholipids at 0; 0,5; 1,0; 1,5; 2,0; and 2,5% (w/v. The changes in composition of adsorbed layer could be determined from the changes in phospholipids and adsorbed protein concentrations at oil globule interface. Analyses were done to measure the possibility of casein-phospholipids complex, phospholipids and protein adsorption concentration at interface, and adsorbed protein.The increase of phospholipids concentration in the emulsions stabilized by sodium caseinate changed the composition of adsorbed layer at interface. There was phospholipids increase and adsorbed protein decrease at oil globule interface. These changes were caused by casein-phospholipids complex which that decreased surface activity and displacement protein by phospholipids that was adsorbed at oil globule interface.Changes of composition of casein-phospholipids at oil globule prior to microcapsulation process caused changes in the properties of microcapsule produced. The increasing phospholipids and decreasing casein concentrations at oil globule interface decreased the quality of the microcapsule, including decreasing in microencapsulation efficiency, in oxidative stability, and decreasing in EPA+DHA content.

  4. Magnetic composite of Fe3O4 and activated carbon as a adsorbent for separation of trace Sr(II) from radioactive wastewater

    International Nuclear Information System (INIS)

    Magnetic adsorbent of Fe3O4 and activated carbon (Fe3O4/AC) was prepared by chemical coprecipitation technique, and was characterized by SEM, TEM, BET, XRD, and VSM techniques in details. The adsorption results of Sr(II) on Fe3O4/AC revealed that Sr(II) adsorption on Fe3O4/AC surface was an spontaneous and endothermic process, and can be well described by the pseudo-second-order model. The adsorption of Sr(II) on Fe3O4/AC increased with increasing pH, and decreased with increasing ionic strength. Fe3O4/AC can be easily separated from aqueous solution with an external magnetic field after application. (author)

  5. Effect of fulvic acid on adsorptive removal of Cr(VI) and As(V) from groundwater by iron oxide-based adsorbents

    KAUST Repository

    Uwamariya, V.

    2015-05-15

    Abstract Natural contamination has become a challenging problem in drinking water production due to metal contamination of groundwater throughout the world, and arsenic and chromium are well-known toxic elements. In this study, iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were used to study the effects of fulvic acid (FA) on the adsorptive removal of Cr(VI) and As(V) from synthetic groundwater. IOCS and GFH were characterized by SEM/EDS, and experiments were performed at different pH levels (6, 7, and 8). The surface of IOCS and GFH showed a high content of Fe and O (75 and 60 % of the atomic composition, respectively), suggesting that they can highly effectively adsorb Cr(VI) and As(V). Adsorption tests with the simultaneous presence of As(V) and FA, on the one hand, and Cr(VI) with FA, on the other hand, revealed that the role of FA on chromate and arsenate adsorption was insignificant at almost all pH values investigated with both adsorbents. A small influence as a result of FA was only observed for the removal of As(V) by IOCS at pH 6 with a decrease of 13 and 23 % when 2 and 5 mg/l were added to the synthetic water, respectively. It was also found that organic matter (OM) was leached from the IOCS during batch adsorption experiments. The use of FEEM revealed that humic-like, fulvic-like, and protein-like organic matter fractions are present on the IOCS surface. © 2015 Springer International Publishing Switzerland.

  6. 低温吸湿复合吸附剂的制备及吸湿性能%Preparation and dehumidification performance of composite adsorbent for low-temperature desiccants

    Institute of Scientific and Technical Information of China (English)

    赖艳华; 吴涛; 赵琳妍; 董震; 郝宗华; 陈常念; 吕明新

    2015-01-01

    针对冷库结霜严重制约其经济性的问题,化学固体吸附除湿防霜技术逐渐得到重视.本文将对水吸附能力较强的金属卤化物与容易定型且传热传质性能较好的分子筛相结合,制成复合吸附剂,建立了低温情况下吸附材料的吸湿性能测试系统,并进行了大量测试,给出了多种材料在?5℃、?10℃、?15℃下的吸湿量及吸湿速率变化,实验结果表明复合吸附剂的吸附性能与单纯的分子筛相比有了明显的改善,13X型分子筛浸渍浓度20%的NaBr溶液所得试样吸湿量和吸湿速率性能优越,复合过程中损失较少,成本低,可作为复合吸附剂应用于冷库除湿系统中.%Cold storage frost severely restricted its economy, to solve this problem, chemical adsorption dehumidification frost prevention technology has been paid great attention. Some kind of composite adsorbents have been made comparing metal halide which has great water adsorption capacity with molecular sieve, which has good heat and mass transfer properity, and is easy to shape. Moisture adsorption performance testing system has been constructed suitable for material under low temperature. A great many of tests have been made. The moisture adsorption capacity and rate of a variety of materials in?5℃,?10℃,?15℃ have been given. It is shown that the adsorption performance of compound adsorbent was obviously improved compared with pure molecular sieve. 13X molecular sieve dipping solution concentration 20% of NaBr had better amount of moisture adsorption and rate, less loss in the process of composition, low cost, which could be used in cold storage dehumidification system as a composite adsorbent.

  7. Nanostructure Pt Electrode Obtained via Self-assembly of Nanoparticles on Conductive Oxide-coated Glass Substrate

    Institute of Scientific and Technical Information of China (English)

    WANG, Wei-Bo(王维波); LUO, Zhen(罗臻); XIAO, Xu-Rui(肖绪瑞); LIN, Yuan(林原)

    2004-01-01

    Self-assembly of platinum nanoparticles were applied to fabrication of counter electrode for dye-sensitized solar cells on conductive oxide-coated glass substrate. The present Pt electrode exhibits high exchange current density of 220 mA/cm2, which is comparable to those prepared by electrodeposition, magnetron sputtering or thermal decomposition of platinum chloride. After analysis by transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), it was found that the catalyst was structurally characterized as nanosized platinum metal clusters and was continuously arranged on electrode surface. The present nanostructure electrode had high electrocatalytic activity for the reduction of iodine in organic solution.

  8. Experimental Study of the Micro-Arc Oxide Coating Effect on Thermal Properties of an Aluminium Alloy Piston Head

    Directory of Open Access Journals (Sweden)

    N.Yu. Dudareva

    2015-09-01

    Full Text Available The purpose of the present study is to investigate the influence of differently sized microarc oxidation coatings, applied to the bottom of pistons made with an Al-12Si-Mg-Cu-Ni alloy, on its thermal properties by simulating the operation of a real engine. This study is based on the premise that the alumina coating thickness affects the heat transfer and temperature distribution in the piston. The analysis of thermal properties of pistons and suggestions for the optimal thermal barrier coating thickness are presented.

  9. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  10. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging.

    Science.gov (United States)

    Moon, Hyungwon; Kumar, Dinesh; Kim, Haemin; Sim, Changbeom; Chang, Jin-Ho; Kim, Jung-Mu; Kim, Hyuncheol; Lim, Dong-Kwon

    2015-03-24

    We report a strongly amplified photoacoustic (PA) performance of the new functional hybrid material composed of reduced graphene oxide and gold nanorods. Due to the excellent NIR light absorption properties of the reduced graphene oxide coated gold nanorods (r-GO-AuNRs) and highly efficient heat transfer process through the reduced graphene oxide layer, r-GO-AuNRs exhibit excellent photothermal stability and significantly higher photoacoustic amplitudes than those of bare-AuNRs, nonreduced graphene oxide coated AuNRs (GO-AuNRs), or silica-coated AuNR, as demonstrated in both in vitro and in vivo systems. The linear response of PA amplitude from reduced state controlled GO on AuNR indicates the critical role of GO for a strong photothermal effect of r-GO-AuNRs. Theoretical studies with finite-element-method lab-based simulation reveal that a 4 times higher magnitude of the enhanced electromagnetic field around r-GO-AuNRs can be generated compared with bare AuNRs or GO-AuNRs. Furthermore, the r-GO-AuNRs are expected to be a promising deep-tissue imaging probe because of extraordinarily high PA amplitudes in the 4-11 MHz operating frequency of an ultrasound transducer. Therefore, the r-GO-AuNRs can be a useful imaging probe for highly sensitive photoacoustic images and NIR sensitive therapeutics based on a strong photothermal effect.

  11. Size selective hydrophobic adsorbent for organic molecules

    Science.gov (United States)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  12. Influence of adsorbed polar molecules on the electronic transport in a composite material Li(1.1)V3O8-PMMA for lithium batteries.

    Science.gov (United States)

    Badot, J C; Ligneel, E; Dubrunfaut, O; Gaubicher, J; Guyomard, D; Lestriez, B

    2012-07-14

    The broadband dielectric spectroscopy (BDS) technique (40 to 10(10) Hz) is used here to measure the electronic transport across all observed size scales of a Li(1.1)V(3)O(8)-polymer-gel composite material for lithium batteries. Different electrical relaxations are evidenced, resulting from the polarizations at the different scales of the architecture: (i) atomic lattice (small-polaron hopping), (ii) particles, (iii) clusters of particles, and finally (iv) sample-current collector interface. A very good agreement with dc-conductivity measurements on a single macro-crystal [M. Onoda and I. Amemiya, J. Phys.: Condens. Matter, 2003, 15, 3079.] shows that the BDS technique does allow probing the bulk (intrinsic) electrical properties of a material in the form of a network of particles separated by boundaries in a composite. Moreover, this study highlights a lowering of the surface electronic conductivity of Li(1.1)V(3)O(8) particles upon adsorption of polar ethylene carbonate (EC) and propylene carbonate (PC) that trap surface polarons. This result is meaningful as EC and PC are typical constituents of a liquid electrolyte of lithium batteries. It is thus suggested that interactions between active material particles and the liquid electrolyte play a role in the electronic transport within composite electrodes used in a lithium battery.

  13. 凹土-氯化钙复合吸附剂的制冷性能%Adsorption Refrigeration Characteristic of Attapulgite Based Calcium Chloride Composite Adsorbents

    Institute of Scientific and Technical Information of China (English)

    万意; 李全国; 芮正球; 崔群; 陈海军; 王海燕; 姚虎卿

    2012-01-01

    采用凹凸棒粘土和氯化钙为主要原料,用溶解-混合法制备了复合吸附剂;采用正压重量法测量了复合吸附剂对氨的吸附等温线;并测定了吸附剂-氨工质对的制冷特性.结果表明:吸附温度30℃下,复合吸附剂对氨的平衡吸附量为1.1 kg/kg,与氯化钙对氨的平衡吸附量相当.在装填密度为600kg/m3,吸附温度为30℃、蒸发压力为0.25MPa、解吸温度为300℃条件下,对氨的吸附量达到0.89~0.92kg/kg,循环吸附量为0.55~0.58kg/kg,是纯氯化钙的1.7倍:复合吸附剂-氨工质对制冷量可达761.84kJ/kg,比氯化钙-氨工质对提高了70%.而且,复合吸附剂具有良好的吸附解吸稳定性能.%The composite absorbent is mainly consisted of attapulgite and CaCI2as the resources, which were prepared by the dissolution-mixed method, and the content of attapulgite in composite absorbent is 10%. Adsorption isotherms of ammonia on absorbents were determined by positive gravimetric method. Adsorption-desorption cycle performance and cooling characteristics of composite absorbent -ammonia working pairs was evaluated by self-made adsorption-desorption measuring device. Experimental results show that the equilibrium capacity of ammonia on the composite absorbent is up to l.lkg/kg at 30℃, which is equal to that of CaCl2. The conditions of loading density 600kg/m3, adsorption temperature 30℃, ammonia evaporation pressure 0.25 MPa, desorption temperature 300℃, adsorption capacity of ammonia in the composite absorbent and its cyclic adsorption capacity is 0.89-0.92 kg/kg and 0.55~0.58 kg/kg, respectively, which is 1.7 times than that of CaCl2-ammonia working pairs. The cooling capacity is up to 761.84kJ/kg, which is increased by 70% compared to CaCl2/ ammonia. What's more, composite absorbent has excellent adsorption and desorption stability.

  14. 钌镧氧化物涂层析氯反应动力学比较研究%Comparative Study on Kinetics of Chlorine Evolution Reaction for Ru-La-O Oxide Coatings

    Institute of Scientific and Technical Information of China (English)

    龙萍; 许立坤; 崔秀芳; 金国

    2015-01-01

    通过热分解法制备了Ti/RuO2和Ti/Ru-La-O氧化物涂层,利用微分电容和极化曲线等实验方法对涂层Clˉ特性吸附、La对RuO2涂层析氯反应过程的影响及反应机理进行了研究.结果表明,在NaCl溶液中,涂层表面存在Clˉ的特性吸附,这种特性吸附对析氯反应的动力学产生了影响,导致Tafel斜率上升,反应级数下降,加入La使氧化钌涂层的过电位下降,交换电流密度增大,有利于析氯反应的进行.本文对涂层存在的两种可能反应机理进行了比较分析,认为在中性NaCl溶液中析氯反应是由2≡S·OCl*(rds→)≡S·O +Cl2过程控制的.%The Ti/RuO2 and Ti/Ru-La-O oxide coatings were prepared by thermal decomposition of the metal chlorides in the precursor solution. The specific adsorption of Clˉ on coatings, the effect of La on the chlorine evo-lution reactions (ClER) and the kinetic mechanism were investigated by using differential capacity (DC) and po-larization curves (PC). Results show that the coating surface exhibits significantly specific adsorption of Clˉ in NaCl neutral solution, which has an influence on the kinetics of the chlorine evolution process, resulting in an in-crease of the Tafel slope and a decrease of the reaction order. The addition of lanthanum reduces the overpotential of Ti/RuO2 coating and enhances the exchange current density, which improves the chlorine evolution reaction of the coatings. Both kinetic mechanisms of recombination and electrochemical desorption of adsorbed intermediate species for the coatings are comparatively studied. It is confirmed that the Chlorine evolution reaction on Ru-La-O oxide coatings in NaCl neutral solution is controlled by the process of 2≡ S· OCl* (rds→)≡ S·O +Cl2.

  15. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  16. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash

    Energy Technology Data Exchange (ETDEWEB)

    MATHIEU, JOHANNA L.; GADGIL, ASHOK J.; ADDY, SUSAN E.A.; KOWOLIK, KRISTIN

    2010-06-01

    We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (~;;$0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R2 = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6x10-6 mol/g (0.20 mg/g). Time-to-90percent (defined as the time interval for ARUBA to remove 90percent of the total amount of arsenic that is removed at equilibrium) is less than one hour. Reaction rates (pseudo-second-order kinetic model, R2>_ 0.99) increase from 2.4x105 to 7.2x105 g mol-1 min-1 as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to

  17. Silicon effects on formation of EPO oxide coatings on aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, ON, N9B 3P4 (Canada); Nie, X. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, ON, N9B 3P4 (Canada)]. E-mail: xnie@uwindsor.ca

    2006-01-03

    Electrolytic plasma processes (EPP) can be used for cleaning, metal-coating, carburizing, nitriding, and oxidizing. Electrolytic plasma oxidizing (EPO) is an advanced technique to deposit thick and hard ceramic coatings on a number of aluminum alloys. However, the EPO treatment on Al-Si alloys with a high Si content has rarely been reported. In this research, an investigation was conducted to clarify the effects of silicon contents on the EPO coating formation, morphology, and composition. Cast hypereutectic 390 alloys ({approx} 17% Si) and hypoeutectic 319 alloys ({approx} 7% Si) were chosen as substrates. The coating morphology, composition, and microstructure of the EPO coatings on those substrates were investigated using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). A stylus roughness tester was used for surface roughness measurement. It was found that the EPO process had four stages where each stage was corresponding to various coating surface morphology, composition, and phase structures, characterised by different coating growth mechanisms.

  18. Functional metal oxide coatings by molecule-based thermal and plasma chemical vapor deposition techniques.

    Science.gov (United States)

    Mathur, S; Ruegamer, T; Donia, N; Shen, H

    2008-05-01

    Deposition of thin films through vaccum processes plays an important role in industrial processing of decorative and functional coatings. Many metal oxides have been prepared as thin films using different techniques, however obtaining compositionally uniform phases with a control over grain size and distribution remains an enduring challenge. The difficulties are largely related to complex compositions of functional oxide materials, which makes a control over kinetics of nucleation and growth processes rather difficult to control thus resulting in non-uniform material and inhomogeneous grain size distribution. Application of tailor-made molecular precursors in low pressure or plasma-enhanced chemical vapor deposition (CVD) techniques offers a viable solution for overcoming thermodynamic impediments involved in thin film growth. In this paper molecule-based CVD of functional coatings is demonstrated for iron oxide (Fe2O3, Fe3O4), vanadium oxide (V2O5, VO2) and hafnium oxide (HfO2) phases followed by the characterization of their microstructural, compositional and functional properties which support the advantages of chemical design in simplifying deposition processes and optimizing functional behavior. PMID:18572690

  19. Preparation of micro-arc oxidation coatings on magnesium alloy and its thermal shock resistance property

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhaohua; ZENG Xiaobin; YAO Zhongping

    2006-01-01

    In the NaAlO2-Na2SiO3 compound system, the ceramic coatings were prepared on magnesium alloy by micro-arc oxidation. The morphology, phase composition, and thermal shock resistance of the ceramic coatings were studied by scanning electron microscope, X-ray diffraction and thermal shock tests, respectively. The results showed that the ceramic coating contains MgO, MgAl2O4, as well as a little amount of Mg2SiO4. The thickness of the ceramic coatings induced ceramic coating is the best. The hardness of the ceramic coating is up to 10 GPa or so.

  20. Influence of Divalent Cations on Deformation and Rupture of Adsorbed Lipid Vesicles.

    Science.gov (United States)

    Dacic, Marija; Jackman, Joshua A; Yorulmaz, Saziye; Zhdanov, Vladimir P; Kasemo, Bengt; Cho, Nam-Joon

    2016-06-28

    The fate of adsorbed lipid vesicles on solid supports depends on numerous experimental parameters and typically results in the formation of a supported lipid bilayer (SLB) or an adsorbed vesicle layer. One of the poorly understood questions relates to how divalent cations appear to promote SLB formation in some cases. The complexity arises from the multiple ways in which divalent cations affect vesicle-substrate and vesicle-vesicle interactions as well as vesicle properties. These interactions are reflected, e.g., in the degree of deformation of adsorbed vesicles (if they do not rupture). It is, however, experimentally challenging to measure the extent of vesicle deformation in real-time. Herein, we investigated the effect of divalent cations (Mg(2+), Ca(2+), Sr(2+)) on the adsorption of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid vesicles onto silicon oxide- and titanium oxide-coated substrates. The vesicle adsorption process was tracked using the quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) measurement techniques. On silicon oxide, vesicle adsorption led to SLB formation in all cases, while vesicles adsorbed but did not rupture on titanium oxide. It was identified that divalent cations promote increased deformation of adsorbed vesicles on both substrates and enhanced rupture on silicon oxide in the order Ca(2+) > Mg(2+) > Sr(2+). The influence of divalent cations on different factors in these systems is discussed, clarifying experimental observations on both substrates. Taken together, the findings in this work offer insight into how divalent cations modulate the interfacial science of supported membrane systems.

  1. Iron oxide coating films in soda-lime glass by triboadhesion

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J. O.; Arjona, M. J. [Boulevard Bahia s/n esq. Ignacio Comonfort, Chetumal (Mexico); Rodriguez-Lelis, J. M. [Interior Internado Palmira s/n, Cuernavaca, Morelos (Mexico)

    2009-04-15

    In the triboadhesion process the coating material is passed through a rotating cotton mop and the substrate to be coated. The cotton mop rotates at high velocity and exerts pressure on the surface of the substrate. The combined effect of pressure and velocity of the coating mop on the substrate increases its temperature close to the melting point, allowing deposition and diffusion of the coating material within the substrate. After it is deposited, its particles are embedded within the base material forming a thin film composite. The amount of the coating material deposited on the substrate has its maximum at the surface and then decreases as a function of the local temperature within the base material. Bearing this in mind, in the present work, triboadhesion is employed to deposit iron oxide in a substrate of soda-lime glass, with the purpose of determining the feasibility of using this technique for solar control coatings. It was found, through electronic scan microscopy, that a composite material film is formed following the coating direction. Reflectance and transmittance tests were carried out on the glass samples. A 20% difference was found in the visible spectral region (VIS), and a reduction between 10 and 20% in the Near Infrared Region (NIR). These results showed that the triboadhesion is a promising technique for the application of thin films for solar control or solar cells

  2. Removal of iron and arsenic (III) from drinking water using iron oxide-coated sand and limestone

    Science.gov (United States)

    Devi, Rashmi R.; Umlong, Iohborlang M.; Das, Bodhaditya; Borah, Kusum; Thakur, Ashim J.; Raul, Prasanta K.; Banerjee, Saumen; Singh, Lokendra

    2014-06-01

    A method for removal of iron and arsenic (III) from contaminated water using iron oxide-coated sand and limestone has been developed for drinking water. For the intended use, sand was coated with ferric chloride and used as filtering media. Limestone was added onto the coated sand and the effect of limestone addition on removal efficiency of iron and arsenic was monitored. Both batch and column experiments were conducted to investigate the efficiency of coated sand and limestone as filtering media. Maximum removal of iron (99.8 %) was obtained with coated sand at a dose of 5 g/100 ml and by adding 0.2 g/100 ml of limestone at pH 7.3. Arsenic (III) removal efficiency increased with the increased dose of coated sand and was best removed at pH 7.12. The maximum adsorption capacity for arsenic (III) obtained from Langmuir model was found to be 0.075 mg/g and the kinetics data followed pseudo-first order better than pseudo-second order. Energy dispersive X-ray analysis and FT-IR study proved the removal of iron and arsenic. Column experiment showed removal of iron and arsenic (III) to <0.3 mg/l and 10 μg/l, respectively, from an initial concentration of 20 mg/l (iron) and 200 μg/l (arsenic).

  3. Treatment and Kinetic of Synthetic Wastewater Containing β-Naphthol by Nano Titanium Oxide Coated on Activated Carbon

    Directory of Open Access Journals (Sweden)

    H Ijad panah

    2012-03-01

    Full Text Available Background and Objectives: Many industrial effluent plants contain amounts of hard biodegradable compounds such as β-naphthol which can be removed by conventional treatment systems. The objective of this research is to treat wastewater containing naphthalene by nano titanium oxide coated on activated carbon. Materials and Methods: Photocatalytic experiments were carried out for different concentrations of β-naphthol using time and pH as dependent factors. Nano TiO2 coated on activated carbone in one liter batch reactor and the resultants compounds concentration were measured in a photocatalytic reactor  with UV-C of 12 Watt. Results: The experimental results indicated that UV/ nano TiO2 coated on activated carbone removed 92% of β-naphthol with concentrations of 100 mg/L within an overall elapsed time of three hours. β-naphthol total removal with concenteration of 25 mg/L was observed in two hours.Conclusions: UV/ nano TiO2 process is very fast and effective method for removal of β-naphthol and  pH 11 was indicated as the optimum pH.

  4. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Science.gov (United States)

    Matsumoto, Yasuhiro; Espinoza-Rivas, Andrés M; Pérez-Guzmán, Manuel A; Ortega-López, Mauricio

    2016-01-01

    Summary This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs) on the surface of a copper foil supporting graphene oxide (GO) at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure. PMID:27547618

  5. Study on wear behavior of plasma electrolytic oxidation coatings on aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    CUI Shihai; HAN Jianmin; LI Weijing; KANG Suk-Bong; LEE Jung-Moo

    2006-01-01

    Thick and hard ceramic coatings were fabricated on A356 aluminum alloy by using plasma electrolytic oxidation(PEO) technique.The microstructure and phase composition of the PEO coatings were examined by using SEM and XRD method.It is found that the PEO coatings are mainly composed of crystalline α-Al2O3 and mullite.The dry sliding wear test of PEO coatings were carried out on a ring-on-ring wear machine.Results shows that there is hardly no wear loss of polished PEO coatings while the wear rate of uncoated aluminum alloy is 4.3×10-5 mm3·(N·m)-1 at a speed of 0.52 m·s-1 and a load of 40 N.

  6. Preparation of Chromium Oxide Coatings on Aluminum Borate Whiskers by a Hydrothermal Deposition Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Aluminum borate whiskers (9Al2O32B2O3) can be used to reinforce aluminum alloys to produce light and strong composites. However, the adverse interfacial reactions between the whiskers and the aluminum alloys inhibit their practical uses; therefore, a protective coating is needed on whiskers. In this work, aluminum borate whiskers were coated with chromium-coating deposits in a hydrothermal solution containing CrCl3, Na2C4H4O6, NaPH2O2, and H3BO3. The presence of the impurity P in the hydrothermal deposits can be avoided by reducing the amount of NaPH2O2 in the coating solution. Thermodynamic analysis was used to discuss the behavior of ions in the coating process. The subsequent heating of the hydrothermal products in air at 800 ℃ yielded smooth Cr2O3 films with a thickness of 0.060.07 μm.

  7. Effect of magnesium in aluminum alloys on characteristics of microarc oxidation coatings

    Institute of Scientific and Technical Information of China (English)

    LIU Yao-hui; LI Song; YU Si-rong; ZHU Xian-yong; XU Bai-ming

    2006-01-01

    Microarc oxidation(MAO) coatings were prepared on the surface of aluminum alloys with different contents of magnesium. The morphologies and surface roughness of the coatings were characterized by Confocal laser scanning microscopy(CLSM). Phase and chemical composition of the MAO coatings were analyzed by X-ray diffractometry(XRD) and X-ray photoelectron spectroscopy(XPS). The experimental results show that the coatings formed on different substrates have two-layer morphologies and are mainly composed of Al2O3 and Al-Si-O phases. In addition, the content of Al2O3 increases with increasing the content of magnesium. XPS results prove that magnesium from substrate indeed participates in the MAO process and is incorporated into the coating in the form of MgO. The coating formed on Al-3Mg substrate has the smallest mass loss and the lowest friction coefficient of 0.17-0.19.

  8. Substrate-adsorbate coupling in CO-adsorbed copper

    CERN Document Server

    Lewis, S P; Lewis, Steven P.; Rappe, Andrew M.

    1996-01-01

    The vibrational properties of carbon monoxide adsorbed to the copper (100) surface are explored within density functional theory. Atoms of the substrate and adsorbate are treated on an equal footing in order to examine the effect of substrate--adsorbate coupling. This coupling is found to have a significant effect on the vibrational modes, particularly the in-plane frustrated translation, which mixes strongly with substrate phonons and broadens into a resonance. The predicted lifetime due to this harmonic decay mechanism is in excellent quantitative agreement with experiment.

  9. Methane Recovery from Gaseous Mixtures Using Carbonaceous Adsorbents

    Science.gov (United States)

    Buczek, Bronisław

    2016-06-01

    Methane recovery from gaseous mixtures has both economical and ecological aspect. Methane from different waste gases like mine gases, nitrogenated natural gases and biogases can be treated as local source for production electric and heat energy. Also occurs the problem of atmosphere pollution with methane that shows over 20 times more harmful environmental effect in comparison to carbon dioxide. One of the ways utilisation such gases is enrichment of methane in the PSA technique, which requires appropriate adsorbents. Active carbons and carbon molecular sieve produced by industry and obtained in laboratory scale were examined as adsorbent for methane recuperation. Porous structure of adsorbents was investigated using densimetry measurements and adsorption of argon at 77.5K. On the basis of adsorption data, the Dubinin-Radushkevich equation parameters, micropore volume (Wo) and characteristics of energy adsorption (Eo) as well as area micropores (Smi) and BET area (SBET) were determined. The usability of adsorbents in enrichment of the methane was evaluated in the test, which simulate the basic stages of PSA process: a) adsorbent degassing, b) pressure raise in column by feed gas, c) cocurrent desorption with analysis of out flowing gas. The composition of gas phase was accepted as the criterion of the suitability of adsorbent for methane separation from gaseous mixtures. The relationship between methane recovery from gas mixture and texture parameters of adsorbents was found.

  10. Removal of Trace Arsenic to Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes.

    Science.gov (United States)

    Ntim, Susana Addo; Mitra, Somenath

    2011-05-12

    This study presents the removal of trace level arsenic to meet drinking water standards using an iron oxide-multi-walled carbon nanotube (Fe-MWCNT) hybrid as a sorbent. The synthesis was facilitated by the high degree of nanotube functionalization using a microwave assisted process, and a controlled assembly of iron oxide was possible where the MWCNT served as an effective support for the oxide. In the final product, 11 % of the carbon atoms were attached to Fe. The Fe-MWCNT was effective in arsenic removal to below the drinking water standard levels of 10 µg L(-1). The absorption capacity of the composite was 1723 µg g(-1) and 189 µg g(-1) for As(III) and As(V) respectively. The adsorption of As(V) on Fe-MWCNT was faster than that of As(III). The pseudo-second order rate equation was found to effectively describe the kinetics of arsenic adsorption. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models.

  11. Formation of Soluble Mercury Oxide Coatings: Transformation of Elemental Mercury in Soils.

    Science.gov (United States)

    Miller, Carrie L; Watson, David B; Lester, Brian P; Howe, Jane Y; Phillips, Debra H; He, Feng; Liang, Liyuan; Pierce, Eric M

    2015-10-20

    The impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reacting with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.

  12. Removal of Trace Arsenic to Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes

    Science.gov (United States)

    Ntim, Susana Addo; Mitra, Somenath

    2011-01-01

    This study presents the removal of trace level arsenic to meet drinking water standards using an iron oxide-multi-walled carbon nanotube (Fe-MWCNT) hybrid as a sorbent. The synthesis was facilitated by the high degree of nanotube functionalization using a microwave assisted process, and a controlled assembly of iron oxide was possible where the MWCNT served as an effective support for the oxide. In the final product, 11 % of the carbon atoms were attached to Fe. The Fe-MWCNT was effective in arsenic removal to below the drinking water standard levels of 10 µg L−1. The absorption capacity of the composite was 1723 µg g−1 and 189 µg g−1 for As(III) and As(V) respectively. The adsorption of As(V) on Fe-MWCNT was faster than that of As(III). The pseudo-second order rate equation was found to effectively describe the kinetics of arsenic adsorption. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models. PMID:21625394

  13. Nano-SiC/SiC anti-oxidant coating on the surface of graphite

    Science.gov (United States)

    Jafari, H.; Ehsani, N.; Khalifeh-Soltani, S. A.; Jalaly, M.

    2013-01-01

    In this research, a dual-layer coating has been used to improve high temperature oxidation resistance of graphite substrate. For first layer, silicon carbide was applied by pack cementation method. Powder pack consisted of Si, SiC and Al2O3 and heat-treated at 1650 °C in an argon atmosphere. SEM and XRD characterizations confirmed formation of SiC diffusion coating with about 500 μm including compositionally gradient of C and Si elements. Electrophoretic deposition (EPD) was used to deposit nano SiC (SiCn) particles as second layer. Thickness of second layer of SiCn in corresponded optimal situation was 50 μm. Samples with single and dual layers were investigated in oxidation test at 1600 °C. Results showed that an extreme increase was occurred in oxidation resistance after application of second layer of nano SiC. Weight loss value for single layer coating of SiC and dual layer coating of SiCn/SiC after oxidation test for 28 h at 1600 °C were 29 wt.% and 2.4 wt.%, respectively.

  14. Formation of Soluble Mercury Oxide Coatings: Transformation of Elemental Mercury in Soils.

    Science.gov (United States)

    Miller, Carrie L; Watson, David B; Lester, Brian P; Howe, Jane Y; Phillips, Debra H; He, Feng; Liang, Liyuan; Pierce, Eric M

    2015-10-20

    The impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reacting with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility. PMID:26389816

  15. Enhanced capacitive performance of TiO₂ nanotubes with molybdenum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Dongsheng; Gao, Xianfeng; Li, Jianyang; Yuan, Chris, E-mail: cyuan@uwm.edu

    2014-05-01

    Highlights: • MoO₃ was firstly deposited on TiO₂ nanotubes for better supercapacitive behaviors. • Coated TiO₂ nanotubes showed much higher capacitance than pure TiO₂ or MoO₃ films. • Deposition cycles were optimized to gain the best capacitance of MoO₃/TiO₂ hybrids. - Abstract: Alpha-phase MoO₃ is electrochemically deposited on well-aligned TiO₂ nanotubes which are synthesized by anodic oxidation. The morphology, composition and electrochemical behaviors of MoO₃-coated and bare TiO₂ nanotubes are studied. The former deliver greatly higher capacitance than the latter and their performance can be readily optimized by varying MoO₃ deposition cycles. The large areal capacitance of 209.6 mF cm⁻² at a scan rate of 5 mV s⁻¹ is firstly achieved for TiO₂ nanotube array electrode. In addition, the coated TiO₂ nanotubes show significantly more capacitance than a dense MoO₃ film. For example, they exhibit a capacitance up to 74.9 F g⁻¹ at 5 mV s⁻¹ in 1 M KCl solution, while the dense film only shows a capacitance of 32.3 F g⁻¹ under same conditions. Such improvement is found ascribed to MoO₃ with high pseudocapacity and TiO₂ nanotubes with large surface area allowing efficient MoO₃ nanoparticle loading and rapid charge transfer. This nanostructured electrode with features of facile synthesis and excellent performance is believed as a potential candidate for supercapacitor applications.

  16. Preparation and characterization of a novel adsorbent for removing lipophilic organic from water

    Institute of Scientific and Technical Information of China (English)

    LIU; Huijuan; DAI; Ruihua; QU; Jiuhui; RU; Jia

    2005-01-01

    A novel composite adsorbent containing a kind of lipid-triolein is studied. The adsorbent is prepared by embedding triolein into cellulose acetate (CA) sphere. The preparation method, the physical-chemical properties of the adsorbent and the removal efficiency of two organochlorinated pesticides are studied. The adsorbent is stable in water and no triolein leaks into water for 465 h soaking. The adsorbent has high adsorption capacity for organochlorinated pesticides such as dieldrin and aldrin. The results suggest that triolein-containing adsorbent could serve as a good adsorbent for lipophilic organic pollutants. The adsorption rate for lipophilic pollutants is very fast and has relation with the logKow of the compounds.

  17. Green Adsorbents for Wastewaters: A Critical Review

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-01-01

    Full Text Available One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i dyes; (ii heavy metals; (iii phenols; (iv pesticides and (v pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i agricultural sources and by-products (fruits, vegetables, foods; (ii agricultural residues and wastes; (iii low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources. These “green adsorbents” are expected to be inferior (regarding their adsorption capacity to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc., but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful topics such as: (i adsorption capacity; (ii kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes and (iii critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry with economic analysis and perspectives of the use of green adsorbents.

  18. Nano-Structured Magnesium Oxide Coated Iron Ore: Its Application to the Remediation of Wastewater Containing Lead.

    Science.gov (United States)

    Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A

    2015-12-01

    Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation. PMID:26682385

  19. Influence of oxygen ion irradiation on the corrosion aspects of Ti-5%Ta-2%Nb alloy and oxide coated titanium

    International Nuclear Information System (INIS)

    The corrosion resistance of Ti-5%Ta-2%Nb alloy and DOCTOR (double oxide coating on titanium for reconditioning) coated titanium by O5+ ion irradiation were compared and investigated for their corrosion behaviour. O5+ ion irradiations were carried out at a dose rate of 1 x 1017, 1 x 1018 and 1 x 1019 ions/m2 at 116 MeV. The surface properties and corrosion resistance were evaluated by using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray (EDX), glancing-angle X-ray diffraction (GXRD) and electrochemical testing methods. The results of electrochemical investigations in 11.5 N HNO3 indicated that the open circuit potential (OCP) of DOCTOR coated titanium is nobler than Ti-5%Ta-2%Nb alloy. The potentiodynamic polarization study of Ti-5%Ta-2%Nb alloy and DOCTOR coated specimen indicated decrease in passive current density with increase in ion doses (1 x 1017 to 1 x 1019 ions/m2) indicating decrease in anodic dissolution. Nyquist arc behaviour in the electrochemical impedance study substantiated the enhancement in oxide layer stability by O5+ ion irradiation. AFM results revealed that the DOCTOR coated Ti surface was dense without gross voids, and the surface roughness decreased by O5+ ion irradiation, but increased after corrosion test. EDX and GXRD patterns of DOCTOR coated Ti sample indicated that the coating was mainly composed of rutile TiO2. Based on the above results, the O5+ ion irradiation effect on corrosion behavior of Ti-5%Ta-2%Nb alloy and DOCTOR coated titanium are discussed in this paper

  20. Validation of In-Situ Iron-Manganese Oxide Coated Stream Pebbles as Sensors for Arsenic Source Monitoring

    Science.gov (United States)

    Blake, J.; Peters, S. C.; Casteel, A.

    2013-12-01

    Locating nonpoint source contaminant fluxes can be challenging due to the inherent heterogeneity of source and of the subsurface. Contaminants such as arsenic are a concern for drinking water quality and ecosystem health. Arsenic contamination can be the result of several natural and anthropogenic sources, and therefore it can be difficult to trace and identify major areas of arsenic in natural systems. Identifying a useful source indicator for arsenic is a crucial step for environmental remediation efforts. Previous studies have found iron-manganese oxide coated streambed pebbles as useful source indicators due to their high attraction for heavy metals in water. In this study, pebbles, surface water at baseflow and nearby rocks were sampled from the Pennypack Creek and its tributaries, in southwestern Pennsylvania, to test the ability of coated streambed pebbles as environmental source indicators for arsenic. Quartz pebbles, 5-7 cm in diameter, were sampled to minimize elemental contamination from rock chemistry. In addition, quartz provides an excellent substrate for iron and manganese coatings to form. These coatings were leached from pebbles using 4M nitric acid with 0.1% concentrated hydrochloric acid. Following sample processing, analyses were performed using an ICP-MS and the resulting data were spatially organized using ArcGIS software. Arsenic, iron and manganese concentrations in the leachate are normalized to pebble surface area and each location is reported as a ratio of arsenic to iron and manganese. Results suggest that iron-manganese coated stream pebbles are useful indicators of arsenic location within a watershed.

  1. 采用复合吸附剂和高效吸附床的吸附制冷机性能测试%Performance test of adsorption chiller employed composite adsorbents and efficient adsorption bed

    Institute of Scientific and Technical Information of China (English)

    王令宝; 卜宪标; 马伟斌

    2012-01-01

    This paper developed a small adsorption chiller employed parallel flow heat exchanger and self-made silica gel/calcium chloride composite adsorbents, and the chiller performance has been tested. The testing results indicate that the COP and the cooling power of the composite adsorption chiller are significantly improved compared with silica gel adsorption chiller. The performance testing of ad-sorption chiller shows that the cooling capacity, SCP and COP is 1.03 kW, 128.3 W/kg and 0.29, respectively, when hot water temperature, cooling water temperature, chilled water inlet temperature, chilled water outlet temperature and circulation time is 90,35,16.5,14.4 t and 15 min. The cooling power and the SCP is 1.54 kW and 192.4 W/kg, when hot water temperature,cooling water temperature,chilled water inlet temperature, chilled water outlet temperature and circulation time is 90 ,35 ,16.5 ,14.4 °C and 15 min. The energy density of the prototype is 10.3 kW/m3. The coefficient of heat transfer of the parallel flow heat exchanger is 472.3 W/(m2-K).%利用平行流换热器和自制的硅胶/氯化钙复合吸附剂研制了一台小型吸附式制冷样机,并对样机进行 了试验测试.测试结果表明:相对于硅胶吸附制冷样机,复合吸附剂吸附制冷样机的COP和制冷功率都有了明显的提高;在热源温度为90℃,冷却水温度为35℃,冷冻水进口温度为16.5℃、出口温度为14.4℃,吸附10min,脱附5 min的运行工况下,在整个循环周期内(15 min),制冷功率为1.03 kW,SCP为128.3 W/kg,COP为0.29;在吸附周期内(10 min),制冷功率为1.54 kW,SCP为192.4 W/kg,样机的能量密度为10.3 kW/m3,平行流换热器的换热系数为472.3 W/(m2·K).

  2. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    Science.gov (United States)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  3. Magneto-controllable capture and release of cancer cells by using a micropillar device decorated with graphite oxide-coated magnetic nanoparticles.

    Science.gov (United States)

    Yu, Xiaolei; He, Rongxiang; Li, Shasha; Cai, Bo; Zhao, Libo; Liao, Lei; Liu, Wei; Zeng, Qian; Wang, Hao; Guo, Shi-Shang; Zhao, Xing-Zhong

    2013-11-25

    Aiming to highly efficient capture and analysis of circulating tumor cells, a micropillar device decorated with graphite oxide-coated magnetic nanoparticles is developed for magneto-controllable capture and release of cancer cells. Graphite oxide-coated, Fe3 O4 magnetic nanoparticles (MNPs) are synthesized by solution mixing and functionalized with a specific antibody, following by the immobilization of such modified MNPs on our designed micropillar device. For the proof-of-concept study, a HCT116 colorectal cancer cell line is employed to exam the capture efficiency. Under magnetic field manipulation, the high density packing of antibody-modified MNPs on the micropillars increases the local concentration of antibody, as well as the topographic interactions between cancer cells and micropillar surfaces. The flow rate and the micropillar geometry are optimized by studying their effects on capture efficiency. Then, a different number of HCT116 cells spiked in two kinds of cell suspension are investigated, yielding capture efficiency >70% in culture medium and >40% in blood sample, respectively. Moreover, the captured HCT116 cells are able to be released from the micropillars with a saturated efficiency of 92.9% upon the removal of applied magnetic field and it is found that 78% of the released cancer cells are viable, making them suitable for subsequent biological analysis. PMID:23650272

  4. 石英砂负载氧化铁吸附去除溶液中亚甲蓝的研究%Removal of methylene blue in solution by iron-oxide coated quartz sand

    Institute of Scientific and Technical Information of China (English)

    宣寒; 谢发之; 王颖; 曹田; 陈艳; 陈方平

    2013-01-01

    Using quartz sand as raw material,iron oxide coated quartz sand(IOCS) has been prepared.IOCS performance and the effect of adsorption conditions on the adsorption capacity for methylene blue and the regeneration of adsorptive column are investigated.The adsorption course has been studied kinetically.The results show that the IOCS prepared by high temperature sintering method has better adsorption capacity for methylene blue.The optimal conditions for IOCS to adsorb the methylene blue in solution are as follows:pH is 13.5,mass concentration of methylene blue about 6 mg/L,temperature 293 K,and adsorptive sample flow velocity 4 BV/h.The curve of adsorptive kinetics of methylene blue in solution can be fitted with Weber-Morris curve.Langmuir and Freundlich adsorption isotherm equations can well describe the adsorption course of methylene blue in solution by IOCS.The regeneration efficacy of IOCS adsorptive column by using 0.01 mol/L of HCl is pretty good.%以石英砂为原料制得石英砂负载氧化铁(IOCS),考察了IOCS的性能、吸附条件对IOCS吸附亚甲蓝效果的影响及吸附柱的再生,并对吸附过程进行了动力学研究.结果表明,采用高温烧结法制备的IOCS吸附亚甲蓝效果较好;IOCS对溶液中亚甲蓝吸附的适宜条件:pH为13.5,亚甲蓝质量浓度约为6mg/L,温度为293 K,上样液吸附流速为4 BV/h; IOCS对溶液中亚甲蓝的吸附动力学曲线可以用Weber-Morris曲线来拟合;Langmuir吸附等温方程和Freundlich方程都能较好地描述IOCS对溶液中亚甲蓝的吸附过程;0.01 mol/L的HCl对IOCS吸附柱的再生效果较好.

  5. Black Sprayable Molecular Adsorber Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This novel molecular adsorber coating would alleviate the size, weight, and complexity issues of traditional molecular adsorber puck.  A flexible tape version...

  6. Protein purification using magnetic adsorbent particles

    DEFF Research Database (Denmark)

    Franzreb, M; Siemann-Herzberg, M.; Hobley, Timothy John;

    2006-01-01

    The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence...... of development of protein separation using magnetic adsorbent particles and identify the obstacles that must be overcome if protein purification with magnetic adsorbent particles is to find its way into industrial practice....... of other suspended solids. Thus, it becomes possible to magnetically separate selected target species directly out of crude biological process liquors (e.g. fermentation broths, cell disruptates, plasma, milk, whey and plant extracts) simply by binding them on magnetic adsorbents before application...

  7. Thickness effects on corrosion and wear resistance properties of micro-arc discharge oxide coatings on AZ91D magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei-jiu; LIU Ming; LI Zhao-feng; ZENG Rong-chang

    2006-01-01

    The microarc oxidation coatings with difference thickness were synthesized on AZ91D magnesium alloy. The microstructure and phase structure of the coatings were analyzed using SEM and XRD, the tribological properties and corrosion resistance behaviour of the coatings were also investigated. The results show that the coating contains two layers, a porous outer layer and relatively dense inner layer. The microhardness of the MAO coatings is four to six times higher than that of the magnesium alloy substrate. The MAO coatings have much better wear-resistance and corrosion resistance abilities than those of magnesium alloy substrate, but possess higher friction coefficient. The results further indicate that there is an optimization thickness for corrosion and wear resistance.

  8. Composites

    OpenAIRE

    Zhao, Hanqing; Guo, Yuanzheng

    2014-01-01

    This thesis was a literature study concerning composites. With composites becoming increasingly popular in various areas such as aerospace industry and construction, the research about composites has a significant meaning accordingly. This thesis was aim at introducing some basic information of polymer matrix composites including raw mate-rial, processing, testing, applications and recycling to make a rough understanding of this kind of material for readers. Polymeric matrices, fillers,...

  9. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2010-01-01

    New Year is an open composition to be realised by improvising musicians. It is included in "From the Danish Seasons" (see under this title). See more about my composition practise in the entry "Composition - General Introduction". This work is licensed under a Creative Commons "by-nc" License. You...

  10. Preparations of PAN-based adsorbers for separation of cesium and cobalt from radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Nilchi, A. [Jaber Ibn Hayan Research Laboratories, Atomic Energy Organization of Iran, P.O. Box 11365/8486, Tehran (Iran, Islamic Republic of)]. E-mail: anilchi@aeoi.org.ir; Atashi, H. [Sistan and Baluchestan University, Zahedan (Iran, Islamic Republic of); Javid, A.H. [Azad University, Tehran (Iran, Islamic Republic of); Saberi, R. [Jaber Ibn Hayan Research Laboratories, Atomic Energy Organization of Iran, P.O. Box 11365/8486, Tehran (Iran, Islamic Republic of)

    2007-05-15

    Ion-exchange adsorbers are widely used for radioisotope separation, as well as for the removal of hazardous fission products from aqueous waste prior to discharge to the environment. Inorganic exchangers are of particular interest because of their resistance to radiolytic damage and selectivity for specific fission products. Composite inorganic-organic adsorbers represent a group of inorganic ion exchangers modified by using binding organic material, polyacrylonitrile, for preparation of larger size particles with higher granular strength. At the same time, kinetics of ion exchange and sorption capacity of such composite adsorbers are not influenced by the binding polymer. The contents of active component in composite adsorber were varied over a very broad range of 5-95% of the dry weight of the composite adsorber, and tested for separation and concentration of various stimulated wastes. Three different inorganic sorbents, granular hexacyanoferrate-based ion exchanger, were developed for the removal of Cs and Co ions from waste solutions containing different complexing agents as detergents. Radiation and thermal stability studies show that these adsorbents can be used for medium-active waste treatment.

  11. Removal of dissolved heavy metals from pre-settled stormwater runoff by iron-oxide coated sand (IOCS)

    DEFF Research Database (Denmark)

    Møller, J.; Ledin, Anna; Mikkelsen, Peter Steen

    2002-01-01

    the experiments showed, that Pb, Cu and Zn penetrated to different depths in the columns. No saturation of lead was found in the first cm of the column after 1696 pore volumes of teated water. Copper showed a curved adsorption front, indicating that an infiltration speed of 3 m/h is sligtly too fast...... for the equilibrium between water phase and IOCS to be reached. The column with ferrihydrite was fully saturated with regard to zinc after 1696 pore volumes. In general the coating of goethite is found to be at least twice as effective as ferrihydrite with respect to the adsorption capacity of copper and zinc....... Furthermore, desorption of metals from the IOCS by soaking in weak acid (pH=2.25) showed that 20%, 58% and 75% of the adsorbed Pb, Cu and Zn was recovered. Reuse of the IOCS after soaking in weak acis is possible, but it is likely to lower the adsorption capacities found in this study....

  12. Experimental study of a three-adsorber sorption refrigerator for utilization of renewable sources of energy

    Science.gov (United States)

    Tsitovich, A. P.

    2013-03-01

    A three-adsorber refrigerator has been created and experimentally tested, in which use is made of a composite sorbent consisting of activated carbon fiber and alkali salts. This sorbent has a high capacity of storage of refrigeration characteristic of chemical coolers and a high sorption rate characteristic of adsorption refrigerators. The sorbent structure makes it possible to effect a convective intrapore process of cooling of the sorbent through intense two-phase heat transfer. A three-adsorber refrigerator has a higher refrigeration efficiency and smaller mass and overall dimensions than a traditional two-stage four-adsorber refrigerator.

  13. A novel fiber-based adsorbent technology

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.A. [Chemica Technologies, Inc., Bend, OR (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  14. Filter-adsorber aging assessment

    International Nuclear Information System (INIS)

    An aging assessment of high-efficiency particulate (HEPA) air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission's (USNRC) Nuclear Plant Aging Research (NPAR) Program. This evaluation of the general process in which characteristics of these two components gradually change with time or use included the compilation of information concerning failure experience, stressors, aging mechanisms and effects, and inspection, surveillance, and monitoring methods (ISMM). Stressors, the agents or stimuli that can produce aging degradation, include heat, radiation, volatile contaminants, and even normal concentrations of aerosol particles and gasses. In an experimental evaluation of degradation in terms of the tensile breaking strength of aged filter media specimens, over forty percent of the samples did not meet specifications for new material. Chemical and physical reactions can gradually embrittle sealants and gaskets as well as filter media. Mechanisms that can lead to impaired adsorber performance are associated with the loss of potentially available active sites as a result of the exposure of the carbon to airborne moisture or volatile organic compounds. Inspection, surveillance, and monitoring methods have been established to observe filter pressure drop buildup, check HEPA filters and adsorbers for bypass, and determine the retention effectiveness of aged carbon. These evaluations of installed filters do not reveal degradation in terms of reduced media strength but that under normal conditions aged media can continue to effectively retain particles. However, this degradation may be important when considering the likelihood of moisture, steam, and higher particle loadings during severe accidents and the fact it is probable that the filters have been in use for an extended period

  15. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption

    KAUST Repository

    Zhao, Yunfeng

    2015-01-01

    Selective adsorption of CO2 has important implications for many energy and environment-related processes, which require the separation of CO2 from other gases (e.g. N2 and CH4) with high uptakes and selectivity. The development of high-performance adsorbents is one of the most promising solutions to the success of these processes. The present review is focused on the state-of-the-art of carbon-based (carbonaceous) adsorbents, covering microporous inorganic carbons and microporous organic polymers, with emphasis on the correlation between their textural and compositional properties and their CO2 adsorption/separation performance. Special attention is given to the most recently developed materials that were not covered in previous reviews. We summarize various effective strategies (N-doping, surface functionalization, extra-framework ions, molecular design, and pore size engineering) for enhancing the CO2 adsorption capacity and selectivity of carbonaceous adsorbents. Our discussion focuses on CO2/N2 separation and CO2/CH4 separation, while including an introduction to the methods and criteria used for evaluating the performance of the adsorbents. Critical issues and challenges regarding the development of high-performance adsorbents as well as some overlooked facts and misconceptions are also discussed, with the aim of providing important insights into the design of novel carbonaceous porous materials for various selective adsorption based applications. This journal is © The Royal Society of Chemistry.

  16. Scanning tunneling microscopy theory for an adsorbate: Application to adenine adsorbed on a graphite surface

    OpenAIRE

    Ou-Yang, Hui; Marcus, R. A.; Källebring, Bruno

    1994-01-01

    An expression is obtained for the current in scanning tunneling microscopy (STM) for a single adsorbate molecule. For this purpose the ``Newns–Anderson'' treatment (a ``discrete state in a continuum'' treatment) is used to obtain wave functions and other properties of the adsorbate/substrate system. The current is expressed in terms of the adsorbate–tip matrix elements, and an effective local density of states of the adsorbate/substrate system, at the adsorbate. As an example, the treatment i...

  17. 磁性壳聚糖/多壁碳纳米管复合吸附剂吸附甲基橙的性能研究%Adsorption of Methyl Orange by Magnetic Chitosan/Multi-walled Carbon Nanotubes Composite Adsorbent

    Institute of Scientific and Technical Information of China (English)

    胡琳; 沈婷婷; 蒋茹; 朱华跃

    2011-01-01

    Magnetic chitosan/multi-walled carbon nanotubes composite adsorbent was prepared by micro-emulsification method by introducing chitosan and multi-walled carbon nanotubes (MWCNT) as effective components and using Υ-Fe2O3 particles as magnetic assisted separating agent. The adsorbent was characterized by XRD and VSM. The effects of adsorbent ratio, dose of adsorbent, initial concentration of methyl orange, initial pH value and temperature on the methyl orange adsorption were studied. The results showed that magnetic Υ-Fe2 O3 particles and MWCNT have been enwrapped by chitosan. The adsorption capacity was obviously increased due to the introduction of MWCNT. The optimal adsorbent dose was 0.6 g/L. The dye removal percentage decreased with the increase of initial concentration of methyl orange, while the adsorption capacity increased. Acidic environment was more favorable to adsorption. Adsorption process was exothèrmic. Kinetics data were better fitted by pseudo-second-order kinetic model, and intra-particle diffusion was not the only rate-determining process. Adsorption isotherm was better fitted by Langmuir isotherm, and its maximum monolayer adsorption capacity was 62.97 mg/g.%以壳聚糖、多壁碳纳米管和磁性γ-Fe2O3粒子为原料,通过微乳化法制备出磁性壳聚糖/多壁碳纳米管复合吸附剂.运用XRD和VSM等手段对复合吸附剂进行了表征,并研究了吸附刑配比、吸附剂投加量、甲基橙初始浓度、pH、无机阴离子、溫度等因素对甲基橙脱色效果的影响.结果表明,γ-Fe2O3磁性粒子和多壁碳纳米管被壳聚糖包裹;引入多壁碳纳米管显著提高了吸附容量;吸附剂的最佳投加量为0.6 g/L;甲基橙初始浓度增大,去除率下降,吸附量上升;酸性环境有利于吸附;降低温度有利于吸附;吸附动力学较好地符合拟二级动力学模型,分子内扩散模型是吸附控制机制之一;吸附等温线更符合Langmuir模型,最

  18. Synthesis and performance evaluation of Al/Fe oxide coated diatomaceous earth in groundwater defluoridation: Towards fluorosis mitigation.

    Science.gov (United States)

    Izuagie, Anthony A; Gitari, Wilson M; Gumbo, Jabulani R

    2016-08-23

    The quest to reduce fluoride in groundwater to WHO acceptable limit of 1.5 mg/L to prevent diseases such as teeth mottling and skeletal fluorosis was the motivation for this study. Al/Fe oxide-modified diatomaceous earth was prepared and its defluoridation potential evaluated by batch method. The sorbent with pHpzc 6.0 ± 0.2 is very reactive. The maximum 82.3% fluoride removal attained in 50 min using a dosage of 0.3 g/100 mL in 10 mg/L fluoride was almost attained within 5 min contact time; 81.3% being the percent fluoride removal at 5 min contact time. The sorbent has a usage advantage of not requiring solution pH adjustment before it can exhibit its fluoride removal potential. A substantial amount of fluoride (93.1%) was removed from solution when a sorbent dosage of 0.6 g/100 mL was contacted with 10 mg/L fluoride solution for 50 min at a mixing rate of 200 rpm. The optimum adsorption capacity of the adsorbent was 7.633 mg/g using a solution containing initially 100 mg/L fluoride. The equilibrium pH of the suspensions ranged between 6.77 and 8.26 for 10 and 100 mg/L fluoride solutions respectively. Contacting the sorbent at a dosage of 0.6 g/100 mL with field water containing 5.53 mg/L at 200 rpm for 50 min reduced the fluoride content to 0.928 mg/L-a value below the upper limit of WHO guideline of 1.5 mg/L fluoride in drinking water. The sorption data fitted to both Langmuir and Freundlich isotherms but better with the former. The sorption data obeyed only the pseudo-second-order kinetic, which implies that fluoride was chemisorbed. PMID:27220558

  19. Influence of frequency on the structure of zirconium oxide coatings deposited from aqueous electrolytes under microplasma oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Gubaidulina, Tatiana A., E-mail: goub2002@mail.ru; Sergeev, Viktor P., E-mail: vserg@mail.tomsknet.ru; Fedorischeva, Marina V., E-mail: fmw@ispms.tsc.ru; Kalashnikov, Mark P., E-mail: kmp1980@mail.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Kuzmin, Oleg S., E-mail: ostk@mail2000ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    The work describes the microplasma oxidation (MPO) of zirconium surface resulting in the formation of zirconium oxide Zr-Al-Nb-O. We have used novel power supply to deposit oxide ceramic coatings by MPO and studied the effect of current density on the phase structure of oxide ceramic coatings. The size of microcracks in the coatings was determined at different frequencies. We have also used EVO50c scanning election microscope with an attachment for elemental analysis to study the morphology and elemental composition of oxide ceramic coating. In addition, we have established the influence of the frequency on the phase composition of the coating: at the frequency of 2500 Hz, the fraction of monoclinic phase was 18%, while the fraction of tetragonal phase amounted to 72%. The oxide ceramic coating produced at 250 Hz contained 38% of monoclinic phase and 62% of tetragonal phase; in addition, it had no buildups and craters.

  20. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Chris [ORNL; Yatsandra, Oyola [ORNL; Mayes, Richard [ORNL; none,; Gill, Gary [PNNL; Li-Jung, Kuo [PNNL; Wood, Jordana [PNNL; Sadananda, Das [ORNL

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  1. NOx adsorber and method of regenerating same

    Science.gov (United States)

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  2. Nanovalved Adsorbents for CH4 Storage.

    Science.gov (United States)

    Song, Zhuonan; Nambo, Apolo; Tate, Kirby L; Bao, Ainan; Zhu, Minqi; Jasinski, Jacek B; Zhou, Shaojun J; Meyer, Howard S; Carreon, Moises A; Li, Shiguang; Yu, Miao

    2016-05-11

    A novel concept of utilizing nanoporous coatings as effective nanovalves on microporous adsorbents was developed for high capacity natural gas storage at low storage pressure. The work reported here for the first time presents the concept of nanovalved adsorbents capable of sealing high pressure CH4 inside the adsorbents and storing it at low pressure. Traditional natural gas storage tanks are thick and heavy, which makes them expensive to manufacture and highly energy-consuming to carry around. Our design uses unique adsorbent pellets with nanoscale pores surrounded by a coating that functions as a valve to help manage the pressure of the gas and facilitate more efficient storage and transportation. We expect this new concept will result in a lighter, more affordable product with increased storage capacity. The nanovalved adsorbent concept demonstrated here can be potentially extended for the storage of other important gas molecules targeted for diverse relevant functional applications. PMID:27124722

  3. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  4. Signal enhancement in electrospray laser desorption/ionization mass spectrometry by using a black oxide-coated metal target and a relatively low laser fluence.

    Science.gov (United States)

    Kononikhin, Alexey; Huang, Min-Zong; Popov, Igor; Kostyukevich, Yury; Kukaev, Evgeny; Boldyrev, Alexey; Spasskiy, Alexander; Leypunskiy, Ilya; Shiea, Jentaie; Nikolaev, Eugene

    2013-01-01

    The electrospray Laser desorption/ionization (ELDI) method is actively used for direct sample analysis and ambient mass spectrometry imaging. The optimizing of Laser desorption conditions is essential for this technology. In this work, we propose using a metal target with a black oxide (Fe3O4) coating to increase the signal in ELDI-MS for peptides and small proteins. The experiments were performed on an LTQ-FT mass spectrometer equipped with a home-made ELDI ion source. A cutter blade with black oxide coating was used as a target. A nitrogen laser was used with the following parameters: 337 nm, pulse duration 4ns, repetition rate 10 Hz, fluence to approximately 700 Jm(-2). More than a five times signal increase was observed for a substance P peptide when a coated and a non-coated metal target were compared. No ion signal was observed for proteins if the same fluence and the standard stainless steel target were used. With the assistance of the Fe3O4 coated metal target and a relatively low laser fluence laser desorption and thus significantly increase the analyte signal in ELDI-MS. A relatively low laser fluence (< or = 700 Jm(-2)) was enough to desorb peptides and proteins (up to 17 kDal with the assistance of the Fe3O4-coated metal target under ambient conditions. PMID:24575623

  5. EMISSION REDUCTION FROM A DIESEL ENGINE FUELED BY CERIUM OXIDE NANO-ADDITIVES USING SCR WITH DIFFERENT METAL OXIDES COATED CATALYTIC CONVERTER

    Directory of Open Access Journals (Sweden)

    B. JOTHI THIRUMAL

    2015-11-01

    Full Text Available This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in nanoparticle form on the major physiochemical properties and the performance of diesel. The fuel is modified by dispersing the catalytic nanoparticle by ultrasonic agitation. The physiochemical properties of sole diesel fuel and modified fuel are tested with ASTM standard procedures. The effects of the additive nanoparticles on the individual fuel properties, the engine performance, and emissions are studied, and the dosing level of the additive is optimized. Cerium oxide acts as an oxygen-donating catalyst and provides oxygen for the oxidation of CO during combustion. The active energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall which results in reduction in HC emission by 56.5%. Furthermore, a low-cost metal oxide coated SCR (selective catalyst reduction, using urea as a reducing agent, along with different types of CC (catalytic converter, has been implemented in the exhaust pipe to reduce NOx. It was observed that a reduction in NOx emission is 50–60%. The tests revealed that cerium oxide nanoparticles can be used as an additive in diesel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  6. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium.

    Science.gov (United States)

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-05-30

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent. PMID:22464752

  7. Heat transfer to the adsorbent in solar adsorption cooling device

    Science.gov (United States)

    Pilat, Peter; Patsch, Marek; Papucik, Stefan; Vantuch, Martin

    2014-08-01

    The article deals with design and construction of solar adsorption cooling device and with heat transfer problem in adsorber. The most important part of adsorption cooling system is adsorber/desorber containing adsorbent. Zeolith (adsorbent) type was chosen for its high adsorption capacity, like a coolant was used water. In adsorber/desorber occur, at heating of adsorbent, to heat transfer from heat change medium to the adsorbent. The time required for heating of adsorber filling is very important, because on it depend flexibility of cooling system. Zeolith has a large thermal resistance, therefore it had to be adapted the design and construction of adsorber. As the best shows the tube type of adsorber with double coat construction. By this construction is ensured thin layer of adsorbent and heating is quick in all volume of adsorbent. The process of heat transfer was experimentally measured, but for comparison simulated in ANSYS, too.

  8. States of water adsorbed on perindopril crystals

    Science.gov (United States)

    Stepanov, V. A.; Khmelevskaya, V. S.; Bogdanov, N. Yu.; Gorchakov, K. A.

    2011-10-01

    The relationship between the structural state of adsorbed water, the crystal structure of the substances, and the solubility of the perindopril salt C19H32N2O5 · C4H11N in water was studied by IR spectroscopy and X-ray diffractometry. The high-frequency shift of the stretching vibrations of adsorbed water and the solubility depend on the crystal structure of the drug substance. A reversible chemical reaction occurred between the adsorbed water and the perindopril salt.

  9. Mitigation of chromatography adsorbent lot performance variability through control of buffer solution design space.

    Science.gov (United States)

    Aono, Hiromasa; Iliescu, Ionela; Cecchini, Doug; Wood, Susanne; McCue, Justin T

    2013-11-29

    The separation of undesired product-related impurities often poses a challenge in the purification of protein therapeutic species. Product-related impurity species, which may consist of undesirable isoforms, aggregated, or misfolded variants of the desired monomeric form of the product, can be challenging to remove using preparatory scale chromatographic techniques. When using anion exchange chromatography to remove undesirable product-related impurities, the separation can be highly sensitive to relatively small changes in the chromatography operating conditions, including changes to buffer solution pH, buffer solution conductivity protein loading, and operating temperature. When performing difficult separations, slight changes to the chemical and physical properties of the anion exchange adsorbent lot may also impact the separation profile. Such lot-to-lot variability may not be readily measurable by the adsorbent manufacturer, since variability can be highly dependent on a specific protein separation. Consequently, manufacturers of chromatographic adsorbents may not be able to control adsorbent lot to lot variability tightly enough to prevent differences from occurring when performing difficult product-related separations at the preparatory scale. In such cases, it is desirable to design a chromatography step with a control strategy which accounts for adsorbent lot to lot variability in the separation performance. In order to avoid the undesired changes to process consistency and product quality, a proper adjustment of the column operating conditions can be implemented, based on the performance of each adsorbent lot or lot mixture. In this work, we describe how the adjustment of the column buffer solution composition can be used as a design space based-control strategy used to ensure consistent process performance and product quality are achieved for an anion exchange chromatography step susceptible to adsorbent lot to lot performance variability. In addition, a

  10. Chemical Modifications of Cassava Peel as Adsorbent Material for Metals Ions from Wastewater

    Directory of Open Access Journals (Sweden)

    Daniel Schwantes

    2016-01-01

    Full Text Available Residues from the processing of cassava roots (Manihot esculenta Crantz, or cassava peels, are evaluated as chemically modified adsorbents with H2O2, H2SO4, and NaOH, in the removal of metal ions Cd(II, Pb(II, and Cr(III from contaminated water. Modified adsorbents were chemically characterized for their chemical composition and pHPZC (point of zero charge, while adsorption tests determined the best conditions of pH, adsorbent mass, and contact time between adsorbent and adsorbate in the process of removal of the metal ions. Isotherms obtained from the preliminary results were linearized by Langmuir’s and Freudlich’s models. The thermodynamic parameters, such as ΔH, ΔG, and ΔS, were also evaluated. The modifying solutions proposed were effective in the modification of adsorbents and resulted in high capacity sorption materials. Equilibrium time between adsorbent and adsorbate for the solutions contaminated with metals is about 40 minutes. The Langmuir model adjusted to most results, indicating monolayers adsorption of Cd(II, Pb(II, and Cr(III. The values obtained for Langmuir Qm show a higher adsorption capacity caused by chemical modifications, with values such as 19.54 mg Cd(II per g of M. NaOH, 42.46 mg of Pb(II per g of M. NaOH, and 43.97 mg of Cr(III per g of M H2O2. Results showed that modified cassava peels are excellent adsorbent, renewable, high availability, and low-cost materials and a feasible alternative in the removal of metals in industries.

  11. Superparamagnetic iron oxide coated on the surface of cellulose nanospheres for the rapid removal of textile dye under mild condition

    Science.gov (United States)

    Qin, Yunfeng; Qin, Zongyi; Liu, Yannan; Cheng, Miao; Qian, Pengfei; Wang, Qian; Zhu, Meifang

    2015-12-01

    Magnetic composite nanoparticles (MNPs) were prepared by anchoring iron oxide (Fe3O4) on the surface of carboxyl cellulose nanospheres through a facile chemical co-precipitation method. The as-prepared MNPs were characterized by atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, wide-angle X-ray diffraction measurement, thermal gravity analysis and vibrating sample magnetometry. These MNPs were of a generally spherical shape with a narrow size distribution, and exhibited superparamagnetic behaviors with high saturation magnetization. High efficient removal of Navy blue in aqueous solution was demonstrated at room temperature in a Fenton-like system containing the MNPs and H2O2, which benefited from small particle size, large surface area, high chemical activity, and good dispersibility of the MNPs. The removal efficiency of Navy blue induced by the MNPs prepared at a weight ratio of cellulose to iron of 1:2 were 90.6% at the first minute of the degradation reaction, and 98.0% for 5 min. Furthermore, these MNPs could be efficiently recycled and reused by using an external magnetic field. The approach presented in this paper promotes the use of renewable natural resources as templates for the preparation and stabilization of various inorganic nanomaterials for the purpose of catalysis, magnetic resonance imaging, biomedical and other potential applications.

  12. Effects of Anodic Voltages on Microstructure and Properties of Plasma Electrolytic Oxidation Coatings on Biomedical NiTi Alloy

    Institute of Scientific and Technical Information of China (English)

    Jilin Xu; Fu Liu; Junming Luo; Liancheng Zhao

    2013-01-01

    Plasma electrolytic oxidation (PEO) coatings,formed under various anodic voltages (320-440 V) on biomedical NiTi alloy,are mainly composed of γ-Al2O3 crystal phase.The evolution of discharging sparks during the PEO process under different anodic voltages was observed.The surface and cross-sectional morphologies,composition,bonding strength,wear resistance and corrosion resistance of the coatings were investigated by scanning electron microscopy (SEM),thin-film X-ray diffraction (TF-XRD),energy dispersive X-ray spectrometry (EDS),surface roughness,direct pull-off test,ball-on-disk friction and wear test and potentiodynamic polarization test,respectively.The results showed that the evolution of discharging sparks during the PEO process directly influenced the microstructure of the PEO coatings and further influences the properties.When the anodic voltage increased from 320 V to 400 V,the corrosion resistance and wear resistance of the coatings slowly increased,and all the bonding strength was higher than 60 MPa; further increasing the anodic voltages,especially up to 440 V,although the thickness and γ-Al2O3 crystallinity of the coatings further increased,the microstructure and properties of the coatings were obviously deteriorated.

  13. Electro-Mechanical Coupling of Indium Tin Oxide Coated Polyethylene Terephthalate ITO/PET for Flexible Solar Cells

    KAUST Repository

    Saleh, Mohamed A.

    2013-05-15

    Indium tin oxide (ITO) is the most widely used transparent electrode in flexible solar cells because of its high transparency and conductivity. But still, cracking of ITO on PET substrates due to tensile loading is not fully understood and it affects the functionality of the solar cell tremendously as ITO loses its conductivity. Here, we investigate the cracking evolution in ITO/PET exposed to two categories of tests. Monotonous tensile testing is done in order to trace the crack propagation in ITO coating as well as determining a loading range to focus on during our study. Five cycles test is also conducted to check the crack closure effect on the resistance variation of ITO. Analytical model for the damage in ITO layer is implemented using the homogenization concept as in laminated composites for transverse cracking. The homogenization technique is done twice on COMSOL to determine the mechanical and electrical degradation of ITO due to applied loading. Finally, this damage evolution is used for a simulation to predict the degradation of ITO as function in the applied load and correlate this degradation with the resistance variation. Experimental results showed that during unloading, crack closure results in recovery of conductivity and decrease in the overall resistance of the cracked ITO. Also, statistics about the crack spacing showed that the cracking pattern is not perfectly periodical however it has a positively skewed distribution. The higher the applied load, the less the discrepancy in the crack spacing data. It was found that the cracking mechanism of ITO starts with transverse cracking with local delamination at the crack tip unlike the mechanism proposed in the literature of having only cracking pattern without any local delamination. This is the actual mechanism that leads to the high increase in ITO resistance. The analytical code simulates the damage evolution in the ITO layer as function in the applied strain. This will be extended further to

  14. Corrosion and bioactivity performance of graphene oxide coating on TiNb shape memory alloys in simulated body fluid.

    Science.gov (United States)

    Saud, Safaa N; Hosseinian S, Raheleh; Bakhsheshi-Rad, H R; Yaghoubidoust, F; Iqbal, N; Hamzah, E; Ooi, C H Raymond

    2016-11-01

    In the present work, the microstructure, corrosion, and bioactivity of graphene oxide (GO) coating on the laser-modified and -unmodified surfaces of TiNb shape memory alloys (SMAs) were investigated. The surface morphology and chemical composition was examined using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The surface modification was carried out via a femtosecond laser with the aim to increase the surface roughness, and thus increase the adhesion property. FE-SEM analysis of the laser-treated Ti-30at.% Nb revealed the increase in surface roughness and oxygen/nitrogen containing groups on the Ti-30at.% Nb surface after being surface modified via a femtosecond laser. Furthermore, the thickness of GO was increased from 35μm to 45μm after the surface was modified. Potentiodynamic polarisation and electrochemical impedance spectroscopy studies revealed that both the GO and laser/GO-coated samples exhibited higher corrosion resistance than that of the uncoated TiNb SMA sample. However, the laser/GO-coated sample presented the highest corrosion resistance in SBF at 37°C. In addition, during soaking in the simulated body fluid (SBF), both the GO and laser/GO coating improved the formation of apatite layer. Based on the bioactivity results, the GO coating exhibited a remarkable antibacterial activity against gram-negative bacteria compared with the uncoated. In conclusion, the present results indicate that Ti-30at.% Nb SMAs may be promising alternatives to NiTi for certain biomedical applications. PMID:27524069

  15. Synthesis of Micro/Mesoporous Composites and Their Application as CO2 Adsorbents%微孔/介孔复合分子筛的合成及其对CO2的吸附性能

    Institute of Scientific and Technical Information of China (English)

    马燕辉; 赵会玲; 唐圣杰; 胡军; 刘洪来

    2011-01-01

    采用两步晶化法将合成的沸石前驱液(S)或沸石固体粉末(P)经不同浓度(c)的NaOH处理后,分别以表面活性剂十六烷基三甲基溴化铵(CTAB)软模板或介孔炭(aeso-C)硬模板为导向剂,自组装合成S-β-MCM41(c)、P-β-MCM41(c)、P-ZSM-MCM41(c)、P-ZSM-C系列微孔,介孔复合分子筛.考察了沸石分子筛种类、碱处理液浓度以及介孔模板剂对合成复合分子筛结构与性能的影响.X射线衍射(XRD)、透射电子显微镜(TEM)和氮气吸附-脱附表征结果表明产物具有微孔/介孔多级孔结构.该材料对CO2的吸附能力比纯微孔或介孔材料均有明显提高,其中P-ZSM-MCM41(2)的CO2吸附容量最大可达1.51 mmol·g-1,为ZSM-5沸石吸附量的两倍多.%We synthesized a series of micro/mesoporous composites of S-β-MCM41(c), P-β-MCM41(c),P-ZSM-MCM41(c), P-ZSM-C through a two-step crystallization process. During this process, the microporous zeolite precursor solution (S) or the zeolite powder (P) was first synthesized and treated with NaOH solution with different concentration (c), and then the mesopores were induced by hexadecyltrimethyl-ammoniumbromide (CTAB) as a soft template or mesoporous carbon as a hard template. The effects of the type of inorganic precursor, the base concentration, and the type of mesoporous template on the structure and property of the micro/mesoporous composites were investigated. The results of X-ray diffraction (XRD), transmission electron microscopy (TEM), and nitrogen adsorption-desorption isotherms showed that the products contained micropores and mesopores, simultaneously. The CO2 adsorption capacities of these micro/mesoporous composites were obviously improved compared to the pure microporous or mesoporous materials. Among them, P-ZSM-MCM41(2) had the highest CO2 adsorption capacity of 1.51 mmol·g-1, which was almost twice that of the original ZSM-5.

  16. Composites

    Science.gov (United States)

    Taylor, John G.

    The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.

  17. New liquid waste control with tannin adsorbent

    International Nuclear Information System (INIS)

    Since 1971, the Mitsubishi Nuclear Fuel Co., Ltd. (MNF) has been fabricating PWR fuels and developing related technology and processes. In the UF6 reconversion lines of MNF, the ammonium diuranate (ADU) process has been operating and the newly developed process of liquid waste treatment was installed last year. The characteristic of this process is to use insoluble tannin adsorbent which has been developed by MNF. The tannin adsorbent is not only an effective means to adsorb heavy metals such as uranium and plutonium but is also easy to incinerate at low temperature. Control of radioactive liquid waste from nuclear facilities is generally implemented by co-precipitation. However, it produces secondary wastes such as noncombustible materials which include radionuclides and it is anticipated that the storage and disposal of those wastes will be at high cost. Those are the reasons why tannin adsorbent has an advantage, and why MNF develops it. (author)

  18. IR investigations of surfaces and adsorbates

    CERN Document Server

    Gwyn, W

    2001-01-01

    Synchrotron infrared reflection-absorption measurements on single crystal metal surfaces with adsorbates have led to the determination of many key parameters related to the bonding vibrational modes and the dynamics of adsorbates. In particular, energy couplings between electrons and adsorbate motion have been shown to be a dominant mechanism on metal surfaces. Excellent agreement has been obtained with calculations for many of the observations, and the synergy between theory and experiment has led to a deeper understanding of the roles of electrons and phonons in determining the properties of interfaces and their roles in phenomena as diverse as friction, lubrication, catalysis and adhesion. Nonetheless, as the experiments are pushed harder, to describe such effects as co-adsorbed systems, disagreements continue to challenge the theory and our comprehension also is still evolving.

  19. ADSORBENTS USED IN THE CLEARANCE OF ENDOTOXIN

    Institute of Scientific and Technical Information of China (English)

    YU Mei; LIU Tao; Hou Guanghui; YUAN Zhi

    2003-01-01

    A series of modified poly (methyl methacrylate, PMMA) resins were prepared and compared their adsorption abilities to endotoxin. The results showed that adsorbents, which were grafted with tertiary amine and long spacing arms, had the best adsorption capacities and good blood compatibility, It is hopeful to be used as adsorbent in hemoperfusion for clinical clearance of endotoxin. The influence of original concentration of endotoxin on adsorption and the adsorption mechanism were also investigated.

  20. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  1. Behavior of macromolecules in adsorbed layers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for describing the behavior of macromolecules in adsorbed layers is developed by introducing a concept of distribution density of layer thickness U based on stochastic process and probabilistic statistics. The molecular behavior of layers adsorbed on clay particle surfaces is discussed; the random distribution and its statistics of the layer thickness are given by incorporating experimental results with an ionic polyelectrolyte with the molecular weight of 1.08×106 and chain charged density of 0.254.

  2. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    M. Santander

    2015-04-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  3. Photochemistry of Nitrate Adsorbed on Mineral Dust

    Science.gov (United States)

    Gankanda, A.; Grassian, V. H.

    2013-12-01

    Mineral dust particles in the atmosphere are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides including HNO3 and NO2. Although nitrate ion is a well-studied chromophore in natural waters, the photochemistry of adsorbed nitrate on mineral dust particles is yet to be fully explored. In this study, wavelength dependence of the photochemistry of adsorbed nitrate on different model components of mineral dust aerosol has been investigated using transmission FTIR spectroscopy. Al2O3, TiO2 and NaY zeolite were used as model systems to represent non-photoactive oxides, photoactive semiconductor oxides and porous materials respectively, present in mineral dust aerosol. In this study, adsorbed nitrate is irradiated with 254 nm, 310 nm and 350 nm narrow band light. In the irradiation with narrow band light, NO2 is the only detectable gas-phase product formed from nitrate adsorbed on Al2O3 and TiO2. The NO2 yield is highest at 310 nm for both Al2O3 and TiO2. Unlike Al2O3 and TiO2, in zeolite, adsorbed nitrate photolysis to nitrite is observed only at 310 nm during narrow band irradiation. Moreover gas phase products were not detected during nitrate photolysis in zeolite at all three wavelengths. The significance of these differences as related to nitrate photochemistry on different mineral dust components will be highlighted.

  4. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    Science.gov (United States)

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications. PMID:27131811

  5. POTENTIAL USE OF WOOL WASTE AS ADSORBENT FOR THE REMOVAL OF ACID DYES FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    BUCIŞCANU Ingrid

    2016-05-01

    Full Text Available At present, great amounts of raw wool are treated as waste and raise disposal problems. In the sustainable development context , wool is regarded as a biodegradable renewable resource and due to its complex chemical composition and fiber morphology, can find different useful applications. It is the aim of this paper to investigate the potential use of raw wool waste as a non-conventional adsorbent for Acid Red 337(AcR ,currently used for leather and wool dyeing. Two wool-based adsorbents were prepared, namely scoured coarse wool (Wool-S and wool activated with alcoholic solution of sodium hydroxide (Wool-A. Adsorbent dosage, dye concentration, pH and treatment time were factors taken in consideration for the assessment of the sorbate-adsorbent interaction. The removal efficiency (R % is mainly dependent on the solution pH and on the activation treatment applied to wool: at pH 3, the removal efficiency reaches the highest values of 42% on Wool-S and 99% on Wool-A. The adsorption rate is slow and needs almost 6 h to reach equilibrium. The experimental data best fitted the Langmuir equilibrium adsorption model, which proves that the adsorbent possess surface active sites to which the dye sorbate binds in monomolecular layer. Raw wool waste is a potential cheap, biodegradable and effective adsorbent for colored wastewater treatment.

  6. Novel Fiber-Based Adsorbent Technology; FINAL

    International Nuclear Information System (INIS)

    The overall of this Department of Energy (DOE) Phase II SBIR program was to develop a new class of highly robust fiber-based adsorbents for recovery of heavy metals from aqueous waste-streams. The fiber-based adsorbents,when commercialized,will be used for clean up metals in aqueous waste-streams emanating from DOE facilities,industry,mining,and groundwater-cleanup operations.The amount of toxic waste released by these streams is of great significance.The U.S.Environment Protection Agency (EPA) reports that in 1990 alone,4.8 billion pounds of toxic chemicals were released into the environment.Of this waste,the metals-containing waste was the second largest contributor,representing 569 million pounds. This report presents the results of the Phase II program,which successfully synthesized noval fiber-based adsorbents for the removal of Group 12 metals(i.e.mercury),Group 14 metals (lead),and Group 10 metals(platinum and palladium) from contaminated groundwater and industrial waste streams.These fiber-based adsorbents are ideally suited for the recovery of metal ions from aqueous waste streams presently not treatable due to the degrading nature of corrosive chemicals or radioactive components in the feed stream. The adsorbents developed in this program rely on chemically resistant and robust carbon fibers and fabrics as supports for metal-ion selective ligands.These adsorbents demonstrate loading capacities and selectivities for metal ions exceeding those of conventional ion-exchange resins.The adsorbents were also used to construct filter modules that demonstrate minimal fouling,minimal compaction,chemical and physical robustness,and regeneration of metal loading capacity without loss of performance

  7. Preparation of Polyacrylonitrile-potassium Cobalt/Titanium Hexacyanoferrate (Ⅱ) Spherical Composite Adsorbents and Their Adsorption Properties for Cs+%聚丙烯腈-亚铁氰化钾钴/钛球形复合吸附剂制备及其对 Cs +的吸附性能研究

    Institute of Scientific and Technical Information of China (English)

    杜志辉; 贾铭椿; 门金凤; 丰世彬

    2014-01-01

    Polyacrylonitrile-potassium cobalt/titanium hexacyanoferrate (Ⅱ ) spherical composite adsorbents (PAN-KCoCF and PAN-KTiCF) were prepared to remove cesium ions from aqueous solution . The effects of contact time ,pH ,competition ions and initial cesium concentration on cesium sorption were investigated via batch experiments . The adsorptive kinetics and isotherms were analyzed . The characterization of PAN-KCoCF and PAN-KTiCF were performed by SEM ,FT-IR ,XRD ,etc .The results show that the cesium sorption of PAN-KCoCF and PAN-KTiCF can reach equilibrium after about 16 h .With the increase of pH ,the cesium sorption of PAN-KTiCF increases fast at first and maintains at an almost constant value ,while the cesium sorption of PAN-KCoCF isn’t almost affected .Compared with PAN-KTiCF ,the cesium sorption of PAN-KCoCF is more selective when K + , Na+ , NH+4 , Ca2+ or Mg2+ is added to solution .The sorption kinetics of two adsorbents for Cs+ can be described by pseudo-second-order equation ,and the sorption rate is mainly controlled by surface adsorption . The sorption of two adsorbents for cesium is monolayer adsorption ,and the sorption data can be interpreted in terms of Langmuir isotherm . The saturated adsorption capacities of PAN-KCoCF and PAN-KTiCF are 128.370 mg/g and 278.552 mg/g , respectively .%本文合成了聚丙烯腈-亚铁氰化钾钴/钛球形复合吸附剂(PAN-KCoCF和 PAN-KTiCF),通过静态吸附实验,研究了接触时间、pH值、竞争离子、Cs+初始浓度等对 PAN-KCoCF和 PAN-KTiCF吸附Cs+效果的影响,分析了吸附过程的反应动力学和吸附等温线,并用扫描电镜(SEM )、傅里叶红外光谱(FT-IR)、X射线衍射仪(XRD)等对吸附剂进行了分析。结果表明,PAN-KCoCF 和 PAN-KTiCF对Cs+的吸附平衡时间均为16 h ,随着pH值的增加,PAN-KTiCF对Cs+的吸附量先快速增大,随后趋于平缓,而PAN-KCoCF对Cs+的吸附量几乎不变

  8. Black Molecular Adsorber Coatings for Spaceflight Applications

    Science.gov (United States)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  9. Defluoridization Using a Natural Adsorbent, Strychnos Potatorum

    Directory of Open Access Journals (Sweden)

    S.Rayappan

    2014-10-01

    Full Text Available The study assessed the suitability of low-cost natural adsorbent to effectively remediate fluoride contaminated water. The removal of fluoride from aqueous solution by using Strychnos Potatorum was studied in batch technique. Influence of pH, adsorbent dose, contact time, co ions, speed and initial concentration on the adsorption were investigated. The maximum removal of fluoride ion was obtained at pH 7. The removal of fluoride was expressed with Langmuir and Freundlich isotherm. It was found that the sufficient time for adsorption equilibrium of fluoride ion was 1 hour. The removal of fluoride ions was maximum for the adsorbent dosage of SP is 50mg/50ml. The fluoride adsorption was maximum at 60minutes. The adsorption of F- ion was maximum in the shaking speed of 120 rpm. The presence of interfering ions such as nitrate and carbonate showed positive effect while sulphate and chloride showed little negative effect and phosphate showed high negative effect for the adsorbent. The optimum initial fluoride concentration for SP adsorbent was 1mg/50ml.

  10. STUDY ON THE ADSORPTION OF OXIDATION OF CROSSLINKED β—CYCLODEXTRIN AND ITS CXOMPOSITE ADSORBENT WITH DIALYTIC MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    ShiLinqi; HeBuinglin

    1997-01-01

    An urea adsorbent with an aldo structure was obtained by the oxidation of a crosslinked β-cyclodextrin polymer.The highest urea adsorption capacity reached 56.7mg/g in 0.05Maqueous phosphate buffer 37℃ and pH=7.4,and decrease to 4.8mg/g in in aqueous human serum albumin.The composite adsorbent was prepared by the oxidation of a crosslinked β-cyclodextrin and dialytic membrane.It was found that the composite adsorbent has a higher urea adsorption selectivity and capacity compared to that of the oxidation of a crosslinked β-cyclodextrin adsorbent when urea is in aqueous human serum albumin.

  11. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  12. Removal of radioactive iodine from water using Ag{sub 2}O grafted titanate nanolamina as efficient adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Arixin; Sarina, Sarina; Zheng, Zhanfeng [School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001 (Australia); Yang, Dongjiang [College of Chemistry, Chemical and Environmental Engineering, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Liu, Hongwei [School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001 (Australia); Zhu, Huaiyong, E-mail: hy.zhu@qut.edu.au [School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001 (Australia)

    2013-02-15

    Highlights: ► Ag{sub 2}O nanocrystals were deposited on titanate nanolamina prepared from TiOSO{sub 4}. ► The composite is efficient adsorbent for removal of radioactive Iodine from water. ► The adsorbent exhibited a high capacity of 3.4 mmol of iodine per gram of adsorbent in 1 h. ► Ag{sub 2}O nanocrystals are firmly anchored on the surface of the titanate lamina by coherent interface. ► The adsorbent can be recovered easily for safe disposal and suitable for column adsorption-bed. -- Abstract: Emergency treatment of radioactive material leakage and safety disposal of nuclear waste is a constant concern all along with the development of radioactive materials applications. To provide a solution, titanate with large surface area (143 m{sup 2} g{sup −1}) and a lamina morphology (the thickness of the lamina is in range of tens of nanometers) was prepared from inorganic titanium compounds by hydrothermal reactions at 433 K. Ag{sub 2}O nanocrystals (5–30 nm) were deposited onto the titanate lamina. The surface of the titanate lamina has crystallographic similarity to that of Ag{sub 2}O nanocrystals. Hence, the deposited Ag{sub 2}O nanocrystals and titanate substrate join together at these surfaces, forming a well-matched phase coherent interface between them. Such coherence between the two phases reduces the overall energy by minimizing surface energy and anchors the Ag{sub 2}O nanocrystals firmly on the external surface of the titanate structure. The composite thus obtained was applied as efficient adsorbent to remove radioactive iodine from water (one gram adsorbent can capture up to 3.4 mmol of I{sup −} anions). The composite adsorbent can be recovered easily for safe disposal. The structure changes of the titanate lamina and the composite adsorbent were monitored by various techniques. The isotherm and kinetics of iodine adsorption, competitive adsorption and column adsorption using the adsorbent were studied to assess its iodine removal abilities

  13. Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: Optimization by response surface methodology

    OpenAIRE

    Ramalingam Subramaniam; Senthil Kumar Ponnusamy

    2015-01-01

    Activated carbon, prepared from an agricultural waste, cashew nut shell (CNS) was utilized as an adsorbent for the removal of methylene blue (MB) dye from aqueous solution. Batch adsorption study was carried out with variables like pH, adsorbent dose, initial dye concentration and time. The response surface methodology (RSM) was applied to design the experiments, model the process and optimize the variable. A 24 full factorial central composite design was successfully employed for experimenta...

  14. Lutetium Oxide Coatings by PVD

    OpenAIRE

    Topping, Stephen G; Park, CH; Rangan, SK; Sarin, VK

    2007-01-01

    Due to its high density and cubic structure, Lutetium oxide (Lu2O3) has been extensively researched for scintillating applications. Present manufacturing methods, such as hot pressing and sintering, do not provide adequate resolution due to light scattering of polycrystalline materials. Vapor deposition has been investigated as an alternative manufacturing method. Lutetium oxide transparent optical coatings by magnetron sputtering offer a means of tailoring the coating for optimum scintillati...

  15. 氧化铁改性石英砂的复合挂膜与氨氮去除试验研究%EXPERIMENTAL STUDY ON COMPOUND FORMATION AND REMOVAL AMMONIA NITROGEN USING IRON OXIDE COATED SANDS

    Institute of Scientific and Technical Information of China (English)

    李冬梅; 刘贝; 庞治星; 刘培涛; 刘雄威; 李绍秀

    2012-01-01

    采用自制的氧化铁改性石英砂滤料(简称“改性砂”),对生物改性砂联合处理微污染物氨氮的复合挂膜启动性能以及滤料表面形态进行了试验研究,并与生物普通砂联用效果进行对比.结果表明,生物普通砂和生物改性砂在挂膜初期的生物量分别为15.46、13.79 nmol/g(n(P)/m(滤料)),稳定运行期分别为18.75、20.09 nmol/g;挂膜初期,生物普通砂与生物改性砂对质量浓度为1~2 mg/L氨氮的去除效果分别达到92%和95%;挂膜稳定期,前者对氨氮的去除效果约60%,后者稳定在80%左右;在不同氨氮质量浓度(0.5~4 mg/L)下,生物普通砂对氨氮去除率从60%上升至80%,生物改性砂的去除率从70%增至95%;过滤前后2种滤料表面形态均发生变化,生物改性砂表面孔隙更小,结构更加复杂多孔,表面粗糙程度进一步增加,对氨氮去除率高.%A homemade iron oxide cCoated sands filters with biological was used to remove ammonia nitrogen from contaminated source water, the process of compound formation start-up and the surface morphology of the two filters was carried out, and contrasted with the effect of biological-raw sands. The results were shown as follows: The biomass of the biological- raw sand filter, and biological-iron oxide coated sand filter were 15.46 and 13.79 nmol/g in the initial of formation, 18.75 and 20.09 nmol/g in the stable of formation. Removal of ammonia nitrogen with concentration among 1.0-2.0 mg/L using biological-raw sands and biological-iron oxide coated sands were 92% to 95% in the initial of formation, In the stable of formation, removal ammonia nitrogen using biological-raw sands stable about 60%, and removal ammonia nitrogen using biological-iron oxide coated sands stable about 80%. In different concentrations of ammonia nitrogen among 0.5~4.0 mg/L, removal efficiency of biological-raw sands from 60% rose to 80%, biological- iron oxide coated sands from 70% rose to

  16. ZM5镁合金微弧氧化膜的摩擦磨损性能研究%Study on Friction and Wear Property of Micro-arc OxidationCoating on ZM5 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    胡慧玲; 吴向清; 谢发勤; 杜肖

    2011-01-01

    利用微弧氧化装置在硅酸盐体系中对ZM5镁合金进行了微弧氧化表面改性处理.采用XRD及SEM分析了ZM5镁合金微弧氧化陶瓷膜的形貌、组成和结构,并对微弧氧化陶瓷膜的硬度以及干式滑动摩擦磨损行为进行了研究.结果表明:微弧氧化膜由三层结构组成,主要由Mg2SiO4相和少量MgO相组成;可以显著提高镁合金基体的硬度和耐磨性,其室温滑动摩擦磨损机理为轻微犁削和粘附转移.%Micro-arc oxidation coating was deposited on ZM5 alloy sample using MAO processing in silicate system. The morphology, content and structure of micro-arc oxidation ceramic coating were investigated by XRD and SEM. The microhardness, friction and wear behavior under dry sliding were also measured. The results show that the micro-arc oxidation coating can be divided into three stratums and the constituent phases mainly are Mg2SiO4 and MgO, The micro-arc oxidation coating can evidently improve the anti-wear performance and rigidity of magnesium. The wear mechanism of the coating is light furrow and conglutinating diversion.

  17. Electrochemical behavior of LiFePO4 cathode materials in the presence of anion adsorbents

    International Nuclear Information System (INIS)

    The poor rate capability is a major problem of olivine-structured lithium iron phosphate (LFP) cathode material in lithium-ion batteries due to its low electric conductivity and sluggish lithium diffusion. Other than the custom strategies to solve this problem like carbon coating and nano-size treatment, we simply mixed LFP with some anion adsorbents, which can store anions from the electrolytes swiftly. The effect of anion adsorbents on the performance of LFP composite electrode has been investigated by cyclic voltammetric tests and the corresponding apparent lithium diffusion coefficients have been measured

  18. Roughness and contact angles of micro-arc oxidation coating on the surface of titanium%纯钛表面微弧氧化膜的粗糙度与接触角

    Institute of Scientific and Technical Information of China (English)

    王磊; 陈建治; 唐建国; 贾暮云; 石玉龙; 闫风英

    2009-01-01

    目的:分析纯钛表面微弧氧化改性对表面氧化膜特性的影响.方法:通过微弧氧化技术在含一定钙磷比例的电解液中制备纯钛表面氧化膜层,进而检测纯钛表面微弧氧化膜的粗糙度和接触角.结果:微弧氧化处理后,纯钛表面生成微孔结构的氧化膜,直径1~5 μm.氧化膜层中含Ti、O、Ca、P4种元素,由锐钛矿型、金红石型二氧化钛,结晶相羟基磷灰石组成;微弧氧化试样的表面粗糙度明显高于未处理纯钛试样(P<0.05),表面接触角小于未处理纯钛试样(P<0.05).结论:经微弧氧化技术处理后,纯钛表面生成了多孔的二氧化钛膜,含羟基磷灰石.膜层表面粗糙度增大,接触角减小,有利于细胞的附着和骨组织的整合.%OBJECTIVE: To analyze the influence of surface modification of pure titanium by micro-arc oxidation on surface oxidation coating features. METHODS: The oxidation coating was prepared on titanium surface by using micro-arc oxidation in electrolyte containing calcium and phosphonium at certain ratio, and the roughness and contact angles of the new oxidation coating were detected. RESULTS: Ceramic microporous coating was formed on titanium surface with micro-arc oxidation, 1-5 urn in diameter. On the surface, the coating was made from O, Ti, Ca, and P elements. The phase components of the coating included anatase, rutile and hydroxyapatite. The surface roughness of micro-arc oxidation specimens was significantly increased (P < 0.05), and contact angles were significantly decreased following micro-arc oxidation (P < 0.05). CONCLUSION: The oxidation coating with micropores, hydroxy-apatite, increased roughness and decreased contact angles on titanium surface formed following micro-arc oxidation, which benefits cell adherence and bone tissue integration.

  19. Di(isothiocyanato)bis(4-methyl-4’-vinyl-2,2’-bipyridine) Ruthenium(II) Films Deposited on Titanium Oxide-Coated, Fluorine-Doped Tin Oxide for an Efficient Solar Cell

    OpenAIRE

    Liu, Yi; Sugimoto, Ryuichi; Sumi, Katsuhiro

    2013-01-01

    Dye-sensitized titanium oxide electrodes were prepared by immobilizing a novel ruthenium complex, di(isothiocy- anato)bis(4-methyl-4’-vinyl-2,2’-bipyridine)ruthenium(II) [(NCS)_2(mvbpy)_2Ru(II)] or the ruthenium complex/sodium 4-vinylbenzenesulfonate onto the surface of a titanium oxide-coated, fluorine-doped tin oxide (TiO_2/FTO) electrode through a new electrochemically initiated film formation method, in which the electrolysis step and the film deposition step were individually performed. ...

  20. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  1. Effect of Adsorbent Diameter on the Performance of Adsorption Refrigeration

    Institute of Scientific and Technical Information of China (English)

    黄宏宇; 何兆红; 袁浩然; 小林敬幸; 赵丹丹; 窪田光宏; 郭华芳

    2014-01-01

    Adsorbents are important components in adsorption refrigeration. The diameter of an adsorbent can af-fect the heat and mass transfer of an adsorber. The effect of particle diameter on effective thermal conductivity was investigated. The heat transfer coefficient of the refrigerant and the void rate of the adsorbent layer can also affect the effective thermal conductivity of adsorbents. The performance of mass transfer in the adsorber is better when pressure drop decreases. Pressure drop decreases with increasing permeability. The permeability of the adsorbent layer can be improved with increasing adsorbent diameter. The effect of adsorbent diameter on refrigeration output power was experimentally studied. Output power initially increases and then decreases with increasing diameter under different cycle time conditions. Output power increases with decreasing cycle time under similar diameters.

  2. The biogeochemical cycle of the adsorbed template. II - Selective adsorption of mononucleotides on adsorbed polynucleotide templates

    Science.gov (United States)

    Lazard, Daniel; Lahav, Noam; Orenberg, James B.

    1988-01-01

    Experimental results are presented for the verification of the specific interaction step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The experimental system consisted of gypsum as the mineral to which an oligonucleotide template attaches (Poly-C or Poly-U) and (5-prime)-AMP, (5-prime)-GMP, (5-prime)-CMP and (5-prime)-UMP as the interacting biomonomers. When Poly-C or Poly-U were used as adsorbed templates, (5-prime)-GMP and (5-prime)-AMP, respectively, were observed to be the most strongly adsorbed species.

  3. Organosilicon Ion-Exchange and Complexing Adsorbents

    Institute of Scientific and Technical Information of China (English)

    M. Voronkov; N. Vlasova; Yu. Pozhidaev; L. Belousova

    2005-01-01

    @@ 1Introduction Modification of mineral synthetic or natural substrates by organosilicon G-functionally substituted monomers, copolycondensation of the latter with organic and organosilicon compounds, and hydrolytic polycondensation of these monomers are the most widely used methods of synthesis of organosilicon adsorbents.

  4. Radon emanation from radium specific adsorbents.

    Science.gov (United States)

    Alabdula'aly, Abdulrahman I; Maghrawy, Hamed B

    2010-01-01

    Pilot studies were undertaken to quantify the total activity of radon that is eluted following no-flow periods from several Ra-226 adsorbents loaded to near exhaustion. The adsorbents studied included two types of barium sulphate impregnated alumina (ABA-8000 and F-1) and Dowex MSC-1 resin treated by either barium hydroxide or barium chloride. In parallel, radium loaded plain activated aluminas and Dowex MSC-1 resin were similarly investigated. The results revealed that radon was quantitatively eluted during the first few bed volumes of column operation after no-flow periods. Although similar radon elution profiles were obtained, the position of the radon peak was found to vary and depended on the adsorbent type. Radon levels up to 24 and 14 kBq dm(-3) were measured after a rest period of 72h from radium exhausted Dowex MSC-1 treated with barium chloride and F-1 impregnated alumina with barium sulphate, respectively. The eluted radon values measured experimentally were compared to those calculated theoretically from accumulated radium quantities for the different media. For plain adsorbents, an agreement better than 10% was obtained. For treated resin-types a consistency within 30% but for impregnated alumina-types high discrepancy between respective values were obtained.

  5. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    Reviews neutron scattering work performed on films of simple gas atoms and molecules adsorbed primarily on graphite surfaces. Exfoliated graphite substrates such as Grafoil were first used in this kind of measurements about five years ago and new results have been reported at an increasing pace. ...

  6. Effect of biofouling on the performance of amidoxime-based polymeric uranium adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jiyeon; Gill, Gary A.; Strivens, Jonathan E.; Kuo, Li-Jung; Jeters, Robert T.; Avila, Andrew; Wood, Jordana R.; Schlafer, Nicholas J.; Janke, Christopher J.; Miller, Erin A.; Thomas, Mathew; Addleman, Raymond S.; Bonheyo, George T.

    2016-01-27

    The Marine Science Laboratory at the Pacific Northwest National Laboratory evaluated the impact of biofouling on uranium adsorbent performance. A surface modified polyethylene adsorbent fiber provided by Oak Ridge National Laboratory, AF adsorbent, was tested either in the presence or absence of light to simulate deployment in shallow or deep marine environments. 42-day exposure tests in column and flume settings showed decreased uranium uptake by biofouling. Uranium uptake was reduced by up to 30 %, in the presence of simulated sunlight, which also increased biomass accumulation and altered the microbial community composition on the fibers. These results suggest that deployment below the photic zone would mitigate the effects of biofouling, resulting in greater yields of uranium extracted from seawater.

  7. Development and Testing of Molecular Adsorber Coatings

    Science.gov (United States)

    Abraham, Nithin; Hasegawa, Mark; Straka, Sharon

    2012-01-01

    The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination. In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulations that passed coating adhesion and vacuum thermal cycling tests were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.

  8. Tailoring fly ash activated with bentonite as adsorbent for complex wastewater treatment

    International Nuclear Information System (INIS)

    Highlights: ► The spent adsorbent annealed at 500 °C can be a suggestion for padding in stone blocks. ► The cations can be adsorbent by the silanol group (Si-OH) of the layers from bentonite ► Copper has a higher affinity for the active sites on adsorbent FAw + B than cadmium. ► This substrate can be recommended for simultaneous removal of heavy metals and MB. ► FAw + B is recommended for wastewater treatment resulted in the dyes finishing industry. - Abstract: Used as adsorbent, alkali fly ash represents a low cost solution for advanced wastewater treatment. The alkali treatment raises sustainability issues therefore, in this research we aim to replace alkali fly ash with washed fly ash (FAw). For improving the adsorption capacity of washed fly ash, bentonite powder (B) was added, as a natural adsorbent with a composition almost identical to the fly ash. The new adsorbent was characterized by AFM, XRD, FTIR, SEM, EDS and the surface energy was evaluated by contact angle measurements. For understanding the complex adsorption process on this mixed substrate, preliminary tests were developed on synthetic wastewaters containing a single pollutant system (heavy metal), binary (two-heavy metals) and ternary (dye and two heavy metals) systems. Experiments were done on synthetic wastewaters containing methylene blue, cadmium and copper, using FAw, B and their powder mixtures. The pseudo-second order kinetics could well model all the processes, indicating a good adsorbent material which can be used for the pollutants removal from wastewater. After adsorption the substrates loaded with pollutants, annealed at 500 °C can be reused for padding in stone blocks.

  9. Tailoring fly ash activated with bentonite as adsorbent for complex wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Visa, Maria, E-mail: maria.visa@unitbv.ro [Transilvania University of Brasov, Department Renewable Energy Systems and Recycling, Eroilor 29, 500036 Brasov (Romania)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The spent adsorbent annealed at 500 Degree-Sign C can be a suggestion for padding in stone blocks. Black-Right-Pointing-Pointer The cations can be adsorbent by the silanol group (Si-OH) of the layers from bentonite Black-Right-Pointing-Pointer Copper has a higher affinity for the active sites on adsorbent FAw + B than cadmium. Black-Right-Pointing-Pointer This substrate can be recommended for simultaneous removal of heavy metals and MB. Black-Right-Pointing-Pointer FAw + B is recommended for wastewater treatment resulted in the dyes finishing industry. - Abstract: Used as adsorbent, alkali fly ash represents a low cost solution for advanced wastewater treatment. The alkali treatment raises sustainability issues therefore, in this research we aim to replace alkali fly ash with washed fly ash (FAw). For improving the adsorption capacity of washed fly ash, bentonite powder (B) was added, as a natural adsorbent with a composition almost identical to the fly ash. The new adsorbent was characterized by AFM, XRD, FTIR, SEM, EDS and the surface energy was evaluated by contact angle measurements. For understanding the complex adsorption process on this mixed substrate, preliminary tests were developed on synthetic wastewaters containing a single pollutant system (heavy metal), binary (two-heavy metals) and ternary (dye and two heavy metals) systems. Experiments were done on synthetic wastewaters containing methylene blue, cadmium and copper, using FAw, B and their powder mixtures. The pseudo-second order kinetics could well model all the processes, indicating a good adsorbent material which can be used for the pollutants removal from wastewater. After adsorption the substrates loaded with pollutants, annealed at 500 Degree-Sign C can be reused for padding in stone blocks.

  10. A theoretical study of adsorbate-adsorbate interactions on Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using density functional theory we study the effect of pre-adsorbed atoms on the dissociation of N(2) and the adsorption of N, N(2), and CO on Ru(0001). We have done calculations for pre-adsorbed Na, Cs, and S, and find that alkali atoms adsorbed close to a dissociating N(2) molecule will lower...... the barrier for dissociation, whereas S will increase it. The interaction with alkali atoms is mainly of an electrostatic nature. The poisoning by S is due to two kinds of repulsive interactions: a Pauli repulsion and a reduced covalent bond strength between the adsorbate and the surface d-electrons. In order...... to investigate these different interactions in more detail, we look at three different species (N atoms, and terminally bonded N(2) and CO) and use them as probes to study their interaction with two modifier atoms (Na and S). The two modifier atoms have very different properties, which allows us to decouple...

  11. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    International Nuclear Information System (INIS)

    Highlights: ► Prussian blue was sealed in cavities of diatomite using carbon nanotubes. ► The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. ► Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  12. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Baiyang [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Fugetsu, Bunshi, E-mail: hu@ees.hokudai.ac.jp [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Yu, Hongwen [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Abe, Yoshiteru [Kyoei Engineering Corporation, Niigata 959-1961 (Japan)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Prussian blue was sealed in cavities of diatomite using carbon nanotubes. Black-Right-Pointing-Pointer The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. Black-Right-Pointing-Pointer Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  13. PVDF membranes containing hybrid nanoparticles for adsorbing cationic dyes: physical insights and mechanism

    Science.gov (United States)

    Sharma, Maya; Madras, Giridhar; Bose, Suryasarathi

    2016-07-01

    In this study, Fe (iron) and Ag (silver) based adsorbents were synthesized using solution combustion and in situ reduction techniques. The synthesized adsorbents were comprehensively characterized by different techniques including electron microscopy, BET, XRD, Zeta potential etc. Three chlorinated cationic dyes used were malachite green, methyl violet and pyronin Y. These dyes were adsorbed on various synthesized adsorbents [iron III oxide (Fe2O3)], iron III oxide decorated silver nanoparticles by combustion synthesis technique [Fe2O3–Ag(C)] and iron III oxide decorated silver nanoparticles using in situ reduction, [Fe2O3–Ag (S)]. The isotherm and the adsorption kinetics have been studied systematically. The kinetic data can be explained by the pseudo second order model and the adsorption equilibrium followed Langmuir isotherm. The equilibrium and kinetics results suggest that Fe2O3–Ag(S) nanoparticles showed the maximum adsorption among all the adsorbents. Hence, Polyvinylidene fluoride based membranes containing Fe2O3–Ag(S) nanoparticles were prepared via phase inversion (precipitation immersion using DMF/water) technique. The adsorption kinetics were studied in detail and it was observed that the composite membrane showed synergistic improvement in dye adsorption. Such membranes can be used for water purification.

  14. Preparation, characterization and application of a Ce-Ti oxide adsorbent for enhanced removal of arsenate from water

    International Nuclear Information System (INIS)

    Different metal doped TiO2 adsorbents were prepared through the precipitation and hydrolysis-precipitation methods. The novel Ce-Ti oxide adsorbent obtained by the hydrolysis-precipitation had much higher sorption capacity for As(V) than both the pure titanium dioxide and cerium oxide adsorbents, and the preparation conditions including the Ti/Ce molar ratio and polyvinyl alcohol (PVA) content were optimized. Environmental scanning electronic microscopy (ESEM) and X-ray diffraction (XRD) spectroscopic investigations revealed that the amorphous Ce-Ti hybrid adsorbent was composed of some nanoparticles in the size range of 100-200 nm, which aggregated to form the porous hybrid adsorbents, and the amorphous compositions and the small nanoparticles were related to the high sorption capacity for As(V). Batch sorption experiments including sorption kinetics, isotherm, effect of pH and competitive ions were investigated. The Ce-Ti adsorbent exhibited high sorption capacity for As(V) at pH below 7. Column studies showed that about 72,085 bed volumes of As(V) solution at the concentration of 50 μg L-1 and pH 6.5 were filtered when As(V) concentration in the effluent increased to 10 μg L-1, and the average sorption capacity of As(V) on the Ce-Ti adsorbent was about 9.4 mg g-1.

  15. Carrier-dependent magnetic anisotropy of Gd-adsorbed graphene

    Science.gov (United States)

    Lu, Yuan; Zhou, Tie-ge; Shao, Bin; Zuo, Xu; Feng, Min

    2016-05-01

    Using first-principles calculation based on density functional theory, we study the magnetic anisotropy of Gd-adsorbed graphene and its dependence on carrier accumulation. We show that carrier accumulation not only impacts the magnitude of magnetic anisotropy but also switches its sign. Hole accumulation enhances the perpendicular anisotropy up to ˜16 meV per Gd atom, while electron accumulation switches the anisotropy from perpendicular to in-plane direction. Moreover, we find that the first order perturbation of spin-orbit coupling interaction induces a pseudo-gap at Γ for the perpendicular magnetization, which leads to the the anomalous magnetic anisotropy for the neutral composite. Our findings pave the way for magneto-electric materials based on rare-earth-decorated graphene for voltage-controlled spintronics.

  16. Carrier-dependent magnetic anisotropy of Gd-adsorbed graphene

    Directory of Open Access Journals (Sweden)

    Yuan Lu

    2016-05-01

    Full Text Available Using first-principles calculation based on density functional theory, we study the magnetic anisotropy of Gd-adsorbed graphene and its dependence on carrier accumulation. We show that carrier accumulation not only impacts the magnitude of magnetic anisotropy but also switches its sign. Hole accumulation enhances the perpendicular anisotropy up to ∼16 meV per Gd atom, while electron accumulation switches the anisotropy from perpendicular to in-plane direction. Moreover, we find that the first order perturbation of spin-orbit coupling interaction induces a pseudo-gap at Γ for the perpendicular magnetization, which leads to the the anomalous magnetic anisotropy for the neutral composite. Our findings pave the way for magneto-electric materials based on rare-earth-decorated graphene for voltage-controlled spintronics.

  17. Investigation on Adsorption State of Surface Adsorbate on Silicon Wafer

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An adsorption kinetics model for adsorbate on the specularly polished silicon wafer was suggested. The mathematical model of preferential adsorption and the mechanism controlling the adsorption state of adsorbate were discussed.

  18. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  19. Computer simulations of adsorbed liquid crystal films

    Science.gov (United States)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  20. Removal of micropollutants from water by nanocomposite membrane adsorbers

    OpenAIRE

    Niedergall, K.; Bach, M.; Hirth, T.; Tovar, G.E.M.; Schiestel, T.

    2014-01-01

    Nanoscaled spheric polymer adsorbers with a variety of chemical surface functionalities were synthesized by miniemulsion polymerization and inverse miniemulsion polymerization. The nanospheres were embedded in polyethersulfone (PES) matrices by a wet-phase inversion process to form nanocomposite membrane adsorbers. The resulting membrane adsorbers were characterized by scanning electron microscopy (SEM), pore size measurements, water flux measurements and various adsorption experiments. The m...

  1. Fluorescence of dyes adsorbed on highly organized nanostructured gold surfaces

    NARCIS (Netherlands)

    Levi, Stefano A.; Mourran, Ahmed; Spatz, Joachim P.; Veggel, van Frank C.J.M.; Reinhoudt, David N.; Möller, M.

    2002-01-01

    It is shown that fluorescent dyes can be adsorbed selectively on gold nanoparticles which are immobilized on a glass substrate and that the fluorescence originating from the adsorbed dyes exhibits significantly less quenching when compared to dyes adsorbed on bulk gold. Self-assembled monolayers of

  2. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  3. Behavior of macromolecules in adsorbed layers

    Institute of Scientific and Technical Information of China (English)

    牟伯中[1; 姚恒申[2; 罗平亚[3

    2000-01-01

    A model for describing the behavior ot macromoiecuies in aosoroea layers is developed by introducing a concept of distribution density of layer thickness U based on stochastic process and probabilistic statistics. The molecular behavior of layers adsorbed on clay particle surfaces is discussed; the random distribution and its statistics of the layer thickness are given by incorporating experimental results with an ionic polyelectrolyte with the molecular weight of 1.08×106and chain charged density of 0.254.

  4. Orbital tomography for highly symmetric adsorbate systems

    Science.gov (United States)

    Stadtmüller, B.; Willenbockel, M.; Reinisch, E. M.; Ules, T.; Bocquet, F. C.; Soubatch, S.; Puschnig, P.; Koller, G.; Ramsey, M. G.; Tautz, F. S.; Kumpf, C.

    2012-10-01

    Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.

  5. Effective Thermal Conductivity of Adsorbent Packed Beds

    Science.gov (United States)

    Mori, Hideo; Hamamoto, Yoshinori; Yoshida, Suguru

    The effective thermal conductivity of adsorbent packed beds of granular zeolite 13X and granular silica gel A in the presence of stagnant steam or air was measured under different conditions of the adsorbent bed temperature, particle size and filler-gas pressure. The measured effective thermal conductivity showed to become smaller with decreasing particle size or decreasing pressure, but it was nearly independent of the bed temperature. When steam was the filler-gas, the rise in the thermal conductivity of the adsorbent particles due to steam adsorption led to the increase in the effective thermal conductivity of the bed, and this effect was not negligible at high steam pressure for the bed of large particle size. It was found that both the predictions of the effective thermal conductivity by the Hayashi et al.'s model and the Bauer-Schlünder model generally agreed well with the measurements, by considering the particle thermal conductivity rise due to steam adsorption. The thermal conductivity of a consolidated bed of granular zeolite 13X was also measured, and it was found to be much larger than that of the packed bed especially at lower pressure. The above prediction models underestimated the effective thermal conductivity of the consolidated bed.

  6. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    OpenAIRE

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-01-01

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/P...

  7. NOx Removal and Effect of Adsorbate-Adsorbate Interactions

    DEFF Research Database (Denmark)

    Khan, Tuhin Suvra

    low-index metal surfaces. Furthermore, I have used DFT calculated adsorption and transition state energies coupled with a microkinetic model to study two industrially important catalytic reactions, NH3 oxidation and selective catalytic reduction of NOx, to obtain the catalytic trends and understand...... these challenges systematically and have developed some new methods and models to counter those challenges and obtain some general understanding of the catalytic process. I have developed an adsorbate-adsorbate interaction model to include the coverage dependency of the adsorption energy in kinetic models...

  8. Adsorption equilibria and kinetics for phenol and cresol onto polymeric adsorbents: Effects of adsorbents/adsorbates structure and interface

    International Nuclear Information System (INIS)

    Phenol and cresol (o-, m-, and p-) were selected as the adsorbates with different dipole moment (cresol > phenol, methyl being electron-drawing group) and solubility (phenol > cresol, methyl being hydrophobic group). Macropore polymers (NDA-1800 and XAD-4), hypercrosslinked polymers (NDA-100), and chemically modified adsorbents (NDA-150 and NDA-99), were comparatively used to investigate the adsorption properties including equilibria, thermodynamics and kinetics. First, all of the results about equilibria show that the adsorption data fit well to the Freundlich model. The adsorption capacity of NDA-99 and NDA-150 especially for phenol is larger in a certain extent than other three types of polymers. The hydrophobic interaction from large specific surface was mainly occurred, while the polar groups containing oxygen and amine markedly enhance the adsorption process via hydrogen interaction. Furthermore, the adsorption amount for NDA-99 and XAD-4 decrease linearly with the solubility of solutes tested. Then, the negative values of enthalpy demonstrate the predominantly exothermic and physical solid-extraction processes. Finally, the relatively more rapid adsorption process could be found onto NDA-150 than NDA-99, with the reason of the double larger pore size of the former. In conclusion, solubility of solute, together with surface area, pore size and modified groups, extremely exerts influences to the adsorption performances

  9. MOLECULAR IMPRINTED POLYMERS—Novel Polymer Adsorbents

    Institute of Scientific and Technical Information of China (English)

    LIHaitao; XUMancai; 等

    2001-01-01

    Molecular imprinted polymers(MIPs) are novel functional polymer materials and known as specific adsorbents for the template molecules,These novel functional polymers have promised potential applications in racemic resolution,sensor,chromatography,adsorptive separation and other fields.This review exhibits the approach for preparing MIPs,the features of MIPs obtained by different routes and the characteristics of adsorptive separations with MIPs.The molecular recognition mechanism and the idea of the present possibilities and limitations of molecular imprinting polymerization are discussed as well.

  10. Influence of superconductor film composition on adhesion strength of coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2015-11-20

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare- earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples.

  11. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of /sup 4/He adsorbed on metallic films. In contrast to measurements of /sup 4/He adsorbed on all other insulating substrates, we have shown that /sup 4/He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, /sup 4/He adsorbed on sapphire and on Ag films and H/sub 2/ adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs.

  12. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    International Nuclear Information System (INIS)

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4He adsorbed on metallic films. In contrast to measurements of 4He adsorbed on all other insulating substrates, we have shown that 4He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4He adsorbed on sapphire and on Ag films and H2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  13. Tailoring fly ash activated with bentonite as adsorbent for complex wastewater treatment

    Science.gov (United States)

    Visa, Maria

    2012-12-01

    Used as adsorbent, alkali fly ash represents a low cost solution for advanced wastewater treatment. The alkali treatment raises sustainability issues therefore, in this research we aim to replace alkali fly ash with washed fly ash (FAw). For improving the adsorption capacity of washed fly ash, bentonite powder (B) was added, as a natural adsorbent with a composition almost identical to the fly ash. The new adsorbent was characterized by AFM, XRD, FTIR, SEM, EDS and the surface energy was evaluated by contact angle measurements. For understanding the complex adsorption process on this mixed substrate, preliminary tests were developed on synthetic wastewaters containing a single pollutant system (heavy metal), binary (two-heavy metals) and ternary (dye and two heavy metals) systems. Experiments were done on synthetic wastewaters containing methylene blue, cadmium and copper, using FAw, B and their powder mixtures. The pseudo-second order kinetics could well model all the processes, indicating a good adsorbent material which can be used for the pollutants removal from wastewater. After adsorption the substrates loaded with pollutants, annealed at 500 °C can be reused for padding in stone blocks.

  14. A novel magnetic 4A zeolite adsorbent synthesised from kaolinite type pyrite cinder (KTPC)

    Science.gov (United States)

    Wang, Weiqing; Feng, Qiming; Liu, Kun; Zhang, Guofan; Liu, Jing; Huang, Yang

    2015-01-01

    As a solid waste, kaolinite type pyrite cinder (KTPC) is a special pyrite cinder, its mineral components include metakaolin and magnetite, and the chemical compositions of these minerals include SiO2, Al2O3, FeO and Fe2O3. In this study, a novel magnetic 4A zeolite adsorbent was synthesised from KTPC using the hydrothermal method, and the optimum hydrothermal synthesis conditions were investigated using X-ray diffraction (XRD) and by determining the specific surface area (SSA) and the saturated cation exchange adsorption capacity (SCEAC) to Cs+. Under the optimum hydrothermal synthesis conditions, the magnetic 4A zeolite adsorbent can be synthesised with high crystallinity, and the SSA and SCEAC to Cs+ are 24.49 m2/g and 106.63 mg/g, respectively. The further characterisations of pore size distribution, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermogravimetry-derivative thermogravimetry-differential thermal analysis (TG-DTG-DTA), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) were performed. The results revealed that magnetic particles are coated onto the zeolite surface and further form magnetic aggregates, and the existing magnetic particles in KTPC do not change their crystal structure and do not affect the synthesis of the 4A zeolite. In addition, the synthesised 4A zeolite adsorbent can be used as a magnetic adsorbent in wastewater treatment with high magnetic sensitivity and is thermally stable up to approximately 900 °C.

  15. From MDF and PB wastes to adsorbents for the removal of pollutants

    Science.gov (United States)

    Gomes, J. A. F. L.; Azaruja, B. A.; Mourão, P. A. M.

    2016-09-01

    The production of activated carbons in powder and monolith forms, by physical activation with CO2, with specific surface areas between 804 and 1469 m2 g-1, porous volume between 0.33 and 0.59 cm3 g-1, with basic nature (PZC ∼ 9.6-10.6) was achieved in our lab, from medium density fibreboard (MDF) and particleboard (PB), engineered wood composites wastes. These highly porous adsorbents were applied in kinetic and equilibrium adsorption studies, in batch and dynamic modes, in powder and monolith forms, of specific adsorptives, considered pollutants, namely phenol (P), p-nitrophenol (PNP) and neutral red (NR). In batch the maximum adsorbed amount was 267, 162 and 92 mg g-1, for PNP, P and NR, respectively. The application of different kinetic models (pseudo-first order, pseudo-second order and intraparticle diffusion model) leads to a better knowledge of the adsorption mechanisms of those adsorptives. The results obtained in the kinetic and equilibrium tests show that the combination of the structural features and the surface chemistry nature of the adsorbents, with the adsorptives properties, establish the kinetic performance, the type and amount adsorbed for each system. This work confirms the potential of these types of wastes in the production of activated carbons and its application in adsorption from liquid phase.

  16. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    Science.gov (United States)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  17. Dye sequestration using agricultural wastes as adsorbents

    Directory of Open Access Journals (Sweden)

    Kayode Adesina Adegoke

    2015-12-01

    Full Text Available Color is a visible pollutant and the presence of even minute amounts of coloring substance makes it undesirable due to its appearance. The removal of color from dye-bearing effluents is a major problem due to the difficulty in treating such wastewaters by conventional treatment methods. The most commonly used methods for color removal are biological oxidation and chemical precipitation. However, these processes are effective and economic only in the case where the solute concentrations are relatively high. Most industries use dyes and pigments to color their products. The presence of dyes in effluents is a major concern due to its adverse effect on various forms of life. The discharge of dyes in the environment is a matter of concern for both toxicological and esthetical reasons. It is evident from a literature survey of about 283 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for dye removal and the optimal equilibrium time of various dyes with different charcoal adsorbents from agricultural residues is between 4 and 5 h. Maximum adsorptions of acidic dyes were obtained from the solutions with pH 8–10. The challenges and future prospects are discussed to provide a better framework for a safer and cleaner environment.

  18. The persistence length of adsorbed dendronized polymers.

    Science.gov (United States)

    Grebikova, Lucie; Kozhuharov, Svilen; Maroni, Plinio; Mikhaylov, Andrey; Dietler, Giovanni; Schlüter, A Dieter; Ullner, Magnus; Borkovec, Michal

    2016-07-21

    The persistence length of cationic dendronized polymers adsorbed onto oppositely charged substrates was studied by atomic force microscopy (AFM) and quantitative image analysis. One can find that a decrease in the ionic strength leads to an increase of the persistence length, but the nature of the substrate and of the generation of the side dendrons influence the persistence length substantially. The strongest effects as the ionic strength is being changed are observed for the fourth generation polymer adsorbed on mica, which is a hydrophilic and highly charged substrate. However, the observed dependence on the ionic strength is much weaker than the one predicted by the Odijk, Skolnik, and Fixman (OSF) theory for semi-flexible chains. Low-generation polymers show a variation with the ionic strength that resembles the one observed for simple and flexible polyelectrolytes in solution. For high-generation polymers, this dependence is weaker. Similar dependencies are found for silica and gold substrates. The observed behavior is probably caused by different extents of screening of the charged groups, which is modified by the polymer generation, and to a lesser extent, the nature of the substrate. For highly ordered pyrolytic graphite (HOPG), which is a hydrophobic and weakly charged substrate, the electrostatic contribution to the persistence length is much smaller. In the latter case, we suspect that specific interactions between the polymer and the substrate also play an important role. PMID:27353115

  19. Investigation of drug-porous adsorbent interactions in drug mixtures with selected porous adsorbents.

    Science.gov (United States)

    Madieh, Shadi; Simone, Michael; Wilson, Wendy; Mehra, Dev; Augsburger, Larry

    2007-04-01

    The adsorption of drugs onto porous substrates may prove to be a convenient method by which to enhance the dissolution rate of certain poorly water-soluble drugs in body fluids. The purpose of this research is to provide a better understanding of the type of interactions occurring between drugs and certain pharmaceutically acceptable porous adsorbents that leads to enhanced drug dissolution rates. The interactions between ibuprofen (acidic drug), acetaminophen (acidic drug), dipyridamole (basic drug), and the porous adsorbents used (calcium silicate and silica gel) were investigated using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier Transform infrared spectroscopy (FTIR). DSC and PXRD results indicated a significant loss of crystallinity of both ibuprofen and acetaminophen but not dipyridamole. In the case of ibuprofen, FTIR results indicated the ionization of the carboxylic group based on the shift in the FTIR carboxylic band. Dissolution of ibuprofen from its mixtures with porous adsorbents was found to be significantly higher compared to the neat drug, whereas dipyridamole dissolution from its mixtures with porous adsorbents was not significantly different from that of the neat drug. PMID:17221849

  20. Equilibrium molecular theory of two-dimensional adsorbate drops on surfaces of heterogeneous adsorbents

    Science.gov (United States)

    Tovbin, Yu. K.

    2016-08-01

    A molecular statistical theory for calculating the linear tension of small multicomponent droplets in two-dimensional adsorption systems is developed. The theory describes discrete distributions of molecules in space (on a scale comparable to molecular size) and continuous distributions of molecules (at short distances inside cells) in their translational and vibrational motions. Pair intermolecular interaction potentials (the Mie type potential) in several coordination spheres are considered. For simplicity, it is assumed that distinctions in the sizes of mixture components are slight and comparable to the sizes of adsorbent adsorption centers. Expressions for the pressure tensor components inside small droplets on the heterogeneous surface of an adsorbent are obtained, allowing calculations of the thermodynamic characteristics of a vapor-fluid interface, including linear tension. Problems in refining the molecular theory are discussed: describing the properties of small droplets using a coordination model of their structure, considering the effect an adsorbate has on the state of a near-surface adsorbent region, and the surface heterogeneity factor in the conditions for the formation of droplets.

  1. Constructing a proton titration curve from ion-step measurements, applied to a membrane with adsorbed protein

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; Bosch, Coen; Olthuis, Wouter; Bergveld, Piet

    1997-01-01

    A new measuring method is described for obtaining a proton titration curve. The curve is obtained from a microporous composite membrane, consisting of polystyrene beads in an agarose matrix, with lysozyme molecules adsorbed to the bead surface. The membrane is incorporated into a sensor system by de

  2. Evaluation of pharmaceuticals removal by sewage sludge-derived adsorbents with rapid small-scale column tests

    Science.gov (United States)

    Zhang, P.; Ding, R.; Wallace, R.; Bandosz, T.

    2015-12-01

    New composite adsorbents were developed by pyrolyzing sewage sludge and fish waste (75:25 or 90:10 dry mass ratio) at 650 oC and 950 oC. Batch adsorption experiments demonstrated that the composite adsorbents were able to adsorb a wide range of organic contaminants (volatile organic compounds, pharmaceuticals and endocrine disrupting compounds (EDCs), and nitrosamine disinfection byproducts) with high capacities. Here we further examine the performance of the adsorbents for the simultaneous removal of 8 pharmaceuticals and EDCs with rapid small-scale column tests (RSSCT). Results show that the order of breakthrough in RSSCT is in general consistent with the affinity determined via batch tests. As expected, the maximum amount of adsorption for each compound obtained from RSSCT is identical to or less than that obtained from batch tests (with only one exception), due to adsorption kinetics. However, despite the very different input concentration (1 mg/L vs. 100 mg/L) and contact time (2 min empty bed contact time vs. 16 hour equilibrium time) used in RSSCT and batch tests, the maximum amount of pharmaceuticals and EDCs adsorbed under RSSCT is still about one half of that under equilibrium batch tests, validating the approach of using batch tests with much higher input concentrations to determine adsorption capacities. Results of a pilot-scale column test in a drinking water treatment plant for pharmaceuticals removal will also be presented.

  3. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures

    DEFF Research Database (Denmark)

    Schnadt, Joachim; Xu, Wei; Vang, Ronnie Thorbjørn;

    2010-01-01

    The adsorption of 2,6-naphthalenedicarboxylic acid (NDCA) molecules on the Ag(110), Cu(110), and Ag(111) surfaces at room temperature has been studied by means of scanning tunnelling microscopy (STM). Further supporting results were obtained using X-ray photoelectron spectroscopy (XPS) and soft X......-ray absorption spectroscopy (XAS). On the Ag(110) support, which had an average terrace width of only 15 nm, the NDCA molecules form extended one-dimensional (1-D) assemblies, which are oriented perpendicular to the step edges and have lengths of several hundred nanometres. This shows that the assemblies have a......-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent...

  4. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  5. Optimizing Conditions to Cholesterol Adsorbed with Carboxymethyl Chitosan

    OpenAIRE

    Mardiyah Kurniasih; Dwi Kartika; Riyanti Riyanti

    2016-01-01

    A research on optimizing conditions to cholesterol adsorbed have been performed. Optimization was performed by varying: contact time, adsorbent weight and temperature of the system's. A full factorial experimental design was used in this study. Characterization performed on the synthesized chitosan and carboxymethyl chitosan including FTIR, water content, ash content, solubility, porosity, and swelling effect. The results showed that carboxymethyl chitosan able to adsorb cholesterol under con...

  6. DESORPTION OF VOCs FROM POLYMERIC ADSORBENTS UNDER MICROWAVE FIELD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Desorption of volatile organic compounds (VOCs)from polymeric adsorbents by microwave was investigated experimentally. Two kinds of organic compounds, benzene and toluene,were separately used as adsorbates in this work. Results showed that the application of microwave to regenerate the polymeric adsorbents not only can get higher regeneration efficiency in comparison with the use of heat regeneration, but also make the temperatures of the fixed beds much lower than that when using the heat regeneratton The weaker the polarity of a polymeric adsorbent, the easier its regeneration was.

  7. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.

  8. Trends in adsorbate induced core level shifts

    Science.gov (United States)

    Nilsson, Viktor; Van den Bossche, Maxime; Hellman, Anders; Grönbeck, Henrik

    2015-10-01

    Photoelectron core level spectroscopy is commonly used to monitor atomic and molecular adsorption on metal surfaces. As changes in the electron binding energies are convoluted measures with different origins, calculations are often used to facilitate the decoding of experimental signatures. The interpretation could in this sense benefit from knowledge on trends in surface core level shifts for different metals and adsorbates. Here, density functional theory calculations have been used to systematically evaluate core level shifts for (111) and (100) surfaces of 3d, 4d, and 5d transition metals upon CO, H, O and S adsorption. The results reveal trends and several non-intuitive cases. Moreover, the difficulties correlating core level shifts with charging and d-band shifts are underlined.

  9. Linear transport models for adsorbing solutes

    Science.gov (United States)

    Roth, K.; Jury, W. A.

    1993-04-01

    A unified linear theory for the transport of adsorbing solutes through soils is presented and applied to analyze movement of napropamide through undisturbed soil columns. The transport characteristics of the soil are expressed in terms of the travel time distribution of the mobile phase which is then used to incorporate local interaction processes. This approach permits the analysis of all linear transport processes, not only the small subset for which a differential description is known. From a practical point of view, it allows the direct use of measured concentrations or fluxes of conservative solutes to characterize the mobile phase without first subjecting them to any model. For complicated flow regimes, this may vastly improve the identification of models and estimation of their parameters for the local adsorption processes.

  10. Rice husk as an adsorbent: A new analytical approach to determine aflatoxins in milk.

    Science.gov (United States)

    Scaglioni, Priscila Tessmer; Badiale-Furlong, Eliana

    2016-05-15

    Aflatoxins determinations are usually expensive and employ environmentally unfriendly procedures, thus, the search for new materials and technologies, that are both ecologically safe, inexpensive and able to fulfill its role with little pre-processing is growing. One interesting approach is employing by-products as adsorbents during the extraction step of aflatoxins especially in products such as milk and dairy that are so important in basic dietary. Thus, a method to use rice husk, an agroindustry residue that is a promising material to adsorb aflatoxins to enable further analysis steps, is proposed by applying a Plackett-Burman design followed by 2(2) central composite rotational design. Rice husks were prepared by washing the husk with a solvents sequence. The washed particles were analysed by scanning electron microscopy, characterized by an elemental analyser and analysed for the presence of pesticides and mycotoxins. The rice husks contained 41% carbon, 4.3% hydrogen and 0.2% nitrogen, without mycotoxins and pesticides. The adsorptions were conducted using 0.5 g of rice husk, with 42 mesh, and 10 mL of milk contaminated with several know levels of aflatoxins M1 and B1. The solution was filtrated trough the adsorbent layer using a pressure of 10 in. Hg. The adsorbed mycotoxins were removed with 6 mL of methanol:chloroform (80:20). This condition achieved recovery of around 100% for both mycotoxins, with the average quantity of mycotoxin adsorbed equal 0.0150 µg g(-1) of afla B1 and 0.0174 µg g(-1) of afla M1. PMID:26992538

  11. Role of structure and glycosylation of adsorbed protein films in biolubrication.

    Directory of Open Access Journals (Sweden)

    Deepak H Veeregowda

    Full Text Available Water forms the basis of lubrication in the human body, but is unable to provide sufficient lubrication without additives. The importance of biolubrication becomes evident upon aging and disease, particularly under conditions that affect secretion or composition of body fluids. Insufficient biolubrication, may impede proper speech, mastication and swallowing, underlie excessive friction and wear of articulating cartilage surfaces in hips and knees, cause vaginal dryness, and result in dry, irritated eyes. Currently, our understanding of biolubrication is insufficient to design effective therapeutics to restore biolubrication. Aim of this study was to establish the role of structure and glycosylation of adsorbed protein films in biolubrication, taking the oral cavity as a model and making use of its dynamics with daily perturbations due to different glandular secretions, speech, drinking and eating, and tooth brushing. Using different surface analytical techniques (a quartz crystal microbalance with dissipation monitoring, colloidal probe atomic force microscopy, contact angle measurements and X-ray photo-electron spectroscopy, we demonstrated that adsorbed salivary conditioning films in vitro are more lubricious when their hydrophilicity and degree of glycosylation increase, meanwhile decreasing their structural softness. High-molecular-weight, glycosylated proteins adsorbing in loops and trains, are described as necessary scaffolds impeding removal of water during loading of articulating surfaces. Comparing in vitro and in vivo water contact angles measured intra-orally, these findings were extrapolated to the in vivo situation. Accordingly, lubricating properties of teeth, as perceived in 20 volunteers comprising of equal numbers of male and female subjects, could be related with structural softness and glycosylation of adsorbed protein films on tooth surfaces. Summarizing, biolubrication is due to a combination of structure and glycosylation

  12. Preparation and characterization of adsorbents for treatment of water associated with oil production

    KAUST Repository

    Sueyoshi, Mark

    2012-09-01

    Two sets of adsorbents were prepared from locally available raw materials, characterized and tested. The first set consists of crushed natural attapulgite and crushed attapulgite mixed with petroleum tank-bottom sludge and carbonized at 650 °C. Another set was prepared using trunk of date palm tree (Phoenix dactylifera) activated at 700 and 800°C. Both sets were characterized using BET surface area and pore distributions, FTIR, XRD, SEM and TEM. Natural attapulgite and attapulgite/sludge composite exhibited different characteristics and adsorptive capacities for oil removal from oily water. Adsorptive capacities were calculated from the breakthrough curves of a column test. An oily water solution of about 500 mg-oil/L was passed through both the attapulgite and attapulgite/sludge columns until the column effluent concentration exceeded a reference limit of 10 mg-oil/L. Uptake was calculated at this limit at 155 and 405 mg-oil/g-adsorbent, respectively. This was lower than the performance of a commercial activated carbon sample (uptake calculated at 730 mg-oil/g-adsorbent). Relatively, the date palm, carbonaceous-based adsorbent samples showed less significant differences in both bulk and surface properties. Uptake significantly improved to 1330-1425 mg-oil/g-adsorbent. Attempt was made to associate this performance with the difference in the surface areas between the two sets. However, other factors are found to be important as the second set has a range of surface area less than that of the commercial sample. As evidenced by FTIR, XRD and TEM, the activated carbonaceous materials developed porous structures which form defective graphitic sheet ensembles that serve as additional adsorption sites in the sample. © 2012 Elsevier B.V.

  13. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced...... and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  14. Thermodynamic study of fatty acids adsorption on different adsorbents

    International Nuclear Information System (INIS)

    This work has as objective the study about the adsorption behavior of fatty acids (acetic, propionic, and butyric) on activated carbon and on modified and unmodified montmorillonite clays as a function of temperature and initial concentration of the adsorbate, through adsorption isotherms and their thermodynamic parameters (ΔG, ΔH, and ΔS). The activated carbon presented a higher adsorption capacity due to its relatively large surface area, compared to others adsorbents. The polar characteristic of fatty acids decreased with the increase in the length of non-polar hydrocarbon chain, improving the affinity between the activated carbon (non-polar adsorbent) and the acids. The adsorption capacity of modified montmorillonite (polar adsorbent) was favored due to the presence of the organic cation among its layers, which make the surface more hydrophobic and organophilic when compared to the unmodified montmorillonite surface. The amount of fatty acids adsorbed in the adsorbents surface increased with the concentration, at constant temperature, and decreased with the increase of temperature, at constant concentration. The amount of fatty acids adsorbed in the three adsorbents was related to the surface area and polarity of the adsorbent, concentration and solubility of the adsorbate and temperature of the solution. The negative values of ΔG and ΔH showed that the adsorption on activated carbon and on modified and unmodified montmorillonite clays was a spontaneous and an exothermic process. The decrease in the values of ΔG, with the increase of temperature, demonstrated that the adsorption was benefited by the high temperature and the positive values of ΔS showed that the fatty acids molecules were in a more randomic condition in the adsorbed state than in solution. The experimental results obtained at the temperatures of (298, 303, 313, and 323) K showed that experimental data were well represented by the Langmuir and Freundlich isotherms models

  15. Effects of ambient conditions on adsorbed surfactant and polymer monolayers

    International Nuclear Information System (INIS)

    The physical properties of surfactant-coated and polyelectrolyte-coated surfaces in adhesive contact in air have been studied using the surface forces apparatus technique. Various physisorbed monolayers with different head groups and chains (or polymer segments) were prepared both by adsorption form solution (self-assembly) and by the Langmuir-Blodgett deposition technique. The results show that many monolayer properties depend on the atmospheric conditions such as the relative humidity or presence of organic vapors and that these properties can further change when two monolayer-coated surfaces are brought into contact. These properties include monolayer composition and structure, thickness and compressibility, fluidity and phase state (i.e., whether solid, gel, or liquid), and the adhesion between two monolayer-coated surfaces. In addition, we find that both out-of-plane and in-plane (lateral) phase transitions can be induced in certain adsorbed monolayers when they are subjected to a compressive stress. The results provide new insights into molecular ordering and dynamics in physisorbed monolayers and how monolayers are affected when they are exposed to vapors or when they interact with other surfaces. 18 refs., 13 figs., 4 tabs

  16. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of stea

  17. Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents

    Institute of Scientific and Technical Information of China (English)

    Shubo DENG; Danmeng SHUAI; Qiang YU; Jun HUANG; Gang YU

    2009-01-01

    Perfluorooctane sulfonate (PFOS), as a potential persistent organic pollutant, has been widely detected in water environments, and has become a great concern in recent years. PFOS is very stable and difficult to decompose using conventional techniques. Sorption may be an attractive method to remove it from water. In this study, the molecularly imprinted polymer (MIP) adsorbents were prepared through the polymerization of 4-vinylpyridine under different preparation conditions in order to remove perfluorooctane sulfonate (PFOS) from water. The MIP adsorbents using perfluorooctanoic acid (PFOA) as the template had good imprinting effects and could selectively remove PFOS from aqueous solution. The sorption behaviors including sorption kinetics,isotherms, and effect of pH, salt, and competitive anions were investigated. Experimental results showed that the sorption of PFOS On the MIP adsorbents was very fast, pH-dependent, and highly selective. The achieved fast sorption equilibrium within 1 h was attributed to the surface sorption on the fine adsorbents. The sorption isotherms showed that the sorption selectivity of PFOS on the MIP adsorbents decreased at high PFOS concentrations, which may be due to the double-layer sorption and the formation of PFOS micelles on the sorbent surface. The sorption of PFOS on the MIP adsorbents was mainly dominated by the electrostatic interaction between the protonated vinylpyridine on the adsorbent surface and the anionic PFOS. The prepared MIP adsorbents can potentially be applied in water and wastewater treatment for selective removal of PFOS.

  18. Effect of ZrO{sub 2} particle on the performance of micro-arc oxidation coatings on Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong; Sun, Yezi; Zhang, Jin, E-mail: zhangjin@ustb.edu.cn

    2015-07-01

    Highlights: • An anti-oxidation TiO{sub 2}/ZrO{sub 2} composite coating on Ti6Al4V alloy was prepared using micro-arc oxidation technology by adding ZrO{sub 2} particles in single phosphoric acid solution. • The composite coating displays excellent anti-oxidation characteristic at 700 °C in the air. • The concentration of ZrO{sub 2} particles not only influences the roughness and thickness of the coating, but the morphologies, phase composition, oxidation resistance and wear resistance. - Abstract: This paper investigates the effect of ZrO{sub 2} particle on the oxidation resistance and wear properties of coatings on a Ti6Al4V alloy generated using the micro-arc oxidation (MAO) technique. Different concentrations micron ZrO{sub 2} particles were added in phosphate electrolyte and dispersed by magnetic stirring apparatus. The composition of coating was characterized using X-ray diffraction and energy dispersive spectrum, and the morphology was examined using SEM. The high temperature oxidation resistance of the coating sample at 700 °C was investigated. Sliding wear behaviour was tested by a wear tester. The results showed that the coating consisted of ZrTiO{sub 4}, ZrO{sub 2}, TiO{sub 2}. With ZrO{sub 2} particle addition, the ceramic coating's forming time reduced by the current dynamic curve. It was shown that the addition of ZrO{sub 2} particles (3 g/L, 6 g/L) expressed an excellent oxidation resistance at 700 °C and wear resistance.

  19. Rod-like cyanophenyl probe molecules nanoconfined to oxide particles: Density of adsorbed surface species

    Science.gov (United States)

    Frunza, Stefan; Frunza, Ligia; Ganea, Constantin Paul; Zgura, Irina; Brás, Ana Rita; Schönhals, Andreas

    2016-02-01

    Surface layers have already been observed by broadband dielectric spectroscopy for composite systems formed by adsorption of rod-like cyanophenyl derivates as probe molecules on the surface of oxide particles. In this work, features of the surface layer are reported; samples with different amounts of the probe molecules adsorbed onto oxide (nano) particles were prepared in order to study their interactions with the surface. Thermogravimetric analysis (TGA) was applied to analyze the amount of loaded probe molecules. The density of the surface species ns was introduced and its values were estimated from quantitative Fourier transform infrared spectroscopy (FTIR) coupled with TGA. This parameter allows discriminating the composites into several groups assuming a similar interaction of the probe molecules with the hosts of a given group. An influence factor H is further proposed as the ratio of the number of molecules in the surface layer showing a glassy dynamics and the number of molecules adsorbed tightly on the surface of the support: It was found for aerosil composites and used for calculating the maximum filling degree of partially filled silica MCM-41 composites showing only one dielectric process characteristic for glass-forming liquids and a bulk behavior for higher filling degrees.

  20. Structure and properties of water film adsorbed on mica surfaces

    Science.gov (United States)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-01

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  1. Adsorption of Fluoride Ion by Inorganic Cerium Based Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhongzhi(焦中志); Chen Zhonglin; Yang Min; Zhang Yu; Li Guibai

    2004-01-01

    Excess of fluoride in drinking water is harmful to human health, the concentration of F- ions must be maintained in the range of 0.5 to 1.5 mg/L. An inorganic cerium based adsorbent (CTA) is developed on the basis of research of adsorption of fluoride on cerium oxide hydrate. Some adsorption of fluoride by CTA adsorbent experiments were carried out, and results showed that CTA adsorbent has a quick adsorption speed and a large adsorption capacity. Adsorption follows Freundlich isotherm, and low pH value helps fluoride removal. Some physical-chemical characteristics of CTA adsorbent were experimented, fluoride removal mechanism was explored, and results showed that hydroxyl group of CTA adsorbent played an important role in the fluoride removal.

  2. Structure and properties of water film adsorbed on mica surfaces.

    Science.gov (United States)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-14

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  3. Characterizing rate inhibition in H{sub 2}O/H{sub 2} gasification via measurement of adsorbed hydrogen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.J.; Lussier, M.G.; Zhang, Z. [Michigan State Univ., East Lansing, MI (United States)

    1996-10-01

    The concentration of hydrogen adsorbed on char surfaces is measured following gasification in order to characterize the mechanism and extent of hydrogen inhibition. Saran and coal chars, prepared by pyrolysis and outgassing to 1500{degrees}C, are gasified at 850{degrees}C and 0.3-3.0 MPa pressure in mixtures ranging from pure H{sub 2} to pure H{sub 2}O. Adsorbed hydrogen concentration is measured following gasification by temperature programmed desorption to 1500{degrees}C. Results show that hydrogen initially adsorbs rapidly on the char surface (up to {approximately}1% conversion) and then slowly accumulates out to 75% carbon conversion. The quantity of hydrogen adsorbed is weakly dependent on pressure or gas composition. Gasification rate initially declines rapidly and then remains constant or even increases slightly with conversion. We conclude that adsorbed hydrogen initially inhibits rate, but reverse oxygen exchange, or reduction of C(O) surface groups by gas-phase H{sub 2}, is the dominant mode of inhibition at higher extents of conversion.

  4. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher James [ORNL; Das, Sadananda [ORNL; Oyola, Yatsandra [ORNL; Mayes, Richard T. [ORNL; Saito, Tomonori [ORNL; Brown, Suree [ORNL; Gill, Gary [PNNL; Kuo, Li-Jung [PNNL; Wood, Jordana [PNNL

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  5. One-pot synthesis of a graphene oxide coated with an imprinted sol–gel for use in electrochemical sensing of paracetamole

    International Nuclear Information System (INIS)

    A route is described for the preparation of a composite consisting of graphene oxide and a molecularly imprinted sol–gel polymer (GO/MIPs) through one-pot room temperature polymerization in aqueous solution. The material was obtained by mixing graphene oxide with the monomers (phenyltriethoxysilane and tetramethoxysilane) and the template paracetamole, followed by sol–gel copolymerization and extraction. The monomer and template concentrations and the incubation time were optimized. The composite was characterized by FTIR, TGA, XRD, Raman spectroscopy and SEM. It was then deposited as a thin film acting as a molecular recognition element on a glassy carbon electrode to obtain an electrochemical sensor for paracetamole. The electrode displayed an excellent recognition capacity toward paracetamole compared to its analogs. The peak current is linearly proportional to the concentration of paracetamole in the 0.1 μM to 80 μM range, and the detection limit is 20 nM (at an SNR of 3). Hence, this electrode possesses a wider response range and lower detection limit compared to most previously reported electrochemical sensors for paracetamole. It also exhibits excellent stability and has been successfully used to determine paracetamole in tablets and spiked human urine samples. (author)

  6. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  7. Effect of heat-treatment on phase formation and crystallization of sol–gel derived Al2O3, ZrO2–Y2O3, and Ta2O5 oxide coatings

    Directory of Open Access Journals (Sweden)

    Yang-Il Jung

    2015-06-01

    Full Text Available Various oxides of Al2O3, ZrO2–Y2O3, and Ta2O5 were coated on ferritic–martensitic steel for application as an environmental barrier layer. Sol–gel based coating was investigated to form the oxides by varying the coating parameters, such as the concentration of the precursors, the temperature of the curing, cycles of repeated runs, and additional heat-treatment. The obtained coatings revealed nano-sized granular structures. The surface morphologies were rough in alumina and zirconia, but appeared smooth in tantalum oxide. In the case of alumina and tantalum oxide, coated layers were mostly amorphous after pyrolysis at 750 °C. The crystalline phases were obtained after an additional heat-treatment at 950 °C. In the case of zirconia, a desirable oxide phase was formed when the samples were cured at 750 °C during the coating process. In addition to the heat-treatment after the coating, the repeated coatings were effective in crystallizing the coated layers and forming proper oxides.

  8. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Science.gov (United States)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  9. Effect of phosphate additives on the microstructure, bioactivity, and degradability of microarc oxidation coatings on Mg-Zn-Ca-Mn alloy.

    Science.gov (United States)

    Dou, Jinhe; You, Qiongya; Gu, Guochao; Chen, Chuanzhong; Zhang, Xihua

    2016-01-01

    Calcium phosphate coatings were prepared on the surface of self-designed Mg-Zn-Ca-Mn alloy using microarc oxidization technology. To characterize the microstructures, cross-section morphologies, and compositions of the coatings, the authors used scanning electron microscopy equipped with an energy-disperse spectrometer, x-ray diffraction, and Fourier transform infrared spectroscopy. Potentiodynamic polarization in the simulated body fluid (SBF) was used to evaluate the corrosion behaviors of the samples. An SBF immersion test was used to evaluate the coating bioactivity and degradability. After the immersion tests, some bonelike apatite formed on the coating surfaces indicate that bioactivity of the coatings is excellent. The coating prepared in electrolyte containing (NaPO3)6 had slower degradation rate after immersion test for 21 days. PMID:27440396

  10. ADSORPTION OF PHENYLACETIC ACID ON MACROPOROUS POLYMERIC ADSORBENTS

    Institute of Scientific and Technical Information of China (English)

    PANBingcai; CHENJinlong; 等

    2002-01-01

    Several macroporous polymeric adsorbents(NDA-999,XAD-8,X-5 and XAD-2)were emplyed in the study to adsorb phenylacetic acid from aqueous solution.Effect of salt and ambient temperature on adsorption was studied using NDA-999 adsorbent and the adsorption process conforms to Freundlich′s model reasonably.Adsorption dynamics were conducted in batch experiments in order to make clear the mechanism of adsorption process.It is proved that the squared driving force mass transfer model can be adopted to elucidate the process.The treatment process of industrial wastewater containing high strength of phenylacetic acid was proposed for cleaner production of phenylacetic acid.

  11. ADSORPTION OF PHENYLACETIC ACID ON MACROPOROUS POLYMERIC ADSORBENTS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several macroporous polymeric adsorbents (NDA-999, XAD-8, X-5 and XAD-2) wereemployed in the study to adsorb phenylacetic acid from aqueous solution. Effect of salt and ambienttemperature on adsorption was studied using NDA-999 adsorbent and the adsorption processconforms to Freundlich's model reasonably. Adsorption dynamics were conducted in batchexperiments in order to make clear the mechanism of adsorption process. It is proved that thesquared driving force mass transfer model can be adopted to elucidate the process. The treatmentprocess of industrial wastewater containing high strength of phenylacetic acid was proposed forcleaner production of phenylacetic acid.

  12. The Electrochemical Properties of Thionine Adsorbed Monolayer on Gold Electrode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A gold electrode modified with adsorbed thionine monolayer was investigated with ac impedance and cyclic voltammetry method. It was found therewere some different redox properties for the adsorbed thionine depended on the different potential scanning rate. At the slower potential scanning rate (10 mV@s-1), the dimer of thionine appeared and possessed the catalytic activity for the oxidation of ascorbic acid.The underpotential deposition (UPD) and the bulk deposition of Cu2+ were also employed to investigate the monolayer of adsorbed thionine.

  13. Sorbent track: Quantitative monitoring of adsorbed VOCs under in-situ plasma exposure

    Science.gov (United States)

    Jia, Zixian; Rousseau, Antoine

    2016-08-01

    Sorbent-TRACK is a new device developed to monitor adsorption and surface oxidation of pollutants under direct plasma exposure. It is based on direct transmitted Fourier Transformed Infrared (FTIR) spectroscopy. A pyrex reactor under controlled gas pressure and composition is inserted on the infrared beam of a commercially available Nicolet 5700 FTIR spectrometer. A substrate holder is located on the optical path of the infrared beam. A thin pellet of a dedicated catalyst (CeO2 in the present work) is inserted in a substrate holder and can be exposed to direct plasma treatment using a Dielectric Barrier Discharge. The time resolution of Sorbent-TRACK is limited by the time resolution of the Nicolet 5700 FTIR spectrometer and close to 30 s. The dynamic of the adsorption and plasma oxidation of acetone and isopropanol on CeO2 are studied and intermediates are monitored. Performances and sensitivity of Sorbent-TRACK are reported Adsorption and oxidation of acetone leads to production of adsorbed isobutene and acetic acid, where oxidation of isopropanol gives mainly to adsorbed acetone, mesityl oxide and acetate. An increase of the plasma power leads to an increase of the isopropanol and acetone oxidation rate and a related increase of the production of adsorbed intermediates.

  14. Dynamics of CO 2 Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design

    KAUST Repository

    Bollini, Praveen

    2012-11-21

    Packed bed breakthrough experiments are reported for commercial zeolite 13X and 3-aminopropyl-functionalized SBA-15 silica materials with three different amine loadings. Mass and heat transfer dynamics for all four materials are modeled successfully. Amine adsorbents with open pores are found to exhibit faster mass diffusion rates compared to zeolite 13X. When amine loading is increased by coupling aminopropyl groups, premature breakthrough combined with a long tail is observed. Contrary to conventional physisorbants, finite heat losses to the column wall do not explain the long breakthrough tail. A rate model that accounts for heterogeneity in diffusion was found to accurately capture the breakthrough shape of the high loading material. Batch uptake measurements support the hypothesis that slow diffusion through the polymer phase is what hampers adsorption kinetics in the high amine loading adsorbent. The results emphasize the importance of designing materials that are not overloaded with amine sites, as excessive amine loadings can lead to depressed adsorption kinetics and premature column breakthrough. © 2012 American Chemical Society.

  15. Effect of Electrolyte Temperature on Microstructure and Corrosion Resistance of Micro - Arc Oxidation Coatings of Magnesium Alloy%AZ31B镁合金微弧氧化电解液温度对膜组织与性能的影响

    Institute of Scientific and Technical Information of China (English)

    翟彦博; 陈红兵; 马秀腾

    2013-01-01

    on the bath potential for micro-arc oxidation of AZ31B Mg alloy as well as the growth rate, microhardness, corrosion resistance and microstructure of as-obtained micro-arc oxidation coatings was investigated. It was found that elevating electrolyte temperature favored to accelerated growth of the micro-arc oxidation coatings on Mg alloy but led to enlarged discharge channel and reduced compactness of the coatings, thereby resulting in reduced microhardness and corrosion resistance of the micro-arc oxidation coatings.%电解液温度是影响镁合金微孤氧化膜形成及质量的关键因素之一,过去对此鲜有系统研究.为此,对比研究了20,40,60℃3种电解液温度对AZ31B镁合金微弧氧化膜的生长速度、槽压、显微硬度、耐蚀性和微观组织的影响.结果显示,较高的电解液温度可以提高氧化膜的生长速度,但会导致膜层中的放电通道增大,使其致密性变差,从而降低了膜层的显微硬度与耐蚀性.

  16. Application of a new adsorbent for fluoride removal from aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: • A new adsorbent has been prepared. • The adsorbent is non-toxic and easy to synthesize. • HBO1 has displayed best capacity for the removal of fluoride. • Unlike most adsorbents, HBO1 is suitable for the removal of fluoride from water. • The process of removal has been optimized. -- Abstract: Hydrous bismuth oxides (HBOs) have been investigated as a possible adsorbent for fluoride removal from water. Apart from bismuth trioxide (Bi2O3) compound, three additional HBOs, named as HBO1, HBO2, and HBO3 were synthesized in the laboratory and examined for their relative potentials for fluoride removal from aqueous solutions. HBO1 was observed to have highest fluoride removal at 10 mg/L initial concentration in aqueous environment. Among competitive anions, sulfate and chloride affect the fluoride removal by HBO1 more adversely than bicarbonate. Characterization of HBOs using X-ray diffraction (XRD) pattern analyses indicated crystalline structures, and the broad chemical composition of materials showed successive increase of Bi(OH)3 from HBO1 to HBO3, with decrease of BiOCl in the same order. Fourier Transform Infrared (FTIR) spectroscopy analyses indicated presence of Bi-O bond and successively increasing number of peaks corresponding to OH ion from HBO1 to HBO3. Scanning Electron Microscopic (SEM) images of HBOs show rough and porous structure of the materials. Presence of higher proportion of chloride compound in HBO1 with respect to others appears to be the factor responsible for its better performance in fluoride removal from aqueous solutions

  17. Radiation grafted adsorbents for newly emerging environmental applications

    Science.gov (United States)

    Mahmoud Nasef, Mohamed; Ting, T. M.; Abbasi, Ali; Layeghi-moghaddam, Alireza; Sara Alinezhad, S.; Hashim, Kamaruddin

    2016-01-01

    Radiation induced grafting (RIG) is acquired to prepare a number of adsorbents for newly emerging environmental applications using a single route involving RIG of glycidymethacrylate (GMA) onto polyethylene-polypropylene (PE-PP) non-woven fabric. The grafted fabric was subjected to one of three functionalization reactions to impart desired ionic characters. This included treatment with (1) N-dimethyl-D-glucamine, (2) triethylamine and (3) triethylamine and alkalisation with KOH. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were used to study the changes in chemical and physical structures of the obtained fibrous adsorbents. The potential applications of the three adsorbents for removal of boron from solutions, capturing CO2 from CO2/N2 mixtures and catalysing transesterification of triacetin/methanol to methyl acetate (biodiesel) were explored. The obtained fibrous adsorbents provide potential alternatives to granular resins for the investigated applications and require further development.

  18. A NOVEL METAL CHELATE AFFINITY ADSORBENT FOR PROTEIN UPTAKE

    Institute of Scientific and Technical Information of China (English)

    WANGYongjian; BAIShu; 等

    2001-01-01

    In this article,a spherical chitosan gel crosslinked by epichlorohydrin was prepared.It was then loaded with copper ions to produce a metal chelate affinity adsorbent for protein.The uptake of bovine serum albumin(BSA)by the affinity adsorbent was investigated.and the adsorption capacity for BSA as high as 40mg/g-wet beads was observed.The adsorption equilibrium data was well correlated by the Langmuir equation.The adsorption was considerably affected by pH.In additio.The amount of BSA adsorbed onto the beads decreased with the increasing of aqueous phase ionic strength,so adsorbed BAS can be desorbed by adjusting pH orionic strength of the solution.

  19. Adsorption of remazol brilliant blue on an orange peel adsorbent

    Directory of Open Access Journals (Sweden)

    M. R. Mafra

    2013-09-01

    Full Text Available A novel orange peel adsorbent developed from an agricultural waste material was characterised and utilised for the removal of Remazol Brilliant Blue from an artificial textile-dye effluent. The adsorption thermodynamics of this dye-adsorbent pair was studied in a series of equilibrium experiments. The time to reach equilibrium was 15 h for the concentration range of 30 mg L-1 to 250 mg L-1. The adsorption capacity decreased with increasing temperature, from 9.7 mg L-1 at 20 ºC to 5.0 mg L-1 at 60 ºC. Both the Langmuir and Freundlich isotherm models fitted the adsorption data quite reasonably. The thermodynamic analysis of dye adsorption onto the orange peel adsorbent indicated its endothermic and spontaneous nature. Thus, the application of orange peel adsorbent for the removal of dye from a synthetic textile effluent was successfully demonstrated.

  20. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  1. Low Pressure Adsorbent for Recovery & Storage Vented Hydrogen Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance fullerene-based adsorbent is proposed for recovery and storage hydrogen and separating helium via pressure-swing-adsorption (PSA) process....

  2. Sol-Gel Synthesized Adsorbents for Metal Separation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A series of organo-ceramic adsorbents have been synthesized by a sol-gel processing technique for metal ion extraction. These adsorbents generally have significantly high metal uptake capacities, good physical-chemical stabilities, and well-designed pore geometries compared to other pre-existing metalchelating ceramic-based adsorbents. This work describes the synthesis and evaluation of pyrazole and calix[4]arene crown adsorbents for selective separation of platinum, palladium, and gold and cesium ions,respectively, from solutions. These materials exhibit mesoporous properties with high surface areas and pore volumes. The sol-gel synthesis starting with precursor silanes and titania results in gel particles of desired pore characteristics and high capacity and stability. Characterization studies, such as adsorption isotherms, breakthrough curves for fixed bed operation, and material stability, show promising results for applications to metal sepation.

  3. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  4. Development of novel adsorbents for environmental cleaning by radiation

    International Nuclear Information System (INIS)

    In order to improve our amenity spaces, the demand of non-odorous atmosphere is needed. Toxic gases such as trimethylamine and ammonia have been treated as the pollutant of the atmosphere. The development of an excellent and effective adsorbent for the toxic gases has been performed here and there all over the world. However, the development of the adsorbent with the consideration for conservation of environment must be made as one of the requisites. Therefore, we proposed the use of radiation for the preparation of toxic-gas-adsorbing materials. On the other hand, in our daily life, the large amount of calcium and magnesium contained in our drinking water has hindered the removal of a trace amount of pollutant such as lead. As a result, the development of the metal-ion-adsorbing material is very indispensable indeed. (J.P.N.)

  5. Indium–tin-oxide coatings for applications in photovoltaics and displays deposited using rotary ceramic targets: Recent insights regarding process stability and doping level

    Energy Technology Data Exchange (ETDEWEB)

    Lippens, Paul, E-mail: paul.lippens@umicore.com [Umicore Thin Film Products, Alte landstrasse 8, FL-9496 Balzers (Liechtenstein); Büchel, Michal [Umicore Thin Film Products, Alte landstrasse 8, FL-9496 Balzers (Liechtenstein); Chiu, David [Umicore Thin Film Products Taiwan, No. 22, Aly 4, Ln. 711, Bo' ai Street, Zhubei City, Hsinchu County 302, Taiwan, ROC (China); Szepesi, Chris [Umicore Thin Film Products USA, 50 Sims Avenue, Providence, 02909 RI (United States)

    2013-04-01

    Several aspects related to high power sputtering with industrial scale sintered ceramic rotary indium–tin-oxide (ITO) targets are presented in the first part of this paper. In particular, the process stability and target integrity upon sputtering with ≥ 20 kW/m power load and the influence of the gap size between cylindrical segments are discussed. Results show that, in order to avoid nodule formation and deposition rate fluctuations, direct current (DC) power load needs to be limited well below 20 kW/m over long sputter runs. Additional work demonstrates that at a gap size at or below 0.15 mm, strongly adhering deposits form readily between cylindrical segments which are not observed with standard 0.35 mm gaps. The influence of Sn doping level on electro-optical properties of thin films targeting an application such as hetero-junction c-Si solar cells is also investigated. Again, rotary targets operated at high power (10 kW/m) are used, including standard grade ITO containing 10 wt.% SnO{sub 2} and another composition with only 3 wt.% SnO{sub 2}. The influence of H{sub 2} and different concentrations of O{sub 2} in the sputter gas is analysed for both target materials. Results indicate that although coatings derived from the lower-doped ITO exhibit considerably less absorption in the NIR due to lower carrier concentrations, their resistivity is nearly 30% higher than that from the standard ITO coating.

  6. Single-Step Assembly of Multifunctional Poly(tannic acid)-Graphene Oxide Coating To Reduce Biofouling of Forward Osmosis Membranes.

    Science.gov (United States)

    Hegab, Hanaa M; ElMekawy, Ahmed; Barclay, Thomas G; Michelmore, Andrew; Zou, Linda; Saint, Christopher P; Ginic-Markovic, Milena

    2016-07-13

    Graphene oxide (GO) nanosheets have antibacterial properties that have been exploited as a biocidal agent used on desalination membrane surfaces in recent research. Nonetheless, improved strategies for efficient and stable attachment of GO nanosheets onto the membrane surface are still required for this idea to be commercially viable. To address this challenge, we adopted a novel, single-step surface modification approach using tannic acid cross-linked with polyethylene imine as a versatile platform to immobilize GO nanosheets to the surface of polyamide thin film composite forward osmosis (FO) membranes. An experimental design based on Taguchi's statistical method was applied to optimize the FO processing conditions in terms of water and reverse solute fluxes. Modified membranes were analyzed using water contact angle, adenosine triphosphate bioluminescence, total organic carbon, Fourier transform infrared spectroscopy, ζ potential, X-ray photoelectron spectroscopy, transmission electron microscopy, and atomic force microscopy. These results show that membranes were modified with a nanoscale (biofouling by 33% due to its extraordinary, synergistic antibacterial properties (99.9%).

  7. Effect of Al2O3 Micro-powder Additives on the Properties of Micro-arc Oxidation Coatings Formed on 6061 Aluminum Alloy

    Science.gov (United States)

    Wang, Ping; Wu, Ting; Xiao, You Tao; Pu, Jun; Guo, Xiao Yang; Huang, Jun; Xiang, Chun Lang

    2016-09-01

    Al2O3 micro-powder was suspended in the basis electrolyte to form micro-arc oxidation (MAO) coatings on 6061 aluminum alloy by MAO. During the stage of micro-arc oxidation, Al2O3 micro-powder with negative surface charge was melted by the micro-arc around the anode and incorporated into the MAO coatings. With the continuous addition of Al2O3 micro-powder, the oxidation voltages rose up firstly and then decreased. The surface and cross-sectional morphologies showed that the size of micropores decreased and the MAO coatings surface got loosened following the variation in Al2O3 micro-powder concentration. As a consequence of the changing coating structure, the corrosion resistance of the coatings decreased apparently. The micro-hardness of the coatings increased firstly and then decreased, opposite to the trend of the average friction coefficient. It revealed the minimum average friction coefficient of MAO coatings and maximum adhesion between the coatings and substrate when 2.0 g/L Al2O3 micro-powder was added into electrolyte. There were visible cracks and peelings on the coating surface merely at 4.0 g/L after thermal shock tests. The x-ray diffraction results indicated that the addition of Al2O3 micro-powder had less effect on the phase composition of MAO coatings.

  8. Single-Step Assembly of Multifunctional Poly(tannic acid)-Graphene Oxide Coating To Reduce Biofouling of Forward Osmosis Membranes.

    Science.gov (United States)

    Hegab, Hanaa M; ElMekawy, Ahmed; Barclay, Thomas G; Michelmore, Andrew; Zou, Linda; Saint, Christopher P; Ginic-Markovic, Milena

    2016-07-13

    Graphene oxide (GO) nanosheets have antibacterial properties that have been exploited as a biocidal agent used on desalination membrane surfaces in recent research. Nonetheless, improved strategies for efficient and stable attachment of GO nanosheets onto the membrane surface are still required for this idea to be commercially viable. To address this challenge, we adopted a novel, single-step surface modification approach using tannic acid cross-linked with polyethylene imine as a versatile platform to immobilize GO nanosheets to the surface of polyamide thin film composite forward osmosis (FO) membranes. An experimental design based on Taguchi's statistical method was applied to optimize the FO processing conditions in terms of water and reverse solute fluxes. Modified membranes were analyzed using water contact angle, adenosine triphosphate bioluminescence, total organic carbon, Fourier transform infrared spectroscopy, ζ potential, X-ray photoelectron spectroscopy, transmission electron microscopy, and atomic force microscopy. These results show that membranes were modified with a nanoscale (<10 nm), smooth, hydrophilic coating that, compared to pristine membranes, improved filtration and significantly mitigated biofouling by 33% due to its extraordinary, synergistic antibacterial properties (99.9%). PMID:27294568

  9. Development of solid adsorbent materials for CO₂capture

    OpenAIRE

    Ogbuka, Chidi Premie

    2013-01-01

    The application of solid adsorbents for gas separation in pre-combustion carbon capture from gasification processes has gained attention in recent times. This is due to the potential of the technology to reduce the overall energy penalty associated with the capture process. However, this requires the development of solid adsorbent materials with large selectivity, large adsorption capacity, fast adsorption kinetics for CO2 coupled with good mechanical strength and thermal stability. In this ...

  10. Plant waste materials from restaurants as the adsorbents for dyes

    OpenAIRE

    Pavlović Marija D.; Nikolić Ivan R.; Milutinović Milica D.; Dimitrijević-Branković Suzana I.; Šiler-Marinković Slavica S.; Antonović Dušan G.

    2015-01-01

    This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was mo...

  11. Electronic and electrochemical doping of graphene by surface adsorbates

    OpenAIRE

    Hugo Pinto; Alexander Markevich

    2014-01-01

    Many potential applications of graphene require its precise and controllable doping with charge carriers. Being a two-dimensional material graphene is extremely sensitive to surface adsorbates, so its electronic properties can be effectively modified by deposition of different atoms and molecules. In this paper, we review two mechanisms of graphene doping by surface adsorbates, namely electronic and electrochemical doping. Although, electronic doping has been extensively studied and discussed...

  12. THE USE OF LOW COST ADSORBENTS FOR PURIFICATION WASTEWATER

    OpenAIRE

    Višekruna, Antonija; Štrkalj, Anita; Marinić Pajc, Ljiljana

    2011-01-01

    Adsorption is one of the effective methods of advanced wastewater treatment, which industries employ to reduce hazardous organic and inorganic wastes in effluents. The use of low cost adsorbent has been investigated as a replacement for current costly methods of removing toxic substances from wastewater. In this article, the use of low cost adsorbents for the removal of toxic substances from wastewater has been reviewed.

  13. Residence time determination for adsorbent beds of different configurations

    Energy Technology Data Exchange (ETDEWEB)

    Otermat, J.E.; Wikoff, W.O.; Kovach, J.L.

    1995-02-01

    The residence time calculations of ASME AG-1 Code, Section FC, currently specify a screen surface area method, that is technically incorrect. Test data has been obtained on Type II adsorber trays of different configurations to establish residence time in the adsorber trays. These data indicate that the air volume/carbon volume ratio or the average screen area are more appropriate for the calculation of the residence time calculation than the currently used, smallest screen area basis.

  14. Efforts to Consolidate Chalcogels with Adsorbed Iodine

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Pierce, David A.; Chun, Jaehun

    2013-08-28

    This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in a single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent

  15. Evaluation of a cesium adsorbent grafted with ammonium 12-molybdophosphate

    Science.gov (United States)

    Shibata, Takuya; Seko, Noriaki; Amada, Haruyo; Kasai, Noboru; Saiki, Seiichi; Hoshina, Hiroyuki; Ueki, Yuji

    2016-02-01

    A fibrous cesium (Cs) adsorbent was developed using radiation-induced graft polymerization with a cross-linked structure containing a highly stable adsorption ligand. The ligand, ammonium 12-molybdophosphate (AMP), was successfully introduced onto the fibrous polyethylene trunk material. The resulting Cs adsorbent contained 36% nonwoven fabric polyethylene (NFPE), 1% AMP, 2% triallyl isocyanurate (TAIC) and 61% glycidyl methacrylate (GMA). The adsorbent's Cs adsorption capacity was evaluated using batch and column tests. It was determined that the adsorbent could be used in a wide pH range. The amount of desorbed molybdenum, which can be used as an estimate for AMP stability on the Cs adsorbent, was minimized at the standard drinking water pH range of 5.8-8.6. Based from the inspection on the adherence of these results to the requirements set forth by the Food Sanitation Act by a third party organization, it can be concluded that the developed Cs adsorbent can be safely utilized for drinking water.

  16. Optimizing Conditions to Cholesterol Adsorbed with Carboxymethyl Chitosan

    Directory of Open Access Journals (Sweden)

    Mardiyah Kurniasih

    2016-05-01

    Full Text Available A research on optimizing conditions to cholesterol adsorbed have been performed. Optimization was performed by varying: contact time, adsorbent weight and temperature of the system's. A full factorial experimental design was used in this study. Characterization performed on the synthesized chitosan and carboxymethyl chitosan including FTIR, water content, ash content, solubility, porosity, and swelling effect. The results showed that carboxymethyl chitosan able to adsorb cholesterol under conditions optimal adsorbent with cholesterol ratio (1:200 with a contact time of 90 minutes at temperature of 40 °C. Meanwhile, at a temperature of 55 °C carboxymethyl chitosan capable of adsorb cholesterol under conditions optimal adsorbent with cholesterol ratio (1:300 with a contact time of 30 minutes. Chitosan and carboxymethyl chitosan synthesized has a water content of 7.4 and 10.2%, ash content of 0.14 and 2.29%, solubility in distilled water at 1.10-5and 1.98.10-3%, solubility in acetic acid 0.02 and 0.04%, porosity at 88.3% and 88.8%, and swelling at 163.13 and 182.98%.

  17. Cryogenic adsorber design in a helium refrigeration system

    Science.gov (United States)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  18. Activity of lactoperoxidase when adsorbed on protein layers.

    Science.gov (United States)

    Haberska, Karolina; Svensson, Olof; Shleev, Sergey; Lindh, Liselott; Arnebrant, Thomas; Ruzgas, Tautgirdas

    2008-09-15

    Lactoperoxidase (LPO) is an enzyme, which is used as an antimicrobial agent in a number of applications, e.g., food technology. In the majority of applications LPO is added to a homogeneous product phase or immobilised on product surface. In the latter case, however, the measurements of LPO activity are seldom reported. In this paper we have assessed LPO enzymatic activity on bare and protein modified gold surfaces by means of electrochemistry. It was found that LPO rapidly adsorbs to bare gold surfaces resulting in an amount of LPO adsorbed of 2.9mg/m(2). A lower amount of adsorbed LPO is obtained if the gold surface is exposed to bovine serum albumin, bovine or human mucin prior to LPO adsorption. The enzymatic activity of the adsorbed enzyme is in general preserved at the experimental conditions and varies only moderately when comparing bare gold and gold surface pretreated with the selected proteins. The measurement of LPO specific activity, however, indicate that it is about 1.5 times higher if LPO is adsorbed on gold surfaces containing a small amount of preadsorbed mucin in comparison to the LPO directly adsorbed on bare gold.

  19. Gold recovery from low concentrations using nanoporous silica adsorbent

    Science.gov (United States)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  20. The effect of the addition of colloidal iridium oxide into sol-gel obtained titanium and ruthenium oxide coatings on titanium on their electrochemical properties.

    Science.gov (United States)

    Panić, Vladimir V; Dekanski, Aleksandar B; Mitrić, Miodrag; Milonjić, Slobodan K; Misković-Stanković, Vesna B; Nikolić, Branislav Z

    2010-07-21

    Electrochemical properties of sol-gel processed Ti(0.6)Ir(0.4)O(2) and Ti(0.6)Ru(0.3)Ir(0.1)O(2) coatings on titanium substrate were investigated using cyclic voltammetry, polarization measurements and electrochemical impedance spectroscopy and compared to the properties of Ti(0.6)Ru(0.4)O(2) coating. The role of iridium oxide in the improvement of the electrocatalytic, capacitive and stability properties of titanium anodes activated by a RuO(2)-TiO(2) coating is discussed. The oxide sols were prepared by forced hydrolysis of the metal chlorides. The characterization by dynamic light scattering and X-ray diffraction showed that polydisperse oxide sols were obtained with the particles tending to form agglomerates. The presence of IrO(2) causes a suppression of the X-ray diffraction peaks of TiO(2) and RuO(2) in the sol-gel prepared Ti(0.6)Ir(0.4)O(2) and Ti(0.6)Ru(0.3)Ir(0.1)O(2) coatings. The IrO(2)-containing coatings had an enhanced charge storage ability and activity for the oxygen evolution reaction (OER) in comparison to Ti(0.6)Ru(0.4)O(2) coating. The voltammogram of the Ti(0.6)Ir(0.4)O(2)/Ti electrode showed well-resolved peaks related to Ir redox transitions, which are responsible for the enhanced charge storage ability of IrO(2)-containing coatings. Redox transitions of Ir were also registered in the high-frequency domain of the ac impedance spectra of the coatings as a semicircle with characteristics insensitive to the electrolyte composition and to the electrode potential prior to OER. However, the semicircle characteristics were different for the two IrO(2)-containing coatings, as well as at potentials outside the OER in comparison to those at which the OER occurs. PMID:20544088

  1. Elution by Le Chatelier's principle for maximum recyclability of adsorbents: applied to polyacrylamidoxime adsorbents for extraction of uranium from seawater.

    Science.gov (United States)

    Oyola, Yatsandra; Vukovic, Sinisa; Dai, Sheng

    2016-05-28

    Amidoxime-based polymer adsorbents have attracted interest within the last decade due to their high adsorption capacities for uranium and other rare earth metals from seawater. The ocean contains an approximated 4-5 billion tons of uranium and even though amidoxime-based adsorbents have demonstrated the highest uranium adsorption capacities to date, they are still economically impractical because of their limited recyclability. Typically, the adsorbed metals are eluted with a dilute acid solution that not only damages the amidoxime groups (metal adsorption sites), but is also not strong enough to remove the strongly bound vanadium, which decreases the adsorption capacity with each cycle. We resolved this challenge by incorporating Le Chatelier's principle to recycle adsorbents indefinitely. We used a solution with a high concentration of amidoxime-like chelating agents, such as hydroxylamine, to desorb nearly a 100% of adsorbed metals, including vanadium, without damaging the metal adsorption sites and preserving the high adsorption capacity. The method takes advantage of knowing the binding mode between the amidoxime ligand and the metal and mimics it with chelating agents that then in a Le Chatelier's manner removes metals by shifting to a new chemical equilibrium. For this reason the method is applicable to any ligand-metal adsorbent and it will make an impact on other extraction technologies. PMID:27117598

  2. Biocompatibility of pure titanium implant surface micro-arc oxidation coating%纯钛种植体表面微弧氧化涂层的生物相容性

    Institute of Scientific and Technical Information of China (English)

    张强; 王健平; 胡美玲; 孟祥才; 王静

    2011-01-01

    BACKGROUND: Biological effects of various pure titanium implant surface micro -arc oxidation coatings are different.OBJECTIVE: To study the effects of three different micro -arc oxidation coating palatal implant titanium tablets on mouse osteoblast cell proliferation, alkaline phosphatase activity and beta 1-integrin gene expression level.METHODS: Using international common mice lines (MC3T3-E1), three different coated titanium pieces were used as influencing factors, pure titanium group as control group. MTT method and electron microscopic observation were conducted for cell adhesion and cell proliferation, PNPP was used for determination of alkaline phosphatase activity, RT-PCR method to detect beta 1-integrin expression in mouse osteoblasts.RESULTS AND CONCLUSION: The MTT value, alkaline phosphatase activity, beta 1-integrin gene expression level and electron microscopic observation showed calcium, phosphorus, magnesium, zinc coated titanium pieces of titanium dioxide had the best biocompatibility, titanium dioxide coating titanium containing calcium containing phosphorus salt was secondary, and titanium dioxide coated titanium slice was the worst. The results showed that mouse osteoblasts on the porous of calcium,phosphorus, magnesium, zinc coated titanium pieces had the best adhesion and proliferative abilities.%背景:各种纯钛种植体表面微弧氧化涂层效果不尽相同.目的:观察3种不同微弧氧化涂层种植体钛片对小鼠成骨细胞的细胞增殖、碱性磷酸酶活性和β1-integrin的基因表达水平的影响.方法:采用国际常用小鼠成骨细胞系(MC3T3-E1),3种不同涂层钛片作为影响因素,纯钛作为对照,采用MTT法和电镜法观察细胞附着和细胞增殖,PNPP法测定碱性磷酸酶的活性,RT-PCR法检测β1-integrin在小鼠成骨细胞中的表达.结果与结论:MTT值、碱性磷酸酶值、β1-integrin的基因表达水平和电镜观察均显示含钙、磷、镁、锌元素的二氧化钛涂

  3. Structural characteristics and oil-removal mechanisms of the adsorbents made from petrochemical sludge

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-bin; SANG Yi-ming; TAN Wen-jie; HE Xu-wen; LI Fa-sheng

    2004-01-01

    A new type of carbon-inorganic absorbent with good oil-removing performance is prepared by sintering and activating petrochemical sludge. Of the absorbents prepared by three different methods (non-activated, vapor /840 ℃/6 h, CO2/1 000 ℃/2 h), the one prepared by the second method is the best in oil-removing, which can remove 60% of oil from petrochemical wastewater with a concentration of 76.42 mg/L. X-ray Diffraction (XRD) analysis shows that the constituents of the adsorbents are basically similar to those of inorganic granulating materials, such as SiO2, Al2O3, orthoclase feldspar, iron ore, etc. Composition analysis reveals that the activated absorbent has a large specific surface area with a high carbon content in activated compositions and a good oil-removing capability.

  4. Novel adsorbent from agricultural waste (cashew NUT shell for methylene blue dye removal: Optimization by response surface methodology

    Directory of Open Access Journals (Sweden)

    Ramalingam Subramaniam

    2015-09-01

    Full Text Available Activated carbon, prepared from an agricultural waste, cashew nut shell (CNS was utilized as an adsorbent for the removal of methylene blue (MB dye from aqueous solution. Batch adsorption study was carried out with variables like pH, adsorbent dose, initial dye concentration and time. The response surface methodology (RSM was applied to design the experiments, model the process and optimize the variable. A 24 full factorial central composite design was successfully employed for experimental design and analysis of the results. The parameters pH, adsorbent dose, initial dye concentration, and time considered for this investigation play an important role in the adsorption studies of methylene blue dye removal. The experimental values were in good agreement with the model predicted values. The optimum values of pH, adsorbent dose, initial dye concentration and time are found to be 10, 2.1846 g/L, 50 mg/L and 63 min for complete removal of MB dye respectively.

  5. Adsorption of Hg(II) from aqueous solutions using TiO2 and titanate nanotube adsorbents

    Science.gov (United States)

    López-Muñoz, María-José; Arencibia, Amaya; Cerro, Luis; Pascual, Raquel; Melgar, Álvaro

    2016-03-01

    Titania and titanate nanotubes were evaluated as adsorbents for the removal of Hg(II) from aqueous solution. Commercial titanium dioxide (TiO2-P25, Evonik), a synthesized anatase sample obtained by the sol-gel method (TiO2-SG) and titanate nanotubes (TNT) prepared via hydrothermal treatment were compared. Mercury adsorption was analysed by kinetic and equilibrium experiments, studying the influence of pH and the type of adsorbents. The kinetics of Hg(II) adsorption on titania and titanate nanotubes could be well described by the pseudo-second order model. It was found that the process is generally fast with small differences between adsorbents, which cannot be explained by their dissimilarities in textural properties. Equilibrium isotherm data were best fitted with the Sips isotherm model. The maximum adsorption capacities of Hg(II) were achieved with titanate nanotubes sample, whereas between both titania samples, TiO2-SG exhibited the highest mercury uptake. For all adsorbents, adsorption capacities were enhanced as pH was increased, achieving at pH 10 Hg(II) adsorption capacities of 100, 121, and 140 mg g-1 for TiO2-P25, TiO2-SG, and TNT, respectively. Differences between samples were discussed in terms of their crystalline phase composition and chemical nature of both, mercury species and surface active sites.

  6. Effect of biomass addition on the surface and adsorption characterization of carbon-based adsorbents from sewage sludge

    Institute of Scientific and Technical Information of China (English)

    Changzi Wu; Min Song; Baosheng Jin; Yimin Wu; Yaji Huang

    2013-01-01

    Sewage sludge with the additive corn cob was used as prescusor to prepare sludge-based carbon adsorbents by pyrolysis method.And then,the carbonizated products were activated with potassium hydroxide.The mixing ratio of the corn cob to sewage sludge was investigated.The surface area and pore size distribution,elemental composition,surface chemistry structure and the surface physical morphology were determined and compared.The results demonstrated that the addition of corn cob into the sewage sludge sample could effectively improve the surface area (from 287 to 591 m2/g) and the microporosity (from 5% to 48%) of the carbon based adsorbent,thus enhancing the adsorption behavior.The sulfur dioxide adsorption capacity was measured according to breakthrough test.It was found that the sulfur dioxide adsorption capacity of the adsorbents was obviously enhanced after the addition of the corn cob.It is presumed that not only highly porous adsorbents,but also a high metallic content of these materials are required to achieve good performances.

  7. Adsorption of rare earths with crown ether adsorbents

    International Nuclear Information System (INIS)

    Crown ether - phosphotungstic acid (PW) and crown ether -phosphomolybdic acid (PMo) precipitates, and also the granular entrapped crown ether - PMo (or PW) in polyacrylamide, were prepared and applied as adsorbents for rare earth metal ions. Adsorbents containing 15-crown-5, such as 15-crown-5 - PMo, were better adsorbents than the other crown ether precipitates. The adsorption capacity of 15-crown-5 - PMo for Eu3+ was determined and corresponded to about 0.166 mmol of Eu3+ per gram of the absorbent. The effects of pH and metal ion concentration on adsorption were also investigated. Crown ether - PMo (or PW) precipitates underwent hydrolysis at pH >= 1, but the granular entrapped crown ether - PMo (or PW) - polyacrylamide adsorbents were not hydrolysed at pH >= 1. The adsorption of individual rare earth ions with 15-crown-5 - PMo - polyacrylamide showed that Tb3+, Nd3+, Eu3+ and Gd3+ were readily adsorbed, but adsorption was difficult for Ce4+, Sm3+ and Dy3+. (author)

  8. [DSC and FTIR study of adsorbed lysozyme on hydrophobic surface].

    Science.gov (United States)

    Lei, Zu-meng; Geng, Xin-peng; Dai, Li; Geng, Xin-du

    2008-09-01

    During a process of hen egg white lysozyme adsorption and folding on a moderately hydrophobic surface (PEG-600), the effects of salt((NH4)2SO4) concentrations, surface coverage and denaturant (guanidine hydrochloride, GuHCl) concentrations on thermal stability and the changes in the molecular conformation of adsorbed native and denatured lysozyme without aqueous solution were studied with a combination of differential scanning calorimetry (DSC) with FTIR spectroscopy. The results showed that temperature due to endothermic peaks was reduced and the disturbance increased at higher temperature with the increase in salt concentration and surface coverage of adsorbed protein. beta-Sheet and beta-Turn stucture increased while alpha-Helix structure decreased after the adsorption. The peaks corresponding to both C-C stretching frequency in 1400-1425 cm(-1) and amide I band frequency in 1650-1670 cm(-1) of adsorbed denatured lysozyme can be detected in FTIR spectra while that due to amide I band frequency of adsorbed native lysozyme almost can't be observed. Adsorption resulted in structural loss of adsorbed native lysozyme, whose performance was less stable. PMID:19093560

  9. Magnetic niobia as adsorbent of organic contaminants in aqueous medium: effect of temperature and pH

    International Nuclear Information System (INIS)

    This work describes novel materials based on pure iron oxide and iron oxide/niobia composite to produce a magnetic adsorbent. These materials were prepared with synthetic iron oxide and characterized by powder XRD, SEM, FTIR, TPR and Moessbauer spectroscopy. Results showed that the main iron oxides formed were goethite (α FeOOH) and maghemite (γFe2O3) with small particle size. The iron oxide and iron oxide/niobia composite showed high adsorption ability for organic compounds. The positive enthalpy indicated an endothermic adsorption process suggesting physical adsorption. (author)

  10. Some Observations on the Development of Superior Photocatalytic Systems for Application to Water Purification by the “Adsorb and Shuttle” or the Interphase Charge Transfer Mechanisms

    Directory of Open Access Journals (Sweden)

    Cooper Langford

    2014-11-01

    Full Text Available Adsorb and shuttle (A/S and interfacial charge transfer are the two major strategies for overcoming recombination in photocatalysis in this era of nanoparticle composites. Their relationships are considered here. A review of key literature is accompanied by a presentation of three new experiments within the overall aim of assessing the relation of these strategies. The cases presented include: A/S by a high silica zeolite/TiO2 composite, charge transfer (CT between phases in a TiO2/WO3 composite and both A/S and CT by composites of TiO2 with powered activated carbon (AC and single-walled carbon nanotubes (SWCNT. The opportunities presented by the two strategies for moving toward photocatalysts that could support applications for the removal of contaminants from drinking water or that lead to a practical adsorbent for organics that could be regenerated photocatalytically link this discussion to ongoing research here.

  11. Studies on The Adsorption Capacity for Bilirubin of The Adsorbent Chitosan-β-Cyclodextrin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The adsorbent crosslinked chitosan-β-cyclodextrin (β-CD) was prepared by the reaction of glutaraldehyde with chitosan and β-cyclodextrin. This type of adsorbent has high adsorption capacity for unconjugated bilirubin. The adsorption capacity was related to the β-CD content of the adsorbent; phosphate buffer concentration; temperature; pH value; ionic strength and the adsorbent beads. The results indicated that the chitosan-β-CD was a good adsorbent for unconjugated bilirubin with high capacity.

  12. ADSORPTION OF DINITROPHENOLS ONTO POLYMERIC ADSORBENTS AND ITS MECHANISM

    Institute of Scientific and Technical Information of China (English)

    SHIZuoqing; XUMancai; 等

    2000-01-01

    The adsorption of 2,4-dinitrophenol and 2,6-dinitrophenol on non-polar and polar adsorbents was studied.The results showed that the equilibrium adsorption did not comply with the Langmuir equation and was not mono-layer adsorption .It is of interest to notice that the effect of pH on the adsorption of 2,4-or 2,6-dinitrophenol onto ADS-7 and ADS-21 was very small,The result is explained by hydrogen bonding interaction between 2,4-or 2,6-dinitrophenol and the adsorbent ADS-21.The large adsorption capacity of dinitrophenol onto ADS-21,which was about 500mg/g at an equilibrium concentration of 400mg/L,and the small dinitrophenol leakage in the effluent from ADS-21 column presented a good prospect for treatment of wastewater containing dinitrophenol with adsorbent ADS-21.

  13. Metal loaded zeolite adsorbents for hydrogen cyanide removal

    Institute of Scientific and Technical Information of China (English)

    Ping Ning; Juan Qiu; Xueqian Wang; Wei Liu; Wei Chen

    2013-01-01

    Metal (Cu,Co,or Zn) loaded ZSM-5 and Y zeolite adsorbents were prepared for the adsorption of hydrogen cyanide (HCN) toxic gas.The results showed that the HCN breakthrough capacity was enhanced significantly when zeolites were loaded with Cu.The physical and chemical properties of the adsorbents that influence the HCN adsorption capacity were analyzed.The maximal HCN breakthrough capacities were about the same for both zeolites at 2.2 mol of HCN/mol of Cu.The Cu2p XPS spectra showed that the possible species present were Cu2O and CuO.The N1s XPS data and FT-IR spectra indicated that CN-would be formed in the presence of Cu+/Cu2+and oxygen gas,and the reaction product could be adsorbed onto Cu/ZSM-5 zeolite more easily than HCN.

  14. Emanation-thermal analysis of basalt fiber adsorbents

    International Nuclear Information System (INIS)

    Complex emanation-thermal analysis is used for investigating structural changes in basalt adsorbents taking place during thermal affects on material. Adsorbent is prepared by two-stage treatment of staple basalt fibers by hydrochloric acid. Isotherms of sorption of liquid nitrogen vapors by new sorbents are measured. Areas of the open surface, porosity and pores size spectra of leached fibers are calculated. It is determined by the method of thermostimulated gassing that adsorbed water is in two energetically different states in porous basalt fiber: basic part of water vapors is desorbed at 90-110 Deg C, remained part -at 300-320 Deg C. Full regeneration of sorbent requires warming up to 550 Deg C

  15. A Review of Adsorbents Used for Storm Water Runoff Cleaning

    Directory of Open Access Journals (Sweden)

    Andrius Agintas

    2011-04-01

    Full Text Available Heavy metals, petroleum products, sediments and other pollutants get in the environment with insufficiently cleaned storm water runoff. Contaminated storm water runoff is one of the most significant sources for pollution in rivers, lakes and estuaries. Storm water runoff must be treated using not only simple methods but also using adsorption processes. Adsorbents can be natural organic, natural nonorganic and synthetic. Main adsorption characteristic, way of utilization and storm water runoff inflow rate, quantity and pollution need to be investigated when trying to use adsorbents in reasonably way. It is very important to treat storm water properly during the primary mechanical treatment otherwise adsorbents will act as mechanical filters.Article in Lithuanian

  16. Synthesis of silica adsorbent and its selective separation for flavone

    Institute of Scientific and Technical Information of China (English)

    Yuqing ZHANG; Yahui ZHANG; Zhen QIN; Zhenrong MA

    2008-01-01

    One kind of built,in silica adsorbent, which has high adsorption selectivity to rutin, was synthesized using molecular imprinting technology by the following steps:synthesis of precursor from the reaction between water soluble rutin (as template molecule) and the functional monomer chloropropyltriethoxysilane, co,hydrolysis of the precursor and tetraethoxysilane (TEOS), sol,gel aging process, and removal of template molecules. The results of adsorption experiment show that this adsorbent has a high adsorption capacity for rutin, and good adsorptionselectivity towards rutin even under the interference of a flavone with a similar structure. TEM photos suggest that nanocaves corresponding to rutin were formed inside the adsorbent while FTIR spectra indicate that new bond was generated during the recognition process.

  17. Decontamination of radioactive process waste water by adsorbing colloid flotation

    International Nuclear Information System (INIS)

    Adsorbing colloid flotation was tested to remove 144Ce, 60Co, 65Zn, and 89Sr from radioactive process waste water. Potassium oleate was used as the collector, and Fe(III) hydroxide, Al(III) hydroxide or Co(II) hydroxide as the coprecipitant. Under optimal conditions, removals exceeding 99% could be achieved for 65Zn with any of the tested coprecipitants, for 144Ce with Fe(III) and Co(II) hydroxides and for 60Co with only Co(II) hydroxide. For 89Sr removals of 90% could be achieved only with Fe(III) hydroxide. The adsorbing colloid flotation process was compared with both chemical precipitation and ion exchange. Advantages of adsorbing colloid flotation are discussed. (author)

  18. Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO₂ capture from flue gas.

    Science.gov (United States)

    Rezaei, Fateme; Lively, Ryan P; Labreche, Ying; Chen, Grace; Fan, Yanfang; Koros, William J; Jones, Christopher W

    2013-05-01

    Amine/silica/polymer composite hollow fiber adsorbents are produced using a novel reactive post-spinning infusion technique, and the obtained fibers are shown to capture CO2 from simulated flue gas. The post-spinning infusion technique allows for functionalization of polymer/silica hollow fibers with different types of amines during the solvent exchange step after fiber spinning. The post-spinning infusion of 3-aminopropyltrimethoxysilane (APS) into mesoporous silica/cellulose acetate hollow fibers is demonstrated here, and the materials are compared with hollow fibers infused with poly(ethyleneimine) (PEI). This approach results in silica/polymer composite fibers with good amine distribution and accessibility, as well as adequate porosity retained within the fibers to facilitate rapid mass transfer and adsorption kinetics. The CO2 adsorption capacities for the APS-infused hollow fibers are shown to be comparable to those of amine powders with similar amine loadings. In contrast, fibers that are spun with presynthesized, amine-loaded mesoporous silica powders show negligible CO2 uptake and low amine loadings because of loss of amines from the silica materials during the fiber spinning process. Aminosilica powders are shown to be more hydrophilic than the corresponding amine containing composite hollow fibers, the bare polymer as well as silica support. Both the PEI-infused and APS-infused fibers demonstrate reduced CO2 adsorption upon elevating the temperature from 35 to 80 °C, in accordance with thermodynamics, whereas PEI-infused powders show increased CO2 uptake over that temperature range because of competing diffusional and thermodynamic effects. The CO2 adsorption kinetics as probed via TGA show that the APS-infused hollow fiber adsorbents have more rapid uptake kinetics than their aminosilica powder analogues. The adsorption performance of the functionalized hollow fibers is also assessed in CO2 breakthrough experiments. The breakthrough results show a

  19. Extracting uranium from seawater: Promising AF series adsorbents

    International Nuclear Information System (INIS)

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater

  20. SAPO-34 coated adsorbent heat exchanger for adsorption chillers

    International Nuclear Information System (INIS)

    In this work, adsorbent coatings on aluminum surfaces were prepared by dip-coating method starting from a water suspension of SAPO-34 zeolite and a silane-based binder. Silane-zeolite coatings morphology and surface coverage grade were evaluated by scanning electron microscopy. Adhesive and mechanical properties were evaluated by peel, pull-off, impact and micro-hardness tests, confirming the good interaction between metal substrate, binder and zeolite. Adsorption equilibrium and kinetics of water vapour adsorption on the adsorbent coating were studied in the range T = 30–150 °C and pH2O = 11 mbar using a CAHN 2000 thermo-balance. It was found that, in the investigated conditions, the organic binder doesn't affect the water adsorption capacity and adsorption kinetics of the original SAPO-34 zeolite. Subsequently, the zeolite coating was applied on a finned flat-tubes aluminum heat exchanger realizing a full-scale AdHEx with an uniform adsorbent coating 0.1 mm thick and a metal/adsorbent mass ratio = 6. The cooling capacity of the realized coated AdHEx was measured by a lab-scale adsorption chiller under realistic operating conditions for air conditioning applications. The coated AdHEx produced up to 675 W/kgads specific cooling power with a cycle time of 5 min. Adsorption stability of the coated adsorber subjected to 600 sorption cycles was successfully verified. - Highlights: • Adsorbent coatings on aluminum surfaces were prepared by dip-coating method. • Silane-zeolite coatings morphology, and mechanical properties were studied. • The zeolite coating was applied on a finned flat-tubes aluminum heat exchanger. • The coated AdHEx was tested in a lab scale adsorption chiller

  1. Preparation of thiophilic paramagnetic adsorbent for separation of antibodies

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The micron-sized mierospheres with superparamagnetic property were synthesized with vinyl acetate and divinylbenzene by microsuspension polymerization. After the complete alcoholysis, these hydroxyl-functionalized microspheres were activated by divinylfone and modified with mercaptoethanol to prepare the thiophilic magnetic adsorbent, which was used to specifically isolate immunoglobulin G (IgG) from human serum. This thiophilic magnetic adsorbent performed an evident salt-dependent adsorption behavior for IgG. Due to their salt-promoted adsorption towards IgG under high salt concentration, the absorbed antibodies could be extracted in low salt concentration with high purity.

  2. AQUATIC PHOTOLYSIS OF OXY-ORGANIC COMPOUNDS ADSORBED ON GOETHITE.

    Science.gov (United States)

    Goldberg, Marvin C.

    1985-01-01

    Organic materials that will not absorb light at wavelengths longer than 295 nanometers (the solar wavelength cutoff) may nevertheless, undergo electron transfer reactions initiated by light. These reactions occur when the organic materials are adsorbed as ligand complexes to the surface of iron oxy-hydroxide (goethite). The adsorbed materials can be either inner or outer coordination sphere complexes. Goethite was chosen as the iron oxyhydroxide surface because it has the highest thermodynamic stability of any of the oxyhydroxides in water and it can be synthesized easily, with high purity.

  3. Removal of uranium by the adsorbents produced from coffee residues

    International Nuclear Information System (INIS)

    Large amounts of coffee residues contaminate the environment and reprocessing of them as valuable products such as adsorbents will be a good solution from an environmental and economic point of view. In this study some adsorbents were produced from coffee residues and used for batch removal experiments of uranium from aqueous solutions. The adsorption kinetics was found to follow the Lagergren equation. The adsorption process was described with the Langmuir and Freundlich isotherms. Additionally, the effect of different cations on the adsorption of uranium was studied. (author)

  4. Photoinduced Surface Dynamics of CO Adsorbed on a Platinum Electrode

    OpenAIRE

    Noguchi, Hidenori; Okada, Tsubasa; Uosaki, Kohei

    2006-01-01

    The surface dynamics of adsorbed CO molecules formed by dissociative adsorption of HCHO at a polycrystalline Pt electrode/electrolyte solution interface was studied by picosecond time-resolved sum-frequency generation (TR-SFG) spectroscopy. A SFG peak at 2050-2060 cm^[-1] was observed at the Pt electrode in HClO4 solution containing HCHO at 0-300 mV (vs Ag/AgCl), indicating the formation of adsorbed CO at an atop site of the Pt surface as a result of dissociative adsorption of HCHO. The peak ...

  5. Hydrogen molecule on lithium adsorbed graphene: A DFT study

    Science.gov (United States)

    Kaur, Gagandeep; Gupta, Shuchi; Gaganpreet, Dharamvir, Keya

    2016-05-01

    Electronic structure calculations for the adsorption of molecular hydrogen on lithium (Li) decorated and pristine graphene have been studied systematically using SIESTA code [1] within the framework of the first-principle DFT under the Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient approximation (GGA)[2], including spin polarization. The energy of adsorption of hydrogen molecule on graphene is always enhanced by the presence of co-adsorbed lithium. The most efficient adsorption configuration is when H2 is lying parallel to lithium adsorbed graphene which is in contrast to its adsorption on pristine graphene (PG) where it prefers perpendicular orientation.

  6. Removal of fluoride from groundwater by adsorption onto La(III)- Al(III) loaded scoria adsorbent

    International Nuclear Information System (INIS)

    The La3+-Al3+ loaded scoria (La-Al-Scoria) was prepared as adsorbent for the fluoride removal from groundwater. The connecting time experiment indicated that the fluoride adsorption process reached equilibrium within 5 hours. The kinetics of fluoride ion adsorption onto La-Al-Scoria was followed the pseudo-second order with correlation coefficient value (R2) of 0.997. The isotherm data was well fitted to both of the Freundlich and Langmuir isotherm models, the R2 of Freundlich and Langmuir were 0.98 and 0.97, respectively. Subsequently, the adsorbent was characterized by scanning electron microscope (SEM), Energy dispersive analysis of X-ray (EDX), X-ray diffraction analysis (XRD) and X-ray Photoelectron Spectroscopy (XPS) measurements. SEM visual expressed that the dense canal surface structure of natural scoria appeared a large amount of rod-like composite after modification. The XRD and XPS instrumental studies revealed that the La3+ and Al3+ were loaded on the surface of modified scoria and the fluoride ion was adsorbed on the La-Al-Scoria. The large amount of La-Al-O composite oxide existed onto the surface of La-Al-Scoria was the immanent cause for the excellent adsorption capacity of fluoride ion.

  7. Selection of non-adsorbing alkali components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Natesan, K.; Swift, W.M.

    1992-11-01

    This project consists of three phases of laboratory experimental study. In phase I (screening), eight candidate materials, 304SS (serves as a base material for comparison), Hastelloy C-276, Hastelloy X, Haynes No. 188, Allonized 304SS, Pt-coated 304SS, and ceramic-coated 304SS, will be subjected to atmospheric TGA study under the simulated PFBC (oxidizing) environment with and without alkali vapor doping. Each candidate material will be evaluated for its resistance toward alkali-vapor capture. In addition, a post-test metallographic characterization of the sample will be performed to obtain a better understanding of the alkali capture mechanism and material behavior. The material(s) with little or no alkali-vapor adsorption will be selected as the promising material(s) for the Phase II study. In Phase II, the promising material(s) will be further tested in the TGA under elevated pressure to simulate the PFBC environment (in terms of temperature, pressure, and gas composition). The effect of pressure on the extent of alkali-vapor adsorption will be evaluated, and the test samples will be metallographically characterized. The most promising candidate material(s) will be identified and recommended for further tesfing in the actual PFBC environment. In Phase III, four materials will be selected from the eight candidate materials screened in the PFBC environment and will be evaluated for their alkali-vapor capture by atmospheric TGA under the coal gasification fuel gas (reducing) environment. The tested samples will also be metallographically characterized. The most promising material(s) will be identified and recommended for further testing in the actual coal gasification environment.

  8. Selection of non-adsorbing alkali components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Natesan, K.; Swift, W.M.

    1992-01-01

    This project consists of three phases of laboratory experimental study. In phase I (screening), eight candidate materials, 304SS (serves as a base material for comparison), Hastelloy C-276, Hastelloy X, Haynes No. 188, Allonized 304SS, Pt-coated 304SS, and ceramic-coated 304SS, will be subjected to atmospheric TGA study under the simulated PFBC (oxidizing) environment with and without alkali vapor doping. Each candidate material will be evaluated for its resistance toward alkali-vapor capture. In addition, a post-test metallographic characterization of the sample will be performed to obtain a better understanding of the alkali capture mechanism and material behavior. The material(s) with little or no alkali-vapor adsorption will be selected as the promising material(s) for the Phase II study. In Phase II, the promising material(s) will be further tested in the TGA under elevated pressure to simulate the PFBC environment (in terms of temperature, pressure, and gas composition). The effect of pressure on the extent of alkali-vapor adsorption will be evaluated, and the test samples will be metallographically characterized. The most promising candidate material(s) will be identified and recommended for further tesfing in the actual PFBC environment. In Phase III, four materials will be selected from the eight candidate materials screened in the PFBC environment and will be evaluated for their alkali-vapor capture by atmospheric TGA under the coal gasification fuel gas (reducing) environment. The tested samples will also be metallographically characterized. The most promising material(s) will be identified and recommended for further testing in the actual coal gasification environment.

  9. Tantalum oxide coatings as candidate environmental barriers

    OpenAIRE

    Moldovan, Monica; Weyant, C. M.; Johnson, D. Lynn; Faber, K. T.

    2004-01-01

    Tantalum (Ta) oxide, due to its high-temperature capabilities and thermal expansion coefficient similar to silicon nitride, is a promising candidate for environmental barriers for silicon (Si) nitride-based ceramics. This paper focuses on the development of plasma-sprayed Ta oxide as an environmental barrier coating for silicon nitride. Using a D-optimal design of experiments, plasma-spray processing variables were optimized to maximize coating density. The effect of processing variables on c...

  10. Nanostructured niobium oxide coatings influence osteoblast adhesion.

    Science.gov (United States)

    Eisenbarth, E; Velten, D; Müller, M; Thull, R; Breme, J

    2006-10-01

    The interaction of osteoblasts was correlated to the roughness of nanosized surface structures of Nb(2)O(5) coatings on polished CP titanium grade 2. Nb(2)O(5) sol-gel coatings were selected as a model surface to study the interaction of osteoblasts with nanosized surface structures. The surface roughness was quantified by determination of the average surface finish (Ra number) by means of atomic force microscopy. Surface topographies with Ra = 7, 15, and 40 nm were adjusted by means of the annealing process parameters (time and temperature) within a sol-gel coating procedure. The observed osteoblast migration was fastest on smooth surfaces with Ra = 7 nm. The adhesion strength, spreading area, and collagen-I synthesis showed the best results on an intermediate roughness of Ra = 15 nm. The surface roughness of Ra = 40 nm was rather peaked and reduced the speed of cell reactions belonging to the adhesion process. PMID:16788971

  11. Applications of Oxide Coatings in Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Sonya Calnan

    2014-03-01

    Full Text Available Metalloid and metal based oxides are an almost unavoidable component in the majority of solar cell technologies used at the time of writing this review. Numerous studies have shown increases of ≥1% absolute in solar cell efficiency by simply substituting a given layer in the material stack with an oxide. Depending on the stoichiometry and whether other elements are present, oxides can be used for the purpose of light management, passivation of electrical defects, photo-carrier generation, charge separation, and charge transport in a solar cell. In this review, the most commonly used oxides whose benefits for solar cells have been proven both in a laboratory and industrial environment are discussed. Additionally, developing trends in the use of oxides, as well as newer oxide materials, and deposition technologies for solar cells are reported.

  12. Cauliflower-like CuI nanostructures: Green synthesis and applications as catalyst and adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yi [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China); Gao Shuyan, E-mail: shuyangao@htu.cn [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China); Li Zhengdao; Jia Xiaoxia; Chen Yanli [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2011-08-15

    Highlights: > In this study we report a green, environment-friendly, efficient, and direct one-step process for the preparation of CuI cauliflower. > The as-formed CuI cauliflower shows excellent catalytic activity for coupling reaction between benzylamine and iodobenzene. > The cauliflower-like CuI nanostructures have been successfully demonstrated as adsorbent for Cd (II) with high removal capacity. > To the best of our knowledge, it is the first report that nanostructured CuI acts as catalyst for coupling reaction and adsorbent for heavy metal ion. > It is also a good example for the organic combination of green chemistry and functional materials. - Abstract: Cauliflower-like CuI nanostructures is realized by an ampicillin-assisted clean, nontoxic, environmentally friendly synthesis strategy at room temperature. The morphology, composition, and phase structure of as-prepared powders were characterized by field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results show that ampicillin plays dual roles, reducing and morphology-directing agents, in the formation of the products. A possible growth mechanism of the cauliflower-like CuI nanostructures is tentatively proposed. The preliminary investigations show that the cauliflower-like CuI structure not only exhibits high catalytic activity with respect to coupling reaction between benzylamine and iodobenzene but also possesses high removal capacity for Cd (II), which may be ascribed to the high specific surface area of the special configuration. To the best of our knowledge, it is the first report that cauliflower-like CuI nanoparticles act as catalyst for coupling reaction and adsorbent for heavy metal ion.

  13. A dual-adsorbent preconcentrator for a portable indoor-VOC microsensor system.

    Science.gov (United States)

    Lu, C J; Zellers, E T

    2001-07-15

    The development and testing of a miniature dual-adsorbent preconcentrator for a microsensor-based analytical system designed to determine complex volatile organic chemical (VOC) mixtures encountered in indoor working environments at low part-per-billion levels is described. Candidate adsorbents were screened for thermal-desorption bandwidth and breakthrough volume against 20 volatile organic vapors and subsets thereof as a function of several relevant variables. A glass capillary (1.1 mm i.d.) packed with 3.4 mg of Carbopack X and 1.2 mg of Carboxen 1000 provides sufficient capacity for a 1-L dry-air sample containing all 20 vapors at concentrations of 100 ppb as well as providing a composite half-height peak width of desorption temperature of 300 degrees C and a flow rate of 4 mL/min. Required adsorbent masses increase to 7.0 and 1.5 mg, respectively, for the same mixture at component concentrations of 1 ppm. Vapor breakthrough volumes for the Carbopack X are unaffected by humidity from 0 to 100%RH, but those for the Carboxen 1000 are significantly reduced, requiring an additional 0.9 mg of the latter to avoid premature breakthrough at the 100 ppb level. Good peak shapes, efficient chromatographic separation of preconcentrated sample mixture components, and detection limits in the low-parts-per-billion range using an integrated surface-acoustic-wave (SAW) sensor are achieved. Preconcentrator design and operating parameters are considered in terms of the vapor bed-residence times and breakthrough volumes in the context of the modified Wheeler equation. PMID:11476247

  14. Composite Coatings with Ceramic Matrix Including Nanomaterials as Solid Lubricants for Oil-Less Automotive Applications

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available The paper presents the theoretical basis of manufacturing and chosen applications of composite coatings with ceramic matrix containing nanomaterials as a solid lubricant (AHC+NL. From a theoretical point of view, in order to reduce the friction coefficient of sliding contacts, two materials are required, i.e. one with a high hardness and the other with low shear strength. In case of composite coatings AHC+NL the matrix is a very hard and wear resistant anodic oxide coating (AHC whereas the solid lubricant used is the nanomaterial (NL featuring a low shear strength such as glassy carbon nanotubes (GC. Friction coefficient of cast iron GJL-350 sliding against the coating itself is much higher (0.18-0.22 than when it slides against a composite coating (0.08-0.14. It is possible to reduce the friction due to the presence of carbon nanotubes, or metal nanowires.

  15. Inorganic-organic phase arrangement as a factor affecting gas-phase desulfurization on catalytic carbonaceous adsorbents.

    Science.gov (United States)

    Ansari, Adil; Bandosz, Teresa J

    2005-08-15

    Dried sewage sludge was physically mixed with waste paper (paper-to-sludge ratios from 25% to 75%). To increase the catalytic activity, from 1% to 6% calcium hydroxide was added to the mixtures. Then the precursors were carbonized at 950 degrees C. The performance of materials as H2S adsorbents was tested using a home-developed dynamic breakthrough test. The samples, before and after the adsorption process, were characterized by adsorption of nitrogen, potentiometric titration, thermal analysis, XRF, and SEM. Differences in the performance were linked to the surface properties. Itwas found that mixing paper with sludge increases the amount of H2S adsorbed/oxidized in comparison with that adsorbed/oxidized by the adsorbents obtained from pure precursors (sludge or waste paper) and the capacity is comparable to those of the best activated carbons existing on the market. Although both sewage sludge and waste paper provide the catalytic centers for hydrogen sulfide oxidation, the dispersion of the catalyst and its location within accessible pores is an important factor. The presence of cellulose in the precursor mixture leads to the formation of a light macroporous char whose particles physically separate the inorganic catalytic phase of the sewage sludge origin, decreasing the density of the adsorbent and thus providing more space for storage of oxidation products. This, along with calcium, contributes to a significant increase in the capacity of the materials as hydrogen sulfide adsorbents. On their surface about 30 wt % H2S can be adsorbed, mainly as elemental sulfur or sulfates. The results demonstrate the importance of the composition and arrangement of inorganic/ organic phases for the removal of hydrogen sulfide. The interesting finding is that although some microporosity is necessary to increase the storage area for oxidation products, the carbonaceous phase does not need to be highly microporous. It is important that it provides space for deposition of sulfur

  16. Polarity of an MCM-41 adsorbent surface modified with methyl and phenyl groups based on data from gas chromatography

    Science.gov (United States)

    Sukhareva, D. A.; Gus'kov, V. Yu.; Karpov, S. I.; Kudasheva, F. Kh.; Roessner, F.; Borodina, E. V.

    2016-02-01

    The polarity of an MCM-41 adsorbent surface and organosilylated composites based on it with grafted trimethylsilane and dimethylphenylsilane groups is studied via inverse gas chromatography at infinite dilution. The dispersion and specific components of the value proportional to the Helmholtz adsorption energy are calculated, and a comparative analysis of the surface polarity of MCM-41 and its modified analogs relative to the commercially available C-120 silica gel is performed. The electrostatic and donor-acceptor components of the specific Helmholtz adsorption energy are calculated through linear decomposition of the adsorption energy. It is established that MCM-41 is less polar than C-120. The modification of the initial adsorbent surface leads to a reduction in polarity, due mainly to the weakening of induction and orientation interactions. It is concluded that the surfaces of the modified samples retain the ability to form hydrogen bonds.

  17. Adsorption of iodine by silver-impregnated hydrophobic adsorbent

    International Nuclear Information System (INIS)

    Hydrophobic adsorbents, which consist of porous styrene-divinylbenzene copolymer (SDB) impregnated with silver, were developed for the removal of iodine from the dissolver off-gas (DOG). The adsorption of iodine in a simulated off-gas including iodine, NOx and water vapor was examined by use of an adsorption column packed with the hydrophobic adsorbents. Silver impregnation methods using organic solutions were proposed. By use of dioxan and butylamine, which can swell the SDB easily, silver nitrate and metallic silver were uniformly distributed in the SDB particles. The breakthrough of iodine was not influenced by the presence of NOx and water vapor. For a macroporous SDB with the pore volume of 1.59 ml/g-SDB and the average pore diameter of 500A, impregnated with metallic silver at silver content of 28 wt%, a high adsorption capacity of 0.14g-I2/cm3-adsorbent was obtained, compared to that of a commercial adsorbent. AgNO3-impregnated silica gel. The impregnated silver was utilized about 91% for the iodine adsorption. (author)

  18. Interactions between adsorbed macromolecules : measurements on emulsions and liquid films

    NARCIS (Netherlands)

    Vliet, van T.

    1977-01-01

    The aim of this study was to gain more insight into the factors, determining the inter- and intramolecular interactions between adsorbed macromolecules. To that end several experimental and theoretical approaches were followed, using well-defined systems. It was shown that these interactions could c

  19. Organobentonites as multifunctional adsorbents of organic and inorganic water pollutants

    Directory of Open Access Journals (Sweden)

    Jović-Jovičić Natаša

    2014-01-01

    Full Text Available The aim of this study was to find a low cost, easy to synthesize and efficient adsorbent for the simultaneous adsorption of both organic and inorganic pollutants (including textile dyes, toxic metals etc.. The starting material, domestic bentonite clay from Bogovina was modified with amounts of hexadecyltrimethylammonium cations corresponding to 0.5 and 1.0 times of the value of the cation exchange capacity value. The organobentonites were tested as adsorbents in a three-dye-containing solution, a three-component solution of Pb2+, Cd2+ and Ni2+ and a hexa- component solution containing all investigated dyes and toxic metal cations. The used adsorbents showed the highest affinity toward Acid Yellow 99 and Ni2+ ions. Dye adsorption was enhanced in the presence of toxic metal cations, while the adsorption of all toxic cations from the hexa-component solution was lower than from the three-component solution containing only toxic cations. The synthesized hexadecyltrimethylammonium bentonite could be regarded as an efficient multifunctional adsorbent for the investigated type of water pollutants.

  20. EVALUATING VARIOUS ADSORBENTS AND MEMBRANES FOR REMOVING RADIUM FROM GROUNDWATER

    Science.gov (United States)

    Field studies were conducted in Lemont, Ill., to evaluate specific adsorbents and reverse osmosis (RO) membranes for removing radium from groundwater. A radium-selective complexer and barium-sulfate-loaded alumina appeared to have the best potential for low-cost adsorption of ra...

  1. Agricultural By-products as Mercury Adsorbents in Gas Applications

    Science.gov (United States)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plans have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where is adsorbs the merc...

  2. Agricultural Waste as Sources for Mercury Adsorbents in Gas Applications

    Science.gov (United States)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plants have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where it adsorbs the mer...

  3. Extracting uranium from seawater: Promising AI series adsorbents

    International Nuclear Information System (INIS)

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days

  4. Interactions of organic contaminants with mineral-adsorbed surfactants

    Science.gov (United States)

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  5. PREPARATION AND ADSORBABILITY OF DEXTRAN MICROSPHERES WITH UNIFORM DIAMETER

    Institute of Scientific and Technical Information of China (English)

    Ri-sheng Yao; Wen-xia Gao; Jing Sun; Ya-hua You

    2005-01-01

    The method of preparing uniform dextran microspheres with a narrow diameter distribution was introduced and the adsorbability of these microspheres was evaluated. The microspheres were prepared in W/O microemulsion using 0.5% dextran solution as the aqueous phase and n-hexane as the oil phase. Characteristics of the prepared dextran microspheres were examined with laser light blocking technique, optical microscope and ultraviolet spectrometer. The results show that the prepared dextran microspheres have uniform morphology and narrow diameter distribution, nearly 92% of them having a diameter of 56.6 μm. In vitro evaluation of adsorbability, wet dextran microspheres have good adsorption of 98.32 mg/g of model drug methylene blue in 20.86 mg/L methylene blue solution at 25℃. The adsorption of dried dextran microspheres under the same condition is 132.15 mg/g, which is even higher. And the adsorbability of dextran microspheres has significant relationship with the concentration of methylene blue and temperature. The adsorbability is better at lower temperature and higher concentration of methylene blue.

  6. HYDROGEN BONDING IN POLYMERIC ADSORBENTS BASED ADSORPTION AND SEPARATION

    Institute of Scientific and Technical Information of China (English)

    XUMancai; SHIZuoqing; 等

    2000-01-01

    After a concise introduction of hydrogen bonding effects in solute-solute and solute-solvent bonding,the design of polymeric adsorbents based on hydrogen bonding ,selectivity in adsorption through hydrogen bonding,and characterization of hydrogen bonding in adsorption and separation were reviewed with 28 references.

  7. Synthesis of novel porous magnetic silica microspheres as adsorbents for isolation of genomic DNA.

    Science.gov (United States)

    Zhang, Zhichao; Zhang, Liming; Chen, Lei; Chen, Ligong; Wan, Qian-Hong

    2006-01-01

    An improved procedure is described for preparation of novel mesoporous microspheres consisting of magnetic nanoparticles homogeneously dispersed in a silica matrix. The method is based on a three-step process, involving (i) formation of hematite/silica composite microspheres by urea-formaldehyde polymerization, (ii) calcination of the composite particles to remove the organic constituents, and (iii) in situ transformation of the iron oxide in the composites by hydrogen reductive reaction. The as-synthesized magnetite/silica composite microspheres were nearly monodisperse, mesoporous, and magnetizable, with as typical values an average diameter of 3.5 microm, a surface area of 250 m(2)/g, a pore size of 6.03 nm, and a saturation magnetization of 9.82 emu/g. These magnetic particles were tested as adsorbents for isolation of genomic DNA from Saccharomyces cerevisiae cells and maize kernels. The results are quite encouraging as the magnetic particle based protocols lead to the extraction of genomic DNA with satisfactory integrity, yield, and purity. Being hydrophilic in nature, the porous magnetic silica microspheres are considered a good alternative to polystyrene-based magnetic particles for use in biomedical applications where nonspecific adsorption of biomolecules is to be minimized.

  8. Alkali-induced nanopatterning of Ag(110) surface mediated by molecular adsorbate

    Energy Technology Data Exchange (ETDEWEB)

    Mercurio, Giuseppe; Willenbockel, Martin; Weiss, Christian; Temirov, Ruslan; Subach, Sergey; Tautz, Stefan [Peter Gruenberg Institut (PGI-3), Forschungszentrum Juelich, 52425 Juelich (Germany); JARA-Fundamentals of Future Information Technology (Germany); Bauer, Oliver; Fiedler, Benjamin; Sokolowski, Moritz [Institute for Physical and Theoretical Chemistry, University of Bonn (Germany)

    2011-07-01

    It is known for decades that alkali metals initiate the restructuring of fcc metal surfaces resulting in a composite patterned morphology. On the other hand, co-adsorbed metal atoms and organic molecules often form extended 2D networks due to the metal-molecular coordination reaction. Here we report on a new type of structural modification of the molecule-substrate interface, which is not only restricted to self-assembly of the adsorbed metal atoms and molecules, but it also involves significant morphological reorganization of the metallic surface. In the experiments, potassium atoms are deposited on a monolayer of the long-range ordered PTCDA/Ag(110) phase. Subsequent annealing forces potassium atoms to intercalate under the molecular layer partially unbinding PTCDA from the substrate. The complex interaction between potassium, PTCDA and substrate induces a significant silver mass-transfer and leads to the appearance of 1D stripe-structures of K atoms and PTCDA molecules on a nanopatterned silver surface. Structural and electronic properties of this pattern were studied by means of NIXSW, XPS, LEED and LT-STM.

  9. Microporous resin adsorbents for pre-combustion CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    C.F. Martin; C. Pevida; M.D. Casal; M.G. Plaza; J. Fermoso; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon (INCAR), Oviedo (Spain)

    2009-07-01

    In this work different types of phenolic resins were used as precursor materials for the preparation of adsorbents to be applied in the separation of CO{sub 2} in precombustion processes, which implies the separation CO{sub 2}/H{sub 2} at high pressures. In order to obtain highly microporous carbons with suitable characteristics for the separation of CO{sub 2} and H{sub 2} under high pressure conditions, Resol and Novolac phenolic resins were synthesised under different conditions. The prepared phenolic resins were carbonised at different temperatures and then physically activated with CO{sub 2}. Produced carbons were characterised in terms of texture, chemical composition and surface chemistry. Maximum CO{sub 2} adsorption capacities at atmospheric pressure were determined in a thermogravimetric analyser. High pressure adsorption of CO{sub 2} and H{sub 2} at room temperature and up to 30 bar were measured in a high pressure magnetic suspension balance to test the behaviour of the adsorbents at high pressures and their selectivity towards CO{sub 2}. Tested carbons showed increased CO{sub 2} uptakes at higher pressures and great selectivity towards CO{sub 2}. Thus, the produced phenolic carbons presented great potential to be used for pre-combustion CO{sub 2} capture. 11 refs., 4 figs., 4 tabs.

  10. Development of long-life-cycle tablet ceramic adsorbent for geosmin removal from water solution

    Science.gov (United States)

    Chen, Rongzhi; Xue, Qiang; Zhang, Zhenya; Sugiura, Norio; Yang, Yingnan; Li, Miao; Chen, Nan; Ying, Zhao; Lei, Zhongfang

    2011-01-01

    In this study, the tablet ceramic adsorbent (TCA), a silica/iron(III) oxide composite material, has been developed for geosmin (GSM) removal from the water solution. The physicochemical characteristics of TCA were examined with XRD, SEM, EDX and BET analyses. The sorption characteristics of GSM on TCA were investigated in a batch system. Attempts have been made to understand the adsorption kinetics, the effect of initial GSM concentration, solution pH, and reaction time. The batch experiments equilibrium data were well fitted to the Lagergren kinetic equation, which indicate the first-order nature adsorption. Over 82% of the GSM was removed by the TCA within 600 min at an initial concentration of 200 ng/L with 20 g/L of TCA dose. The batch and regeneration study indicated that the TCA is a cost-effective GSM adsorbent with sufficient mechanical strength to retain its physical integrity after long-time adsorption, and high regeneration performance for long-life-cycle application. Almost no second contamination (toxic sludge or leached iron) was observed after adsorption, and the gas resultant of thermal regeneration is harmless to atmospheric environment.

  11. Removal of Cu (II and Zn (II from water with natural adsorbents from cassava agroindustry residues

    Directory of Open Access Journals (Sweden)

    Daniel Schwantes

    2015-07-01

    Full Text Available Current study employs solid residues from the processing industry of the cassava (Manihot esculenta Crantz (bark, bagasse and bark + bagasse as natural adsorbents for the removal of metal ions Cu(II and Zn(II from contaminated water. The first stage comprised surface morphological characterization (SEM, determination of functional groups (IR, point of zero charge and the composition of naturally existent minerals in the biomass. Further, tests were carried out to evaluate the sorption process by kinetic, equilibrium and thermodynamic studies. The adsorbents showed a surface with favorable adsorption characteristics, with adsorption sites possibly derived from lignin, cellulose and hemicellulose. The dynamic equilibrium time for adsorption was 60 min. Results followed pseudo-second-order, Langmuir and Dubinin-Radushkevich models, suggesting a chemisorption monolayer. The thermodynamic parameters suggested that the biosorption process of Cu and Zn was endothermic, spontaneous or independent according to conditions. Results showed that the studied materials were potential biosorbents in the decontamination of water contaminated by Cu(II and Zn(II. Thus, the above practice complements the final stages of the cassava production chain of cassava, with a new disposal of solid residues from the cassava agroindustry activity.

  12. Hybrid materials: Magnetite-Polyethylenimine-Montmorillonite, as magnetic adsorbents for Cr(VI) water treatment.

    Science.gov (United States)

    Larraza, Iñigo; López-Gónzalez, Mar; Corrales, Teresa; Marcelo, Gema

    2012-11-01

    Hybrid materials formed by the combination of a sodium rich Montmorillonite (MMT), with magnetite nanoparticles (40 nm, Fe(3)O(4) NPs) coated with Polyethylenimine polymer (PEI 800 g/mol or PEI 25000 g/mol) were prepared. The intercalation of the magnetite nanoparticles coated with PEI among MMT platelets was achieved by cationic exchange. The resulting materials presented a high degree of exfoliation of the MMT sheets and a good dispersion of Fe(3)O(4) NPs on both the surface and among the layers of MMT. The presence of amine groups in the PEI structure not only aids the exfoliation of the MMT layers, but also gives to the hybrid material the necessary functionality to interact with heavy metals. These hybrid materials were used as magnetic sorbent for the removal of hexavalent chromium from water. The effect that pH, Cr(VI) concentration, and adsorbent material composition have on the Cr(VI) removal efficiency was studied. A complete characterization of the materials was performed. The hybrid materials showed a slight dependence of the removal efficiency with the pH in a wide range (1-9). A maximum amount of adsorption capacity of 8.8 mg/g was determined by the Langmuir isotherm. Results show that these hybrid materials can be considered as potential magnetic adsorbent for the Cr(VI) removal from water in a wide range of pH.

  13. Natural material adsorbed onto a polymer to enhance immune function

    Directory of Open Access Journals (Sweden)

    Reinaque AP

    2012-08-01

    Full Text Available Ana Paula Barcelos Reinaque,1 Eduardo Luzía França,2 Edson Fredulin Scherer,3 Mayra Aparecida Côrtes,1 Francisco José Dutra Souto,4 Adenilda Cristina Honorio-França51Post Graduate Program in Material Science, 2Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, 3Post Graduate Program in Material Science, Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, 4Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, 5Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, MT, BrazilBackground: In this study, we produced poly(ethylene glycol (PEG microspheres of different sizes and adsorbing a medicinal plant mixture, and verified their effect in vitro on the viability, superoxide production, and bactericidal activity of phagocytes in the blood.Methods: The medicinal plant mixture was adsorbed onto PEG microspheres and its effects were evaluated by flow cytometry and fluorescence microscopy.Results: Adsorption of the herbal mixture onto the PEG microspheres was achieved and the particles were internalized by phagocytes. PEG microspheres bearing the adsorbed herbal mixture stimulated superoxide release, and activated scavenging and microbicidal activity in phagocytes. No differences in functional activity were observed when the phagocytes were not incubated with PEG microspheres bearing the adsorbed herbal mixture.Conclusion: This system may be useful for the delivery of a variety of medicinal plants and can confer additional protection against infection. The data reported here suggest that a polymer adsorbed with a natural product is a treatment alternative for enhancing immune function.Keywords: natural product, polymer, adsorption, immune function, phagocytes

  14. Effect of adsorbent addition on floc formation and clarification.

    Science.gov (United States)

    Younker, Jessica M; Walsh, Margaret E

    2016-07-01

    Adding adsorbent into the coagulation process is an emerging treatment solution for targeting hard-to-remove dissolved organic compounds from both drinking water and industrial wastewater. The impact of adding powdered activated carbon (PAC) or organoclay (OC) adsorbents with ferric chloride (FeCl3) coagulant was investigated in terms of potential changes to the coagulated flocs formed with respect to size, structure, and breakage and regrowth properties. The ability of dissolved air flotation (DAF) and sedimentation (SED) clarification processes to remove hybrid adsorbent-coagulant flocs was also evaluated through clarified water quality analysis of samples collected in bench-scale jar test experiments. The jar tests were conducted using both a synthetic fresh water and oily wastewater test water spiked with dissolved aromatic compounds phenol and naphthalene. Results of the study demonstrated that addition of adsorbent reduced the median coagulated floc size by up to 50% but did not affect floc strength or regrowth potential after application of high shear. Experimental results in fresh water demonstrated that sedimentation was more effective than DAF for clarification of both FeCl3-PAC and FeCl3-OC floc aggregates. However, experimental tests performed on the synthetic oily wastewater showed that coagulant-adsorbent floc aggregates were effectively removed with both DAF and sedimentation treatment, with lower residual turbidity achieved in clarified water samples than with coagulation treatment alone. Addition of OC or PAC into the coagulation process resulted in removals of over half, or nearly all of the dissolved aromatics, respectively. PMID:27064206

  15. Preparation of Urea Nitrogen Adsorbent of Complex Type and Adsorption Capacity of Urea Nitrogen onto the Adsorbent

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The urea nitroge n adsorbent of complex type, which consists of chitosan coated dialdehyde cellulose (CDAC) and immobilized urease in gelatin membrane (IE), was prepared. The cellulose, the dialdehyde cellulose (DAC) and the CDAC were characterized by scanning electronic microscope. The results indicate that the cellulose C2-C3 bond was broken under the oxidation of periodate and it was oxidated to DAC. The DAC was coated with chitosan and the CDAC was obtained. The adsorption of urea nitrogen onto the adsorbent in Na2HPO4-NaH2PO4 buffer solution was studied in batch system. The effects of the experiment parameters, including degree of oxidation of CDAC, initial urea nitrogen concentration, pH and temperature, on the adsorption capacity of urea nitrogen onto the adsorbent at CDAC/IE weight ratio 10:1 were investigated. The results indicate that these parameters affected significantly the adsorption capacity. The adsorption capacity of urea nitrogen onto the adsorbent was 36.7 mg/g at the degree of oxidation of CDAC 88%, initial urea nitrogen concentration 600 mg/L, pH 7.4 and temperature 37 ℃.

  16. Facile preparation of magnetic separable powdered-activated-carbon/Ni adsorbent and its application in removal of perfluorooctane sulfonate (PFOS) from aqueous solution.

    Science.gov (United States)

    Liang, Xuanqi; Gondal, Mohammed A; Chang, Xiaofeng; Yamani, Zain H; Li, Nianwu; Lu, Hongling; Ji, Guangbin

    2011-01-01

    The main aim of this study was to synthesize magnetic separable Nickel/powdered activated carbon (Ni/PAC) and its application as an adsorbent for removal of PFOS from aqueous solution. In this work, the synthesized adsorbent using simple method was characterized by using X-ray diffractionometer (XRD), surface area and pore size analyzer, vibrating sample magnetometer (VSM), and high resolution transmission electron microscope (HRTEM). The surface area, pore volume and pore size of synthesized PAC was 1521.8 m(2)g(-1), 0.96 cm(3)g(-1), 2.54 nm, respectively. Different kinetic models: the pseudo-first-order model, the pseudo-second-order model, and three adsorption isotherms--Langmuir, Freundlich and Temkin--were applied to study the sorption kinetics and isothermal behavior of PFOS onto the surface of an as-prepared adsorbent. The rate constant using the pseudo-second-order model for removal of 150 ppm PFOS was estimated as 8.82×10(-5) and 1.64×10(-4) for PAC and 40% Ni/PAC, respectively. Our results demonstrated that the composite adsorbents exhibited a clear magnetic hysteretic behavior, indicating the potential practical application in magnetic separation of adsorbents from aqueous solution phase as well. PMID:21961696

  17. Study of Adsorbents for the Capture of CO2 in Post-combustion. Contribution of CIEMAT to Module 4 of the CENITCO2 Project

    International Nuclear Information System (INIS)

    The main goal of CIEMAT within the CENIT-CO2 project has been the development of a process for CO2 capture from combustion flue gases by physical adsorption. In the first stage, screening studies to select promising adsorbents were carried out at laboratory scale, using simplified gas compositions. After that, pilot plant studies were performed using appropriate configurations of promising adsorbents under realistic conditions. CO2 adsorption cyclic capacity of different adsorbents has been studied. Lastly, for the adsorbent selected as most promising, its cyclic efficiency and selectivity for CO2 adsorption in the presence of other gaseous components (SO2, H2O, NO) of the combustion gas has been determined, as well as its performance along multiple sorption-desorption cycles in the presence of simulated combustion gas. None of the studied adsorbents, though being promising since they all have a capture efficiency of about 90%, seem to be susceptible of direct application to CO2 capture by physical adsorption under conditions representative of gases exiting the desulphurization tower of conventional pulverized coal combustion plants. As an alternative, the development of hybrid and regenerable solid sorbents (physical-chemical adsorption) is proposed or the application of new technologies under development such as the electrochemical promotion in capturing CO2. (Author) 33 refs.

  18. Theoretical study of AuCu nanoalloys adsorbed on MgO(001)

    Science.gov (United States)

    Cerbelaud, M.; Barcaro, G.; Fortunelli, A.; Ferrando, R.

    2012-06-01

    The structures of AuCu clusters adsorbed on the (001) face of MgO are searched for by a two-step methodology. In a first step, the relevant structural motifs are singled out by global optimization searches within an atomistic model. In a second step, the lowest energy structures of each motif are relaxed by density-functional calculations. Three different sizes (30, 40 and 50 atoms) are considered. For each size, three compositions are analyzed. For size 30, a competition between fcc pyramids and a new motif (the daisy structure) is found. For 40 and 50 atoms, icosahedral fragments prevail. The results are discussed in connection with experimental data related to clusters of larger sizes.

  19. Evaluation of natural clay Brasgel as adsorbent in removal of lead in synthetic waste water

    International Nuclear Information System (INIS)

    The smectite clays have high adsorption capacity and cation exchange. Due to its chemical and physical characteristics, they can be effectively used as adsorbent of pollutants (such as metal ions). The initial objective of this study was to characterize the clay Brasgel through the techniques of X-Ray Diffraction (XRD), X-Ray Spectrometry by Energy Dispersive (EDX) and nitrogen adsorption (BET method), seeking its use in removing lead (Pb2+) from synthetic effluents. System was used in finite bath to assess the potential removal of lead (Pb2+), following a 22 factorial experimental design with three center point experiments, taking as input variables: pH and initial concentrations of lead (Pb2+). The clay has Brasgel clay in its composition that characterize it as a smectite clay. By having a large surface area, this clay showed great potential on the adsorption of metal ions. (author)

  20. Novel adsorbent applicability for decontamination of printing wastewater

    Science.gov (United States)

    Kiurski, Jelena; Oros, Ivana; Ranogajec, Jonjaua; Kecic, Vesna

    2013-04-01

    Adsorption capacity of clayey minerals can be enhanced by replacing the natural exchangeable cations with organic cations, which makes the clay surface more hydrophobic. Different solids such as activated carbon, clay minerals, zeolites, metal oxides and organic polymers have been tested as effective adsorbents. On a global scale, clays have a large applicability for decontamination, purification of urban and industrial residual waters, protection of waste disposal areas, and purification of industrial gases and so on. Clay derivative materials with high adsorption capacities are very attractive from an economical point of view. Due to the economic constraints, a development of cost effective and clean processes is desired. Adsorption processes has proved to be the most effective, especially for effluents with moderate and low heavy metal concentrations, as like as in printing wastewaters. Among several removal technologies, the adsorption of Zn(II) ion onto NZ, B, pure C and C with PEG 600 addition could be of great importance for the printing wastewaters purification. However, the newly designed adsorbent of the defined pore size distribution and phase structure considered as the most suitable material for Zn(II) ion removal. The values of distribution coefficient (Kd) increased with decreasing of the adsorbent amount. The Kd values depend also on the type of used adsorbent, the following increased order is obtained: NZ Langmuir > DKR. The study also showed that the fired clay modified with PEG 600 addition has great potential (up to 93.5%) to remove Zn(II) ion from printing wastewaters. The results showed that fired clay, fired clay modified with polymer addition, natural zeolite and bentonite can be used for Zn(II) ion removal from printing wastewaters by adsorption method in laboratory batch mode. Based on higher affinity to the Zn(II) ion adsorption than fired clay, bentonite and zeolite it was concluded that feasibility of newly designed clayey adsorbent

  1. Nanofiber adsorbents for high productivity continuous downstream processing.

    Science.gov (United States)

    Hardick, Oliver; Dods, Stewart; Stevens, Bob; Bracewell, Daniel G

    2015-11-10

    An ever increasing focus is being placed on the manufacturing costs of biotherapeutics. The drive towards continuous processing offers one opportunity to address these costs through the advantages it offers. Continuous operation presents opportunities for real-time process monitoring and automated control with potential benefits including predictable product specification, reduced labour costs, and integration with other continuous processes. Specifically to chromatographic operations continuous processing presents an opportunity to use expensive media more efficiently while reducing their size and therefore cost. Here for the first time we show how a new adsorbent material (cellulosic nanofibers) having advantageous convective mass transfer properties can be combined with a high frequency simulated moving bed (SMB) design to provide superior productivity in a simple bioseparation. Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non-woven fiber structure with diameters in the sub-micron range creates a remarkably high surface area material that allows for rapid convective flow operations. A proof of concept study demonstrated the performance of an anion exchange nanofiber adsorbent based on criteria including flow and mass transfer properties, binding capacity, reproducibility and life-cycle performance. Binding capacities of the DEAE adsorbents were demonstrated to be 10mg/mL, this is indeed only a fraction of what is achievable from porous bead resins but in combination with a very high flowrate, the productivity of the nanofiber system is shown to be significant. Suitable packing into a flow distribution device has allowed for reproducible bind-elute operations at flowrates of 2,400 cm/h, many times greater than those used in typical beaded systems. These characteristics make them ideal candidates for operation in continuous chromatography systems. A SMB system was developed and optimised to

  2. Interstitial and adsorbed phosphates in shelf sediments off Visakhapatnam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; Raju, G.R.K.

    Spatial distribution of interstitial and adsorbed phosphates in the shelf sediments shows an increasing trend with distance from coastal to inshore region. Maximum concentration ranges of interstitial and adsorbed phosphates are 16-19 and 40-50 mu g...

  3. The characteristics of the FCHA for adsorbing BSA in different solvent

    Institute of Scientific and Technical Information of China (English)

    MU Rui-hong; FANG Yu; DING Ning; NIU Jing-lu; YANG Hai-ling

    2001-01-01

    @@ INTRODUCTION It has been done the researches on interaction of proteins with biomaterials. Hydroxyapatite[HA] has excellent characteristics for adsorbing and desorbing biopolymers without denaturation because of high bioaffinity and biocompatibility. Therebyit has been applied as an adsorbent.

  4. Removal of acutely hazardous pharmaceuticals from water using multi-template imprinted polymer adsorbent.

    Science.gov (United States)

    Venkatesh, Avinash; Chopra, Nikita; Krupadam, Reddithota J

    2014-05-01

    Molecularly imprinted polymer adsorbent has been prepared to remove a group of recalcitrant and acutely hazardous (p-type) chemicals from water and wastewaters. The polymer adsorbent exhibited twofold higher adsorption capacity than the commercially used polystyrene divinylbenzene resin (XAD) and powdered activated carbon adsorbents. Higher adsorption capacity of the polymer adsorbent was explained on the basis of high specific surface area formed during molecular imprinting process. Freundlich isotherms drawn showed that the adsorption of p-type chemicals onto polymer adsorbent was kinetically faster than the other reference adsorbents. Matrix effect on adsorption of p-type chemicals was minimal, and also polymer adsorbent was amenable to regeneration by washing with water/methanol (3:1, v/v) solution. The polymer adsorbent was unaltered in its adsorption capacity up to 10 cycles of adsorption and desorption, which will be more desirable in cost reduction of treatment compared with single-time-use activated carbon. PMID:24499987

  5. Dynamics in Adsorbed Homopolymer Layers: Entanglements and Osmotic Effects

    Science.gov (United States)

    Santore, Maria; Mubarekyan, Ervin

    2001-03-01

    This work seeks the dynamic mechanism for the exchange of homopolymer chains between a dilute solution and a layer adsorbed at the solid-liquid interface. With the model system of polyethylene oxide (PEO) adsorbed onto silica from aqueous solution, it is shown that the behavior of saturated interfaces compared to starved layers reveals an interesting trend: The characteristic self exchange time is dependent only on coverage, not molecular weight, for chains of 100K or less. Therefore, it is concluded that classical entanglements do not play a role below 100K. For all molecular weights, when the coverage of 0.2 mg/m2 is exceeded, the interfacial dynamics become slow. At lower coverages, chains lie flat in train, with no loops or tails, and no lateral interactions either. The onset of slow dynamics at higher coverages may be a result of both surface crowding and the resistance of loops and tails to new chains approaching the layer.

  6. Adsorbed molecules in external fields: Effect of confining potential.

    Science.gov (United States)

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-01

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials. PMID:27387127

  7. Modeling diffusion of adsorbed polymer with explicit solvent.

    Science.gov (United States)

    Desai, Tapan G; Keblinski, Pawel; Kumar, Sanat K; Granick, Steve

    2007-05-25

    Computer simulations of a polymer chain of length N strongly adsorbed at the solid-liquid interface in the presence of explicit solvent are used to delineate the factors affecting the N dependence of the polymer lateral diffusion coefficient, D(||). We find that surface roughness has a large influence, and D(||) scales as D(||) approximately N(-x), with x approximately 3/4 and x approximately 1 for ideal smooth and corrugated surfaces, respectively. The first result is consistent with the hydrodynamics of a "particle" of radius of gyration R(G) approximately N(nu) (nu=0.75) translating parallel to a planar interface, while the second implies that the friction of the adsorbed chains dominates. These results are discussed in the context of recent measurements.

  8. Ordered molecular layer structure of lubricating oil adsorbed films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Low-angle X-ray diffraction has been applied to analyze the structure of stearic acid LB films and self-grown surface adsorbed films of aluminium product metalworking lubricants. The results show that LB films exhibit a good layer-like ordered structure in the normal direction of film-carrying surface, while in the tangential direction, they do not show a cyclically ordered molecular arrangement; as for the self-grown surface adsorbed films of aluminium sheet and strip metalworking lubricants, their molecules are orderly arranged to certain degree in both the tangential and the normal directions of film-carrying surface, and they have a short-range ordered structure. Moreover, the better the orientation of normal molecules is, the higher the oil film strength is, and the smaller the friction factor is.

  9. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  10. Development of high temperature adsorbent in PWR primary system

    International Nuclear Information System (INIS)

    Radiation exposure reduction in PWR is one of the most important problems to be solved. We have developed a high temperature Co adsorbent (HTA), which could be directly applied under primary reactor coolant conditions. This adsorbent was Fe-Ti-O system ceramics, and was fabricated to a suitable form for using in a packed column. Through those experiments of adsorption tests, compatibility tests, leaching tests and hot loop tests, it was found that HTA had superior adsorption capability to not only Co and Ni-ion but also many other transition metal ions. And it was also found that HTA was compatible with high temperature water, as well as advantageous for its waste solidification. Based on the experimental results, dose reduction effect was evaluated by a computer code. From this evaluation, it was found that more than 50 % dose reduction could be expected, when an advanced reactor coolant clean-up (RCC) system with HTA would be realized. (author)

  11. Topological features of engineered arrays of adsorbates in honeycomb lattices

    Science.gov (United States)

    Gonzalez-Arraga, Luis A.; Lado, J. L.; Guinea, Francisco

    2016-09-01

    Hydrogen adatoms are one of the most the promising proposals for the functionalization of graphene. The adatoms induce narrow resonances near the Dirac energy, which lead to the formation of magnetic moments. Furthermore, they also create local lattice distortions which enhance the spin-orbit coupling. The combination of magnetism and spin-orbit coupling allows for a rich variety of phases, some of which have non-trivial topological features. We analyze the interplay between magnetism and spin-orbit coupling in ordered arrays of adsorbates on honeycomb lattice monolayers, and classify the different phases that may arise. We extend our model to consider arrays of adsorbates in graphene-like crystals with stronger intrinsic spin-orbit couplings. We also consider a regime away from half-filling in which the Fermi level is at the bottom of the conduction band, we find a Berry curvature distribution corresponding to a Valley-Hall effect.

  12. Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite

    OpenAIRE

    Mishael, Y. G.; Undabeytia López, Tomás; Rytwo, Giora; Papahadjopoulos Sternberg, B.; Rubin, Baruch; Nir, Shlomo

    2002-01-01

    The aim of this study was to understand the interactions between alkylammonium cations present as monomers and micelles and a clay mineral, montmorillonite, to develop slow release formulations of anionic herbicides, such as sulfometuron (SFM) whose leaching in soils is an environmental and economic problem. In the proposed formulation the herbicide is incorporated in positively charged micelles of quaternary amine cations, which in turn adsorb on the negatively charged clay. The adsorption o...

  13. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jiyeon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jeters, Robert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bonheyo, George T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  14. Removing 3,5-Dichlorophenol from Wastewater by Alternative Adsorbents

    OpenAIRE

    Kobetičová Hana; Galbičková Blanka; Ševčíková Janka; Soldán Maroš

    2014-01-01

    The main objective of this paper is to evaluate an efficiency of 3,5 - dichlorophenol removal from wastewater by using alternative adsorbents. Chlorophenols are organic compounds consisting of a benzene ring, OH groups and also atoms of chlorine. Chlorophenols may have a huge isomere variety that means there are differences in their chemical and physical properties. Due to their toxicity it is necessary to remove them from waste water and in this paper an alternative way of such process is de...

  15. Dynamic scanning probe microscopy of adsorbed molecules on graphite

    OpenAIRE

    Berdunov, N.; Pollard, A J; Beton, P. H.

    2008-01-01

    We have used a combined dynamic scanning tunneling and atomic force microscope to study the organisation of weakly bound adsorbed molecules on a graphite substrate. Specifically we have acquired images of islands of the perylene derivative molecules. These weakly bound molecules may be imaged in dynamic STM, in which the probe is oscillated above the surface. We show that molecular resolution may be readily attained and that a similar mode of imaging may be realised using conventional STM arr...

  16. PREPARATION OF CHITOSAN COATED METAL AFFINITY CHROMATOGRAPHY ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    AanTianwei; XuWeijiang; 等

    1998-01-01

    A new and an inexpensive adsorbent of chitosan coated silica for immobilized metal affinity chromatography(IMAC) was studied.After a double coating,the chitosan coated on silica beads could be up to 53.4mg/g silica beads.When pH>3.8,the metal ligand Cu2+ was chelated on the coated chitosan with a bound capacity of 14.6mg/g chitosan without introducing iminodiacetic acid(IDA).

  17. Equipment review: The molecular adsorbents recirculating system (MARS®)

    OpenAIRE

    Boyle, Martin; Kurtovic, Jelica; Bihari, David; Riordan, Stephen; Steiner, Christian

    2004-01-01

    The molecular adsorbents recirculating system (MARS®) is a form of artificial liver support that has the potential to remove substantial quantities of albumin-bound toxins that have been postulated to contribute to the pathogenesis of liver cell damage, haemodynamic instability and multi-organ failure in patients with acute liver failure (ALF) and acute-on-chronic liver failure (AoCLF). These toxins include fatty acids, bile acids, tryptophan, bilirubin, aromatic amino acids and nitric oxide....

  18. Adsorption capacity of various adsorbents for decolorization of wastewater

    OpenAIRE

    Romčević, Gorana

    2014-01-01

    Adsorption is applied for the removal of dyes from wastewater effluent from textile and other industries. Dyes from wastewater need to be removed before it mixes with water bodies. Among the treatment options, adsorption appears to have considerable potential for the removal of colour from wastewaters. Activated carbon is the most widely used adsorbent, but its use is limited due to its high cost. This cost problem has led to a search for the use of alternate cheap and efficient materials. ...

  19. Fate of adsorbable micropollutants through sludge drying and composting processes

    OpenAIRE

    Besnault, S.; Martin Ruel, S.; Choubert, JM.; Budzinski, H.; Miege, C.; Esperanza, M.; Noyon, N.; Garnaud, S.; Coquery, M.

    2012-01-01

    The objective of the paper was to evaluate the fate of 79 adsorbed micropollutants through 9 sludge treatment processes. A specific sampling strategy was applied to follow a “batch” of sludge through the treatment (inlet and outlet sludge, intermediary mixture for some processes such as composting and condensates). Mass balances were established to calculate micropollutants removal efficiencies and the fate of the substances through these facilities was evaluated. In order to limi...

  20. [Activity of methane-oxidizing bacteria in the adsorbed state].

    Science.gov (United States)

    Nesterov, A I; Nazarenko, A V

    1975-01-01

    Adsorption of pure cultures of methane oxidizing bacteria, Methylosinus trichosporium 20 and Methylococcus ucrainicus 21, on glass and coal was studied; the former strain was sorbed on both sorbents, the latter strain was sorbed on coal but not on glass. The rate of methane oxidation by the cells of adsorbed microorganisms was higher than in the case of free cells, and increased with a decrease in dimensions of the sorbent particles. PMID:1207502

  1. Linear response theory of activated surface diffusion with interacting adsorbates

    International Nuclear Information System (INIS)

    Graphical abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed. - Abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed.

  2. A Review of Adsorbents Used for Storm Water Runoff Cleaning

    OpenAIRE

    Andrius Agintas; Marina Valentukevičienė

    2011-01-01

    Heavy metals, petroleum products, sediments and other pollutants get in the environment with insufficiently cleaned storm water runoff. Contaminated storm water runoff is one of the most significant sources for pollution in rivers, lakes and estuaries. Storm water runoff must be treated using not only simple methods but also using adsorption processes. Adsorbents can be natural organic, natural nonorganic and synthetic. Main adsorption characteristic, way of utilization and storm water runoff...

  3. Onion membrane: an efficient adsorbent for decoloring of wastewater

    OpenAIRE

    Saber-Samandari, Samaneh; Heydaripour, Jalil

    2015-01-01

    Background Recently, researchers have tried to design synthetic materials by replicating natural materials as an adsorbent for removing various types of environmental pollutants, which have reached to the risky levels in nature for many countries in the world. In this research, the potential of onion membrane obtained from intermediate of onion shells for adsorption of methylene blue (MB) as a model cationic dye was exhibited. Methods Before and after adsorption, the membrane was characterize...

  4. ADSORPTION OF PHENOL AND NITROPHENOLS ON A HYPERCROSSLINKED POLYMERIC ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The adsorption of phenol and nitrophenols on hypercrosslinked polymeric adsorbent wasstudied as a function of the solution concentration and temperature. Adsorption isotherms of phenoland nitrophenols on hypercrosslinked resin were determined. These isotherms were modeledaccording to the Freundlich adsorption isotherm. The isotherms for phenol and nitrophenols onhypercrosslinked resin were assigned as L curves. Thermodynamic parameters were calculated for allphenol and nitrophenols. The kinetics experiment results showed that the adsorption rates were of thefirst-order kinetics. The rate constants at 303K were calculated.

  5. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    International Nuclear Information System (INIS)

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs

  6. Fixed-bed adsorption separation of xylene isomers over sio2/silicallite-1 core-shell adsorbents

    KAUST Repository

    Khan, Easir A.

    2013-12-29

    SiO2/Silicalite-1 core-shell material has been demonstrated as potential shape selective adsorbent in gas phase separation of p-xylene from a mixture of p/o-xylene isomers. The core-shell composite comprised of large silica core and thin polycrystalline silicalite-1 shell which was synthesized via a self-assembly of silicalite-1 nanocrystals on core silica surface followed by a secondary seeded growth method. The core materials, SiO2 used in this study has mesoporosity with an average pore diameter of 60Å and hence offers no shape selectivity for xylene isomers. However, the shell, silicalite-1 contains rigid pore structures and preferentially adsorbs p-xylene from their isomers mixtures. A series of adsorption fixed bed breakthrough adsorption/desorption experiment was performed to obtain the equilibrium isotherms and adsorption isotherm parameters of xylene isomers. The equilibrium isotherms of xylene isomers follow the Langmuir\\'s model. A chromatographic adsorption model has been used to describe the fixed-bed breakthrough profiles of xylene isomers. The model has successfully predicted the responses of the binary mixtures of p/o-xylene isomers. The SiO2/silicalite-1 core-shell adsorbents have shown para-selectivity as high as 15. © Bangladesh Uni. of Engg. & Tech.

  7. Inversion of type of separation system in planar chromatography of peptides, using C18 silica-based adsorbents.

    Science.gov (United States)

    Gwarda, Radosław Ł; Aletańska-Kozak, Monika; Matosiuk, Dariusz; Dzido, Tadeusz H

    2016-04-01

    Our previous results show, that C18 silica-based adsorbents used in high-performance thin-layer chromatography (HPTLC), provide complex retention mechanism basing on various polar and nonpolar interactions. Here we present, that in chromatography of peptides, due to mixed-mode properties of these adsorbents, there is a simple way to obtain inversion of separation system type (from reversed-phase, RP, to normal-phase, NP, and vice versa). The results presented provide detailed information how to obtain inversion mentioned and reflect the extent (the type and concentration of organic solvent, the type and concentration of ion-pairing reagent in the mobile phase) of this phenomenon. We show, that the system type inversion results in significant change of selectivity of separation, which may be especially useful in 2D separation of complex samples of basic/amphoteric compounds such as peptides. This results from the fact, that C18 silica-based HPTLC adsorbents, may be used in hydrophilic interaction chromatography (HILIC) or RP chromatography, in dependence on mobile phase composition.

  8. Development Trends in Porous Adsorbents for Carbon Capture.

    Science.gov (United States)

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-01

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments. PMID:26422294

  9. Two dimensional condensation of argon adsorbed on lamellar halides

    International Nuclear Information System (INIS)

    Lamellar halides such as NiCl2, FeCl2, NiBr2, MnBr2, MgBr2, CdBr2, CoI2, FeI2, MnI2, CaI2 and PbI2 were sublimed in a rapid stream of dry nitrogen. The adsorption of argon on such materials shows stepped isotherms which reveal two dimensional condensations. From sets of isotherms the Helmholtz free energy, the internal energy and the entropy of the successive layers are determined. From the entropy of the first layer the role of the potential relief of the adsorbent surface on the structure of the adsorbed layer may be determined while the Helmholtz free energy reveals how the ionic character of the adsorbent governs the attractive force of adsorption. The study of the second third and fourth layers shows that their growth follows quite a different behaviour depending on whether the Van der Waals diameter of argon is greater or smaller than the distance between adjacent anions on the crystal surface. A proposition is made to account for the difference in the critical temperatures of the first and second dense layers in terms of the vibrationnal state of their respective substrate. The occurence for the maximum critical temperature observed of corresponding to a triangular layer 3% more expanded than the (111) plane of solid argon is discussed

  10. Fluctuations in the number of irreversibly adsorbed particles

    Science.gov (United States)

    Adamczyk, Zbigniew; Szyk-Warszyńska, Lilianna; Siwek, B.; Weroński, P.

    2000-12-01

    Fluctuations in the number of colloid particles adsorbed irreversibly under pure diffusion transport conditions were determined as a function of surface density and ionic strength of the suspension. The experiments were carried out for monodisperse polystyrene latex particles of micrometer size range adsorbing irreversibly at mica surface. The surface density of adsorbed particles at various areas was determined using the direct microscope observation method. A new experimental cell was used enabling in situ observations of particles adsorption under conditions of negligible gravity effects. It was found that the particle density fluctuations for high ionic strength were in a good agreement with the theoretical results derived from the random sequential adsorption (RSA) model. Also, the theoretical results stemming from the equilibrium scaled particle theory reflected the experimental data satisfactorily. For lower ionic strength a deviation from the hard sphere behavior was experimentally demonstrated. This effect due to the repulsive electrostatic interactions was interpreted in terms of the effective hard particle concept. The universal dependence of variance on particle density obtained in this way was found in a good agreement with the RSA model for all ionic strength. These results proved that fluctuations in particle density of monolayer formed under diffusional conditions differ fundamentally from these obtained under ballistic transport conditions.

  11. Distribution of metal and adsorbed guest species in zeolites

    International Nuclear Information System (INIS)

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes 129Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of 129Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, 129Xe NMR is insensitive to fine structural details at room temperature

  12. Distribution of metal and adsorbed guest species in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  13. Specific binding-adsorbent assay method and test means

    International Nuclear Information System (INIS)

    A description is given of an improved specific binding assay method and test means employing a nonspecific adsorbent for the substance to be determined, particularly hepatitis B surface (HBsub(s)) antigen, in its free state or additionally in the form of its immune complex. The invention is illustrated by 1) the radioimmunoadsorbent assay for HBsub(s) antigen, 2) the radioimmunoadsorbent assay for HBsub(s) antigen in the form of immune complex with antibody, 3) a study of adsorption characteristics of various anion exchange materials for HBsub(s) antigen, 4) the use of hydrophobic adsorbents in a radioimmunoadsorbent assay for HBsub(s) antigen and 5) the radioimmunoadsorbent assay for antibody to HBsub(s) antigen. The advantages of the present method for detecting HBsub(s) antigen compared to previous methods include the manufacturing advantages of eliminating the need for insolubilised anti-HBsub(s) and the advantages of a single incubation step, fewer manipulations, storability of adsorbent materials, increased sensitivity and versatility of detecting HBsub(s) antigen in the form of its immune complex if desired. (U.K.)

  14. Development Trends in Porous Adsorbents for Carbon Capture.

    Science.gov (United States)

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-01

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments.

  15. Adsorption isotherm of non-azeotropic solution onto porous adsorbents

    Science.gov (United States)

    Bono, A.; Ramlan, N. A.; Anisuzzaman, S. M.; Chu, C. M.; Farm, Y. Y.

    2016-06-01

    Adsorption isotherm is essential component in the understanding of the adsorption process. Several methods of the measurements, analysis and interpretation of adsorption from solution have been reported in the literature. Most of the measurements of adsorption isotherm from solution were involved the measurement of excess isotherm conducted at low region of sorbates concentration. Direct interpretation of excess adsorption isotherm as adsorption isotherm is always been practice. Therefore, in this work a study on the measurement of the adsorption isotherm from solution of non-azeotropic organic solvent mixture onto porous adsorbents for whole range of liquid concentration was conducted. The study included the measurement of excess adsorption isotherm using conventional technique. Theoretical analysis and interpretation of adsorption isotherm from the excess isotherm were conducted using Pseudo Ideal Adsorption, Gibbs Dividing Plane Model and Langmuir-Fruendlich binary isotherm model. For organic solvents, acetone and propanol were chosen as the adsorbates due to the non-azeotropic properties in the mixture. Activated carbon and silicalite were chosen as adsorbents due to the different in their porosity such as macro porous and micro porous structure. The result of the study has revealed that the adsorption isotherm of non-azeotropic mixture onto activated carbon and silicalite can be interpreted as monolayer type of adsorption.

  16. Photoinduced surface dynamics of CO adsorbed on a platinum electrode.

    Science.gov (United States)

    Noguchi, Hidenori; Okada, Tsubasa; Uosaki, Kohei

    2006-08-10

    The surface dynamics of adsorbed CO molecules formed by dissociative adsorption of HCHO at a polycrystalline Pt electrode/electrolyte solution interface was studied by picosecond time-resolved sum-frequency generation (TR-SFG) spectroscopy. A SFG peak at 2050-2060 cm(-1) was observed at the Pt electrode in HClO(4) solution containing HCHO at 0-300 mV (vs Ag/AgCl), indicating the formation of adsorbed CO at an atop site of the Pt surface as a result of dissociative adsorption of HCHO. The peak position varied with potential by approximately 33 cm(-1)/V, as previously found in an infrared reflection absorption spectroscopy (IRAS) study. Irradiation of an intense picosecond visible pulse (25 ps, 532 nm) caused an instant intensity decrease and broadening of the CO peak accompanied by the emergence of a new broad peak at approximately 1980 cm(-1) within the time resolution of the system. These results suggest a decrease and increase in the populations of CO adsorbed on atop and bridge sites, respectively, upon visible pump pulse irradiation. PMID:16884215

  17. Amine-functionalized porous silicas as adsorbents for aldehyde abatement.

    Science.gov (United States)

    Nomura, Akihiro; Jones, Christopher W

    2013-06-26

    A series of aminopropyl-functionalized silicas containing of primary, secondary, or tertiary amines is fabricated via silane-grafting on mesoporous SBA-15 silica and the utility of each material in the adsorption of volatile aldehydes from air is systematically assessed. A particular emphasis is placed on low-molecular-weight aldehydes such as formaldehyde and acetaldehyde, which are highly problematic volatile organic compound (VOC) pollutants. The adsorption tests demonstrate that the aminosilica materials with primary amines most effectively adsorbed formaldehyde with an adsorption capacity of 1.4 mmolHCHO g(-1), whereas the aminosilica containing secondary amines showed lower adsorption capacity (0.80 mmolHCHO g(-1)) and the aminosilica containing tertiary amines adsorbed a negligible amount of formaldehyde. The primary amine containing silica also successfully abated higher aldehyde VOC pollutants, including acetaldehyde, hexanal, and benzaldehyde, by effectively adsorbing them. The adsorption mechanism is investigated by (13)C CP MAS solid-state NMR and FT-Raman spectroscopy, and it is demonstrated that the aldehydes are chemically attached to the surface of aminosilica in the form of imines and hemiaminals. The high aldehyde adsorption capacities of the primary aminosilicas in this study demonstrate the utility of amine-functionalized silica materials for reduction of gaseous aldehydes.

  18. Theoretical consideration on composite oxide scales and coatings

    Institute of Scientific and Technical Information of China (English)

    HE Yedong; GAO Wei

    2013-01-01

    The present paper discussed some fundamental aspects on composite oxide scales and coatings for protection of alloys from high temperature oxidation,the related thermodynamic conditions,special mechanical characteristics and a sealing mechanism.It was proposed that the oxide scales and coatings with a composite structure should possess superior mechanical properties than that with a single phase oxide.It also showed that the A12O3 scales or coatings doped with Y2O3 and ZrO2 (or YSZ)-Al2O3 composite coatings possessed superior properties at high temperatures.In such composite oxide scales and coatings,the fracture resistance of the scales was increased by the toughening effect,the thermal stress was decreased owing to the increase of thermal-expansion coefficients,and Al2O3 phase could seal the alloy substrate well.In addition,the kinetic equation of thermal growth oxide on alloy covered with composite oxide coatings was derived.

  19. Dynamic separation of Szilard-Chalmers reaction products applied to the trioxalatochromium ion adsorbed on anionic exchange resin

    International Nuclear Information System (INIS)

    A method of dynamic elution of recoiled 51Cr+3, formed by the Szilard-Chalmers reaction during the irradiation of trioxalatochromium ion adsorbed on anionic exchange resin is presented. The influence of some factors on the separation yield of chromium-51, such as: composition, concentration and flow rate of eluent, mesh size of the resin and irradiation time are studied. The results are compardd with those obtained by the static method, in which the recoiled atom is separated from the target after irradiation. Because of the high separation yield of chromium-51, the method of dynamic separation is proposed for routine production of this elemnt, with high specific activities. (author)

  20. Structure of polymer layers adsorbed from concentrated solutions

    Science.gov (United States)

    Auvray, Loïc; Auroy, Philippe; Cruz, Margarida

    1992-06-01

    We study by neutron scattering the interfacial strucuture of poly(dimethylsiloxane) layers irreversibly adsorbed from concentrated solutions or melts. We first measure the thickness h of the layers swollen by a good solvent as a function of the chain polymerisation index N and of the polymer volume fraction in the initial solution Φ. The relation h ≈ N^{0.8}Φ^{0.3}, recently predicted from an analogy between irreversibly adsorbed layers and grafted polymer brushes, describes well our results. We can therefore deduce that there is at least one large loop of about N monomers per adsorbed chain. We also study the shape of the polymer concentration profile in the layers by measuring on two samples the polymer-solid partial structure factor, that is proportional to the Fourier transform of the profile. The model of pseudobrushes predicts a concentration decay varying with the distance of the wall z as z^{-2/5}. This power law profile accounts quantitatively for the angular variation of the polymer-solid cross structure factor but it is difficult to distinguish it without anbiguity from less singular profiles. It implies that the adsorption of PDMS onto silica is sufficiently strong and fast to quench completely the loop distribution in the initial layer. Nous étudions par diffusion de neutrons la structure interfaciale de couches de poly(diméthylsiloxane) irréversiblement adsorbées sur de la silice à partir de solutions semidiluées et de fondus. Nous mesurons d'abord l'épaisseur h des couches gonflées par un bon solvant en fonction du degré de polymérisation des chaînes N et de la fraction volumique dans la solution initiale Φ. La relation h≈ N^{0.8}Φ^{0.3} récemment prédite à partir de l'analogie entre couches irréversiblement adsorbées et brosses de polymères greffés décrit bien nos résultats. Nous en déduisons qu'il existe au moins une grande boucle d'environ N monomères par chaîne adsorbée. Nous étudions aussi la forme du profil de

  1. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Science.gov (United States)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  2. Current status of adsorbent for metal ions with radiation grafting and crosslinking techniques

    Science.gov (United States)

    Seko, Noriaki; Tamada, Masao; Yoshii, Fumio

    2005-07-01

    Removal of toxic metals from streaming water and ground water is important task to preserve environment. Radiation processing of grafting and crosslinking can synthesis adsorbent having high performances. Graft adsorbent can be synthesized by using the conventional polymer like polyethylene having variety shapes such as membrane, cloth, and fiber. Especially, the obtained fibrous adsorbent has 100 times higher rate of adsorption than that of commercialized resin. Fibrous adsorbent of iminodiacetate was applied to the removal of cadmium from the scallop waste. Furthermore, the amidoxime adsorbent is useful for recovery of rare metals such as uranium and vanadium in seawater. Novel fibrous adsorption for arsenic was synthesized by direct grafting of phosphoric monomer and following zirconium-loading. Crosslinked natural polymers like carboxymethyl chitin-chitosan in the paste-like state are applicable for the metal adsorbent. This adsorbent can be biodegraded after usage.

  3. Adsorption of Heavy Metal Ions by Adsorbent from Waste Mycelium Chitin

    Institute of Scientific and Technical Information of China (English)

    苏海佳; 王丽娟; 等

    2002-01-01

    The adsorption properties of chitin adsorbent from mycelium of fermentation industries for the removal of heavy metal ions were studied.The result shows that the chitin adsorbent has high adsorption capacity for many heavy metal ions and Ni2+ in citric acid.The influence of pH was significant:When pH is higher than 4.0,the high adsorption capacity is obtained.otherwise H+ ion inhibits the adsorption of heavy metal ions.The comparison of the chitin adsorbent with some other commercial adsorbents was made,in which that the adsorption behavior of chitin adsorbent is close to that of commercial cation exchange adsorbents,and its cost is much lower than those commercial adsorbents.

  4. Observation on the effect of lithospermum oil plus zinc oxide coated with oxygen blowing in the treatment of neonatal diaper dermatitis%紫草油加氧化锌外涂氧气吹干治疗新生儿尿布皮炎的效果观察

    Institute of Scientific and Technical Information of China (English)

    阚春艳

    2015-01-01

    Objective:To investigate the clinical therapeutic effect of lithospermum oil plus zinc oxide coated with oxygen blowing in the treatment of neonatal diaper dermatitis.Methods:94 cases of neonatal diaper dermatitis were selected from October 2013 to October 2014.They were randomly divided into two groups according with the draw method,in which 47 cases in the control group were treated with conventional methods,and 47 cases in the observation group were treated with shikonin oil and zinc oxide coated oxygen blowing,then we compared the clinical treatment effect between two groups.Results:The total effective rate of the observation group(100%) was significantly higher than that of the control group(89.36%),and there was statistically significant difference between two groups(P<0.05).Conclusion:Lithospermum oil plus zinc oxide coated with dry oxygen has obviously effect on clinical treatment of neonatal diaper dermatitis.It can effectively improve the clinical symptom of children,so as to improve the cure rate and treatment effect,therefore,it is a kind of effective and ideal clinical treatment method.%目的:探讨紫草油加氧化锌外涂氧气吹干对新生儿尿布皮炎的临床治疗效果.方法:2013年10月-2014年10月收治新生儿尿布皮炎患儿94例.按照抽签法将其随机平均分组,其中对照组47例,采用常规方法治疗;观察组47 例,采用紫草油加氧化锌外涂氧气吹干治疗,比较两组患儿的临床诊治效果.结果:观察组临床治疗总有效率(100.0%)明显高于对照组(89.36%),组间对比差异明显,差异均存在统计学意义(P<0.05).结论:采用紫草油加氧化锌外涂氧气吹干对新生儿尿布皮炎患儿进行临床诊治的效果显著,能够有效改善患儿的临床症状,提高治愈率和治疗效果,是一种有效、理想的临床治疗方法.

  5. Amine-pillared Nanosheet Adsorbents for CO2 Capture Applications

    Science.gov (United States)

    Jiang, Hui

    Amine-functionalized solid adsorbents have gained attention within the last decade for their application in carbon dioxide capture, due to their many advantages such as low energy cost for regeneration, tunable structure, elimination of corrosion problems, and additional advantages. However, one of the challenges facing this technology is to accomplish both high CO 2 capture capacity along with high CO2 diffusion rates concurrently. Current amine-based solid sorbents such as porous materials similar to SBA-15 have large pores diffusion entering molecules; however, the pores become clogged upon amine inclusion. To meet this challenge, our group's solution involves the creation of a new type of material which we are calling-amino-pillared nanosheet (APN) adsorbents which are generated from layered nanosheet precursors. These materials are being proposed because of their unique lamellar structure which exhibits ability to be modified by organic or inorganic pillars through consecutive swelling and pillaring steps to form large mesoporous interlayer spaces. After the expansion of the layer space through swelling and pillaring, the large pore space can be functionalized with amine groups. This selective functionalization is possible by the choice of amine group introduced. Our choice, large amine molecules, do not access the micropore within each layer; however, either physically or chemically immobilized onto the surface of the mesoporous interlayer space between each layer. The final goal of the research is to investigate the ability to prepare APN adsorbents from a model nanoporous layered materials including nanosheets precursor material MCM-22(P) and nanoporous layered silicate material AMH-3. MCM-22(P) contains 2-dimensional porous channels, 6 membered rings (MB) openings perpendicular to the layers and 10 MB channels in the plane of the layers. However, the transport limiting openings (6 MB) to the layers is smaller than CO2 gas molecules. In contrast, AMH-3 has

  6. A DFT study of halogen atoms adsorbed on graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Paulo V C; De Brito Mota, F; De Castilho, Caio M C [Grupo de Fisica de Superfcies e Materiais, Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao/Ondina, 40170-115 Salvador, Bahia (Brazil); Mascarenhas, Artur J S, E-mail: caio@ufba.br [Instituto Nacional de Ciencia e Tecnologia em Energia e Ambiente-INCT-E and A, Universidade Federal da Bahia, 40170-280 Salvador, Bahia (Brazil)

    2010-12-03

    In this work, ab initio density functional theory calculations were performed in order to study the structural and electronic properties of halogens (X = fluorine, chlorine, bromine or iodine) that were deposited on both sides of graphene single layers (X-graphene). The adsorption of these atoms on only one side of the layer with hydrogen atoms adsorbed on the other was also considered (H,X-graphene). The results indicate that the F-C bond in the F-graphene system causes an sp{sup 2} to sp{sup 3} transition of the carbon orbitals, and similar effects seem to occur in the H,X-graphene systems. For the other cases, two configurations are found: bonded (B) and non-bonded (NB). For the B configuration, the structural arrangement of the atoms was similar to F-graphene and H-graphene (graphane), although the electronic structures present some differences. In the NB configuration, the interaction between the adsorbed atoms and the graphene layer seems to be essentially of the van der Waals type. In these cases, the original shape of the graphene layer presents only small deviations from the pristine form and the adsorbed atoms reach equilibrium far from the sheet. The F-graphene structure has a direct bandgap of approximately 3.16 eV at the {Gamma} point, which is a value that is close to the value of 3.50 eV that was found for graphane. The Cl-graphene (B configuration), H,F-graphene and H,Cl-graphene systems have smaller bandgap values. All of the other systems present metallic behaviours. Energy calculations indicate the possible stability of these X-graphene layers, although some considerations about the possibility of spontaneous formation have to be taken into account.

  7. Material prepared from drinking waterworks sludge as adsorbent for ammonium removal from wastewater

    Science.gov (United States)

    Yang, Lan; Wei, Jie; Liu, Zhongyuan; Wang, Jianli; Wang, Dongtian

    2015-03-01

    Drinking waterworks sludge (DWS) is not an effective adsorbent for ammonium removal without any treatment. In this study, DWS was used as a starting material to prepare ammonium adsorbent (M-DWS) by means of an ultrasonic assisted extraction and synthesis method. Two materials (M-DWS1# and M-DWS2#) were prepared according to two different routes. The composition, structure, and surface properties of DWS and M-DWS were characterized and their ammonium adsorption abilities were examined. Characterization results showed that the lamellar structure of DWS was converted into the spherical units of M-DWS and that the cation exchange capacity and specific surface area of M-DWS were many times higher than that of DWS. Batch test results indicated that the adsorption equilibrium data of M-DWS fitted well to both the Langmuir and Frendlich isotherms. The maximum adsorption capacity of M-DWS1# and M-DWS2# evaluated from the Langmuir isotherm was 6.11 mg/g and 5.10 mg/g, respectively. It was also observed that the initial pH affected ammonium adsorption on M-DWS greatly. Under an optimum pH of 7-8, the highest ammonium removal rate of 90% for M-DWS1# and 80% for M-DWS2# were achieved at an initial concentration of 50 mg NH4+/L. The advantage of M-DWS2# lies in its higher yield and less waste discharge compared with M-DWS1#.

  8. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin

    International Nuclear Information System (INIS)

    Highlights: • Magnetic β-cyclodextrin-graphene oxide (MCG) show high adsorption capacity. • The maximum adsorption capacity was 1102.58 mg/g at 45 °C and pH 8. • MCG can be easily and fast extracted from water by magnetic attraction. • Removal rate of MCG could reach 98% after three times of adsorption. • Adsorption capacity of MCG remained at 81% after five cycles. - Abstract: Recently, graphene oxide (GO) based magnetic nanocomposites have been widely used in an adsorption-based process for the removal of organic pollutants from the water system. In this study, magnetic β-cyclodextrin-graphene oxide nanocomposites (MCG) were synthesized according to covalent binding of magnetic β-cyclodextrin nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as adsorbents for the adsorption and removal of p-phenylenediamines (PPD). The composition and morphology of prepared materials were characterized by Fourier infrared spectrometry (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Effects of pH, temperature, time and reusability on the adsorption of PPD were investigated, as well as the kinetics and isotherms parameters of the adsorbents were determined. The results indicated that the maximum adsorption capacity of MCG was 1102.58 mg/g at 45 °C and pH 8. The adsorption capacity remained at 81% after five cycles. Removal rate could reach 98% after three times of adsorption. The adsorption process with PPD was found that fitted pseudo-second-order kinetics equations and the Langmuir adsorption model. The results showed the MCG had a good adsorption ability to remove organic pollutants in wastewater

  9. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongxue; Liu, Liangliang; Jiang, Xinyu; Yu, Jingang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen, Xiaohong [Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, 410083 (China); Chen, Xiaoqing, E-mail: xqchen@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, 410083 (China)

    2015-02-28

    Highlights: • Magnetic β-cyclodextrin-graphene oxide (MCG) show high adsorption capacity. • The maximum adsorption capacity was 1102.58 mg/g at 45 °C and pH 8. • MCG can be easily and fast extracted from water by magnetic attraction. • Removal rate of MCG could reach 98% after three times of adsorption. • Adsorption capacity of MCG remained at 81% after five cycles. - Abstract: Recently, graphene oxide (GO) based magnetic nanocomposites have been widely used in an adsorption-based process for the removal of organic pollutants from the water system. In this study, magnetic β-cyclodextrin-graphene oxide nanocomposites (MCG) were synthesized according to covalent binding of magnetic β-cyclodextrin nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as adsorbents for the adsorption and removal of p-phenylenediamines (PPD). The composition and morphology of prepared materials were characterized by Fourier infrared spectrometry (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Effects of pH, temperature, time and reusability on the adsorption of PPD were investigated, as well as the kinetics and isotherms parameters of the adsorbents were determined. The results indicated that the maximum adsorption capacity of MCG was 1102.58 mg/g at 45 °C and pH 8. The adsorption capacity remained at 81% after five cycles. Removal rate could reach 98% after three times of adsorption. The adsorption process with PPD was found that fitted pseudo-second-order kinetics equations and the Langmuir adsorption model. The results showed the MCG had a good adsorption ability to remove organic pollutants in wastewater.

  10. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  11. Graphene symmetry-breaking with molecular adsorbates: modeling and experiment

    Science.gov (United States)

    Groce, M. A.; Hawkins, M. K.; Wang, Y. L.; Cullen, W. G.; Einstein, T. L.

    2012-02-01

    Graphene's structure and electronic properties provide a framework for understanding molecule-substrate interactions and developing techniques for band gap engineering. Controlled deposition of molecular adsorbates can create superlattices which break the degeneracy of graphene's two-atom unit cell, opening a band gap. We simulate scanning tunneling microscopy and spectroscopy measurements for a variety of organic molecule/graphene systems, including pyridine, trimesic acid, and isonicotinic acid, based on density functional theory calculations using VASP. We also compare our simulations to ultra-high vacuum STM and STS results.

  12. Sustainable catalyst supports for carbon dioxide gas adsorbent

    Science.gov (United States)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  13. Detection of adsorbed water and hydroxyl on the moon

    Science.gov (United States)

    Clark, R.N.

    2009-01-01

    Data from the Visual and Infrared Mapping Spectrometer (VIAAS) on Cassini during its flyby of the AAoon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the AAoon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  14. 3,5-Dichlorophenol Removal From Wastewater Using Alternative Adsorbents

    Directory of Open Access Journals (Sweden)

    Kobetičová Hana

    2015-06-01

    Full Text Available The main objective of this paper is to evaluate the efficiency of 3,5-dichlorophenol removal from wastewater by using alternative low cost adsorbents. Waste from the production and processing of metals (black nickel mud, red mud and a biosorbent (Lemna minor were used for this research. Initial concentration of the contaminant was 4 mmol L−1, the contact time of sorbent and waste water was 0 - 48 hrs and the temperature during experiment was 25 ± 0.2 °C. The results show that the highest removal efficiency of 3,5 - dichlorophenol (58.18 % was reached by the red mud in 48 hours.

  15. Removing 3,5-Dichlorophenol from Wastewater by Alternative Adsorbents

    Directory of Open Access Journals (Sweden)

    Kobetičová Hana

    2014-12-01

    Full Text Available The main objective of this paper is to evaluate an efficiency of 3,5 - dichlorophenol removal from wastewater by using alternative adsorbents. Chlorophenols are organic compounds consisting of a benzene ring, OH groups and also atoms of chlorine. Chlorophenols may have a huge isomere variety that means there are differences in their chemical and physical properties. Due to their toxicity it is necessary to remove them from waste water and in this paper an alternative way of such process is described.

  16. 3,5-Dichlorophenol Removal From Wastewater Using Alternative Adsorbents

    Science.gov (United States)

    Kobetičová, Hana; Lipovský, Marek; Wachter, Igor; Soldán, Maroš

    2015-06-01

    The main objective of this paper is to evaluate the efficiency of 3,5-dichlorophenol removal from wastewater by using alternative low cost adsorbents. Waste from the production and processing of metals (black nickel mud, red mud) and a biosorbent (Lemna minor) were used for this research. Initial concentration of the contaminant was 4 mmol L-1, the contact time of sorbent and waste water was 0 - 48 hrs and the temperature during experiment was 25 ± 0.2 °C. The results show that the highest removal efficiency of 3,5 - dichlorophenol (58.18 %) was reached by the red mud in 48 hours.

  17. Magnetically modified microbial cells: A new type of magnetic adsorbents

    Institute of Scientific and Technical Information of China (English)

    Ivo; Safarik; Mirka; Safarikova

    2007-01-01

    Microbial cells, either in free or immobilized form, can be used for the preconcentration or removal of metal ions, organic and inorganic xenobiotics or biologically active compounds. Magnetic modification of these cells enables to prepare magnetic adsorbents that can be easily manipulated in difficult-to-handle samples, such as suspensions, in the presence of external magnetic field. In this review, typical examples of magnetic modifications of microbial cells are presented, as well as their possible applications for the separation of organic xenobiotics and heavy metal ions.

  18. Temperature programmed desorption of weakly bound adsorbates on Au(111)

    Science.gov (United States)

    Engelhart, Daniel P.; Wagner, Roman J. V.; Meling, Artur; Wodtke, Alec M.; Schäfer, Tim

    2016-08-01

    We have performed temperature programmed desorption (TPD) experiments to analyze the desorption kinetics of Ar, Kr, Xe, C2H2, SF6, N2, NO and CO on Au(111). We report desorption activation energies (Edes), which are an excellent proxy for the binding energies. The derived binding energies scale with the polarizability of the molecules, consistent with the conclusion that the surface-adsorbate bonds arise due to dispersion forces. The reported results serve as a benchmark for theories of dispersion force interactions of molecules at metal surfaces.

  19. Behavior of adsorbed Poly-A onto sodium montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Palomino-Aquino, Nayeli [Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (Mexico); Negrón-Mendoza, Alicia, E-mail: negron@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)

    2015-07-23

    The adsorption of Poly-A (a polynucleotide consisting of adenine, ribose and a phosphate group), onto a clay mineral, was studied to investigate the extent of adsorption, the site of binding, and the capacity of the clay to protect Poly-A, while it is adsorbed onto the clay, from external sources of energy. The results showed that Poly-A presented a high percentage of adsorption at the edges of the clay and that the survival of the polynucleotide was superior to irradiating the polymer in the absence of the clay.

  20. Structure of adsorbed monolayers. The surface chemical bond

    International Nuclear Information System (INIS)

    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table

  1. Insights on the properties of levofloxacin-adsorbed Sr- and Mg-doped calcium phosphate powders.

    Science.gov (United States)

    Marques, Catarina F; Matos, Ana C; Ribeiro, Isabel A C; Gonçalves, Lídia M; Bettencourt, Ana; Ferreira, José M F

    2016-07-01

    Several types of biodegradable materials have been investigated for the treatment of osteomyelitis. Calcium phosphate (CaP) ceramics are among the most performing materials due to their resemblance to human hard tissues in terms of mineralogical composition, and proven ability to adsorb and deliver a number of drugs. This research work was intended to study the suitability of modified CaP powders loaded with a fluoroquinolone as drug delivery systems for osteomyelitis treatment. Levofloxacin (LEV) was chosen due to the well-recognized anti-staphylococcal activity and adequate penetration into osteoarticular tissues. Substituted CaP powders (5 mol% Sr(2+) or 5 mol% Mg(2+)) were synthesised through aqueous precipitation. The obtained powders were characterised by X-ray diffraction, SEM and FTIR analysis. The X-ray diffraction patterns confirmed the presence of HA and β-tricalcium phosphates (β-TCP) phases in doped compositions, especially in the case of Mg-doped system. The fixation of LEV at the surface of the particles occurred only by physisorption. Both the in vitro microbiological susceptibility, against Staphylococcus spp, and biocompatibility of LEV-loaded CaP powders have not been compromised. PMID:27300006

  2. Experiment on the thermal conductivity and permeability of physical and chemical compound adsorbents for sorption process

    Science.gov (United States)

    Jin, Z. Q.; Wang, L. W.; Jiang, L.; Wang, R. Z.

    2013-08-01

    For the adsorbents in the application of refrigeration, the density of the material inside the adsorber changes because the adsorption/desorption of the refrigerant inside the adsorbents. Consequently the thermal conductivity and permeability of the adsorbents also change. In order to investigate the heat and mass transfer performance of consolidated compound adsorbent under the different equilibrium state of adsorption/desorption, the thermal conductivity and permeability test system is set up using the guarded hot plate measuring method and the principle of Ergun equation. Then various mass ratios between adsorbent and matrix of consolidated physical and chemical compound adsorbents are developed and tested under different ammonia adsorption quantity. Result shows that the thermal conductivity and permeability have strong dependence with the ratios and consolidated density of the compound adsorbent. Meanwhile, the thermal conductivity and permeability of the chemical compound adsorbents vary significantly with different adsorption quantity of ammonia, and the values for the physical compound adsorbents almost maintain a constant value with different values of adsorption quantity.

  3. Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.H.P; Cressey, B.A.; Roberts, A.P.; Ellwood, D.C.; Charnock, J.M.; Soper, A.K

    2000-05-01

    composition Fe{sub 1-x}S. The strongly magnetic iron sulphide was composed of some greigite (Fe{sub 3}S{sub 4}) and mackinawite (Fe{sub 1+x}S), however, the bulk of the material at room temperature probably consists of disordered greigite and mackinawite. The weakly magnetic and strongly magnetic iron sulphide are good adsorbents for heavy metals and halogenated hydrocarbons.

  4. Heterogeneous radiolysis of HCN adsorbed on a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Colin-Garcia, M.; Ortega-Gutierrez, F. [Instituto de Geologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Ramos-Bernal, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Negron-Mendoza, A., E-mail: negron@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)

    2010-07-21

    Hydrogen cyanide is a key molecule for chemical evolution studies because, when it is exposed to different sources of energy, it forms various compounds of biological importance. To understand the role of minerals in chemical evolution, a series of experiments was performed. First, the adsorption capacity of HCN on different surface minerals was studied; the results show that HCN is readily adsorbed onto the solids proposed (zeolite, serpentine, dolomite, and sodium montmorillonite), in particular zeolite and montmorillonite. Second, the radiolysis of HCN adsorbed on olivine (as an example of a mineral surface) was also followed; it was found that the rate of HCN decomposition by gamma irradiation is enhanced in the presence of the solid. The third series of studies show that organic material was produced in high abundance from HCN at high radiation doses. The radiolytic products included gases (CO{sub 2}, NH{sub 4}, and CO) and oligomeric materials that release carboxylic acids (succinic, malonic, citric, and tricarballylic acids) and amino acids upon acid hydrolysis. These experiments suggest that minerals could have participated actively in chemical evolution processes.

  5. Solvent cleanup using base-treated silica gel solid adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-06-01

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO/sub 3/, dibutyl phosphate (DBP), UO/sub 2//sup 2 +/, Pu/sup 4 +/, various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO/sub 3/ waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables.

  6. Home-made carbonaceous adsorbents for the iodine filter

    International Nuclear Information System (INIS)

    Assuming, that at the moment, an activated charcoal is the most widely used adsorbent in off-gas cleaning systems for elemental iodine removal, it was analyzed how to improve the adsorption properties of this filter material for removing the organic iodine compounds, especially in the presence of high relative humidity. Three different indigenous activated charcoals were selected for studies: two kinds of charcoal, designated as type A and N, as well as the charcoals used for flue gas desulfurization, as the third type S. These charcoals were impregnated with tin iodide (SnI2), potassium iodide (KI) and triethylenediamine (TEDA). Considering the results of the laboratory tests of the efficiency methyl iodide retention by the impregnated charcoals, it was concluded, that the carbonaceous adsorbent containing 1+1.5% KI showed efficient retention of the methyl iodide (CH3I), compared with, for example, foreign activated charcoals, as, NORIT-CGI 1% KI (West Germany) and GA-1 0.5% KI (Czechoslovakia). (author)

  7. Adsorbate Electric Fields on a Cryogenic Atom Chip

    CERN Document Server

    Chan, K S; Hufnagel, C; Dumke, R

    2013-01-01

    We investigate the behaviour of electric fields originating from adsorbates deposited on a cryogenic atom chip as it is cooled from room temperature to cryogenic temperature. Using Rydberg electromagnetically induced transparency we measure the field strength versus distance from a 1 mm square of YBCO patterned onto a YSZ chip substrate. We find a localized and stable dipole field at room temperature and attribute it to a saturated layer of chemically adsorbed rubidium atoms on the YBCO. As the chip is cooled towards 83 K we observe a change in sign of the electric field as well as a transition from a localized to a delocalized dipole density. We relate these changes to the onset of physisorption on the chip surface when the van der Waals attraction overcomes the thermal desorption mechanisms. Our findings suggest that, through careful selection of substrate materials, it may be possible to reduce the electric fields caused by atomic adsorption on chips, opening up experiments to controlled Rydberg-surface co...

  8. Fibrous adsorbent for removal of aqueous aromatic hydrocarbons.

    Science.gov (United States)

    Jung, Yong-Jun; Kiso, Yoshiaki; Oguchi, Tatsuo; Yamada, Toshiro; Takagi, Hiroo; Nishimura, Kazuyuki

    2007-01-01

    Bundles of a strongly hydrophobic fibrous material (p-phenylene-2,6-benzobisoxazole; PBO; Zylon) were employed as an adsorbent for the removal of aqueous aromatic compounds, because the PBO fibers are too rigid to be woven and did not entrap suspended solids. The removal performance for nine kinds of polyaromatic hydrocarbons (PAHs) and di-(2-ethylhexyl) phthalate (DEHP) was evaluated. PAHs and DEHP at initial concentrations of 50 microg L(-1) were removed at 72.5-99.9% and ca. 95%, respectively, although the removal efficiencies were affected by the phase ratio (fiber weight/solution volume). The logarithm of the partition coefficient (log K) for planar PAHs was linearly correlated with the logarithm of the n-octanol/water partition coefficient (log P), but nonplanar PAHs, such as cis-stilbene, p-terphenyl, and o-terphenyl, showed significantly lower adsorption performance. The adsorbed PAHs were not desorbed effectively with CH3CN, CH2Cl2, and toluene. On the other hand, DEHP was effectively desorbed with methanol.

  9. Ceramics adsorbing virus and cells. Uirusu, saibo bunri ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, T. (Asahi Optical Co. Ltd., Tokyo (Japan))

    1993-07-01

    It has been reported that hydroxyapatite (HA), which is the main inorganic component of teeth and bones of homo sapiens and used for biomaterials such as artificial tooth roots, adsorbs viruses such as influenza viruses. In this article, the history of development up to now of HA and its adsorption mechanism of protein, virus, etc., are introduced. HA was applied for chromatography in 1956 becoming one of the separating and refining methods of protein and nucleic acid, then after the development of spherical porous HA, it has become applied for high speed liquid chromatography (HPLC). Also by means of a column filled with HA granules, T-cells have been able to be purified in a short time from lymphocyte which was separated from the blood of homo sapiens. Recently it has also been reported that HA granules can adsorb influenza viruses, Japanese encephalitis viruses, polio viruses and hepatitis B viruses, and a cold-preventative mask based upon this report is now on sale. 11 refs., 7 figs.

  10. Structure of Inert Gases Adsorbed in MCM-41

    Science.gov (United States)

    Evans, Dylan; Sokol, Paul

    One-dimensional quantum liquids of 3He or 4He have generated recent interest for investigation in the Luttinger liquid model. Unfortunately, current studies lack a clear demonstration of definitively one-dimensional behavior. We propose using the templated, porous material, MCM-41, as a host for an atomic Luttinger liquid. In general, the pores of MCM-41 are too wide to provide a strictly one-dimensional environment, so we investigate preplating these pores with inert gases to effectively reduce their diameter. We present the results of studies of the structure of inert gases in MCM-41. Nitrogen sorption isotherms were used to characterize the sample. Then, using inert gases as adsorbates, we determined the minimum effective pore diameter that can be achieved in our sample before capillary condensation takes over. X-ray powder diffraction (XRD) was performed on the ideally preplated sample to investigate the structure of the adsorbates in the nanopores. The XRD measurements are compared to simulations of core-shell cylinder model scattering, and the validity of the model is assessed. The prospects for creating a definitively one-dimensional channel for the application of studying the structure and dynamics of helium confined in one dimension are discussed. This work was supported by the National Science Foundation under Grant DGE-1069091.

  11. Fibrous adsorbent for removal of aqueous aromatic hydrocarbons.

    Science.gov (United States)

    Jung, Yong-Jun; Kiso, Yoshiaki; Oguchi, Tatsuo; Yamada, Toshiro; Takagi, Hiroo; Nishimura, Kazuyuki

    2007-01-01

    Bundles of a strongly hydrophobic fibrous material (p-phenylene-2,6-benzobisoxazole; PBO; Zylon) were employed as an adsorbent for the removal of aqueous aromatic compounds, because the PBO fibers are too rigid to be woven and did not entrap suspended solids. The removal performance for nine kinds of polyaromatic hydrocarbons (PAHs) and di-(2-ethylhexyl) phthalate (DEHP) was evaluated. PAHs and DEHP at initial concentrations of 50 microg L(-1) were removed at 72.5-99.9% and ca. 95%, respectively, although the removal efficiencies were affected by the phase ratio (fiber weight/solution volume). The logarithm of the partition coefficient (log K) for planar PAHs was linearly correlated with the logarithm of the n-octanol/water partition coefficient (log P), but nonplanar PAHs, such as cis-stilbene, p-terphenyl, and o-terphenyl, showed significantly lower adsorption performance. The adsorbed PAHs were not desorbed effectively with CH3CN, CH2Cl2, and toluene. On the other hand, DEHP was effectively desorbed with methanol. PMID:17585293

  12. Contact and friction of nanoasperities: effects of adsorbed monolayers.

    Science.gov (United States)

    Cheng, Shengfeng; Luan, Binquan; Robbins, Mark O

    2010-01-01

    Molecular dynamics simulations are used to study contact between a rigid, nonadhesive, and spherical tip with radius of order 30 nm and a flat elastic substrate covered with a fluid monolayer of adsorbed chain molecules. Previous studies of bare surfaces showed that the atomic scale deviations from a sphere that are present on any tip constructed from discrete atoms lead to significant deviations from continuum theory and dramatic variability in friction forces. Introducing an adsorbed monolayer leads to larger deviations from continuum theory but decreases the variations between tips with different atomic structure. Although the film is fluid, it remains in the contact and behaves qualitatively like a thin elastic coating except for certain tips at high loads. Measures of the contact area based on the moments or outer limits of the pressure distribution and on counting contacting atoms are compared. The number of tip atoms making contact during a time interval Deltat grows as a power of Deltat when the film is present and as the logarithm of Deltat for bare surfaces. Friction is measured by displacing the tip at a constant velocity or pulling the tip with a spring. Both static and kinetic friction rise linearly with load at small loads. Transitions in the state of the film lead to nonlinear behavior at large loads. The friction is less clearly correlated with contact area than load. PMID:20365427

  13. Solvent cleanup using base-treated silica gel solid adsorbent

    International Nuclear Information System (INIS)

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO3, dibutyl phosphate (DBP), UO22+, Pu4+, various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO3 waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables

  14. Dynamics of different molecules adsorbed in porous media

    Indian Academy of Sciences (India)

    S Mitra; V S Kamble; A K Tripathi; N M Gupta; R Mukhopadhyay

    2004-08-01

    We present in this paper a comparative study on the dynamics of benzene, cyclohexane, and methanol molecules, confined in the pores of MCM-41 molecular sieve and HZSM-5 zeolite. The quasi-elastic neutron scattering (QENS) measurements revealed that the physical state of these adsorbed molecules depended not only on the structural characteristics of the host matrix but also on the chemical properties, such as dipole moment, of the guest molecules. Thus, while no motion was observed in the time-scale of 10−10 –10−12 s in the case of methanol, the larger size benzene and cyclohexane molecules are found to perform six-fold and three-fold jump rotation, respectively, when adsorbed inside the cages of HZSM-5 at room temperature. At the same time, all the three molecules are found to undergo a translational motion inside the pores of MCM-41 molecular sieves, the value of diffusion constant being the lowest in case of methanol because of its higher polarity. Translationl motion of the guest molecules inside the pores of MCM-41 can be satisfactorily described by Chudley–Eliott fixed jump length diffusion and accordingly the residence time, jump length and diffusion constant are estimated.

  15. Vibrational spectroscopic studies of adsorbates on bimetallic surfaces. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, W.K.

    1992-12-01

    In this work, well-defined bimetallic surfaces have been studied using carbon monoxide adsorption in conjunction with infrared reflection absorption spectroscopy (IRAS). These studies have indicated that for CO adsorbed on Cu overlayers, the bond between the CO and the Cu adatoms is comprised of both pi-back-donation and polarization interaction components. The sum of the contributions from these effects determines the observed bond strength with the observed CO stretching frequency being determined by the relative contributions of the components. In addition, it was determined that IR spectra of adsorbed CO show a remarkable sensitivity to surface structure. Three-dimensional Cu clusters, well-ordered two dimensional Cu islands and isolated Cu atoms are distinctively characterized by their CO IR peaks. In addition, both disorder-order and order-order transitions are observed for the metal overlayers on the single crystal metal substrates. It was also observed that localized segregation and ordering of mixed Co and S overlayers on a Mo(110) substrate occurs upon annealing.

  16. Purification of Sardinella sp., Oil: Centrifugation and Bentonite Adsorbent

    Directory of Open Access Journals (Sweden)

    S.H. Suseno

    2014-01-01

    Full Text Available Centrifugation and purification using adsorbents is one example of a fish oil refining techniques applied to reduce impurities of fish oil. The study aimed to determine the sardine oil quality before treatment, to determine yield of fish oil after centrifugation treatment and to determine the influence of centrifugation speed and bentonite concentration on sardine oil quality. Factorial design with two factors was used in this study. Level of free fatty acid and peroxide value before purification was 35.53% and 170 mEq/kg. Yield of fish oil after centrifugation treatment has been ranged from 17.42±3.56 to 76.33±0.21%. The best treatment which could reduce the peroxide value and total oxidation was a treatment with centrifugation speed at 6500 rpm and bentonite concentration at 3%. Peroxide value and total oxidation of its treatment was 25.00±0.00 and 51.43±0.01 mEq/kg. The lowest value of p-anisidine was 1.29±0.05 mEq/kg and its value could be found in a treatment with centrifugation speed at 4500 rpm and bentonite concentration at 5%. The level of free fatty acid after purification process was ranged from 27.35 to 34.69%. Oil clarity tended to increase with the increase of centrifugation speed and adsorbent concentration.

  17. Palladium dimers adsorbed on graphene: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gagandeep, E-mail: gaganj1981@yahoo.com [Department of Physics and Centre of Advanced Studies in Physics, Panjab University, Chandigarh-160014 (India); Chandigarh Engineering College, Landran, Mohali, Punjab (India); Gupta, Shuchi, E-mail: sgupta@pu.ac.in [University Institute of Engineering and Technology, Panjab University, Chandigarh -160014 (India); Dharamvir, Keya, E-mail: keya@pu.ac.in [Department of Physics and Centre of Advanced Studies in Physics, Panjab University, Chandigarh-160014 (India)

    2015-05-15

    The 2D structure of graphene shows a great promise for enhanced catalytic activity when adsorbed with palladium. We performed a systematic density functional theory (DFT) study of the adsorption of palladium dimer (Pd{sub 2}) on graphene using SIESTA package, in the generalized gradient approximation (GGA). The adsorption energy, geometry, and charge transfer of Pd{sub 2}-graphene system are calculated. Both horizontal and vertical orientations of Pd{sub 2} on graphene are studied. Our calculations revealed that the minimum energy configuration for Pd dimer is parallel to the graphene sheet with its two atoms occupying centre of adjacent hexagonal rings of graphene sheet. Magnetic moment is induced for Pd dimer adsorbed on graphene in vertical orientation while horizontal orientation of Pd dimer on graphene do not exhibit magnetism. Insignificant energy differences among adsorption sites means that dimer mobility on the graphene sheet is high. There is imperceptible distortion of graphene sheet perpendicular to its plane. However, some lateral displacements are seen.

  18. Mercury(II Removal with Modified Magnetic Chitosan Adsorbents

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2013-05-01

    Full Text Available Two modified chitosan derivatives were prepared in order to compare their adsorption properties for Hg(II removal from aqueous solutions. The one chitosan adsorbent (CS is only cross–linked with glutaraldehyde, while the other (CSm, which is magnetic, is cross-linked with glutaraldehyde and functionalized with magnetic nanoparticles (Fe3O4. Many possible interactions between materials and Hg(II were observed after adsorption and explained via characterization with various techniques (SEM/EDAX, FTIR, XRD, DTG, DTA, VSM, swelling tests. The adsorption evaluation was done studying various parameters as the effect of pH (optimum value 5 for adsorption and 2 for desorption, contact time (fitting to pseudo–first, –second order and Elovich equations, temperature (isotherms at 25, 45, 65 °C, in line with a brief thermodynamic analysis (ΔG0 0, ΔS0 > 0. The maximum adsorption capacity (fitting with Langmuir and Freundlich model of CS and CSm at 25 °C was 145 and 152 mg/g, respectively. The reuse ability of the adsorbents prepared was confirmed with sequential cycles of adsorption-desorption.

  19. Work function of alkali metal-adsorbed molybdenium dichalcogenides

    Science.gov (United States)

    Kim, Sol; Jhi, Seung-Hoon

    2015-03-01

    The lowest work function of materials, reported so far over the last few decades, is an order of 1eV experimentally and theoretically. Designing materials that has work-function less than 1eV is essential in the thermionic energy conversion. To explore new low work function materials, we study MoX2(X =S, Se, Te) adsorbed with alkali metals (Li, Na, K, Rb and Cs), and investigate the charge transfer, the formation of surface dipole, and the change in work function using first-principles calculations. It is found that the charge transfer from alkali metals to MoX2substrates decreases as the atomic number of adsorbates increases. Regardless of the amount of the charge transfer, K on MoTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. We show that the formation of the surface dipole is a key in changing the work function. We find the trimerization of Mo atoms in the substrate with the lowest work-function, which may contribute to enhancement of the surface dipole.

  20. Removal of indoor formaldehyde over CMK-8 adsorbents.

    Science.gov (United States)

    Yu, Mi Jin; Kim, Ji Man; Park, Sung Hoon; Jeon, Jong-Ki; Park, Joonhong; Park, Young-Kwon

    2013-04-01

    CMK-8, a mesoporous carbon material, was activated using different methods for the adsorption of low-concentration airborne formaldehyde. KOH and ammonia treatments were used to activate CMK-8. A CMK-8 sample was treated with KOH first followed by an ammonia-treatment at 700 degrees C to determine the effect of a combination of the two treatment methods. The adsorbents prepared were characterized by X-ray diffraction, N2 adsorption-desorption and X-ray photoelectron spectroscopy. The KOH treatment increased the concentration of oxygen functional groups, whereas the ammonia-treatment generated a significant amount of nitrogen functional groups. The formaldehyde adsorption efficiency was highest when both KOH- and ammonia-treatments were applied to CMK-8. The ammonia-treated CMK-8 exhibited higher formaldehyde adsorption ability than the KOH-treated one, whereas non-activated CMK-8 showed the lowest formaldehyde adsorption efficiency. The number of nitrogen functional groups and the specific surface area appeared to significantly affect the formaldehyde adsorption capability of the adsorbents, whereas oxygen functional groups played a less important role.

  1. Development of Silver-exchanged Adsorbents for the Removal of Fission Iodine from Alkaline Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taewoon; Lee, Seung-Kon; Lee, Suseung; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Most of the iodine exists in the caustic dissolution as iodide form. KAERI is developing LEU-based fission 99 Mo production process which is connected to the new research reactor, which is being constructed in Kijang, Busan, Korea. In KAERI process, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. In KAERI process, silver-exchanged adsorbent is used to adsorb iodide from the solution. Adsorbed iodide can be recovered and recycled for radiopharmaceuticals. Synthesis of silver-doped alumina is conducted in two ways. One is using the ascorbic acid as a reducing agent. However, this method is impossible to control.

  2. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes

    Science.gov (United States)

    McMillan, Duncan G. G.; Marritt, Sophie J.; Kemp, Gemma L.; Gordon-Brown, Piers; Butt, Julea N.; Jeuken, Lars J. C.

    2014-01-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes. PMID:24634538

  3. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes.

    Science.gov (United States)

    McMillan, Duncan G G; Marritt, Sophie J; Kemp, Gemma L; Gordon-Brown, Piers; Butt, Julea N; Jeuken, Lars J C

    2013-11-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes.

  4. EFFECT OF WEAK INTERACTIONS ON PHENOL ADSORPTION FROM AQUEOUS SOLUTIONS BY AMINATED POLYMERIC ADSORBENTS

    Institute of Scientific and Technical Information of China (English)

    Wei-ming Zhang; Jin-long Chen; Ai-min Li; Bing-cai Pan; Qun Chen; Ming-yang He; Quan-xing Zhang

    2006-01-01

    Adsorption behaviors of phenol from aqueous solutions have been investigated in batch systems at 303 K and 318 K respectively, using hypercrosslinked polymeric adsorbent (CHA 111), aminated hypercrosslinked polymeric adsorbents (NDA101, NDA 103, NDA105) and weakly basic polymeric adsorbent (D301) with a view to studying the effect of hydrogen bonding and Van der Waals interactions between adsorbate and the adsorbent. All adsorption isotherms can be well fitted by Langmuir and Freundlich equations. Compared with D301 driven by hydrogen bonding interaction only and CHA111 driven by Van der Waals interaction only, phenol adsorption on aminated adsorbents driven by both hydrogen bonding and Van der Waals interactions were apparently different, i.e., negative effect for NDA105, positive effect for NDA101 and synergistic effect for NDA103. In this synergistic action, some weak interactions would contribute more or less to the adsorption than they work individually.

  5. A WATER—COMPATIBLE PHENOLIC HYDROXYL ODIFIED POLYSTYRENE AS AN ADSORBENT FOR ADSORBING PHENOLIC COMPOUNDS FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    LIAimin; FeiZhenghao; 等

    2001-01-01

    A water-compatible phenolic hydroxyl modified polystyrene adsorbent (AM-1) for adsorbing and removing phenolic compounds from aqueous solutions was prepared by covalent bonding of phenolic hydroxyl groups to the surface of porous polystyrene-divinylbenzene beads,this resin can be used directly without wetting process.A comparison of the sorption properites of the new resin and Amberlite XAD-4 toward four phenolic compounds,phenol,p-cresol,p-chlorophenol,and p-nitrophenol was made.The capacities of equilibrium adsorption of AM-1 for all four phenolic compounds increased around 20% over that of Amberlite XAD-4,which may be contributed to pheonl hydroxyl group on the surface and the unusual poe distribution.At their dilute solution,the equilibrium adsorption capacities of AM-1 for phenol increased aout 62% over that of Amberlite XAD-4,while equilibrium adsorption capacities of the other three phenolic compounds increased 4-35%,suggesting an advantage of AM-1 over Amberlite XAD-4 in the collection of phenol.Freundlich isotherm equations and isosteric adsorption enthalpies for the four phenolic compunds indicate a physical adsorption process on the Amberlite XAD-4 and AM-1 resins,Column studies for phenol show that AM-1 resin has excellent adsorption and desorption performance.

  6. Screening of natural adsorbents for removal of radio-contaminants from aqueous effluents

    International Nuclear Information System (INIS)

    The present paper is a summary of studies carried out to examine the uptake potential of some of the bio/natural adsorbents for removal of radiocontaminants from aqueous effluents. Three different bio/natural materials namely coconut coir pith, sugarcane bagasse and saw dust were selected as adsorbents. Preliminary characterisations of the above adsorbents were carried out and percentage of removal of 239Pu and 241Am from aqueous solutions were checked using batch equilibration method. (author)

  7. The origin and characterization of conformational heterogeneity in adsorbed polymer layers

    Science.gov (United States)

    Douglas, Jack F.; Schneider, Hildegard M.; Frantz, Peter; Lipman, Robert; Granick, Steve

    1997-09-01

    The equilibration of polymer conformations tends to be sluggish in polymer layers adsorbed onto highly attractive substrates, so the structure of these layers must be understood in terms of the layer growth process rather than equilibrium theory. Initially adsorbed chains adopt a highly flattened configuration while the chains which arrive later must adapt their configurations to the increasingly limited space available for adsorption. Thus, the chains adsorbed in the late stage of deposition are more tenuously attached to the surface. This type of non-equilibrium growth process is studied for polymethylmethacrylate (PMMA) adsorbed on oxidized silicon where the segmental attraction is strong (0953-8984/9/37/005/img7/segment) and for polystyrene (PS) adsorbed on oxidized silicon from a carbon tetrachloride solution where the segmental attraction is relatively weak (0953-8984/9/37/005/img8/segment). Measurements were based on Fourier transform infrared spectroscopy in attenuated total reflection (FTIR - ATR). In both cases, the chains arriving first adsorbed more tightly, became flattened (as measured by the dichroic ratio), and occupied a disproportionately large fraction of the surface. This non-uniform structure persisted indefinitely for the strongly adsorbed PMMA chains, while the PS chains exhibited a gradual evolution, presumably reflecting an equilibration of the adsorbed layer occurring after long times. On the theoretical side, the initial heterogeneity of these adsorbed polymer layers is modelled using a random sequential adsorption (RSA) model where the size of the adsorbing species is allowed to adapt to the surface space available at the time of adsorption. The inhomogeneity in the size of adsorbing species (hemispheres) in this model is similar to the distribution of chain contacts in our measurements on adsorbed polymer layers. Owing to extensive variance around the mean, conformations having the mean number of chain contacts are least probable, which

  8. Attractive and repulsive interactions between and within adsorbed ribonuclease A layers.

    OpenAIRE

    Belfort, G; Lee, C S

    1991-01-01

    Adsorbed layers of pancreatic RNase A on molecularly smooth mica in aqueous solution attract inorganic mica surfaces whereas they repel similarly adsorbed RNase A layers. As the clean mica surface is covered with RNase A, the attractive interaction slowly diminishes with time and eventually converts to a purely repulsive interaction. Solvent is squeezed out of the solution in the gap during compression of the two surfaces so that the adsorbed protein concentration, as measured directly by the...

  9. Theory of Inelastic Tunneling Current-Driven Motions of Single Adsorbates (Review Article)

    OpenAIRE

    Ueba, H.; Tikhodeev, S. G.; Persson, B.N.J.

    2010-01-01

    The theory of inelastic electron tunneling spectroscopy (IETS) and motions of single adsorbed atoms and molecules on metal surfaces induced by vibrational excitation with a scanning tunneling microscope (STM) is reviewed. The theory of STM-IETS is described using the adsorbate-induced resonance model. Elementary processes of how an adsorbate overcomes the potential barrier along the reaction coordinate (RC) by inelastic tunneling current are described with a focus on direct excitation of the ...

  10. Experimental and Numerical Investigation of Enhancement of Heat and Mass Transfer in Adsorbent Beds

    Institute of Scientific and Technical Information of China (English)

    LiuZhenyan; FuZhumantffu

    1994-01-01

    Some interrelated parameters of heat and mass transfer in two phases of pressure rise and constant pressure are obtained by studying the desorption processes of two kinds of cylindrical adsorbent beds.with fins and without fins.Moreover,the effects of equivalent thermal conductivity of adsorbent beds,contact thermal transfer coefficient,heat transfer of fins,condensation temperature,uncondensable gas in the adsorber are analyzed.finally,enhancement of heat and mass transfer has been attained.

  11. The Removal of Dye from Aqueous Solution by Adsorption on Low Cost Adsorbents

    OpenAIRE

    J. J. Chamargore; Bharad, J. V.; Madje, B. R.; Ubale, M. B.

    2010-01-01

    Removal of color from aqueous solution by using low cost easily available adsorbent was conducted by batch experiment. The potential of the low cost adsorbent (Marble powder-treated and untreated) to remove methylene red from aqueous solution were assessed at room temperature. Laboratory investigation of the potential of marble powder and sulphuric acid treated marble powder to remove dye color from aqueous solution has been studied. Parameters studied included pH, adsorbent dose, initial dye...

  12. Waste Material Adsorbents for Zinc Removal from Wastewater: A Comprehensive Review

    OpenAIRE

    Zwain, Haider M.; Mohammadtaghi Vakili; Irvan Dahlan

    2014-01-01

    This review examines a variety of adsorbents and discusses mechanisms, modification methods, recovery and regeneration, and commercial applications. A summary of available researches has been composed by a wide range of potentially low-cost modified adsorbents including activated carbon, natural source adsorbents (clay, bentonite, zeolite, etc.), biosorbents (black gram husk, sugar-beet pectin gels, citrus peels, banana and orange peels, carrot residues, cassava waste, algae, algal, marine gr...

  13. Performance of Laterite Soil Grains as Adsorbent in the Removal of Chromium

    OpenAIRE

    Syama I J; Arun Kumar Thalla; Manu D S

    2015-01-01

    The present study aims to examine the efficiency of laterite grains (LG) and acid activated laterite grains (AALG) as an adsorbent for removal hexavalent chromium and ferric ion from synthetic wastewater, under laboratory conditions. Adsorption of hexavalent chromium and ferric ion from synthetic wastewater is examined by batch and column studies wherein it is found to be dependent on pH, Contact time, adsorbent dosage and initial adsorbate concentration. Percentage removal enhances with the ...

  14. Calculation of Henry constant on the base of critical parameters of adsorbable gas

    International Nuclear Information System (INIS)

    Calculation of Henry constant using correlation between critical parameters Psub(c), Tsub(c) and adsorption energy, determined by the value of internal pressure in molecular field of adsorbent, has been made. The calculated Henry constants for Ar, Kr and Xe, adsorbed by MoS2 and zeolite NaX, are compared with the experimental ones. The state of the molecules adsorbed is evaluated

  15. Preparation of the fibrous adsorbent containing amidoxime group or triazine group

    International Nuclear Information System (INIS)

    Amidoxime fiber and triazine fiber were prepared by chemical modification of commercially available polyacrylonitril fiber. It was found that the amidoxime fiber is efficient to adsorb uranium ions in the artificial seawater. The efficency of the preferential adsorption decreases by treatment the material with an acid or an alkaline solution. The triazine fiber adsorbs uranium ions only in aqueous solutions of such uranyl acetate, in the absence of other ions. In the artificial seawater, it adsorbs other ions instead of uranium. (author)

  16. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    Science.gov (United States)

    Xiong, Yongliang; Wang, Yifeng

    2015-02-03

    Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2 when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.

  17. Electrospinning of calixarene-functionalized polyacrylonitrile nanofiber membranes and application as an adsorbent and catalyst support.

    Science.gov (United States)

    Chen, Ming; Wang, Chengjiao; Fang, Wei; Wang, Jing; Zhang, Wang; Jin, Gong; Diao, Guowang

    2013-09-24

    Polyacrylonitrile (PAN) nanofiber membranes functionalized with calix[8]arenes (C[8]) were successfully prepared by electrospinning of PAN solutions with addition of various calixarenes. Uniform electrospun C[8]/PAN nanofibers were obtained by incorporating three types of calix[8]arenes into the PAN matrix and characterized by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR), thermal gravimetric analysis (TGA), and X-ray powder diffraction (XRD). The SEM results showed that the addition of calix[8]arenes resulted in a decrease in the diameter of PAN nanofibers. Static adsorption behavior was studied by using C[8]/PAN nanofibers as an adsorbent and Congo red and Neutral red as model dye molecules. The adsorption of Congo red onto Amide-Cal[8]-15/PAN nanofibers fitted the second-order kinetic model, and the apparent adsorption rate constant was 1.1 × 10(-3) g·mg(-1)·min(-1) at 25 °C. Then, by virtue of electrostatic attraction, as-prepared Au nanoparticles were immobilized on Amide-Cal[8]/PAN nanofibers to form Au/Amide-Cal[8]/PAN composite nanofibers. The catalytic activity of the as-prepared Au/Amide-Cal[8]/PAN composite nanofibers was investigated by monitoring the reduction of Congo red in the presence of NaBH4. The reduction kinetics was explained by the assumption of a pseudo-first-order reaction with regard to Congo red. Au/Amide-Cal[8]/PAN composite nanofibers exhibited high catalytic activity, excellent stability, and convenient recycling. PMID:23984721

  18. CONDUCTIVITY METHOD APPLIED TO THE STUDY OF INTERACTION BETWEEN ADSORBENT AND ADSORBATE I.ADSORPTION OF LOW CONCENYRATION OF FREE ACID BY REGENERABLE CHITIN

    Institute of Scientific and Technical Information of China (English)

    ChenBingren; HeGuangping; 等

    1997-01-01

    The adsorption of low concentration of free acid by regenerable chitin is followed by electric conductance determination.The effect of acid concentratioin,content of functioinal amino groups,and ionic strength on adsorption was discussed.Experimental results indicate that the active centre of regenerable chitin is the free amino groups on ist surface ,and that the rate of adsorption of free acid was found to be affected by two factors:the interaction between the adsorbent and the adsorbate in solution and that between the adsorbate molecules or ions in solution.

  19. Carbon fibre composite for ventilation air methane (VAM) capture

    International Nuclear Information System (INIS)

    Coal mine methane (CMM) is not only a hazardous greenhouse gas but is also a wasted energy resource, if not utilised. This paper evaluates a novel adsorbent material developed for capturing methane from ventilation air methane (VAM) gas in underground coal mines. The adsorbent material is a honeycomb monolithic carbon fibre composite (HMCFC) consisting of multiple parallel flow-through channels and the material exhibits unique features including low pressure drop, good mechanical properties, ability to handle dust-containing gas streams, good thermal and electrical conductivity and selective adsorption of gases. During this study, a series of HMCFC adsorbents (using different types of carbon fibres) were successfully fabricated. Experimental data demonstrated the proof-of-concept of using the HMCFC adsorbent to capture methane from VAM gas. The adsorption capacity of the HMCFC adsorbent was twice that of commercial activated carbon. Methane concentration of 0.56% in the inlet VAM gas stream is reduced to about 0.011% after it passes through the novel carbon fibre composite adsorbent material at ambient temperature and atmospheric pressure. This amounts to a maximum capture efficiency of 98%. These encouraging laboratory scale studies have prompted further large scale trials and economic assessment.

  20. Carbon fibre composite for ventilation air methane (VAM) capture.

    Science.gov (United States)

    Thiruvenkatachari, Ramesh; Su, Shi; Yu, Xin Xiang

    2009-12-30

    Coal mine methane (CMM) is not only a hazardous greenhouse gas but is also a wasted energy resource, if not utilised. This paper evaluates a novel adsorbent material developed for capturing methane from ventilation air methane (VAM) gas in underground coal mines. The adsorbent material is a honeycomb monolithic carbon fibre composite (HMCFC) consisting of multiple parallel flow-through channels and the material exhibits unique features including low pressure drop, good mechanical properties, ability to handle dust-containing gas streams, good thermal and electrical conductivity and selective adsorption of gases. During this study, a series of HMCFC adsorbents (using different types of carbon fibres) were successfully fabricated. Experimental data demonstrated the proof-of-concept of using the HMCFC adsorbent to capture methane from VAM gas. The adsorption capacity of the HMCFC adsorbent was twice that of commercial activated carbon. Methane concentration of 0.56% in the inlet VAM gas stream is reduced to about 0.011% after it passes through the novel carbon fibre composite adsorbent material at ambient temperature and atmospheric pressure. This amounts to a maximum capture efficiency of 98%. These encouraging laboratory scale studies have prompted further large scale trials and economic assessment. PMID:19733967