WorldWideScience

Sample records for oxide throwaway sludge

  1. Oxidation of oily sludge in supercritical water

    International Nuclear Information System (INIS)

    Cui Baochen; Cui Fuyi; Jing Guolin; Xu Shengli; Huo Weijing; Liu Shuzhi

    2009-01-01

    The oxidation of oily sludge in supercritical water is performed in a batch reactor at reaction temperatures between 663 and 723 K, the reaction times between 1 and 10 min and pressure between 23 and 27 MPa. Effect of reaction parameters such as reaction time, temperature, pressure, O 2 excess and initial COD on oxidation of oily sludge is investigated. The results indicate that chemical oxygen demand (COD) removal rate of 92% can be reached in 10 min. COD removal rate increases as the reaction time, temperature and initial COD increase. Pressure and O 2 excess have no remarkable affect on reaction. By taking into account the dependence of reaction rate on COD concentration, a global power-law rate expression was regressed from experimental data. The resulting pre-exponential factor was 8.99 x 10 14 (mol L -1 ) -0.405 s -1 ; the activation energy was 213.13 ± 1.33 kJ/mol; and the reaction order for oily sludge (based on COD) is 1.405. It was concluded that supercritical water oxidation (SCWO) is a rapidly emerging oily sludge processing technology.

  2. Supercritical water oxidation treatment of textile sludge.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2017-08-01

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  3. First-order hydrothermal oxidation kinetics of digested sludge compared with raw sludge.

    Science.gov (United States)

    Shanableh, A; Imteaz, M

    2008-09-01

    This article presents an assessment of the first-order hydrothermal oxidation kinetics of a selected digested sludge at subcritical ( 374 degrees C) temperatures in the range of 250-460 degrees C. Furthermore, the results were compared with reported oxidation kinetics of raw sludge treated under identical experimental conditions. In the assessment, oxidation was considered to proceed in two steps: (1) decomposition of the particulate, or non-filterable, chemical oxygen demand (PCOD); followed by (2) ultimate oxidation and removal of the total, particulate and soluble, COD. The accumulation and removal of soluble COD (SCOD) was determined from the difference between the rates of sludge decomposition and ultimate oxidation. Using results from batch and continuous-flow hydrothermal treatment experiments, the reacting organic ingredients were separated into groups according to the ease or difficulty at which they were decomposed or removed, with Arrhenius-type activation energy levels assigned to the different groups. The analysis confirmed that within the treatment range of 75% to more than 97% COD removal, the oxidation kinetics of the digested and raw sludges were nearly identical despite differences in the proportions of their original organic ingredients. The original organic ingredients were mostly removed above 75% COD removal, and the oxidation kinetics appeared to be dominated by the removal of acetic acid, an intermediate by-product which constituted 50% to more than 80% of the remaining COD. Furthermore, the oxidation kinetics of both sludge types were consistent with reported first-order oxidation kinetics of pure acetic acid solutions. The resulting kinetic models adequately represented hydrothermal oxidation of digested sludge, in terms of COD and PCOD removals, as well as accumulation and removal of the soluble SCOD.

  4. Feasibility of bioleaching combined with Fenton oxidation to improve sewage sludge dewaterability.

    Science.gov (United States)

    Liu, Changgeng; Zhang, Panyue; Zeng, Chenghua; Zeng, Guangming; Xu, Guoyin; Huang, Yi

    2015-02-01

    A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation. Meanwhile, the SRF declined from 6.45×10(10) to 2.07×10(10) s2/g, and MSC decreased from 91.42% to 87.66%. The bioleached sludge was further conditioned with Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+ were 0.12 and 0.036 mol/L, respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF, volatile solids reduction, and MSC were 3.43×10(8) s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides, the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioning mechanisms by bioleaching-Fenton oxidation might mainly include the flocculation effects and the releases of extracellular polymeric substances-bound water and intercellular water. Copyright © 2014. Published by Elsevier B.V.

  5. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2016-01-01

    The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O...

  6. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    Science.gov (United States)

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  7. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guanghua [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China); Guangzhou municipal engineering design and research institute, Guangzhou, 510060 (China); Sui Jun [Guangzhou municipal engineering design and research institute, Guangzhou, 510060 (China); Shen Huishan; Liang Shukun [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China); He Xiangming; Zhang Minju; Xie Yizhong; Li Lingyun [Nanhai Limited Liability Development Company, Foshan, 528200 (China); Hu Yongyou, E-mail: ppyyhu@scut.edu.cn [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China) and State Key Lab of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology; Guangzhou, 510640 (China)

    2011-08-15

    In this study, chlorine dioxide (ClO{sub 2}) instead of chlorine (Cl{sub 2}) was proposed to minimize the formation of chlorine-based by-products and was incorporated into a sequencing batch reactor (SBR) for excess sludge reduction. The results showed that the sludge disintegrability of ClO{sub 2} was excellent. The waste activated sludge at an initial concentration of 15 g MLSS/L was rapidly reduced by 36% using ClO{sub 2} doses of 10 mg ClO{sub 2}/g dry sludge which was much lower than that obtained using Cl{sub 2} based on similar sludge reduction efficiency. Maximum sludge disintegration was achieved at 10 mg ClO{sub 2}/g dry sludge for 40 min. ClO{sub 2} oxidation can be successfully incorporated into a SBR for excess sludge reduction without significantly harming the bioreactor performance. The incorporation of ClO{sub 2} oxidation resulted in a 58% reduction in excess sludge production, and the quality of the effluent was not significantly affected.

  8. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation

    International Nuclear Information System (INIS)

    Wang Guanghua; Sui Jun; Shen Huishan; Liang Shukun; He Xiangming; Zhang Minju; Xie Yizhong; Li Lingyun; Hu Yongyou

    2011-01-01

    In this study, chlorine dioxide (ClO 2 ) instead of chlorine (Cl 2 ) was proposed to minimize the formation of chlorine-based by-products and was incorporated into a sequencing batch reactor (SBR) for excess sludge reduction. The results showed that the sludge disintegrability of ClO 2 was excellent. The waste activated sludge at an initial concentration of 15 g MLSS/L was rapidly reduced by 36% using ClO 2 doses of 10 mg ClO 2 /g dry sludge which was much lower than that obtained using Cl 2 based on similar sludge reduction efficiency. Maximum sludge disintegration was achieved at 10 mg ClO 2 /g dry sludge for 40 min. ClO 2 oxidation can be successfully incorporated into a SBR for excess sludge reduction without significantly harming the bioreactor performance. The incorporation of ClO 2 oxidation resulted in a 58% reduction in excess sludge production, and the quality of the effluent was not significantly affected.

  9. Pick up of cesium and cobalt activity by oxide sludge in steam generator

    International Nuclear Information System (INIS)

    Rufus, A.L.; Subramanian, H.; Velmurugan, S.; Santanu Bera; Narasimhan, S.V.; Reddy, G.L.N.; Sankara Sastry, V.

    2002-01-01

    A pinhole developed near the tube sheet in the steam generator (SG) tube of a pressurised heavy water reactor (PHWR) caused leak of primary coolant containing radioactive contaminants ( 137 Cs, 134 Cs and 60 Co) to the shell side. The sludge collected from the tube sheet region was found to have adsorbed these radionuclides at the high temperature (230-240 deg C) that prevailed in the SG. An attempt has been made to evaluate the quantity of activity retained in the various oxide phases that constitute the sludge and their mode of pick-up. The sludge was characterized by XRD and XPS, which showed the presence of various oxides of iron, copper and nickel along with the silicates of calcium, magnesium and aluminium. Gamma-spectrometry of the sludge confirmed the presence of 137 Cs, 134 Cs and 60 Co to an extent of 7.6, 1.3 and 0.9 μCi/g of sludge, respectively. Selective dissolution in various EDTA based formulations and equilibration with nitric acid and magnesium chloride solutions helped to understand the quantity of activity adsorbed by various constituents of the sludge. It was concluded that a major portion of cesium was picked up by a reversible ion exchange process on various oxide constituents and about 10% by an irreversible specific adsorption process on insoluble silicates. Also, it was proved that 60 Co was specifically adsorbed over the oxides of iron and nickel. (author)

  10. Preparation and Characterization of Uranium Oxides in Support of the K Basin Sludge Treatment Project

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2008-07-08

    Uraninite (UO2) and metaschoepite (UO3·2H2O) are the uranium phases most frequently observed in K Basin sludge. Uraninite arises from the oxidation of uranium metal by anoxic water and metaschoepite arises from oxidation of uraninite by atmospheric or radiolytic oxygen. Studies of the oxidation of uraninite by oxygen to form metaschoepite were performed at 21°C and 50°C. A uranium oxide oxidation state characterization method based on spectrophotometry of the solution formed by dissolving aqueous slurries in phosphoric acid was developed to follow the extent of reaction. This method may be applied to determine uranium oxide oxidation state distribution in K Basin sludge. The uraninite produced by anoxic corrosion of uranium metal has exceedingly fine particle size (6 nm diameter), forms agglomerates, and has the formula UO2.004±0.007; i.e., is practically stoichiometric UO2. The metaschoepite particles are flatter and wider when prepared at 21°C than the particles prepared at 50°C. These particles are much smaller than the metaschoepite observed in prolonged exposure of actual K Basin sludge to warm moist oxidizing conditions. The uraninite produced by anoxic uranium metal corrosion and the metaschoepite produced by reaction of uraninite aqueous slurries with oxygen may be used in engineering and process development testing. A rapid alternative method to determine uranium metal concentrations in sludge also was identified.

  11. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge

    KAUST Repository

    Meulepas, Roel J.W.; Jagersma, Christian G.; Zhang, Yu; Petrillo, Michele; Cai, Hengzhe; Buisman, Cees J.N.; Stams, Alfons J.M.; Lens, Piet N.L.

    2010-01-01

    This study investigates the oxidation of labeled methane (CH4) and the CH4 dependence of sulfate reduction in three types of anaerobic granular sludge. In all samples, 13C-labeled CH4 was anaerobically oxidized to 13C-labeled CO2, while net

  12. Preparation and Characterization of Uranium Oxides in Support of the K Basin Sludge Treatment Project

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2008-01-01

    Uraninite (UO2) and metaschoepite (UO3-2H2O) are the uranium phases most frequently observed in K Basin sludge. Uraninite arises from the oxidation of uranium metal by anoxic water and metaschoepite arises from oxidation of uraninite by atmospheric or radiolytic oxygen. Studies of the oxidation of uraninite by oxygen to form metaschoepite were performed at 21 C and 50 C. A uranium oxide oxidation state characterization method based on spectrophotometry of the solution formed by dissolving aqueous slurries in phosphoric acid was developed to follow the extent of reaction. This method may be applied to determine uranium oxide oxidation state distribution in K Basin sludge. The uraninite produced by anoxic corrosion of uranium metal has exceedingly fine particle size (6 nm diameter), forms agglomerates, and has the formula UO2.004 ± 0.007; i.e., is practically stoichiometric UO2. The metaschoepite particles are flatter and wider when prepared at 21 C than the particles prepared at 50 C. These particles are much smaller than the metaschoepite observed in prolonged exposure of actual K Basin sludge to warm moist oxidizing conditions. The uraninite produced by anoxic uranium metal corrosion and the metaschoepite produced by reaction of uraninite aqueous slurries with oxygen may be used in engineering and process development testing. A rapid alternative method to determine uranium metal concentrations in sludge also was identified.

  13. Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge.

    Science.gov (United States)

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-01-01

    The effect of ultrasonication and Fenton oxidation as physico-chemical pre-treatment processes on the change of rheology of wastewater sludge was investigated in this study. Pre-treated and raw sludges displayed non-Newtonian rheological behaviour with shear thinning as well as thixotropic properties for total solids ranging from 10 g/L to 40 g/L. The rheological models, namely, Bingham plastic, Casson law, NCA/CMA Casson, IPC Paste, and power law were also studied to characterize flow of raw and pre-treated sludges. Among all rheological models, the power law was more prominent in describing the rheology of the sludges. Pre-treatment processes resulted in a decrease in pseudoplasticity of sludge due to the decrease in consistency index K varying from 42.4 to 1188, 25.6 to 620.4 and 52.5 to 317.9; and increase in flow behaviour index n changing from 0.5 to 0.35, 0.62 to 0.55 and 0.63 to 0.58, for RS, UlS and FS, respectively at solids concentration 10-40 g/L. The correlation between improvement of biodegradability and dewaterability, decrease in viscosity, and change in particle size as a function of sludge pre-treatment process was also investigated. Fenton oxidation facilitated sludge filterability resulting in capillary suction time values which were approximately 50% of the raw sludges, whereas ultrasonication with high input energy deteriorated the filterability. Biodegradability was also enhanced by the pre-treatment processes and the maximum value was obtained (64%, 77% and 73% for raw, ultrasonicated and Fenton oxidized sludges, respectively) at total solids concentration of 25 g/L. Hence, pre-treatment of wastewater sludge modified the rheological properties so that: (1) the flowability of sludge was improved for transport through the treatment train (via pipes and pumps); (2) the dewaterability of wastewater sludge was enhanced for eventual disposal and; (3) the assimilation of nutrients by microorganisms for further value-addition was increased.

  14. Effects of oxidation reduction potential in the bypass micro-aerobic sludge zone on sludge reduction for a modified oxic-settling-anaerobic process.

    Science.gov (United States)

    Li, Kexun; Wang, Yi; Zhang, Zhongpin; Liu, Dongfang

    2014-01-01

    Batch experiments were conducted to determine the effect of oxidation reduction potential (ORP) on sludge reduction in a bypass micro-aerobic sludge reduction system. The system was composed of a modified oxic-settling-anaerobic process with a sludge holding tank in the sludge recycle loop. The ORPs in the micro-aerobic tanks were set at approximately +350, -90, -150, -200 and -250 mV, by varying the length of aeration time for the tanks. The results show that lower ORP result in greater sludge volume reduction, and the sludge production was reduced by 60% at the lowest ORP. In addition, low ORP caused extracellular polymer substances dissociation and slightly reduced sludge activity. Comparing the sludge backflow characteristics of the micro-aerobic tank's ORP controlled at -250 mV with that of +350 mV, the average soluble chemical oxygen (SCOD), TN and TP increased by 7, 0.4 and 2 times, median particle diameter decreased by 8.5 μm and the specific oxygen uptake rate (SOUR) decreased by 0.0043 milligram O2 per gram suspended solids per minute. For the effluent, SCOD and TN and TP fluctuated around 30, 8.7 and 0.66 mg/L, respectively. Therefore, the effective assignment of ORP in the micro-aerobic tank can remarkably reduce sludge volume and does not affect final effluent quality.

  15. Production and remediation of low sludge simulated Purex waste glasses, 2: Effects of sludge oxide additions on glass durability

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated DWPF Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but was less durable than most other simulated SRS high-level waste glasses. Further, the measured durability of Purex 4 glass was not as well correlated with the durability predicted from the DWPF process control algorithm, probably because the algorithm was developed to predict the durability of SRS high-level waste glasses with higher sludge content than Purex 4. A melter run, designated Purex 4 Remediation, was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by the DWPF glass durability algorithm. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the glass durability was determined by the Product Consistency Test method. This document details the durability data and subsequent analysis

  16. Detection, phylogeny and population dynamics of syntrophic propionate - oxidizing bacteria in anaerobic granular sludge

    NARCIS (Netherlands)

    Harmsen, H.J.M.

    1996-01-01


    The research described this thesis concerns the diversity and phylogeny of syntrophic propionate-oxidizing bacteria and their ecology in granular sludge, from which they were obtained. 16S rRNA was used as a molecular marker to study both the phylogeny and the ecology of these bacteria.

  17. Process Development for Permanganate Addition During Oxidative Leaching of Hanford Tanks Sludges

    International Nuclear Information System (INIS)

    Rapko, Brian M.; Lumetta, Gregg J.; Deschane, Jaquetta R.; Peterson, Reid A.; Blanchard, David L.

    2007-01-01

    Previous Bechtel National, Incorporated (BNI)-sponsored studies have targeted optimizing sodium permanganate for the selective oxidation of chromium from washed Hanford tank sludges (Rapko et al. 2004; Rapko et al. 2005). The recommendation from previous work was that contact with sodium permanganate in a minimally caustic solution, i.e., 0.1 to 0.25 M [OH-] initially, provided maximum Cr dissolution while minimizing concomitant Pu dissolution. At the request of BNI, further work on oxidative alkaline leaching was performed

  18. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2014-01-01

    The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O...... production by both heterotrophic and autotrophic denitrification. In addition, mass transfer equations are implemented to characterize the dynamics of N2O in the water and the gas phases.The biochemical model is simulated and validated for two hydraulic patterns: (1) a sequencing batch reactor; and, (2...

  19. Continuous sulfidogenic wastewater treatment with iron sulfide sludge oxidation and recycle.

    Science.gov (United States)

    Deng, Dongyang; Lin, Lian-Shin

    2017-05-01

    This study evaluated the technical feasibility of packed-bed sulfidogenic bioreactors dosed with ferrous chloride for continuous wastewater treatment over a 450-day period. In phase I, the bioreactors were operated under different combinations of carbon, iron, and sulfate mass loads without sludge recycling to identify optimal treatment conditions. A COD/sulfate mass ratio of 2 and a Fe/S molar ratio of 1 yielded the best treatment performance with COD oxidation rate of 786 ± 82 mg/(L⋅d), which resulted in 84 ± 9% COD removal, 94 ± 6% sulfate reduction, and good iron retention (99 ± 1%) under favorable pH conditions (6.2-7.0). In phase II, the bioreactors were operated under this chemical load combination over a 62-day period, during which 7 events of sludge collection, oxidation, and recycling were performed. The collected sludge materials contained both inorganic and organic matter with FeS and FeS 2 as the main inorganic constituents. In each event, the sludge materials were oxidized in an oxidizing basin before recycling to mix with the wastewater influent. Sludge recycling yielded enhanced COD removal (90 ± 6% vs. 75 ± 7%), and better effluent quality in terms of pH (6.8 ± 0.1 vs. 6.5 ± 0.2), iron (0.7 ± 0.5 vs. 1.9 ± 1.7 mg/L), and sulfide-S (0.3 ± 0.1 vs. 0.4 ± 0.1 mg/L) removal compared to the baseline operation without sludge recycling during phase II. This process exhibited treatment stability with reasonable variations, and fairly consistent sludge content over long periods of operation under a range of COD/sulfate and Fe/S ratios without sludge recycling. The bioreactors were found to absorb recycling-induced changes efficiently without causing elevated suspended solids in the effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge.

    Science.gov (United States)

    Li, Xiang; Huang, Yong; Liu, Heng-Wei; Wu, Chuan; Bi, Wei; Yuan, Yi; Liu, Xin

    2018-02-01

    In recent years, there have been a number of reports on the phenomenon in which ferric iron (Fe(III)) is reduced to ferrous iron [Fe(II)] in anaerobic environments, accompanied by simultaneous oxidation of ammonia to NO 2 - , NO 3 - , or N 2. However, studies on the relevant reaction characteristics and mechanisms are rare. Recently, in research on the effect of Fe(III) on the activity of Anammox sludge, excess ammonia oxidization has also been found. Hence, in the present study, Fe(III) was used to serve as the electron acceptor instead of NO 2 - , and the feasibility and characteristics of Anammox coupled to Fe(III) reduction (termed Feammox) were investigated. After 160days of cultivation, the conversion rate of ammonia in the reactor was above 80%, accompanied by the production of a large amount of NO 3 - and a small amount of NO 2 - . The total nitrogen removal rate was up to 71.8%. Furthermore, quantities of Fe(II) were detected in the sludge fluorescence in situ hybridization (FISH) and denaturated gradient gel electrophoresis (DGGE) analyses further revealed that in the sludge, some Anammox bacteria were retained, and some microbes were enriched during the acclimatization process. We thus deduced that in Anammox sludge, Fe(III) reduction takes place together with ammonia oxidation to NO 2 - and NO 3 - along with the Anammox process. Copyright © 2017. Published by Elsevier B.V.

  1. Production and remediation of low-sludge, simulated Purex waste glasses, 1: Effects of sludge oxide additions on melter operation

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but less durable than most simulated SRS high-level waste glasses. Also, Purex 4 glass was considerably less durable than predicted by the algorithm which will be used to control production of DWPF glass. A melter run was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by Hydration Thermodynamics. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the composition, crystallinity, and durability was determined. This document details the melter operation and composition and crystallinity analyses

  2. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge

    KAUST Repository

    Meulepas, Roel J.W.

    2010-05-01

    This study investigates the oxidation of labeled methane (CH4) and the CH4 dependence of sulfate reduction in three types of anaerobic granular sludge. In all samples, 13C-labeled CH4 was anaerobically oxidized to 13C-labeled CO2, while net endogenous CH4 production was observed. Labeled-CH4 oxidation rates followed CH4 production rates, and the presence of sulfate hampered both labeled-CH4 oxidation and methanogenesis. Labeled-CH4 oxidation was therefore linked to methanogenesis. This process is referred to as trace CH4 oxidation and has been demonstrated in methanogenic pure cultures. This study shows that the ratio between labeled-CH4 oxidation and methanogenesis is positively affected by the CH4 partial pressure and that this ratio is in methanogenic granular sludge more than 40 times higher than that in pure cultures of methanogens. The CH4 partial pressure also positively affected sulfate reduction and negatively affected methanogenesis: a repression of methanogenesis at elevated CH4 partial pressures confers an advantage to sulfate reducers that compete with methanogens for common substrates, formed from endogenous material. The oxidation of labeled CH 4 and the CH4 dependence of sulfate reduction are thus not necessarily evidence of anaerobic oxidation of CH4 coupled to sulfate reduction. © 2010 Federation of European Microbiological Societies.

  3. Inhibition of Anaerobic Phosphate Release by Nitric Oxide in Activated Sludge

    Science.gov (United States)

    Van Niel, E. W. J.; Appeldoorn, K. J.; Zehnder, A. J. B.; Kortstee, G. J. J.

    1998-01-01

    Activated sludge not containing significant numbers of denitrifying, polyphosphate [poly(P)]-accumulating bacteria was grown in a fill-and-draw system and exposed to alternating anaerobic and aerobic periods. During the aerobic period, poly(P) accumulated up to 100 mg of P · g of (dry) weight. When portions of the sludge were incubated anaerobically in the presence of acetate, 80 to 90% of the intracellular poly(P) was degraded and released as orthophosphate. Degradation of poly(P) was mainly catalyzed by the concerted action of polyphosphate:AMP phosphotransferase and adenylate kinase, resulting in ATP formation. In the presence of 0.3 mM nitric oxide (NO) in the liquid-phase release of phosphate, uptake of acetate, formation of poly-β-hydroxybutyrate, utilization of glycogen, and formation of ATP were severely inhibited or completely abolished. In cell extracts of the sludge, adenylate kinase activity was completely inhibited by 0.15 mM NO. The nature of this inhibition was probably noncompetitive, similar to that with hog adenylate kinase. Activated sludge polyphosphate glucokinase was also completely inhibited by 0.15 mM NO. It is concluded that the inhibitory effect of NO on acetate-mediated phosphate release by the sludge used in this study is due to the inhibition of adenylate kinase in the phosphate-releasing organisms. The inhibitory effect of nitrate and nitrite on phosphate release is probably due to their conversion to NO. The lack of any inhibitory effect of NO on adenylate kinase of the poly(P)-accumulating Acinetobacter johnsonii 210A suggests that this type of organism is not involved in the enhanced biological phosphate removal by the sludges used. PMID:9687452

  4. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.

    Science.gov (United States)

    Zeng, Jing; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Sun, Zhao-Yong; Kida, Kenji

    2016-10-01

    In this study, a sulfur-oxidizing community was enriched from activated sludge generated in tannery wastewater treatment plants. Bioleaching of tannery sludge containing 0.9-1.2% chromium was investigated to evaluate the effectiveness of the enriched community, the effect of chromium binding forms on bioleaching efficiency, and the dominant microbes contributing to chromium bioleaching. Sludge samples inoculated with the enriched community presented 79.9-96.8% of chromium leaching efficiencies, much higher than those without the enriched community. High bioleaching efficiencies of over 95% were achieved for chromium in reducible fraction, while 60.9-97.9% were observed for chromium in oxidizable and residual fractions. Acidithiobacillus thiooxidans, the predominant bacteria in the enriched community, played an important role in bioleaching, whereas some indigenous heterotrophic species in sludge might have had a supporting role. The results indicated that A. thiooxidans-dominant enriched microbial community had high chromium bioleaching efficiency, and chromium binding forms affected the bioleaching performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Oxidative dissolution of chromium from Hanford tank sludges under alkaline conditions

    International Nuclear Information System (INIS)

    Rapko, B.M.; Delegard, C.H.; Wagner, M.J.

    1997-08-01

    Alkaline oxidative leaching has been performed on caustic leached sludges from the three following Hanford waste tanks: BY-110, S-107, and SX-108. These samples were chosen because they represent types of waste where significant amounts of Cr are located and show relatively poor dissolution of Cr during standard caustic leaching. The experiments involved tests with three chemical oxidants, permanganate, ozone and oxygen, and a blank, argon. The effects of varying the hydroxide concentration of the leachate (from 0.1 M to 3 M) and of time and temperature (from room temperature to 80 degrees C) were also examined

  6. Microbial community variation and functions to excess sludge reduction in a novel gravel contact oxidation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin Shanshan; Jin, Y.; Fu, L. [School of Urban and Environmental Science, Northeast Normal University, Changchun (China); Quan, C. [Jilin University, College of medicine, Changchun (China); Yang, Y.S., E-mail: yangy6@cf.ac.uk [Cardiff University, School of Earth and Ocean Sciences, Cardiff CF10 3YE (United Kingdom)

    2009-06-15

    Excess biomass produced within the degradation processes of organic pollutants is creating environmental challenges. The gravel contact oxidation reactor (GCOR) filled with crushed stone globular aggregates as carriers, has been demonstrated capable of reducing the excess sludge effectively in some pilot and small-scale engineering studies. In order to evaluate the variation and structure of the microbial community and their functions to excess sludge reduction in GCOR, a conventional activated sludge reactor (ASR) was studied as a comparison. The 16S rDNA library of the universal bacteria was constructed, Shannon's diversity index (H) and Species evenness (E) were calculated with distance-based operational taxonomic unit and richness (DOTUR) for microbial diversity. Real-time quantity PCR and optical microscope were used for absolute bacterial DNA concentration and eukarya identification, respectively. Meanwhile, the suspended solid index in GCOR and ASR was detected for assessing the excess sludge production. The results indicated that the most abundant bacteria in GCOR were those related to the {beta}-Proteobacteria group, then {gamma}-Proteobacteria and to Cytophaga-Flexibacter-Bacteriode (CFB). In the ASR samples major bacteria were in the closest match with {gamma}-Proteobacteria, then {beta}-Proteobacteria and CFB. Shannon's index (H) was higher (3.41) for diversity of bacteria extracted from the carrier samples in GCOR than that (2.71) from the sludge sample in ASR. Species evenness (E) for the isolates from GCOR and ASR samples was 0.97 and 0.96, respectively. Comparison of the universal bacteria population in GCOR and ASR shows that the total bacterial DNA concentration on the GCOR carriers were 8.98 x 10{sup 5} {mu}g/{mu}l, twice that in ASR of 4.67 x 10{sup 5} {mu}g/{mu}l under normal operation of two reactors. But the MLSS in GCOR was only 4.5 mg/L, 25 times less than that in ASR of 115.4 mg/L. The most representative eukarya were protozoa

  7. Microbial community variation and functions to excess sludge reduction in a novel gravel contact oxidation reactor

    International Nuclear Information System (INIS)

    Lin Shanshan; Jin, Y.; Fu, L.; Quan, C.; Yang, Y.S.

    2009-01-01

    Excess biomass produced within the degradation processes of organic pollutants is creating environmental challenges. The gravel contact oxidation reactor (GCOR) filled with crushed stone globular aggregates as carriers, has been demonstrated capable of reducing the excess sludge effectively in some pilot and small-scale engineering studies. In order to evaluate the variation and structure of the microbial community and their functions to excess sludge reduction in GCOR, a conventional activated sludge reactor (ASR) was studied as a comparison. The 16S rDNA library of the universal bacteria was constructed, Shannon's diversity index (H) and Species evenness (E) were calculated with distance-based operational taxonomic unit and richness (DOTUR) for microbial diversity. Real-time quantity PCR and optical microscope were used for absolute bacterial DNA concentration and eukarya identification, respectively. Meanwhile, the suspended solid index in GCOR and ASR was detected for assessing the excess sludge production. The results indicated that the most abundant bacteria in GCOR were those related to the β-Proteobacteria group, then γ-Proteobacteria and to Cytophaga-Flexibacter-Bacteriode (CFB). In the ASR samples major bacteria were in the closest match with γ-Proteobacteria, then β-Proteobacteria and CFB. Shannon's index (H) was higher (3.41) for diversity of bacteria extracted from the carrier samples in GCOR than that (2.71) from the sludge sample in ASR. Species evenness (E) for the isolates from GCOR and ASR samples was 0.97 and 0.96, respectively. Comparison of the universal bacteria population in GCOR and ASR shows that the total bacterial DNA concentration on the GCOR carriers were 8.98 x 10 5 μg/μl, twice that in ASR of 4.67 x 10 5 μg/μl under normal operation of two reactors. But the MLSS in GCOR was only 4.5 mg/L, 25 times less than that in ASR of 115.4 mg/L. The most representative eukarya were protozoa both in GCOR (15 no. per 20 ml) and in ASR (15

  8. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    Energy Technology Data Exchange (ETDEWEB)

    Cristale, Joyce [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia (Spain); Ramos, Dayana D. [Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS (Brazil); Dantas, Renato F. [Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia (Spain); School of Technology, University of Campinas-UNICAMP, Paschoal Marmo 1888, 13484-332 Limeira, SP (Brazil); Machulek Junior, Amilcar [Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS (Brazil); Lacorte, Silvia [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia (Spain); Sans, Carme; Esplugas, Santiago [Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia (Spain)

    2016-01-15

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L{sup −1} to 150 µg L{sup −1}. During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g{sup −1} dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H{sub 2}O{sub 2} and O{sub 3}) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3}. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. - Highlights: • OPFRs were detected in wastewater and sludge of all studied WWTPs. • Alkyl and chloroalkyl phosphates were present in secondary treatment effluents. • TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3} treatment. • TCEP, TCIPP and TDCPP were

  9. A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.

    Science.gov (United States)

    Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J

    2015-12-15

    Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Partial oxidation of municipal sludge with activited carbon catalyst in supercritical water

    International Nuclear Information System (INIS)

    Guo Yang; Wang Shuzhong; Gong Yanmeng; Xu Donghai; Tang Xingying; Ma Honghe

    2010-01-01

    The partial oxidation (POX) characteristics of municipal sludge in supercritical water (SCW) were investigated by using batch reactor. Effects of reaction parameters such as oxidant equivalent ratio (OER), reaction time and temperature were investigated. Activated carbon (AC) could effectively improve the mole fraction of H 2 in gas product at low OER. However, high OER (greater than 0.3) not only led to the combustion reaction of CO and H 2 , but also caused corrosion of reactor inner wall. Hydrogenation and polymerization of the intermediate products are possible reasons for the relative low COD removal rate in our tests. Metal oxide leached from the reactor inner wall and the main components of the granular sludge were deposited in the AC catalyst. Reaction time had more significant effect on BET surface area of AC than OER had. Long reaction time led to the methanation reaction following hydrolysis and oxidation reaction of AC in SCW in the presence of oxygen. Correspondingly, the possible reaction mechanisms were proposed.

  11. Effect of Antifoam Agent on Oxidative Leaching of Hanford Tank Sludge Simulants

    International Nuclear Information System (INIS)

    Rapko, Brian M.; Jones, Susan A.; Lumetta, Gregg J.; Peterson, Reid A.

    2010-01-01

    Oxidative leaching of simulant tank waste containing an antifoam agent (AFA) to reduce the chromium content of the sludge was tested using permanganate as the oxidant in 0.25 M NaOH solutions. AFA is added to the waste treatment process to prevent foaming. The AFA, Dow Corning Q2-3183A, is a surface-active polymer that consists of polypropylene glycol, polydimethylsiloxane, octylphenoxy polyethoxy ethanol, treated silica, and polyether polyol. Some of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste slurries contain high concentrations of undissolved solids that would exhibit undesirable behavior without AFA addition. These tests were conducted to determine the effect of the AFA on oxidative leaching of Cr(III) in waste by permanganate. It has not previously been determined what effect AFA has on the permanganate reaction. This study was conducted to determine the effect AFA has on the oxidation of the chromium, plus plutonium and other criticality-related elements, specifically Fe, Ni and Mn. During the oxidative leaching process, Mn is added as liquid permanganate solution and is converted to an insoluble solid that precipitates as MnO2 and becomes part of the solid waste. Caustic leaching was performed followed by an oxidative leach at either 25 C or 45 C. Samples of the leachate and solids were collected at each step of the process. Initially, Battelle-Pacific Northwest Division (PNWD) was contracted by Bechtel National, Inc. to perform these further scoping studies on oxidative alkaline leaching. The data obtained from the testing will be used by the WTP operations to develop procedures for permanganate dosing of Hanford tank sludge solids during oxidative leaching. Work was initially conducted under contract number 24590-101-TSA-W000-00004. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) operating Contract DE-AC05-76RL01830. In summary, this report describes work focused on determining

  12. Effect of Antifoam Agent on Oxidative Leaching of Hanford Tank Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Jones, Susan A.; Lumetta, Gregg J.; Peterson, Reid A.

    2010-02-26

    Oxidative leaching of simulant tank waste containing an antifoam agent (AFA) to reduce the chromium content of the sludge was tested using permanganate as the oxidant in 0.25 M NaOH solutions. AFA is added to the waste treatment process to prevent foaming. The AFA, Dow Corning Q2-3183A, is a surface-active polymer that consists of polypropylene glycol, polydimethylsiloxane, octylphenoxy polyethoxy ethanol, treated silica, and polyether polyol. Some of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste slurries contain high concentrations of undissolved solids that would exhibit undesirable behavior without AFA addition. These tests were conducted to determine the effect of the AFA on oxidative leaching of Cr(III) in waste by permanganate. It has not previously been determined what effect AFA has on the permanganate reaction. This study was conducted to determine the effect AFA has on the oxidation of the chromium, plus plutonium and other criticality-related elements, specifically Fe, Ni and Mn. During the oxidative leaching process, Mn is added as liquid permanganate solution and is converted to an insoluble solid that precipitates as MnO2 and becomes part of the solid waste. Caustic leaching was performed followed by an oxidative leach at either 25°C or 45°C. Samples of the leachate and solids were collected at each step of the process. Initially, Battelle-Pacific Northwest Division (PNWD) was contracted by Bechtel National, Inc. to perform these further scoping studies on oxidative alkaline leaching. The data obtained from the testing will be used by the WTP operations to develop procedures for permanganate dosing of Hanford tank sludge solids during oxidative leaching. Work was initially conducted under contract number 24590-101-TSA-W000-00004. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) operating Contract DE-AC05-76RL01830. In summary, this report describes work focused on

  13. SONO-OXIDATIVE PRE-TREATMENT OF WASTE ACTIVATED SLUDGE BEFORE ANAEROBIC BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    S. Şahinkaya

    Full Text Available Abstract The effects of sonication, potassium ferrate (K2FeO4 oxidation and their simultaneous combination (called "sono-oxidative pre-treatment" on chemical properties and anaerobic digestion of waste activated sludge (WAS were investigated and compared comprehensively. Based on chemical parameters, the optimum operating conditions were found to be 0.3 g K2FeO4/g total solids (TS dosage for 2-h individual K2FeO4 oxidation, 0.50 W/mL ultrasonic power density for 10-min individual sonication and, lastly, the combination of 2.5-min sonication at 0.75 W/mL ultrasonic power density with 2-h chemical oxidation at 0.3 g K2FeO4/g TS dosage for sono-oxidative pre-treatment. The disintegration efficiencies of these methods under the optimized conditions were in the following descending order: 37.8% for sono-oxidative pre-treatment > 26.3% for sonication > 13.1% for K2FeO4 oxidation. The influences of these methods on anaerobic biodegradability were tested with the biochemical methane potential assay. It was seen that the cumulative methane production increased by 9.2% in the K2FeO4 oxidation reactor, 15.8% in the sonicated reactor and 18.6% in the reactor with sono-oxidative pre-treatment, compared to the control (untreated reactor.

  14. Evaluation of disposal methods for oxidized FGD sludge

    International Nuclear Information System (INIS)

    Yu, W.C.

    1992-01-01

    The implementation of wet flue gas desulfurization - in response to the Clean Air Act of 1990 - will cause many power generators and state regulatory personnel to face important decisions on the disposal of large volumes of resultant solid waste. Even with the selection of forced oxidation technology, it is widely recognized that the vast majority of flue gas desulfurization by-products will be disposed. This paper analyzes the water quality issues associated with gypsum stacking, macroencapsulation of gypsum, and the stabilization/fixation of gypsum. Water quality issues include leachate quality, leachate generation, runoff management, and groundwater impact. The following analysis uses both field and literature data to measure the environmental impact of the three most discussed disposal options

  15. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial community from propylene oxide saponification wastewater residual sludge.

    Science.gov (United States)

    Wang, Yiwei; Zhu, Ying; Gu, Pengfei; Li, Yumei; Fan, Xiangyu; Song, Dongxue; Ji, Yan; Li, Qiang

    2017-05-01

    The saponification wastewater from the process of propylene oxide (PO) production is contaminated with high chemical oxygen demand (COD) and chlorine contents. Although the activated sludge process could treat the PO saponification wastewater effectively, the residual sludge was difficult to be disposed properly. In this research, microbes in PO saponification wastewater residual sludge were acclimated to produce poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from volatile fatty acids. Through Miseq Illumina highthroughput sequencing, the bacterial community discrepancy between the original and the acclimated sludge samples were analyzed. The proportions of Bacillus, Acinetobacter, Brevundimonas and Pseudomonas, the potential PHBV-producers in the residual sludge, were all obviously increased. In the batch fermentation, the production of PHBV could achieve 4.262g/L at 300min, with the content increased from 0.04% to 23.67% of mixed liquor suspended solid (MLSS) in the acclimated sludge, and the COD of the PO saponification wastewater was also decreased in the fermentation. This work would provide an effective solution for the utilization of PO saponification wastewater residual sludge. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  17. Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1998 annual progress report

    International Nuclear Information System (INIS)

    Buelow, S.J.; Robinson, J.M.

    1998-01-01

    'The objective of this project is to develop the scientific basis for hydrothermal separation of chromium from High Level Waste (HLW) sludges. The worked is aimed at attaining a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions that will ultimately lead to an efficient chromium leaching process. This report summarizes the research over the first 1.5 years of a 3 year project. The authors have examined the dissolution of chromium hydroxide using different oxidants as a function of temperature and alkalinity. The results and possible applications to HLW sludges are discussed'

  18. Metal immobilization by sludge-derived biochar: roles of mineral oxides and carbonized organic compartment.

    Science.gov (United States)

    Zhang, Weihua; Huang, Xinchen; Jia, Yanming; Rees, Frederic; Tsang, Daniel C W; Qiu, Rongliang; Wang, Hong

    2017-04-01

    Pyrolyzing sludge into biochar is a potentially promising recycling/disposal solution for municipal wastewater sludge, and the sludge-derived biochar (SDBC) presents an excellent sorbent for metal immobilization. As SDBC is composed of both mineral oxides and carbonized organic compartment, this study therefore compared the sorption behaviour of Pb and Zn on SDBC to those of individual and mixture of activated carbon (AC) and amorphous aluminium oxide (Al 2 O 3 ). Batch experiments were conducted at 25 and 45 °C, and the metal-loaded sorbents were artificially aged in the atmosphere for 1-60 days followed by additional sorption experiments. The Pb sorption was generally higher than Zn sorption, and the co-presence of Pb reduced Zn sorption on each studied sorbent. Higher sorption capacities were observed at 45 °C than 25 °C for SDBC and AC, while the opposite was shown for Al 2 O 3 , indicating the significance of temperature-dependent diffusion processes in SDBC and AC. Nevertheless, metal sorption was more selective on Al 2 O 3 that showed a greater affinity towards Pb over Zn under competition, correlating with the reducible fraction of sequential extraction. Furthermore, significant amounts of Pb and Zn were additionally sorbed on SDBC following 30-day ageing. The X-ray diffraction revealed the formation of metal-phosphate precipitates, while the X-ray photoelectron spectroscopy showed a larger quantity of metal-oxygen bonding after 30-day ageing of metal-loaded SDBC. The results may imply favourable long-term transformation and additional sorption capacity of SDBC. In conclusion, SDBC resembles the sorption characteristics of both organic and mineral sorbents in different aspects, presenting an appropriate material for metal immobilization during soil amendment.

  19. Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation

    International Nuclear Information System (INIS)

    Park, Gwon Woo; Seo, Tae Wan; Lee, Hong-Cheol; Hwang, In-Ju

    2016-01-01

    Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively

  20. Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gwon Woo [Biomass and Waste Energy Laboratory, KIER, Daejeon (Korea, Republic of); Seo, Tae Wan; Lee, Hong-Cheol; Hwang, In-Ju [Environmental and Plant Engineering Research Institute, KICT, Goyang (Korea, Republic of)

    2016-04-15

    Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively.

  1. Simultaneous enhancement of sludge dewaterability and removal of sludge-borne heavy metals through a novel oxidative leaching induced by nano-CaO2.

    Science.gov (United States)

    Wu, Boran; Dai, Xiaohu; Chai, Xiaoli

    2017-07-01

    The production of sewage sludge with the presence of various contaminants has been a serious issue for the operation of wastewater treatment plants on both the economical and environmental sides. To minimize the sludge volume to be handled and limit the potential environmental risk, this study developed a novel oxidative leaching process for enhanced sewage sludge dewatering and simultaneous removal of heavy metals based on nano-CaO 2 . Response surface methodology determined the following optimal conditioning parameters in terms of capillary suction time reduction: 0.0906 g/g dry solid (DS) nano-CaO 2 , 0.9969 mmol/g DS Fe 2+ , and pH of 5.59. The speciation partitioning analysis of the heavy metals pre and post nano-CaO 2 peroxidation indicated that the content of organically bound metals decreased and the percentage of soluble fraction increased substantially, which was beneficial for the removal of heavy metals through the dewatering unit. Nano-CaO 2 peroxidation could also induce the transformation of extracellular polymeric substances (EPS) from the tightly bound layers to the loosely bound layers of sewage sludge flocs. Through the decline of the Ryan-Weber constant of fluorescence titration and the pseudo-first-order kinetic constant of complexation, it was verified that the binding capacity of EPS with metal ions could be damaged by nano-CaO 2 peroxidation, which was the primary mechanism behind the substantial reduction of organically bound metals. This study is believed to provide novel insights into the application of nanotechnology in terms of the simultaneous volume and toxicity reduction of sewage sludge. Graphical abstract.

  2. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  3. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Changxiu [School of Environment, Tsinghua University, Beijing 100084 (China); Jiang, Jianguo, E-mail: jianguoj@mail.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China (China); Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing (China); Li, De' an [School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-11-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO{sub 4}{sup 3−} concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton.

  4. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    International Nuclear Information System (INIS)

    Gong, Changxiu; Jiang, Jianguo; Li, De'an

    2015-01-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO 4 3− concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton

  5. Oxidation of North Dakota scrubber sludge for soil amendment and production of gypsum. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hassett, D.J.; Moe, T.A.

    1997-10-01

    Cooperative Power`s Coal Creek Station (CCS) the North Dakota Industrial Commission, and the US Department of Energy provided funds for a research project at the Energy and Environmental Research Center. The goals of the project were (1) to determine conditions for the conversion of scrubber sludge to gypsum simulating an ex situ process on the laboratory scale; (2) to determine the feasibility of scaleup of the process; (3) if warranted, to demonstrate the ex situ process for conversion on the pilot scale; and (4) to evaluate the quality and handling characteristics of the gypsum produced on the pilot scale. The process development and demonstration phases of this project were successfully completed focusing on ex situ oxidation using air at low pH. The potential to produce a high-purity gypsum on a commercial scale is excellent. The results of this project demonstrate the feasibility of converting CCS scrubber sludge to gypsum exhibiting characteristics appropriate for agricultural application as soil amendment as well as for use in gypsum wallboard production. Gypsum of a purity of over 98% containing acceptable levels of potentially problematic constituents was produced in the laboratory and in a pilot-scale demonstration.

  6. Effect of communities of ammonia-oxidizing bacteria on degradation of 17-alpha-ethynylestradiol by nitrifying activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Limpiyakorn, T.; Sermwaraphan, P.; Kurisu, F.

    2009-07-01

    An endocrine disrupting compound, 17-alpha-ethynylestradiol (EE2), is a synthetic estrogen used as a key ingredient in oral contraceptives pill. this persistent organic pollutant, no biodegradable by most microorganisms, is discharged via municipal waste streams to natural receiving waters. Recently, it was found that ammonia-oxidizing bacteria (AOB) in nitrifying activated sludge (NAS) enriched with high ammonium loads can degrade EE2 via co-metabolism during ammonia oxidation. (Author)

  7. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    Science.gov (United States)

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  8. Optimization and modeling of reduction of wastewater sludge water content and turbidity removal using magnetic iron oxide nanoparticles (MION).

    Science.gov (United States)

    Hwang, Jeong-Ha; Han, Dong-Woo

    2015-01-01

    Economic and rapid reduction of sludge water content in sewage wastewater is difficult and requires special advanced treatment technologies. This study focused on optimizing and modeling decreased sludge water content (Y1) and removing turbidity (Y2) with magnetic iron oxide nanoparticles (Fe3O4, MION) using a central composite design (CCD) and response surface methodology (RSM). CCD and RSM were applied to evaluate and optimize the interactive effects of mixing time (X1) and MION concentration (X2) on chemical flocculent performance. The results show that the optimum conditions were 14.1 min and 22.1 mg L(-1) for response Y1 and 16.8 min and 8.85 mg L(-1) for response Y2, respectively. The two responses were obtained experimentally under this optimal scheme and fit the model predictions well (R(2) = 97.2% for Y1 and R(2) = 96.9% for Y2). A 90.8% decrease in sludge water content and turbidity removal of 29.4% were demonstrated. These results confirm that the statistical models were reliable, and that the magnetic flocculation conditions for decreasing sludge water content and removing turbidity from sewage wastewater were appropriate. The results reveal that MION are efficient for rapid separation and are a suitable alterative to sediment sludge during the wastewater treatment process.

  9. Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1997 mid-year progress report

    International Nuclear Information System (INIS)

    Buelow, S.

    1997-01-01

    'Treatment of High Level Waste (HLW) is the second most costly problem identified by OEM. In order to minimize costs of disposal, the volume of HLW requiring vitrification and long term storage must be reduced. Methods for efficient separation of chromium from waste sludges, such as the Hanford Tank Wastes (HTW), are key to achieving this goal since the allowed level of chromium in high level glass controls waste loading. At concentrations above 0.5 to 1.0 wt.% chromium prevents proper vitrification of the waste. Chromium in sludges most likely exists as extremely insoluble oxides and minerals, with chromium in the plus III oxidation state [1]. In order to solubilize and separate it from other sludge components, Cr(III) must be oxidized to the more soluble Cr(VI) state. Efficient separation of chromium from HLW could produce an estimated savings of $3.4B[2]. Additionally, the efficient separation of technetium [3], TRU, and other metals may require the reformulation of solids to free trapped species as well as the destruction of organic complexants. New chemical processes are needed to separate chromium and other metals from tank wastes. Ideally they should not utilize additional reagents which would increase waste volume or require subsequent removal. The goal of this project is to apply hydrothermal processing for enhanced chromium separation from HLW sludges. Initially, the authors seek to develop a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions. The authors also wish to evaluate the potential of hydrothermal processing for enhanced separations of technetium and TRU by examining technetium and TRU speciation at hydrothermal conditions optimal for chromium dissolution.'

  10. Concomitant degradation of bisphenol A during ultrasonication and Fenton oxidation and production of biofertilizer from wastewater sludge.

    Science.gov (United States)

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2011-09-01

    Degradation of bisphenol A (BPA), an endocrine disruptor, from wastewater sludge (WWS) has attracted great interest recently. In the present study, the effects of different pre-treatment methods, including ultrasonication (US), Fenton's oxidation (FO) and ferro-sonication (FS) was assessed in terms of increase in solubilization of WWS and simultaneous degradation of BPA. Among US, FO and FS pre-treatment, higher suspended solids (SS), volatile suspended solids (VSS), chemical oxygen demand (COD) and soluble organic carbon (SOC) solubilization (39.7%, 51.2%, 64.5% and 17.6%, respectively) was observed during a ferro-sonication pre-treatment process carried out for 180 min, resulting in higher degradation of BPA (82.7%). In addition, the effect of rheological parameters (viscosity and particle size) and zeta potential on the degradation of BPA in raw and different pre-treated sludges were also investigated. The results showed that a decrease in viscosity and particle size and an increase in zeta potential resulted in higher degradation of BPA. BPA degradation by laccases produced by Sinorhizobium meliloti in raw and pre-treated sludge was also determined. Higher activity of laccases (207.9 U L(-1)) was observed in ferro-sonicated pre-treated sludge (180 min ultrasonic time), resulting in higher removal of BPA (0.083 μg g(-1)), suggesting concomitant biological degradation of BPA. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Ozonation of return activated sludge for disintegration and solubilisation with synthesized titanium oxide as catalyst

    Science.gov (United States)

    Sarif, S. F. Z. Mohd; Alias, S. S.; Ridwan, F. Muhammad; Salim, K. S. Ku; Abidin, C. Z. A.; Ali, U. F. Md.

    2018-03-01

    Ozonation of activated sludge in the present of titanium dioxide (TiO2) as catalyst to enhance the production of hydroxyl radical was evaluated in comparison to the sole ozonation process. In this process, the catalytic ozontion showed improvement in increasing ozone consumption and improving activated sludge disintegration and solubilisation. The reduction of total suspended solid (TSS), volatile suspended solid (VSS) and soluble chemical oxygen demand (SCOD) solubilisation was better in the catalytic ozonation system. Initial pH 7 of activated sludge was found best to disintegrate and solubilise the sludge flocs. However upon additional of sodium hydroxide (NaOH) in pH adjustment enhanced the solubilisation of organic matter from the flocs and cells, making the initial pH 9 is the best condition for activated sludge solubilisation. Yet the initial pH 7 of activated sludge supernatant was the best condition to achieve SCOD solubilisation due to sludge floc disintegration, when it had stronger correlation between TSS reduction and SCOD solubilisation (R2=0.961). Lower amount of catalyst of 100 mgTiO2/gTSS was found to disintegrate and solubilise the activated sludge better with 30.4% TSS reduction and 25.2% SCOD solubilisation efficiency, compared to 200 mgTiO2/gTSS with 21.9% and 17.1% TSS reduction and SCOD solubilisation, respectively.

  12. Beyond the throwaway society: A life cycle-based assessment of the environmental benefit of reuse.

    Science.gov (United States)

    Castellani, Valentina; Sala, Serenella; Mirabella, Nadia

    2015-07-01

    In the context of a circular economy, sustainable consumption is often seen as the antithesis of current consumption patterns, which have led to the definition of the so-called throwaway society. Reuse may provide a preferred alternative to other waste management options, because it promotes resource efficiency and may significantly reduce environmental impacts. To appraise the environmental benefits related to reuse of goods, a methodology adopting life cycle assessment (LCA) has been developed. A standardized procedure has been developed, identifying reference products within product category subject to reuse, and collecting reliable inventory data as a basis for calculating environmental impact through LCA. A case study on a second-hand shop is presented, and the avoided impacts are quantified. Inventory data were taken both from the literature and directly from sales and surveys submitted to customers. The results are presented, highlighting: 1) for each product category, the average avoided impacts for 1 unit of reused product considered; and 2) for the overall activities of the second-hand shop, the cumulative avoided impacts in 1 yr. In the case study, the higher contribution to avoided impacts comes from the apparel sector, due to the high amount of items sold, followed by the furniture sector, because of the high amount of environmental impacts avoided by the reuse of each single item. © 2015 SETAC.

  13. Isolation and Characterization of PHA-Producing Bacteria from Propylene Oxide Saponification Wastewater Residual Sludge.

    Science.gov (United States)

    Li, Ruirui; Gu, Pengfei; Fan, Xiangyu; Shen, Junyu; Wu, Yulian; Huang, Lixuan; Li, Qiang

    2018-03-21

    A polyhydroxyalkanoate (PHA)-producing strain was isolated from propylene oxide (PO) saponification wastewater activated sludge and was identified as Brevundimonas vesicularis UJN1 through 16S rDNA sequencing and Biolog microbiological identification. Single-factor and response surface methodology experiments were used to optimize the culture medium and conditions. The optimal C/N ratio was 100/1.04, and the optimal carbon and nitrogen sources were sucrose (10 g/L) and NH 4 Cl (0.104 g/L) respectively. The optimal culture conditions consisted of initial pH of 6.7 and an incubation temperature of 33.4 °C for 48 h, with 15% inoculum and 100 mL medium at an agitation rate of 180 rpm. The PHA concentration reached 34.1% of the cell dry weight and increased three times compared with that before optimization. The only report of PHA-producing bacteria by Brevundimonas vesicularis showed that the conversion rate of PHAs using glucose as the optimal carbon source was 1.67%. In our research, the conversion rate of PHAs with sucrose as the optimal carbon source was 3.05%, and PHA production using sucrose as the carbon source was much cheaper than that using glucose as the carbon source.

  14. Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling.

    Science.gov (United States)

    Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R

    2015-11-01

    Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    Science.gov (United States)

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be

  16. Molecular characterization of anaerobic sulfur-oxidizing microbial communities in up-flow anaerobic sludge blanket reactor treating municipal sewage.

    Science.gov (United States)

    Aida, Azrina A; Hatamoto, Masashi; Yamamoto, Masamitsu; Ono, Shinya; Nakamura, Akinobu; Takahashi, Masanobu; Yamaguchi, Takashi

    2014-11-01

    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Comparison of the effects and distribution of zinc oxide nanoparticles and zinc ions in activated sludge reactors.

    Science.gov (United States)

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2017-09-19

    Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO 4 ). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH 4 + N) concentration in the effluent significantly (P zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.

  18. Can supercritical oxidation of sewage sludge be an alternative for supercritical gasification?; Kan superkritische oxidatie van zuiveringsslib een alternatief zijn voor superkritische vergassing?

    Energy Technology Data Exchange (ETDEWEB)

    Rulkens, W. [Wageningen UR, Wageningen (Netherlands); Wentink, J. [Horizon Solutions, Leiden (Netherlands)

    2013-05-15

    In the context of the development of The Energy Factory a number of technologies has been identified that may be interesting to develop further. Two of these techniques relate to the conversion of sludge in supercritical water: supercritical gasification of sludge and supercritical oxidation of sludge [Dutch] In het kader van de ontwikkeling van De Energiefabriek is een aantal technologieen geidentificeerd die mogelijk interessant zijn om verder te ontwikkelen. Twee van deze technieken hebben betrekking op de conversie van slib in superkritisch water: superkritische slibvergassing en superkritische sliboxidatie.

  19. Supercritical water oxidation of dioxins and furans in waste incinerator fly ash, sewage sludge and industrial soil.

    Science.gov (United States)

    Zainal, Safari; Onwudili, Jude A; Williams, Paul T

    2014-08-01

    Three environmental samples containing dioxins and furans have been oxidized in the presence of hydrogen peroxide under supercritical water oxidation conditions. The samples consisted of a waste incinerator fly ash, sewage sludge and contaminated industrial soil. The reactor system was a batch, autoclave reactor operated at temperatures between 350 degrees C and 450degrees C, corresponding to pressures of approximately 20-33.5 MPa and with hydrogen peroxide concentrations from 0.0 to 11.25 vol%. Hydrogen peroxide concentration and temperature/pressure had a strong positive effect on the oxidation of dioxins and furans. At the highest temperatures and pressure of supercritical water oxidation of 4500C and 33.5 MPa and with 11.25 vol% of hydrogen peroxide, the destruction efficiencies of the individual polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) isomers were between 90% and 99%. There did not appear to be any significant differences in the PCDD/PCDF destruction efficiencies in relation to the different sample matrices of the waste incinerator fly ash, sewage sludge and contaminated industrial soil.

  20. Insight into effects of electro-dewatering pretreatment on nitrous oxide emission involved in related functional genes in sewage sludge composting.

    Science.gov (United States)

    Wang, Ke; Wu, Yiqi; Wang, Zhe; Wang, Wei; Ren, Nanqi

    2018-05-26

    Electro-dewatering (ED) pretreatment could improve sludge dewatering performance and remove heavy metal, but the effect of ED pretreatment on nitrous oxide (N 2 O) emission and related functional genes in sludge composting process is still unknown, which was firstly investigated in this study. The results revealed that ED pretreatment changed the physicochemical characteristics of sludge and impacted N 2 O related functional genes, resulting in the reduction of cumulative N 2 O emission by 77.04% during 60 days composting. The higher pH and NH 4 + -N, but lower moisture, ORP and NO 2 - -N emerged in the composting of ED sludge compared to mechanical dewatering (MD) sludge. Furthermore, ED pretreatment reduced amoA, hao, narG, nirK and nosZ in ED sludge on Day-10 and Day-60 of composting. It was found that nirK reduction was the major factor impacting N 2 O generation in the initial composting of ED sludge, and the decline of amoA restricted N 2 O production in the curing period. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Enhanced micropollutant biodegradation and assessment of nitrous oxide concentration reduction in wastewater treated by acclimatized sludge bioaugmentation.

    Science.gov (United States)

    Boonnorat, Jarungwit; Techkarnjanaruk, Somkiet; Honda, Ryo; Ghimire, Anish; Angthong, Sivakorn; Rojviroon, Thammasak; Phanwilai, Supaporn

    2018-05-11

    This research investigated the micropollutant biodegradation and nitrous oxide (N 2 O) concentration reduction in high strength wastewater treated by two-stage activated sludge (AS) systems with (bioaugmented) and without (non-bioaugmented) acclimatized sludge bioaugmentation. The bioaugmented and non-bioaugmented systems were operated in parallel for 228 days, with three levels of concentrations of organics, nitrogen, and micropollutants in the influent: conditions 1 (low), 2 (moderate), and 3 (high). The results showed that, under condition 1, both systems efficiently removed the organic and nitrogen compounds. However, the bioaugmented system was more effective in the micropollutant biodegradation and N 2 O concentration reduction than the non-bioaugmented one. Under condition 2, the nitrogen and micropollutant biodegradation efficiency of the non-bioaugmented system slightly decreased, while the N 2 O concentration declined in the bioaugmented system. Under condition 3, the treatment performance and N 2 O concentration abatement were substantially lowered as the compounds concentration increased. Further analysis also showed that the acclimatized sludge bioaugmentation increased the bacterial diversity in the system. In essence, the acclimatized sludge bioaugmentation strategy was highly effective for the influent with low compounds concentration, achieving the organics and nitrogen removal efficiencies of 92-97%, relative to 71-97% of the non-bioaugmented system. The micropollutant treatment efficiency of the bioaugmented system under condition 1 was 75-92%, indicating significant improvement in the treatment performance (p < 0.05), compared with 60-79% of the non-bioaugmented system. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix

    International Nuclear Information System (INIS)

    Zhang, Ai; Li, Yongmei

    2014-01-01

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using ultraviolet light (UV), hydrogen peroxide (H 2 O 2 ), and the combined UV/H 2 O 2 processes. Effects of initial EDC concentration, H 2 O 2 dosage, and pH value were investigated. Particularly, the effects of 11 metal ions and humic acid (HA) contained in a sludge matrix on EDC degradation were evaluated. A pseudo-first-order kinetic model was used to describe the EDC degradation during UV, H 2 O 2 , and UV/H 2 O 2 treatments of WAS. The results showed that the degradation of the 6 EDCs during all the three oxidation processes fitted well with pseudo-first-order kinetics. Compared with the sole UV irradiation or H 2 O 2 oxidation process, UV/H 2 O 2 treatment was much more effective for both EDC degradation and WAS solubilization. Under their optimal conditions, the EDC degradation rate constants during UV/H 2 O 2 oxidation were 45–197 times greater than those during UV irradiation and 11–53 times greater than those during H 2 O 2 oxidation. High dosage of H 2 O 2 and low pH were favorable for the degradation of EDCs. Under the conditions of pH = 3, UV wavelength = 253.7 nm, UV fluence rate = 0.069 mW cm −2 , and H 2 O 2 dosage = 0.5 mol L −1 , the removal efficiencies of E1, E2, EE2, E3, BPA, and NP in 2 min were 97%, 92%, 95%, 94%, 89%, and 67%, respectively. The hydroxyl radical (·OH) was proved to take the most important role for the removal of EDCs. Metal ions in sludge could facilitate the removal of EDCs during UV/H 2 O 2 oxidation. Fe, Ag, and Cu ions had more obvious effects compared with other metal ions. The overall role of HA was dependent on the balance between its competition as organics and its catalysis/photosensitization effects. These indicate that the sludge matrix plays an important role in the degradation of EDCs. - Highlights:

  3. Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics.

    Science.gov (United States)

    Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq; Caicedo, Luis Miguel; Guo, Hanwen; Fu, Xindi; Wang, Hongtao

    2017-11-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures and their abundance in sewage sludge collected from wastewater treatment plants were analysed. Results indicated that ANAMMOX and DAMO bacteria co-existed in sewage sludge in different seasons and their abundance was positively correlated (P bacteria in autumn and winter indicated that these seasons were the preferred time to favour the growth of ANAMMOX and DAMO bacteria. The community structure of ANNAMOX and DAMO bacteria could also shift with seasonal changes. The "Candidatus Brocadia" genus of ANAMMOX bacteria was mainly recovered in spring and summer, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion. The redundancy analysis revealed that pH and nitrate were the most significant factors affecting community structures of these two groups (P < 0.01). This study reported the diversity of ANAMMOX and DAMO in wastewater treatment plants that may be the basis for new nitrogen removal technologies.

  4. Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor

    International Nuclear Information System (INIS)

    Ahmad, Anwar; Ghufran, Rumana; Wahid, Zularisam Abd.

    2011-01-01

    Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: ► Examine the treatability of POME and effects of CaO–CKD on the granulation process in UASB reactors. ► The main objective was to determine the influent CaO–CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. ► The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. ► SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO–CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO–CKD at doses of 1.5–20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 °C for 150 days to investigate the effect of CaO–CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5–65.5 g-COD g/l at an OLR of 4.5–12.5 kg-COD/m 3 d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased

  5. Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Anwar, E-mail: anwarak218@yahoo.co.uk [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia); Ghufran, Rumana; Wahid, Zularisam Abd. [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia)

    2011-12-30

    Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: Black-Right-Pointing-Pointer Examine the treatability of POME and effects of CaO-CKD on the granulation process in UASB reactors. Black-Right-Pointing-Pointer The main objective was to determine the influent CaO-CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. Black-Right-Pointing-Pointer The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. Black-Right-Pointing-Pointer SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 Degree-Sign C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-COD g/l at an OLR of 4.5-12.5 kg-COD/m{sup 3} d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids

  6. The bulk composition and leaching properties of electroplating sludge prior/following the solidification/stabilization by calcium oxide.

    Science.gov (United States)

    Orescanin, Visnja; Mikulic, Nenad; Mikelic, Ivanka Lovrencic; Posedi, Mario; Kampic, Stefica; Medunic, Gordana

    2009-10-01

    Eighteen samples of electroplating sludge were taken from three vertical profiles of waste storage pond of the zinc plating facility. Dry matter and organic matter content, pH value, bulk concentrations and leachate composition were determined. A sludge sample with the highest zinc value in the leachate was treated with calcium oxide (10% to 70%) and the obtained solidificate was repeatedly tested. There were found significant variations of all measured parameters among the profiles of untreated waste. Dry matter content varied from 125 to 455 mgg(-1), organic matter varied from 94.3 to 293.9 mgg(-1), and pH value varied from 3.42 to 5.90 (mean 4.34). Iron content ranged from 38.4 to 191.4 mgg(-1) (mean 136 mgg(-1); RSD 0.25), while zinc ranged from 10.9 to 58.2 mgg(-1) (mean 33.4 mgg(-1); RSD 0.38). According to its DIN38414-S4 leachate composition, this material was not suitable for landfilling of inert waste since zinc and nickel mean values were 10 and 1.5 times higher, respectively, and maximum values 27 and 2.5 times higher, respectively, compared to the upper permissible limit. Maximum values of Cr(VI), Fe, Ni, Cu, and Zn in the DIN38414-S4 leachate were 0.183 mgL(-1), 34.085 mgL(-1), 1.052 mgL(-1), 0.829 mgL(-1) and 107.475 mgL(-1)L, respectively. Following the solidification/stabilization procedure with CaO (sample/CaO = 90/10), concentrations of Cr(VI), Fe, Cu and Zn were reduced 92, 44, 66 and 57 times, respectively, compared to the untreated sample. The addition of 50% of CaO into the sludge reduced zinc and nickel concentrations 79 and 45 times, respectively, in the DIN38414-S4 leachate of the solidified waste compared to the original sludge, thereby converting an hazardous waste into the inert material suitable for landfilling or reuse in the construction processes.

  7. Long Term Performance of an Arsenite-Oxidizing-Chlorate-Reducing Microbial Consortium in an Upflow Anaerobic Sludge Bed (UASB) Bioreactor

    Science.gov (United States)

    Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A.

    2011-01-01

    A chlorate (ClO3−) reducing microbial consortium oxidized arsenite (As(III)) to arsenate (As(V)) in an upflow anaerobic sludge-bed bioreactor over 550 d operation. As(III) was converted with high conversion efficiencies (>98%) at volumetric loadings ranging from 0.45 to 1.92 mmol As/(Lreactor d). The oxidation of As(III) was linked to the complete reduction of ClO3− to Cl− and H2O, as demonstrated by a molar ratio of approximately 3.0 mol As(III) oxidized per mole of Cl− formed and by the greatly lowered ClO3−-reducing capacity without As(III) feeding. An autotrophic enrichment culture was established from the bioreactor biofilm. A 16S rRNA gene clone library indicated that the culture was dominated by Dechloromonas, and Stenotrophomonas as well as genera within the family Comamonadaceae. The results indicate that the oxidation of As(III) to less mobile As(V) utilizing ClO3− as a terminal electron acceptor provides a sustainable bioremediation strategy for arsenic contamination in anaerobic environments. PMID:21333531

  8. The nitrite-oxidizing community in activated sludge from a municipal wastewater treatment plant determined by fatty acid methyl ester-stable isotope probing.

    Science.gov (United States)

    Kruse, Myriam; Zumbrägel, Sabine; Bakker, Evert; Spieck, Eva; Eggers, Till; Lipski, André

    2013-10-01

    Metabolically-active autotrophic nitrite oxidizers from activated sludge were labeled with (13)C-bicarbonate under exposure to different temperatures and nitrite concentrations. The labeled samples were characterized by FAME-SIP (fatty acid methyl ester-stable isotope probing). The compound cis-11-palmitoleic acid, which is the major lipid of the most abundant nitrite oxidizer in activated sludge, Candidatus Nitrospira defluvii, showed (13)C-incorporation in all samples exposed to 3 mM nitrite. Subsequently, the lipid cis-7-palmitoleic acid was labeled, and it indicated the activity of a nitrite oxidizer that was different from the known Nitrospira taxa in activated sludge. The highest incorporation of cis-7-palmitoleic acid label was found after incubation with a nitrite concentration of 0.3 mM at 17 and 22°C. While activity of Nitrobacter populations could not be detected by the FAME-SIP approach, an unknown nitrite oxidizer with the major lipid cis-9 isomer of palmitoleic acid exhibited (13)C-incorporation at 28°C with 30 mM nitrite. These results indicated flexibility of nitrite-oxidizing guilds in a complex community responding to different conditions. Labeled lipids so far not described for activated sludge-associated nitrifiers indicated the presence of unknown nitrite oxidizers in this habitat. The FAME-SIP-based information can be used to define appropriate conditions for the enrichment of nitrite-oxidizing guilds from complex samples. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Optimization of combined in-vessel composting process and chemical oxidation for remediation of bottom sludge of crude oil storage tanks.

    Science.gov (United States)

    Koolivand, Ali; Naddafi, Kazem; Nabizadeh, Ramin; Saeedi, Reza

    2017-07-31

    In this research, removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated under the optimized conditions of in-vessel composting process and chemical oxidation with H 2 O 2 and Fenton. After determining the optimum conditions, the sludge was pre-treated with the optimum state of the oxidation process. Then, the determined optimum ratios of the sludge to immature compost were composted at a C:N:P ratio of 100:5:1 and moisture content of 55% for a period of 10 weeks. Finally, both pre-treated and composted mixtures were again oxidized with the optimum conditions of the oxidants. Results showed that total petroleum hydrocarbons (TPH) removal of the 1:8 and 1:10 composting reactors which were pre-treated with H 2 O 2 were 88.34% and 90.4%, respectively. In addition, reduction of TPH in 1:8 and 1:10 composting reactors which were pre-treated with Fenton were 83.90% and 84.40%, respectively. Without applying the pre-treatment step, the composting reactors had a removal rate of about 80%. Therefore, pre-treatment of the reactors increased the TPH removal. However, post-oxidation of both pre-treated and composted mixtures reduced only 13-16% of TPH. Based on the results, remarkable overall removal of TPH (about 99%) was achieved by using chemical oxidation and subsequent composting process. The study showed that chemical oxidation with H 2 O 2 followed by in-vessel composting is a viable choice for the remediation of the sludge.

  10. Physical and chemical factors affecting sludge consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Blimkie, M.E.; Lavoie, P.A

    1997-09-01

    Chemical reactions between sludge components and precipitation reactions within the pores of the existing sludge are shown to contribute to the consolidation of sludge under steam generator operating conditions. Simulations of sludge representative of plants with a mixed iron/copper feedtrain suggest that as the conditions in the feedtrain become more oxidizing the sludge will become harder with a higher nickel ferrite content. The precipitation of feedwater impurities introduced by condenser leaks and of zinc silicate, which is produced in plants with brass condenser tubes and silica in the makeup water, contribute significantly to sludge consolidation. Sodium phosphate is also shown to be an agent of sludge consolidation. (author)

  11. Nitrous oxide emissions from an intermittent aeration activated sludge system of an urban wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    William Z. de Mello

    2013-01-01

    Full Text Available This study investigated the emission of N2O during the sequential aerated (60-min and non-aerated (30-min stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP. N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.

  12. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant.

    Science.gov (United States)

    Aboobakar, Amina; Cartmell, Elise; Stephenson, Tom; Jones, Mark; Vale, Peter; Dotro, Gabriela

    2013-02-01

    This paper reports findings from online, continuous monitoring of dissolved and gaseous nitrous oxide (N₂O), combined with dissolved oxygen (DO) and ammonia loading, in a full-scale nitrifying activated sludge plant. The study was conducted over eight weeks, at a 210,000 population equivalent sewage treatment works in the UK. Results showed diurnal variability in the gaseous and dissolved N₂O emissions, with hourly averages ranging from 0 to 0.00009 kgN₂O-N/h for dissolved and 0.00077-0.0027 kgN₂O-N/h for gaseous nitrous oxide emissions respectively, per ammonia loading, depending on the time of day. Similarly, the spatial variability was high, with the highest emissions recorded immediately after the anoxic zone and in the final pass of the aeration lane, where ammonia concentrations were typically below 0.5 mg/L. Emissions were shown to be negatively correlated to dissolved oxygen, which fluctuated between 0.5 and 2.5 mgO₂/L, at the control set point of 1.5 mgO₂/L. The resulting dynamic DO conditions are known to favour N₂O production, both by autotrophic and heterotrophic processes in mixed cultures. Average mass emissions from the lane were greater in the gaseous (0.036% of the influent total nitrogen) than in the dissolved (0.01% of the influent total nitrogen) phase, and followed the same diurnal and spatial patterns. Nitrous oxide emissions corresponded to over 34,000 carbon dioxide equivalents/year, adding 13% to the carbon footprint associated with the energy requirements of the monitored lane. A clearer understanding of emissions obtained from real-time data can help towards finding the right balance between improving operational efficiency and saving energy, without increasing N₂O emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Changes in the ammonia-oxidizing bacteria community in response to operational parameters during the treatment of anaerobic sludge digester supernatant.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena; Bernat, Katarzyna; Kulikowska, Dorota; Wojnowska-Baryła, Irena

    2012-07-01

    The understanding of the relationship between ammoniaoxidizing bacteria (AOB) communities in activated sludge and the operational treatment parameters supports the control of the treatment of ammonia-rich wastewater. The modifications of treatment parameters by alteration of the number and length of aerobic and anaerobic stages in the sequencing batch reactor (SBR) working cycle may influence the efficiency of ammonium oxidation and induce changes in the AOB community. Therefore, in the research, the impact of an SBR cycle mode with alternating aeration/ mixing conditions (7 h/1 h vs. 4 h/5.5 h) and volumetric exchange rate (n) on AOB abundance and diversity in activated sludge during the treatment of anaerobic sludge digester supernatant at limited oxygen concentration in the aeration stage (0.7 mg O2/l) was assessed. AOB diversity expressed by the Shannon-Wiener index (H') was determined by the cycle mode. At aeration/mixing stage lengths of 7 h/1 h, H' averaged 2.48 +/- 0.17, while at 4 h/ 5.5 h it was 2.35 +/- 0.16. At the given mode, AOB diversity decreased with increasing n. The cycle mode did not affect AOB abundance; however, a higher AOB abundance in activated sludge was promoted by decreasing the volumetric exchange rate. The sequences clustering with Nitrosospira sp. NpAV revealed the uniqueness of the AOB community and the simultaneously lower ability of adaptation of Nitrosospira sp. to the operational parameters applied in comparison with Nitrosomonas sp.

  14. Cohesive Soil Stabilized Using Sewage Sludge Ash/Cement and Nano Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Huan-Lin Luo

    2012-03-01

    Full Text Available In order to improve soft soil strength, a mixture of incinerated sewage sludge ash (SSA and cement was applied as a soil stabilizer. The intended mix ratio for SSA and cement was 3:1. A-6 clay was selected as the untreated soil. In this study, 15% of clay soil was replaced by SSA/cement to produce the treated soil specimens. Then, four different volumes, namely 0, 1, 2, and 3%, of nano-Al2O3 were mixed with the treated soil as an additive. Tests such as compaction, pH values, Atterberg limits, unconfined compressive strength (UCS, swell potential, California bearing ratio (CBR, and permeability were performed. The results indicate that both UCSs and CBR values of untreated soil were greatly improved by the use of 15% SSA/cement. Moreover, a 1% addition of nano-Al2O3 enhanced the treated soil in terms of both UCS and CBR values. Furthermore, the swell potential was effectively reduced by the use of 15% SSA/cement as compared with untreated soil and the 1% nano-Al2O3 additive fraction offered the best performance. From this study, we conclude that 15% of SSA/cement replacement could effectively stabilize A-6 clay soil, and 1% of nano-Al2O3 additive may be the optimum amount to add to the soil.

  15. Electricity Recovery from Municipal Sewage Wastewater Using a Hydrogel Complex Composed of Microbially Reduced Graphene Oxide and Sludge

    Directory of Open Access Journals (Sweden)

    Naoko Yoshida

    2016-08-01

    Full Text Available Graphene oxide (GO has recently been shown to be an excellent anode substrate for exoelectrogens. This study demonstrates the applicability of GO in recovering electricity from sewage wastewater. Anaerobic incubation of sludge with GO formed a hydrogel complex that embeds microbial cells via π-π stacking of microbially reduced GO. The rGO complex was electrically conductive (23 mS·cm−1 and immediately produced electricity in sewage wastewater under polarization at +200 mV vs. Ag/AgCl. Higher and more stable production of electricity was observed with rGO complexes (179–310 μA·cm−3 than with graphite felt (GF; 79–95 μA·cm−3. Electrochemical analyses revealed that this finding was attributable to the greater capacitance and smaller internal resistance of the rGO complex. Microbial community analysis showed abundances of Geobacter species in both rGO and GF complexes, whereas more diverse candidate exoelectrogens in the Desulfarculaceae family and Geothrix genus were particularly prominent in the rGO complex.

  16. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    Chang, H.L.

    1997-01-01

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  17. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance.

    Science.gov (United States)

    Jin, Lingyun; Zhang, Guangming; Zheng, Xiang

    2015-02-01

    A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability. Copyright © 2014. Published by Elsevier B.V.

  19. Ammonia-oxidizing bacteria and archaea in wastewater treatment plant sludge and nearby coastal sediment in an industrial area in China.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Wen, Donghui

    2015-05-01

    Under the increasing pressure of human activities, Hangzhou Bay has become one of the most seriously polluted waters along China's coast. Considering the excessive inorganic nitrogen detected in the bay, in this study, the impact of an effluent from a coastal industrial park on ammonia-oxidizing microorganisms (AOMs) of the receiving area was interpreted for the first time by molecular technologies. Revealed by real-time PCR, the ratio of archaeal amoA/bacterial amoA ranged from 5.68 × 10(-6) to 4.79 × 10(-5) in the activated sludge from two wastewater treatment plants (WWTPs) and 0.54-3.44 in the sediments from the effluent receiving coastal area. Analyzed by clone and pyrosequencing libraries, genus Nitrosomonas was the predominant ammonia-oxidizing bacteria (AOB), but no ammonia-oxidizing archaea (AOA) was abundant enough for sequencing in the activated sludge from the WWTPs; genus Nitrosomonas and Nitrosopumilus were the dominant AOB and AOA, respectively, in the coastal sediments. The different abundance of AOA but similar structure of AOB between the WWTPs and nearby coastal area probably indicated an anthropogenic impact on the microbial ecology in Hangzhou Bay.

  20. Factors affecting the consolidation of steam generator sludge

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C. W.; Shamsuzzaman, K.; Tapping, R. L.

    1993-02-15

    It is hypothesized that sludge consolidation is promoted by chemical reactions involving the various sludge constituents, although the hardness of the final product will also depend on the total porosity. Oxidizing conditions and higher temperatures produce a harder sludge. The precipitation of Zn{sub 2}SiO{sub 4}, a potential binding agent, may also promote sludge consolidation. Several solutions to prevent sludge consolidation are suggested. (Author) 3 figs., 4 tabs., 3 refs.

  1. Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan; Turney, Terence W.; Naidu, Ravi; Miller, Bradley W.; Scheckel, Kirk G. (U. South Australia); (EPA); (Monash)

    2013-01-14

    The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as a result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.

  2. Sludge cleaning in the steam generators: sludge Lancing e IBL

    International Nuclear Information System (INIS)

    Montoro, E.; Gonzalez, S.; Calderon, N.

    2013-01-01

    IBERDROLA Engineering and Construction has echoed the need for plants to remove oxide deposits (sludge) located on the secondary side, on the bottom plate and into the tube bundle steam steam generators. Therefore, and with its partner SAVAC SRA has developed a specific system consisting of applying a capillary water at very high pressure applied directly to the location of these oxides. (Author)

  3. Application of a novel functional gene microarray to probe the functional ecology of ammonia oxidation in nitrifying activated sludge.

    Directory of Open Access Journals (Sweden)

    Michael D Short

    Full Text Available We report on the first study trialling a newly-developed, functional gene microarray (FGA for characterising bacterial and archaeal ammonia oxidisers in activated sludge. Mixed liquor (ML and media biofilm samples from a full-scale integrated fixed-film activated sludge (IFAS plant were analysed with the FGA to profile the diversity and relative abundance of ammonia-oxidising archaea and bacteria (AOA and AOB respectively. FGA analyses of AOA and AOB communities revealed ubiquitous distribution of AOA across all samples - an important finding for these newly-discovered and poorly characterised organisms. Results also revealed striking differences in the functional ecology of attached versus suspended communities within the IFAS reactor. Quantitative assessment of AOB and AOA functional gene abundance revealed a dominance of AOB in the ML and approximately equal distribution of AOA and AOB in the media-attached biofilm. Subsequent correlations of functional gene abundance data with key water quality parameters suggested an important functional role for media-attached AOB in particular for IFAS reactor nitrification performance and indicate possible functional redundancy in some IFAS ammonia oxidiser communities. Results from this investigation demonstrate the capacity of the FGA to resolve subtle ecological shifts in key microbial communities in nitrifying activated sludge and indicate its value as a tool for better understanding the linkages between the ecology and performance of these engineered systems.

  4. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-03-01

    Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. K Basin sludge dissolution engineering study

    International Nuclear Information System (INIS)

    Westra, A.G.

    1998-01-01

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  6. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon.

    Science.gov (United States)

    Löschau, Margit

    2018-04-01

    This article describes a pilot test at a sewage sludge incineration plant and shows its results considering the impacts of reducing the minimum combustion temperature from 850°C to 800°C. The lowering leads to an actual reduction of the average combustion temperature by 25 K and a significant reduction in the fuel oil consumption for support firing. The test shall be used for providing evidence that the changed combustion conditions do not result in higher air pollutant emissions. The analysis focusses on the effects of the combustion temperature on nitrogen oxides (NO x ) and total organic carbon emissions. The evaluation of all continuously monitored emissions shows reduced emission levels compared to the previous years, especially for NO x .

  7. Processing method for radioactive sludge

    International Nuclear Information System (INIS)

    Shoji, Yuichi; Kaneko, Masaaki.

    1993-01-01

    The concentration of radioactive sludges contained in a storage tank is controlled, thereafter, a filter is charged into a processing vessel to continuously conduct dewatering. Then, the radioactive sludges and an oxidizer are mixed by stirring using a stirring impeller and by vibrations using a vibrator. At the same time, thermic rays are irradiated by using infrared ray lamps to heat and decompose them. Since thermic rays reach the center of the radioactive sludges by the infrared ray lamps, ion exchange resins are sufficiently decomposed and carbonized into inorganic material. Then, a filling hardener such as mortar cement having a good flowability is charged to solidify the wastes. With such procedures, radioactive sludges can be stored under a stable condition for a long period of time by decomposing organic materials into inorganic materials and solidifying them. Further, an operator's radiation exposure dose can remarkably be reduced by applying a predetermined and a stabilization treatment in an identical processing vessel. (N.H.)

  8. Environmental sustainability of wastewater sludge treatments

    DEFF Research Database (Denmark)

    Boyer-Souchet, Florence; Larsen, Henrik Fred

    treatment for municipal waste water. A special focus area in Neptune is sludge handling because the sludge amount is expected to increase due to advanced waste water treatment. The main sludge processing methods assessed in Neptune can be divided into two categories: disintegration processes before...... anaerobic digestion (thermal hydrolysis and ultrasound disintegration) and inertisation processes performed at high temperatures (incineration, pyrolysis, gasification, wet oxidation) but they all aim at volume reduction and removal of biodegradable compounds before safe sludge disposal or reuse of its...... resources. As part of a sustainability assessment (or “best practice evaluation”), a comparison between the existing and new sludge handling techniques have been done by use of life cycle assessment (LCA).The concept of induced impacts as compared to avoided impacts when introducing a new sludge treatment...

  9. Evaluation of zinc oxide nanoparticle toxicity in sludge products applied to agricultural soil using multispecies soil systems.

    Science.gov (United States)

    Fernández, María Dolores; Alonso-Blázquez, María Nieves; García-Gómez, Concepción; Babin, Mar

    2014-11-01

    To study the environmental impact of nanoparticles, the sludges of wastewater (WWTS) and water treatment (WTS) plants enriched with ZnO nanoparticles were added to agricultural soil, and the toxic effects of the nanoparticles were studied using a microcosm system based on the soil. The WWTS treated soils were characterised by statistically significant decreases (psoils, significant reductions (psoil phosphatase enzymatic activity decreased significantly (psoils), along with statistically significant dose-related inhibition responses on total glutathione cell content, and statistically significant dose-related induction responses on the glutathione S-transferase enzyme activity and the reactive oxygen species generation on the RTG-2 fish cell line. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Sludge busters

    International Nuclear Information System (INIS)

    Pichon, Max

    2010-01-01

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  11. Sludge busters

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Max

    2010-07-15

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  12. Pressurized Fluidized Bed Combustion of Sewage Sludge

    Science.gov (United States)

    Suzuki, Yoshizo; Nojima, Tomoyuki; Kakuta, Akihiko; Moritomi, Hiroshi

    A conceptual design of an energy recovering system from sewage sludge was proposed. This system consists of a pressurized fluidized bed combustor, a gas turbine, and a heat exchanger for preheating of combustion air. Thermal efficiency was estimated roughly as 10-25%. In order to know the combustion characteristics of the sewage sludge under the elevated pressure condition, combustion tests of the dry and wet sewage sludge were carried out by using laboratory scale pressurized fluidized bed combustors. Combustibility of the sewage sludge was good enough and almost complete combustion was achieved in the combustion of the actual wet sludge. CO emission and NOx emission were marvelously low especially during the combustion of wet sewage sludge regardless of high volatile and nitrogen content of the sewage sludge. However, nitrous oxide (N2O) emission was very high. Hence, almost all nitrogen oxides were emitted as the form of N2O. From these combustion tests, we judged combustion of the sewage sludge with the pressurized fluidized bed combustor is suitable, and the conceptual design of the power generation system is available.

  13. Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH.

    Science.gov (United States)

    Liu, Fenwu; Zhou, Lixiang; Zhou, Jun; Song, Xingwei; Wang, Dianzhan

    2012-06-30

    Bio-acidification caused by bio-oxidation of energy substances during bioleaching is widely known to play an important role in improving sludge-borne metals removal. Here we report that bioleaching also drastically enhances sludge dewaterability in a suitable pH level. To obtain the optimum initial concentrations of energy substances and pH values for sludge dewaterability during bioleaching, bio-oxidation of Fe(2+) and S(0) under co-inoculation with Acidithiobacillus thiooxidans TS6 and Acidothiobacillus ferrooxidans LX5 and their effects on sludge dewaterability and metals removal during sludge bioleaching were investigated. Results indicated that the dosage of energy substances with 2g/L S(0) and 2g/L Fe(2+) could obtain bio-oxidation efficiencies of up to 100% for Fe(2+) and 50% for S(0) and were the optimal dosages for sludge bioleaching. The removal efficiencies of sludge-borne Cu and Cr could reach above 85% and 40%, respectively, and capillary suction time (CST) of bioleached sludge decreased to as low as ∼10s from initial 48.9s for fresh sludge when sludge pH declined to ∼2.4 through bioleaching. These results confirm the potential of bioleaching as a novel method for improving sludge dewaterability as well as removal of metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment.

    Science.gov (United States)

    Ambuchi, John J; Zhang, Zhaohan; Shan, Lili; Liang, Dandan; Zhang, Peng; Feng, Yujie

    2017-06-15

    The accelerated use of iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs) in the consumer and industrial sectors has triggered the need to understand their potential environmental impact. The response of anaerobic granular sludge (AGS) to IONPs and MWCNTs during the anaerobic digestion of beet sugar industrial wastewater (BSIW) was investigated in this study. The IONPs increased the biogas and subsequent CH 4 production rates in comparison with MWCNTs and the control samples. This might be due to the utilization of IONPs and MWCNTs as conduits for electron transfer toward methanogens. The MWCNTs majorly enriched the bacterial growth, while IONP enrichment mostly benefitted the archaea population. Furthermore, scanning electron microscopy and confocal laser scanning microscopy revealed that AGS produced extracellular polymeric substances, which interacted with the IONPs and MWCNTs. This provided cell protection and prevented the nanoparticles from piercing through the membranes and thus cytotoxicity. The results provide useful information and insights on the adjustment of anaerobic microorganisms to the natural complex environment based on nanoparticles infiltration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yamin [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wei, Huangzhao; Zhao, Ying [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Sun, Wenjing [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Chenglin, E-mail: clsun@dicp.ac.cn [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-03-15

    Highlights: • The sludge derived carbon modified with 0 °C acid was used as catalyst in CWPO. • RSM was used to optimize CWPO reaction conditions of m-cresol for the first time. • The kinetic model was disclosed to be correlated with residue target concentration. • The proposed degradation pathways of m-cresol were well proven by DFT method. - Abstract: The sludge-derived carbon catalyst modified with 0 °C HNO{sub 3} solution was tested in catalytic wet peroxide oxidation of m-cresol (100 mg L{sup −1}) with systematical mathematical models and theoretical calculation for the first time. The reaction conditions were optimized by response surface methodology (RSM) as T = 60 °C, initial pH = 3.0, C{sub 0,H2O2(30%)} = 1.20 g L{sup −1} (lower than the stoichiometric amount of 1.80 g L{sup −1}) and C{sub cat} = 0.80 g L{sup −1}, with 96% of m-cresol and 47% of TOC converted after 16 min and 120 min of reaction, respectively, and ξ (mg TOC/g H{sub 2}O{sub 2} fed) = 83.6 mg/g. The end time of the first kinetic period in m-cresol model was disclosed to be correlated with the fixed residue m-cresol concentration of about 33%. Furthermore, the kinetic constants in models of TOC and H{sub 2}O{sub 2} exactly provide convincing proof of three-dimensional response surfaces analysis by RSM, which showed the influence of the interaction between organics and H{sub 2}O{sub 2} on effective H{sub 2}O{sub 2} utilization. The reaction intermediates over time were identified by gas chromatography–mass spectrometer based on kinetics analysis. Four degradation pathways for m-cresol were proposed, of which the possibility and feasibility were well proven by frontier molecule orbital theory and atomic charge distribution via density functional theory method.

  16. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    Sludge recovery machine comprising a hollow centrifuge, a vertical pipe for feeding in a liquid containing sludge and a sliding rake pressing against the internal wall of the centrifuge to dislodge and move the sludge, a power drive for spinning the centrifuge at high speed and a rotating drying table to take the sludge and dry it [fr

  17. Use of sludge as ceramic materials

    International Nuclear Information System (INIS)

    Morais, L.C.; Vianna, R.S.C.; Campos, V.; Rosa, A.H.; Buechler, P.M.

    2009-01-01

    Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves. (author)

  18. Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics

    DEFF Research Database (Denmark)

    Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq

    2017-01-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures......, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion...

  19. Phase chemistry and radionuclide retention from simulated tank sludges

    International Nuclear Information System (INIS)

    KRUMHANSL, JAMES L.; LIU, J.; ARTHUR, SARA E.; HUTCHERSON, SHEILA K.; QIAN, MORRIS; ANDERSON, HOWARD L.

    2000-01-01

    Decommissioning high level nuclear waste tanks will leave small amounts of residual sludge clinging to the walls and floor of the structures. The permissible amount of material left in the tanks depends on the radionuclide release characteristics of the sludge. At present, no systematic process exists for assessing how much of the remaining inventory will migrate, and which radioisotopes will remain relatively fixed. Working with actual sludges is both dangerous and prohibitively expensive. Consequently, methods were developed for preparing sludge simulants and doping them with nonradioactive surrogates for several radionuclides and RCRA metals of concern in actual sludges. The phase chemistry of these mixes was found to be a reasonable match for the main phases in actual sludges. Preliminary surrogate release characteristics for these sludges were assessed by lowering the ionic strength and pH of the sludges in the manner that would occur if normal groundwater gained access to a decommissioned tank. Most of the Se, Cs and Tc in the sludges will be released into the first pulse of groundwater passing through the sludge. A significant fraction of the other surrogates will be retained indefinitely by the sludges. This prolonged sequestration results from a combination coprecipitated and sorbed into or onto relatively insoluble phases such as apatite, hydrous oxides of Fe, Al, Bi and rare earth oxides and phosphates. The coprecipitated fraction cannot be released until the host phase dissolves or recrystallizes. The sorbed fraction can be released by ion exchange processes as the pore fluid chemistry changes. However, these releases can be predicted based on a knowledge of the fluid composition and the surface chemistry of the solids. In this regard, the behavior of the hydrous iron oxide component of most sludges will probably play a dominant role for many cationic radionuclides while the hydrous aluminum oxides may be more important in governing anion releases

  20. Placement of radium/barium sludges in tailings areas

    International Nuclear Information System (INIS)

    Murphy, K.L.; Multamaki, G.E.

    1980-01-01

    Currently radium is removed from uranium mining and milling effluents by the addition of barium chloride to precipitate the radium as radium/barium sulphate. The precipitate is allowed to settle in sedimentation basins prior to discharge of the effluent. The sedimentation basins are not suitable for final disposal of the sludge, and placement of the sludges in the tailings area has been proposed. The geochemical environment of fresh tailings areas was characterized as an acidic, oxidized surface zone underlain by an alkaline, reduced zone comprising the rest of the tailings. The quantity of sludge produced was estimated to be small relative to the quantity of tailings, and therefor a relatively small amount of radium would be added to the tailings disposal area by the addition of sludge. To confirm whether sludge addition affected radionuclide solubilization, laboratory leaching tests were conducted on slurries of acid leach tailings, and sludge-tailings mixtures. Radium in the (Ra,Ba)SO 4 sludge was at least as stable as radium in the tailings, and the sludge was able to absorb radium released from the tailings. The addition of sludge did not affect uranium and thorium solubilization. From these results it appears that the placement of sludge in tailings areas would not adversely affect the stability of radionuclides in the tailings or sludge. (auth)

  1. Sewage sludge treatment and disposal. Experiences and perspectives; Klaerschlammbehandlung und -entsorgung. Erfahrungen und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Dichtl, N.; Mueller, J. [comps.] [Technische Univ. Braunschweig (Germany). Inst. fuer Siedlungswasserwirtschaft

    1997-09-01

    Topics of the proceedings are: sewage sludge treatment and sewage sludge disposal by means of: thermal treatment, fermentation, composting, wet oxidation, hydrolysis, disposal in agriculture, economical aspects of sewage sludge treatment. This book deals with theoretical aspects and practical examples. (SR)

  2. Municipal sludge disposal economics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J L [SRI International, Menlo Park, CA; Bomberger, Jr, D C; Lewis, F M

    1977-10-01

    Costs for disposal of sludges from a municipal wastewater treatment plant normally represents greater than or equal to 25% of the total plant operating cost. The following 5 sludge handling options are considered: chemical conditioning followed by vacuum filtration, and incineration; high-pressure wet-air oxidation and vacuum filtration or filter press prior to incineration; thermal conditioning, vacuum filtraton, and incineration; high-pressure wet-air oxidation and vacuum filtration, with ash to landfill; aerobic or anaerobic digestion, followed by chemical conditioning, vacuum filtration, and disposal on land; and chemical conditioning, followed by a filter press, flash dryer, and sale as fertilizer. The 1st 2 options result in the ultimate disposal of small amounts of ash in a landfill; the digestion options require a significant landfill; the fertilizer option requires a successful marketing and sales effort. To compare the economies of scale for the options, analyses were performed for 3 plant capacities - 10, 100, and 500 mgd; as plant size increases, the economies of scale for incineration system are quite favorable. The anaerobic digestion system has a poorer capital cost-scaling factor. The incinerator options which start with chemical conditioning consume much less electrical power at all treatment plant sizes; incinerator after thermal conditioning uses more electricity but less fuel. Digestion requires no direct external fossil fuel input. The relative use of fuel is constant at all plant sizes for other options. The incinerator options can produce a significant amount of steam which may be used. The anaerobic digestion process can be a significant net producer of fuel gas.

  3. Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil surrounding sludge bands spiked with linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Brandt, K. K.; Sørensen, J.; Krogh, P. H.

    2003-01-01

    Recent research has documented soil microorganisms to be rather sensitive to linear alkylbenzene sulfonates (LAS), which may enter the soil environment in considerable quantities following sewage sludge disposal. We here report field effects of LAS on selected microbial populations present in a s...

  4. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration.

    Science.gov (United States)

    Wang, Fen; Wang, Yong; Ji, Min

    2005-08-31

    Ultrasonic energy can be applied as pre-treatment to disintegrate sludge flocs and disrupt bacterial cells' walls, and the hydrolysis can be improved, so that the rate of sludge digestion and methane production is improved. In this paper, by adding NaHCO3 to mask the oxidizing effect of OH, the mechanisms of disintegration are investigated. In addition, kinetics models for ultrasonic sludge disintegration are established by applying multi-variable linear regression method. It has been found that hydro-mechanical shear forces predominantly responsible for the disintegration, and the contribution of oxidizing effect of OH increases with the amount of the ultrasonic density and ultrasonic intensity. It has also been inferred from the kinetics model which dependent variable is SCOD+ that both sludge pH and sludge concentration significantly affect the disintegration.

  5. Method of treating radioactive sludge waste

    International Nuclear Information System (INIS)

    Shoji, Yuichi; Matsuura, Hiroyuki; Ichihashi, Toshio

    1989-01-01

    For removing water content from sludge wastes, filtration or steam condensation may be considered, but none of them can sufficiently reduce the water content since filtration may cause clogging and steam treatment has a limit in the condensation. In view of the above, radioactive sludge wastes are dehydrated by an electroosmotic process in a vessel and then dehydrated solid contents are solidified in the vessel. Since the sludge wastes are mainly composed o fion exchange resins and iron oxides deposited to the resins, when a DC voltage is applied to the sludges containing such solid contents, a force tending to premeate them through the fine pores in the filter is exerted to water. As a result, only water is removed while the solids are being held on the filters. Since the moving direction of water is different depending on the property of the sludges, the polarity of the electrodes may be changed depending on the nature of the sludges. Thus, volume reduction can be improved and treating conditions can be controlled easily by a simple device. (N.H.)

  6. Comprehensive characterisation of sewage sludge for thermochemical conversion processes - Based on Singapore survey.

    Science.gov (United States)

    Chan, Wei Ping; Wang, Jing-Yuan

    2016-08-01

    Recently, sludge attracted great interest as a potential feedstock in thermochemical conversion processes. However, compositions and thermal degradation behaviours of sludge were highly complex and distinctive compared to other traditional feedstock led to a need of fundamental research on sludge. Comprehensive characterisation of sludge specifically for thermochemical conversion was carried out for all existing Water Reclamation Plants in Singapore. In total, 14 sludge samples collected based on the type, plant, and batch categorisation. Existing characterisation methods for physical and chemical properties were analysed and reviewed using the collected samples. Qualitative similarities and quantitative variations of different sludge samples were identified and discussed. Oxidation of inorganic in sludge during ash forming analysis found to be causing significant deviations on proximate and ultimate analysis. Therefore, alternative parameters and comparison basis including Fixed Residues (FR), Inorganic Matters (IM) and Total Inorganics (TI) were proposed for better understanding on the thermochemical characteristics of sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  8. Respirometry in activated sludge

    NARCIS (Netherlands)

    Spanjers, H.

    1993-01-01

    The purpose of the study was (1) to develop a respiration meter capable of continuously measuring, using different procedures, the oxygen uptake rate of activated sludge and (2) to expand knowledge about respiration related characteristics of wastewater and activated sludge.

    A

  9. Carbon-14 in sludge

    International Nuclear Information System (INIS)

    Fowler, J.R.; Coleman, C.J.

    1983-01-01

    The level of C-14 in high-level waste is needed to establish the amount of C-14 that will be released to the environment either as off-gas from the Defense Waste Processing Facility (DWPF) or as a component of saltstone. Available experimental data confirmed a low level of C-14 in soluble waste, but no data was available for sludge. Based on the processes used in each area, Purex LAW sludge in F-area and HM HAW sludge in H-area will contain the bulk of any sludge produced by the cladding. Accordingly, samples from Tank 8F containing Purex LAW and Tank 15H containing HM HAW were obtained and analyzed for C-14. These two waste types constitute approximately 70% of the total sludge inventory now stored in the waste tanks. Results from analyses of these two sludge types show: the total C-14 inventory in sludge now stored in the waste tanks is 6.8 Ci; C-14 releases to the atmosphere from the DWPF will average approximately 0.6 Ci annually at the projected sludge processing rate in the DWPF. 4 references, 2 tables

  10. Sulfur transformations related to revegetation of flue gas desulfurization sludge disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Barlas, S.A.; Artiola, J.F.; Salo, L.F.; Goodrich-Mahoney, J.W. [University of Arizona, Tucson, AZ (United States). Dept. of Soil, Water and Environmental Sciences

    1999-10-01

    This study investigated factors controlling redox conditions in flue gas desulfurization (FGD) sludge and identified ways to minimize the production of phytotoxic reduced sulfur species at FGD sludge disposal sites. The oxidation of reduced FGD sludge (Eh-385 mV) appears to be a two-step process mostly controlled by water content. Eighty percent of total sulfide in reduced sludge was oxidized within 20 h of exposure to air with constant water evaporation. When organic carbon (OC) was added to saturated oxidized sludge, the Eh dropped exponentially. Sulfate reduction began at an Eh of about -75 mV and reached a maximum at -265 to -320 mV. Water content, degree of mixing, concentration of OC, and temperature control the rate and extent of reduction of FGD sludge. This suggests that water saturation and OC inputs to revegetated disposal sites should be controlled, especially during warm temperatures, to prevent production of phytotoxic levels of sulfides.

  11. Activated sludge model No. 3

    DEFF Research Database (Denmark)

    Gujer, W.; Henze, M.; Mino, T.

    1999-01-01

    The Activated Sludge Model No. 3 (ASM3) can predict oxygen consumption, sludge production, nitrification and denitrification of activated sludge systems. It relates to the Activated Sludge Model No. 1 (ASM1) and corrects for some defects of ASM I. In addition to ASM1, ASM3 includes storage of org...

  12. Sludge minimization technologies - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, Hallvard

    2003-07-01

    The management of wastewater sludge from wastewater treatment plants represents one of the major challenges in wastewater treatment today. The cost of the sludge treatment amounts to more that the cost of the liquid in many cases. Therefore the focus on and interest in sludge minimization is steadily increasing. In the paper an overview is given for sludge minimization (sludge mass reduction) options. It is demonstrated that sludge minimization may be a result of reduced production of sludge and/or disintegration processes that may take place both in the wastewater treatment stage and in the sludge stage. Various sludge disintegration technologies for sludge minimization are discussed, including mechanical methods (focusing on stirred ball-mill, high-pressure homogenizer, ultrasonic disintegrator), chemical methods (focusing on the use of ozone), physical methods (focusing on thermal and thermal/chemical hydrolysis) and biological methods (focusing on enzymatic processes). (author)

  13. Hydrogen production during processing of radioactive sludge containing noble metals

    International Nuclear Information System (INIS)

    Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

    1992-01-01

    Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 x10 -7 g H 2 /hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 x10 -4 g H 2 /hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges

  14. New technology for recyclingmaterials from oily cold rollingmill sludge

    Science.gov (United States)

    Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Meng, Ling; Liu, Yang

    2013-12-01

    Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new process of "hydrometallurgical treatment + hydrothermal synthesis" was investigated for the combined recovery of iron and organic materials from oily CRM sludge. Hydrometallurgical treatment, mainly including acid leaching, centrifugal separation, neutralization reaction, oxidizing, and preparation of hydrothermal reaction precursor, was first utilized for processing the sludge. Then, micaceous iron oxide (MIO) pigment powders were prepared through hydrothermal reaction of the obtained precursor in alkaline media. The separated organic materials can be used for fuel or chemical feedstock. The quality of the prepared MIO pigments is in accordance with the standards of MIO pigments for paints (ISO 10601-2007). This clean, effective, and economical technology offers a new way to recycle oily CRM sludge.

  15. Dewatering of sludges

    International Nuclear Information System (INIS)

    Bode, P.

    1984-01-01

    A filter rig has been designed and built. Simulated magnox and alumino ferric hydroxide sludges have been successfully filtered on this equipment and both types of sludge produced a clear filtrate and a cake. The flow rates were low. The cake often partially remained adhered to the filter membrane instead of dropping clear during the filter cleaning cycle. This filtration technique can only be used on sludges which form a non-binding cake. Permeability of the membrane can be altered by stretching. Irradiation of the membrane showed that it should withstand 20 to 50 M.rads. (author)

  16. Oxidative-Alkaline Leaching of Washed 241-SY-102 and 241-SX-101 Tank Sludges and Its Impact on Immobilized High-Level Waste

    International Nuclear Information System (INIS)

    Rapko, Brian M.; Geeting, John GH; Sinkov, Sergei I.; Vienna, John D.

    2006-01-01

    This report describes work designed to evaluate the effectiveness of alkaline permanganate contacts at selectively removing chromium from the Hanford tank sludges 241-SY-102 and 241-SX-101. The key variables examined in this study, as compared to contact with the standard conditions of stoichiometric permanganate in 3 M hydroxide at elevated temperature, were: (a) excess permanganate and hydroxide at elevated temperature, (b) the separation of an elevated temperature 3 M hydroxide leach with either a room temperature permanganate contact or an elevated temperature permanganate contact at 0.25 M hydroxide. It was determined that sequential permanganate and caustic leaching can provide as effective removal of Cr as the combined high hydroxide permanganate contact at elevated temperature while minimizing concomitant Pu dissolution

  17. Heavy metals speciation in soils treated with sewage sludges

    International Nuclear Information System (INIS)

    Forero Hernandez, Adriana; Ballesteros Gonzalez, Maria Ines

    2004-01-01

    The chemical speciation in soils that had been treated with sewage sludge was determined to find out what had occurred to the heavy metals present. This was done nine weeks after sludge application. An incubation assay was realized using 2.5 % w/w sludge level; this is equivalent to 81.5 ton of sludge per hectare. Pots filled with sludge-soil mixture were placed in a greenhouse at temperature between 17 and 25 Celsius degrade, humidity at field capacity distributed in accordance with a random experimental design with four replicates and seven treatments. It was found that the concentration of Cd, Cu, Mn, Pb, and Zn was lower than the limits established by the environmental protection agency (EPA) for soil usage. Also, the organic carbon content, the available nitrogen and phosphorus were in the normal concentration range reported for organic fertilizers. The sludge addition to the soil gave significant increase of the fraction of Cd bounded to organic material as compared with the exchangeable fraction and the fraction bounded to iron-manganese oxides. Cooper showed more affinity for the fraction of iron-manganese oxides. Lead gave a fraction bounded to organic material that was absent in the witness samples. Zinc had a bigger proportion in the fraction associated with iron manganese oxides. Manganese as compared with the other metals showed the biggest unchangeable fraction

  18. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.; Gevaudan, P.P.

    1977-01-01

    There is a hygienic risk in using biological sewage sludges for agriculture. Systematic analyses carried out on sludge samples obtained from purification plants in the Eastern and Southern part of France, show the almost uniform presence of pathogenic microorganisms. Some of them survive more than nine months after application to the soil. Conventional processes for disinfection, liming and heat, make the sludge unsuitable for agricultural use. On the other hand, irradiation involves no modification of structure and composition of sludges. Radiation doses required for disinfection vary according to the type of microorganism. Some of them are eliminated at rather low doses (200 krad), but mycobacteria, viruses and eggs of worms resist to more important doses. The security dose is estimated to be approx. 1000 krad

  19. Sludge technology assessment

    International Nuclear Information System (INIS)

    Krause, T.R.; Cunnane, J.C.; Helt, J.E.

    1994-12-01

    The retrieval, processing, and generation of final waste forms from radioactive tank waste sludges present some of the most challenging technical problems confronting scientists and engineers responsible for the waste management programs at the various Department of Energy laboratories and production facilities. Currently, the Department of Energy is developing a strategy to retrieve, process, and generate a final waste form for the sludge that meets the acceptance criteria for the final disposition. An integral part of this strategy will be use of separation processes that treat the sludge; the goal is to meet feed criteria for the various processes that will generate the final waste form, such as vitrification or grouting. This document is intended to (1) identify separation technologies which are being considered for sludge treatment at various DOE sites, (2) define the current state of sludge treatment technology, (3) identify what research and development is required, (4) identify current research programs within either DOE or academia developing sludge treatment technology, and (5) identify commercial separation technologies which may be applicable. Due to the limited scope of this document, technical evaluations regarding the need for a particular separations technology, the current state of development, or the research required for implementation, are not provided

  20. Sludge Stabilization Campaign blend plan

    International Nuclear Information System (INIS)

    De Vries, M.L.

    1994-01-01

    This sludge stabilization blend plan documents the material to be processed and the order of processing for the FY95 Sludge Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing sludge. The source of the sludge is residual and glovebox floor sweepings from the production of material at the Plutonium Finishing Plant (PFP). The reactive sludge is currently being stored in various gloveboxes at PFP. There are two types of the plutonium bearing material that will be thermally stabilized in the muffle furnace: Plutonium Reclamation Facility (PRF) sludge and Remote Mechanical C (RMC) Line material

  1. Test plan, sludge retrieval, sludge packaging

    International Nuclear Information System (INIS)

    Feigenbutz, L.V.

    1994-01-01

    This document provides direction for the cold testing of tools, equipment and systems which will be installed and operated in K-East (KE) Basin in support of the sludge retrieval and packaging project. The technical uncertainties related to the effectiveness of sludge retrieval procedures and equipment require that cold testing be completed before installation in KE Basin to identify and resolve existing problems, and to optimize the efficiency of all equipment and systems used. This plan establishes the responsibilities, test requirements, and documentation requirements necessary to complete cold tests of: (1) equipment with no potential for plant use; (2) prototype equipment and systems which may be upgraded for use in K-Basin; and (3) plant equipment and systems requiring cold acceptance testing prior to plant use. Some equipment and systems may have been subject to a formal design review and safety assessment; the results of which will be included as supporting documents to the operational readiness review (ORR)

  2. Effect of potassium ferrate on disintegration of waste activated sludge (WAS).

    Science.gov (United States)

    Ye, Fenxia; Ji, Haizhuang; Ye, Yangfang

    2012-06-15

    The activated sludge process of wastewater treatment results in the generation of a considerable amount of excess activated sludge. Increased attention has been given to minimization of waste activated sludge recently. This paper investigated the effect of potassium ferrate oxidation pretreatment on the disintegration of the waste activated sludge at various dosages of potassium ferrate. The results show that potassium ferrate pretreatment disintegrated the sludge particle, resulting in the reduction of total solid content by 31%. The solubility (SCOD/TCOD) of the sludge increased with the increase of potassium ferrate dosage. Under 0.81 g/g SS dosage of potassium ferrate, SCOD/TCOD reached 0.32. Total nitrogen (TN) and total phosphorous (TP) concentrations in the solution all increased significantly after potassium ferrate pretreatment. The sludge particles reduced from 116 to 87 μm. The settleability of the sludge (SVI) was enhanced by 17%, which was due to the re-flocculation by the by-product, Fe(III), during potassium ferrate oxidation and the decrease of the viscosity. From the result of the present investigations, it can be concluded that potassium ferrate oxidation is a feasible method for disintegration of excess activated sludge. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Energy potential of the modified excess sludge

    Directory of Open Access Journals (Sweden)

    Zawieja Iwona

    2017-01-01

    Full Text Available On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4, it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  4. Energy potential of the modified excess sludge

    Science.gov (United States)

    Zawieja, Iwona

    2017-11-01

    On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4), it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  5. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    International Nuclear Information System (INIS)

    Erpenbeck, E.G.; Leshikar, G.A.

    2011-01-01

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentially agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.

  6. Environmentally safe management of radioactive and toxic sludges

    International Nuclear Information System (INIS)

    Shingarev, N.E.; Mukhin, I.V.; Polyakov, A.S.; Raginsky, L.S.; Semenov, B.A.

    2000-01-01

    Toxic industrial wastes constitute a significant part of Russian natural environment. The most reliable route to provide the long-term ecologic safety involves removal of toxicants or radioactive substances from polluted sites. With a view of processing toxic and radioactive sludges available in reservoirs, a process flowsheet is suggested that comprises the operations of sludge concentration, dehydration and granulation.Flocculation is an operation required to concentrate a solid phase. Polyacrylamide (PAA) and hydrolyzed PAA (HPAA) are standard flocculating agents used in the processing of sludges coming from storage facilities of radioactive wastes. HPAA is less efficient and it is shown that the optimized concentration of PAA is 4 mg/g solid. Flotation agents are used to extract the solid phase of sludges, it is shown that the process of extraction has to be carried out in 2 stages, the first flotation cycle with a Ph value between 7.5 and 9.5 and the second with a Ph adjustment to 3.5-6.0.The cake resulting from the sludge filtration has poor technological properties, it is advisable to produce a granular material. Hydro-granulation using hydrophobic flocculating agents may be implemented immediately after sludge concentration. The other granulation technique involves the sol-gel process used to incorporate sludge into a ceramic (aluminium oxide) matrix

  7. Application of radiation technology to sewage sludge processing: A review

    International Nuclear Information System (INIS)

    Wang Jianlong; Wang Jiazhuo

    2007-01-01

    Sewage sludge is unwanted residual solid wastes generated in wastewater treatment and its management is one of the most critical environmental issues of today. The treatment and disposal of sludge contribute a considerable proportion of the cost for running a wastewater treatment plant. The increasing amount of swage sludge and more and more legislative regulation of its disposal have stimulated the need for developing new technologies to process sewage sludge efficiently and economically. One ideal consideration is to recycle it after proper treatment. Radiation technology is regarded to be a promising alternative for its high efficiency in pathogen inactivation, organic pollutants oxidation, odor nuisance elimination and some other characteristics enhancement, which will facilitate the down-stream process of sludge treatment and disposal. Here we present a brief review of application of radiation technology on sewage sludge processing. Some basic information of two currently available irradiation systems and fundamental radiation chemistry are introduced firstly; then the world-wide application of this promising technology is reviewed; various effects of radiation on sludge is discussed in detail; and some concluding remarks are given and some future directions are also proposed

  8. Energy uses and recovery in sludge disposal, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J L [Stanford Research Inst., Menlo Park, CA; Bomberger, D C; Lewis, F M

    1977-08-01

    Capital and operating costs were compared for 3 plant capacities having average dry weather flows of 10, 100, and 500 mgd. Five sludge handling options were considered. They were chemical conditioning with vacuum filtration, low pressure wet air oxidation, high pressure wet air oxidation aerobic and anaerobic digestion, and chemical oxidation with filter press dewatering. The plant sizes considered generated 11.5, 77, and 384 TPD of sludge. High pressure wet air oxidation and aerobic digestion operating costs were the most sensitive to electrical power costs, while the 2 incineration options without heat treatment were the least sensitive. Sludge drying and incineration of a 20% solids cake were the most sensitive to fuel costs, while aerobic and anaerobic digestion were not directly affected. Heat treatment of sludge and dewatering to a 40% cake had the lowest fuel requirements of the 3 incineration options but increased the total plant electric power consumption by >25%. The net Btus consumed were compared. The net consumption was lowest for anaerobic digestion, filter press plus incineration, and heat treatment plus incineration. Excluding heat recovery credit except for steam required in sludge heat treating, these 3 options are still lowest in net Btus consumed.

  9. Remediation and production of low-sludge high-level waste glasses

    International Nuclear Information System (INIS)

    Ramsey, W.G.; Brown, K.G.; Beam, D.C.

    1994-01-01

    High-level radioactive sludge will constitute 24-28 oxide weight percent of the high-level waste glass produced at the Savannah River Site. A recent melter campaign using non-radioactive, simulated feed was performed with a sludge content considerably lower than 24 percent. The resulting glass was processed and shown to have acceptable durability. However, the durability was lower than predicted by the durability algorithm. Additional melter runs were performed to demonstrate that low sludge feed could be remediated by simply adding sludge oxides. The Product Composition Control System, a computer code developed to predict the proper feed composition for production of high-level waste glass, was utilized to determine the necessary chemical additions. The methodology used to calculate the needed feed additives, the effects of sludge oxides on glass production, and the resulting glass durability are discussed

  10. Recycle of valuable products from oily cold rolling mill sludge

    Science.gov (United States)

    Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Liu, Yang; Volinsky, Alex A.

    2013-10-01

    Oily cold rolling mill (CRM) sludge contains lots of iron and alloying elements along with plenty of hazardous organic components, which makes it as an attractive secondary source and an environmental contaminant at the same time. The compound methods of "vacuum distillation + oxidizing roasting" and "vacuum distillation + hydrogen reduction" were employed for the recycle of oily cold rolling mill sludge. First, the sludge was dynamically vacuum distilled in a rotating furnace at 50 r/min and 600°C for 3 h, which removed almost hazardous organic components, obtaining 89.2wt% ferrous resultant. Then, high purity ferric oxide powders (99.2wt%) and reduced iron powders (98.9wt%) were obtained when the distillation residues were oxidized and reduced, respectively. The distillation oil can be used for fuel or chemical feedstock, and the distillation gases can be collected and reused as a fuel.

  11. Types and treatment of sewage sludges: Practice in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Tabasaran, M.O.

    1975-01-01

    The sludge that is formed by the various processes in the sewage treatment plant consists mainly of water with a small amount of organic and inorganic suspended solids. It contains pathogenic agents and biological inhibitors, and must be prepared and brought into a form where it is less dangerous to the environment. The de-watering of the sludge is the first step in sludge handling. The solids content of the raw sludge, which is usually between 5 and 10%, can be increased by gravity thickening to 15%, by centrifuging or straining-band-pressing up to 30%, and by pressure-filtration up to 40%. The process of drying enables a substance with almost no moisture to be obtained. Generally the sludge will be either mixed before de-watering with coagulation agencies, or preheated, or its colloidal components biochemically oxidized in order to accelerate the withdrawal of the water. One of the most common methods of disposal is the transport of sludge to a land filling, usually together with the solid refuse of the community. For this purpose the moisture content of the sludge should not be more than 60 to 70 percent. The disposal of sludge into the sea can be practised in coastal towns, but the ecological effects of this kind of sludge removal are still disputed. More expedient is the agricultural utilization of sludge, particularly if the sludge is composted together with a carbon carrier such as city refuse which would make it a very suitable soil improver. In the Federal Republic of Germany the wet oxidation of sludge is applied in a few cases. The most common process is anaerobic alkaline digestion. The incineration of sludge is more economical than drying, but still too, expensive in comparison with other approved processes. (author)

  12. Sludge lancing and IBL: Results and experiences in the Spanish NPP; SLUDGE LANCING e IBL: Resultados y experiencias en las central espanolas

    Energy Technology Data Exchange (ETDEWEB)

    Montoro, E.; Pozo, C. del

    2013-07-01

    During the cycle of operation of the PWR plants, oxides (sludge) tanks are generated in the secondary circuit by corrosion, chemical additives, etc which are deposited onto the tubular steam generators (GVs), limiting its efficiency and service life.

  13. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  14. Sludge Lancing IBL: results and experiences in the Spanish NPP's

    International Nuclear Information System (INIS)

    Montoro, E.; Pozo, C. del

    2014-01-01

    During the operation cycle of the PWR plants, oxides deposits (sludge) generated in the secondary circuit by erosion corrosion, chemical additives, etc. Which are deposited on the tube plate of GVs, limiting their efficiency and lifespan. To reduce them, Iberdrola Engineering and Construction, together with SRA SAVAC cleaned by high-pressure water means and tele visual inspection between tubes of the GVs. After Sludge Lancing cleanings performed by 250 bar from the center line, an area of solidified sludge remaining on the tubular plate was identified. Late 2010, Iberdrola Engineering and Construction, together with SRA SAVAC developed the Inner Bundle Lancing (IBL) system, which is based on a jet of water of high pressure>500 bar directly impacting areas of hard sludge within the tube bundle to detach and break the deposits into small pieces that can be extracted from GV through a closed circuit suction. (Author)

  15. RELATIONSHIP BETWEEN SLUDGE DEWATERABILITY NUMBER ...

    African Journals Online (AJOL)

    A representative of a sludge sample collected from the same source was filtered under the same environmental condition and the result analysed with two different concepts. One method of analysis uses Sludge Dewaterability Number, while the second employed the Carman's Specific resistance concept in sludge ...

  16. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods.

    Science.gov (United States)

    Liu, Fenwu; Zhou, Jun; Wang, Dianzhan; Zhou, Lixiang

    2012-01-01

    The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121 degrees C for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4(+)-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4(+)-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of sludge

  17. Treatment of spent nuclear fuel L-basin sludge

    International Nuclear Information System (INIS)

    Westover, B.L.; Oji, L.N.; Martin, H.L.; Nichols, D.M.

    1997-01-01

    Each production reactor at the DOE Savannah River Site (SRS) has a disassembly basin whose primary purpose is to cool irradiated production fuel and target. The disassembly basins also provide a shielded environment for personnel. Material has historically resided in the basins for 6 to 12 months. Increases in basin storage time have occurred, and have caused the buildup of a sludge layer on the basin floors to be greater than historical levels. The sludge is composed primarily of inorganic oxide and hydroxide corrosion products. The sludge layer has increased the turbidity and conductivity of the basin water, contributed to fuel corrosion, and has impacted fuel handling operations. Initial characterization of the sludge indicates that it is a low-level radioactive aqueous waste. This evaluation looked at methods to separate the sludge into its liquid and solid phases. The experimental data obtained during this evaluation clearly shows that a filtration-based approach to dewatering using an Oberlin pressure filtration unit at SRS is possible. This research task was to identify and optimize filtration and settling parameters pursuant sludge processing. The research specifically addressed: choice of filter aid, filter aid to sludge ratio, choice and dosage of polymer flocculation and settling agents, and the determination of Kynch curve settling parameters. Two commercial perlite filter-aids were identified as the most suitable. Of 11 water soluble flocculating polymers evaluated, 3 cationic commercial types formed stable flocs in the screening tests. In low doses, the flocculating polymers also enhanced sludge particle settling and decreased filtrate turbidity. The filtration cake from the sludge can be solidified to meet waste acceptance and storage criteria. However, the conductivity of the remaining filtrate does not meet Reactor Area Return Water criteria and may require a secondary filtration process. 2 refs., 14 figs., 5 tabs

  18. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.

    1977-01-01

    There is an hygienic risk in using biological sewage sludges for agriculture. Systematic analysis carried out on sludges samples obtained from purification plants in East and South part of France, show the almost uniform presence of pathogenic microorganisms. Some of it survive more than 9 months after soil application. Conventional process for disinfection: liming and heat are not suitable for agricultural use. On the other hand, irradiation involves no modification in structure and composition of sludges. Radiation doses required for disinfection vary according to microorganisms. If some of them are eliminated with rather light doses (200 krad) mycobacteria, viruses and eggs of worms resist to more important doses. Security dose is estimated around 1000 krad

  19. Charcoal from paper sludge

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M

    1980-03-06

    Paper sludge containing less than or equal to 50% water is mixed with coffee shells and greater than or equal to 1 almond shells, orange skin, walnut shells, or bean jam waste, compacted, and dry distilled at 300-600 degrees to prepare charcoal. Thus, 1 ton of paper sludge was mixed with 100 kg each of coffee shells, almond shells, orange skin, and walnut shells; compacted and dry distilled 24 hours at approximately 450 degrees. The calorific value of the charcoal produced was approximately 7300 kcal/kg.

  20. Characterization study on secondary sewage sludge for replacement in building materials

    Science.gov (United States)

    Kadir, Aeslina Abdul; Sarani, Noor Amira; Aziz, Nurul Sazwana A.; Hamdan, Rafidah; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    Recently, environmental issues continually increased since expanded in industrial development and grown in population. Regarding to this activity, it will cause lack management of waste such as solid waste from wastewater treatment plant called sewage sludge. This research presents the characteristic study of sewage sludge, regardless of whether it is appropriate or not to be applied as building materials. The sewage sludge samples were collected from secondary treatment at Senggarang and Perwira under Indah Water Konsortium (IWK) treatment plant. Raw materials were tested with X-ray Fluorescence (XRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) in order to determine the composition of sewage sludge and heavy metal concentration contains in sewage sludge. From the study, it was found that sewage sludge contained high amount of Silica Oxide (SiO2) with 13.6%, Sulphur Trioxide (SO3) with 12.64% and Iron Oxide (Fe2O3) with 8.7% which is similar in clay. In addition, sewage sludge also high in Iron (Fe) with 276.2 mg/L followed by Zinc (Zn) with concentration 45.41 mg/L which sewage sludge cannot be directly disposed to landfill. Results from this study demonstrated that sewage sludge has high possibility to be reused as alternative building materials such as bricks and have compatible chemical composition with clay.

  1. Seasonal changes in bacterial counts and radiation-disinfection of sewage sludge

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Ito, Hitoshi; Takehisa, Masaaki; Iizuka, Hiroshi.

    1981-01-01

    The effect of radiation on sewage sludge was investigated to disinfect it. The results obtained were as follows: 1. In either activated sludge or digested sludge dewatered by centrifugation, total bacteria and coliforms were up to 3.0 x 10 9 /g and 3.5 x 10 8 /g, respectively. In the activated sludge which was dewatered by a filter-press with calcium oxide and iron chloride, total bacteria were up to 3.0 x 10 5 /g, while coliforms were hardly detected. 2. The fraction of coliforms was somewhat more in centrifuged sludge than in raw sludge. 3. The radiosensitivity of coliforms in raw sludge differed between samples. Namely, some sludge was sterilized with 0.5 Mrad while others were not sterilized even with 1.0 Mrad. On the other hand, coliforms in dewatered sludge were sterilized with 0.5 Mrad without seasonal change, but total bacteria were more radioresistant and more than 13 Mrad was required to reduce it to an undetectable level. From these results it is concluded that the dewatered sludge should be irradiated at 0.5 Mrad to eliminate the coliforms in it. (author)

  2. Effects of Time, Heat, and Oxygen on K Basin Sludge Agglomeration, Strength, and Solids Volume

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Daniel, Richard C.; Burns, Carolyn A.

    2011-01-04

    Sludge disposition will be managed in two phases under the K Basin Sludge Treatment Project. The first phase is to retrieve the sludge that currently resides in engineered containers in the K West (KW) Basin pool at ~10 to 18°C. The second phase is to retrieve the sludge from interim storage in the sludge transport and storage containers (STSCs) and treat and package it in preparation for eventual shipment to the Waste Isolation Pilot Plant. The work described in this report was conducted to gain insight into how sludge may change during long-term containerized storage in the STSCs. To accelerate potential physical and chemical changes, the tests were performed at temperatures and oxygen partial pressures significantly greater than those expected in the T Plant canyon cells where the STSCs will be stored. Tests were conducted to determine the effects of 50°C oxygenated water exposure on settled quiescent uraninite (UO2) slurry and a full simulant of KW containerized sludge to determine the effects of oxygen and heat on the composition and mechanical properties of sludge. Shear-strength measurements by vane rheometry also were conducted for UO2 slurry, mixtures of UO2 and metaschoepite (UO3•2H2O), and for simulated KW containerized sludge. The results from these tests and related previous tests are compared to determine whether the settled solids in the K Basin sludge materials change in volume because of oxidation of UO2 by dissolved atmospheric oxygen to form metaschoepite. The test results also are compared to determine if heating or other factors alter sludge volumes and to determine the effects of sludge composition and settling times on sludge shear strength. It has been estimated that the sludge volume will increase with time because of a uranium metal → uraninite → metaschoepite oxidation sequence. This increase could increase the number of containers required for storage and increase overall costs of sludge management activities. However, the volume

  3. Effects of Time, Heat, and Oxygen on K Basin Sludge Agglomeration, Strength, and Solids Volume

    International Nuclear Information System (INIS)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Daniel, Richard C.; Burns, Carolyn A.

    2011-01-01

    Sludge disposition will be managed in two phases under the K Basin Sludge Treatment Project. The first phase is to retrieve the sludge that currently resides in engineered containers in the K West (KW) Basin pool at ∼10 to 18 C. The second phase is to retrieve the sludge from interim storage in the sludge transport and storage containers (STSCs) and treat and package it in preparation for eventual shipment to the Waste Isolation Pilot Plant. The work described in this report was conducted to gain insight into how sludge may change during long-term containerized storage in the STSCs. To accelerate potential physical and chemical changes, the tests were performed at temperatures and oxygen partial pressures significantly greater than those expected in the T Plant canyon cells where the STSCs will be stored. Tests were conducted to determine the effects of 50 C oxygenated water exposure on settled quiescent uraninite (UO 2 ) slurry and a full simulant of KW containerized sludge to determine the effects of oxygen and heat on the composition and mechanical properties of sludge. Shear-strength measurements by vane rheometry also were conducted for UO 2 slurry, mixtures of UO2 and metaschoepite (UO 3 · 2H 2 O), and for simulated KW containerized sludge. The results from these tests and related previous tests are compared to determine whether the settled solids in the K Basin sludge materials change in volume because of oxidation of UO2 by dissolved atmospheric oxygen to form metaschoepite. The test results also are compared to determine if heating or other factors alter sludge volumes and to determine the effects of sludge composition and settling times on sludge shear strength. It has been estimated that the sludge volume will increase with time because of a uranium metal → uraninite → metaschoepite oxidation sequence. This increase could increase the number of containers required for storage and increase overall costs of sludge management activities. However, the

  4. Ultrasonic reduction of excess sludge from the activated sludge system

    International Nuclear Information System (INIS)

    Zhang Guangming; Zhang Panyue; Yang Jinmei; Chen Yanming

    2007-01-01

    Sludge treatment has long become the most challenging problem in wastewater treatment plants. Previous studies showed that ozone or chlorine effectively liquefies sludge into substrates for bio-degradation in the aeration tank, and thus reduces the excess sludge. This paper employs ultrasound to reduce the excess sludge from the sequential batch reactor (SBR) system. Partial sludge was disintegrated into dissolved substrates by ultrasound in an external sono-tank and was then returned to the SBR for bio-degradation. The results showed that ultrasound (25 kHz) effectively liquefied the sludge. The most effective conditions for sludge reduction were as following: sludge sonication ratio of 3/14, ultrasound intensity of 120 kW/kgDS, and sonication duration of 15 min. The amount of excess sludge was reduced by 91.1% to 17.8 mg/(L d); the organic content and settleability of sludge in the SBR were not impacted. The chemical oxygen demand (COD) removal efficiency was 81.1%, the total nitrogen (TN) removal efficiency was 17-66%, and high phosphorus concentration in the effluent was observed

  5. Bacteriology of activated sludge

    NARCIS (Netherlands)

    Gils, van H.W.

    1964-01-01

    The bacteriology and biochemistry of activated sludge grown in domestic waste water or fed with synthetic media were studied. The nature of the flocs was investigated by determining morphological and physiological characteristics of many strains isolated.

    Predominant bacteria were

  6. Composting sewage sludge

    International Nuclear Information System (INIS)

    Epstein, E.

    1979-01-01

    Sewage sludge is predominantly organic matter containing domestic and industrial wastes. The inefficiency of the waste water treatment to destroy pathogens and stabilization of odor-producing volatile organic compounds necessitates further treatment before sludge can be used as a soil amendment or fertilizer. Composting, which is the rapid biological decomposition of the sludge organic matter is an excellent method of sludge stabilization. During the process, volatile organics are decomposed and many of the pathogens destoyed. The low cost of the process and its flexibility with respect to labor and capital makes the system highly attractive to municipalities. A major problem facing large urban waste water treatment facilities is the distribution or marketing. The light weight of the material, expensive hauling costs, and low fertilizer value reduce its attractiveness to the agricultural sector. Thus, the greatest market is for horticultural purposes, sod, nurseries, greenhouses, parks, and reclamation areas. The major potential benefits of irradiating compost as a means of further disinfection are: (1) elimination of any health hazard; (2) increase of market potential, i.e., providing more market outlets to distribute the material; (3) compliance with state and federal health regulations; and (4) enhancement of the economics of composting as a result of utilizing compost in speciality products commanding a higher value

  7. Activated Sludge Rheology

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtr...... rheological measurements. Moreover, the rheological models are not very trustworthy and remain very “black box”. More insight in the physical background needs 30 to be gained. A model-based approach with dedicated experimental data collection is the key to address this.......Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling......, leading to varying results and conclusions. In this paper, a vast amount of papers are critically reviewed with respect to this and important flaws are highlighted with respect to rheometer choice, rheometer settings and measurement protocol. The obtained rheograms from experimental efforts have...

  8. Physicochemical and thermal characteristics of the sludge produced after thermochemical treatment of petrochemical wastewater.

    Science.gov (United States)

    Verma, Shilpi; Prasad, Basheshwar; Mishra, I M

    2012-01-01

    The present work describes the physicochemical and thermal characteristics of the sludge generated after thermochemical treatment of wastewater from a petrochemical plant manufacturing purified terephthalic acid (PTA). Although FeCl3 was found to be more effective than CuSO4 in removing COD from wastewater, the settling and filtration characteristics of FeCl3 sludge were poorer. Addition of cationic polyacrylamide (CPAA; 0.050kg/m3) to the FeCl3 wastewater system greatly improved the values of the filter characteristics of specific cake resistance (1.2 x 10(8) m/kg) and resistance of filter medium (9.9 x 10(8) m(-1)) from the earlier values of 1.9 x 10(9) m/kg and 1.7 x 10(8) m(-1), respectively. SEM-EDAX and FTIR studies were undertaken, to understand the sludge structure and composition, respectively. The moisture distribution in the CuSO4 sludge, FeCl3 sludge and FeCl3 + CPAA sludge showed that the amount of bound water content in the CuSO4 and FeCl3 + CPAA sludges is less than that of the FeCl3 sludge and there was a significant reduction in the solid-water bond strength of FeCl3 + CPAA sludge, which was responsible for better settling and filtration characteristics. Due to the hazardous nature of the sludge, land application is not a possible route of disposal. The thermal degradation behaviour of the sludge was studied for its possible use as a co-fuel. The studies showed that degradation behaviour of the sludge was exothermic in nature. Because of the exothermic nature of the sludge, it can be used in making fuel briquettes or it can be disposed of via wet air oxidation.

  9. Sludge lancing and IBL: Results and experiences in the Spanish NPP

    International Nuclear Information System (INIS)

    Montoro, E.; Pozo, C. del

    2013-01-01

    During the cycle of operation of the PWR plants, oxides (sludge) tanks are generated in the secondary circuit by corrosion, chemical additives, etc which are deposited onto the tubular steam generators (GVs), limiting its efficiency and service life.

  10. Characteristics of residues from thermally treated anaerobic sludges

    International Nuclear Information System (INIS)

    Friedman, A.A.; Smith, J.E.; De Santis, J.; Ptak, T.; Ganley, R.C.

    1988-01-01

    Sludge management and disposal are probably the most difficult and expensive operations involved in wastewater treatment today. To minimize final disposal costs many waste treatment facilities practice some form of anaerobic digestion and dewatering to reduce the volume and offensiveness of their by-product sludges. One potential alternative for reducing sludge volumes consists of high temperature, partial oxidation of these previously digested sludges (PDS) and subsequent anaerobic biological conversion of resulting soluble organics to methane. This paper describes solids destruction, residue characteristics and biodegradability factors that should be considered in the design of liquid thermal treatment processes for the management of anaerobic sludges. To date only very limited information is available concerning the suitability of thermally treated PDS to serve as a substrate for the generation of methane. The primary objective of this research was to determine the feasibility of producing methane efficiently from the residual VSS in anaerobically digested sludges. Secondary goals were to establish the ''best'' conditions for thermal treatment for solubilizing PDS, to observe the effect of the soluble products on methanogenesis and to evaluate process sidestreams for dewaterability and anaerobic biodegradability

  11. Characterization of Settler Tank and KW Container Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Carolyn A.; Luna, Maria; Schmidt, Andrew J.

    2009-05-12

    The Sludge Treatment Project (STP), managed by CH2M Hill Plateau Remediation Company (CHPRC) has specified base formulations for non-radioactive sludge simulants for use in the development and testing of equipment for sludge sampling, retrieval, transport, and processing. In general, the simulant formulations are based on the average or design-basis physical and chemical properties obtained by characterizing sludge samples. The simulants include surrogates for uranium metal, uranium oxides (agglomerates and fine particulate), and the predominant chemical phases (iron and aluminum hydroxides, sand). Specific surrogate components were selected to match the nominal particle-size distribution and particle-density data obtained from sludge sample analysis. Under contract to CHPRC, Pacific Northwest National Laboratory (PNNL) has performed physical and rheological characterization of simulants, and the results are reported here. Two base simulant types (dry) were prepared by STP staff at the Maintenance and Storage Facility and received by PNNL on February 12, 2009: Settler Tank Simulant and KW Container Sludge Simulant. The objectives of this simulant characterization effort were to provide baseline characterization data on simulants being used by STP for process development and equipment testing and provide a high-level comparison of the simulant characteristics to the targets used to formulate the simulants.

  12. Radioactivity in sludge: tank cleaning procedures and sludge disposal

    International Nuclear Information System (INIS)

    Bradley, D.A.

    1995-01-01

    In the oil and gas industry management of alpha-active sludge is made more complex by the presence of hydrocarbons and heavy metals. This presentation discusses the origin of radioactivity in sludge, management of risk in terms of safe working procedures, storage and possible disposal options. The several options will generally involve aspects of dilution or of concentration; issues to be discussed will include sludge farming, bioremediation and incineration. (author)

  13. Heterotrophs are key contributors to nitrous oxide production in activated sludge under low C-to-N ratios during nitrification-Batch experiments and modeling.

    Science.gov (United States)

    Domingo-Félez, Carlos; Pellicer-Nàcher, Carles; Petersen, Morten S; Jensen, Marlene M; Plósz, Benedek G; Smets, Barth F

    2017-01-01

    Nitrous oxide (N 2 O), a by-product of biological nitrogen removal during wastewater treatment, is produced by ammonia-oxidizing bacteria (AOB) and heterotrophic denitrifying bacteria (HB). Mathematical models are used to predict N 2 O emissions, often including AOB as the main N 2 O producer. Several model structures have been proposed without consensus calibration procedures. Here, we present a new experimental design that was used to calibrate AOB-driven N 2 O dynamics of a mixed culture. Even though AOB activity was favoured with respect to HB, oxygen uptake rates indicated HB activity. Hence, rigorous experimental design for calibration of autotrophic N 2 O production from mixed cultures is essential. The proposed N 2 O production pathways were examined using five alternative process models confronted with experimental data inferred. Individually, the autotrophic and heterotrophic denitrification pathway could describe the observed data. In the best-fit model, which combined two denitrification pathways, the heterotrophic was stronger than the autotrophic contribution to N 2 O production. Importantly, the individual contribution of autotrophic and heterotrophic to the total N 2 O pool could not be unambiguously elucidated solely based on bulk N 2 O measurements. Data on NO would increase the practical identifiability of N 2 O production pathways. Biotechnol. Bioeng. 2017;114: 132-140. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Minimization of Excess Sludge in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Sayed Ali Reza Momeni

    2006-01-01

    Full Text Available The disposal of excess sludge from wastewater treatment plant represents a rising challenge in activated sludge processes. Hence, the minimization of excess sludge production was investigated by increasing the dissolved oxygen in aeration basin. Units of the pilot include: Primary sedimentation tank, aeration basin, secondary sedimentation tank, and return sludge tank. Volume of aeration basin is 360 l and influent flow rate is 90 L/h. Influent of pilot is taken from effluent of grit chamber of Isfahan's North Wastewater treatment plant. The experiments were done on different parts of pilot during the 5 month of study. Results show that increase of dissolved oxygen in aeration tank affect on decrease of excess sludge. Increase of dissolved oxygen from 0.5 to 4.5 mg/L resulted in 25% decrease of excess sludge. Variation of dissolved oxygen affect on settleability of sludge too. By increase of dissolved oxygen, SVI decreased and then increased. Value of 1-3 mg/L was the adequate range of dissolved oxygen by settleability of sludge and optimum range was 2-2.5 mg/L. It could be concluded by increasing of dissolved oxygen up to of 3 mg/L, sludge settleability significant decreased.

  15. Physical and chemical characterization of synthetic calcined sludge

    International Nuclear Information System (INIS)

    Slates, R.V.; Mosley, W.C. Jr.; Tiffany, B.; Stone, J.A.

    1982-03-01

    Calcined synthetic sludge was chemically characterized in support of engineering studies to design a processing plant to solidify highly radioactive waste at the Savannah River Plant. An analytical technique is described which provides quantitative data by mass spectrometric analysis of gases evolved during thermogravimetric analysis without measurements of gas flow rates or mass spectrometer sensitivities. Scanning electron microprobe analysis, Mossbauer spectroscopy, and several other common analytical methods were also used. Calcined sludge consists primarily of amorphous particles of hydrous oxides with iron, manganese, nickel, and calcium distributed fairly uniformly throughout the powder. Iron, manganese, nickel, and calcium exist in forms that are highly insoluble in water, but aluminum, sulfate, nitrate, and sodium exhibit relative water solubilities that increase in the given order from 60% to 94%. Evolved gas analysis in a helium atmosphere showed that calcined sludge is completely dehydrated by heating to 400 0 C, carbon dioxide is evolved between 100 to 700 0 C with maximum evolution at 500 0 C, and oxygen is evolved between 400 and 1000 0 C. Evolved gas analyses are also reported for uncalcined sludge. A spinel-type oxide similar to NiFe 2 O 4 was detected by x-ray diffraction analysis at very low-level in calcined sludge

  16. Agricultural yields of irradiated sewage sludge

    International Nuclear Information System (INIS)

    Magnavacca, Cecilia; Miranda, E.; Sanchez, M.

    1999-01-01

    Lettuce, radish and ryegrass have been used to study the nitrogen fertilization of soil by sewage sludge. The results show that the irradiated sludge improve by 15 - 30 % the production yield, compared to the non-irradiated sludge. (author)

  17. Supplementation of inorganic phosphate enhancing the removal efficiency of tannery sludge-borne Cr through bioleaching.

    Science.gov (United States)

    Zheng, Guanyu; Zhou, Lixiang

    2011-10-15

    Four inorganic mineral nutrients including NH4+, K+, Mg2+ and soluble inorganic phosphate (Pi) were investigated to reveal the potential limiting nutrients for tannery sludge bioleaching process driven by Acidithiobacillus species, and the feasibility of supplementing the limiting nutrients to accelerate tannery sludge bioleaching was studied in the present study. It was found that the concentration of Pi was lower than 3.5 mg/L throughout the whole bioleaching process, which is the most probable restricting nutrient for tannery sludge bioleaching. Further experiments revealed that the deficiency of Pi could seriously influence the growth of Acidithiobacillus thiooxidans and lower its oxidization capacity for S0, and the limiting concentration of Pi for the growth of A. thiooxidans was 6 mg/L. The low concentration of soluble Pi in sludge matrix was resulted from the extremely strong sorbing/binding capacity of tannery sludge for phosphate. The supplementation of more than 1.6 g/L KH2PO4 into tannery sludge bioleaching system could effectively stimulate the growth of Acidithiobacillus species, enhance Cr removal rate and further shorten tannery sludge bioleaching period from 10 days to 7 days. Therefore, inorganic phosphate supplementation is an effective and feasible method to accelerate tannery sludge bioleaching process, and the optimum dosage of KH2PO4 was 1.6 g/L for tannery sludge with 5.1% of total solids. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Synergetic pretreatment of waste activated sludge by hydrodynamic cavitation combined with Fenton reaction for enhanced dewatering.

    Science.gov (United States)

    Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu

    2018-04-01

    The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sewage sludge irradiation with electrons

    International Nuclear Information System (INIS)

    Tauber, M.

    1976-01-01

    The disinfection of sewage sludge by irradiation has been discussed very intensively in the last few months. Powerful electron accelerators are now available and the main features of the irradiation of sewage sludge with fast electrons are discussed and the design parameters of such installations described. AEG-Telefunken is building an irradiation plant with a 1.5 MeV, 25 mA electron accelerator, to study the main features of electron irradiation of sewage sludge. (author)

  20. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    CARRO CA

    2011-07-15

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is

  1. Sludge Treatment Project Engineered Container Retrieval And Transfer System Prelminary Design Hazard And Operability Study

    International Nuclear Information System (INIS)

    Carro, C.A.

    2011-01-01

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m 3 of KW Basin floor and pit sludge, 18.4 m 3 of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m 3 of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected. The sand

  2. Options for reducing oil content of sludge from a petroleum wastewater treatment plant.

    Science.gov (United States)

    Kwon, Tae-Soon; Lee, Jae-Young

    2015-10-01

    Wastewater treatment plants at petroleum refineries often produce substantial quantities of sludge with relatively high concentrations of oil. Disposal of this waste is costly, in part because the high oil content requires use of secure disposal methods akin to handling of hazardous wastes. This article examines the properties of oily sludge and evaluates optional methods for reducing the oil content of this sludge to enable use of lower cost disposal methods. To reduce the oil content or break the structure of oily sludge, preliminary lab-scale experiments involving mechanical treatment, surfactant extraction, and oxidation are conducted. By applying surfactants, approximately 36% to 45% of oils are extracted from oily sludge. Of this, about 33% of oils are rapidly oxidised via radiation by an electron beam within 10 s of exposure. The Fenton reaction is effective for destruction of oily sludge. It is also found that 56% of oils were removed by reacting oily sludge with water containing ozone of 0.5 mg l(-1) over a period of 24 h. Oxidation using ozone thus can also be effectively used as a pretreatment for oily sludge. © The Author(s) 2015.

  3. Sewage sludge additive

    Science.gov (United States)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  4. Composting of sewage sludge irradiated

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Watanabe, Hiromasa; Nishimura, Koichi; Kawakami, Waichiro

    1981-01-01

    Recently, the development of the techniques to return sewage sludge to forests and farm lands has been actively made, but it is necessary to assure its hygienic condition lest the sludge is contaminated by pathogenic bacteria. The research to treat sewage sludge by irradiation and utilize it as fertilizer or soil-improving material has been carried out from early on in Europe and America. The effects of the irradiation of sludge are sterilization, to kill parasites and their eggs, the inactivation of weed seeds and the improvement of dehydration. In Japan, agriculture is carried out in the vicinity of cities, therefore it is not realistic to use irradiated sludge for farm lands as it is. The composting treatment of sludge by aerobic fermentation is noticed to eliminate the harms when the sludge is returned to forests and farm lands. It is desirable to treat sludge as quickly as possible from the standpoint of sewage treatment, accordingly, the speed of composting is a problem. The isothermal fermentation experiment on irradiated sludge was carried out using a small-scale fermentation tank and strictly controlling fermentation conditions, and the effects of various factors on the fermentation speed were studied. The experimental setup and method are described. The speed of composting reached the maximum at 50 deg C and at neutral or weak alkaline pH. The speed increased with the increase of irradiation dose up to 30 Mrad. (Kako, I.)

  5. Radioactive contamination of sewage sludge

    International Nuclear Information System (INIS)

    Soeder, C.J.; Zanders, E.; Raphael, T.

    1986-01-01

    Because of the radioactivity released through the explosion of the nuclear reactor near Chernobyl radionuclides have been accumulated to a significant extent in sewage sludge in the Federal Republic of Germany. This is demonstrated for samples from four activated sludge plants according to a recent recommendation of the German Commission for Radiation Protection, there is until now no reason to deviate from the common practices of sludge disposal or incineration. The degree of radioactive contamination of plant materials produced on farm lands on which sewage sludge is being spread cannot be estimated with sufficient certainty yet. Additional information is required. (orig.) [de

  6. Sewage sludge disposal in Austria

    International Nuclear Information System (INIS)

    Koch, F.

    1997-01-01

    Sewage systems serve about 70% of the Austrian population, producing 6 million m 3 of sewage sludge per year with a dry matter content of 4-5%. At present about 52% of this sludge is disposed of in land fills, 33% is incinerated, and only about 15 % is used in agriculture. Although agricultural utilization is becoming increasingly important, several problems, especially those related to public opinion, need to be resolved before increased use will be possible. In this paper, wastewater treatment and sewage-sludge production in Austria, and problems associated with sludge disposal are discussed. (author)

  7. Dewatering properties of differently treated sewage sludge

    International Nuclear Information System (INIS)

    Zehnder, H.J.

    1977-01-01

    A study on dewatering properties of radiosterilized sewage sludge of different type and origin was carried out. For comparison, also heat-treated (pasteurized) sludge was investigated. The specific filtration resistance of irradiated sewage sludge was lowered in all types of sludge examined. In general, pasteurization increased this parameter. The settling properties of irradiated digested sewage sludge was slightly improved, mainly in the first hours after treatment. Microbial effects may mask the real sedimentation relations especcially in aerobically stabilized sludges. A pasteurization treatment of sewage sludge caused an increased content of soluble substances and suspended particles in the supernatant water. The supernatant water from irradiated sludge showed a smaller increase

  8. Oil and coal from sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, H

    1981-01-01

    Under the leadership of professor Ernst Bayer a research group of Tuebingen succeeded in producing oil and coal from sewage sludge. The conversion of biomass into fossil fuels which in nature can only be calculated in historical periods of time is here brought about by the use of a catalyst on the basis of silicate and aluminium oxide, dopened with copper. First breakeven evaluations have given a real chance to be able to operate economically in a large scale plant the process being developed in laboratory tests.

  9. Hydrothermal processing of inorganic components of Hanford tank sludge

    International Nuclear Information System (INIS)

    Oldenborg, R.; Buelow, S.J.; Dyer, R.B.; Anderson, G.; Dell'Orco, P.C.; Funk, K.; Wilmanns, E.; Knutsen, K.

    1994-09-01

    Hydrothermal Processing (HTP) is an attractive approach for the treatment of Hanford tank sludge. Hydrothermal Processing refers to a waste treatment technique in which an aqueous waste stream is fed through a chemical reactor at elevated temperatures and pressures to effect desired chemical transformations and separations. Transformations such as organic and nitrate destruction and sludge reformulation have been demonstrated at pilot scale using simulants of Hanford tank wastes. At sufficiently high temperatures and pressures organics and nitrates are destroyed in seconds, producing primarily simple products such as CO 3 2- , H 2 O, N 2 , N 2 O and OH - , and sludges are reduced in volume and reformulated as rapid settling oxides amenable to downstream separation, or in some cases reformulated as soluble products. This report describes the hydrothermal dissolution of chromium and chromium oxide; the hydrothermal oxidation of chromium with nitrate; hydrothermal dissolution of aluminum-bearing sludges; the solubility of aluminum compounds in caustic hydrothermal media; experimental techniques for the study of solubility and phase behavior; optical cell studies of basic aluminate solution solubilities; and high temperature, low density salt solubility in the packed-bed flow apparatus

  10. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors.

    Science.gov (United States)

    Wang, Yayi; Zhou, Shuai; Ye, Liu; Wang, Hong; Stephenson, Tom; Jiang, Xuxin

    2014-12-15

    Nitrite-based phosphorus (P) removal could be useful for innovative biological P removal systems where energy and carbon savings are a priority. However, using nitrite for denitrification may cause nitrous oxide (N2O) accumulation and emissions. A denitrifying nitrite-fed P removal system [Formula: see text] was successfully set up in a sequencing batch reactor (SBR) and was run for 210 days. The maximum pulse addition of nitrite to [Formula: see text] was 11 mg NO2(-)-N/L in the bulk, and a total of 34 mg NO2(-)-N/L of nitrite was added over three additions. Fluorescent in situ hybridization results indicated that the P-accumulating organisms (PAOs) abundance was 75 ± 1.1% in [Formula: see text] , approximately 13.6% higher than that in a parallel P removal SBR using nitrate [Formula: see text] . Type II Accumulibacter (PAOII) (unable to use nitrate as an electron acceptor) was the main PAOs species in [Formula: see text] , contributing 72% to total PAOs. Compared with [Formula: see text] , [Formula: see text] biomass had enhanced nitrite/free nitrous acid (FNA) endurance, as demonstrated by its higher nitrite denitrification and P uptake rates. N2O accumulated temporarily in [Formula: see text] after each pulse of nitrite. Peak N2O concentrations in the bulk for [Formula: see text] were generally 6-11 times higher than that in [Formula: see text] ; these accumulations were rapidly denitrified to nitrogen gases. N2O concentration increased rapidly in nitrate-cultivated biomass when 5 or 10 mg NO2(-)-N/L per pulse was added. Whereas, N2O accumulation did not occur in nitrite-cultivated biomass until up to 30 mg NO2(-)-N/L per pulse was added. Long-term acclimation to nitrite and pulse addition of nitrite in [Formula: see text] reduced the risk of nitrite accumulation, and mitigated N2O accumulation and emissions from denitrifying P removal by nitrite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Sludge Digestion Manual; Handboek Slibgisting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    This manual offers a guideline for developing, designing, optimizing and operating sludge digestion installations based on sewage sludge. It also offers tools for solving operation problems [Dutch] Het Handboek is een leidraad voor het ontwikkelen, ontwerpen, optimaliseren en bedrijven van slibgistingsinstallaties voor zuiveringsslib. Ook geeft het handvatten voor het oplossen van operationele problemen.

  12. Alumina sludge's Influence on the physicochemical characteristics of CPJ55 cement

    Directory of Open Access Journals (Sweden)

    Dahhou M.

    2018-01-01

    Full Text Available Partial replacement of the Portland cement CPJ55 ingredients by various quantities of alumina sludge (AS, produced during drinking water plant sludge, was used in the preparation of mortar mold with dimensions 40×40×160 mm. The characterization of materials is carried out by X-ray fluorescence (XRF, Xray diffraction (XRD, free lime dosing, and the mechanical tests. Analysis of the chemical composition by XRF shows that the studied alumina sludge is mainly composed of aluminum oxide, silica, which is correlated with the principal mineral phases identified in the XRD analysis results. It is demonstrated that adding 5% of the alumina sludge in Portland cement does not affect the mineralogy of final product. Nevertheless, the compression and flexural strength tests (in 28 days conducted on mortar sample comprising 5% sludge elucidate that it belongs to cement mortar class of type 32.5 R.

  13. Anaerobic bioleaching of metals from waste activated sludge

    International Nuclear Information System (INIS)

    Meulepas, Roel J.W.; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E.; Lens, Piet N.L.

    2015-01-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g −1 of copper, 487 μg g −1 of lead, 793 μg g −1 of zinc, 27 μg g −1 of nickel and 2.3 μg g −1 of cadmium. During the anaerobic acidification of 3 g dry weight L −1 waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner

  14. Anaerobic bioleaching of metals from waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Meulepas, Roel J.W., E-mail: roel.meulepas@wetsus.nl [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Gonzalez-Gil, Graciela [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Teshager, Fitfety Melese; Witharana, Ayoma [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Saikaly, Pascal E. [King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands)

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g{sup −1} of copper, 487 μg g{sup −1} of lead, 793 μg g{sup −1} of zinc, 27 μg g{sup −1} of nickel and 2.3 μg g{sup −1} of cadmium. During the anaerobic acidification of 3 g{sub dry} {sub weight} L{sup −1} waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner.

  15. K Basin sludge polychlorinated biphenyl removal technology assessment

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    1998-01-01

    The two Hanford K Basins are water-filled concrete pools that contain over 2,100 metric tons of N Reactor fuel elements stored in aluminum or stainless steel canisters. During the time the fuel has been stored, approximately 50 m3 of heterogeneous solid material have accumulated in the basins. This material, referred to as sludge, is a mixture of fuel corrosion products, metallic bits of spent fuel and zirconium clad iron and metal corrosion products and silica from migrating sands. Some of the sludges also contain PCBs. The congener group of PCBs was identified as Aroclor 1254. The maximum concentration of sludge PCBS was found to be 140 ppm (as settled wet basis). However, the distribution of the PCBs is non-uniform throughout the sludge (i.e., there are regions of high and low concentrations and places where no PCBs are present). Higher concentrations could be present at various locations. Aroclors 1016/1242, 1221, 1248, 1254, and 1260 were identified and quantified in K West (KW) Canister sludge. In some of these samples, the concentration of 1260 was higher than 1254. The sludge requires pre-treatment to meet tank farm waste acceptance criteria, Among the numerous requirements, the sludge should be retreated so that it does not contain regulated levels of Toxic Substances Control Act (TSCA) compounds. Because of their stable chemistry and relative insolubility in water, PCBs are difficult to treat. They also resist degradation from heat and electrical charges. This stability has resulted in environmental persistence which has prompted the development of a variety of new cleanup processes including supercritical processes, advanced oxidation, dehalogenation and others. Hopefully, most of the new processes are discussed herein. Information on new processes are being received and will be evaluated in a future revision

  16. Silver recovery from zinc metallurgical sludge – analysis of solutions

    Directory of Open Access Journals (Sweden)

    Pietrzyk Stanisław

    2017-01-01

    Full Text Available During the hydrometallurgical process of zinc production, conducted in the ZGH “Bolesław” S.A. in Bukowno [Mine and Metallurgical Plant], about 40,000 tons of sludge is generated. After dehydration in the Larox filter presses, sludge contains ca. 16-18% of Zn, 20-25% of Fe, and 200-300 ppm of Ag. Next, sludge is transported to the Olkusz concentrator for flotation to obtain concentrate enriched with Ag (1,000-1,500 ppm. The concentrate is then sent to the HC “Miasteczko Śląskie” [zinc smelter], while the flotation tailings are subjected to recycling in waelz kiln in Bukowno to regain mainly Zn and Pb, in the form of oxides (also sent later to the HC “Miasteczko Śląskie”.

  17. Treatment of off-gas evolved from thermal decomposition of sludge waste

    International Nuclear Information System (INIS)

    Doo-Seong Hwang; Yun-Dong Choi; Gyeong-Hwan Jeong; Jei-Kwon Moon

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH 3 , N 2 O, NO 2 , and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO 2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  18. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  19. SLUDGE MASS REDUCTION: PRIMARY COMPOSITIONAL FACTORS THAT INFLUENCE MELT RATE FOR FUTURE SLUDGE BATCH PROJECTIONS

    International Nuclear Information System (INIS)

    Newell, J; Miller, D; Stone, M; Pickenheim, B

    2008-01-01

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets. Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe 2+ /ΣFe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit

  20. Ultrasonic sludge pretreatment under pressure.

    Science.gov (United States)

    Le, Ngoc Tuan; Julcour-Lebigue, Carine; Delmas, Henri

    2013-09-01

    The objective of this work was to optimize the ultrasound (US) pretreatment of sludge. Three types of sewage sludge were examined: mixed, secondary and secondary after partial methanisation ("digested" sludge). Thereby, several main process parameters were varied separately or simultaneously: stirrer speed, total solid content of sludge (TS), thermal operating conditions (adiabatic vs. isothermal), ultrasonic power input (PUS), specific energy input (ES), and for the first time external pressure. This parametric study was mainly performed for the mixed sludge. Five different TS concentrations of sludge (12-36 g/L) were tested for different values of ES (7000-75,000 kJ/kgTS) and 28 g/L was found as the optimum value according to the solubilized chemical oxygen demand in the liquid phase (SCOD). PUS of 75-150 W was investigated under controlled temperature and the "high power input - short duration" procedure was the most effective at a given ES. The temperature increase in adiabatic US application significantly improved SCOD compared to isothermal conditions. With PUS of 150 W, the effect of external pressure was investigated in the range of 1-16 bar under isothermal and adiabatic conditions for two types of sludge: an optimum pressure of about 2 bar was found regardless of temperature conditions and ES values. Under isothermal conditions, the resulting improvement of sludge disintegration efficacy as compared to atmospheric pressure was by 22-67% and 26-37% for mixed and secondary sludge, respectively. Besides, mean particle diameter (D[4,3]) of the three sludge types decreased respectively from 408, 117, and 110 μm to about 94-97, 37-42, and 36-40 μm regardless of sonication conditions, and the size reduction process was much faster than COD extraction. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Lipid profiling in sewage sludge.

    Science.gov (United States)

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Treatment of radioactive sludge

    International Nuclear Information System (INIS)

    Allison, W.; Payne, B.J.; Pegler, G.E.

    1979-01-01

    Radioactive sludge e.g. that which may accumulate in irradiated nuclear fuel element storage ponds, is treated by pumping it from a settling tank to a particle separator, conveniently a hydrocyclone and a sloping plate separator, the liquid being returned to the settling tank and the solids being metered into a drum pre-lined with dry cement. The drums are in a containment box in which they are transferred to a mixing station where the particles and cement are mixed and thence to a curing station. After curing the drums are embedded in cement in outer containers for transport to a long-term storage site. (author)

  3. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    International Nuclear Information System (INIS)

    Cravotta, C.A. III

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (< 5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only

  4. Utilization of AMD sludges from the anthracite region of Pennsylvania for removal of phosphorus from wastewater

    Science.gov (United States)

    Sibrell, P.L.; Cravotta, C.A.; Lehman, W.G.; Reichert, W.

    2010-01-01

    Excess phosphorus (P) inputs from human sewage, animal feeding operations, and nonpoint source discharges to the environment have resulted in the eutrophication of sensitive receiving bodies of water such as the Great Lakes and Chesapeake Bay. Phosphorus loads in wastewater discharged from such sources can be decreased by conventional treatment with iron and aluminum salts but these chemical reagents are expensive or impractical for many applications. Acid mine drainage (AMD) sludges are an inexpensive source of iron and aluminum hydrous oxides that could offer an attractive alternative to chemical reagent dosing for the removal of P from local wastewater. Previous investigations have focused on AMD sludges generated in the bituminous coal region of western Pennsylvania, and confirmed that some of those sludges are good sorbents for P over a wide range of operating conditions. In this study, we sampled sludges produced by AMD treatment at six different sites in the anthracite region of Pennsylvania for potential use as P sequestration sorbents. Sludge samples were dried, characterized, and then tested for P removal from water. In addition, the concentrations of acid-extractable metals and other impurities were investigated. Test results revealed that sludges from four of the sites showed good P sorption and were unlikely to add contaminants to treated water. These results indicate that AMD sludges could be beneficially used to sequester P from the environment, while at the same time decreasing the expense of sludge disposal.

  5. New technology for recycling materials from oily cold rolling mill sludge

    Institute of Scientific and Technical Information of China (English)

    Bo Liu; Shen-gen Zhang; Jian-jun Tian; De-an Pan; Ling Meng; Yang Liu

    2013-01-01

    Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new process of“hydrometallurgical treatment+hydrothermal synthesis”was investigated for the combined recovery of iron and organic materials from oily CRM sludge. Hydrometallurgical treatment, mainly including acid leaching, centrifugal separation, neutralization reaction, oxidizing, and preparation of hydrothermal reaction precursor, was first utilized for processing the sludge. Then, micaceous iron oxide (MIO) pigment powders were prepared through hydrothermal reaction of the obtained precursor in alkaline media. The separated organic materials can be used for fuel or chemical feedstock. The quality of the prepared MIO pigments is in accordance with the standards of MIO pigments for paints (ISO 10601-2007). This clean, eff ective, and economical technology off ers a new way to recycle oily CRM sludge.

  6. Particle Size (Sieving) and Enthalpy (Acid Calorimetry) Analysis of Single-Pull K East Basin Floor and Pit Sludges

    International Nuclear Information System (INIS)

    Bredt, P.R.; Delegard, C.H.; Schmidt, A.J.; Silvers, K.L.; Thornton, B.M.; Gano, S.

    2000-01-01

    This report presents the results of particle size analyses and calorimetry testing performed on selected single-pull sludge samples collected from the Hanford K East Basin between December 1998 and June 1999. The samples were collected as isolated cores predominantly from areas that had not been previously sampled (e.g., North Loadout Pit, Dummy Elevator Pit, Tech View Pit), or from areas in which the sludge composition had been altered since the last sampling (e.g., Weasel Pit). Particle size analyses were performed by washing wet sludge samples through a series of four sieves with openings of 250, 500, 1410, and 4000 microm. The loaded sieves were weighed before and after drying to obtain wet and dry particle size distributions. Knowledge of the particle size distribution is needed to design and predict the performance of the systems that will be used to retrieve, transport, and recover sludge. Also, sieving provides an opportunity to observe the components in the sludge. For example, during sieving of the sludge sample from the North Loadout Pit, significant quantities of organic ion exchange beads were observed. The uranium metal content and the particle size of the uranium metal in the K Basin sludge will largely determine the chemical reactivity of the sludge. In turn, the designs for the sludge handling and storage systems must be compatible with the reactivity of the sludge. Therefore, acid calorimetry was performed to estimate the uranium metal content of the sludge. For this testing, sludge samples were dissolved in nitric acid within a calibrated adiabatic calorimeter. The resulting dissolution enthalpy data were then used to discriminate between metallic uranium (minus3750 J/g in nitric acid) and uranium oxide (minus394 J/g in nitric acid). Results from this testing showed that the single-pull sludge samples contained little or no uranium metal

  7. Wasting Away: To Sludge or Not to Sludge?

    Directory of Open Access Journals (Sweden)

    L Nicolle

    2001-01-01

    Full Text Available Following a century of high standards of sanitation, food and water safety in North America are often taken for granted. Recent outbreaks of illness attributed to food and water contamination, however, have challenged this complacency. Now, sludge is added to the list of concerns. Sewage sludge is the muddy substance that remains after the treatment of municipal sewage. This material includes not only human waste, but also household and industrial toxic wastes disposed of in local sewers. Federal and provincial Canadian regulations support the use of this material as fertilizer, within acceptable guidelines, as does the Environmental Protection Agency in the United States. The safety of sludge, however, is questioned by some individuals and groups. Specifically, the risk of infectious agents and toxins to workers or other exposed individuals, and the potential for heavy metals and organic chemicals to be transferred from sludge-treated fields into crops are concerns.

  8. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    International Nuclear Information System (INIS)

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent

  9. Co-conditioning and dewatering of chemical sludge and waste activated sludge.

    Science.gov (United States)

    Chang, G R; Liu, J C; Lee, D J

    2001-03-01

    The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.

  10. Steam generator sludge removal apparatus

    International Nuclear Information System (INIS)

    Schafer, B.W.; Werner, C.E.; Klahn, F.C.

    1992-01-01

    The present invention relates to equipment for cleaning steam generators and in particular to a high pressure fluid lance for cleaning sludge off the steam generator tubes away from an open tube lane. 6 figs

  11. Military Throwaways Why Acquirers Should Go Disposable

    Science.gov (United States)

    2016-02-01

    ject to rapid market changes. An iPhone could be used as a hammer for 100 years, but its primary function will be obsolete in 5 years. Look for...would fit within the current budget limitations, grounded in a reasonableness determined by fair market value. As with anything, the determination...cost is represented by a business case in which it makes the greatest financial sense to proactively ad- dress technical obsolescence, hardware or

  12. Plan for characterization of K Basin Spent Nuclear Fuel and sludge. Revision 1

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1995-01-01

    This plan outlines a Characterization Program that provides the necessary data to support the Integrated Process Strategy scope and schedules for the Spent Nuclear Fuel (SNF) and sludge stored in the Hanford K Basins. The plan is driven by the schedule to begin fuel transfer by December 1997. The program is structured for 4 years (i.e., FY 1995 through FY 1998) and is limited to in-situ and laboratory examinations of the SNF and sludge in the K East and K West Basins. In order to assure the scope and schedule of the Characterization Program fully supports the Integrated Process Strategy, key project management has approved the plan. The intent of the program is to provide bounding behavior for the fuel, and acceptability for the transfer of the sludge to the Double Shell Tanks. Fuel examinations are based on two shipping compains from the K West Basin and one from the K East Basin with coincident sludge sampling campaings for the associated canister sludge. Sampling of the basin floor and pit sludge will be conducted independent of the fuel and canister sludge shipping activities. Fuel behavior and properties investigated in the laboratory include physical condition, hydride and oxide content, conditioning testing, oxidation kinetics, and dry storage behavior. These laboratory examinations are expected to provide the necessary data to establish or confirm fuel conditioning process limits and support safety analysis. Sludge laboratory examinations include measurement of quantity and content, measurement of properties for equipment design and recovery process limits and support safety analysis. Sludge laboratory examinations include measurement of quantity and content, measurement of properties for equipment design and recovery precesses, tank farm acceptance, simulant development, measurement of corrosion products, and measurements of drying behavior

  13. Radioactive sludge and wastewater analysis and treatment in the Hungarian VVER-440/213-type NPP

    International Nuclear Information System (INIS)

    Patzay, G.; Weiser, L.; Feil, F.; Schunk, J.; Patek, G.; Pinter, T.

    2010-01-01

    It is well known that in the Hungarian VVER-type nuclear power plant Paks the radioactive waste waters are collected in common tanks. These water streams contain radioactive isotopes in ultra-low concentration and inactive compounds as major components (borate 1.7 g/dm 3 , sodium-nitrate 0.4 g/dm 3 , sodium-hydroxide 0.16 g/dm 3 , and oxalate 0.25 g/dm 3 ). These low salinity solutions were evaporated by adding sodium-hydroxide, until 400 g/dm 3 salt content is reached. There is about 6000 m 3 concentrated evaporator bottom residues in the tanks of the reactor. There are some tanks at the power plant containing sludge type radioactive waste containing more or less liquid phase too. The general physical and chemical characteristics (density, pH, total solid, dissolved solid etc.) and chemical and radiochemical composition are important information for volume reduction and solidification treatment of these wastes. We have investigated and constructed a complex analysis system for the radioactive sludge and supernatant analysis, including the physical, as well as the chemical and radiochemical analysis methods. Using well known analysis techniques as ion chromatography, ICP-MS, AAS, gamma-and alpha-spectrometry and chemical alkaline fusion digestion and acidic dissolution methods we could analyze the main inorganic, organic and radioactive components of the sludges and supernatants. Determination of the mass and charge balance for the sludge samples were more difficult then for the supernatant samples. Not only are there assumptions required about the chemical form and the oxidation state of the species present in the sludge, but many of the compounds in the sludge are mixed oxides which are not directly measured. Also, the sludge is actually a slurry with a high water content. The interstitial liquid is in close contact with the sludge, and there are many ionic solubility equilibriums. The anion data for the sludge samples are based on the water soluble anions that

  14. Enhanced sludge washing evaluation plan

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R.D.

    1994-09-01

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices.

  15. Enhanced sludge washing evaluation plan

    International Nuclear Information System (INIS)

    Jensen, R.D.

    1994-09-01

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices

  16. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  17. Rheological and electrical properties used to investigate the coagulation process during sludge treatment.

    Science.gov (United States)

    Mortadi, A; El Melouky, A; Chahid, E; Nasrellah, H; Bakasse, M; Zradba, A; Cherkaoui, O; El Moznine, R

    2018-01-01

    Analyses of rheological properties and electrical conductivity (σ dc ) at direct current have been employed in order to investigate the effects of calcium oxide on the coagulation process during sludge treatment in the textile industry. In this context, rheological and electrical measurements were performed on five samples - one that contained raw sludge and the other four that were prepared from the raw sludge and different amounts of calcium oxide: 2, 3, 4, 5% (w/w). Rheological behavior of these samples was analyzed using the Herschel-Bulkley modified model. The influence of calcium oxide content on the rheological parameters such as infinite viscosity, the yield stress, the consistency coefficient, and the consistency index, are presented and discussed. The impact of the calcium oxide content on pH and conductivity were also examined. Similar behaviors have been seen in the evolution of conductivity and infinite viscosity as a function of the calcium oxide content. These latter characteristics were modeled by an equation using two power laws. This equation was able to fit very well the evolution of electrical conductivity and also the viscosity versus the percentage of calcium oxide to predict the optimal amount of calcium oxide (3%) to achieve the coagulation step during sludge treatment.

  18. Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge.

    Science.gov (United States)

    Zhu, Yi; Zeng, Guangming; Zhang, Panyue; Zhang, Chang; Ren, Miaomiao; Zhang, Jiachao; Chen, Ming

    2013-08-01

    Feasibility of bioleaching combining with Fenton-like reaction to remove heavy metals from sewage sludge was investigated. After 5-day bioleaching, the sludge pH decreased from 6.95 to 2.50, which satisfied the acidic conditions for Fenton-like reaction. Meanwhile, more than 50% of sludge-borne heavy metals were dissolved except for Pb. The bioleached sludge was further oxidized with Fenton-like reaction, with an optimal H2O2 dosage of 5 g/L, the Cu, Zn, Pb and Cd removal reached up to 75.3%, 72.6%, 34.5% and 65.4%, respectively, and the residual content of heavy metals in treated sludge meets the requirement of Disposal of Sludge from Municipal Wastewater Treatment Plant - Control Standards for Agricultural Use (CJ/T 309-2009) of China for A grade sludge. Bioleaching combined with Fenton-like reaction was the most effective method for heavy metal removal, compared with 15-day bioleaching and inorganic acid leaching with 10% H2SO4, 10% HCl and 10% HNO3. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Heavy Metals and Radioactivity Reduction from Acid Mine Drainage Lime Neutralized Sludge

    Science.gov (United States)

    Mashifana, T.; Sithole, N.

    2018-03-01

    The worldwide known treatment processes of acid mine drainage result into the formation of hydrous ferric oxides that is amorphous, poorly crystalline and into the generation of hazardous voluminous sludge posing threat to the environment. Applicable treatment technologies to treat hazardous solid material and produce useful products are limited and in most cases nonexistence. A chemical treatment process utilizing different reagents was developed to treat hazardous acid mine drainage (AMD) sludge with the objectives to conduct radioactivity assessment of the sludge generated from lime treatment process and determine the reagent that provides the best results. Leaching with 0.5 M citric acid, 0.4 M oxalic acid, 0.5 M sodium carbonate and 0.5 M sodium bicarbonate was investigated. The leaching time applied was 24 hours at 25 °C. The characterization of the raw AMD revealed that the AMD sludge from lime treatment process is radioactive. The sludge was laden with radioactive elements namely, 238U, 214Pb, 226Ra, 232Th, 40K and 214Bi. 0.5 M citric acid provided the best results and the hazardous contaminants were significantly reduced. The constituents in the sludge after treatment revealed that there is a great potential for the sludge to be used for other applications such as building and construction.

  20. Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhou, Ji Zhi; Liu, Qiang; Qian, Guangren; Xu, Zhi Ping

    2013-06-18

    This paper reports that recycled electroplating sludge is able to efficiently remove greenhouse gas sulfur hexafluoride (SF6). The removal process involves various reactions of SF6 with the recycled sludge. Remarkably, the sludge completely removed SF6 at a capacity of 1.10 mmol/g (SF6/sludge) at 600 °C. More importantly, the evolved gases were SO2, SiF4, and a limited amount of HF, with no toxic SOF4, SO2F2, or SF4 being detected. These generated gases can be readily captured and removed by NaOH solution. The reacted solids were further found to be various metal fluorides, thus revealing that SF6 removal takes place by reacting with various metal oxides and silicate in the sludge. Moreover, the kinetic investigation revealed that the SF6 reaction with the sludge is a first-order chemically controlled process. This research thus demonstrates that the waste electroplating sludge can be potentially used as an effective removal agent for one of the notorious greenhouse gases, SF6.

  1. Treatment of liquid separated from sludge by the method using electron beam and ozone in combination

    International Nuclear Information System (INIS)

    Hosono, Masakazu; Arai, Hidehiko; Aizawa, Masaki; Shimooka, Toshio; Shimizu, Ken; Sugiyama, Masashi.

    1995-01-01

    Since the liquid separated from sludge in the dehydration or concentration process of sewer sludge contains considerable amount of organic compositions that are hard to be decomposed by microorganisms, it has become difficult to be treated by conventional activated sludge process. In the case of discharging the separated liquid into closed water areas, the higher quality treatment is required. The method of using electron beam irradiation and ozone oxidation in combination for cleaning the liquid separated from sludge was examined, therefore, the results are reported. The water quality of the sample from the sludge treatment plant in A City is shown. The method of bio-pretreatment, the treatment method by using electron beam and ozone in combination, and the method of analyzing the water quality are described. The effect of the treatment by activated sludge process, as the effect of the treatment by the combined use of electron beam and ozone, the change of COD and TOC, the change of chromaticity, the change of gel chromatogram, and the reaction mechanism are reported. In this paper, only the basic concept on the model plant for applying the method of the combined use of electron beam and ozone to the treatment of the liquid separated from sludge is discussed. (K.I.)

  2. Heating value characteristics of sewage sludge: a comparative study of different sludge types

    International Nuclear Information System (INIS)

    Kim, Young-JU.; Kang, Hae-Ok.; Qureshi, T.I.

    2005-01-01

    Heating value characteristics of three different types of sludge, i.e. domestic sewage sludge, industrial sludge, and industrial + domestic sewage sludge were investigated. Industrial + domestic sewage sludge (thickened) showed the highest heating value (5040 kcal/kg) than other sludge types. This may be due to increased amount of organic matter presents in thickened sludge than de-watered sludge. A gradual increase in organic matter of the sludge was observed with the increase of the moisture contents. Heating value of the sludge having 60% moisture contents was found in the range between 924-1656 kcal/kg and this amount was higher than the minimum heating value (800 kcal/kg) required sustaining auto thermal combustion in sludge incineration process. Energy consumption requirement for pre drying sludge operations revealed that industrial sludge (de-watered) required the minimum cost (13 $/ton of sludge) to make it a sludge of fuel grade (60% W), while mixed sludge cost the highest amount for its pre-drying operations. (author)

  3. Pentachlorophenol (PCP) sludge recycling unit

    International Nuclear Information System (INIS)

    1994-08-01

    The Guelph Utility Pole Company treats utility poles by immersion in pentachlorophenol (PCP) or by pressure treatment with chromated copper arsenate (CCA). The PCP treatment process involves a number of steps, each producing a certain amount of sludge and other wastes. In a plant upgrading program to improve processing and treatment of poles and to reduce and recycle waste, a PCP recovery unit was developed, first as an experimental pilot-scale unit and then as a full-scale unit. The PCP recovery unit is modular in design and can be modified to suit different requirements. In a recycling operation, the sludge is pumped through a preheat system (preheated by waste heat) and suspended solids are removed by a strainer. The sludge is then heated in a tank and at a predetermined temperature it begins to separate into its component parts: oil, steam, and solids. The steam condenses to water containing low amounts of light oil, and this water is pumped through an oil/water separator. The recovered oil is reused in the wood treatment process and the water is used in the CCA plant. The oil remaining in the tank is reused in PCP treatment and the solid waste, which includes small stones and wood particles, is removed and stored. By the third quarter of operation, the recovery unit was operating as designed, processing ca 10,000 gal of sludge. This sludge yielded 6,500 gal of water, 3,500 gal of oil, and ca 30 gal of solids. Introduction of the PCP sludge recycling system has eliminated long-term storage of PCP sludge and minimized costs of hazardous waste disposal. 4 figs

  4. The hydraulic transportation of thickened sludges

    African Journals Online (AJOL)

    driniev

    non-Newtonian sludges (Xu et al., 1993; Spinosa and Lotita, 2001; .... [11]. Analysis and typical applications. Laminar/turbulent transition. For most sewage sludges the ... on Transport and Sedimentation of Solid Particles - Ghent, September.

  5. Microbiological aspects of granular methanogenic sludge

    NARCIS (Netherlands)

    Dolfing, J.

    1987-01-01

    The settling characteristics of anaerobic sludge are enhanced by the formation of microbial conglomerates. Various types of conglomerates having different structures, were distinguished in the present study, viz. granules, pellets and flocs (chapter 1). Granular methanogenic sludge, often

  6. Radiation hygienization of raw sewage sludge

    International Nuclear Information System (INIS)

    Shah, M.R.; Lavale, D.S.; Rawat, P.; Benny, P.G.; Sharma, A.K.; Dey, G.R.; Bhave, V.

    2001-01-01

    'Radiation treatment of municipal sewage sludge can achieve resource conservation and recovery objectives. The liquid sludge irradiator of Sludge Hygienization Research Irradiator at Baroda (India) was operated for generating data on treatment of raw sludge containing 3-4 % solids. The plant system was modified for irradiating raw sludge without affecting basic irradiator initially designed to treat digested sludge. Hourly samples were analysed for estimation of disinfection dose requirement. Sand separated from the sludge was used as in-situ dosimeter by making use of its thermoluminescence property. Investigations are being carried out for regrowth of Total Coliforms in the sludge samples from this irradiator. Possibility of inadequate treatment due to geometric configuration of irradiator is being checked. (author)

  7. Biological sludge solubilisation for reduction of excess sludge production in wastewater treatment process.

    Science.gov (United States)

    Yamaguchi, T; Yao, Y; Kihara, Y

    2006-01-01

    A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.

  8. The role and control of sludge age in biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  9. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  10. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 6 QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Pickenheim, B.; Bannochie, C.; Billings, A.; Bibler, N.; Click, D.

    2010-10-01

    below the DWPF target with 750 g of steam per g of mercury. However, rheological properties did not improve and were above the design basis. Hydrogen generation rates did not exceed DWPF limits during the SRAT and Slurry Mix Evaporator (SME) cycles. However, hydrogen generation during the SRAT cycle approached the DWPF limit. The glass fabricated with the Tank 51 SB6 SME product and Frit 418 was acceptable with respect to chemical durability as measured by the Product Consistency Test (PCT). The PCT response was also predictable by the current durability models of the DWPF Product Composition Control System (PCCS). It should be noted, however, that in the first attempt to make glass from the SME product, the contents of the fabrication crucible foamed over. This may be a result of the SME product's REDOX (Reduction/Oxidation - Fe{sup 2+}/{Sigma}Fe) of 0.08 (calculated from SME product analytical results). The following are recommendations drawn from this demonstration. In this demonstration, at the request of DWPF, SRNL caustic boiled the SRAT contents prior to acid addition to remove water (to increase solids concentration). During the nearly five hours of caustic boiling, 700 ppm of antifoam was required to control foaming. SRNL recommends that DWPF not caustic boil/concentrate SRAT receipt prior to acid addition until further studies can be performed to provide a better foaming control strategy or a new antifoam is developed for caustic boiling. Based on this set of runs and a recently completed demonstration with the SB6 Waste Acceptance Product Specifications (WAPS) sample, it is recommended that DWPF not add formic acid at the design addition rate of two gallons per minute for this sludge batch. A longer acid addition time appears to be helpful in allowing slower reaction of formic acid with the sludge and possibly decreases the chance of a foam over during acid addition.

  11. Arsenic in an alkaline AMD treatment sludge: Characterization and stability under prolonged anoxic conditions

    International Nuclear Information System (INIS)

    Beauchemin, Suzanne; Fiset, Jean-Francois; Poirier, Glenn; Ablett, James

    2010-01-01

    Lime treatment of acid mine drainage (AMD) generates large volumes of neutralization sludge that are often stored under water covers. The sludge consists mainly of calcite, gypsum and a widespread ferrihydrite-like Fe phase with several associated species of metal(loid) contaminants. The long-term stability of metal(loid)s in this chemically ill-defined material remains unknown. In this study, the stability and speciation of As in AMD sludge subjected to prolonged anoxic conditions is determined. The total As concentration in the sludge is 300 mg kg -1 . In the laboratory, three distinct water cover treatments were imposed on the sludge to induce different redox conditions (100%N 2 , 100%N 2 + glucose, 95%N 2 :5%H 2 ). These treatments were compared against a control of oxidized, water-saturated sludge. Electron micro-probe (EMP) analysis and spatially resolved synchrotron X-ray fluorescence (SXRF) results indicate that As is dominantly associated with Fe in the sludge. In all treatments and throughout the experiment, measured concentrations of dissolved As were less than 5 μg L -1 . Dissolved Mn concentration in the N 2 + glucose treatment increased significantly compared to other treatments. Manganese and As K-edge X-ray absorption near edge structure spectroscopy (XANES) analyses showed that Mn was the redox-active element in the solid-phase, while As was stable. Arsenic(V) was still the dominant species in all water-covered sludges after 9 months of anoxic treatments. In contrast, Mn(IV) in the original sludge was partially reduced into Mn(II) in all water-covered sludges. The effect was most pronounced in the N 2 + glucose treatment, suggesting microbial reduction. Micro-scale SXRF and XANES analysis of the treated sludge showed that Mn(II) accumulated in areas already enriched in Fe and As. Overall, the study shows that AMD sludges remain stable under prolonged anoxic conditions. External sources of chemical reductants or soluble C were needed to induce

  12. Integral study of sewage sludges

    International Nuclear Information System (INIS)

    1994-01-01

    Sewage sludges are the by-product generated during the treatment process of waste water, and they are conformed by a solid phase which origin is the accumulation of pollutant materials which has been added to water during natural and anthropogenic activities. Its handling is one of the most serious problems faced by water treatment plants which involve the production, gathering, transportation, re utilization and final disposal of sewage sludges. The main purpose of this project is to perform a technical evaluation of the process of sewage sludge irradiation for its possible application as a choice for treatment and final disposal. Irradiation with gammas from Cobalt-60 shows effectiveness in disinfestation of sewage sludges, since they reduce six times the microbial population with a 7 KGy dose. In like manners with doses of 10 KGy is possible to bring down in 70 % the concentration of organic compounds, as well as to eliminate the presence of 6 to 22 organic compounds on samples of sewage sludges. The whole content of this work is presented in six sections: Introduction, Antecedents, Methodology, Conclusions, Suggestions and Bibliography. (Author)

  13. Management experience on microthrix parvicella bulking in an activated sludge wastewater treatment plant

    International Nuclear Information System (INIS)

    De Bortoli, N.; Mion, M.; Di Giorgio, G.; Goi, D.

    2005-01-01

    Activated sludge wastewater treatment processes may give inefficiencies due to biological imbalances involving biomass. In fact, external causes as temperature lowering can increase the proliferation of the filamentous bacterium Microthrix parvicella into activated sludge flocks. Microthrix parvicella increases may create dangerous bulking phenomena compromising secondary settling without varying bio-kinetic parameters. In this case of study, a method to defeat growth of Microthrix parvicella has been set up. Aluminium poly-chloride (PAC) has been added to activated sludge contained into oxidation tanks of a municipal wastewater treatment plant, where a large growth of Microthrix parvicella has been periodically observed. It has been demonstrated that a definite PAC concentration can reduce Microthrix parvicella proliferation into activated sludge flocks so bulking phenomena can be well reduced [it

  14. Excess sludge reduction in activated sludge processes by integrating ultrasound treatment

    International Nuclear Information System (INIS)

    Perez-Elvira, S.; Fdz-Polanco, M.; Plaza, F. I.; Garralon, G.; Fdz-Polanco, F.

    2009-01-01

    Biological sludge produced in the activated sludge process can be minimised modifying the water line, the sludge line or the final disposal strategy. Selecting the water line the general idea is to reduce the sludge producing the yield coefficient by means of the called lysis cryptic growth process. The main techniques referenced in literature are onization, chlorination and chemical and heat treatment. Ultrasounds are widely used to increase anaerobic biodegradability but are not reported as system to control excess sludge production. (Author)

  15. Supplementary information on K-Basin sludges

    International Nuclear Information System (INIS)

    MAKENAS, B.J.

    1999-01-01

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period

  16. 40 CFR 61.54 - Sludge sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Sludge sampling. 61.54 Section 61.54... sampling. (a) As an alternative means for demonstrating compliance with § 61.52(b), an owner or operator... days prior to a sludge sampling test, so that he may at his option observe the test. (c) Sludge shall...

  17. Heavy metals precipitation in sewage sludge

    NARCIS (Netherlands)

    Marchioretto, M.M.; Rulkens, W.H.; Bruning, H.

    2005-01-01

    There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another

  18. Hard sludge formation in modern steam generators of nuclear power plants. Formation, risks and mitigation

    International Nuclear Information System (INIS)

    Strohmer, F.

    2014-01-01

    In recent years modern steam generators with triangular pitch tube bundle geometry have experienced damage caused by hard sludge formation on top of the tube sheet and denting. The effect can lead to a limitation of the modern steam generators’ lifetime. The current publication shows reasons for the generation of hard sludge formation. Moreover, it describes the risk arising from hard sludge formation for the concerned steam generators and the mitigation of the problem. The main factors contributing to the formation of hard sludge are: the amount of corrosion product ingress into the steam generators, hard sludge formation favouring impurities and, skipped maintenance applications during outages. The main damaging mechanism of denting that can arise under certain secondary side conditions from hard sludge is explained. For steam generator tube denting, aggressive, oxidizing conditions have to be established in crevices beneath the hard sludge piles. Severely dented tubes are sensitive toward outer diameter stress corrosion cracking (ODSCC). The denting and ODSCC mechanism is explained. In addition, a proactive long-term maintenance strategy to avoid the formation of hard sludge piles will be shown. The strategy is based on a reduction of the corrosion product ingress into the steam generator's secondary side, and on the regular removal of deposits from the tube sheet and from the entire upper bundle area by latest mechanical cleaning methods. For hard deposits - formed either by silicates or long term hardened corrosion products, which, in the past, could not be removed by chemical or mechanical means - a new, simple, mechanical cleaning method is presented. This method can be used during the normal time frame of an outage and allows the restart of the unit with clean steam generator tube sheets. This mitigates the tendency to form hard sludge and denting in the long term. (author)

  19. Relationship between microbial community dynamics and process performance during thermophilic sludge bioleaching.

    Science.gov (United States)

    Chen, Shen-Yi; Chou, Li-Chieh

    2016-08-01

    Heavy metals can be removed from the sludge using bioleaching technologies at thermophilic condition, thereby providing an option for biotreatment of wasted sludge generated from wastewater treatment. The purposes of this study were to establish a molecular biology technique, real-time PCR, for the detection and enumeration of the sulfur-oxidizing bacteria during the thermophilic sludge bioleaching. The 16S rRNA gene for real-time PCR quantification targeted the bioleaching bacteria: Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, and Acidithiobacillus caldus. The specificity and stringency for thermophilic sulfur-oxidizing bacteria were tested before the experiments of monitoring the bacterial community, bacterial number during the thermophilic sludge bioleaching and the future application on testing various environmental samples. The results showed that S. acidophilus was identified as the dominant sulfur-oxidizing bacteria, while A. caldus and S. thermosulfidooxidans occurred in relatively low numbers. The total number of the sulfur-oxidizing bacteria increased during the thermophilic bioleaching process. Meanwhile, the decrease of pH, production of sulfate, degradation of SS/VSS, and solubilization of heavy metal were found to correlate well with the population of thermophilic sulfur-oxidizing bacteria during the bioleaching process. The real-time PCR used in this study is a suitable method to monitor numbers of thermophilic sulfur-oxidizing bacteria during the bioleaching process.

  20. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application.

    Directory of Open Access Journals (Sweden)

    Anna Wyrwicka

    Full Text Available The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot, while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx, catalase (CAT and guaiacol peroxidase (POx, were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST. Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.

  1. Determination of uranium metal concentration in irradiated fuel storage basin sludge using selective dissolution

    International Nuclear Information System (INIS)

    Delegard, C.H.; Sinkov, S.I.; Chenault, J.W.; Schmidt, A.J.; Pool, K.N.; Welsh, T.L.

    2014-01-01

    Irradiated uranium metal fuel was stored underwater in the K East and K West storage basins at the US Department of Energy Hanford Site. The uranium metal under damaged cladding reacted with water to generate hydrogen gas, uranium oxides, and spalled uranium metal particles which intermingled with other particulates to form sludge. While the fuel has been removed, uranium metal in the sludge remains hazardous. An expeditious routine method to analyze 0.03 wt% uranium metal in the presence of >30 wt% total uranium was needed to support safe sludge management and processing. A selective dissolution method was designed based on the rapid uranium oxide dissolution but very low uranium metal corrosion rates in hot concentrated phosphoric acid. The uranium metal-bearing heel from the phosphoric acid step then is rinsed before the uranium metal is dissolved in hot concentrated nitric acid for analysis. Technical underpinnings of the selective dissolution method, including the influence of sludge components, were investigated to design the steps and define the reagents, quantities, concentrations, temperatures, and times within the selective dissolution analysis. Tests with simulant sludge proved the technique feasible. Tests with genuine sludge showed a 0.0028 ± 0.0037 wt% (at one standard deviation) uranium metal analytical background, a 0.011 wt% detection limit, and a 0.030 wt% quantitation limit in settled (wet) sludge. In tests using genuine K Basin sludge spiked with uranium metal at concentrations above the 0.030 wt% ± 25 % (relative) quantitation limit, uranium metal recoveries averaged 99.5 % with a relative standard deviation of 3.5 %. (author)

  2. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application.

    Science.gov (United States)

    Wyrwicka, Anna; Urbaniak, Magdalena

    2016-01-01

    The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.

  3. Effect of nitrate on sulfur transformations in sulfidogenic sludge of a marine aquaculture biofilter

    DEFF Research Database (Denmark)

    Schwermer, Carsten Ulrich; Ferdelman, Timothy G.; Stief, Peter

    2010-01-01

    to 35mmol L-1 day-1), indicating that the main source of sulfide in the sludge was not SO42- reduction, but desulfuration during the decomposition of organic matter. Although NO3- inhibited SO42- reduction, but not desulfuration, the primary NO3- mitigation effect was the onset of NO3--mediated sulfide...... oxidation (up to 75 mmolL-1 day-1), partially to elemental sulfur (S0). Above NO3- concentrations of 0.6mM in the bulk water, the net sulfide production and oxidation zones were moved deeper into flocs and sludge cores, which effectively prevented sulfide from entering the water column. However, the sulfide...

  4. Chemical modeling of waste sludges

    International Nuclear Information System (INIS)

    Weber, C.F.; Beahm, E.C.

    1996-10-01

    The processing of waste from underground storage tanks at the Oak Ridge National Laboratory (ORNL) and other facilities will require an understanding of the chemical interactions of the waste with process chemicals. Two aspects of sludge treatment should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids, and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns. It is likely that the treatment of waste tank sludge will begin with washing, followed by basic or acidic leaching. The dissolved materials will be in a solution that has a high ionic strength where activity coefficients are far from unity. Activity coefficients are needed in order to calculate solubilities. Several techniques are available for calculating these values, and each technique has its advantages and disadvantages. The techniques adopted and described here is the Pitzer method. Like any of the methods, prudent use of this approach requires that it be applied within concentration ranges where the experimental data were fit, and its use in large systems should be preceded by evaluating subsystems. While much attention must be given to the development of activity coefficients, other factors such as coprecipitation of species and Ostwald ripening must also be considered when one aims to interpret results of sludge tests or to predict results of treatment strategies. An understanding of sludge treatment processes begins with the sludge tests themselves and proceeds to a general interpretation with the aid of modeling. One could stop with only data from the sludge tests, in which case the table of data would become an implicit model. However, this would be a perilous approach in situations where processing difficulties could be costly or result in concerns for the environment or health and safety

  5. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    Science.gov (United States)

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results

  6. Anaerobic digestion of industrial activated aerobic sludge

    International Nuclear Information System (INIS)

    Goodloe, J.G.; Roberts, R.S.

    1990-04-01

    The Tennessee Eastman Company manufactures a variety of organic chemicals, plastics and fibers at their Kingsport Tennessee Facility. The wastewater generated during the manufacture of these compounds is currently treated using an activated sludge process. The objective of the project is to evaluate the economic potential of an anaerobic digestion process to convert industrial sludge at the Tennessee Eastman Company into biogas. The evaluation will require collection and analysis of experimental data on the anaerobic digestion of industrial sludge obtained from Kingsport. Although the experiments will be conducted using Tennessee Eastman sludge, these results should be also generally applicable to similar industrial sludge

  7. Recommendation of ruthenium source for sludge batch flowsheet studies

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-13

    Included herein is a preliminary analysis of previously-generated data from sludge batches 7a, 7b, 8, and 9 sludge simulant and real-waste testing, performed to recommend a form of ruthenium for future sludge batch simulant testing under the nitric-formic flowsheet. Focus is given to reactions present in the Sludge Receipt and Adjustment Tank cycle, given that this cycle historically produces the most changes in chemical composition during Chemical Process Cell processing. Data is presented and analyzed for several runs performed under the nitric-formic flowsheet, with consideration given to effects on the production of hydrogen gas, nitrous oxide gas, consumption of formate, conversion of nitrite to nitrate, and the removal and recovery of mercury during processing. Additionally, a brief discussion is given to the effect of ruthenium source selection under the nitric-glycolic flowsheet. An analysis of data generated from scaled demonstration testing, sludge batch 9 qualification testing, and antifoam degradation testing under the nitric-glycolic flowsheet is presented. Experimental parameters of interest under the nitric-glycolic flowsheet include N2O production, glycolate destruction, conversion of glycolate to formate and oxalate, and the conversion of nitrite to nitrate. To date, the number of real-waste experiments that have been performed under the nitric-glycolic flowsheet is insufficient to provide a complete understanding of the effects of ruthenium source selection in simulant experiments with regard to fidelity to real-waste testing. Therefore, a determination of comparability between the two ruthenium sources as employed under the nitric-glycolic flowsheet is made based on available data in order to inform ruthenium source selection for future testing under the nitric-glycolic flowsheet.

  8. Improved waste-activated sludge dewatering using sludge/oil ...

    African Journals Online (AJOL)

    2014-10-07

    Oct 7, 2014 ... 2Dept. of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, ... conventional heating methods in chemical reactions is becom- ... the dewaterability of sludge and reduces the organic matter ..... It is unlikely that this technique will be applied in.

  9. Separation of Flue-Gas Scrubber Sludge into Marketable Products

    International Nuclear Information System (INIS)

    1998-01-01

    The reduction of sulfur oxides from high sulfur coal burning utility companies has resulted in the production of huge quantities of wet flue-gas desulfurization scrubber sludge. A typical 400 MW power station burning a coal containing 3.5% sulfur by weight and using a limestone absorbent would produce approximately 177,000 tons (dry weight) of scrubber sludge per year. This brownish colored, finely divided material contains calcium sulfite (CaSO 3 · 1/2 H 2 O), calcium sulfate (CaSO 4 · 2H 2 O), unreacted limestone (CaCO 3 ), and various other impurities such as fly-ash and iron oxide particles. The physical separation of the components of scrubber sludge would result in the re-use of this material. The primary use would be conversion to a highly pure synthetic gypsum. This technical report concentrates on the effect of baffle configuration on the separation of calcium sulfite/sulfate from limestone. The position of the baffles as they related to the feed inlet, and the quantity of the baffles were examined. A clean calcium sulfite/sulfate (less than 2.0% limestone by weight) was achieved with the combination of water-only cyclone and horizontally baffled column

  10. Filterability of membrane bioreactor (MBR) sludge: impacts of polyelectrolytes and mixing with conventional activated sludge.

    Science.gov (United States)

    Yigit, Nevzat O; Civelekoglu, Gokhan; Cinar, Ozer; Kitis, Mehmet

    2010-01-01

    The main objective of this work was to investigate the filterability of MBR sludge and its mixture with conventional activated sludge (CAS). In addition, the impacts of type and dose of various polyelectrolytes, filter type and sludge properties on the filterability of both MBR and Mixed sludges were determined. Specific cake resistance (SCR) measured by the Buchner funnel filtration test apparatus and the solids content of the resulting sludge cake were used to assess the dewaterability of tested sludges. The type of filter paper used in Buchner tests affected the results of filterability for MBR, CAS and Mixed sludges. SCR values and optimum polyelectrolyte doses increased with increasing MLSS concentrations in the MBR, which suggested that increase in MLSS concentrations accompanied by increases in EPS and SMP concentrations and a shift toward smaller particles caused poorer dewaterability of the MBR sludge. The significant differences observed among the filterability of CAS and MBR sludges suggested that MLSS alone is not a good predictor of sludge dewaterability. Combining CAS and MBR sludges at different proportions generally improved their dewaterability. Combining MBR sludges having typically high MLSS and EPS concentrations with CAS having much lower MLSS concentrations may be an option for full-scale treatment plants experiencing sludge dewaterability problems. Better filterability and higher cake dry solids were achieved with cationic polyelectrolytes compared to anionic and non-ionic ones for all sludge types tested.

  11. Electrodialytic removal of cadmium from wastewater sludge

    DEFF Research Database (Denmark)

    Jakobsen, M. R.; Fritt-Rasmussen, Janne; Nielsen, S.

    2004-01-01

    This paper presents for the first time laboratory results demonstrating electrodialytic removal of Cd from wastewater sludge, which is a method originally developed for soil remediation. During the remediation a stirred suspension of wastewater sludge was exposed to an electric dc field. The liquid....../solid (ml/g fresh sludge) ratio was between 1.4 and 2. Three experiments were performed where the sludge was suspended in distilled water, citric acid or HNO"3. The experimental conditions were otherwise identical. The Cd removal in the three experiments was 69, 70 and 67%, respectively, thus the removal...... was approximately the same. Chemical extraction experiments with acidic solutions showed that 5-10 times more Cd could be extracted from decomposed sludge than from fresh sludge. It is likely that the mobilization of Cd during decomposition of the sludge contributes to the efficient removal of Cd...

  12. Hydrazine Determination in Sludge Samples by High Performance Liquid Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    G. Elias; G. A. Park

    2006-02-01

    A high-performance liquid chromatographic method using ultraviolet (UV) detection was developed to detect and quantify hydrazine in a variety of environmental matrices. The method was developed primarily for sludge samples, but it is also applicable to soil and water samples. The hydrazine in the matrices was derivatized to their hydrazones with benzaldehyde. The derivatized hydrazones were separated using high performance liquid chromatography (HPLC) with a reversed-phase C-18 column in an isocratic mode with methanol-water (95:5, v/v), and detected with UV detection at 313 nm. The detection limit (25 ml) for the new analytical method is 0.0067 mg ml-1of hydrazine. Hydrazine showed low recovery in soil samples because components in soil oxidized hydrazine. Sludge samples that contained relatively high soil content also showed lower recovery. The technique is relatively simple and cost-effective, and is applicable for hydrazine analysis in different environmental matrices.

  13. Solidification process for sludge residue

    International Nuclear Information System (INIS)

    Pearce, K.L.

    1998-01-01

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria

  14. Sludge stabilization operability test report

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    Document provides the results of the Operability Test Procedure performed to test the operability of the HC-21C thermal stabilization process for sludge. The OTP assured all equipment functioned properly and established the baseline temperature profile for glovebox HC-21C

  15. Thermal analysis of kieselguhr sludge

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2013-01-01

    Full Text Available It’s currently necessary to clarify the mechanisms of thermodynamic and mass transfer processes in capillary porous media. In this paper we obtain the thermogravimetric curves of evaporation drying kieselguhr sludge. It is also an analysis of the curves, allowing to choose the optimum conditions of drying.

  16. Fluidization of Dried Wastewater Sludge.

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2007-01-01

    Roč. 178, 3 (2007) , s. 166-172 ISSN 0032-5910 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidization characteristics * multiphase reactors * dried stabilized wastewater sludge Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.130, year: 2007

  17. Fermentation and chemical treatment of pulp and paper mill sludge

    Science.gov (United States)

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  18. Radiation disinfection of sewage sludge and composting of the irradiated sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Nishimura, Koichi; Watanabe, Hiromasa; Kawakami, Waichiro

    1985-01-01

    In the radiation disinfected sewage sludge, its stabilization is necessary with the composting. In this disinfected sludge, there is no need of keeping it at high temperature at the cost of fermentation velocity. The fermentation velocity can thus be set to obtain its maximum value. In sewage sludge utilization of farm land, to prevent the contamination with pathogenic bacteria and the secondary pollution, the radiation disinfection of dehydrated sludge and the composting of the disinfected sludge have been studied. The disinfection effect when an electron accelerator is used for the radiation source is described. Then, the composting of the disinfected sludge is described in chemical kinetics of the microorganisms. (Mori, K.)

  19. Effects of Sludge-amendment on Mineralization of Pyrene and Microorganisms in Sludge and Soil

    DEFF Research Database (Denmark)

    Klinge, C; Gejlsbjerg, B; Ekelund, Flemming

    2001-01-01

    . Sludge-amendment enhanced the mineralization of pyrene in the soil compared to soil without sludge, and the most extensive mineralization was observed when the sludge was kept in a lump. The number of protozoa, heterotrophic bacteria and pyrene-mineralizing bacteria was much higher in the sludge compared...... to the soil. The amendment of sludge did not affect the number of protozoa and bacteria in the surrounding soil, which indicated that organic contaminants in the sludge had a little effect on the number of protozoa and bacteria in the surrounding soil...

  20. Characterization of tannery sludge from the leather industry of Franca industrial district, SP, Brazil

    International Nuclear Information System (INIS)

    Chambi, M.M.; Toffoli, S.M.

    2011-01-01

    The industry of leather manufacture generates large quantities of solid leather waste with characteristics of high-polluting and hazardous conditions. Among these wastes, stands out the wet blue leather (chromed leather scraps), and the tanning sludge and secondary sludge generated in the processes of effluents treatment. These wastes contain Cr(III), which, under oxidizing conditions, can turn into Cr (VI), which is highly toxic. However, these wastes are a potential source of chromium oxide (traditional industrial pigment), which could be used by the glass and ceramic enamel industries. In this study, a preliminary characterization of a chromium sludge from the industrial district of Franca-SP was conducted. X-ray diffraction (XRD), chemical (XRF) and thermal (DTA / TG) analyses were used to determine the physical and chemical characteristics of this solid waste. The potential of using this material as an available and cheap pigment for the manufacture of enamels and glass is discussed. (author)

  1. Hexavalent chromium removal using aerobic activated sludge batch ...

    African Journals Online (AJOL)

    The following Cr(VI) removal systems were tested: activated sludge alone; activated sludge with an external electron donor (5 g/. of lactose); activated sludge with PAC addition (4 g/.); activated sludge with both PAC and lactose; and PAC alone. The results reported here showed that activated sludges are capable of ...

  2. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-01-01

    Full Text Available Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR with 50,000 m3 d−1 for treating a town’s wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O reactor and an oxidation ditch (OD being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS. X-ray fluorescence (XRF analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.

  3. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor.

    Science.gov (United States)

    Qin, Linbo; Han, Jun; He, Xiang; Zhan, Yiqiu; Yu, Fei

    2015-05-01

    In the steel industry, about 0.86 ton of oily sludge is produced for every 1000 tons of rolling steel. Due to the adverse impact on human health and the environment, oily sludge is designated as a hazardous waste in the Resource Conservation and Recovery Act (RCRT). In this paper, the pyrolysis treatment of oily sludge is studied in a fluidized bed reactor at a temperature range of 400-600 °C. During oily sludge pyrolysis, a maximum oil yield of 59.2% and a minimum energy loss of 19.0% are achieved at 500 °C. The energy consumption of treating 1 kg oily sludge is only 2.4-2.9 MJ. At the same time, the energy of produced oil, gas and solid residue are 20.8, 6.32, and 0.83 MJ, respectively. In particular, it is found that the solid residue contains more than 42% iron oxide, which can be used as the raw material for iron production. Thus, the simultaneous recovery of energy and iron from oil sludge by pyrolysis is feasible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Sludge derived fuel technique of sewage sludge by oil vacuum evaporation drying

    International Nuclear Information System (INIS)

    Kim, Seokhwan; Lim, Byungran; Lee, Sookoo

    2010-01-01

    Sewage sludge contains high content of organic materials and its water content is also very high about 80% even after filtration process. Landfill as a sludge treatment methods can cause odor problem and leachate production which can derive the secondary contamination of soil and groundwater. The ocean dumping will be prohibited according to the London Convention and domestic stringent environmental regulation. Based on domestic agenda on organic sewage sludge treatment, the ocean disposal will be prohibited from 2012, thus alternative methods are demanded. Sludge derived fuel (SDF) technology can alleviate the emission of greenhouse gas and recover energy from sludge. For proper treatment and SDF production from sludge, the vacuum evaporation and immersion frying technology was adopted in this research. This technology dries moisture in sludge after mixing with oil such as Bunker C oil, waste oil or waste food oil etc. Mixing sludge and oil secures liquidity of organic sludge to facilitate handling throughout the drying process. The boiling temperature could be maintained low through vacuum condition in whole evaporation process. This study was performed to find the optimum operating temperature and pressure, the mixing ratio of sludge and oil. Finally, we could obtained SDF which moisture content was less than 5%, its heating value was over 4,500 kcal/ kg sludge. This heating value could satisfy the Korean Fuel Standard for the Recycle Products. Assessed from the perspective of energy balance and economic evaluation, this sludge drying system could be widely used for the effective sludge treatment and the production of SDF. (author)

  5. 40 CFR Appendix A to Part 503 - Procedure To Determine the Annual Whole Sludge Application Rate for a Sewage Sludge

    Science.gov (United States)

    2010-07-01

    ... Whole Sludge Application Rate for a Sewage Sludge A Appendix A to Part 503 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Pt... a Sewage Sludge Section 503.13(a)(4)(ii) requires that the product of the concentration for each...

  6. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    Science.gov (United States)

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Study of heavy metal in sewage sludge and in Chinese cabbage ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-02

    May 2, 2008 ... were also investigated in the plant grown on soil amend- ... sludge sample was well homogenized with 20 ml acetic acid (0.11 mol l−1) in a 50 ml ..... Metabolic adaptations to ammonia-induced oxidative stress in leaves.

  8. Selective Leaching of Chromium from Hanford Tank Sludge 241-U-108

    International Nuclear Information System (INIS)

    Rapko, Brian M.; Vienna, John D.

    2002-01-01

    This study evaluated the oxidants permanganate, MnO4-, and peroxynitrite, ONOO-, as selective chromium-leaching agents from washed 241-U-108 tank sludge under varying conditions of hydroxide concentration, temperature, and time. The mass changes and final sludge compositions were evaluated using glass-property models to ascertain the relative impacts of the various oxidative alkaline leach conditions on the amount of borosilicate glass required to immobilize a given amount of washed 241-U-108 Hanford tank sludge. Only permanganate leaching removes sufficient chromium to make the chromium concentration in the oxidatively alkaline leached solids non-limiting. In the absence of added oxidants, continued washing or caustic leaching have no beneficial effects. Peroxynitrite addition reduces the amount of glass required to immobilize a given amount of washed 241-U-108 tank sludge by approximately a factor of two. Depending on the leach conditions and the exact chromium concentration limits, contact with alkaline permanganate solutions reduces the amount of immobilized high-level waste glass by a factor of 10 to 30

  9. An Operations Manual for Achieving Nitrification in an Activated Sludge Plant.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    In Ontario, the attainment of nitrification (oxidation of ammonia) in activated sludge plants is receiving increased attention. Nitrification of waste water is a necessary requirement because it reduces plant discharge of nitrogenous oxygen demand and/or toxic ammonia. However, this new requirement will result in added responsibility for…

  10. Selective Leaching of Chromium from Hanford Tank Sludge 241-U-108

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Vienna, John D.

    2002-09-09

    This study evaluated the oxidants permanganate, MnO4-, and peroxynitrite, ONOO-, as selective chromium-leaching agents from washed 241-U-108 tank sludge under varying conditions of hydroxide concentration, temperature, and time. The mass changes and final sludge compositions were evaluated using glass-property models to ascertain the relative impacts of the various oxidative alkaline leach conditions on the amount of borosilicate glass required to immobilize a given amount of washed 241-U-108 Hanford tank sludge. Only permanganate leaching removes sufficient chromium to make the chromium concentration in the oxidatively alkaline leached solids non-limiting. In the absence of added oxidants, continued washing or caustic leaching have no beneficial effects. Peroxynitrite addition reduces the amount of glass required to immobilize a given amount of washed 241-U-108 tank sludge by approximately a factor of two. Depending on the leach conditions and the exact chromium concentration limits, contact with alkaline permanganate solutions reduces the amount of immobilized high-level waste glass by a factor of 10 to 30.

  11. STUDY ON MAXIMUM SPECIFIC SLUDGE ACIVITY OF DIFFERENT ANAEROBIC GRANULAR SLUDGE BY BATCH TESTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The maximum specific sludge activity of granular sludge from large-scale UASB, IC and Biobed anaerobic reactors were investigated by batch tests. The limitation factors related to maximum specific sludge activity (diffusion, substrate sort, substrate concentration and granular size) were studied. The general principle and procedure for the precise measurement of maximum specific sludge activity were suggested. The potential capacity of loading rate of the IC and Biobed anaerobic reactors were analyzed and compared by use of the batch tests results.

  12. F-Canyon Sludge Physical Properties

    International Nuclear Information System (INIS)

    Poirier, M. R.; Hansen, P. R.; Fink, S. D.

    2005-01-01

    The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, DandD requested assistance from Savannah River National Laboratory (SRNL) personnel to determine the pertinent physical properties to effectively mobilize the sludge from these tanks (Tanks 804, 808, and 809). SDD provided SRNL with samples of the sludge from Tanks 804, 808, and 809. The authors measured the following physical properties for each tank: particle settling rate, shear strength (i.e., settled solids yield stress), slurry rheology (i.e., yield stress and consistency), total solids concentration in the sludge, soluble solids concentration of the sludge, sludge density, and particle size distribution

  13. Sewage sludge and how to sell it

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, I M

    1977-10-01

    Largo, Florida dries its sludge and sells it as fertilizer for $80 to $169/T. The sludge processing plant capable of turning common sludge into a dry, pelletized soil conditioner was only slightly more expensive than the previously proposed concrete drying beds which would have required disposal of the dried residue. The city's experience in setting up the plant and marketing the finished product is discussed. The true advantage of selling heat-dried sludge is that residents of the surrounding area, knowing the value of the product to their lawns and shrubs, will provide the transportation for the product and the physical labor to spread it over an area wider than most municipalities could afford to own or operate. The current production cost of $140/T is high, but the addition of a sludge prethickener-conditioner process and expected future economies of scale as the volume of sludge treated increases should lower per ton costs.

  14. Composting of gamma-radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, W.; Hashimoto, S.; Watanabe, H.; Nishimura, K.; Watanabe, H.; Ito, H.; Takehisa, M.

    1981-01-01

    The composting of radiation disinfected sewage sludge has been studied since 1978, aiming to present a new process of sludge composting for agricultural uses. This process is composed of two steps: irradiation step to disinfect sludge, and composting step to remove odor and easily decomposable organics in sludge. In this paper, the gamma-irradiation effect on sludge cake and composting condition of irradiated sludge are discussed. (author)

  15. Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined

  16. Use of a water treatment sludge in a sewage sludge dewatering process

    Science.gov (United States)

    Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata

    2018-02-01

    The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

  17. An Economic comparison of sludge irradiation and alternative methods of municipal sludge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, S.B.; McGuire, H.E.

    1977-11-01

    The relative economics of radiation treatment and other sludge treatment processes are reported. The desirability of radiation treatment is assessed in terms of cost and the quality of the treated sludge product. The major conclusions of this study are: radiation treatment is a high-level disinfection process. Therefore, it should only be considered if high levels of disinfection are required for widespread reuse of the sludge; the handling, transporting and pathogen growback problems associated with disinfected wet sludge makes it less attractive for reuse than dry sludge; radiation of composted sludge produces a product of similar quality at less cost than any thermal treatment and/or flash drying treatment option for situations where a high degree of disinfection is required; and heavy metal concerns, especially cadmium, may limit the reuse of sludge despite high disinfection levels. It is recommended that radiation treatment of sludge, particularly dry sludge, continue to be studied. A sensitivity analysis investigating the optimal conditions under which sludge irradiation operates should be instigated. Furthermore, costs of adding sludge irradiation to existing sludge treatment schemes should be determined.

  18. Solidifying power station resins and sludges

    International Nuclear Information System (INIS)

    Willis, A.S.D.; Haigh, C.P.

    1984-01-01

    Radioactive ion exchange resins and sludges arise at nuclear power stations from various operations associated with effluent treatment and liquid waste management. As the result of an intensive development programme, the Central Electricity Generating Board (CEGB) has designed a process to convert power station resins and sludges into a shielded, packaged solid monolithic form suitable for final disposal. Research and development, the generic CEGB sludge/resin conditioning plant and the CEGB Active Waste Project are described. (U.K.)

  19. Treatment of Lagoon sludge waste generated from Uranium Conversion Plant

    International Nuclear Information System (INIS)

    Hwang, D.S.; Oh, J.H.; Lee, K.I.; Choi, Y.D.; Hwang, S.T.; Park, J.H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the desalination process by water and the drying property of residual solid after separating nitrates in a series of processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97 % at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue. These were decomposed over 600 deg. C while calcium carbonate, which was a main compound of residual solid, was decomposed into calcium oxide over 750 deg. C. The residual solid has to be decomposed over 800 deg. C to converse uranyl nitrate of six values into the stable U 3 O 8 of four values. As a result of removing the nitrates at the adding ratio of 2.5 and drying the residue over 900 deg. C, volume of the sludge waste decreased over 80 %. (authors)

  20. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications.

    Science.gov (United States)

    Nancharaiah, Y V; Kiran Kumar Reddy, G

    2018-01-01

    Aerobic granular sludge (AGS) is a novel microbial community which allows simultaneous removal of carbon, nitrogen, phosphorus and other pollutants in a single sludge system. AGS is distinct from activated sludge in physical, chemical and microbiological properties and offers compact and cost-effective treatment for removing oxidized and reduced contaminants from wastewater. AGS sequencing batch reactors have shown their utility in the treatment of abattoir, live-stock, rubber, landfill leachate, dairy, brewery, textile and other effluents. AGS is extensively researched for wide-spread implementation in sewage treatment plants. However, formation of AGS takes relatively much longer time while treating low-strength wastewaters like sewage. Strategies like increased volumetric flow by means of short cycles and mixing of sewage with industrial wastewaters can promote AGS formation while treating low-strength sewage. This article reviewed the state of research on AGS formation mechanisms, bioremediation capabilities and biotechnological applications of AGS technology in domestic and industrial wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Land application of sewage sludge: Pathogen issues

    International Nuclear Information System (INIS)

    Chang, A.C.

    1997-01-01

    Diseases transmitted via the faecal-oral exposure route cause severe gastroenteric disorders, and large numbers of causative organisms are discharged with the faecal matter of infected individuals. For this reason, pathogenic bacteria, viruses, protozoa, or helminths, are always found in sewage sludge. If not properly treated for use in agriculture, sludge can be a source of pathogenic contamination. Radiation is an attractive method to reduce the numbers of microorganisms in sewage sludge. Routine examination for pathogens is not practised nor recommended because complicated and costly procedures are involved. Instead, an indicator organism is usually assayed and enumerated. In this paper, methods are discussed for the investigation of pathogens in sewage sludge. (author)

  2. Where to dispose of the sewage sludge?

    International Nuclear Information System (INIS)

    Beurer, P.; Geering, F.

    2001-01-01

    The 'proper' course for the disposal of sewage sludge is a topic that has continually sparked intense discussion for years. New legal regulations have developed which have significantly changed the disposal structure. Nevertheless, the consumer market of agriculture products has an increasing influence on sewage sludge recycling possibilities. In this report, the changes in sewage sludge disposal within the last ten years and the expected development is pointed out. On account of legal guidelines and of political market influences, the thermal recycling of sewage sludge is considered as the future solution, which should, however, be adapted according to marginal situations. (author)

  3. Rheological properties of disintegrated sewage sludge

    Science.gov (United States)

    Wolski, Paweł

    2017-11-01

    The rheology of the sludge provides information about the capacity and the flow, which in the case of project tasks for the hydraulic conveying installation is an important control parameter. Accurate knowledge of the rheological properties of sludge requires the designation of rheological models. Models single and multiparameter (Ostwald, Bingham, Herschel-Bulkley'a, and others) allow an approximation of flow curves, and the determination of the boundaries of the flow of modified sludge allows you to control the process compaction or are dewatered sludge undergoing flow. The aim of the study was to determine the rheological parameters and rheological models of sludge conditioned by physical methods before and after the process of anaerobic digestion. So far, studies have shown that the application of conditioning in the preparation of sewage sludge increases shear stress, viscosity as well as the limits of flow in relation to the untreated sludge. Offset yield point by the application of a conditioning agent is associated with decreased flowability tested sludge, which has also been observed by analyzing the structure of the prepared samples. Lowering the yield point, and thus the shear stress was recorded as a result of the fermentation test of disintegrated sludge.

  4. Radioactive contamination of sewage sludge. Preliminary data

    Energy Technology Data Exchange (ETDEWEB)

    Soeder, C J; Zanders, E; Raphael, T

    1986-01-01

    Because of the radioactivity released through the explosion of the nuclear reactor near Chernobyl radionuclides have been accumulated to a significant extent in sewage sludge in the Federal Republic of Germany. This is demonstrated for samples from four activated sludge plants according to a recent recommendation of the German Commission for Radiation Protection, there is until now no reason to deviate from the common practices of sludge disposal or incineration. The degree of radioactive contamination of plant materials produced on farm lands on which sewage sludge is being spread cannot be estimated with sufficient certainty yet. Additional information is required.

  5. Sewage sludge as a biomass energy source

    Directory of Open Access Journals (Sweden)

    Pavel Kolat

    2013-01-01

    Full Text Available The major part of the dry matter content of sewage sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary microbiological sludge. The sludge also contains a substantive amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery and co-incineration in coal-fired power plants. The goal of our applied research is to verify, if the sludge from waste water treatment plants may be used as a biomass energy source in respect of the EU legislation, which would comply with emission limits or the proposal of energy process optimizing the preparation of coal/sludge mixture for combustion in the existing fluid bed boilers in the Czech Republic. The paper discusses the questions of thermal usage of mechanically drained stabilized sewage sludge from the waste water treatment plants in the boiler with circulated fluid layer. The paper describes methods of thermal analysis of coal, sewage sludge and its mixtures, mud transport to the circulating fluidised bed boiler, effects on efficiency, operational reliability of the combustion equipment, emissions and solid combustion residues.

  6. A review of modeling approaches in activated sludge systems

    African Journals Online (AJOL)

    use

    Key words: Mathematical modeling, water, wastewater, wastewater treatment plants, activated sludge systems. INTRODUCTION ... sedimentation processes which take place in the aeration ...... activated sludge waste water treatment systems.

  7. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate.

    Science.gov (United States)

    Zhou, Xu; Wang, Qilin; Jiang, Guangming; Liu, Peng; Yuan, Zhiguo

    2015-06-01

    Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel conditioning method for improving waste activated sludge dewaterability by combination of persulfate and zero-valent iron. The combination of zero-valent iron (0-30g/L) and persulfate (0-6g/L) under neutral pH substantially enhanced the sludge dewaterability due to the advanced oxidization reactions. The highest enhancement of sludge dewaterability was achieved at 4g persulfate/L and 15g zero-valent iron/L, with which the capillary suction time was reduced by over 50%. The release of soluble chemical oxygen demand during the conditioning process implied the decomposition of sludge structure and microorganisms, which facilitated the improvement of dewaterability due to the release of bound water that was included in sludge structure and microorganism. Economic analysis showed that the proposed conditioning process with persulfate and ZVI is more economically favorable for improving WAS dewaterability than classical Fenton reagent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Hexamethyldisilazane Removal with Mesoporous Materials Prepared from Calcium Fluoride Sludge.

    Science.gov (United States)

    Kao, Ching-Yang; Lin, Min-Fa; Nguyen, Nhat-Thien; Tsai, Hsiao-Hsin; Chang, Luh-Maan; Chen, Po-Han; Chang, Chang-Tang

    2018-05-01

    A large amount of calcium fluoride sludge is generated by the semiconductor industry every year. It also requires a high amount of fuel consumption using rotor concentrators and thermal oxidizers to treat VOCs. The mesoporous adsorbent prepared by calcium fluoride sludge was used for VOCs treatment. The semiconductor industry employs HMDS to promote the adhesion of photo-resistant material to oxide(s) due to the formation of silicon dioxide, which blocks porous adsorbents. The adsorption of HMDS (Hexamethyldisiloxane) was tested with mesoporous silica materials synthesized from calcium fluoride (CF-MCM). The resulting samples were characterized by XRD, XRF, FTIR, N2-adsorption-desorption techniques. The prepared samples possessed high specific surface area, large pore volume and large pore diameter. The crystal patterns of CF-MCM were similar with Mobil composite matter (MCM-41) from TEM image. The adsorption capacity of HMDS with CF-MCM was 40 and 80 mg g-1, respectively, under 100 and 500 ppm HMDS. The effects of operation parameters, such as contact time and mixture concentration, on the performance of CF-MCM were also discussed in this study.

  9. Drying of residue and separation of nitrate salts in the sludge waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Lee, K. I.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the dissolution process by water and the drying property of residue after separating nitrates in a series of the processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97% at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue These were decomposed over 600 .deg. C and calcium carbonate, which was consisted mainly of residue, was decomposed into calcium oxide over 750 .deg. C. The residue have to be decomposed over 800 .deg. C to converse uranyl nitrate of six value into the stable U 3 O 8 of four value. As a result of removing the nitrates at the water adding ratio of 2.5 and drying the residue over 900 .deg. C, volume of the sludge waste decreased over 80%

  10. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen M; Scheutz, Charlotte

    2017-01-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological...... processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during...

  11. Modelling the change in the oxidation coefficient during the aerobic ...

    African Journals Online (AJOL)

    In this work the aerobic degradation of phenol by acclimated activated sludge was studied. Results demonstrate that while the phenol removal rate by acclimated activated sludge follows the Monod model, the oxygen uptake rate obeys a Haldane-type equation. The phenol oxidation coefficient obtained at different intial ...

  12. Sequential pretreatment for cell disintegration of municipal sludge in a neutral Bio-electro-Fenton system.

    Science.gov (United States)

    Yu, Qilin; Jin, Xiaochen; Zhang, Yaobin

    2018-05-15

    Sludge cell disruption was generally considered as the rate-limiting step for the anaerobic digestion of waste activated sludge (WAS). Advanced oxidation processes and bio-electro-chemical systems were recently reported to enhance the hydrolysis of WAS and sludge cell disruption, while the cell-breaking processes of these systems remain unclear yet. In this study, an innovative Bio-electro-Fenton system was developed to pretreat the WAS sequentially with cathode Fenton process and anode anaerobic digestion. Significant cell disruption and dissolution intracellular organics were founded after the treatment. X-ray photoelectron spectroscopy (XPS) analysis and fourier transform infrared spectroscopy (FT-IR) spectra indicated that Gram-negative bacteria were more sensitive to free radicals yielded in cathode to induce a chain reaction that destroyed the lipid-contained outer membrane, while Gram-positive bacteria with thick peptidoglycan layer were liable to be biologically decomposed in the anode. Compared with the oxidation of organic matters in the cathode Fenton, the secretion of enzyme increased in the anode which was beneficial to break down the complex matters (peptidoglycans) into simples that were available for anode oxidation by exoelectrogens. The results also showed a possible prospect for the application of this sequential pretreatment in bio-electro-Fenton systems to disrupt sludge cells and enhance the anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. CONSOLIDATION OF K BASIN SLUDGE DATA AND EXPERIENCES ON AGGLOMERATE FORMATION

    International Nuclear Information System (INIS)

    Hill, S.R.

    2010-01-01

    The formation of high sludge strength agglomerates is a key concern to the Sludge Treatment Project (STP) to ensure the sludge can be retrieved after planned storage for up to 10 years in Sludge Transport and Storage Containers (STSC) at T Plant. This report addresses observations of agglomerate formation, conditions that the data shows lead to agglomeration, the frequency of agglomerate formation and postulated physiochemical mechanisms that may lead to agglomeration. Although the exact underlying chemistry of K Basin sludge agglomerate formation is not known, the factors that lead to agglomeration formation, based on observations, are as follows: (1) High Total Uranium Content (i.e., sample homogeneity and influence from other constituents); (2) Distribution of Uranium Phases (i.e., extent of conversion from uraninite to uranium oxide hydroxide compounds); (3) Sample Dry-out (loss of cover water); (4) Elevated temperature; (5) Solubility ofU(IV) phases vs. U(VI) phases; and (6) Long storage times. Agglomerated sludge has occurred infrequently and has only been observed in four laboratory samples, five samples subjected to hydrothermal testing (performed for 7 to 10 hours at ∼185 C and 225 psig), and indirectly during six sampling events in the KE Basin. In the four laboratory samples where agglomerates were observed, the agglomerates exhibited high shear strength and the sample container typically had to be broken to remove the solids. The total uranium content (dry basis) for the four samples (KE Pit, KC-2/3 SS, KC-2/3 M250 and 96-13) were ∼8 wt%, ∼59.0 wt%, 68.3 wt% and 82 wt%. The agglomerates that were present during the six sampling events were undoubtedly disturbed and easily broken apart during sample collection, thus no agglomerates were observed in subsequent laboratory analyses. The highest shear strengths measured for K Basin sludge samples were obtained after hydrothermal treatment (7 to 10 hr at 185 C) of high-uranium-content KE canister sludge

  14. CONSOLIDATION OF K BASIN SLUDGE DATA AND EXPERIENCES ON AGGLOMERATE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    HILL SR

    2010-06-10

    The formation of high sludge strength agglomerates is a key concern to the Sludge Treatment Project (STP) to ensure the sludge can be retrieved after planned storage for up to 10 years in Sludge Transport and Storage Containers (STSC) at T Plant. This report addresses observations of agglomerate formation, conditions that the data shows lead to agglomeration, the frequency of agglomerate formation and postulated physiochemical mechanisms that may lead to agglomeration. Although the exact underlying chemistry of K Basin sludge agglomerate formation is not known, the factors that lead to agglomeration formation, based on observations, are as follows: (1) High Total Uranium Content (i.e., sample homogeneity and influence from other constituents); (2) Distribution of Uranium Phases (i.e., extent of conversion from uraninite to uranium oxide hydroxide compounds); (3) Sample Dry-out (loss of cover water); (4) Elevated temperature; (5) Solubility ofU(IV) phases vs. U(VI) phases; and (6) Long storage times. Agglomerated sludge has occurred infrequently and has only been observed in four laboratory samples, five samples subjected to hydrothermal testing (performed for 7 to 10 hours at {approx}185 C and 225 psig), and indirectly during six sampling events in the KE Basin. In the four laboratory samples where agglomerates were observed, the agglomerates exhibited high shear strength and the sample container typically had to be broken to remove the solids. The total uranium content (dry basis) for the four samples (KE Pit, KC-2/3 SS, KC-2/3 M250 and 96-13) were {approx}8 wt%, {approx}59.0 wt%, 68.3 wt% and 82 wt%. The agglomerates that were present during the six sampling events were undoubtedly disturbed and easily broken apart during sample collection, thus no agglomerates were observed in subsequent laboratory analyses. The highest shear strengths measured for K Basin sludge samples were obtained after hydrothermal treatment (7 to 10 hr at 185 C) of high-uranium-content KE

  15. Speciation of mercury in sludge solids: washed sludge

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Lourie, A. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-24

    The objective of this applied research task was to study the type and concentration of mercury compounds found within the contaminated Savannah River Site Liquid Waste System (SRS LWS). A method of selective sequential extraction (SSE), developed by Eurofins Frontier Global Sciences1,2 and adapted by SRNL, utilizes an extraction procedure divided into seven separate tests for different species of mercury. In the SRNL’s modified procedure four of these tests were applied to a washed sample of high level radioactive waste sludge.

  16. IMPACT OF IRRADIATION AND THERMAL AGING ON DWPF SIMULATED SLUDGE PROPERTIES

    International Nuclear Information System (INIS)

    Eibling, R; Michael Stone, M

    2006-01-01

    The research and development programs in support of the Defense Waste Processing Facility (DWPF) and other high-level waste vitrification processes require the use of both nonradioactive waste simulants and actual waste samples. While actual waste samples are the ideal materials to study, acquiring large quantities of actual waste is difficult and expensive. Tests utilizing actual high-level waste require the use of expensive shielded cells facilities to provide sufficient shielding for the researchers. Nonradioactive waste simulants have been used for laboratory testing, pilot-scale testing and full-scale integrated facility testing. These waste simulants were designed to reproduce the chemical and, if possible, the physical properties of the actual high-level waste. This technical report documents a study on the impact of irradiating a Sludge Batch 3 (SB3) simulant and of additional tests on aging a SB3 simulant by additional thermal processing. Prior simulant development studies examined methods of producing sludge and supernate simulants and processes that could be used to alter the physical properties of the simulant to more accurately mimic the properties of actual waste. Development of a precipitated sludge simulant for the River Protection Project (RPP) demonstrated that the application of heat for a period of time could significantly alter the rheology of the sludge simulant. The RPP precipitated simulant used distillation to concentrate the sludge solids and produced a reduction in sludge yield stress of up to 80% compared to the initial sludge properties. Observations at that time suggested that a substantial fraction of the iron hydroxide had converted to the oxide during the distillation. DWPF sludge simulant studies showed a much smaller reduction in yield stress (∼10%), demonstrated the impact of shear on particle size, and showed that smaller particle sizes yielded higher yield stress products. The current study documented in this report focuses

  17. Pathogen reduction in sludges by irradiation

    International Nuclear Information System (INIS)

    Brandon, J.R.

    1979-01-01

    There is international interest in the use of ionizing radiation in waste water and sludge treatment. Results of programs to study effects of radiation on disease-causing microbes commonly found in wastewater sludges will be discussed. Although emphasis will be on the work conducted at Sandia Laboratories, the discussion will include work in progress in West Germany, France, South Africa, and other countries

  18. Sustainability of Domestic Sewage Sludge Disposal

    Directory of Open Access Journals (Sweden)

    Claudia Bruna Rizzardini

    2014-04-01

    Full Text Available Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a secondary role in terms of their degree of diffusion. The agronomical value of domestic sewage sludge is a proved question, which may be hidden by the presence of several pollutants such as heavy metals, organic compounds and pathogens. In this way, the sustainability of sewage sludge agricultural disposal requires a value judgment based on knowledge and evaluation of the level of pollution of both sewage sludge and soil. The article analyzed a typical Italian case study, a water management system of small communities, applying the criteria of evaluation of the last official document of European Union about sewage sludge land application, the “Working Document on Sludge (3rd draft, 2000”. The report brought out good sewage sludge from small wastewater treatment plants and soils quality suggesting a sustainable application.

  19. Electron beam disinfection of sewage sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji

    1992-01-01

    Electron beam treatment of dehydrated sewage sludge for safe reutilization was performed. Ranges of total bacterial counts and total coliforms in the sludge were from 1.5 x 10 8 to 1.6 x 10 9 and from 2.2 x 10 7 to 1.5 x 10 8 per wet gram, respectively. Total bacterial counts decreased about 5 log cycles after irradiating 5 kGy and irradiation with 2 kGy was enough to kill all coliforms in sewage sludge. The survival curves of total bacteria, obtained by irradiation in oxygen atmosphere, approached to that in nitrogen atmosphere with the increase of sludge thickness. No effects of dose rate and electron energy were found when the sludge layers were thin enough. Continuous disinfection of sewage sludge cake, with the maximum feed rate of 300 kg-sludge/hr, was successfully performed with a Cockcroft-Walton type electron accelerator, a sludge pump and a flat nozzle. (J.P.N.)

  20. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  1. Filterability and Sludge Concentration in Membrane Bioreactors

    NARCIS (Netherlands)

    Lousada-Ferreira, M.

    2011-01-01

    The Thesis entitled “Filterability and Sludge Concentration in Membrane Bioreactors” aims at explaining the relation between Mixed Liquid Suspended Solids (MLSS) concentration, the amount of solids in the wastewater being treated, also designated as sludge, and filterability, being the ability of

  2. Gravitational sedimentation of flocculated waste activated sludge.

    Science.gov (United States)

    Chu, C P; Lee, D J; Tay, J H

    2003-01-01

    The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.

  3. Combined thermophilic aerobic process and conventional anaerobic digestion: effect on sludge biodegradation and methane production.

    Science.gov (United States)

    Dumas, C; Perez, S; Paul, E; Lefebvre, X

    2010-04-01

    The efficiency of hyper-thermophilic (65 degrees Celsius) aerobic process coupled with a mesophilic (35 degrees Celsius) digester was evaluated for the activated sludge degradation and was compared to a conventional mesophilic digester. For two Sludge Retention Time (SRT), 21 and 42 days, the Chemical Oxygen Demand (COD) solubilisation and biodegradation processes, the methanisation yield and the aerobic oxidation were investigated during 180 days. The best results were obtained at SRT of 44 days; the COD removal yield was 30% higher with the Mesophilic Anaerobic Digestion/Thermophilic Aerobic Reactor (MAD-TAR) co-treatment. An increase of the sludge intrinsic biodegradability is also observed (20-40%), showing that the unbiodegradable COD in mesophilic conditions becomes bioavailable. However, the methanisation yield was quite similar for both processes at a same SRT. Finally, such a process enables to divide by two the volume of digester with an equivalent efficiency. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Waste sludge resuspension and transfer: development program

    International Nuclear Information System (INIS)

    Weeren, H.O.; Mackey, T.S.

    1980-02-01

    The six Gunite waste tanks at Oak Ridge National Laboratory (ORNL) contain about 400,000 gal of sludge that has precipitated from solution and settled during the 35 years these tanks have been in service. Eventual decommissioning of the tanks has been proposed. The first part of this program is to resuspend the accumulated sludge, to transfer it to new storage tanks in Melton Valley, and to dispose of it by the shale-fracturing process. On the basis of preliminary information, a tentative operational concept was adopted. The sludge in each tank would be resuspended by hydraulic sluicing and pumped from the tank. This resuspended sludge would be treated as necessary to keep the particles in suspension and would be pumped to the new waste-storage tanks. Subsequently the sludge would be pumped from the tanks, combined with a cement-base mix, and disposed of by the shale-fracturing facility. Verification of the feasibility of this concept required development effort on characterization of the sludge and development of techniques for resuspending the sludge and for keeping it in suspension. These development efforts are described in this report. Sections of the report describe both the known properties of the sludge and the tests of grinding methods investigated, discuss tests of various suspenders, describe tests with cement-base mixes, summarize hot-cell tests on actual sludge samples, and describe tests that were made at a mockup of a Gunite tank installation. On the basis of the tests made, it was concluded that reslurrying and resuspension of the sludge is quite feasible and that the suspensions can be made compatible with cement mixes

  5. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations.

    Science.gov (United States)

    Liu, Jing-yong; Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe; Li, Xiao-ming; Chen, Tao; Luo, Guang-qian; Xie, Wu-ming; Wang, Yu-Jie; Zhuo, Zhong-xu; Fu, Jie-wen

    2015-04-01

    Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na2S and Na2SO4) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na2SO4 and Na2S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO4(s) at low temperatures (incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the concentration of Si, Ca and Al-containing compounds in the sludge. These findings provide useful information for understanding the partitioning behavior of Pb, facilitating the development of strategies to control the volatilization of Pb during sludge incineration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management.

    Science.gov (United States)

    Zhang, Linghong; Xu, Chunbao Charles; Champagne, Pascale; Mabee, Warren

    2014-07-01

    Sludge is a semi-solid residue produced from wastewater treatment processes. It contains biodegradable and recalcitrant organic compounds, as well as pathogens, heavy metals, and other inorganic constituents. Sludge can also be considered a source of nutrients and energy, which could be recovered using economically viable approaches. In the present paper, several commonly used sludge treatment processes including land application, composting, landfilling, anaerobic digestion, and combustion are reviewed, along with their potentials for energy and product recovery. In addition, some innovative thermo-chemical techniques in pyrolysis, gasification, liquefaction, and wet oxidation are briefly introduced. Finally, a brief summary of selected published works on the life cycle assessment of a variety of sludge treatment and end-use scenarios is presented in order to better understand the overall energy balance and environmental burdens associated with each sludge treatment pathway. In all scenarios investigated, the reuse of bioenergy and by-products has been shown to be of crucial importance in enhancing the overall energy efficiency and reducing the carbon footprint. © The Author(s) 2014.

  7. Assessment of mobility and bioavailability of mercury compounds in sewage sludge and composts.

    Science.gov (United States)

    Janowska, Beata; Szymański, Kazimierz; Sidełko, Robert; Siebielska, Izabela; Walendzik, Bartosz

    2017-07-01

    Content of heavy metals, including mercury, determines the method of management and disposal of sewage sludge. Excessive concentration of mercury in composts used as organic fertilizer may lead to accumulation of this element in soil and plant material. Fractionation of mercury in sewage sludge and composts provides a better understanding of the extent of mobility and bioavailability of the different mercury species and helps in more informed decision making on the application of sludge for agricultural purposes. The experimental setup comprises the composing process of the sewage sludge containing 13.1mgkg -1 of the total mercury, performed in static reactors with forced aeration. In order to evaluate the bioavailability of mercury, its fractionation was performed in sewage sludge and composts during the process. An analytical procedure based on four-stage sequential extraction was applied to determine the mercury content in the ion exchange (water soluble and exchangeable Hg), base soluble (Hg bound to humic and fulvic acid), acid soluble (Hg bound to Fe/Mn oxides and carbonates) and oxidizable (Hg bound to organic matter and sulphide) fractions. The results showed that from 50.09% to 64.55% of the total mercury was strongly bound to organo-sulphur and inorganic sulphide; that during composting, increase of concentrations of mercury compounds strongly bound with organic matter and sulphides; and that mercury content in the base soluble and oxidizable fractions was strongly correlated with concentration of dissolved organic carbon in those fractions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States); Brandenburg, C. H. [Savannah River Site (SRS), Aiken, SC (United States); Luther, M. C. [Savannah River Site (SRS), Aiken, SC (United States); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States); Woodham, W. H. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-11-01

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processing conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.

  9. Oil sludge treatment using thermal and ash vitrification technology

    International Nuclear Information System (INIS)

    Rohyiza Baan; Sharifah Aishah, S.A.K.; Mohamad Puad Abu; Mohd Abdul Wahab Yusof

    2010-01-01

    In this paper, an experimental study of crude oil sludge terminal for volume reduction and radionuclide stability was treated by using integrated thermal treatment system. The pre-thermal treatment of oil sludge was carried out in fluidized bed combustor at temperature 500 degree Celsius, and then the ash produced from that process was vitrified in high temperature furnace at temperature above 1000 degree Celsius. The main contents of oil sludge are composed of 80% carbon, 11% sulphur, 50% volatile matter and 30% ash. The high heating value was 35,722 kJ/ kg. Analysis by gamma spectrometer was showed the radionuclide as Ra-226 (52.23 Bq/ kg), Ra-228 (47.48 Bq/ kg), K-40 (172.55 Bq/ kg), whereas analysis by neutron activation analysis (NAA) for U (0.5 μg/ g) and Th (0.5 μg/ g) was present in low concentration. Trace elements as Ba, Cd, Cr, Hg, As, Pb, Al, Zn, Ni was determine by using ICPMS. Thermal analysis has shown loss of mass and residual decomposition in the TG and DTA curves. The concentration of radionuclide in ash from fluidized bed combustor process was increased for Ra-226 (264.27 Bq/ kg) and Ra-228 (253.77 Bq/ kg). The slag was produced from ash vitrification process was characterized by X-ray fluorescence (XRF) and showed that silica oxide and potassium oxide were found. The slag characterization by X-ray diffraction (XRD) showed that slag composed of crystalline. The toxicity characteristic leaching procedure (TCLP) test showed that the slag resulted in very low leachability of heavy metals. Most of the toxic metals are fixed in the vitrification process and the leachate values meet the standard level of Malaysian Department of Environmental (DOE) of hazardous materials. The average concentration of each element varied between 1.5-14.0 mg/ kg. (author)

  10. Ultrasonically enhanced disintegration. Polymers, sludge, and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Groenroos, A.

    2010-05-15

    on the initial dynamic viscosity. The higher the initial dynamic viscosity, the faster the degradation. This work confirms the general assumption that the shear forces generated by the rapid motion of the solvent following cavitational collapse are responsible for the breakage of the chemical bonds within the polymer. The effect of polymer concentration could be interpreted in terms of the increase in viscosity with concentration, causing the molecules to become less mobile in solution with smaller velocity gradients around collapsing bubbles. Ultrasonic disintegration of sludge increased the amount of soluble chemical oxygen demand (SCOD) and the production of methane. Multivariate data analysis suggested that ultrasonic power, sludge dry solids (DS), sludge temperature, and ultrasonic treatment time significantly affect sludge disintegration. It was also found that high ultrasound power together with a short treatment time is more efficient than low ultrasound power with a long treatment time. When using high ultrasound power, the ultrasound propagation is an important factor both in cavitation erosion prevention and reactor scale-up. Ultrasound efficiency rose linearly with input power in sludge at small distances from the transducer. On the other hand, ultrasound efficiency started even to decrease with input power at long distances from the transducer. When using oxidizing agents together with ultrasonic disintegration there was no increase in SCOD and only a slight increase in total organic carbon (TOC) compared to ultrasonic treatment alone. However, when using oxidizing agents together with ultrasound, no enhancement in methane production was observed. Ultrasound improved the remediation results of both products (sink and float products) in heavy medium separation. This phenomenom was based on the fact that the amount of ultrafine metal fraction was diminished when attrition conditioning was replaced by ultrasound. The remediation process produced float

  11. Physical property characterization of 183-H Basin sludge

    International Nuclear Information System (INIS)

    Biyani, R.K.; Delegard, C.H.

    1995-01-01

    This document describes the characterization of 183-H Basin sludge physical properties, e.g. bulk density of sludge and absorbent, and determination of free liquids. Calcination of crucible-size samples of sludge was also done and the resulting 'loss-on-ignition' was compared to the theoretical weight loss based on sludge analysis obtained from Weston Labs

  12. Dewaterability of sludge digested in extended aeration plants using ...

    African Journals Online (AJOL)

    Dewaterability of unconditioned sludge digested in full scale and lab scale experiments using either extended aeration (EA) or anaerobic digestion were compared on full and lab scale sand drying beds. Sludge digested in EA plants resulted in improvement in sludge dewaterability compared to sludge digested ...

  13. Sewage sludge pasteurization by gamma radiation: financial viability case studies

    International Nuclear Information System (INIS)

    Swinwood, J.F.; Kotler, J.

    1990-01-01

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1. Small volume sewage treatment plant experiencing high sludge disposal costs; 2. Large volume sewage treatment plant experiencing low sludge disposal costs; 3. Large volume sewage treatment plant experiencing high sludge disposal costs. (author)

  14. Sewage sludge pasteurization by gamma radiation: financial viability case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swinwood, J.F.; Kotler, J. (Nordion International Inc., Kanata, Ontario (Canada))

    1990-01-01

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1. Small volume sewage treatment plant experiencing high sludge disposal costs; 2. Large volume sewage treatment plant experiencing low sludge disposal costs; 3. Large volume sewage treatment plant experiencing high sludge disposal costs. (author).

  15. Sewage sludge pasteurization by gamma radiation: Financial viability case studies

    Science.gov (United States)

    Swinwood, Jean F.; Kotler, Jiri

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1) Small volume sewage treatment plant experiencing high sludge disposal costs. 2) Large volume sewage treatment plant experiencing low sludge disposal costs. 3) Large volume sewage treatment plant experiencing high sludge disposal costs.

  16. The beneficial usage of water treatment sludge as pottery product ...

    African Journals Online (AJOL)

    The disposal of sludge from water treatment operations has become a major problem in Malaysia. The problem becomes acute because of scarcity of space for installation of sludge treatment facilities and disposal of treated sludge. Traditionally, treated sludge from water treatment plant will be sent to landfill for disposal.

  17. Transportability Class of Americium in K Basin Sludge under Ambient and Hydrothermal Processing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmitt, Bruce E.; Schmidt, Andrew J.

    2006-08-01

    This report establishes the technical bases for using a ''slow uptake'' instead of a ''moderate uptake'' transportability class for americium-241 (241Am) for the K Basin Sludge Treatment Project (STP) dose consequence analysis. Slow uptake classes are used for most uranium and plutonium oxides. A moderate uptake class has been used in prior STP analyses for 241Am based on the properties of separated 241Am and its associated oxide. However, when 241Am exists as an ingrown progeny (and as a small mass fraction) within plutonium mixtures, it is appropriate to assign transportability factors of the predominant plutonium mixtures (typically slow) to the Am241. It is argued that the transportability factor for 241Am in sludge likewise should be slow because it exists as a small mass fraction as the ingrown progeny within the uranium oxide in sludge. In this report, the transportability class assignment for 241Am is underpinned with radiochemical characterization data on K Basin sludge and with studies conducted with other irradiated fuel exposed to elevated temperatures and conditions similar to the STP. Key findings and conclusions from evaluation of the characterization data and published literature are summarized here. Plutonium and 241Am make up very small fractions of the uranium within the K Basin sludge matrix. Plutonium is present at about 1 atom per 500 atoms of uranium and 241Am at about 1 atom per 19000 of uranium. Plutonium and americium are found to remain with uranium in the solid phase in all of the {approx}60 samples taken and analyzed from various sources of K Basin sludge. The uranium-specific concentrations of plutonium and americium also remain approximately constant over a uranium concentration range (in the dry sludge solids) from 0.2 to 94 wt%, a factor of {approx}460. This invariability demonstrates that 241Am does not partition from the uranium or plutonium fraction for any characterized sludge matrix. Most

  18. Selection of hydrothermal pre-treatment conditions of waste sludge destruction using multicriteria decision-making.

    Science.gov (United States)

    Al-Shiekh Khalil, Wael; Shanableh, Abdullah; Rigby, Portia; Kokot, Serge

    2005-04-01

    The effectiveness of hydrothermal treatment for the destruction of the organic content of sludge waste was investigated. The sludge sampled in this study contained approximately 2% solids. The experimental program consisted of hydrothermal treatment experiments conducted in a batch reactor at temperatures between 100 and 250 degrees C, with the addition of an oxidant (hydrogen peroxide) in the range of 0-150% with reference to TCOD, and reaction times of up to 60 min. The results suggested that the availability of oxidant, reaction temperature and reaction time were the determining factors for COD removal. A significant fraction of the COD remaining after treatment consisted of the dissolved COD. The results confirmed that hydrothermal treatment proceeds through hydrolysis resulting in the production of dissolved organic products followed by COD removal through oxidation. Two MCDM chemometrics methods, PROMETHEE and GAIA, were applied to process the large data matrix so as to facilitate the selection of the most suitable hydrothermal conditions for sludge destruction. Two possible scenarios were produced from this analysis-one depended on the use of high temperatures and no oxidant, while the second offered a choice of compromise solutions at lower temperatures but with the use of at least some oxidant. Thus, for the final choice of operating conditions, the decision maker needs local knowledge of the costs and available infrastructure. In principle, such information could be added as further criteria to the data matrix and new rankings obtained.

  19. Colloidal agglomerates in tank sludge: Impact on waste processing

    International Nuclear Information System (INIS)

    Bunker, B.C.; Martin, J.E.

    1998-01-01

    of agglomeration phenomena. This project summarizes work performed after almost two years of a three year project. Significant findings include: Particles in Actual Tank Wastes - Transmission electron microscopy of actual wastes shows that most sludges consist of agglomerates of submicron (< 10 -6 m) primary particles of hydrated oxides and insoluble salts. Model colloid suspensions for this work were selected to duplicate the compositions and particle morphologies in actual waste. Agglomeration of Primary Particles - Static light scattering measurements on both model suspensions and actual wastes show that in the basic salt solutions found in most tank wastes, primary particles undergo extensive aggregation to form fractal agglomerates. The fractal nature of the agglomerates has an enormous impact on slurry properties because fractal objects occupy much more space than dense objects at the same solids loading.'

  20. Micropollutant degradation via extracted native enzymes from activated sludge.

    Science.gov (United States)

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  1. The content of chromium and copper in plants and soil fertilized with sewage sludge with addition of various amounts of CaO and lignite ash

    Directory of Open Access Journals (Sweden)

    Wysokiński Andrzej

    2016-09-01

    Full Text Available The influence of fertilization with fresh sewage sludge with the addition of calcium oxide and lignite ash in the proportions dry mass 6:1, 4:1, 3:1 and 2:1 on the content of chromium and copper in plants and soil and uptake of these elements was investigated in pot experiment. Sewage sludge were taken from Siedlce (sludge after methane fermentation and Łuków (sludge stabilized in oxygenic conditions, eastern Poland. The chromium content in the biomass of the test plants (maize, sunflower and oat was higher following the application of mixtures of sewage sludge with ash than of the mixtures with CaO. The copper content in plants most often did not significantly depend on the type of additives to the sludge. Various amounts of additives to the sewage sludge did not have a significant effect on the contents of either of the studied trace elements in plants. The contents of chromium and copper in soil after 3 years of cultivation of plants were higher than before the experiment, but these amounts were not significantly differentiated depending on the type and the amount of the used additive (i.e. CaO vs. ash to sewage sludge.

  2. A comparative study on different burning method of sewage sludge ash in mortar brick with eggshell powder as additive

    Science.gov (United States)

    Ing, Doh Shu; Azed, Muhammad Aizat; Chin, Siew Choo

    2017-11-01

    Population growth that increase every year has led to the increasing amount of waste generated annually. The content of heavy metal Cadmium (Cd), Lead (Pb) and Zinc (Zn) represent the biggest concentrations of heavy metals in sewage sludge waste which can be the source of pollution. Furthermore, the excessive disposal of eggshells waste to landfills may attract rats and worms due to the organic protein matrix that may pose health problem to the public. In the last decade, the demand on cement mortar brick has increased has resulted in higher cement production. However, cement plant is one of the major contributors of carbon dioxide emission. Hence, this research focuses on the production of environmental friendly cement with sewage sludge since there is occurrence of pozolonic material in Sewage Sludge Ash (SSA). From the initial finding, the major components of SSA are Silicon Dioxide (SiO2), Calcium oxide (CaO), Aluminium Oxide (Al2O3), Iron (III) Oxide (Fe2O3), Sodium Oxide (Na2O), Potassium oxide (K2O), Magnesium Oxide (MgO) and Iron (II) Oxide (FeO). Sewage sludge needed to be incinerated to remove the heavy metal before it can be used as cement replacement in mortar brick production. The sewage sludge were treated using two methods namely incineration and microwave. Both types of sewage sludge were then added with eggshell powder as additive. Eggshell powder act as additive in this research due to its high content of calcium carbonate and has nearly same composition of limestone used in the production of cement. Different percentages of Eggshell Powder (ESP) (0%, 5%, 10%, 15%) and 10% fixed of Microwaved Sewage Sludge Ash (MSSA) and Incinerated Sewage Sludge Ash (ISSA) as optimum dosage partially replacing the cement used to test the brick mortar properties in term of compressive strength, flexural strength and also water absorption. Result showed that ISSA with 5% of ESP is the most optimum brick with highest compressive strength and flexural strength

  3. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    OpenAIRE

    Beata Janowska

    2016-01-01

    The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal metho...

  4. Aquatic worm reactor for improved sludge processing and resource recovery

    OpenAIRE

    Hendrickx, T.L.G.

    2009-01-01

    Municipal waste water treatment is mainly achieved by biological processes. These processes produce huge volumes of waste sludge (up 1.5 million m3/year in the Netherlands). Further processing of the waste sludge involves transportation, thickening and incineration. A decrease in the amount of waste sludge would be both environmentally and economically attractive. Aquatic worms can be used to reduce the amount of waste sludge. After predation by the worms, the amount of final sludge is lower....

  5. Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge

    DEFF Research Database (Denmark)

    Hansen, H.K.; Christensen, Iben Vernegren; Ottosen, Lisbeth M.

    2003-01-01

    . Casagrande's coefficients were determined for the four materials at different water contents. The experiments in this work showed that chalk could be dewatered from 40% to 79% DM (dry matter), fly ash from 75 to 82% DM, iron hydroxide sludge from 2.7 to 19% DM and biomass from 3 to 33% DM by electroosmosis....... The process was not optimised indicating that higher dry matter contents could be achieved by electroosmosis. It was possible to relate Casagrande's coefficient directly to the electroosmotic coefficient obtained by dewatering experiments....

  6. Treatment of nanowaste via fast crystal growth: with recycling of nano-SnO2 from electroplating sludge as a study case.

    Science.gov (United States)

    Zhuang, Zanyong; Xu, Xinjiang; Wang, Yongjing; Wang, Yandi; Huang, Feng; Lin, Zhang

    2012-04-15

    The treatment of industrial sludge containing amorphous/nanophase metal oxides or hydroxides is one of the vital issues in hazardous waste disposal. In this work, we developed a strategy to recycle nano-SnO(2) from tinplate electroplating sludge. It revealed that the major components of this sludge were acid soluble Sn and Fe amorphous phases. By introducing NaOH as a mineralizer, a fast growth of amorphous Sn compound into acid-insoluble SnO(2) nanowires was achieved selectively. Thus, the as-formed nano-SnO(2) could be recycled via dissolving other solid compositions in the sludge by using acid. The role of NaOH on accelerating both the Oriented Attachment (OA) and Ostwald Ripening (OR) growth of SnO(2) was discussed, which was regarded as a critical factor for treating the sludge. A pilot-scale experiment was conducted to treat 2.3 kg original sludge and the recycling of about 90 g nano-SnO(2) was achieved. We anticipate this work can provide a good example for the recycling of valuable metals from industrial sludge containing fine metal oxides or hydroxides. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. ALARA ASSESSMENT OF SETTLER SLUDGE SAMPLING METHODS

    International Nuclear Information System (INIS)

    Nelsen, L.A.

    2009-01-01

    The purpose of this assessment is to compare underwater and above water settler sludge sampling methods to determine if the added cost for underwater sampling for the sole purpose of worker dose reductions is justified. Initial planning for sludge sampling included container, settler and knock-out-pot (KOP) sampling. Due to the significantly higher dose consequence of KOP sludge, a decision was made to sample KOP underwater to achieve worker dose reductions. Additionally, initial plans were to utilize the underwater sampling apparatus for settler sludge. Since there are no longer plans to sample KOP sludge, the decision for underwater sampling for settler sludge needs to be revisited. The present sampling plan calls for spending an estimated $2,500,000 to design and construct a new underwater sampling system (per A21 C-PL-001 RevOE). This evaluation will compare and contrast the present method of above water sampling to the underwater method that is planned by the Sludge Treatment Project (STP) and determine if settler samples can be taken using the existing sampling cart (with potentially minor modifications) while maintaining doses to workers As Low As Reasonably Achievable (ALARA) and eliminate the need for costly redesigns, testing and personnel retraining

  8. ALARA ASSESSMENT OF SETTLER SLUDGE SAMPLING METHODS

    Energy Technology Data Exchange (ETDEWEB)

    NELSEN LA

    2009-01-30

    The purpose of this assessment is to compare underwater and above water settler sludge sampling methods to determine if the added cost for underwater sampling for the sole purpose of worker dose reductions is justified. Initial planning for sludge sampling included container, settler and knock-out-pot (KOP) sampling. Due to the significantly higher dose consequence of KOP sludge, a decision was made to sample KOP underwater to achieve worker dose reductions. Additionally, initial plans were to utilize the underwater sampling apparatus for settler sludge. Since there are no longer plans to sample KOP sludge, the decision for underwater sampling for settler sludge needs to be revisited. The present sampling plan calls for spending an estimated $2,500,000 to design and construct a new underwater sampling system (per A21 C-PL-001 RevOE). This evaluation will compare and contrast the present method of above water sampling to the underwater method that is planned by the Sludge Treatment Project (STP) and determine if settler samples can be taken using the existing sampling cart (with potentially minor modifications) while maintaining doses to workers As Low As Reasonably Achievable (ALARA) and eliminate the need for costly redesigns, testing and personnel retraining.

  9. Virological investigations on inadiated sewage sludge

    International Nuclear Information System (INIS)

    Epp, C.

    1980-08-01

    The virusinactivating activity of a Co 60 -irradiation pilot plant at Geiselbullach/Munich was to be examined. We investigated 16 impure sewage water, 15 purified sewage water, 32 raw sladge samples, 62 digested sludge samples before irradiation, 52 digested sludge samples after irradiation and 9 raw sludge samples after irradiation. We completed these investigations by adding poliovaccinevirus type 1 to the digested sludge before irradiation and by adding suspensions of pure virus in MEM + 2% FBS packed in synthetic capsules and mixtures of virus and sludge packed in synthetic capsules to the digested sludge. After the irradiation we collected the capsules and determined the virustiter. The testviruses were poliovaccinevirus type 1, poliowildvirus type 1, echovirus type 6, coxsackie-B-virus type 5, coxsackie-A-virus type 9 and adenovirus type 1. In the field trial the irradiation results were like the laboratory results assuming that the sewage sludge was homogenized enough by digestion and the solid particle concentration was not more than 3%. The D-value was 300-400 krad for enteroviruses and 700 krad for adenovirus. (orig.) [de

  10. A microbiological study on sewage sludge treatment

    International Nuclear Information System (INIS)

    Sermkiattipong, Ngamnit; Ito, Hitoshi; Hashimoto, Shoji.

    1990-09-01

    Isolation and identification of salmonellae in sewage sludge cake and radiation sensitivities of the isolated strains were studied. Disinfection of the sludge by heat or radiation and effect of such treatment on composting were also carried out. Five groups of O-antigen and seven serotypes of salmonellae were identified from the sludge cakes. D 10 values of the salmonellae in phosphate buffer were ranged from 0.16 to 0.22 kGy and those in sludge were about three times larger. Total bacterial counts and coliforms in the sludges were determined to be 4.6 x 10 7 - 5.1 x 10 9 and 1.3 x 10 5 - 1.1 x 10 9 colony forming unit (cfu/g). After irradiation at 20 kGy by gamma ray or electron beam, decrease of total bacterial count was 5 - 7 log cycles and a dose of 5 kGy was enough to eliminate all of the coliforms. Coliforms decreased rapidly by heating at 65degC, but only one log cycle decrease was observed in total bacterial count. By heating at 100degC, total bacterial count decreased rapidly. Two peaks were observed in CO 2 evolution curves of radiation disinfected sludge composting, but only one peak in heat disinfected sludge composting. (author)

  11. A review on sludge dewatering indices.

    Science.gov (United States)

    To, Vu Hien Phuong; Nguyen, Tien Vinh; Vigneswaran, Saravanamuth; Ngo, Huu Hao

    2016-01-01

    Dewatering of sludge from sewage treatment plants is proving to be a significant challenge due to the large amounts of residual sludges generated annually. In recent years, research and development have focused on improving the dewatering process in order to reduce subsequent costs of sludge management and transport. To achieve this goal, it is necessary to establish reliable indices that reflect the efficiency of sludge dewatering. However, the evaluation of sludge dewaterability is not an easy task due to the highly complex nature of sewage sludge and variations in solid-liquid separation methods. Most traditional dewatering indices fail to predict the maximum cake solids content achievable during full-scale dewatering. This paper reviews the difficulties in assessing sludge dewatering performance, and the main techniques used to evaluate dewatering performance are compared and discussed in detail. Finally, the paper suggests a new dewatering index, namely the modified centrifugal index, which is demonstrated to be an appropriate indicator for estimating the final cake solids content as well as simulating the prototype dewatering process.

  12. Radioactivity of sludge in Finland in 1987

    International Nuclear Information System (INIS)

    Puhakainen, M.; Rahola, T.

    1989-05-01

    Sewage sludge from municipal wastewater treatment plants was studied to determine its radionuclide concentrations. Measurements were made to find out whether any radionuclides from the nuclear power stations at Loviisa and Olkiluoto and from hospitals and medical laboratories could be detected in sludge additional to those originating from global and Chernobyl fallout. In the treatment process of water, aluminium sulphate sludge is developed at treatment plants using surface water. This kind of sludge was measured since it also concentrates radionuclides. Fallout nuclides from the Chernobyl nuclear power station after the accident predominated in all sewage sludge samples in Finland. In 1987 six different radionuclides originating from the Chernobyl fallout were detected in sewage sludge. In spring when the snow melted and large quantities of run off water flowed into the treatment plants, the activity concentrations clearly increased, but then started decreasing again. At the end of the year the highest measured 137 Cs activity concentrations were below 1000 Bq kg -1 dry weight. The highest activity concentration in sludge originated from iodine used fro medical purposes

  13. Sustainable sludge management in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, B.; Barrios, J.A.; Mendez, J.M.; Diaz, J.

    2003-07-01

    Worldwide, unsanitary conditions are responsible of more than three million deaths annually. One of the reasons is the low level of sanitation in developing countries. Particularly, sludge from these regions has a high parasite concentration and low heavy metal content even though the available information is limited. Different issues needed to achieve a sustainable sludge management in developing nations are analysed. Based on this analysis some conclusions arise: sludge management plays an important role in sanitation programs by helping reduce health problems and associated risks; investments in sanitation should consider sludge management within the overall projects; the main restriction for reusing sludge is the high microbial concentration, which requires a science-based decision of the treatment process, while heavy metals are generally low; the adequate sludge management needs the commitment of those sectors involved in the development and enforcement of the regulations as well as those that are directly related to its generation, treatment, reuse or disposal; current regulations have followed different approaches, based mainly on local conditions, but they favour sludge reuse to fight problems like soil degradation, reduced crop production, and the increased use of inorganic fertilizers. This paper summarises an overview of theses issues. (author)

  14. Stabilization/solidification of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Boura, Panagiota; Katsioti, Margarita; Tsakiridis, Petros; Katsiri, Alexandra

    2003-07-01

    The main objective of this work is to investigate a viable alternative for the final disposal of sewage sludge from urban wastewater treatment plants by its use as an additive in developing new construction materials. For this purpose, several mixtures of sludge- cement and sludge-cement and jarosite/alunite precipitate were prepared. Jarosite/alunite precipitate is a waste product of a new hydrometallurgical process. Two kinds of sludge were used: primary sludge from Psyttalia Wastewater Treatment Plant, which receives a considerable amount of industrial waste, and biological sludge from Metamorphosi Wastewater Treatment Plant. Various percentages of these sludges were stabilized/solidified with Portland cement and Portland cement with jarosite/alunite. The specimens were tested by determination of compressive strength according to the methods described by European Standard EN 196. X-Ray Diffraction (XRD) analysis as well as Thermogravimetry-Differential Thermal Analysis (TG-DTA) were used to determine the hydration products in 28 days. Furthermore, Toxicity Characteristic Leaching Procedure test for heavy metals (TCLP), were carried out in order to investigate the environmental compatibility of these new materials. (author)

  15. Modelling the change in the oxidation coefficient during the aerobic ...

    African Journals Online (AJOL)

    2013-01-20

    Jan 20, 2013 ... activated sludge in batch reactors under different initial phenol concentrations. ... wet air oxidation, ozonation, non-catalytic, catalytic and ... design of aeration devices. ... using an open (flowing gas/static liquid) respirometer.

  16. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  17. Cost and effectiveness comparisons of various types of sludge irradiation and sludge pasteurization treatments

    International Nuclear Information System (INIS)

    Morris, M.E.

    1976-01-01

    The radiation from 137 Cs, a major constituent of nuclear fuel reprocessing waste, can be used to sterilize sewage sludge. This paper compares the effectiveness and cost of heat pasteurization, irradiation, and thermoradiation (simultaneous heating/irradiation), three competing methods of sludge disinfection. The cost of irradiation and thermoradiation is slightly higher than heat pasteurization costs for liquid sludges, although minor changes in oil availability or prices could change this. If the viral destruction could be done easily by other means, a 500-kilorad irradiation dose would be effective and less costly. For dry sewage sludges, irradiation is as effective and much less costly than any of the liquid sludge disinfection processes. Irradiation of compost appears to be cheaper and more practical than any heat pasteurization process for the dry sludge (the insulating property of the compost makes heating difficult). 6 tables, 2 fig

  18. Modeling Aspects Of Activated Sludge Processes Part I: Process Modeling Of Activated Sludge Facilitation And Sedimentation

    International Nuclear Information System (INIS)

    Ibrahim, H. I.; EI-Ahwany, A.H.; Ibrahim, G.

    2004-01-01

    Process modeling of activated sludge flocculation and sedimentation reviews consider the activated sludge floc characteristics such as: morphology viable and non-viable cell ratio density and water content, bio flocculation and its kinetics were studied considering the characteristics of bio flocculation and explaining theory of Divalent Cation Bridging which describes the major role of cations in bio flocculation. Activated sludge flocculation process modeling was studied considering mass transfer limitations from Clifft and Andrew, 1981, Benefild and Molz 1983 passing Henze 1987, until Tyagi 1996 and G. Ibrahim et aI. 2002. Models of aggregation and breakage of flocs were studied by Spicer and Pratsinis 1996,and Biggs 2002 Size distribution of floes influences mass transfer and biomass separation in the activated sludge process. Therefore, it is of primary importance to establish the role of specific process operation factors, such as sludge loading dynamic sludge age and dissolved oxygen, on this distribution with special emphasis on the formation of primary particles

  19. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  20. Characterization Of Actinides In Simulated Alkaline Tank Waste Sludges And Leachates

    International Nuclear Information System (INIS)

    Nash, Kenneth L.

    2008-01-01

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  1. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  2. A microbiological study on irradiated sludge composting

    International Nuclear Information System (INIS)

    Pongpat, S.; Hashimoto, Shoji.

    1993-03-01

    Effect of fermentation temperature on microorganisms in sewage sludge compost and suppressive effect of the compost on Fusarium oxysporum were investigated. Dehydrated sewage sludge was irradiated at 10 kGy by cobalt 60 gamma ray source and fermented at various temperatures with six different seed-composts. It was found that microorganisms showed higher growth in irradiated sludge at the temperature around 30 to 40degC. One of the seed-composts and compost produced from the seed-compost showed the remarkable effects of suppression on F. oxysporum. It can be also observed that the composts produced by lower temperature fermentation showed higher suppression. (author)

  3. Using Ecosan sludge for crop production

    CSIR Research Space (South Africa)

    Jimenez, B

    2006-01-01

    Full Text Available %) was low, but not enough to completely inactivate microorganisms (below 30?40% in general and ,5% for Ascaris eggs, according to Feachem et al., 1983). The N content (0.2?0.34%) was in the normal range for domestic sludge (0.2?0.6%) if the N contribution... et al. (2003), indicated that faecal coliforms may survive .1,000 d in Ecosan sludge, while Ascaris may be completely inactivated. The helminth ova content (29.8 ^ 2.9 eggs/g TS) was less than expected for sludge from developing countries (ranging...

  4. A microbiological study on irradiated sludge composting

    Energy Technology Data Exchange (ETDEWEB)

    Pongpat, S. [Office of Atomic Energy for Peace, Bangkok (Thailand); Hashimoto, Shoji

    1993-03-01

    Effect of fermentation temperature on microorganisms in sewage sludge compost and suppressive effect of the compost on Fusarium oxysporum were investigated. Dehydrated sewage sludge was irradiated at 10 kGy by cobalt 60 gamma ray source and fermented at various temperatures with six different seed-composts. It was found that microorganisms showed higher growth in irradiated sludge at the temperature around 30 to 40degC. One of the seed-composts and compost produced from the seed-compost showed the remarkable effects of suppression on F. oxysporum. It can be also observed that the composts produced by lower temperature fermentation showed higher suppression. (author).

  5. Improvement of anaerobic digestion of sludge

    Energy Technology Data Exchange (ETDEWEB)

    Dohanyos, Michael; Zabranska, Jana; Kutil, Josef; Jenicek, Pavel

    2003-07-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of process conditions is frequently used pretreatment of input sludge and increase of process temperature. Thermophilic process brings a higher solids reduction and biogas production, the high resistance to foaming, no problems with odour, the higher effect of destroying pathogens and the improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in lysate centrifuge was proved in full-scale conditions causing increase of biogas production. The rapid thermal conditioning of digested sludge is acceptable method of particulate matter disintegration and solubilization. (author)

  6. Study of the Effects of Ionizing Radiation on Microbial Activities of Sludge and Degradation of Biohazardous Contaminants in the Sewage Sludge Mixture

    International Nuclear Information System (INIS)

    Chu Libing; Wang Jianlong; Wang Bo

    2012-01-01

    In this report, the response of sewage sludge exposed to 60 Co gamma irradiation at a dose of 0-25 kGy was investigated. Results showed that gamma irradiation could disintegrate sludge flocs and release proteins, polysaccharides and extracellular enzymes into the bulk solution. The maximum oxygen uptake rate decreased by 58%, and 99% of the culturable bacteria were inactivated at 25 kGy. However, the tested protease, superoxide dismutase and catalase showed slight inactivation during irradiation treatment. The efficiency of sludge solubilization reached around 6.5% with a dose of 25 kGy. The efficiency of sludge solubilization with aeration was increased by around 25% compared to that without aeration at an irradiation dose of 2.5-9 kGy. The soluble protein, polysaccharide and humic (like) substance concentrations were higher under aerated conditions. With aeration the over all reaction appears to be oxidative as evidenced by the higher nitrate and nitrite ion concentrations in solution. (author)

  7. Study of the Effects of Ionizing Radiation on Microbial Activities of Sludge and Degradation of Biohazardous Contaminants in the Sewage Sludge Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Libing, Chu; Jianlong, Wang; Bo, Wang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2012-07-01

    In this report, the response of sewage sludge exposed to {sup 60}Co gamma irradiation at a dose of 0-25 kGy was investigated. Results showed that gamma irradiation could disintegrate sludge flocs and release proteins, polysaccharides and extracellular enzymes into the bulk solution. The maximum oxygen uptake rate decreased by 58%, and 99% of the culturable bacteria were inactivated at 25 kGy. However, the tested protease, superoxide dismutase and catalase showed slight inactivation during irradiation treatment. The efficiency of sludge solubilization reached around 6.5% with a dose of 25 kGy. The efficiency of sludge solubilization with aeration was increased by around 25% compared to that without aeration at an irradiation dose of 2.5-9 kGy. The soluble protein, polysaccharide and humic (like) substance concentrations were higher under aerated conditions. With aeration the over all reaction appears to be oxidative as evidenced by the higher nitrate and nitrite ion concentrations in solution. (author)

  8. Gas Generation from K East Basin Sludges and Irradiated Metallic Uranium Fuel Particles Series III Testing

    International Nuclear Information System (INIS)

    Schmidt, Andrew J.; Delegard, Calvin H.; Bryan, Samuel A.; Elmore, Monte R.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2003-01-01

    The path forward for managing of Hanford K Basin sludge calls for it to be packaged, shipped, and stored at T Plant until final processing at a future date. An important consideration for the design and cost of retrieval, transportation, and storage systems is the potential for heat and gas generation through oxidation reactions between uranium metal and water. This report, the third in a series (Series III), describes work performed at the Pacific Northwest National Laboratory (PNNL) to assess corrosion and gas generation from irradiated metallic uranium particles (fuel particles) with and without K Basin sludge addition. The testing described in this report consisted of 12 tests. In 10 of the tests, 4.3 to 26.4 g of fuel particles of selected size distribution were placed into 60- or 800-ml reaction vessels with 0 to 100 g settled sludge. In another test, a single 3.72-g fuel fragment (i.e., 7150-mm particle) was placed in a 60 ml reaction vessel with no added sludge. The twelfth test contained only sludge. The fuel particles were prepared by crushing archived coupons (samples) from an irradiated metallic uranium fuel element. After loading the sludge materials (whether fuel particles, mixtures of fuel particles and sludge, or sludge-only) into reaction vessels, the solids were covered with an excess of K Basin water, the vessels closed and connected to a gas measurement manifold, and the vessels back-flushed with inert neon cover gas. The vessels were then heated to a constant temperature. The gas pressures and temperatures were monitored continuously from the times the vessels were purged. Gas samples were collected at various times during the tests, and the samples analyzed by mass spectrometry. Data on the reaction rates of uranium metal fuel particles with water as a function of temperature and particle size were generated. The data were compared with published studies on metallic uranium corrosion kinetics. The effects of an intimate overlying sludge layer

  9. Vermicomposting as alternative for recycling the sludges of paper industry; El vermicompostaje como alternativa para el reciclaje de lodos residuales derivados de la industria papelera

    Energy Technology Data Exchange (ETDEWEB)

    Elvira, C.; Sampedro, L.; Mato, S. [Departamento Recusros Naturales, Medio Ambiente, Universidad de Vigo, Vigo (Spain); Nogales, R. [U.E.I. Agroecologia y Proteccion Vegetal, Granada (Spain)

    1995-12-01

    Vermicomposting is a process of bio oxidation and stabilization of organic materials involving the joint action of earthworms and microorganisms, by which high-quality organic fertilizers called vermicomposts are ob tamed. Waste sludge from the pulp-paper and paper industry may be converted using vermicomposting techniques which require correct conditioning of the waste. Earthworms speed up the biodegradation and humification processes of these soil sludges. Vermicomposts are obtained which could be used as organic amendments or fertilizers in agriculture and forestry.

  10. Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Ma, Boqiang; Wu, Hao; Zhang, Sheng; Xu, Xin

    2012-01-01

    High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DD(COD)), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DD(COD) of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DD(COD) = kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.

  11. The effect of operational conditions on the sludge specific methanogenic activity and sludge biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, R. C.; Santaella, S. T.; Haandel, A. C. van; Zeeman, G.; Lettinga, G.

    2009-07-01

    The Specific Methanogenic Activity (SMA) and sludge biodegradability of an anaerobic sludge depends on various operational and environmental conditions imposed to the anaerobic reactor. However, the effects of hydraulic retention time (HRT), influent COD concentration (COD{sub i}nf) and sludge retention time (SRT) on those two parameters need to be elucidated. This knowledge about SMA can provide insights about the capacity of the UASB reactors to withstand organic and hydraulic shock loads, whereas the biodegradability gives information necessary for final disposal of the sludge. (Author)

  12. Effect of seed sludge on characteristics and microbial community of aerobic granular sludge.

    Science.gov (United States)

    Song, Zhiwei; Pan, Yuejun; Zhang, Kun; Ren, Nanqi; Wang, Aijie

    2010-01-01

    Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor. The influence of seed sludge on physical and chemical properties of granular sludge was studied; the microbial community structure was probed by using scanning electron microscope and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that seed sludge played an important role on the formation of aerobic granules. Seed sludge taken from beer wastewater treatment plant (inoculum A) was more suitable for cultivating aerobic granules than that of sludge from municipal wastewater treatment plant (inoculum B). Cultivated with inoculum A, large amount of mature granules formed after 35 days operation, its SVI reached 32.75 mL/g, and SOUR of granular sludge was beyond 1.10 mg/(g x min). By contrast, it needed 56 days obtaining mature granules using inoculum B. DGGE profiles indicated that the dominant microbial species in mature granules were 18 and 11 OTU when inoculum A and B were respectively employed as seed sludge. The sequencing results suggested that dominant species in mature granules cultivated by inoculum A were Paracoccus sp., Devosia hwasunensi, Pseudoxanthomonas sp., while the dominant species were Lactococcus raffinolactis and Pseudomonas sp. in granules developed from inoculum B.

  13. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings.

    Science.gov (United States)

    Larsen, Julie D; Nielsen, Steen M; Scheutz, Charlotte

    2017-11-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH 4 ) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore space, the concentration of CH 4 often exceeded the concentration of carbon dioxide (CO 2 ). However, the total emission of CO 2 from the surface of the sludge residue exceeded the total emission of CH 4 , suggesting that CO 2 was mainly produced in the layer of newly applied sludge and/or that CO 2 was emitted from the sludge residue more readily compared to CH 4 .

  14. The effect of operational conditions on the sludge specific methanogenic activity and sludge biodegradability

    International Nuclear Information System (INIS)

    Leitao, R. C.; Santaella, S. T.; Haandel, A. C. van; Zeeman, G.; Lettinga, G.

    2009-01-01

    The Specific Methanogenic Activity (SMA) and sludge biodegradability of an anaerobic sludge depends on various operational and environmental conditions imposed to the anaerobic reactor. However, the effects of hydraulic retention time (HRT), influent COD concentration (COD i nf) and sludge retention time (SRT) on those two parameters need to be elucidated. This knowledge about SMA can provide insights about the capacity of the UASB reactors to withstand organic and hydraulic shock loads, whereas the biodegradability gives information necessary for final disposal of the sludge. (Author)

  15. Present situation and objective of sewage sludge treatment and disposal; Ausgangssituation und Zielstellung der Klaerschlammbehandlung und -entsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Wittchen, F. [BC Berlin-Consult GmbH, Berlin (Germany); Pueschel, M. [BC Berlin-Consult GmbH, Berlin (Germany)

    1995-11-01

    Sewage sludge is a solid-liquid mixture produced in each treatment step of a waste water treatment plant. The suitable manner of sludge treatment and disposal depends on the characteristics of the sludge such as its content of heavy metals and nutrient composition. To assess the different sludge treatment and disposal options besides the economical aspects effects on the environment must be considered. The emission of CO{sub 2} can serve as a possible approach for assessment. The dewatering and thermal drying approach for assessment. The dewatering and thermal drying causes the biggest part of CO{sub 2} emissions. They are at the same level as the CO{sub 2} which would be generated directly by total oxidation of the carbon contained in the sludge. The best way of sewage sludge disposal in accordance with the legal frame work, environmental impact and financial aspects is the co-combustion of sludge in cole power plants. The agricultural use of sludge with low heavy metal concentrations, however, is cheaper. (orig.) [Deutsch] Das Fest-Fluessig-Gemisch Klaerschlamm entsteht in jeder Reinigungsstufe einer Klaeranlage und muss anschliessend einer Behandlung zugefuehrt werden. Der Entsorgungsweg ist abhaengig von den Eigenschaften des Schlammes, wie z.B. seiner Schwermetallbelastung. Den Rahmen fuer die Klaerschlammentsorgung bilden die Regelungen des Abfallgesetzes, der Klaerschlammverordnung, der Duengemittelanwendungsverordnung, der TA Siedlungsabfall, des LAGA Merkblattes 10 (Kompost) und weiterer Verordnungen des Immissionsschutz- und Abfallrechts. Zur Bewertung der verschiedenen Entsorgungswege wurden neben den oekonomischen Aspekten auch die Auswirkungen der jeweiligen Verfahren auf die Umwelt beruecksichtigt. Es wurde fuer die oekologische Bewertung die CO{sub 2}-Emission des einzelnen Verfahrens herangezogen. Das Resultat des Vergleichs zeigt, dass der Co-Verbrennung der Vorzug zu geben ist. Bei geringen Schwermetallbelastungen bietet die landwirtschaftliche

  16. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS. ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    International Nuclear Information System (INIS)

    Rutherford, W.W.; Geuther, W.J.; Strankman, M.R.; Conrad, E.A.; Rhoadarmer, D.D.; Black, D.M.; Pottmeyer, J.A.

    2009-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  17. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  18. Land application of sewage sludge: Pathogen issues

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A C [Department of Soil and Environmental Sciences, Univ. of California at Riverside, Riverside, CA (United States)

    1997-10-01

    Diseases transmitted via the faecal-oral exposure route cause severe gastroenteric disorders, and large numbers of causative organisms are discharged with the faecal matter of infected individuals. For this reason, pathogenic bacteria, viruses, protozoa, or helminths, are always found in sewage sludge. If not properly treated for use in agriculture, sludge can be a source of pathogenic contamination. Radiation is an attractive method to reduce the numbers of microorganisms in sewage sludge. Routine examination for pathogens is not practised nor recommended because complicated and costly procedures are involved. Instead, an indicator organism is usually assayed and enumerated. In this paper, methods are discussed for the investigation of pathogens in sewage sludge. (author). 8 refs, 3 tabs.

  19. 183-H Basin sludge treatability test report

    International Nuclear Information System (INIS)

    Biyani, R.K.

    1995-01-01

    This document presents the results from the treatability testing of a 1-kg sample of 183-H Basin sludge. Compressive strength measurements, Toxic Characteristic Leach Procedure, and a modified ANSI 16.1 leach test were conducted

  20. Rheological characterisation of municipal sludge: a review.

    Science.gov (United States)

    Eshtiaghi, Nicky; Markis, Flora; Yap, Shao Dong; Baudez, Jean-Christophe; Slatter, Paul

    2013-10-01

    Sustainable sludge management is becoming a major issue for wastewater treatment plants due to increasing urban populations and tightening environmental regulations for conventional sludge disposal methods. To address this problem, a good understanding of sludge behaviour is vital to improve and optimize the current state of wastewater treatment operations. This paper provides a review of the recent experimental works in order for researchers to be able to develop a reliable characterization technique for measuring the important properties of sludge such as viscosity, yield stress, thixotropy, and viscoelasticity and to better understand the impact of solids concentrations, temperature, and water content on these properties. In this context, choosing the appropriate rheological model and rheometer is also important. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Resistance capability of microaerobic granular sludge for ...

    African Journals Online (AJOL)

    enoh

    2012-02-08

    Feb 8, 2012 ... The resistance capability to pH shock of microaerobic granular sludge for pentachlorophenol (PCP) ... process with chlorine gas in pulp and paper, leather and spinning ... nitrifying bacteria in the aerobic zone, and then trans-.

  2. Bacteriological studies on dairy waste activated sludge

    NARCIS (Netherlands)

    Adamse, A.D.

    1966-01-01

    Dairy-waste activated sludge was examined for bacterial composition and response to different conditions. Strains isolated were classified mainly into three groups: predominantly coryneform bacteria (largely Arthrobacter), some Achromobacteraceae and a small groups of Pseudomonadaceae.

  3. grown on soil amended with sewage sludge

    African Journals Online (AJOL)

    DELL

    2Department of Civil Engineering, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria. Corresponding ... Key Words: Sewage sludge, Green amaranth, Phytoextraction, Heavy metals. ..... Wastewater-irrigated Areas of Titagarh,.

  4. Rapid thermal conditioning of sewage sludge

    Science.gov (United States)

    Zheng, Jianhong

    Rapid thermal conditioning (RTC) is a developing technology recently applied to sewage sludge treatment. Sludge is heated rapidly to a reaction temperature (up to about 220sp°C) under sufficient pressure to maintain the liquid phase. Reaction is quenched after 10 to 30 seconds when the mixture of sludge and steam pass through a pressure let-down valve. This process reduces the amount of sludge requiring land disposal, eliminates the need for polymer coagulant, improves dewaterability, increases methane production, and further reduces the concentration of pathogens. The odor problem associated with traditional thermal conditioning processes is largely minimized. Ammonia removal is readily integrated with the process. For this research, a pilot unit was constructed capable of processing 90 liters of sludge per hour. Over 22 runs were made with this unit using sludge from New York City Water Pollution Control Plants (WPCP). Sludges processed in this equipment were tested to determine the effect of RTC operating conditions on sludge dewaterability, biodegradability, and other factors affecting the incorporation of RTC into wastewater treatment plants. Dewaterability of thermally conditioned sludge was assessed for cetrifugeability and filterability. Bench scale centrifugation was used for evaluating centrifugeability, pressure filtration and capillary suction time (CST) for filterability. A mathematical model developed for centrifuge dewatering was used to predict the effect of RTC on full scale centrifuge performance. Particle size distribution and solids density of raw and treated PDS were also analyzed. An observed increase in sludge solids density at least partially explains its improved centrifugeability. An investigation of thermally conditioned amino acids showed that the L-isomer is highly biodegradable while the D-isomers are generally less so. Glucose is highly biodegradable, but rapidly becomes refractory as thermal conditioning time is lengthened. This

  5. Application of the NDHA model to describe N2O dynamics in activated sludge mixed culture biomass

    DEFF Research Database (Denmark)

    Domingo-Felez, Carlos; Smets, Barth F.

    A pseudo-mechanistic model describing three biological nitric oxide (NO) and nitrous oxide (N2O) production pathways was calibrated for an activated sludge mixed culture biomass treating municipal wastewater with laboratory-scale experiments. The model (NDHA) comprehensively describes N2O produci...

  6. Enhancement of biogas production from sewage sludge by addition of grease trap sludge

    International Nuclear Information System (INIS)

    Grosser, A.; Neczaj, E.

    2016-01-01

    Highlights: • Addition of grease trap sludge is interesting option for sewage sludge digestion. • Co-digestion of grease trap sludge and sewage sludge improved efficiency of process. • The anaerobic digestion can be carried out at short hydraulic retention time. • Long chain fatty acids concentration was below the ranges for inhibition of anaerobic digestion. - Abstract: Despite having many benefits, a low degree of volatile solids removal as well as long retention time are the main factors limiting the performance of the anaerobic digestion. Co-digestion of sewage sludge with other organic waste (for example fat rich materials) is one of the few potential ways to enhance the performance of the anaerobic digestion. In this article, the effects of adding fatty rich materials on the performance and stability of semi-continuous anaerobic digestion of sewage sludge were investigated on a 6 l laboratory-scale reactor (working volume equal to 5.5 l). The reactor was operated in a semi-continuous mode with a hydraulic retention time of 10 days. The data presented in this paper relate to the period in which the grease trap sludge accounted for 10, 12, 14, 16 and 18% of the mixture on the volatile solids basis. The results clearly indicate that the addition of fat rich materials like grease trap sludge can lead to a satisfactory increase in biogas yield in digester treating sewage sludge. The results showed that co-digestion can enhance the biogas yield by 28–82% compared to anaerobic digestion of sewage sludge alone (control sample). Moreover, the addition of grease trap sludge to digesters resulted in increased volatile solids removal from 44.38% (control sample) to 57.77% (feedstock with 14% addition of grease trap sludge). It was found that the increase of grease trap sludge in the feedstock had a direct impact on the biogas production and methane yield. This proposal has also been confirmed by statistical analysis such as Pearson correlation coefficients and

  7. Sustainability of Domestic Sewage Sludge Disposal

    OpenAIRE

    Claudia Bruna Rizzardini; Daniele Goi

    2014-01-01

    Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a s...

  8. Physical inactivation and stabilization of sludges

    International Nuclear Information System (INIS)

    Alexandre, D.

    1979-07-01

    High temperature conditioning of sludge is a stabilization process that insures sterilization. Both thermal pasteurization and irradiation are inactivation processes. Viruses and parasites are inactivated at 70-80 0 C. Total bacterial destruction requires higher temperatures and/or detention time. Radio sensitivity of pathogens and pertinent treatment parameters are examined. If sludge is to be land disposed, disinfection requires irradiation doses ranging 500 Krad; if cattle feeding is considered, the required dose is 1 Mrad

  9. Activated Sludge and Aerobic Biofilm Reactors

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Activated Sludge and Aerobic Biofilm Reactors is the fifth volume in the series Biological Wastewater Treatment. The first part of the book is devoted to the activated sludge process, covering the removal of organic matter, nitrogen and phosphorus.A detailed analysis of the biological reactor (aeration tank) and the final sedimentation tanks is provided. The second part of the book covers aerobic biofilm reactors, especially trickling filters, rotating biological contractors and submerged ae...

  10. Modeling of Activated Sludge Floc Characteristics

    OpenAIRE

    Ibrahim H. Mustafa; G. Ibrahim; Ali Elkamel; A. H. Elahwany

    2009-01-01

    Problem Statement: The activated sludge system needs to improve the operational performance and to achieve more effective control. To realize this, a better quantitative understanding of the biofloc characteristics is required. The objectives of this study were to: (i) Study the biofloc characteristics from kinetics-mass transfer interaction point of view by quantification of the weight of the aerobic portion of the activated sludge floc to the total floc weight. (ii) Study the effect of bulk...

  11. Sewage sludge irradiators: Batch and continuous flow

    International Nuclear Information System (INIS)

    Lavale, D.S.; George, J.R.; Shah, M.R.; Rawat, K.P.

    1998-01-01

    The potential threat to the environment imposed by high pathogenic organism content in municipal wastewater, especially the sludge and the world-wide growing aspirations for a cleaner, salubrious environment have made it mandatory for the sewage and sludge to undergo treatment, prior to their ultimate disposal to mother nature. Incapabilities associated with the conventional wastewater treatments to mitigate the problem of microorganisms have made it necessary to look for other alternatives, radiation treatment being the most reliable, rapid and environmentally sustainable of them. To promote the use of radiation for the sludge hygienization, Department of Atomic Energy has endeavoured to set up an indigenous, Sludge Hygienization Research Irradiator (SHRI) in the city of Baroda. Designed for 18.5 PBq of 60 Co to disinfect the digested sludge, the irradiator has additional provision for treatment of effluent and raw sewage. From engineering standpoint, all the subsystems have been functioning satisfactorily since its commissioning in 1990. Prolonged studies, spanning over a period of six years, primarily focused on inactivation of microorganism revealed that 3 kGy dose of gamma radiation is adequate to make the sludge pathogen and odour-free. A dose of 1.6 kGy in raw sewage and 0.5 kGy in effluent reduced coliform counts down to the regulatory discharge limits. These observations reflect a possible cost-effective solution to the burgeoning problem of surface water pollution across the globe. In the past, sub 37 PBq 60 Co batch irradiators have been designed and commissioned successfully for the treatment of sludge. Characterized with low dose delivery rates they are well-suited for treating low volumes of sludge in batches. Some concepts of continuous flow 60 Co irradiators having larger activities, yet simple and economic in design, are presented in the paper

  12. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  13. Greenhouse gas emissions from the mineralisation process in a Sludge Treatment Reed Bed system: Seasonal variation and environmental impact

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen; Scheutz, Charlotte

    2017-01-01

    Greenhouse gas emission data from the mineralisation process in Sludge Treatment Reed Bed systems (STRB) are scarce. The aim of this study was to quantify the emission rates of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and to investigate seasonal variations in order to estimate ...

  14. Colour and toxic characteristics of metakaolinite-hematite pigment for integrally coloured concrete, prepared from iron oxide recovered from a water treatment plant of an abandoned coal mine

    Science.gov (United States)

    Sadasivam, Sivachidambaram; Thomas, Hywel Rhys

    2016-07-01

    A metakaolinite-hematite (KH) red pigment was prepared using an ocherous iron oxide sludge recovered from a water treatment plant of an abandoned coal mine. The KH pigment was prepared by heating the kaolinite and the iron oxide sludge at kaolinite's dehydroxylation temperature. Both the raw sludge and the KH specimen were characterised for their colour properties and toxic characteristics. The KH specimen could serve as a pigment for integrally coloured concrete and offers a potential use for the large volumes of the iron oxide sludge collected from mine water treatment plants.

  15. Disintegration impact on sludge digestion process.

    Science.gov (United States)

    Dauknys, Regimantas; Rimeika, Mindaugas; Jankeliūnaitė, Eglė; Mažeikienė, Aušra

    2016-11-01

    The anaerobic sludge digestion is a widely used method for sludge stabilization in wastewater treatment plant. This process can be improved by applying the sludge disintegration methods. As the sludge disintegration is not investigated enough, an analysis of how the application of thermal hydrolysis affects the sludge digestion process based on full-scale data was conducted. The results showed that the maximum volatile suspended solids (VSS) destruction reached the value of 65% independently on the application of thermal hydrolysis. The average VSS destruction increased by 14% when thermal hydrolysis was applied. In order to have the maximum VSS reduction and biogas production, it is recommended to keep the maximum defined VSS loading of 5.7 kg VSS/m(3)/d when the thermal hydrolysis is applied and to keep the VSS loading between 2.1-2.4 kg VSS/m(3)/d when the disintegration of sludge is not applied. The application of thermal hydrolysis leads to an approximately 2.5 times higher VSS loading maintenance comparing VSS loading without the disintegration; therefore, digesters with 1.8 times smaller volume is required.

  16. Separation of SRP waste sludge and supernate

    International Nuclear Information System (INIS)

    Stone, J.A.

    1976-01-01

    Sludges and supernates were separated from Savannah River Plant waste slurries by centrifugation and sand filtration. This separation, a portion of a conceptual process for solidification and long-term storage of high-level radioactive wastes, was tested in shielded cells with small-scale process equipment. Procedures for the separation were developed in tests with nonradioactive materials. Then, in 13 tests with actual sludges and supernates, solids removal ranged from 90 to 99.2 vol percent and averaged 96.4 vol percent after two passes through a basket-type centrifuge. Concentrates from the tests, containing 0.05 to 0.2 vol percent solids, were clarified by sand filter columns to produce solutions of the soluble salts with less than 0.01 vol percent solids. About 700 liters of salt solution and 8 kilograms of washed, dried sludges were separated in the tests. Effects of sludge type, flocculant, flow rates, and batch size were evaluated. Washing and drying of centrifuged sludges were studied, and two types of dryers were tested. Ruthenium volatility during drying was negligible. Washing efficiency was determined by analyses of wash solutions and sludge products

  17. Summary status of K Basins sludge characterization

    International Nuclear Information System (INIS)

    Baker, R.B.

    1995-01-01

    A number of activities are underway as part of the Spent Nuclear Fuels Project (SNFP) related to the processing and disposing of sludge in the 105-K Basins (K Basins). Efforts to rigorously define data requirements for these activities are being made using the Data Quality Objectives (DQO) process. Summaries of current sludge characterization data are required to both help support this DQO process and to allow continued progress with on-going engineering activities (e.g., evaluations of disposal alternatives). This document provides the status of K Basins sludge characterization data currently available to the Nuclear Fuel Evaluations group. This group is tasked by the SNFP to help develop and maintain the characterization baseline for the K Basins. The specific objectives of this document are to: (1) provide a current summary (and set of references) of sludge characterization data for use by SNFP initiatives, to avoid unnecessary duplication of effort and to support on-going initiatives; (2) submit these data to an open forum for review and comment, and identify additional sources of significant data that may be available; (3) provide a summary of current data to use as part of the basis to develop requirements for additional sludge characterization data through the DQO process; (4) provide an overview of the intended activities that will be used to develop and maintain the sludge characterization baseline

  18. Reuse of industrial sludge as construction aggregates.

    Science.gov (United States)

    Tay, J H; Show, K Y; Hong, S Y

    2001-01-01

    Industrial wastewater sludge and dredged marine clay are high volume wastes that needed enormous space at landfill disposal sites. Due to the limitation of land space, there is an urgent need for alternative disposal methods for these two wastes. This study investigates the possibility of using the industrial sludge in combination with marine clay as construction aggregates. Different proportions of sludge and clay were made into round and angular aggregates. It was found that certain mix proportions could provide aggregates of adequate strength, comparable to that of conventional aggregates. Concrete samples cast from the sludge-clay aggregates yield compressive strengths in the range of 31.0 to 39.0 N/mm2. The results showed that the round aggregates of 100% sludge and the crush aggregates of sludge with up to 20% clay produced concrete of compressive strengths which are superior to that of 38.0 N/mm2 for conventional aggregate. The study indicates that the conversion of high volume wastes into construction materials is a potential option for waste management.

  19. Sludge storage lagoon biogas recovery and use

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D.; Norville, C. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

    1991-07-01

    The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

  20. Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent.

    Science.gov (United States)

    Wang, Ke; Mao, Hailong; Li, Xiangkun

    2018-02-01

    The metabolic function of microbial community dominated organics and nutrients transformation in aerobic composting process. In this study, the metabolic characteristics of bacterial and fungal communities were evaluated in 60 days composting of sludge and pumice by using FUNGuild and PICRUSt, respectively. The results showed that microbial community structure and metabolic characteristics were distinctively different at four composting periods. Bacterial genes related to carbohydrate metabolisms decreased during the first 30 days, but bacterial sequences associated with oxidative phosphorylation and fatty acids synthesis were enhanced in curing phase. Most of fungal animal pathogen and plant pathogen disappeared after treatment, and the abundance of saprotroph fungi increased from 44.3% to 97.8%. Oxidation reduction potential (ORP) significantly increased from -28 to 175 mV through incubation. RDA analysis showed that ORP was a crucial factor on the succession of both bacterial and fungal communities in sludge composting system. Copyright © 2017. Published by Elsevier Ltd.

  1. Reasonable management plan of sludge in sewage disposal plant

    Energy Technology Data Exchange (ETDEWEB)

    Yum, Kyu Jin; Koo, Hyun Jung [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    The compost method, which is widely used as a sewage disposal recycling in Korea, is now basically impossible to recycle sludge to compost by the Ministry of Agriculture and Forestry announcement. Therefore, the disposal of sludge will be much harder with reducing the amount of sludge used as compost. The amount of sludge other than using as compost is very small, so the development of various sludge recycling and use will be needed with regulations. This study was implemented to help the establishment of sewage sludge recycling policy in Korea. 30 refs., 17 figs., 58 tabs.

  2. Deep Sludge Gas Release Event Analytical Evaluation

    International Nuclear Information System (INIS)

    Sams, Terry L.

    2013-01-01

    Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environment from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, 'Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge'). The purpose of this technical

  3. Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests

    Energy Technology Data Exchange (ETDEWEB)

    Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-15

    Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at {approx}95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite [U(IV)] and metaschoepite [U(VI)]. This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water ({approx}95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO{sub 2} and eliminate H{sub 2} generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

  4. Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests

    International Nuclear Information System (INIS)

    Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-01-01

    Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at ∼95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite (U(IV)) and metaschoepite (U(VI)). This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water (∼95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO 2 and eliminate H 2 generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

  5. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics

    NARCIS (Netherlands)

    Kalyuzhnyi, S.V.; Fedorovich, V.V.; Lens, P.N.L.

    2006-01-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using

  6. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    International Nuclear Information System (INIS)

    WESTRA, A.G.

    1999-01-01

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility

  7. Mechanism and Parameter Optimization of Fenton's Reagent Integrated with Surfactant Pretreatment to Improve Sludge Dewaterability.

    Directory of Open Access Journals (Sweden)

    Yi Xing

    Full Text Available Sludge dewatering can effectively reduce the volume and mass of sludge for subsequent treatment and disposal. The work validated the potential of Fenton's reagent combined with dodecyl dimethyl benzyl ammonium chloride (DDBAC in improving sludge dewaterability and proposed the mechanism of joint conditioning. The composite conditioner dosage was optimized using response surface methodology. Results indicated the good conditioning capability of the composite conditioners. The optimum dosages for H2O2, Fe2+, and DDBAC were 44.6, 39.6, and 71.0 mg/g, respectively, at which a sludge cake water content of 59.67% could be achieved. Moreover, a second-order polynomial equation was developed to describe the behavior of joint conditioning. Analysis of the reaction mechanism showed that Fenton oxidation effectively decomposed extracellular polymeric substance (EPS, including loosely bound EPS (LB-EPS and tightly bound EPS (TB-EPS, into dissolved organics, such as proteins and polysaccharides. The process facilitated the conversion of the bound water into free water. Furthermore, DDBAC further released the bound water through solubilization of TB-EPS and LB-EPS after the Fenton reaction. The bound water content of the sludge conditioned with Fenton's reagent decreased from 3.15 to 1.36 g/g and further decreased to 1.08 g/g with the addition of DDBAC. High-performance liquid chromatography analysis verified that the composite conditioning could oxidize and hydrolyze EPS into low-molecular-mass organics (e.g., formic and acetic acid, thereby facilitating the release of bound water.

  8. Sludge lancing and inner bundle lancing: results and experiences in the Spanish central

    International Nuclear Information System (INIS)

    Montoro, Esteban; Del Pozo, Carlos

    2014-01-01

    During the operation cycle of the PWR plants oxide deposits (sludge) are generated in the secondary circuit by erosion-corrosion, chemical additives, etc. which are deposited on the tube plate of Steam Generators (SGs), limiting their efficiency and lifetime. To reduce them, Iberdrola Engineering and Construction with SRA SAVAC perform cleaning works by high-pressure water jets and tele-visual inspections between GV tubes. Results are shown in the text. (authors)

  9. Mechanical Properties of K Basin Sludge Constituents and Their Surrogates

    International Nuclear Information System (INIS)

    Delegard, Calvin H.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2004-01-01

    A survey of the technical literature was performed to summarize the mechanical properties of inorganic components in K Basins sludge. The components included gibbsite, ferrihydrite, lepidocrocite and goethite, hematite, quartz, anorthite, calcite, basalt, Zircaloy, aluminum, and, in particular, irradiated uranium metal and uranium dioxide. Review of the technical literature showed that information on the hardness of uranium metal at irradiation exposures similar to those experienced by the N Reactor fuel present in the K Basins (typically up to 3000 MWd/t) were not available. Measurements therefore were performed to determine the hardness of coupons taken from three irradiated N Reactor uranium metal fuel elements taken from K Basins. Hardness values averaged 30 ± 8 Rockwell C units, similar to values previously reported for uranium irradiated to ∼1200 MWd/t. The physical properties of candidate uranium metal and uranium dioxide surrogates were gathered and compared. Surrogates having properties closest to those of irradiated uranium metal appear to be alloys of tungsten. The surrogate for uranium dioxide, present both as particles and agglomerates in actual K Basin sludge, likely requires two materials. Cerium oxide, CeO2, was identified as a surrogate of the smaller UO2 particles while steel grit was identified for the UO2 agglomerates

  10. Synthesis of chromium containing pigments from chromium galvanic sludges

    International Nuclear Information System (INIS)

    Andreola, F.; Barbieri, L.; Bondioli, F.; Cannio, M.; Ferrari, A.M.; Lancellotti, I.

    2008-01-01

    In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr 0.04 Sn 0.97 SiO 5 and green Ca 3 Cr 2 (SiO 4 ) 3 were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr 2 O 3 . The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr 2 O 3

  11. Impact of sludge properties on solid-liquid separation of activated sludge

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    2016-01-01

    Solid-liquid separation of activated sludge is important both directly after the biological treatment of wastewater and for sludge dewatering. The separation of solid from the treated wastewater can be done by clarifiers (conventional plants) or membrane (MBR). Further, part of the sludge is taken...... out from the proces and usually dewatered before further handling. The separation process is costly. Moreover, the separation process depends on the composition and the properties of the sludge. The best separation is obtained for sludge that contains strong, compact flocs without single cells...... and dissolved extracellular polymeric substances (EPS). Polyvalent ions improve the floc strangth and improve the separation whereas monovalent ions (e.g. from road salt, sea water intrusion and industry) reduces impair the separation. Further high pH impairs the separation process due to floc disintegration...

  12. Wastewater and sludge management and research in Oman: An overview.

    Science.gov (United States)

    Jaffar Abdul Khaliq, Suaad; Ahmed, Mushtaque; Al-Wardy, Malik; Al-Busaidi, Ahmed; Choudri, B S

    2017-03-01

    It is well recognized that management of wastewater and sludge is a critical environmental issue in many countries. Wastewater treatment and sludge production take place under different technical, economic, and social contexts, thus requiring different approaches and involving different solutions. In most cases, a regular and environmentally safe wastewater treatment and associated sludge management requires the development of realistic and enforceable regulations, as well as treatment systems appropriate to local circumstances. The main objective of this paper is to provide useful information about the current wastewater and sludge treatment, management, regulations, and research in Oman. Based on the review and discussion, the wastewater treatment and sludge management in Oman has been evolving over the years. Further, the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman. Wastewater treatment and sludge management in Oman have been evolving over the years. Sludge utilization has been a challenge due to its association with human waste. Therefore, composting of sewage sludge is the best option in agriculture activities. Sludge and wastewater utilization can add up positively in the economic aspects of the country in terms of creating jobs and improving annual income rate. The number of research projects done on wastewater reuse and other ongoing ones related to the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.

  13. A Decontamination Process to Remove Metals and Stabilise Montreal Sewage Sludge

    Directory of Open Access Journals (Sweden)

    G. Mercier

    2002-01-01

    Full Text Available The Montreal Urban Community (MUC treatment plant produces approximately 270 tons of dry sludge daily (tds/day during physicochemical wastewater treatment. The sludges are burned and contribute to the greenhouse effect by producing atmospheric CO2. Moreover, the sludge emanates a nauseating odour during its thermal stabilisation and retains unpleasant odours for the part (25% that is dried and granulated. To solve this particular problem, the treatment plant authorities are currently evaluating an acidic chemical leaching (sulfuric or hydrochloric acid process at a pH between 2 and 3, using an oxidizing agent such as ferric chloride or hydrogen peroxide (METIX-AC technology, patent pending; [20]. They could integrate it to a 70 tds/day granulated sludge production process. Verification of the application of METIX-AC technology was carried out in a pilot plant set up near the sludge production plant of the MUC. The tests showed that METIX-AC technology can be advantageously integrated to the process used at the MUC. The residual copper (274 ± 58 mg/kg and cadmium (5.6 ± 2.9 mg/kg concentrations in the treated sludge meet legislation standards. The results have also shown that odours have been significantly eliminated for the dewatered, decontaminated, and stabilized biosolids (> 97% compared to the non-decontaminated biosolids. A high rate of odour elimination also was obtained for the liquid leached biosolids (> 93%, compared to the untreated liquid biosolids. The fertilising value (N and P is well preserved by the METIX-AC process. Dissolved organic carbon measurements have showed that little organic matter is brought in solution during the treatment. In fact, the average concentration of dissolved organic carbon measured in the treated liquid phase is 966 ± 352 mg/l, whereas it is 1190 ± 325 mg/l in untreated sludge. The treated sludge was first conditioned with an organic polymer and a coagulant aid. It was successfully dewatered with

  14. Nuclear safety of extended sludge processing on tank 42 and 51 sludge (DWPF sludge feed batch one)

    International Nuclear Information System (INIS)

    Clemons, J.S.

    1993-01-01

    The sludge in tanks 42 and 51 is to be washed with inhibited water to remove soluble salts and combined in tank 51 in preparation for feed to DWPF. Since these tanks contain uranium and plutonium, the process of washing must be evaluated to ensure subcriticality is maintained. When the sludge is washed, inhibited water is added, the tank contents are slurried and allowed to settle. The sludge wash water is then decanted to the evaporator feed tank where it is fed to the evaporator to reduce the volume. The resulting evaporator concentrate is sent to a salt tank where it cools and forms crystallized salt cake. This salt cake will later be dissolved, processed in ITP and sent to Z-Area. This report evaluates the supernate and sludge during washing, the impact on the evaporator during concentration of decanted wash water, and the salt tank where the concentrated supernate is deposited. The conclusions generated in this report are specific to the sludge currently contained in tanks 42 and 51

  15. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

    Science.gov (United States)

    Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang

    2015-09-01

    Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    Science.gov (United States)

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Removal of phosphorus from wastewater using ferroxysorb sorption media produced from amd sludge

    Science.gov (United States)

    Sibrell, P.L.; Tucker, T.W.; Kehler, T.; Fletcher, J.W.

    2008-01-01

    Treatment of acid mine drainage (AMD), whether with lime, limestone, caustic or simple aeration, nearly always results in generation of a metal hydroxide sludge. Disposal of the sludge often constitutes a significant fraction of the operating cost for the AMD treatment plant. Research at the USGS - Leetown Science Center has shown that AMD sludge, with its high content of aluminum and iron oxides, has a high affinity of phosphorus (P). Anthropogenic sources of P are associated with eutrophication and degradation of aquatic environments, resulting in anoxic dead zones in certain sensitive waterways. In this paper, we describe a method of converting the AMD sludge from a liability into an asset - Ferroxysorb P removal media - which can be used to remove excess P from wastewater. Three different Ferroxysorb media samples were produced from differing AMD sources and tested for P removal. Adsorption isotherms confirmed that the media had a high sorption capacity for P, as high as 19,000 mg/kg. The technology was demonstrated at an active fish hatchery, where the media remained in service for over three months without stripping or regeneration. Over that period of time, the calculated P removal was 50%, even at a very low influent P concentration of 60 parts per billion. In summary, use of the AMD-derived Ferroxysorb sorption media will reduce AMD treatment costs while at the same time helping to resolve the pressing environmental issue of eutrophication and degradation of sensitive waterways.

  18. Eco-technological process of glass-ceramic production from galvanic sludge and aluminium slag

    Directory of Open Access Journals (Sweden)

    Stanisavljević M.

    2010-01-01

    Full Text Available Methods of purification of waste water which are most commonly used in the Republic of Serbia belong to the type of conventional systems for purification such as chemical oxidation and reduction, neutralization, sedimentation, coagulation, and flocculation. Consequently, these methods generate waste sludge which, unless adequately stabilized, represents hazardous matter. The aluminium slag generated by melting or diecasting aluminium and its alloys is also hazardous matter. In this sense, this paper establishes ecological risk of galvanic waste sludge and aluminium slag and then describes the process of stabilization of these waste materials by means of transformation into a glass-ceramic structure through sintering. The obtained product was analyzed with Fourier Transform Infrared Spectroscopy (FT-IR and X-ray diffraction (XRD. The object of the paper is the eco-technological process of producing glass-ceramics from galvanic sludge and aluminium slag. The aim of the paper is to incorporate toxic metals from galvanic sludge and aluminium slag into the glass-ceramic product, in the form of solid solutions.

  19. Evaluation of landfarming disposal method for oily sludge in Saudi Arabia

    International Nuclear Information System (INIS)

    Hejazi, R.F.; Husain, T.

    2000-01-01

    Saudi Aramco generates approximately 30,000 cubic meters of oily sludge every year. The sludge comes from tank bottoms, separator bottoms, desalination bottoms, and oil spills. This sludge contains water and oil emulsions with naphthalenic and other waxes, in addition to iron oxide scale. In 1982, 10-acre area was set aside in the Ras Tanura Refinery to serve as a pilot plot for landfarming. In 1983, the size of the area was increased to 17 acres, including the original area, and was divided into a number of subplots. Dikes and elevated roadways were constructed around the landfarm for the control of surface run-off and for easier access to the site. In addition, there were seven groundwater-monitoring wells installed inside and outside the area at depths that ranged from 23 to 44 feet. The authors discussed the steps taken and explained the conclusions of the study. Considering the climatic conditions prevalent in Saudi Arabia, including low precipitations and hot temperatures, landfarming proved to be the most cost effective method to treat and dispose of oily sludge. The four centrifugation systems tested by Saudi Aramco met the performance criteria. A discussion of various parameters such as moisture content, pH, microbiological activity and heavy metal content were also evaluated. 5 refs., 3 figs

  20. Concentration and speciation of heavy metals in six different sewage sludge-composts

    International Nuclear Information System (INIS)

    Cai Quanying; Mo Cehui; Wu Qitang; Zeng Qiaoyun; Katsoyiannis, Athanasios

    2007-01-01

    This study presents the concentrations and speciation of heavy metals (HMs) in six different composts of sewage sludges deriving from two wastewater treatment plants in China. After 56 days of sludge composting with rice straw at a low C/N ratio (13:1), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) were enriched in sludge composts, exhibiting concentrations that varied from 0.75 to 2.0, 416 to 458, 66 to 168 and 1356 to 1750 mg kg -1 dry weight (d.w.), respectively. The concentrations increased by 12-60% for Cd, 8-17% for Cu, 15-43% for Pb and 14-44% for Zn compared to those in sewage sludges. The total concentrations of individual or total elements in the final composts exceeded the maximum permissible limits proposed for compost or fertilizer. In all the final composts, more than 70% of total Cu was associated with organic matter-bound fraction, while Zn was mainly concentrated in exchangeable and Fe-Mn oxide-bound fractions which implied the high mobility and bioavailability. Continuously aerated composting treatment exhibited better compost quality and lower potential toxicity of HMs, whereas inoculant with microorganism and enzyme spiked during composting had no obvious advantage on humification of organic matter and on reducing HM mobility and bioavailability

  1. Gas Generation from K East Basin Sludges - Series II Testing

    International Nuclear Information System (INIS)

    Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2001-01-01

    This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focused on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report will present results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge

  2. Enhanced remediation of an oily sludge with saline water ...

    African Journals Online (AJOL)

    Enhanced remediation of an oily sludge with saline water. ... the remediation of an oily sludge, which was part of the waste stream from the improvement ... m3 of fresh water respectively while 'treatment' reactors C and D received ...

  3. Sludge pipe flow pressure drop prediction using composite power ...

    African Journals Online (AJOL)

    Sludge pipe flow pressure drop prediction using composite power-law friction ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue ... When predicting pressure gradients for the flow of sludges in pipes, the ...

  4. Organic matter and heavy metals in grey-water sludge

    African Journals Online (AJOL)

    2010-01-08

    Jan 8, 2010 ... metal loads comparable to Danish sewage sludge, and it exceeds the Danish quality criteria for ... The hydraulic retention time (HRT) of the whole plant is .... sludge will contain an important part of the XOCs which were.

  5. Microwave enhanced digestion of aerobic SBR sludge | Kennedy ...

    African Journals Online (AJOL)

    MWs) for improving characteristics of aerobic sequencing batch reactor (SBR) sludge to enhance mesophilic anaerobic digestion. Effects of pretreatment temperature, MW irradiation intensity and solids concentration on sludge characterisation ...

  6. The influence of aerobic sludge retention time on anaerobic co ...

    African Journals Online (AJOL)

    ABR) and aerobic plug flow reactor (PFR) were operated aiming to minimize excess sludge output of the activated sludge process through coupled alkaline hydrolysis and anaerobic digestion. Variations in the effluent total chemical oxygen ...

  7. Characteristics of biosolids from sludge treatment wetlands for agricultural reuse

    DEFF Research Database (Denmark)

    Uggetti, Enrica; Ferrer, Ivet; Nielsen, Steen

    2012-01-01

    Sludge treatment wetlands (STW) consist of constructed wetlands systems specifically developed for sludge treatment over the last decades. Sludge dewatering and stabilisation are the main features of this technology, leading to a final product which may be recycled as an organic fertiliser or soi...... legal limits for land application of the sludge. Our results suggest that biosolids from the studied STW can be valorised in agriculture, especially as soil conditioner....

  8. Municipal Sewage Sludge Drying Treatment by an Composite Modifier

    OpenAIRE

    Na Wei

    2012-01-01

    A sludge composite modifier (SCM) which comprises a mixture of three cementitious components was proposed for sludge drying and stabilization. Effect of SCM components on sludge moisture content was analyzed using uniform design and the optimum composition of SCM was determined by computer-aided modeling and optimization. To compare the drying effect of SCM, quicklime, and Portland cement, the effects of material content and curing time on moisture content of sludge were also studied. The res...

  9. Physical Properties of Hanford Transuranic Waste Sludge

    International Nuclear Information System (INIS)

    Poloski, A. P.

    2004-01-01

    This project has two primary objectives. The first is to understand the physical properties and behavior of the Hanford transuranic (TRU) tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at WIPP. The second primary objective is to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of this research effort will enhance the existing understanding of agglomeration phenomena and the properties of complex colloidal suspensions. In addition, the knowledge gained and capabilities developed during this effort will aid in the development and optimization of techniques to process the wastes at various DOE sites. These objectives will be accomplished by: (1) characterizing the TRU sludges contained in the Hanford tanks that are intended for shipment to WIPP; (2) determining the physical behavior of the Hanford TRU tank sludges under conditions that might exist during treatment and packaging; (3) and modeling the retrieval, treatment, and packaging operations that will be performed at Hanford to dispose of TRU tank sludges

  10. Supercritical water gasification of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Aye, L.; Yamaguchi, D. [Melbourne Univ. International Technologies Centre, Melbourne, Victoria (Australia). Dept. of Civil and Environmental Engineering

    2006-07-01

    Supercritical water gasification (SCWG) is an attractive technology for producing fuels from biomass and waste materials. As a result of greenhouse gas emissions and issues related to local air pollutants, hydrogen production from these renewable energy resources has been gaining in popularity. Disposal of sewage sludge is another environmental problem that have led to severe regulations. Incineration has been one of the most commonly used means of sewage sludge disposal. Thermal gasification produces gaseous fuel, making it a better option over incineration. However, due to its high moisture content, this process is not feasible to make use of sewage sludge directly. In order to analyze SCWG of sewage sludge, it has been determined that equilibrium analysis is most suitable since the maximum achievable amount of hydrogen in a given reacting condition can be estimated. The equilibrium model can be divided into two types of models, namely stoichiometric and non-stoichiometric. This paper presented the results of a study that used a computer program to develop a nonstoichiometric model with the direct Gibbs free energy minimization technique. In addition, various biomass were simulated for comparisons in order to identify if sewage sludge is a potential feedstock for hydrogen production. Last, the effects of reaction pressure and temperature on product distribution were also examined. It was shown that the proposed model is capable of estimating the product distribution at equilibrium. 33 refs., 4 tabs., 6 figs.

  11. Recovery of phosphorus from sewerage treatment sludge

    Energy Technology Data Exchange (ETDEWEB)

    Manuilova, Anastasia

    1999-07-01

    This thesis is a review of the current state of technologies for the removal of phosphorus from wastewater and sludge, and the recovery and re-use of phosphorus. It explains the need for phosphorus removal and describes the current removal processes. Focus is given to phosphorus crystallisation processes and to the processes which treat sewage treatment sludges into potential sources of phosphorus. An interesting possibility to recover phosphorus from sewage sludge by use of Psenner fractionation is also discussed. By this method, the following phosphate fractions of technological significance may be distinguished: (1) redox sensitive phosphates, mainly bound to Fe(OH){sub 3}; (2) phosphate adsorbed to surfaces (Al{sub 2}O{sub 3}), exchangeable against OH{sup -}, and alkali-soluble phosphate; (3) phosphate bound to CaCO{sub 3}, MgCO{sub 3} and in apatite; and (4) organically bound phosphate. The basic removal mechanisms, process schemes and treatment results are described. Two experiments with three different types of sludges from Henriksdal wastewater treatment plant in Stockholm were performed in the laboratory. It was shown that the addition of sodium hydroxide or hydrochloric acid cause the significant release of phosphate (about 80%) for all types of sludges. If a whole Psenner fractionation was performed the phosphate release is approximately 100%.

  12. Solar drying in sludge management in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Salihoglu, Nezih; Pinarli, Vedat; Salihoglu, Guray [Faculty of Engineering and Architecture, Environmental Engineering Department, Uludag University, 16059, Bursa (Turkey)

    2007-08-15

    Two main wastewater treatment plants in Bursa city in Turkey will start to operate and produce at least 27,000 tons of dry solids per year by the end of 2006. The purpose of this study was to investigate an economical solution to the sludge management problem that Bursa city would encounter. The general trend in Turkey is mechanical dewatering to obtain a dry solid (DS) content of 20%, and liming the mechanically dewatered sludge to reach the legal land filling requirement, 35% DS content. This study recommends limited liming and solar drying as an alternative to only-liming the mechanically dewatered sludge. Open and covered solar sludge drying plants were constructed in pilot scale for experimental purposes. Dry solids and climatic conditions were constantly measured. Faecal coliform reduction was also monitored. The specially designed covered solar drying plant proved to be more efficient than the open plant in terms of drying and faecal coliform reduction. It was found that, if the limited liming and solar drying method was applied after mechanical dewatering instead of only-liming method, the total amount of the sludge to be disposed would be reduced by approximately 40%. This would lead to a reduction in the transportation, handling, and land filling costs. The covered drying system would amortize itself in 4 years. (author)

  13. Operational experience at the Sludge Treatment Facility

    International Nuclear Information System (INIS)

    Sy, D.J.

    1987-01-01

    The Sludge Treatment Facility (STF) at the Oak Ridge Gaseous Diffusion Plant has been in operation since April 1987. The facility was designed to encapsulate hazardous sludge wastes in a cement matrix. Fixation will allow the waste to meet or exceed applicable compressive strength and leachability requirements. Thus, the grout mixture complies with the Resource Conservation and Recovery Act (RCRA) guidelines as a nonhazardous waste. The grout mixture is based upon a recipe formulation developed after several years of waste stream characterization and formulation studies. The wastes to be treated at the STF are wastes impounded in two ponds. The ponds have a combined capacity of 4.5 million gallons of sludge. The sludge is transferred from the ponds to a 15,000-gallon capacity storage tank by the use of a dredge. The grout mixture recipe dictates the amount of sludge, cement, fly ash, and admixture required for weighing per batch. All ingredients are weighed and then transferred to a tilt or high energy mixer for mixing. The grout mixture is then transferred to 89- or 96-gallon steel drums. The drums are placed in a storage yard designed for a point source discharge from the yard

  14. Chemical characterization of SRP waste tank sludges and supernates

    International Nuclear Information System (INIS)

    Gray, L.W.; Donnan, M.Y.; Okamoto, B.Y.

    1979-08-01

    Most high-level liquid wastes at the Savannah River Plant (SRP) are byproducts from plutonium and enriched uranium recovery processes. The high-level liquid wastes generated by these separations processes are stored in large, underground, carbon-steel tanks. The liquid wastes consist of: supernate (an aqueous solution containing sodium, nitrate, nitrite, hydroxyl, and aluminate ions), sludge (a gelatinous material containing insoluble components of the waste, such as ferric and aluminum hydroxides, and mercuric and manganese oxides), and salt cake (crystals, such as sodium nitrate, formed by evaporation of water from supernate). Analyses of SRP wastes by laser-Raman spectrometry, atomic absorption spectrometry, spark-source mass spectrometry, neutron activation analysis, colorimetry, ion chromatography, and various other wet-chemical and radiochemical methods are discussed. These analyses are useful in studies of waste tank corrosion and of forms for long-term waste storage

  15. Sludge Lancing IBL: results and experiences in the Spanish NPP's; Sluge Lancing e IBL: resultados y experiencias en las centrales espanolas

    Energy Technology Data Exchange (ETDEWEB)

    Montoro, E.; Pozo, C. del

    2014-04-01

    During the operation cycle of the PWR plants, oxides deposits (sludge) generated in the secondary circuit by erosion corrosion, chemical additives, etc. Which are deposited on the tube plate of GVs, limiting their efficiency and lifespan. To reduce them, Iberdrola Engineering and Construction, together with SRA SAVAC cleaned by high-pressure water means and tele visual inspection between tubes of the GVs. After Sludge Lancing cleanings performed by 250 bar from the center line, an area of solidified sludge remaining on the tubular plate was identified. Late 2010, Iberdrola Engineering and Construction, together with SRA SAVAC developed the Inner Bundle Lancing (IBL) system, which is based on a jet of water of high pressure>500 bar directly impacting areas of hard sludge within the tube bundle to detach and break the deposits into small pieces that can be extracted from GV through a closed circuit suction. (Author)

  16. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    Science.gov (United States)

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  17. Properties of bacterial radioresistance observed in sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H; Ito, H; Takehisa, M [Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment; Iizuka, H

    1981-09-01

    The changes in radiosensitivities of bacteria in sludge were investigated. The coliforms are more radioresistant in raw sludge than in cake (dewatered sludge). This radioresistance of coliforms was observed not only in raw sludge but also in the cake diluted with water. The radioresistance was independent of the difference of treatment plant, kind of sludge, and season. The oxygen effect on the radioresistance was not observed, but the resistance was changed during storage of sludge. Escherichia coli isolated from sludge was radiosensitive in buffer, but its radiosensitivity was protected by the water-extracts of sludge. On the other hand, radioresistant bacteria were present in total bacteria of sludge irradiated at 2 Mrad. However, the dominant flora in the irradiated sludge consisted of radiosensitive bacteria (mainly Pseudomonas). When a strain of radiosensitive Pseudomonas was irradiated in raw sludge and diluted cake, the radiosensitivity was remarkably protected. From these results, it is suggested that a factor affecting the radiosensitivity of bacteria is present in sludge.

  18. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability

    International Nuclear Information System (INIS)

    Li Huan; Jin Yiying; Mahar, Rasool Bux; Wang Zhiyu; Nie Yongfeng

    2009-01-01

    Ultrasonic treatment can disintegrate sludge, enhance microbial activity and improve sludge dewaterability at different energy inputs. To find their relationship, the three phenomena during ultrasonic treatment were investigated synchronously, and an experimental model was established to describe the process of ultrasonic sludge disintegration. Analysis results showed that the changes of sludge microbial activity and dewaterability were dependent on sludge disintegration degree during ultrasonic treatment. When sludge disintegration degree was lower than 20%, sludge flocs were disintegrated into micro-floc aggregates and the microbial activity increased over 20%. When sludge disintegration degree was over 40%, most cells were destroyed at different degree, and sludge activity decreased drastically. Only when sludge disintegration degree was 2-5%, sludge dewaterability was improved with the conditioning of FeCl 3 . It was also found that the sonication with low density and long duration was more efficient than sonication with high density and short duration at the same energy input for sludge disintegration, and a transmutative power function model can be used to describe the process of ultrasonic disintegration

  19. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability.

    Science.gov (United States)

    Huan, Li; Yiying, Jin; Mahar, Rasool Bux; Zhiyu, Wang; Yongfeng, Nie

    2009-01-30

    Ultrasonic treatment can disintegrate sludge, enhance microbial activity and improve sludge dewaterability at different energy inputs. To find their relationship, the three phenomena during ultrasonic treatment were investigated synchronously, and an experimental model was established to describe the process of ultrasonic sludge disintegration. Analysis results showed that the changes of sludge microbial activity and dewaterability were dependent on sludge disintegration degree during ultrasonic treatment. When sludge disintegration degree was lower than 20%, sludge flocs were disintegrated into micro-floc aggregates and the microbial activity increased over 20%. When sludge disintegration degree was over 40%, most cells were destroyed at different degree, and sludge activity decreased drastically. Only when sludge disintegration degree was 2-5%, sludge dewaterability was improved with the conditioning of FeCl(3). It was also found that the sonication with low density and long duration was more efficient than sonication with high density and short duration at the same energy input for sludge disintegration, and a transmutative power function model can be used to describe the process of ultrasonic disintegration.

  20. Keynote address: Federal overview of municipal sludge management

    International Nuclear Information System (INIS)

    Hathaway, W.B.

    1979-01-01

    The proper disposal of sewage sludge is becoming an increasing problem on solid waste management systems throughout the country. Currently 18,000 municipal wastewater treatment plants are generating about 5 million tons of sludge a year. This is expected to double in the next 8 to 10 years. The environmental aspects of sludge disposal are discussed

  1. Properties of bacterial radioresistance observed in sewage sludge

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Ito, Hitoshi; Takehisa, Masaaki; Iizuka, Hiroshi.

    1981-01-01

    The changes in radiosensitivities of bacteria in sludge were investigated. The coliforms are more radioresistant in raw sludge than in cake (dewatered sludge). This radioresistance of coliforms was observed not only in raw sludge but also in the cake diluted with water. The radioresistance was independent of the difference of treatment plant, kind of sludge, and season. The oxygen effect on the radioresistance was not observed, but the resistance was changed during storage of sludge. Escherichia coli isolated from sludge was radiosensitive in buffer, but its radiosensitivity was protected by the water-extracts of sludge. On the other hand, radioresistant bacteria were present in total bacteria of sludge irradiated at 2 Mrad. However, the dominant flora in the irradiated sludge consisted of radiosensitive bacteria (mainly Pseudomonas). When a strain of radiosensitive Pseudomonas was irradiated in raw sludge and diluted cake, the radiosensitivity was remarkably protected. From these results, it is suggested that a factor affecting the radiosensitivity of bacteria is present in sludge. (author)

  2. Photovoltaic's silica-rich waste sludge as supplementary cementitious material

    NARCIS (Netherlands)

    Quercia, G.; Van der Putten, J.J.G.; Brouwers, H.J.H.

    2013-01-01

    Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO2 and CaCO3. This sludge deflocculates in aqueous solutions into nano-particles smaller than 1000 nm. Thus, this sludge is potentially hazardous waste when is improperly

  3. Processed wastewater sludge for improvement of mechanical properties of concretes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Diaz, Carlos, E-mail: cbd0044@yahoo.com [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Martinez-Barrera, Gonzalo [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Carretera Toluca-Atlacomulco, Km.12, San Cayetano C.P. 50200, Toluca, Edo. de Mexico (Mexico); Gencel, Osman [Civil Engineering Department, Faculty of Engineering, Bartin University, 74100 Bartin (Turkey); Bernal-Martinez, Lina A. [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Brostow, Witold [Laboratory of Advanced Polymers and Optimized Materials (LAPOM), Department of Materials Science and Engineering and Center for Advanced Research and Technology (CART), University of North Texas, 1150 Union Circle 305310, Denton, TX 76203-5017 (United States)

    2011-08-15

    Highlights: {yields} Electrochemical methods produce less amount of residual sludge as compared with chemical procedures. {yields} Wastewater sludge contains a large amount of water. {yields} The residual sludge is used to prepare cylinder specimen concrete. {yields} There are improvements in the elastic modulus of the concrete when is prepared with residual sludge. - Abstract: Two problems are addressed simultaneously. One is the utilisation of sludge from the treatment of wastewater. The other is the modification of the mechanical properties of concrete. The sludge was subjected to two series of treatments. In one series, coagulants were used, including ferrous sulphate, aluminium sulphate or aluminium polyhydroxychloride. In the other series, an electrochemical treatment was applied with several starting values of pH. Then, concretes consisting of a cement matrix, silica sand, marble and one of the sludges were developed. Specimens without sludge were prepared for comparison. Curing times and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and static and dynamic elastic moduli were determined. Diagrams of the compressive strength and compressive strain at the yield point as a function of time passed through the minima as a function of time for concretes containing sludge; therefore, the presence of sludge has beneficial effects on the long term properties. Some morphological changes caused by the presence of sludge are seen in scanning electron microscopy. A way of utilising sludge is thus provided together with a way to improve the compressive strain at yield point of concrete.

  4. Examination of sludge from the Hanford K Basins fuel canisters

    International Nuclear Information System (INIS)

    Makenas, B.J.

    1998-01-01

    Samples of sludges with a high uranium content have been retrieved from the fuel canisters in the Hanford K West and K East basins. The composition of these samples contrasts markedly with the previously reported content of sludge samples taken from the K East basin floor. Chemical composition, chemical reactivity, and particle size of sludge are summarized in this paper

  5. Biological sulphate reduction with primary sewage sludge in an ...

    African Journals Online (AJOL)

    The success of the UASB reactor depends largely on the settling properties and stability of the sludge bed which comprises the anaerobic active biomass. The solid-liquid separation behaviour of the sludge bed in 2 UASB reactors (R1 at 35oC and R2 at 20oC) fed with primary sewage sludge and sulphate was investigated ...

  6. Modeling of Seepage Losses in Sewage Sludge Drying Bed ...

    African Journals Online (AJOL)

    This research was carried out to develop a model governing seepage losses in sewage sludge drying bed. The model will assist in the design of sludge drying beds for effective management of wastes derived from households' septic systems. In the experiment conducted this study, 125kg of sewage sludge, 90.7% moisture ...

  7. Physical and biochemical changes in sludge upon Tubifex tubifex predation

    NARCIS (Netherlands)

    de Valk, S.L.; Khadem, A.F.; Foreman, Christine M.; van Lier, J.B.; de Kreuk, M.K.

    2016-01-01

    Worm predation (WP) on activated sludge leads to increased sludge degradation rates, irrespective of the type of worm used or reactor conditions employed. However, the cause of the increased sludge degradation rates remains unknown. This paper presents a comparative analysis of the physical and

  8. Technology for improving sludge concentration; Odei noshukusei kaizen gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-10

    Sludge generating in a sewage treatment plant is disposed through the processes such as concentration, dehydration, and incineration in sludge disposal facilities. In recent years, there has been a trend that this sludge increases in volume as well as worsens in the concentration. A case is predictable where the sludge load to the dehydrating process is so large that the sludge can no longer be processed in sufficient quantity. In the meantime, if sludge is ozone-treated, viscous substance on the surface of sludge particles can be separated with a comparatively small amount of ozone, with sludge concentration enhanced. At Meidensha, an experimental plant was set up for the ozone treatment of sludge in a sludge intensive treatment plant of a metropolis, with a verification experiment carried out for a sludge concentration improving system by ozone. As a result of comparison of the treatment performance between an assessment system for performing ozone treatment and a reference system for not performing, the average value of the sludge concentration of a gravity concentration tank was 1.9% of the reference system against 1.7% of the assessment system in a continuous treatment experiment in the summer, while the solid collection ratio was 65.8% of the reference system against 95.5% of the assessment system, enabling a superior improving effect to be obtained. (NEDO)

  9. A new reactor concept for sludge reduction using aquatic worms

    NARCIS (Netherlands)

    Elissen, H.J.H.; Hendrickx, T.L.G.; Temmink, B.G.; Buisman, C.J.N.

    2006-01-01

    Biological waste water treatment results in the production of waste sludge. The final treatment option in The Netherlands for this waste sludge is usually incineration. A biological approach to reduce the amount of waste sludge is through predation by aquatic worms. In this paper we test the

  10. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2010-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treatment of sewage sludge and simultaneous generate electricity. Stable power generation (145±5 mW/m2) was produced continuously from raw sewage sludge for 5.5 days. The corresponding total chemical oxygen demand (TCOD) removal efficiency...... of an effective system to treatment of sewage sludge and simultaneous recover energy....

  11. Rheology of Savannah River Site Tank 51 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1993-01-01

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries

  12. The hydraulic transportation of thickened sludges | Slatter | Water SA

    African Journals Online (AJOL)

    Industries which pump sludges are under continuous pressure to decrease water content, and increase concentration. Environmentally superior disposal techniques are demanding that such sludges have high mechanical strength properties. This results in a sludge with an increasing viscous character. At high ...

  13. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-06-05

    Jun 5, 2013 ... sludge instead of imported commercial anaerobic granulated sludge. Over the ... biogas, granulated anaerobic sludge, industrial wastewater. ... production of methane by methanogenic bacteria. Compared with other treatment processes, USAB ... effluent collector; 8, gas outlet; 9, gas collector; 10, side-arm ...

  14. A comparison of three methods for determining the amount of nitric acid needed to treat HLW sludge at SRS

    International Nuclear Information System (INIS)

    Siegwald, S.F.; Ferrara, D.M.

    1994-01-01

    A comparison was made of three methods for determining the amount of nitric acid which will be needed to treat a sample of high-level waste (HLW) sludge from the Savannah River Site (SRS) Tank Farm. The treatment must ensure the resulting melter feed will have the necessary rheological and oxidation-reduction properties, reduce mercury and manganese in the sludge, and be performed in a fashion which does not produce a flammable gas mixture. The three methods examined where an empirical method based on pH measurements, a computational method based on known reactions of the species in the sludge and a titration based on neutralization of carbonate in the solution

  15. Efficiency of a pilot-scale integrated sludge thickening and digestion reactor in treating low-organic excess sludge.

    Science.gov (United States)

    He, Qiang; Li, Jiang; Liu, Hongxia; Tang, Chuandong; de Koning, Jaap; Spanjers, Henri

    2012-06-01

    The sludge production from medium- and small-scale wastewater treatment plants in the Three Gorges Reservoir Region is low and non-stable; especially, the organic content in this sludge is low (near 40% of VS/TS). An integrated thickening and digestion (ISTD) reactor was developed to treat this low-organic excess sludge. After a flow test and start-up experiment of the reactor, a running experiment was used to investigate the excess sludge treatment efficiency under five different excess sludge inflows: 200, 300, 400, 500 and 400 L/d (a mixture of excess sludge and primary sludge in a volume ratio of 9:1). This trial was carried out in the wastewater treatment plant in Chongqing, which covers 80% of the Three Gorges Reservoir Region, under the following conditions: (1) sludge was heated to 38-40 degrees C using an electrical heater to maintain anaerobic mesophilic digestion; (2) the biogas produced was recirculated to mix raw sludge with anaerobic sludge in the reactor under the flow rate of 12.5 L/min. There were three main results. Firstly, the flow pattern of the inner reactor was almost completely mixed under the air flow of 12.0 L/min using clear water. Secondly, under all the different sludge inflows, the water content in the outlet sludge was below 93%. Thirdly, the organic content in the outlet sludge was decreased from 37% to 30% and from 24% to 20%, whose removal ratio was in relation to the organic content of the inlet sludge. The excess sludge treatment capacity of the ISTD reactor was according to the organic content in the excess sludge.

  16. K-Basins Sludge Treatment and Packaging at the Hanford Site - 13585

    Energy Technology Data Exchange (ETDEWEB)

    Fogwell, Thomas W. [Fogwell Consulting, P.O. Box 20211, Piedmont, CA 94620 (United States); Honeyman, James O. [CH2M HILL Plateau Remediation Company, P.O. Box 1600 H7-30, Richland, WA (United States); Stegen, Gary [Lucas Engineering and Management Services, Inc., 1201 Jadwin Avenue, Suite 102, Richland, WA 99352 (United States)

    2013-07-01

    applicable technologies were identified through a commercial procurement process, technical workshops, and review of the numerous previous sludge treatment technology studies. The identified technology approaches were screened using the criteria established in the Decision Plan, and focused bench top feasibility testing was conducted. Engineering evaluations of the costs, schedules, and technical maturity were developed and evaluated. Recommendations were developed based on technical evaluations. The criteria used in the evaluation process were as follows: (1) Safety, (2) Regulatory/stakeholder acceptance, (3) Technical maturity, (4) Operability and maintainability, (5) Life cycle cost and schedule, (6) Potential for beneficial integration with ongoing STP-Phase 1 activities, and (7) Integration with Site-wide RH-TRU processing/packaging, planning, schedule, and approach. The TEAA recommended Warm Water Oxidation (WWO) as the baseline treatment technology and two risk reduction enhancement options for further consideration during development of the process - size reduction and chemical oxidation (Fenton's reagent). The enhancement options would potentially allow a useful reduction in the total operating time required to process the K Basins sludge. The U.S. Department of Energy's Richland Field Office (DOE-RL) has approved this recommended technical approach. The baseline process can be broken down into the following main process steps: (1) STSC transfer from T Plant to the Sludge Treatment and Packaging Facility (STPF). (2) Retrieval of sludge from the STSCs and transfer to the Receipt and Reaction Tank (RRT). (3) Preparation for immobilization by oxidation using heated water (i.e., WWO) for those batches that require it and concentration by evaporating water at about atmospheric pressure in the RRT. (4) Immobilization by using additives to eliminate free liquids and packaging of the treated sludge into drums. (5) Inspection and handling of the filled drums prior

  17. K-Basins Sludge Treatment and Packaging at the Hanford Site - 13585

    International Nuclear Information System (INIS)

    Fogwell, Thomas W.; Honeyman, James O.; Stegen, Gary

    2013-01-01

    applicable technologies were identified through a commercial procurement process, technical workshops, and review of the numerous previous sludge treatment technology studies. The identified technology approaches were screened using the criteria established in the Decision Plan, and focused bench top feasibility testing was conducted. Engineering evaluations of the costs, schedules, and technical maturity were developed and evaluated. Recommendations were developed based on technical evaluations. The criteria used in the evaluation process were as follows: (1) Safety, (2) Regulatory/stakeholder acceptance, (3) Technical maturity, (4) Operability and maintainability, (5) Life cycle cost and schedule, (6) Potential for beneficial integration with ongoing STP-Phase 1 activities, and (7) Integration with Site-wide RH-TRU processing/packaging, planning, schedule, and approach. The TEAA recommended Warm Water Oxidation (WWO) as the baseline treatment technology and two risk reduction enhancement options for further consideration during development of the process - size reduction and chemical oxidation (Fenton's reagent). The enhancement options would potentially allow a useful reduction in the total operating time required to process the K Basins sludge. The U.S. Department of Energy's Richland Field Office (DOE-RL) has approved this recommended technical approach. The baseline process can be broken down into the following main process steps: (1) STSC transfer from T Plant to the Sludge Treatment and Packaging Facility (STPF). (2) Retrieval of sludge from the STSCs and transfer to the Receipt and Reaction Tank (RRT). (3) Preparation for immobilization by oxidation using heated water (i.e., WWO) for those batches that require it and concentration by evaporating water at about atmospheric pressure in the RRT. (4) Immobilization by using additives to eliminate free liquids and packaging of the treated sludge into drums. (5) Inspection and handling of the filled drums prior to

  18. Electron beam treatment of wastewaters and sludges

    International Nuclear Information System (INIS)

    Osborn, D.W.

    1980-01-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900 000 per year at a dose rate of 4 000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material

  19. Electron beam treatment of wastewaters and sludges

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, D W [City Health Dept., Johannesburg (South Africa)

    1980-12-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900,000 per year at a dose rate of 4,000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material.

  20. Utilization of irradiated sludge for fish feed

    International Nuclear Information System (INIS)

    Harsojo; Syamsu, Suwirma; Subagyo, Lydia Andini

    1994-01-01

    An experiment was conducted to study the use of irradiated sludge pellet for fish feed, namely pellet A consisting of irradiated sludge and shrimp waste (1:3); pellet B consisting of irradiated sludge and commercial pellet (1:2). Pellet C, which is a commercial fish feed, was used as control. Catfish (Clarias gariepinus) was used in this experiment. The feed pellet with a dose of 5% of total body weight was given 3 times per day. The results of the experiments showed that based on food conversion for the relative growth of the catfishes, and heavy metal content, pellet A was the best. No contamination of Salmonella or Shigella bacteria was detected in each pellet. (author). 8 refs, 3 tabs, 1 fig

  1. Determining organic pollutants in automotive industry sludge.

    Science.gov (United States)

    Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin

    2012-12-01

    In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue.

  2. Sanitizing effects of sewage sludge irradiation treatment

    International Nuclear Information System (INIS)

    Zhao Yongfu

    2005-01-01

    A large quantity of pathogenic organisms were found in sewage sludge. An investigation was carried out on the relationship in the chain of sludge-soil-vegetable between the survival of pathogenic organisms and the irradiation dosage. After irradiation with 5-6 kGy, coliform group reduced 3 log cycles, and ascarid ova were completely eliminated with a dose of 1 kGy, making the water matched the standard quality of irrigating water. In the soil applied with irradiated sewage sludge, the total bacteria and coliforms group count reduced to one tenth, and alive ascarid ova was not detected. The coliform group on the Chinese cabbage was extremely low and reached the standard of fresh eating. (authors)

  3. Tank 5 Model for Sludge Removal Analysis

    International Nuclear Information System (INIS)

    LEE, SI

    2004-01-01

    Computational fluid dynamics methods have been used to develop and provide slurry pump operational guidance for sludge heel removal in Tank 5. Flow patterns calculated by the model were used to evaluate the performance of various combinations of operating pumps and their orientation under steady-state indexed and transient oscillation modes. A model used for previous analyses has been updated to add the valve housing distribution piping and pipe clusters of the cooling coil supply system near pump no. 8 to the previous tank Type-I model. In addition, the updated model included twelve concrete support columns. This model would provide a more accurate assessment of sludge removal capabilities. The model focused on removal of the sludge heel located near the wall of Tank 5 using the two new slurry pumps. The models and calculations were based on prototypic tank geometry and expected normal operating conditions as defined by Tank Closure Project Engineering. Computational fluid dynamics models of Tank 5 with different operating conditions were developed using the FLUENT (trademark) code. The modeling results were used to assess the efficiency of sludge suspension and removal operations in the 75-ft tank. The models employed a three-dimensional approach, a two-equation turbulence model, and an approximate representation of flow obstructions. The calculated local velocity was used as a measure of sludge removal and mixing capability. For the simulations, modeling calculations were performed with indexed pump orientations until an optimum flow pattern near the potential location of the sludge heel was established for sludge removal. The calculated results demonstrated that the existing slurry pumps running at 3801 gpm flowrate per nozzle could remove the sludge from the tank with a 101 in liquid level, based on a historical minimum sludge suspension velocity of 2.27 ft/sec. The only exception is the region within maximum 4.5 ft distance from the tank wall boundary at the

  4. Development of a test method to access the sludge reduction potential of aquatic organisms in activated sludge

    NARCIS (Netherlands)

    Buijs, B.R.; Klapwijk, A.; Elissen, H.J.H.; Rulkens, W.H.

    2008-01-01

    This article shows the development of a quantitative sludge reduction test method, which uses the sludge consuming aquatic worm Lumbriculus variegatus (Oligochaeta, Lumbriculidae). Essential for the test are sufficient oxygen supply and the presence of a non-stirred layer of sludge for burrowing of

  5. The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge

    NARCIS (Netherlands)

    Lin, Y. M.; Sharma, P. K.; van Loosdrecht, M. C. M.

    2013-01-01

    This study aimed to investigate differences in the gel matrix of aerobic granular sludge and normal aerobic flocculent sludge. From both types of sludge that fed with the same municipal sewage, the functional gel-forming exopolysaccharides, alginate-like exopolysaccharides, were isolated. These two

  6. Design characteristics of the Sludge Mobilization System

    International Nuclear Information System (INIS)

    McMahon, C.L.

    1990-01-01

    Radioactive waste stored in underground tanks at the West Valley Demonstration Project is being processed into low-level waste and solidified in cement. High-level waste also stored underground will be vitrified and solidified into canistered glass logs. To move the waste from where it resides at the Waste Tank Farm to the Vitrification Facility requires equipment to prepare the storage tanks for low-level and high-level waste processing, equipment to mobilize and mix the radioactive sludge into a homogeneous slurry, and equipment to transfer the slurry for vitrification. The design of the Sludge Mobilization System has incorporated the necessary components to effect the preparation and transfer of waste in five operational phases. The first phase of the Sludge Mobilization System, which began in 1987, prepared the waste tanks to process radioactive liquid for delivery to the Cement Solidification System and to support the mobilization equipment. The second phase, beginning in 1991, will wash the sludge that remains after the liquid supernatant is decanted to prepare it for mobilization operations. The third phase will combine the contents of various waste tanks into one tank. The fourth phase will resuspend and mix the contents of the high-level waste tank. The fifth and final phase of the Sludge Mobilization System will entail transferring the waste mixture to the Vitrification Facility for processing into glass logs. Provisions for recycling the waste streams or slurries within the tank farm or for returning process streams to the Waste Tank Farm from the Vitrification Facility are also included in the final phase. This document addresses the Sludge Mobilization System equipment design characteristics in terms of its use in each of the five operational phases listed above

  7. Kinetic model of excess activated sludge thermohydrolysis.

    Science.gov (United States)

    Imbierowicz, Mirosław; Chacuk, Andrzej

    2012-11-01

    Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The production of hydrogen-rich gas by wet sludge pyrolysis using waste heat from blast-furnace slag

    International Nuclear Information System (INIS)

    Luo, Siyi; Feng, Yu

    2016-01-01

    Blast furnace (BF) slag, a byproduct of steelmaking industry, contains a large amount of sensible heat and is composed of some metal oxides, which exhibits preferable catalytic performance in improving tar cracking and C_nH_m reforming. This paper presents a heat recovery system from the heat of BF slag, which generates hydrogen-rich gas via the endothermic reactions of sludge pyrolysis. The effects of various parameters including the slag temperature, the mass ratio of slag to sludge (B/S), particle size and feed moisture on product yields and gas characteristics were evaluated separately. It was found that the pyrolysis products distribution was significantly influenced by the BF slag temperature. The differences resulting from varying B/S practically disappear as higher temperature heat carrier is approached. The optimum feed moisture was in favour of sludge pyrolysis by getting char and tar participate in gasification reactions, improving gas yield and quality. BF slag as catalyst can greatly increase H_2 and CO contents of gas by improving tar degradation and reforming of biogas (CO_2 and CH_4). Decreasing the slag particles size was helpful to sludge primary pyrolysis to produce more light gases, less char and condensate, while its effects on gas compositions was not evident. - Highlights: • The sensible heat of molten slag was recovered and converted into combustible gas. • A novel rotary pyrolysis reactor using BF slag as heat carrier was presented. • The moisture in sludge was used as the gasification medium and hydrogen source.

  9. Investigation of Acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting.

    Science.gov (United States)

    Klink, C; Eisen, S; Daus, B; Heim, J; Schlömann, M; Schopf, S

    2016-06-01

    The aim of this study was to investigate the potential of bioleaching for the treatment of an environmentally hazardous waste, a blast-furnace flue dust designated Theisen sludge. Bioleaching of Theisen sludge was investigated at acidic conditions with Acidithiobacillus ferrooxidans in pure and mixed-species culture with Acidiphilium. In shaking-flask experiments, bioleaching parameters (pH, redox potential, zinc extraction from ZnS, ferrous- and ferric-iron concentration) were controlled regularly. The analysis of the dissolved metals showed that 70% zinc and 45% copper were extracted. Investigations regarding the arsenic and antimony species were performed. When iron ions were lacking, animonate (Sb(V)) and total arsenic concentration were highest in solution. The bioleaching approach was scaled up in stirred-tank bioreactors resulting in higher leaching efficiency of valuable trace elements. Concentrations of dissolved antimony were approx. 23 times, and of cobalt, germanium, and rhenium three times higher in comparison to shaking-flask experiments, when considering the difference in solid load of Theisen sludge. The extraction of base and trace metals from Theisen sludge, despite of its high content of heavy metals and organic compounds, was feasible with iron-oxidizing acidophilic bacteria. In stirred-tank bioreactors, the mixed-species culture performed better. To the best of our knowledge, this study is the first providing an appropriate biological technology for the treatment of Theisen sludge to win valuable elements. © 2016 The Society for Applied Microbiology.

  10. Overview of present and future sludge regulations

    International Nuclear Information System (INIS)

    Tonetti, R.

    1980-01-01

    The US Environmental Protection Agency is mandated by several acts of Congress to develop sludge management regulations. These include the Resource Recovery and Conservation Act, Clean Water Act, Marine Resources and Sanctuaries Act, Clean Air Act, and Toxic Substances Control Act. Congress had two main goals: the protection of the public health and the promotion of the use of sludge as a natural resource. This presentation will review the development of present and anticipated regulation as they seek to support achievement of these goals

  11. Potential priority pollutants in sewage sludge

    DEFF Research Database (Denmark)

    Eriksson, Eva; Christensen, Nina; Schmidt, Jens Ejbye

    2008-01-01

    compounds using their inherent properties and environmental fate it was shown that 99 XOCs could be classified as being hazardous with regard to the solid phase and 23 were found to be priority pollutants in the subsequent hazard assessment. The final selected priority pollutants can act as indicators when...... assessing sludge quality. They were compared with European legislations and discussed in regard for pointing out the need for mitigation such as substitution. Furthermore, the potential need for implementation of sludge treatment trains in order to meet the society's needs was addressed....

  12. PENERAPAN ELEKTROOSMOSIS UNTUK PENGERINGAN SLUDGE DARI PENGOLAHAN LIMBAH CAIR

    Directory of Open Access Journals (Sweden)

    Darmawan Darmawan

    2013-11-01

    Full Text Available APPLICATION OF ELECTROOSMOSIS FOR DEWATERING OF SLUDGE FROM WASTE WATER TREATMENT. Wastewater treatment produces semi-solid residue (sludge that must be handled carefully during dumping and discharge to avoid polluting the environment. A low cost and easy treatment of dewatering is needed. This research aimed to apply electroosmosis technique for dewatering sludge in order to seek for parameters that can efficiently reduce water content of sludge, including range of voltage, type of electrodes, and distance between electrodes; and to determine the effect of electroosmosis processes on changes of chemical characteristics of sludge. The results showed that: (1 electroosmosis dewatering occurred on the sludge taken from waste water treatment of landfill but not on sludge from water purification plant (PDAM, (2 direct current voltage of 30 volts was the optimum voltage, (3 copper rod cathode provided electroosmosis process as good as stainless steel cathode and both were better than the woven stainless steel cathode, (4 the dewatering time to reduce 1200% (w/w water content to about 400% was about 40 hours for sludge of 2500 cm3 in volume (laboratory bench scale, (5 the anode need to reinserted gradually approaching the cathode due to current lost when the water content at the anode point reached 400% and sludge at the point shrink, and (6 some chemical elements in the sludge decreased significantly after treatment. Pengolahan limbah cair menghasilkan residu berupa bahan semi padat yang dikenal sebagai sludge. Sludge tersebut juga perlu dikelola penyimpanan dan pembuangannya agar tidak mencemari lingkungan. Salah satu pengelolaan sludge yang perlu dilakukan adalah pengeringan (dewatering. Salahsatu teknik dewatering yang mungkin diterapkan ialah teknik elektroosmosis, yaitu teknik yang memanfaatkan adanya pergerakan air pada media poros di dalam medan istrik searah. Penelitian ini bertujuan untuk mencari parameter sistem dewatering secara

  13. Irradiation treatment of sewage sludge: History and prospects

    International Nuclear Information System (INIS)

    Bao Borong; Wu Minghong; Zhou Ruimin; Zhu Jinliang

    1998-01-01

    This paper first reviews the history of irradiation treatment of sewage sludge in the world. The first sludge irradiation plant was built in Geiselbullach, West Germany in 1973 and used 60 Co as irradiation source. Since then, many sludge irradiators were constructed in U.S.A., India, Japan, Canada, Poland, etc., which used 60 Co, 137 Cs or electron beam as irradiation sources. The paper then describes some basic research on irradiation treatment of sewage sludge including optimization of irradiation parameters, synergistic effect of radiation with heat, oxygenation, irradiation-composting and potential applications of treated sludge. Some proposals have been suggested for further development of this technology in the future

  14. Revegetation of mined land using waste water sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sopper, W E; Kerr, N

    1980-01-01

    The benefits of using sludge to reclaim land that has been used for strip mining is explained. Pennsylvania State University developed demonstration plots and used various types of sludges to illustrate this. One application of sludge is sufficient to supply plant nutrients for 3-5 years. After sludge application and incorporation, the site was broadcast seeded with grasses and legumes. Other trials and their results are noted. All show no detrimental effects on vegetation, the soil or groundwater quality due to sludge application.

  15. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge.

    Science.gov (United States)

    Chen, Tao; Yan, Bo

    2012-05-01

    Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Ultrasonic techniques for the in situ characterisation of 'legacy' Waste sludges and dispersions - 59111

    International Nuclear Information System (INIS)

    Hunter, Timothy; Biggs, Simon; Young, James; Fairweather, Michael; Peakall, Jeff

    2012-01-01

    Research being undertaken at the University of Leeds, as part of the DIAMOND university consortium, is exploring the effectiveness of various ultrasonic technologies as in situ probes to characterize and monitor nuclear waste slurries, such as the 'Legacy' Magnesium hydroxide sludges found in Sellafield, U.K. Through use of a commercial Acoustic Backscatter Sensor (ABS) with 1 - 5 MHz transducers, various properties of free-settling oxide simulant sludges were determined. Work was focused upon characterizing essentially 'static' sludges (to give prospective use as tools for the wastes in current deposits); although, the sensors also have potential as dispersion monitors during any future processing and storage of the Legacy wastes, as well as many other storage, clarifier or thickener systems across a wide range of industrial processing operations. ABS data of mixed glass powder dispersions was analysed and compared to scattering theory, to understand the correlations between acoustic attenuation and particulate concentration. The ABS was also calibrated to measure changes in average particulate concentration within a settling suspension over time, and showed the depth-wise segregation of the dispersion through the settling column at different particular time intervals. It was found that observed hindered settling also led to an increase in particulate concentration over the sludge zone and significant segregation occurred at moderate time intervals, due to the broad size distribution of the aggregates measured. It is hoped in future that these sensors may be able to be fitted to robotic handlers that have been installed onsite (and previously used for sampling), allowing fully automatic in situ sludge analysis. (authors)

  17. On the influence of sewage sludge irradiation by gamma radiation on the sludge properties

    International Nuclear Information System (INIS)

    Hegemann, W.

    1976-01-01

    The gamma irradiation is a technically usable method to disinfect sewage sludge. Furthermore, the slurry properties are also improved. After 24 hours' thickening time, a significantly smaller volume of concentrated thick slurry could be removed compared to untreated sludge. On the other hand, a dilution occurs with pasteurization if the heat is introduced by steam, and the initial concentration could not be achieved again even after thickening for 24 hours. The drainability of the treated sludge was also improved by irradiation, expressed by a reduction of the specific filter resistance. The costs are essentially determined by the radiation sources used. If it is technically possible to process reactor wastes in such a manner that they can be used in slurry radiation plants, costs of 3.50-4.00 DM/m 3 treated sludge seem possible. (orig.) [de

  18. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    Science.gov (United States)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  19. Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, H.K.; Kristensen, I.V.; Ottosen, L.M.; Villumsen, A. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark)

    2001-07-01

    Electroosmotic dewatering has been tested in laboratory cells for 4 different porous materials: chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge from enzyme production. In all cases it was possible to remove water when passing electric DC current through the material. Casagrande's coefficients for the three materials where determined at different water contents. In the electroosmotic experiments shown in this work chalk can be dewatered from 40% to 79% DM (dry matter), fly ash from 75 to 82% DM, iron hydroxide sludge from 2.7 to 19% DM and biomass from 3 to 33% DM. The process was not optimised indicating that higher dry matter contents could be achieved. (orig.)

  20. Sludge quantification at water treatment plant and its management scenario.

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  1. Biohydrogen production using waste activated sludge disintegrated by gamma irradiation

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2015-01-01

    Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • Combined alkali-irradiation treatment achieved the highest solubilization of sludge. - Abstract: The biohydrogen production using the disintegrated and dissolved sludge by gamma irradiation was studied. The experimental results showed that gamma irradiation and irradiation combined with alkali pretreatment could disintegrate and dissolve waste activated sludge for biohydrogen production. The alkali-irradiation treatment of the sludge at pH = 12 and 20 kGy achieved the highest disintegration and dissolution, i.e., it could destroy the cell walls and release organic matters (such as soluble COD, polysaccharides and protein) into the solution. The disintegrated sludge could be used as a low-cost substrate for biohydrogen production

  2. Gravity Drainage of Activated Sludge on Reed Beds

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Dominiak, Dominik Marek; Keiding, Kristian

    and operation of reed beds and the efficiencies are often lower than predicted. One reason is that the sludge quality varies from plant to plant and even within plants from time to time. No good method exists for measuring the sludge quality with respect to drainage characteristics. A new experimental method...... has therefore been developed to measure relevant quality parameters: specific cake resistance, settling velocity and cake compressibility. It has been found that activated sludge form highly compressible cake even at the low compressive pressures obtained during drainage. Numerical simulation shows......Activated sludge is a by-product from waste water treatment plants, and the water content in the sludge is high (> 90%). Among several methods to remove the water, sludge drying reed beds are often used to dewater the sludge by drainage. There is, however, no well-defined criterion for design...

  3. Recent developments in Sandia Laboratories' sewage sludge irradiation program

    International Nuclear Information System (INIS)

    Sivinski, H.D.; Brandon, J.R.; Morris, M.E.; Neuhauser, K.S.; Ward, R.L.; McCaslin, B.; Smith, G.S.

    1977-01-01

    Pathogen reduction studies show that gamma irradiation is effective in inactivating pathogenic bacteria, parasite ova, and viruses in liquid sludges. Ammonia is shown to be virucidal to poliovirus and several other enteric viruses. Sludge processing costs are relatively economical for composted or dried sludges, but only marginally competitive with costs of heat treatment for liquid sludges. Physical and chemical studies show that effects of irradiation of sludges on dewatering properties are insignificant when compared to the effects of polymer addition. Dried, irradiated undigested sludge has significant nutritional value as a feed supplement for sheep and cattle and in agronomic uses such as greenhouses and field plots. No significant harmful effects have been demonstrated in the feeding program. Product enhancement studies are under way, including schemes for removing nitrogen from wastewaters and adding it to sludges in the form of ammonium salts

  4. The exploitation of swamp plants for dewatering liquid sewage sludge

    Directory of Open Access Journals (Sweden)

    Jiří Šálek

    2006-01-01

    Full Text Available The operators of little rural wastewater treatment plants have been interested in economic exploitation of sewage sludge in local conditions. The chance is searching simply and natural ways of processing and exploitation stabilized sewage sludge in agriculture. Manure substrate have been obtained by composting waterless sewage sludge including rest plant biomass after closing 6–8 years period of filling liquid sewage sludge to the basin. Main attention was focused on exploitation of swamp plants for dewatering liquid sewage sludge and determination of influence sewage sludge on plants, intensity and course of evapotranspiration and design and setting of drying beds. On the base of determined ability of swamp plants evapotranspiration were edited suggestion solutions of design and operation sludge bed facilities in the conditions of small rural wastewater treatment plant.

  5. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  6. Bench-scale enhanced sludge washing and gravity settling of Hanford Tank C-106 Sludge

    International Nuclear Information System (INIS)

    Brooks, K.P.; Myers, R.L.; Rappe, K.G.

    1997-01-01

    This report summarizes the results of a bench-scale sludge pretreatment demonstration of the Hanford baseline flowsheet using liter-quantities of sludge from Hanford Site single-shell tank 241-C-106 (tank C-106). The leached and washed sludge from these tests provided Envelope D material for the contractors supporting Tank Waste Remediation System (TWRS) Privatization. Pretreatment of the sludge included enhanced sludge washing and gravity settling tests and providing scale-up data for both these unit operations. Initial and final solids as well as decanted supernatants from each step of the process were analyzed chemically and radiochemically. The results of this work were compared to those of Lumetta et al. (1996a) who performed a similar experiment with 15 grams of C-106, sludge. A summary of the results are shown in Table S.1. Of the major nonradioactive components, those that were significantly removed with enhanced sludge washing included aluminum (31%), chromium (49%), sodium (57%), and phosphorus (35%). Of the radioactive components, a significant amount of 137 Cs (49%) were removed during the enhanced sludge wash. Only a very small fraction of the remaining radionuclides were removed, including 90 Sr (0.4%) and TRU elements (1.5%). These results are consistent with those of the screening test. All of the supernatants (both individually and as a blend) removed from these washing steps, once vitrified as LLW glasses (at 20 wt% Na 2 O), would be less than NRC Class C in TRU elements and less than NRC Class B in 90 Sr

  7. PBDEs in Italian sewage sludge and environmental risk of using sewage sludge for land application

    International Nuclear Information System (INIS)

    Cincinelli, Alessandra; Martellini, Tania; Misuri, Lorenza; Lanciotti, Eudes; Sweetman, Andy; Laschi, Serena; Palchetti, Ilaria

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) were determined in sewage sludge samples collected from eight Italian wastewater treatment plants (WWTPs) between June 2009 and March 2010. Total PBDE concentrations ranged from 158.3 to 9427 ng g −1 dw, while deca-BDE (BDE-209) (concentrations ranging from 130.6 to 9411 ng g −1 dw) dominated the congener profile in all the samples, contributing between 77% and 99.8% of total PBDE. The suitability of using a magnetic particle enzyme-linked immunoassay (ELISA) to analyse PBDEs in sewage sludge was also tested. The ELISA results, expressed as BDE-47 equivalents, were well correlated with those obtained by GC–NCI–MS, with correlation coefficients (r 2 ) of 0.899 and 0.959, depending on the extraction procedure adopted. The risk assessment of PBDEs in sewage sludge addressed to land application was calculated. PEC soil values compared to the relative PNEC soil for penta and deca-BDE suggests that there is a low risk to the soil environment. - Highlights: ► PBDEs in sewage sludge were determined in eight Italian WWTPs for the first time. ► PBDEs concentrations showed differences between the eight investigated WWTPs. ► Deca-BDE (BDE-209) was the dominant congener in all samples. ► The suitability of using ELISA method to analyse PBDEs in sewage sludge was tested. ► The risk assessment of using sewage sludge for land application was evaluated. - Determination of PBDEs in sewage sludge by GC–NCI–MS and ELISA test and risk assessment when sewage sludge is used for land application.

  8. Basis Document for Sludge Stabilization

    CERN Document Server

    Risenmay, H R

    2001-01-01

    DOE-RL recently issued Safety Evaluation Report (SER) amendments to the PFP Final Safety Analysis Report, HNF-SD-CP-SAR-021 Rev. 2. The Justification for Continued Operations for 2736-ZB and plutonium oxides in BTCs Safety Basis change (letter DOE-RL ABD-074) was approved by one of the SERs. Also approved by SER was the revised accident analysis for Magnesium Hydroxide Precipitation Process (MHPP) gloveboxes HC-230C-3 and HC-230C-5 containing increased glovebox inventories and corresponding increases in seismic release consequence. Numerous implementing documents require revision and issuance to implement the SER approvals. The SER plutonium oxides into BTCs specifically limited the SER scope to ''pure or clean oxides, i.e., 85 wt% or grater Pu, in this feed change'' (SER Section 3.0 Base Information paragraph 4 [page 11]). Comprehensive USQ Evaluation PFP-2001-12 addressed the packaging of Pu alloy metals into BTCs, and the packaging of Pu alloy oxides (powders) into food pack cans and determined that the ac...

  9. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    Science.gov (United States)

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Bacterial composition of activated sludge - importance for floc and sludge properties

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Thomsen, Trine R.; Nielsen, Jeppe L.

    2003-07-01

    Activated sludge flocs consist of numerous constituents which, together with other factors, are responsible for floc structure and floc properties. These properties largely determine the sludge properties such as flocculation, settling and dewaterability. In this paper we briefly review the present knowledge about the role of bacteria in relation to floc and sludge properties, and we present a new approach to investigate the identity and function of the bacteria in the activated sludge flocs. The approach includes identification of the important bacteria and a characterization of their physiological and functional properties. It is carried out by use of culture-independent molecular biological methods linked with other methods to study the physiology and function maintaining a single cell resolution. Using this approach it was found that floc-forming properties differed among the various bacterial groups, e.g. that different microcolony-forming bacteria had very different sensitivities to shear and that some of them deflocculated under anaerobic conditions. in our opinion, the approach to combine identity with functional analysis of the dominant bacteria in activated sludge by in situ methods is a very promising way to investigate correlations between presence of specific bacteria, and floc and sludge properties that are of interest. (author)

  11. Bacterial regrowth potential in alkaline sludges from open-sun and covered sludge drying beds

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, U.; Topac, F.O.; Birden, B.; Baskaya, H.S. [Uludag University, Gorukle (Turkey). Dept. of Environmnetal Engineering

    2007-10-15

    The aim of this study was to compare the regrowth potentials of wastewater sludges dried in two pilot-scale drying processes namely, Open-Sun Sludge Drying Bed (OSDB) and Covered Sludge Drying Bed (CSDB). Quicklime and/or coal fly ash were added to raw sludge samples prior to drying processes in order to enhance bacterial inactivation. Following three drying cycles (March-April, June-July and August-October), sludge samples were taken from the beds for the regrowth experiments. Addition of alkaline materials prevented the regrowth of faecal coliforms in all rewetted samples except for the samples obtained after the rainfall events in OSDB. Rewetting of these samples in the regrowth experiments increased faecal coliform numbers by 3.5-7 log units. In contradiction, the observed bacterial numbers in rewetted alkaline samples from CSDB were below the EPA Class B criterion (2 million MPN g{center_dot} 1) dry sludge). The combination of additional heat from solar collectors, protection from the rain and the unfavourable living conditions owing to alkaline materials appeared to inactivate bacteria more effectively in CSDB and hence eliminated regrowth potential more efficiently.

  12. Plan for characterization of K Basin spent nuclear fuel and sludge

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Marschman, S.C.

    1995-06-01

    This plan outlines a characterization program that supports the accelerated Path Forward scope and schedules for the Spent Nuclear Fuel stored in the Hanford K Basins. This plan is driven by the schedule to begin fuel transfer by December 1997. The program is structured for 4 years and is limited to in-situ and laboratory examinations of the spent nuclear fuel and sludge in the K East and K West Basins. The program provides bounding behavior of the fuel, and verification and acceptability for three different sludge disposal pathways. Fuel examinations are based on two shipping campaigns for the K West Basin and one from the K East Basin. Laboratory examinations include physical condition, hydride and oxide content, conditioning testing, and dry storage behavior

  13. Research on Ammonia and Methane Gas Emission from Composting Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Eglė Zuokaitė

    2011-04-01

    Full Text Available Sewage sludge treatment and disposal are related to climate change. Composting is the oldest and most natural form of recycling organic material. Carbon dioxide (CO2, methane (CH4 and nitrous oxide (NOx are all by-products of the composting process. These three greenhouse gases contribute to global warming by absorbing radiation emitted by the earth. When the natural breakdown of organic materials is happening under optimum conditions, it produces primarily carbon dioxide, water vapour and heat. When the process is unbalanced in some way, other gases begin to be produced, some of which have objectionable odours (NH3. Odour and greenhouse gases management, then, is one of the primary motivators for optimizing our composting process. The article deals with composting sewage sludge from the experimental results of the investigation of CH4 and NH3.Article in Lithuanian

  14. Development of a benchmarking methodology for evaluating oxidation ditch control strategies

    NARCIS (Netherlands)

    Abusam, A.A.A.

    2001-01-01

    Keywords: wastewater, oxidation ditch, carrousel, modeling, activated sludge, ASM No. 1, oxygen transfer rate, aeration, parameter estimation, calibration, sensitivity analysis, uncertainty analysis, sensors, horizontal

  15. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton's reagent and lime.

    Science.gov (United States)

    Yu, Wenbo; Yang, Jiakuan; Shi, Yafei; Song, Jian; Shi, Yao; Xiao, Jun; Li, Chao; Xu, Xinyu; He, Shu; Liang, Sha; Wu, Xu; Hu, Jingping

    2016-05-15

    Conditioning sewage sludge with Fenton's reagent could effectively improve its dewaterability. However, drawbacks of conditioning with Fenton's reagent are requirement of acidic conditions to prevent iron precipitation and subsequent neutralization with alkaline additive to obtain the pH of the filtrate close to neutrality. In this study, roles of pH were thoroughly investigated in the acidification pretreatment, Fenton reaction, and the final filtrate after conditioning. Through the response surface methodology (RSM), the optimal dosages of H2SO4, Fe(2+), H2O2, and lime acted as a neutralizer were found to be 0 (no acidification), 47.9, 34.3 and 43.2 mg/g DS (dry solids). With those optimal doses, water content of the dewatered sludge cakes could be reduced to 55.8 ± 0.6 wt%, and pH of the final filtrate was 6.6 ± 0.2. Fenton conditioning without initial acidification can simplify the conditioning process and reduce the usage of lime. The Fe(3+) content in the sludge cakes showed a close correlation with the dewaterability of conditioned sludge, i.e., the water content of sludge cakes, SRF (specific resistance to filtration), CST (capillary suction time), bound water content, and specific surface area. It indicated that the coagulation by Fe(3+) species in Fenton reaction could play an important role, compared to traditional Fenton oxidation effect on sludge conditioning. Thus, a two-step mechanism of Fenton oxidation and Fe(III) coagulation was proposed in sewage sludge conditioning. The mechanisms include the following: (1) extracellular polymeric substances (EPS) were firstly degraded into dissolved organics by Fenton oxidation; (2) bound water was converted to free water due to degradation of EPS; (3) the sludge particles were disintegrated into small ones by oxidation; (4) Fe(3+) generated from Fenton reaction acted as a coagulant to agglomerate smaller sludge particles into larger dense particles with less bond water; (5) finally, the dewatered

  16. Cavitation for improved sludge conversion into biogas

    NARCIS (Netherlands)

    Stoop, A.H.; Bakker, T.W.; Kramer, H.J.M.

    2015-01-01

    In several studies the beneficial influence of pre-treatment of waste activated sludge with cavitation on the biogas production was demonstrated. It is however, still not fully certain whether this effect should be mainly contributed to an increase in conversion rate of organics into biogas by

  17. Operator assisted optimization of sludge dewatering

    DEFF Research Database (Denmark)

    Grüttner, Henrik

    1991-01-01

    by the operator. By graphical presentation and an advisory service these data are used to support the operator in his dewatering operations and to secure a running optimization of the sludge dewatering. Evaluations show that this system is a useful tool for data collection and presentation and that the data...

  18. Predicting the degradability of waste activated sludge.

    Science.gov (United States)

    Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir

    2009-08-01

    The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.

  19. Biological treatment of sludge digester liquids.

    Science.gov (United States)

    van Loosdrecht, M C M; Salem, S

    2006-01-01

    Nitrogen removal in side stream processes offers a good potential for upgrading wastewater treatment plants (WWTPs) that need to meet stricter effluent standards. Removing nutrients from these internal process flows significantly reduces the N-load to the main treatment plant. These internal flows mainly result from the sludge processing and have a high temperature and a high concentration of ammonia. Therefore, the required reactor volumes as well as the required aerobic SRT are small. Generally, biological treatment processes are more economical and preferred over physical-chemical processes. Recently, several biological treatment processes have been introduced for sludge water treatment. These processes are available now on the activated sludge market (e.g. SHARON, ANAMMOX and BABE processes). The technologies differ in concept and in the limitations guiding the application of these processes for upgrading WWTPs. This paper reviews and compares different biological alternatives for nitrogen removal in side streams. The limitations for selecting a technology from the available ones in the activated sludge market are noted and analysed. It is stressed that the choice for a certain process is based on more aspects than pure process engineering arguments.

  20. Lipase and protease extraction from activated sludge

    DEFF Research Database (Denmark)

    Gessesse, Amare; Dueholm, Thomas; Petersen, Steffen B.

    2003-01-01

    of gentle and efficient enzyme extraction methods from environmental samples is very important. In this study we present a method for the extraction of lipases and proteases from activated sludge using the non-ionic detergent Triton X-100, EDTA, and cation exchange resin (CER), alone or in combination...

  1. Parasites in soil/sludge systems

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, J.R.

    1978-03-01

    The potential for the transmission of parasites, such as Entamoeba sp., schistosomes, and nematodes such as Ascaris sp., to man through the use of sewage sludges as fertilizer is reviewed. The eggs of Ascaris have been found to be the most resistant of these parasites to normal sludge treatment methods. Results of studies on the effectiveness of heat and ionizing radiation treatments reported show that a treatment of 55/sup 0/C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron beam was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities.

  2. Sumi-sludge system; Sumisurajji system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-20

    The subject facilities, delivered to Kakegawa City, Shizuoka Prefecture, in December, 1999, are the first machine by the heavy load denitrification processing system adaptive to purifying tank sludge 'Sumi-sludge system'. It enhanced the capacity of 84 kl/day by about 30% to 109 kl/day through the remodeling of the existing facilities. Its major specifications are capacity: 109 kl/day (human wastes 18 kl/day, purifying tank sludge 91 kl/day) and final effluent quality: pH 5.8-8.6, BOD 10 mg/l or less, COD 20 mg/l or less, SS 10 mg/l or less, T-N 10 mg/l or less, T-P 1 mg/l or less, chromaticity 30 degrees or less, coliform group quantity 3,000 pieces/ml or less. It has the following features. (1) Bio-treatment load is reduced by dehydrating human wastes and purifying tank sludge in the prestage of the bio-treatment. (2) Bio-treatment and flocculation separating treatment are integrated. (3) A high-speed flocculation sedimentation tank 'Sumi-thickner' is employed in the solid-liquid separator, enabling stable solid-liquid separation. (translated by NEDO)

  3. Contextual investigation of factors affecting sludge accumulation ...

    African Journals Online (AJOL)

    Pit latrines in slums areas of Uganda fill up faster than might be expected from some estimates owing to inappropriate use and failure to consider critical factors affecting sludge accumulation rates at the planning, design and construction stages. This study sought to investigate factors affecting filling rates of lined pit latrines ...

  4. Parasites in soil/sludge systems

    International Nuclear Information System (INIS)

    Brandon, J.R.

    1978-03-01

    The potential for the transmission of parasites, such as Entamoeba sp., schistosomes, and nematodes such as Ascaris sp., to man through the use of sewage sludges as fertilizer is reviewed. The eggs of Ascaris have been found to be the most resistant of these parasites to normal sludge treatment methods. Results of studies on the effectiveness of heat and ionizing radiation treatments reported show that a treatment of 55 0 C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron beam was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities

  5. Phosphorus recovery from sewage sludge char ash

    NARCIS (Netherlands)

    Atienza-Martinez, M.; Gea, G.; Arauzo, J.; Kersten, Sascha R.A.; Kootstra, A.M.J.

    2014-01-01

    Phosphorus was recovered from the ash obtained after combustion at different temperatures (600 °C, 750 °C and 900 °C) and after gasification (at 820 °C using a mixture of air and steam as fluidising agent) of char from sewage sludge fast pyrolysis carried out at 530 °C. Depending on the leaching

  6. Respirometry techniques and activated sludge models

    NARCIS (Netherlands)

    Benes, O.; Spanjers, H.; Holba, M.

    2002-01-01

    This paper aims to explain results of respirometry experiments using Activated Sludge Model No. 1. In cases of insufficient fit of ASM No. 1, further modifications to the model were carried out and the so-called "Enzymatic model" was developed. The best-fit method was used to determine the effect of

  7. Disinfection of sewage sludge with gamma radiation

    International Nuclear Information System (INIS)

    1980-01-01

    In the Geiselbullach sewage treatment plant near Munich, sewage irradiation by a 60 Co source is being investigated on a technical scale. 145 m 3 of sewage sludge are irradiated per day and then used as field fertilizer. (orig./HBR) [de

  8. Sludge irradiation disinfection for beneficial use

    International Nuclear Information System (INIS)

    1980-12-01

    Papers given at the symposium are included in this volume. The symposium was organized to facilitate the transfer of information on the use of sludge irradiation as a process to further reduce pathogens. State-of-the-art gamma radiation of dried sewage solids is reviewed. Separate abstracts have been prepared for individual papers for inclusion in the Energy Data Base

  9. Hydrogen production from paper sludge hydrolysate

    NARCIS (Netherlands)

    Kádár, Z.; Vrije, de G.J.; Budde, M.A.W.; Szengyel, Z.; Reczey, K.; Claassen, P.A.M.

    2003-01-01

    The main objective of this study was to develop a system for the production of 'renewable' hydrogen. Paper sludge is a solid industrial waste yielding mainly cellulose, which can be used, after hydrolysis, as a feedstock in anaerobic fermentation by (hyper)thermophilic organisms, such as Thermotoga

  10. Synchronous municipal sewerage-sludge stabilization.

    Science.gov (United States)

    Bukuru, Godefroid; Jian, Yang

    2005-01-01

    A study on a pilot plant accomplishing synchronous municipal sewerage-sludge stabilization was conducted at a municipal sewerage treatment plant. Stabilization of sewerage and sludge is achieved in three-step process: anaerobic reactor, roughing filter and a microbial-earthworm-ecofilter. The integrated ecofilter utilizes an artificial ecosystem to degrade and stabilize the sewerage and sludge. When the hydraulic retention time(HRT) of the anaerobic reactor is 6 h, the hydraulic load(HL) of the bio-filter is 16 m3/(m2 x d), the HL of the eco-filter is 5 m3/(m2 x d), the recycle ratio of nitrified liquor is 1.5, the removal efficiency is 83%-89% for COD(Cr), 94%-96% for BOD5, 96%-98% for SS, and 76%-95% for NH3-N. The whole system realizes the zero emission of sludge, and has the characteristics of saving energy consumption and operational costs.

  11. Survey of radiation effect on sewage sludge

    International Nuclear Information System (INIS)

    M'selmi, Nadia Ammar

    2005-01-01

    The high nutrient and organic matter contents of sewage sludge make it a useful soil amandment for famers. the presence of heavy metals and pathogens poses a major problem for utilisation of sladge to agriculture land. Radiation is a convenable method of sewage treatment. (author)

  12. Phase Chemistry of Tank Sludge Residual Components

    International Nuclear Information System (INIS)

    Krumhansl, James L.; Nagy, Kathryn L.

    2000-01-01

    About four or five distinct reprocessing technologies were used at various times in Hanford's history. After removing U and Pu (or later 137Cs and 90Sr), the strongly acidic HLW was ''neutralized'' to high pH (>13) and stored in steel-lined tanks. High pH was necessary to prevent tank corrosion. While each technology produced chemically distinct waste, all wastes were similar in that they were high pH, concentrated, aqueous solutions. Dominant dissolved metals were Fe and/or Al, usually followed by Ni, Mn, or Cr. In an effort to reduce waste volume, many of the wastes were placed in evaporators or allowed to ''self-boil'' from the heat produced by their own radioactive decay. Consequently, today's HLW has been aging at temperatures ranging from 20 to 160 C. Previous studies of synthetic HLW sludge analogues have varied in their exact synthesis procedures and recipes, although each involved ''neutralization'' of acidic nitrate salt solutions by concentrated NaOH. Some recipes included small amounts of Si, SO4 2-, CO3 2-, and other minor chemical components in the Hanford sludges. The work being conducted at the University of Colorado differs from previous studies and from parallel current investigations at Sandia National Laboratories in the simplicity of the synthetic sludge we are investigating. We are emphasizing the dominant role of Fe and Al, and secondarily, the effects of Ni and Si on the aging kinetics of the solid phases in the sludge

  13. Hydrogen Evolution and Sludge Suspension During the Preparation of the First Batch of Sludge at the Savannah River Site

    International Nuclear Information System (INIS)

    Hay, M.S.; Lee, E.D.

    1995-01-01

    The first batch of High Level Radioactive Sludge for the Defense Waste Processing Facility is being prepared in two 4.9 million liter waste tanks. The preparation involves removing water soluble salts by washing (water addition, sludge suspension, settling and decantation). Sludge suspension is accomplished using long shafted slurry pumps that are mounted on rotating turntables. During the sludge suspension runs in 1993 and 1994, the slurry pumps' cleaning radius was determined to be less than that expected from previous determinations using synthetic sludge in a full size waste tank mockup. Hydrogen concentrations in the tanks' vapor space were monitored during the sludge suspension activities. As expected, the initial agitation of the sludge increased the hydrogen concentration, however, with the controls in place the hydrogen concentration was maintained below seven percent of the lower flammability limit

  14. Wastewater and Sludge Reuse Management in Agriculture

    Directory of Open Access Journals (Sweden)

    Ioannis K. Kalavrouziotis

    2016-08-01

    Full Text Available Huge quantities of treated wastewater (TMWW and biosolids (sludge are produced every day all over the world, which exert a strong pressure on the environment. An important question that is raised is “what to do with them?”.An effort is put by the scientific community to eliminate the concept of “waste” and to replace it with the concept of “recycling of resources”, by means of effective management, which does not concern only the users, but all the other groups involved in the problem, such as facility administrators, operations, politicians, scientific community and the general population. Sludge concentration data showed that there exist 516 chemicals in biosolids which create a serious health risk. It is pointed out that this risk will be greatly exacerbated by chemical toxins present in the sludge which can predispose skin to infection by pathogens. Consequently, the need for science-based policies are necessary to effectively protect public health. The risk assessment due to sludge, is difficult to evaluate of due to the large number of unknown interactions involved. People living near the sludge application sites may suffer from such abnormalities as: eye, nose, and throat irritation, gastrointestinal abnormalities, as nausea, vomiting, diarrhea, including cough, difficulty in breathing, sinus congestion, skin infection and sores. Many problems seem to be related to biosolid and wastewater application in agriculture, which should be solved. A universal one, acknowledged as an “international health crisis” is the resistance of pathogens to antibiotics and to the evolution of multidrug resistance of bacteria”. Certain anthropogenically created environments have been identified as major sources of multidrug resistance bacteria such as in water treatment plants, concentrated animal feeding operations etc. All these, and many other health problems, render the safety of sludge and biosolid and wastewater agricultural reuse, for

  15. 40 CFR 503.7 - Requirement for a person who prepares sewage sludge.

    Science.gov (United States)

    2010-07-01

    ... sewage sludge. 503.7 Section 503.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE General Provisions § 503.7 Requirement for a person who prepares sewage sludge. Any person who prepares sewage sludge shall ensure that the...

  16. Thermal decomposition of nitrate salts liquid waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Kim, Y. K.; Lee, K. Y.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2004-01-01

    This study investigated the thermal decomposition property of nitrate salts liquid waste which is produced in a series of the processes for the sludge treatment. Thermal decomposition property was analyzed by TG/DTA and XRD. Most ammonium nitrate in the nitrate salts liquid waste was decomposed at 250 .deg. C and calcium nitrate was decomposed and converted into calcium oxide at 550 .deg. C. Sodium nitrate was decomposed at 700 .deg. C and converted into sodium oxide which reacts with water easily. But sodium oxide was able to convert into a stable compound by adding alumina. Therefore, nitrate salts liquid waste can be treated by two steps as follows. First, ammonium nitrate is decomposed at 250 .deg. C. Second, alumina is added in residual solid sodium nitrate and calcium nitrate and these are decomposed at 900 .deg. C. Final residue consists of calcium oxide and Na 2 O.Al 2 O 3 and can be stored stably

  17. Environmentally compatible sewage sludge disposal; Umweltgerechte Klaerschlammentsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J. [Technische Univ. Braunschweig (Germany). Inst. fuer Mechanische Verfahrenstechnik; Schwedes, J. [Technische Univ. Braunschweig (Germany). Inst. fuer Mechanische Verfahrenstechnik

    1997-09-01

    Cleaning of municipal and industrial waste water is done by means of biological processes: micro-organisms degrade pollutants. The resulting products are, besides cleaned waste water, sewage sludge and surplus sludge. Their disposal involves ecological and economic problems. One approach to their partial disposal is their degradation in a digester. Approximately one half of the organic substance is converted by anaerobic bacteria into energy-rich biogas. Optimization of this digestion process accelerates the anaerobic degradation process, increases the accruing amount of digester gas and reduces the volume of digested sludge to be disposed of. With these objectives, the Institute fuer Mechanische Verfahrenstechnik is conducting research into the mechanical treatment of micro-organisms remaining in surplus sludge by means of different treatment devices. The project is sponsored under the programme of the Deutsche Forschungsgemeinschaft DFG ``Biological processes with dispersive solids``. Mechanical treatment renders the cell constituents exploitable to anaerobic bacteria; the resulting sludge degradation is more rapid and more complete. (orig./ABI) [Deutsch] Zur Reinigung haeuslicher und industrieller Abwaesser werden biologische Prozesse eingesetzt. Dabei sorgen Mikroorganismen fuer den Abbau der Verunreinigungen. Neben dem gereinigten Abwasser fallen Primaer- und Ueberschussschlamm an, deren Entsorgung oekologische und oekonomische Probleme verursacht. Ein Weg zur partiellen Beseitigung dieser Klaerschlaemme ist ihr Abbau in einem Faulbehaelter. Dabei wird etwa die Haelfe der organischen Substanz durch anaerobe Bakterien zu einem energiereichen Biogas umgewandelt. Eine Optimierung dieses Faulprozesses beinhaltet: 1. Beschleunigung des anaeroben Abbauprozesses, 2. Erhoehung der anfallenden Faulgasmenge und 3. Reduzierung der zu entsorgenden Faulschlammenge. Mit diesen Zielsetzungen wird am Institut fuer Mechanische Verfahrenstechnik im Rahmen der DFG

  18. Counter current decantation washing of HLW sludge

    International Nuclear Information System (INIS)

    Brooke, J.N.; Peterson, R.A.

    1997-01-01

    The Savannah River Site (SRS) has 51 High Level Waste (HLW) tanks with typical dimensions 25.9 meters (85 feet) diameter and 10 meters (33 feet) high. Nearly 114 million liters (30 M gallons) of HLW waste is stored in these tanks in the form of insoluble solids called sludge, crystallized salt called salt cake, and salt solutions. This waste is being converted to waste forms stable for long term storage. In one of the processes, soluble salts are washed from HLW sludge in preparation for vitrification. At present, sludge is batch washed in a waste tank with one or no reuse of the wash water. Sodium hydroxide and sodium nitrite are added to the wash water for tank corrosion protection; the large volumes of spent wash water are recycled to the evaporator system; additional salt cake is produced; and sodium carbonate is formed in the washed sludge during storage by reaction with CO 2 from the air. High costs and operational concerns with the current washing process prompts DOE and WSRC to seek an improved washing method. A new method should take full advantage of the physical/chemical properties of sludge, experience from other technical disciplines, processing rate requirements, inherent process safety, and use of proven processes and equipment. Counter current solids washing is a common process in the minerals processing and chemical industries. Washing circuits can be designed using thickeners, filters or centrifuges. Realizing the special needs of nuclear work and the low processing rates required, a Counter Current Decantation (CCD) circuit is proposed using small thickeners and fluidic pumps

  19. Combustion characteristics of biodried sewage sludge.

    Science.gov (United States)

    Hao, Zongdi; Yang, Benqin; Jahng, Deokjin

    2018-02-01

    In this study, effects of biodrying on the characteristics of sewage sludge and the subsequent combustion behavior were investigated. 7-Day of biodrying removed 49.78% of water and 23.17% of VS initially contained in the sewage sludge and increased lower heating value (LHV) by 37.87%. Meanwhile, mass contents of C and N decreased from 36.25% and 6.12% to 32.06% and 4.82%, respectively. Surface of the biodried sewage sludge (BDSS) appeared granulated and multi-porous, which was thought to facilitate air transfer during combustion. According to thermogravimetric (TG) analysis coupled with mass spectrometer (MS) with a heating rate of 10 °C/min from 35 °C to 1000 °C, thermally-dried sewage sludge (TDSS) and BDSS lost 74.39% and 67.04% of the initial mass, respectively. In addition, combustibility index (S) of BDSS (8.67 × 10 -8  min -2  K -3 ) was higher than TDSS. TG-MS analyses also showed that less nitrogenous gases were generated from BDSS than TDSS. It was again showed that the average CO and NO concentrations in exit gas from isothermal combustion of BDSS were lower than those from TDSS, especially at low temperatures (≤800 °C). Based on these results, it was concluded that biodrying of sewage sludge was an energy-efficient water-removal method with less emission of air pollutants when BDSS was combusted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Rheology of sludge-slurry grouts

    International Nuclear Information System (INIS)

    McDaniel, E.W.

    1980-10-01

    A series of rheograms was developed that relates the critical velocity (velocity where flow changes from laminar to turbulent) of a cementitious grout that incorporates a suspended sludge-slurry to the critical velocity of a reference grout made with a simulated waste solution. The sludge that is now in the Gunite waste tanks at the Oak Ridge National Laboratory (ORNL) will be suspended and pumped to the new waste storage tanks in Melton Valley. The sludge will then be blended with a cement mix base to form a grout which will be injected underground by the shale fracturing process. This report describes the materials, equipment, and techniques used in the laboratory studies to suspend sludges and mix sludge-slurry grouts that have flow properties similar to those of current shale fracturing grouts. Bentonite clay is an effective suspender in dilute NaNO 3 solutions; 15 wt % solids can be suspended with 2.0 wt % bentonite in a 0.1 M NaNO 3 solution. Other suspending materials were evaluated, but bentonite gave the best results. If a slurry grout becomes too viscous to pump, methods must be available to thin the mixture. A number of thinners, friction reducers, and plasticizers were examined. Q-Broxin, a thinner supplied by Baroid, reduced the velocity of a grout required for turbulent flow in a 5.0-cm (2-in.)-diam tube from 1.76 to 1.20 m/s (5.79 to 3.95 ft/s); FX-32C, a plasticizer supplied by Fox Industries, Inc., reduced the velocity from 1.76 to 0.75 m/s

  1. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation.

    Science.gov (United States)

    Nason, Peter; Johnson, Raymond H; Neuschütz, Clara; Alakangas, Lena; Öhlander, Björn

    2014-02-28

    Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Enrichment of Thermophilic Propionate-Oxidizing Bacteria in Syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum

    OpenAIRE

    Stams, Alfons J. M.; Grolle, Katja C. F.; Frijters, Carla T. M.; Van Lier, Jules B.

    1992-01-01

    Thermophilic propionate-oxidizing, proton-reducing bacteria were enriched from the granular methanogenic sludge of a bench-scale upflow anaerobic sludge bed reactor operated at 55°C with a mixture of volatile fatty acids as feed. Thermophilic hydrogenotrophic methanogens had a high decay rate. Therefore, stable, thermophilic propionate-oxidizing cultures could not be obtained by using the usual enrichment procedures. Stable and reproducible cultivation was possible by enrichment in hydrogen-p...

  3. Influence of mechanical disintegration on the microbial growth of aerobic sludge biomass: A comparative study of ultrasonic and shear gap homogenizers by oxygen uptake measurements.

    Science.gov (United States)

    Divyalakshmi, P; Murugan, D; Sivarajan, M; Saravanan, P; Lajapathi Rai, C

    2015-11-01

    Wastewater treatment plant incorporates physical, chemical and biological processes to treat and remove the contaminants. The main drawback of conventional activated sludge process is the huge production of excess sludge, which is an unavoidable byproduct. The treatment and disposal of excess sludge costs about 60% of the total operating cost. The ideal way to reduce excess sludge production during wastewater treatment is by preventing biomass formation within the aerobic treatment train rather than post treatment of the generated sludge. In the present investigation two different mechanical devices namely, Ultrasonic and Shear Gap homogenizers have been employed to disintegrate the aerobic biomass. This study is intended to restrict the multiplication of microbial biomass and at the same time degrade the organics present in wastewater by increasing the oxidative capacity of microorganisms. The disintegrability on biomass was determined by biochemical methods. Degree of inactivation provides the information on inability of microorganisms to consume oxygen upon disruption. The soluble COD quantifies the extent of release of intra cellular compounds. The participation of disintegrated microorganism in wastewater treatment process was carried out in two identical respirometeric reactors. The results show that Ultrasonic homogenizer is very effective in the disruption of microorganisms leading to a maximum microbial growth reduction of 27%. On the other hand, Shear gap homogenizer does not favor the sludge growth reduction rather it facilitates the growth. This study also shows that for better microbial growth reduction, floc size reduction alone is not sufficient but also microbial disruption is essential. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Ahrenfeldt, Jesper

    2017-01-01

    Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed and the o......Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed...... and the oxidized materials were investigated as well. Sequential extraction with full elemental balances of the extracted pools as well as scanning electron microscopy with energy dispersive X-ray spectroscopy were used to investigate the mechanisms driving the observed differences in composition and P plant...... processes and 10–15% in pyrolysis whereas no reduction was observed in incineration processes. The influence on other heavy metals was less pronounced. The plant availability of P in the substrates varied from almost zero to almost 100% of the plant availability of P in the untreated sludge. Post-oxidized...

  5. Considerations in the public acceptance of sewage sludge irradiation systems

    International Nuclear Information System (INIS)

    Dix, G.P.

    1975-01-01

    Considerations associated with public acceptance of municipal sewage sludge irradiation systems are discussed including the benefit to society, public information and safeguards. Public acceptance of products is based upon the benefit to society as measured by reduced consumer costs, minimization of public risk and enhancement of the quality of life and the environment. When viewed in this positive light, the sludge irradiator has high potential benefits to the community. If large-scale engineering experiments show that sludge irradiation is more cost-effective than other methods, reduced consumer costs would result. Today many sewage plants do not consistently remove pathogens from sludge; sludge irradiation could be an effective method of pathogen removal and result in avoidance of a major public risk. The sludge irradiator may be able to clean up recreational areas, reduce noxious odours from sewage treatment facilities, and reduce the energy requirements for producing fertilizer and soil conditioners and conserve their mineral content. Plant safeguards must be explained to dispel public concern that the contents of the source can be released to the sludge accidentally. This will be the main issue within the technical sector of the public, and the design, procedural and administrative safeguards of the plant must be fully explained. The primary risk associated with sludge irradiators will be the remote possibility of source leakage into the sludge. The various safeguards in sludge irradiation plants are discussed in detail including the form of the radionuclide, encapsulation, the irradiation chamber, safeguards instrumentation, shielding and thermal safeguards. (Author)

  6. [Effects of ultrasonic pretreatment on drying characteristics of sewage sludge].

    Science.gov (United States)

    Li, Run-Dong; Yang, Yu-Ting; Li, Yan-Long; Niu, Hui-Chang; Wei, Li-Hong; Sun, Yang; Ke, Xin

    2009-11-01

    The high water content of sewage sludge has engendered many inconveniences to its treatment and disposal. While ultrasonic takes on unique advantages on the sludge drying because of its high ultrasonic power, mighty penetrating capability and the ability of causing cavitations. Thus this research studies the characteristics influences of ultrasonic bring to the sludge drying and effects of the exposure time, ultrasonic generator power, temperatures of ultrasonic and drying temperature on the drying characteristics of dewatered sludge. Results indicate that ultrasonic pretreatment could speed up evaporation of the free water in sludge surface and help to end the drying stage with constant speed. In addition, ultrasonic treatment can effectively improve the sludge drying efficiency which could be more evident with the rise of the ultrasonic power (100-250 W), ultrasonic temperature and drying temperature. If dried under low temperature such as 105 degrees C, sludge will have premium drying characteristics when radiated under ultrasound for a shorter time such as 3 min. In the end, the ultrasonic treatment is expected to be an effective way to the low-cost sludge drying and also be an important reference to the optimization of the sludge drying process because of its effects on the increase of sludge drying efficiency.

  7. Synthetic fibers as an indicator of land application of sludge

    International Nuclear Information System (INIS)

    Zubris, Kimberly Ann V.; Richards, Brian K.

    2005-01-01

    Synthetic fabric fibers have been proposed as indicators of past spreading of wastewater sludge. Synthetic fiber detectability was examined in sludges (dewatered, pelletized, composted, alkaline-stabilized) and in soils from experimental columns and field sites applied with those sludge products. Fibers (isolated by water extraction and examined using polarized light microscopy) were detectable in sludge products and in soil columns over 5 years after application, retaining characteristics observed in the applied sludge. Concentrations mirrored (within a factor of 2) predictions based on soil dilution. Fibers were detectable in field site soils up to 15 years after application, again retaining the characteristics seen in sludge products. Concentrations correlated with residual sludge metal concentration gradients in a well-characterized field site. Fibers found along preferential flow paths and/or in horizons largely below the mixed layer suggest some potential for translocation. Synthetic fibers were shown to be rapid and semi-quantitative indicators of past sludge application. - Synthetic fabric fibers present in wastewater sludge are a semi-quantitative long-term indicator of past sludge application in soils

  8. Sampling and analyses of SRP high-level waste sludges

    International Nuclear Information System (INIS)

    Stone, J.A.; Kelley, J.A.; McMillan, T.S.

    1976-08-01

    Twelve 3-liter samples of high-heat waste sludges were collected from four Savannah River Plant waste tanks with a hydraulically operated sample collector of unique design. Ten of these samples were processed in Savannah River Laboratory shielded cell facilities, yielding 5.3 kg of washed, dried sludge products for waste solidification studies. After initial drying, each batch was washed by settling and decantation to remove the bulk of soluble salts and then was redried. Additional washes were by filtration, followed by final drying. Conclusions from analyses of samples taken during the processing steps were: (a) the raw sludges contained approximately 80 wt percent soluble salts, most of which were removed by the washes; (b) 90 Sr and 238 , 239 Pu remained in the sludges, but most of the 137 Cs was removed by washing; (c) small amounts of sodium, sulfate, and 137 Cs remained in the sludges after thorough washing; (d) no significant differences were found in sludge samples taken from different risers of one waste tank. Chemical and radiometric compositions of the sludge product from each tank were determined. The sludges had diverse compositions, but iron, manganese, aluminum, and uranium were principal elements in each sludge. 90 Sr was the predominant radionuclide in each sludge product

  9. Treatment and disposal of refinery sludges: Indian scenario.

    Science.gov (United States)

    Bhattacharyya, J K; Shekdar, A V

    2003-06-01

    Crude oil is a major source of energy and feedstock for petrochemicals. Oily sludge, bio-sludge and chemical sludge are the major sludges generated from the processes and effluent treatment plants of the refineries engaged in crude oil refining operations. Refineries in India generate about 28,220 tons of sludge per annum. Various types of pollutants like phenols, heavy metals, etc. are present in the sludges and they are treated as hazardous waste. Oily sludge, which is generated in much higher amount compared to other sludges, contains phenol (90-100 mg/kg), nickel (17-25 mg/kg), chromium (27-80 mg/kg), zinc (7-80 mg/kg), manganese (19-24 mg/kg), cadmium (0.8-2 mg/kg), copper (32-120 mg/kg) and lead (0.001-0.12 mg/ kg). Uncontrolled disposal practices of sludges in India cause degradation of environmental and depreciation of aesthetic quality. Environmental impact due to improper sludge management has also been identified. Salient features of various treatment and disposal practices have been discussed. Findings of a case study undertaken by the authors for Numaligarh Refinery in India have been presented. Various system alternatives have been identified for waste management in Numaligarh Refinery. A ranking exercise has been carried out to evaluate the alternatives and select the appropriate one. A detailed design of the selected waste management system has been presented.

  10. Fiscal year 1994 1/25-scale sludge mobilization testing

    International Nuclear Information System (INIS)

    Powell, M.R.; Gates, C.M.; Hymas, C.R.; Sprecher, M.A.; Morter, N.J.

    1995-07-01

    There are 28 one-million-gallon double-shell radioactive waste tanks on the Hanford Reservation in southeastern Washington State. The waste in these tanks was generated during processing of nuclear materials. Solids-laden slurries were placed into many of the tanks. Over time, the waste solids have settled to form a layer of sludge in the bottom of these tanks. The sludge layer thickness varies from tank to tank with some having only a few centimeters or no sludge up to some tanks which have about 4.5 m (15 ft) of sludge. It is planned that the waste will be removed from these tanks as part of the overall Hanford site cleanup efforts. Jet mixer pumps are to be placed into the tanks to stir up (mobilize) the sludge and form a uniform slurry suitable for pumping to downstream processing facilities. These mixer pumps use powerful jets of tank fluid directed horizontally out of two, diametrically opposed nozzles near the tank bottom. These fluid jets impinge upon the sludge and stir it up. The amount of sludge mobilized by the mixer pump jets depends not only on the jet properties, but also on the ability of the sludge to resist the jets. It is the goal of the work described in this document to develop the ability to predict how much sludge will be mobilized by the mixer pumps based on the size and velocity of the mixer pump jets and the physical and chemical properties of the tank sludge

  11. Using the coproduction principle: no more throwaway kids.

    Science.gov (United States)

    Cahn, Edgar S; Gray, Christine

    2005-01-01

    Youth development does not take place only in institutions or even primarily in institutions. It takes place in the core economy-the economy of family, neighborhood, and community. Major challenges include rebuilding the kind of village it takes to raise a child and enabling a child to be part of that rebuilding. Another challenge is to make sure that any external incentives that are provided to youth are linked to activities that build self-esteem and convey a definition of value that is different from that established by money and market price. This chapter provides an introduction to time banking and to coproduction, approaches to youth development that enable youth to participate as major players, as opposed to recipients, in the reshaping of their lives and communities.

  12. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditions.

    Science.gov (United States)

    Yang, Sheng-Fu; Lin, Cheng-Fang; Lin, Angela Yu-Chen; Hong, Pui-Kwan Andy

    2011-05-01

    This study investigated the adsorption, desorption, and biodegradation characteristics of sulfonamide antibiotics in the presence of activated sludge with and without being subjected to NaN(3) biocide. Batch experiments were conducted and the relative contributions of adsorption and biodegradation to the observed removal of sulfonamide antibiotics were determined. Three sulfonamide antibiotics including sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), which had been detected in the influent and the activated sludge of wastewater treatment plants (WWTP) in Taiwan, were selected for this study. Experimental results showed that the antibiotic compounds were removed via sorption and biodegradation by the activated sludge, though biodegradation was inhibited in the first 12 h possibly due to competitive inhibition of xenobiotic oxidation by readily biodegradable substances. The affinity of sulfonamides to sterilized sludge was in the order of SDM > SMM > SMX. The sulfonamides existed predominantly as anions at the study pH of 6.8, which resulted in a low level of adsorption to the activated sludge. The adsorption/desorption isotherms were of a linear form, as well described by the Freundlich isotherm with the n value approximating unity. The linear distribution coefficients (K(d)) were determined from batch equilibrium experiments with values of 28.6 ± 1.9, 55.7 ± 2.2, and 110.0 ± 4.6 mL/g for SMX, SMM, and SDM, respectively. SMX, SMM, and SDM desorb reversibly from the activated sludge leaving behind on the solids 0.9%, 1.6%, and 5.2% of the original sorption dose of 100 μg/L. The sorbed antibiotics can be introduced into the environment if no further treatments were employed to remove them from the biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production.

    Science.gov (United States)

    Yoon, Seong-Hoon

    2003-04-01

    In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio.

  14. Ultrasonic sludge disintegration for enhanced methane production in anaerobic digestion: effects of sludge hydrolysis efficiency and hydraulic retention time.

    Science.gov (United States)

    Kim, Dong-Jin; Lee, Jonghak

    2012-01-01

    Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.

  15. Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-03-02

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form

  16. Functions and requirements for 105-KE Basin sludge retrieval and packaging

    International Nuclear Information System (INIS)

    Feigenbutz, L.V.

    1994-01-01

    Sludge, and the clouding due to sludge, interferes with basin operation and maintenance activities. This document defines the overall functions and requirements for sludge retrieval and packaging activities to be performed in the 105-KE Basin

  17. Agricultural yields of irradiated sewage sludge; Rendimiento agricola de barros cloacales irradiados

    Energy Technology Data Exchange (ETDEWEB)

    Magnavacca, Cecilia; Miranda, E; Sanchez, M [Comision Nacional de Energia Atomica, Ezeiza (Argentina). Centro Atomico Ezeiza

    1999-07-01

    Lettuce, radish and ryegrass have been used to study the nitrogen fertilization of soil by sewage sludge. The results show that the irradiated sludge improve by 15 - 30 % the production yield, compared to the non-irradiated sludge. (author)

  18. Use of sewage sludge for agriculture in Japan

    International Nuclear Information System (INIS)

    Kumazawa, K.

    1997-01-01

    In Japan, the use of sewage sludge and composted sewage sludge is gradually increasing. They are applied not only to agricultural land, but also to golf courses, parks, etc. The presence of heavy metals and pathogens poses a major problem for such utilization of sludge. Composting is a traditional method of sewage treatment. Laws have been introduced and guidelines prepared for proper and safe use of these materials by farmers. Public acceptance plays a crucial role. At a time when environmental preservation is a major issue in almost every aspect of life, greater emphasis will have to be placed on making sludge and compost hygienically acceptable with minimum contamination from pathogenic organisms and heavy metals. The advantages of using sludges as fertilizer for improving and sustaining soil fertility and crop production are many. This paper reviews studies conducted on the use of sewage sludge in agriculture in japan. (author)

  19. Radionuclides in sewage sludge and problems of use and disposal

    International Nuclear Information System (INIS)

    Schneider, P.; Tiefenbrunner, F.; Dierich, M.P.; Brunner, P.

    1987-01-01

    In a sewage plant with radioactive contaminated sewage an accumulation of radionuclide in the sewage sludge was to be found. The specific activities are in inverse proportion to the water content of the sewage sludge, the dehydrated sewage sludge shows the highest specific activities. These enriched radionuclides seem to be absorbed from the sludge. Yet they can be utilized by plants. This was demonstrated in experiments with Trifolium repens and Secale cereale, where the rate of absorption amounted 15-33% (inCi/kg dry weight plant:nCi/kg dry weight soil X 100) (transfer factors). This is why fertilization with radioactive contaminated sewage sludge seems to cause problems. In further experiments an extraction of radionuclides from ashed sewage sludge was shown. By acidifying the mobile phasis an increase in radioactivity in the eluated fractions was achieved. (orig./HP) [de

  20. Enhancement of anaerobic sludge digestion by high-pressure homogenization.

    Science.gov (United States)

    Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan

    2012-08-01

    To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.