WorldWideScience

Sample records for oxide synthase displacement

  1. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  2. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...

  3. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... chronic periodontitis (CP), 31 with gingivitis (G) and 50 healthy controls. Probing depth ..... Periodontal disease in pregnancy I. Prevalence and severity. ... endothelial nitric oxide synthase gene in premenopausal women with.

  4. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    Endothelial nitric oxide synthase (NOS3) is involved in key steps of immune response. Genetic factors predispose individuals to periodontal disease. This study's aim was to explore the association between NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained ...

  5. Endothelial nitric oxide synthase polymorphism G298T in ...

    Indian Academy of Sciences (India)

    Supplementary data: Endothelial nitric oxide synthase polymorphism G298T in association with oxidative DNA damage in coronary atherosclerosis. Rajesh G. Kumar, Mrudula K. Spurthi, Kishore G. Kumar, Sanjib K. Sahu and Surekha H. Rani. J. Genet. 91, 349–352. Table 1. The demographic and clinical data of the CHD ...

  6. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with μ-Opioid Agonist Activity.

    Science.gov (United States)

    Renton, Paul; Green, Brenda; Maddaford, Shawn; Rakhit, Suman; Andrews, John S

    2012-03-08

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the μ-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the μ-opioid GPCR was predicated on the modulatory role of nitric oxide on μ-opioid receptor function. Structure-activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 μM), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent μ-opioid binding affinity, K i = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 μM). This work represents a novel approach in the development of new analgesics for the treatment of pain.

  7. Association of Endothelial Nitric Oxide Synthase Gene Polymorphisms With Acute Rejection in Liver Transplant Recipients.

    Science.gov (United States)

    Azarpira, Negar; Namazi, Soha; Malahi, Sayan; Kazemi, Kourosh

    2016-06-01

    Polymorphisms of the endothelial nitric oxide synthase gene have been associated with altered endothelial nitric oxide synthase activity. The purpose of this study was to investigate the relation between endothelial nitric oxide synthase -786T/C and 894G/T polymorphism and their haplotypes on the occurrence of acute rejection episodes in liver transplant recipients. We conducted a case control study in which 100 liver transplant recipients and 100 healthy controls were recruited from Shiraz Transplant Center. The patients used triple therapy including tacrolimus, mycophenolate mofetil, and prednisolone for immunosuppression maintenance. DNA was extracted from peripheral blood and endothelial nitric oxide synthase polymorphisms were determined by polymerase chain reaction and restriction fragment length polymorphism. Patients included 60 men and 40 women (mean age, 32.35 ± 10.2 y). There was a significant association of endothelial nitric oxide synthase 894G/T and acute rejection episode. The GT* gen-otype and acute rejection episodes had a significant association (odds ratio, 2.42; 95% confidence interval, 0.97-6.15; P = .03). The GG and GT* genotype and T* allele frequency were significantly different between patients and control subjects (P = .001). Haplotype TT* was higher in recipients than control subjects (odds ratio, 2.17; 95% confidence interval, 1.12-4.25; P = .01). Haplotype TG was higher in the control group (odds ratio, 0.62; 95% confidence interval, 0.40-0.96; P = .02). Our results suggest a relation between different endothelial nitric oxide synthase geno-types and risk of acute rejection episodes. However, further study is necessary to determine genetic susceptibility for transplant patients.

  8. Enhancement of vascular targeting by inhibitors of nitric oxide synthase

    International Nuclear Information System (INIS)

    Davis, Peter D.; Tozer, Gillian M.; Naylor, Matthew A.; Thomson, Peter; Lewis, Gemma; Hill, Sally A.

    2002-01-01

    Purpose: This study investigates the enhancement of the vascular targeting activity of the tubulin-binding agent combretastatin A4 phosphate (CA4P) by various inhibitors of nitric oxide synthases. Methods and Materials: The syngeneic tumors CaNT and SaS growing in CBA mice were used for this study. Reduction in perfused vascular volume was measured by injection of Hoechst 33342 24 h after drug administration. Necrosis (hematoxylin and eosin stain) was assessed also at 24 h after treatment. Combretastatin A4 phosphate was synthesized by a modification of the published procedure and the nitric oxide synthase inhibitors L-NNA, L-NMMA, L-NIO, L-NIL, S-MTC, S-EIT, AMP, AMT, and L-TC, obtained from commercial sources. Results: A statistically significant augmentation of the reduction in perfused vascular volume by CA4P in the CaNT tumor was observed with L-NNA, AMP, and AMT. An increase in CA4P-induced necrosis in the same tumor achieved significance with L-NNA, L-NMMA, L-NIL, and AMT. CA4P induced little necrosis in the SaS tumor, but combination with the inhibitors L-NNA, L-NMMA, L-NIO, S-EIT, and L-TC was effective. Conclusions: Augmentation of CA4P activity by nitric oxide synthase inhibitors of different structural classes supports a nitric oxide-related mechanism for this effect. L-NNA was the most effective inhibitor studied

  9. Premotor nitric oxide synthase immunoreactive pathway connecting lumbar segments with the ventral motor nucleus of the cervical enlargement in the dog.

    Science.gov (United States)

    Marsala, Jozef; Lukácová, Nadezda; Cízková, Dása; Lukác, Imrich; Kuchárová, Karolína; Marsala, Martin

    2004-03-01

    In this study we investigate the occurrence and origin of punctate nitric oxide synthase immunoreactivity in the neuropil of the ventral motor nucleus in C7-Th1 segments of the dog spine, which are supposed to be the terminal field of an ascending premotor propriospinal nitric oxide synthase-immunoreactive pathway. As the first step, nitric oxide synthase immunohistochemistry was used to distinguish nitric oxide synthase-immunoreactive staining of the ventral motor nucleus. Dense, punctate nitric oxide synthase immunoreactivity was found on control sections in the neuropil of the ventral motor nucleus. After hemisection at Th10-11, axotomy-induced retrograde changes consisting in a strong upregulation of nitric oxide synthase-containing neurons were found mostly unilaterally in lamina VIII, the medial part of lamina VII and in the pericentral region in all segments of the lumbosacral enlargement. Concurrently, a strong depletion of the punctate nitric oxide synthase immunopositivity in the neuropil of the ventral motor nucleus ipsilaterally with the hemisection was detected, thus revealing that an uncrossed ascending premotor propriospinal pathway containing a fairly high number of nitric oxide synthase-immunoreactive fibers terminates in the ventral motor nucleus. Application of the retrograde fluorescent tracer Fluorogold injected into the ventral motor nucleus and analysis of alternate sections processed for nitric oxide synthase immunocytochemistry revealed the presence of Fluorogold-labeled and nitric oxide synthase-immunoreactive axons in the ventrolateral funiculus and in the lateral and medial portions of the ventral column throughout the thoracic and upper lumbar segments. A noticeable number of Fluorogold-labeled and nitric oxide synthase-immunoreactive somata detected on consecutive sections were found in the lumbosacral enlargement, mainly in laminae VIII-IX, the medial part of lamina VII and in the pericentral region (lamina X), ipsilaterally with the

  10. Nitric Oxide Synthases Reveal a Role for Calmodulin in Controlling Electron Transfer

    Science.gov (United States)

    Abu-Soud, Husam M.; Stuehr, Dennis J.

    1993-11-01

    Nitric oxide (NO) is synthesized within the immune, vascular, and nervous systems, where it acts as a wide-ranging mediator of mammalian physiology. The NO synthases (EC 1.14.13.39) isolated from neurons or endothelium are calmodulin dependent. Calmodulin binds reversibly to neuronal NO synthase in response to elevated Ca2+, triggering its NO production by an unknown mechanism. Here we show that calmodulin binding allows NADPH-derived electrons to pass onto the heme group of neuronal NO synthase. Calmodulin-triggered electron transfer to heme was independent of substrate binding, caused rapid enzymatic oxidation of NADPH in the presence of O_2, and was required for NO synthesis. An NO synthase isolated from cytokine-induced macrophages that contains tightly bound calmodulin catalyzed spontaneous electron transfer to its heme, consistent with bound calmodulin also enabling electron transfer within this isoform. Together, these results provide a basis for how calmodulin may regulate NO synthesis. The ability of calmodulin to trigger electron transfer within an enzyme is unexpected and represents an additional function for calcium-binding proteins in biology.

  11. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase.

    Science.gov (United States)

    Michel, J B; Feron, O; Sase, K; Prabhakar, P; Michel, T

    1997-10-10

    Nitric oxide is synthesized in diverse mammalian tissues by a family of calmodulin-dependent nitric oxide synthases. The endothelial isoform of nitric oxide synthase (eNOS) is targeted to the specialized signal-transducing membrane domains termed plasmalemmal caveolae. Caveolin, the principal structural protein in caveolae, interacts with eNOS and leads to enzyme inhibition in a reversible process modulated by Ca2+-calmodulin (Michel, J. B., Feron, O., Sacks, D., and Michel, T. (1997) J. Biol. Chem. 272, 15583-15586). Caveolin also interacts with other structurally distinct signaling proteins via a specific region identified within the caveolin sequence (amino acids 82-101) that appears to subserve the role of a "scaffolding domain." We now report that the co-immunoprecipitation of eNOS with caveolin is completely and specifically blocked by an oligopeptide corresponding to the caveolin scaffolding domain. Peptides corresponding to this domain markedly inhibit nitric oxide synthase activity in endothelial membranes and interact directly with the enzyme to inhibit activity of purified recombinant eNOS expressed in Escherichia coli. The inhibition of purified eNOS by the caveolin scaffolding domain peptide is competitive and completely reversed by Ca2+-calmodulin. These studies establish that caveolin, via its scaffolding domain, directly forms an inhibitory complex with eNOS and suggest that caveolin inhibits eNOS by abrogating the enzyme's activation by calmodulin.

  12. Analysis of genetic variation of inducible nitric oxide synthase and ...

    African Journals Online (AJOL)

    The genetic diversity of 100 Malaysian native chickens was investigated using polymerase chain reaction-restriction fragment polymorphism (PCR-RFLP) for two candidate genes: inducible nitric oxide synthase (INOS) and natural resistance-associated macrophage protein 1 (NRAMP1). The two genes were selected ...

  13. Synthesis of N-(Methoxycarbonylthienylmethylthioureas and Evaluation of Their Interaction with Inducible and Neuronal Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Michael D. Threadgill

    2010-04-01

    Full Text Available Two isomeric N-(methoxycarbonylthienylmethylthioureas were synthesised by a sequence of radical bromination of methylthiophenecarboxylic esters, substitution with trifluoroacetamide anion, deprotection, formation of the corresponding isothiocyanates and addition of ammonia. The interaction of these new thiophene-based thioureas with inducible and neuronal nitric oxide synthase was evaluauted. These novel thienylmethylthioureas stimulated the activity of inducible Nitric Oxide Synthase (iNOS.

  14. Therapeutic strategies to address neuronal nitric oxide synthase deficiency and the loss of nitric oxide bioavailability in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Timpani, Cara A; Hayes, Alan; Rybalka, Emma

    2017-05-25

    Duchenne Muscular Dystrophy is a rare and fatal neuromuscular disease in which the absence of dystrophin from the muscle membrane induces a secondary loss of neuronal nitric oxide synthase and the muscles capacity for endogenous nitric oxide synthesis. Since nitric oxide is a potent regulator of skeletal muscle metabolism, mass, function and regeneration, the loss of nitric oxide bioavailability is likely a key contributor to the chronic pathological wasting evident in Duchenne Muscular Dystrophy. As such, various therapeutic interventions to re-establish either the neuronal nitric oxide synthase protein deficit or the consequential loss of nitric oxide synthesis and bioavailability have been investigated in both animal models of Duchenne Muscular Dystrophy and in human clinical trials. Notably, the efficacy of these interventions are varied and not always translatable from animal model to human patients, highlighting a complex interplay of factors which determine the downstream modulatory effects of nitric oxide. We review these studies herein.

  15. Nitric oxide synthase isoforms in spontaneous and salt hypertension

    Czech Academy of Sciences Publication Activity Database

    Hojná, Silvie; Kuneš, Jaroslav; Zicha, Josef

    2007-01-01

    Roč. 25, Suppl. 2 (2007), S 338-S 338 ISSN 0263-6352. [European Meeting on Hypertension /17./. 15.06.2007-19.06.2007, Milan] R&D Projects: GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : nitric oxide synthase isoforms * spontaneous and salt hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  16. Propolis attenuates oxidative injury in brain and lung of nitric oxide synthase inhibited rats

    Directory of Open Access Journals (Sweden)

    Zeliha Selamoglu-Talas

    2015-10-01

    Full Text Available Background: The blocking of nitric oxide synthase (NOS activity may reason vasoconstriction with formation of reactive oxygen species. Propolis has biological and pharmacological properties, such as antioxidant. The aim of this study was to examine the antioxidant effects of propolis which natural product on biochemical parameters in brain and lung tissues of acute nitric oxide synthase inhibited rats by Nω-nitro-L-arginine methyl ester (L-NAME.Methods: Rats have been received L-NAME (40 mg/kg, intraperitoneally, NOS inhibitor for 15 days to produce hypertension and propolis (200mg/kg, by gavage the lastest 5 of 15 days.Results: There  were  the  increase  (P<0.001  in  the  malondialdehyde  levels  in  the  L-NAME treatment groups when compared to control rats, but the decrease (P<0.001 in the catalase activities in both brain and lung tissues. There were statistically changes (P<0.001 in these parameters of L-NAME+propolis treated rats as compared with L-NAME-treated group.Conclusion: The application of L-NAME to the Wistar rats resulted in well developed oxidative stress. Also, propolis may influence endothelial NO production. Identification of such compounds and characterisation of their cellular actions may increase our knowledge of the regulation of endothelial NO production and could provide valuable clues for the prevention or treatment of hypertensive diseases and oxidative stress.

  17. Directional dependence of the threshold displacement energies in metal oxides

    Science.gov (United States)

    Cowen, Benjamin J.; El-Genk, Mohamed S.

    2017-12-01

    Molecular dynamics (MD) simulations are performed to investigate the directional dependence and the values of the threshold energies (TDEs) for the displacements of the oxygen and metal atoms and for producing stable Frenkel pairs in five metal oxides of Cr2O3, Al2O3, TiO2, SiO2, and MgO. The TDEs for the Frenkel pairs and atoms displacement are calculated in 66 crystallographic directions, on both the anion and cation sublattices. The performed simulations are for metal and oxygen PKA energies up to 350 and 400 eV, respectively. The calculated probability distributions for the atoms displacement and average number of Frenkel pairs produced in the different oxides are compared. The results revealed unique symmetrical patterns of the TDEs for the displacement of the atoms and the formation of stable Frenkel pairs, confirming the strong dependence on the direction and the crystalline structure of the oxides. Results also showed that the formation of stable Frenkel pairs is associated with the displacements of the PKAs and/or of the SKAs. The probabilities of the TDEs for the displacement of the oxygen and metal PKAs are consistently lower than those of the atoms in the crystal. In SiO2, TDEs for the displacement of oxygen and metal atoms and those for the formation of stable Frenkel pairs are the lowest, while those in TiO2 are among the highest. The results for Cr2O3 and Al2O3, which have the same crystal structure, are similar. The calculated TDEs for MgO, Al2O3 and TiO2 are generally in good agreement with the experimental values and the probability distributions of the TDEs for the PKAs in TiO2 are in good agreement with reported MD simulation results.

  18. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.

    Science.gov (United States)

    Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N

    2012-08-01

    Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.

  19. of endothelial nitric oxide synthase gene and serum level of vascular ...

    African Journals Online (AJOL)

    uwerhiavwe

    Davignon and Ganz, 2004). NO is synthe- sized via a reaction that includes the conversion of L- arginine to L-citruline catalyzed by endothelial nitric oxide synthase (eNOS), which is one of the three isoforms of the enzyme (Mayer and Hemmens, 1997) ...

  20. Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.

    Science.gov (United States)

    Sorokin, Andrey

    2016-01-01

    The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.

  1. Constitutive nitric oxide synthase (cNOS activity in Langerhans islets from streptozotocin diabetic rats

    Directory of Open Access Journals (Sweden)

    Fonovich de Schroeder T.M.

    1998-01-01

    Full Text Available Nitric oxide synthase activity was measured in Langerhans islets isolated from control and streptozotocin diabetic rats. The activity of the enzyme was linear up to 150 µg of protein from control rats and was optimal at 0.1 µM calcium, when it was measured after 45 min of incubation at 37oC in the presence of 200 µM arginine. Specific activity of the enzyme was 25 x 10-4 nmol [3H]citrulline 45 min-1 mg protein-1. Streptozotocin diabetic rats exhibited less enzyme activity both in total pancreas homogenate and in isolated Langerhans islets when compared to control animals. Nitric oxide synthase activity measured in control and diabetic rats 15 days after the last streptozotocin injection in the second group of animals corresponded only to a constitutive enzyme since it was not inhibited by aminoguanidine in any of the mentioned groups. Hyperglycemia in diabetic rats may be the consequence of impaired insulin release caused at least in part by reduced positive modulation mediated by constitutive nitric oxide synthase activity, which was dramatically reduced in islets severely damaged after streptozotocin treatment.

  2. Lack of endothelial nitric oxide synthase aggravates murine accelerated anti-glomerular basement membrane glomerulonephritis

    NARCIS (Netherlands)

    Heeringa, P; van Goor, H; Itoh-Lindstrom, Y; Maeda, N; Falk, RJ; Assmann, KJM; Kallenberg, CGM; Jennette, JC

    Nitric oxide (NO) radicals generated by endothelial nitric oxide synthase (eNOS) are involved in the regulation of vascular tone. In addition, NO radicals derived from eNOS inhibit platelet aggregation and leukocyte adhesion to the endothelium and, thus, may have anti-inflammatory effects. To study

  3. Nitric oxide synthase gene G298 allele

    International Nuclear Information System (INIS)

    Nagib El-Kilany, Galal E.; Nayel, Ehab; Hazzaa, Sahar

    2004-01-01

    Background: Nitric oxide (NO) has an important effect on blood pressure, arterial wall, and the basal release of endothelial NO in hypertension (HPN) may be reduced. Until now, there is no solid data revealing the potential role of the polymorphism of the nitric oxide synthase gene (NOS) in patients with HPN and microvascular angina. Aim: The aim of the present study is to investigate the gene of endothelial nitric oxide synthase (eNOS), as the polymorphism of this gene may be a putative candidate for HPN and initiate the process of atherosclerosis. Methods: Sixty participants were recruited for this study; 50 were hypertensive patients complaining of chest pain [30 of them have electrocardiogram (EKG) changes of ischemia], 20 had isolated HPN, and 10 healthy volunteers served as control. All patients underwent stress myocardial perfusion imaging (MPI) and coronary angiography. Genotyping of eNOS for all patients and controls was performed. The linkages between HPN, microvascular angina and eNOS gene polymorphism were investigated. Results: MPI and coronary angiography revealed that 15 patients had chest pain with true ischemia and reversible myocardial perfusion defects (multiple and mild) but normal epicardial coronary arteries (microvascular angina), while 15 patients had significant coronary artery disease (CAD), and 20 hypertensive patients showed normal perfusion scan and coronary angiography. The prevalence of the NOS G 298 allele was higher in the hypertensive group with microvascular angina (documented by MPI) than it was among the control participants (P<.005). The eNOS allele was significantly higher in the hypertensive group than in the control participants, but there was no significant difference in homozygote mutants among hypertensive participants, x-syndrome and patients with CAD. Conclusion: eNOS gene polymorphism is proved to be an important etiology in microvascular angina (x-syndrome) among hypertensive patients. In addition, the eNOS mutant

  4. Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase

    International Nuclear Information System (INIS)

    Yang, Jin Won; Yoon, Se Young; Oh, Soo Jin; Kim, Sang Kyum; Kang, Keon Wook

    2006-01-01

    Algal fucoidan is a marine sulfated polysaccharide with a wide variety of biological activities including anti-thrombotic and anti-inflammatory effects. This study evaluated the effect of fucoidan on the expression of inducible nitric oxide synthase (iNOS) in a macrophage cell line, RAW264.7. Low concentration range of fucoidan (10 μg/ml) increased the basal expression level of iNOS in quiescent macrophages. However, we found for the first time that fucoidan inhibited the release of nitric oxide (NO) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). Western blot analysis revealed that fucoidan suppressed the LPS-induced expression of the inducible nitric oxide synthase (iNOS) gene. Moreover, the activation of both nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) are key steps in the transcriptional activation of the iNOS gene. Here, it was revealed that fucoidan selectively suppressed AP-1 activation, and that the activation of AP-1 appears to be essential for the induction of iNOS in activated macrophages. This inhibitory effect on AP-1 activation by fucoidan might be associated with its NO blocking and anti-inflammatory effects

  5. Inducible nitric oxide synthase catalyzes ethanol oxidation to α-hydroxyethyl radical and acetaldehyde

    International Nuclear Information System (INIS)

    Porasuphatana, Supatra; Weaver, John; Rosen, Gerald M.

    2006-01-01

    The physiologic function of nitric oxide synthases, independent of the isozyme, is well established, metabolizing L-arginine to L-citrulline and nitric oxide (NO). This enzyme can also transfer electrons to O 2 , affording superoxide (O 2 · - ) and hydrogen peroxide (H 2 O 2 ). We have demonstrated that NOS1, in the presence of L-arginine, can biotransform ethanol (EtOH) to α-hydroxyethyl radical (CH 3 ·CHOH). We now report that a competent NOS2 with L-arginine can, like NOS1, oxidize EtOH to CH 3 ·CHOH. Once this free radical is formed, it is metabolized to acetaldehyde as shown by LC-ESI-MS/MS and HPLC analysis. These observations suggest that NOS2 can behave similarly to cytochrome P-450 in the catalysis of acetaldehyde formation from ethanol via the generation of α-hydroxyethyl radical when L-arginine is present

  6. Hyperglycemia adversely modulates endothelial nitric oxide synthase during anesthetic preconditioning through tetrahydrobiopterin- and heat shock protein 90-mediated mechanisms.

    Science.gov (United States)

    Amour, Julien; Brzezinska, Anna K; Jager, Zachary; Sullivan, Corbin; Weihrauch, Dorothee; Du, Jianhai; Vladic, Nikolina; Shi, Yang; Warltier, David C; Pratt, Phillip F; Kersten, Judy R

    2010-03-01

    Endothelial nitric oxide synthase activity is regulated by (6R-)5,6,7,8-tetrahydrobiopterin (BH4) and heat shock protein 90. The authors tested the hypothesis that hyperglycemia abolishes anesthetic preconditioning (APC) through BH4- and heat shock protein 90-dependent pathways. Myocardial infarct size was measured in rabbits in the absence or presence of APC (30 min of isoflurane), with or without hyperglycemia, and in the presence or absence of the BH4 precursor sepiapterin. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells cultured in normal (5.5 mm) or high (20 mm) glucose conditions, with or without sepiapterin (10 or 100 microm). APC decreased myocardial infarct size compared with control experiments (26 +/- 6% vs. 46 +/- 3%, respectively; P < 0.05), and this action was blocked by hyperglycemia (43 +/- 4%). Sepiapterin alone had no effect on infarct size (46 +/- 3%) but restored APC during hyperglycemia (21 +/- 3%). The beneficial actions of sepiapterin to restore APC were blocked by the nitric oxide synthase inhibitor N (G)-nitro-L-arginine methyl ester (47 +/- 2%) and the BH4 synthesis inhibitor N-acetylserotonin (46 +/- 3%). Isoflurane increased nitric oxide production to 177 +/- 13% of baseline, and this action was attenuated by high glucose concentrations (125 +/- 6%). Isoflurane increased, whereas high glucose attenuated intracellular BH4/7,8-dihydrobiopterin (BH2) (high performance liquid chromatography), heat shock protein 90-endothelial nitric oxide synthase colocalization (confocal microscopy) and endothelial nitric oxide synthase activation (immunoblotting). Sepiapterin increased BH4/BH2 and dose-dependently restored nitric oxide production during hyperglycemic conditions (149 +/- 12% and 175 +/- 9%; 10 and 100 microm, respectively). The results indicate that tetrahydrobiopterin and heat shock protein 90-regulated endothelial nitric oxide synthase activity play a central

  7. Role of catecholamines and nitric oxide on pigment displacement of the chromatophores of freshwater snakehead teleost fish, Channa punctatus.

    Science.gov (United States)

    Biswas, Saikat P; Jadhao, Arun G; Palande, Nikhil V

    2014-04-01

    We are reporting for the first time that the catecholamines (adrenaline and noradrenaline) inhibit the effect of nitric oxide (NO) on melanosome dispersion in freshly isolated scales of the freshwater snakehead fish, Channa punctatus. We studied the effect of NO and catecholamines on the pigment displacement by observing the changes in the melanophore index. The scales when treated with solution containing NO donor sodium nitroprusside (SNP) showed dispersion of melanosomes, whereas NO synthase blocker N-omega-Nitro-L-arginine suppresses this action of SNP. Treatment with adrenaline and noradrenaline on the isolated scales caused aggregation of melanosomes. Scales treated with solution containing catecholamines and SNP resulted in aggregation of melanosomes suggesting that catecholamines mask the effect of SNP. These results suggest that the catecholamines are inhibiting the effect of NO and causing the aggregation of the melanosomes may be via surface receptors.

  8. Internal Displacement Reactions in Multicomponent Oxides: Part I. Line Compounds with Narrow Homogeneity Range

    OpenAIRE

    Reddy, SNS; Leonard, DN; Wiggins, LB; Jacob, KT

    2005-01-01

    As a model of an internal displacement reaction involving a ternary oxide line compound, the following reaction was studied at 1273 K as a function of time, t: $Fe+NiTiO_3 = Ni + FeTiO_3$ Both polycrystalline and single-crystal materials were used as the starting $NiTiO_3$ oxide. During the reaction, the Ni in the oxide compound is displaced by Fe and it precipitates as a \\gamma -(Ni-Fe) alloy. The reaction preserves the starting ilmenite structure. The product oxide has a consta...

  9. Nitric oxide synthase and oxidative-nitrosative stress play a key role in placental infection by Trypanosoma cruzi.

    Science.gov (United States)

    Triquell, María Fernanda; Díaz-Luján, Cintia; Romanini, María Cristina; Ramirez, Juan Carlos; Paglini-Oliva, Patricia; Schijman, Alejandro Gabriel; Fretes, Ricardo Emilio

    2018-03-25

    The innate immune response of the placenta may participate in the congenital transmission of Chagas disease through releasing reactive oxygen and nitrogen intermediates. Placental explants were cultured with 1 × 10 6 and 1 × 10 5 trypomastigotes of Tulahuen and Lucky strains and controls without parasites, and with the addition of nitric oxide synthase inhibitor Nω-Nitro-l-arginine methyl ester (l-NAME) and N-acetyl cysteine (NAC) as the reactive oxygen species (ROS) scavenger. Detachment of the syncytiotrophoblast (STB) was examined by histological analysis, and the nitric oxide synthase, endothelial (eNOS), and nitrotyrosine expressions were analyzed by immunohistochemistry, as well as the human chorionic gonadotrophin (hCG) levels in the culture supernatant through ELISA assays. Parasite load with qPCR using Taqman primers was quantified. The higher number of T. cruzi (10 6 ) increased placental infection, eNOS expression, nitrosative stress, and STB detachment, with the placental barrier being injured by oxidative stress. The higher number of parasites caused deleterious consequences to the placental barrier, and the inhibitors (l-NAME and NAC) prevented the damage caused by trypomastigotes in placental villi but not that of the infection. Moreover, trophoblast eNOS played a key role in placental infection with the highest inoculum of Lucky, demonstrating the importance of the enzyme and nitrosative-oxidative stress in Chagas congenital transmission. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin

    NARCIS (Netherlands)

    Lechner, Matthias; Lirk, Philipp; Rieder, Josef

    2005-01-01

    Inducible nitric oxide synthase (iNOS) is one of three key enzymes generating nitric oxide (NO) from the amino acid l-arginine. iNOS-derived NO plays an important role in numerous physiological (e.g. blood pressure regulation, wound repair and host defence mechanisms) and pathophysiological

  11. Neuronal nitric oxide synthase-deficient mice have impaired Renin release but normal blood pressure

    DEFF Research Database (Denmark)

    Sällström, Johan; Carlström, Mattias; Jensen, Boye L

    2008-01-01

    BackgroundNitric oxide deficiency is involved in the development of hypertension, but the mechanisms are currently unclear. This study was conducted to further elucidate the role of neuronal nitric oxide synthase (nNOS) in blood pressure regulation and renin release in relation to different sodiu......-116; doi:10.1038/ajh.2007.16American Journal of Hypertension (2008) 21 111-116; doi:10.1038/ajh.2007.16....

  12. Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+,K+-ATPase

    DEFF Research Database (Denmark)

    Ebbesson, Lars O E; Tipsmark, Christian K; Holmqvist, Bo

    2005-01-01

    We investigated the relationship between nitric oxide (NO) and Na(+),K(+)-ATPase (NKA) in the gill of anadromous Atlantic salmon. Cells containing NO-producing enzymes were revealed by means of nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphor...

  13. Calcium Co-regulates Oxidative Metabolism and ATP Synthase-dependent Respiration in Pancreatic Beta Cells

    Science.gov (United States)

    De Marchi, Umberto; Thevenet, Jonathan; Hermant, Aurelie; Dioum, Elhadji; Wiederkehr, Andreas

    2014-01-01

    Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)+ ratio. PMID:24554722

  14. The Regulation of Nitric Oxide Synthase Isoform Expression in Mouse and Human Fallopian Tubes: Potential Insights for Ectopic Pregnancy

    Directory of Open Access Journals (Sweden)

    Junting Hu

    2014-12-01

    Full Text Available Nitric oxide (NO is highly unstable and has a half-life of seconds in buffer solutions. It is synthesized by NO-synthase (NOS, which has been found to exist in the following three isoforms: neuro nitric oxide synthase (nNOS, inducible nitric oxide synthase (iNOS, and endothelial nitric oxide synthase (eNOS. NOS activity is localized in the reproductive tracts of many species, although direct evidence for NOS isoforms in the Fallopian tubes of mice is still lacking. In the present study, we investigated the expression and regulation of NOS isoforms in the mouse and human Fallopian tubes during the estrous and menstrual cycles, respectively. We also measured isoform expression in humans with ectopic pregnancy and in mice treated with lipopolysaccharide (LPS. Our results confirmed the presence of different NOS isoforms in the mouse and human Fallopian tubes during different stages of the estrous and menstrual cycles and showed that iNOS expression increased in the Fallopian tubes of women with ectopic pregnancy and in LPS-treated mice. Elevated iNOS activity might influence ovulation, cilia beats, contractility, and embryo transportation in such a manner as to increase the risk of ectopic pregnancy. This study has provided morphological and molecular evidence that NOS isoforms are present and active in the human and mouse Fallopian tubes and suggests that iNOS might play an important role in both the reproductive cycle and infection-induced ectopic pregnancies.

  15. Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases.

    Science.gov (United States)

    Zhang, Xiang-Feng; Liu, Shuang; Zhou, Yu-Jie; Zhu, Guang-Fa; Foda, Hussein D

    2010-04-05

    Exposure of adult mice to more than 95% O(2) produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS. One hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages > 95% oxygen or room air for 24- 72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues. OPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85 +/- 0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31 +/- 0.92 in the WT group (P < 0.05). iNOS mRNA (48 hours: 1.04 +/- 0.08 vs. 0.63 +/- 0.09, P < 0.01; 72 hours: 0.89 +/- 0.08 vs. 0.72 +/- 0.09, P < 0.05) and eNOS mRNA (48 hours: 0.62 +/- 0.08 vs. 0.43 +/- 0.09, P < 0.05; 72 hours: 0.67 +/- 0.08 vs. 0.45 +/- 0.09, P < 0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54 +/- 3.18 vs. 12.52 +/- 2.46, P < 0.05) and eNOS (19.83 +/- 5.64 vs. 9.45 +/- 3.82, P < 0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia. OPN can protect against

  16. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal......NOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age...

  17. Pu-erh Tea Reduces Nitric Oxide Levels in Rats by Inhibiting Inducible Nitric Oxide Synthase Expression through Toll-Like Receptor 4

    Science.gov (United States)

    Xu, Yang; Wang, Guan; Li, Chunjie; Zhang, Min; Zhao, Hang; Sheng, Jun; Shi, Wei

    2012-01-01

    Pu-erh tea undergoes a unique fermentation process and contains theabrownins, polysaccharides and caffeine; although it is unclear about which component is associated with the down regulation of nitric oxide levels or how this process is mediated. To address this question we examined the effects of pu-erh tea on nitric oxide synthase (NOS) genes. Cohorts of rats were separately given four-week treatments of water as control, pu-erh tea, or the tea components: theabrownins, caffeine or polysaccharides. Five experimental groups were injected with lipopolysaccharides (LPS) to induce nitric oxide (NO) production, while the corresponding five control groups were injected with saline as a negative control. The serum and liver NO concentrations were examined and the NOS expression of both mRNA and protein was measured in liver. The results showed that the rats which were fed pu-erh tea or polysaccharides had lower levels of NO which corresponded with the down-regulation of inducible nitric oxide synthase (iNOS) expression. We further demonstrate that this effect is mediated through reduction of Toll-like receptor 4 (TLR4) signaling. Thus we find that the polysaccharide components in pu-erh tea reduce NO levels in an animal model by inhibiting the iNOS expression via signaling through TLR4. PMID:22837686

  18. Role of Polymorphisms of Inducible Nitric Oxide Synthase and Endothelial Nitric Oxide Synthase in Idiopathic Environmental Intolerances

    Directory of Open Access Journals (Sweden)

    Chiara De Luca

    2015-01-01

    Full Text Available Oxidative stress and inflammation play a pathogenetic role in idiopathic environmental intolerances (IEI, namely, multiple chemical sensitivity (MCS, fibromyalgia (FM, and chronic fatigue syndrome (CFS. Given the reported association of nitric oxide synthase (NOS gene polymorphisms with inflammatory disorders, we aimed to investigate the distribution of NOS2A −2.5 kb (CCTTTn as well as Ser608Leu and NOS3 −786T>C variants and their correlation with nitrite/nitrate levels, in a study cohort including 170 MCS, 108 suspected MCS (SMCS, 89 FM/CFS, and 196 healthy subjects. Patients and controls had similar distributions of NOS2A Ser608Leu and NOS3 −786T>C polymorphisms. Interestingly, the NOS3 −786TT genotype was associated with increased nitrite/nitrate levels only in IEI patients. We also found that the NOS2A −2.5 kb (CCTTT11 allele represents a genetic determinant for FM/CFS, and the (CCTTT16 allele discriminates MCS from SMCS patients. Instead, the (CCTTT8 allele reduces by three-, six-, and tenfold, respectively, the risk for MCS, SMCS, and FM/CFS. Moreover, a short number of (CCTTT repeats is associated with higher concentrations of nitrites/nitrates. Here, we first demonstrate that NOS3 −786T>C variant affects nitrite/nitrate levels in IEI patients and that screening for NOS2A −2.5 kb (CCTTTn polymorphism may be useful for differential diagnosis of various IEI.

  19. Thalidomide ameliorates portal hypertension via nitric oxide synthase independent reduced systolic blood pressure.

    Science.gov (United States)

    Theodorakis, Nicholas G; Wang, Yining N; Korshunov, Vyacheslav A; Maluccio, Mary A; Skill, Nicholas J

    2015-04-14

    Portal hypertension is a common complication of liver cirrhosis and significantly increases mortality and morbidity. Previous reports have suggested that the compound thalidomide attenuates portal hypertension (PHT). However, the mechanism for this action is not fully elucidated. One hypothesis is that thalidomide destabilizes tumor necrosis factor α (TNFα) mRNA and therefore diminishes TNFα induction of nitric oxide synthase (NOS) and the production of nitric oxide (NO). To examine this hypothesis, we utilized the murine partial portal vein ligation (PVL) PHT model in combination with endothelial or inducible NOS isoform gene knockout mice. Wild type, inducible nitric oxide synthase (iNOS)(-/-) and endothelial nitric oxide synthase (eNOS)(-/-) mice received either PVL or sham surgery and were given either thalidomide or vehicle. Serum nitrate (total nitrate, NOx) was measured daily for 7 d as a surrogate of NO synthesis. Serum TNFα level was quantified by enzyme-linked immunosorbent assay. TNFα mRNA was quantified in liver and aorta tissue by reverse transcription-polymerase chain reaction. PHT was determined by recording splenic pulp pressure (SPP) and abdominal aortic flow after 0-7 d. Response to thalidomide was determined by measurement of SPP and mean arterial pressure (MAP). SPP, abdominal aortic flow (Qao) and plasma NOx were increased in wild type and iNOS(-/-) PVL mice when compared to sham operated control mice. In contrast, SPP, Qao and plasma NOx were not increased in eNOS(-/-) PVL mice when compared to sham controls. Serum TNFα level in both sham and PVL mice was below the detection limit of the commercial ELISA used. Therefore, the effect of thalidomide on serum TNFα levels was undetermined in wild type, eNOS(-/-) or iNOS(-/-) mice. Thalidomide acutely increased plasma NOx in wild type and eNOS(-/-) mice but not iNOS(-/-) mice. Moreover, thalidomide temporarily (0-90 min) decreased mean arterial pressure, SPP and Qao in wild type, e

  20. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism

    Science.gov (United States)

    The adaptive mechanisms that protect brain metabolism during and after hypoxia, for instance, during hypoxic preconditioning, are coordinated in part by nitric oxide (NO). We tested the hypothesis that acute transient hypoxia stimulates NO synthase (NOS)-activated mechanisms of m...

  1. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Bhatt, Deepak Kumar; Ploug, Kenneth Beri

    2014-01-01

    BACKGROUND AND AIM: Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene-rela...

  2. Chronic nitric oxide synthase inhibition exacerbates renal dysfunction in cirrhotic rats

    DEFF Research Database (Denmark)

    Graebe, M.; Brond, L.; Christensen, S.

    2004-01-01

    The present study investigated sodium balance and renal tubular function in cirrhotic rats with chronic blockade of the nitric oxide (NO) system. Rats were treated with the nonselective NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME) starting on the day of common bile duct ligation...... (CBL). Three weeks of daily sodium balance studies showed that CBL rats developed sodium retention compared with sham-operated rats and that l-NAME treatment dose dependently deteriorated cumulative sodium balance by reducing urinary sodium excretion. Five weeks after CBL, renal clearance studies were...

  3. The effect of a selective neuronal nitric oxide synthase inhibitor 3-bromo 7-nitroindazole on spatial learning and memory in rats.

    Science.gov (United States)

    Gocmez, Semil Selcen; Yazir, Yusufhan; Sahin, Deniz; Karadenizli, Sabriye; Utkan, Tijen

    2015-04-01

    Since the discovery of nitric oxide (NO) as a neuronal messenger, its way to modulate learning and memory functions is subject of intense research. NO is an intercellular messenger in the central nervous system and is formed on demand through the conversion of L-arginine to L-citrulline via the enzyme nitric oxide synthase (NOS). Neuronal form of nitric oxide synthase may play an important role in a wide range of physiological and pathological conditions. Therefore the aim of this study was to investigate the effects of chronic 3-bromo 7-nitroindazole (3-Br 7-NI), specific neuronal nitric oxide synthase (nNOS) inhibitor, administration on spatial learning and memory performance in rats using the Morris water maze (MWM) paradigm. Male rats received either 3-Br 7-NI (20mg/kg/day) or saline via intraperitoneal injection for 5days. Daily administration of the specific neuronal nitric oxide synthase (nNOS) inhibitor, 3-Br 7-NI impaired the acquisition of the MWM task. 3-Br 7-NI also impaired the probe trial. The MWM training was associated with a significant increase in the brain-derived neurotrophic factor (BDNF) mRNA expression in the hippocampus. BDNF mRNA expression in the hippocampus did not change after 3-Br 7-NI treatment. L-arginine significantly reversed behavioural parameters, and the effect of 3-Br 7-NI was found to be NO-dependent. There were no differences in locomotor activity and blood pressure in 3-Br 7-NI treated rats. Our results may suggest that nNOS plays a key role in spatial memory formation in rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    Science.gov (United States)

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  5. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    OpenAIRE

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study,...

  6. Vasoactive systems in L-NAME hypertension: the role of inducible nitric oxide synthase

    Czech Academy of Sciences Publication Activity Database

    Pecháňová, Olga; Dobešová, Zdenka; Čejka, Jakub; Kuneš, Jaroslav; Zicha, Josef

    2004-01-01

    Roč. 22, č. 1 (2004), s. 167-173 ISSN 0263-6352 R&D Projects: GA ČR GA305/03/0769; GA MŠk LN00A069 Grant - others:VEGA(SK) 2/3185/23; SAV(SK) APVT51-017902 Institutional research plan: CEZ:AV0Z5011922 Keywords : nitric oxide synthase * L-NAME hypertension * aminoguanidine Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.871, year: 2004

  7. Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine.

    OpenAIRE

    Galea, E; Regunathan, S; Eliopoulos, V; Feinstein, D L; Reis, D J

    1996-01-01

    Agmatine, decarboxylated arginine, is a metabolic product of mammalian cells. Considering the close structural similarity between L-arginine and agmatine, we investigated the interaction of agmatine and nitric oxide synthases (NOSs), which use L-arginine to generate nitric oxide (NO) and citrulline. Brain, macrophages and endothelial cells were respectively used as sources for NOS isoforms I, II and III. Enzyme activity was measured by the production of nitrites or L-citrulline. Agmatine was ...

  8. Neuronal Nitric Oxide Synthase Induction in the Antitumorigenic and Neurotoxic Effects of 2-Methoxyestradiol

    Directory of Open Access Journals (Sweden)

    Magdalena Gorska

    2014-08-01

    Full Text Available Objective: 2-Methoxyestradiol, one of the natural 17β-estradiol derivatives, is a novel, potent anticancer agent currently being evaluated in advanced phases of clinical trials. The main goal of the study was to investigate the anticancer activity of 2-methoxy-estradiol towards osteosarcoma cells and its possible neurodegenerative effects. We used an experimental model of neurotoxicity and anticancer activity of the physiological agent, 2-methoxyestradiol. Thus, we used highly metastatic osteosarcoma 143B and mouse immortalized hippocampal HT22 cell lines. The cells were treated with pharmacological (1 μM, 10 μM concentrations of 2-methoxyestradiol. Experimental: Neuronal nitric oxide synthase and 3-nitrotyrosine protein levels were determined by western blotting. Cell viability and induction of cell death were measured by MTT and PI/Annexin V staining and a DNA fragmentation ELISA kit, respectively. Intracellular levels of nitric oxide were determined by flow cytometry. Results: Here we demonstrated that the signaling pathways of neurodegenerative diseases and cancer may overlap. We presented evidence that 2-methoxyestradiol, in contrast to 17β-estradiol, specifically affects neuronal nitric oxide synthase and augments 3-nitrotyrosine level leading to osteosarcoma and immortalized hippocampal cell death. Conclusions: We report the dual facets of 2-methoxyestradiol, that causes cancer cell death, but on the other hand may play a key role as a neurotoxin.

  9. Nitric oxide synthase expression and apoptotic cell death in brains of AIDS and AIDS dementia patients

    NARCIS (Netherlands)

    Vincent, V. A.; de Groot, C. J.; Lucassen, P. J.; Portegies, P.; Troost, D.; Tilders, F. J.; van Dam, A. M.

    1999-01-01

    To determine the occurrence and cellular localization of inducible nitric oxide synthase (iNOS), NOS activity and its association with cell death in brains of AIDS and AIDS dementia complex (ADC) patients. Post-mortem cerebral cortex tissue of eight AIDS patients, eight ADC patients and eight

  10. Effects of various nitric oxide synthase inhibitors on AlCl3-induced neuronal injury in rats

    Directory of Open Access Journals (Sweden)

    IVANA STEVANOVIĆ

    2009-05-01

    Full Text Available The present study was aimed at determining the effectiveness of nitric oxide synthase (NOS inhibitors: N-nitro-L-arginine methyl ester, 7-nitroindazole and aminoguanidine in modulating the toxicity of AlCl3 on superoxide production and the malondialdehyde concentration of Wistar rats. The animals were sacrificed 10 min and 3 days after the treatment and the forebrain cortex was removed. The results show that AlCl3 exposure promotes oxidative stress in different neural areas. The biochemical changes observed in the neuronal tissues show that aluminum acts as pro-oxidant, while NOS inhibitors exert an anti-oxidant action in AlCl3-treated animals.

  11. Pathogenic cycle between the endogenous nitric oxide synthase inhibitor asymmetrical dimethylarginine and the leukocyte-derived hemoprotein myeloperoxidase

    Czech Academy of Sciences Publication Activity Database

    von Leitner, E.C.; Klinke, A.; Atzler, D.; Slocum, J.L.; Lund, N.; Kielstein, J.T.; Maas, R.; Schmidt-Haupt, R.; Pekarová, Michaela; Hellwinkel, O.; Tsikas, D.; D'Alecy, L.G.; Lau, D.; Willems, S.; Kubala, Lukáš; Ehmke, H.; Meinertz, T.; Blankenberg, S.; Schwedhelm, E.; Gadegbeku, C.A.; Boger, R.H.; Baldus, S.; Sydow, K.

    2011-01-01

    Roč. 124, č. 4 (2011), s. 2735-U342 ISSN 0009-7322 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : arteriosclerosis * leukocytes * nitric oxide synthase Subject RIV: BO - Biophysics Impact factor: 14.739, year: 2011

  12. Macrophages in lung tissue from patients with pulmonary emphysema express both inducible and endothelial nitric oxide synthase

    NARCIS (Netherlands)

    van Straaten, JFM; Postma, DS; Coers, W; Noordhoek, JA; Kauffman, HF; Timens, W

    To provide information concerning a possible biologic role of nitric oxide (NO) in smoking-related emphysema, we performed immunohistochemical studies in lung tissue from control subjects and patients with mild and severe emphysema We studied the presence of inducible and endothelial NO synthases

  13. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-γ-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Zeidler, Patti C.; Millecchia, Lyndell M.; Castranova, Vincent

    2004-01-01

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-γ were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-γ (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-γ were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-α, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-α, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-γ is anti-inflammatory, and this becomes evident over time

  14. Investigation on oxidative stress of nitric oxide synthase interacting protein from Clonorchis sinensis.

    Science.gov (United States)

    Bian, Meng; Xu, Qingxia; Xu, Yanquan; Li, Shan; Wang, Xiaoyun; Sheng, Jiahe; Wu, Zhongdao; Huang, Yan; Yu, Xinbing

    2016-01-01

    Numerous evidences indicate that excretory-secretory products (ESPs) from liver flukes trigger the generation of free radicals that are associated with the initial pathophysiological responses in host cells. In this study, we first constructed a Clonorchis sinensis (C. sinensis, Cs)-infected BALB/c mouse model and examined relative results respectively at 3, 5, 7, and 9 weeks postinfection (p.i.). Quantitative reverse transcription (RT)-PCR indicated that the transcriptional level of both endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) gradually decreased with lastingness of infection, while the transcriptional level of inducible NOS (iNOS) significantly increased. The level of malondialdehyde (MDA) in sera of infected mouse significantly increased versus the healthy control group. These results showed that the liver of C. sinensis-infected mouse was in a state with elevated levels of oxidation stress. Previously, C. sinensis NOS interacting protein coding gene (named CsNOSIP) has been isolated and recombinant CsNOSIP (rCsNOSIP) has been expressed in Escherichia coli, which has been confirmed to be a component present in CsESPs and confirmed to play important roles in immune regulation of the host. In the present paper, we investigated the effects of rCsNOSIP on the lipopolysaccharide (LPS)-induced activated RAW264.7, a murine macrophage cell line. We found that endotoxin-free rCsNOSIP significantly promoted the levels of nitric oxide (NO) and reactive oxygen species (ROS) after pretreated with rCsNOSIP, while the level of SOD decreased. Furthermore, rCsNOSIP could also increase the level of lipid peroxidation MDA. Taken together, these results suggested that CsNOSIP was a key molecule which was involved in the production of nitric oxide (NO) and its reactive intermediates, and played an important role in oxidative stress during C. sinensis infection.

  15. Placental Vesicles Carry Active Endothelial Nitric Oxide Synthase and Their Activity is Reduced in Preeclampsia.

    Science.gov (United States)

    Motta-Mejia, Carolina; Kandzija, Neva; Zhang, Wei; Mhlomi, Vuyane; Cerdeira, Ana Sofia; Burdujan, Alexandra; Tannetta, Dionne; Dragovic, Rebecca; Sargent, Ian L; Redman, Christopher W; Kishore, Uday; Vatish, Manu

    2017-08-01

    Preeclampsia, a multisystem hypertensive disorder of pregnancy, is associated with increased systemic vascular resistance. Placentae from patients with preeclampsia have reduced levels of endothelial nitric oxide synthase (eNOS) and, thus, less nitric oxide (NO). Syncytiotrophoblast extracellular vesicles (STBEV), comprising microvesicles (STBMV) and exosomes, carry signals from the syncytiotrophoblast to the mother. We hypothesized that STBEV-bound eNOS (STBEV-eNOS), capable of producing NO, are released into the maternal circulation. Dual-lobe ex vivo placental perfusion and differential centrifugation was used to isolate STBEV from preeclampsia (n=8) and normal pregnancies (NP; n=11). Plasma samples of gestational age-matched preeclampsia and NP (n=6) were used to isolate circulating STBMV. STBEV expressed placental alkaline phosphatase, confirming placental origin. STBEV coexpressed eNOS, but not inducible nitric oxide synthase, confirmed using Western blot, flow cytometry, and immunodepletion. STBEV-eNOS produced NO, which was significantly inhibited by N   G -nitro-l-arginine methyl ester (eNOS inhibitor; P preeclampsia-perfused placentae had lower levels of STBEV-eNOS (STBMV; P preeclampsia women had lower STBEV-eNOS expression compared with that from NP women ( P preeclampsia placentae, as well as in plasma. The lower STBEV-eNOS NO production seen in preeclampsia may contribute to the decreased NO bioavailability in this disease. © 2017 The Authors.

  16. Endothelial Nitric Oxide Synthase Gene Polymorphism (G894T and Diabetes Mellitus (Type II among South Indians

    Directory of Open Access Journals (Sweden)

    T. Angeline

    2011-01-01

    Full Text Available The objective of the study is to find out whether the endothelial nitric oxide synthase (eNOS G894T single-nucleotide polymorphism is associated with type 2 diabetes mellitus in South Indian (Tamil population. A total number of 260 subjects comprising 100 type 2 diabetic mellitus patients and 160 healthy individuals with no documented history of diabetes were included for the study. DNA was isolated, and eNOS G894T genotyping was performed using the polymerase chain reaction followed by restriction enzyme analysis using Ban II. The genotype distribution in patients and controls were compatible with the Hardy-Weinberg expectations (P>0.05. Odds ratio indicates that the occurrence of mutant genotype (GT/TT was 7.2 times (95% CI = 4.09–12.71 more frequent in the cases than in controls. Thus, the present study demonstrates that there is an association of endothelial nitric oxide synthase gene (G894T polymorphism with diabetes mellitus among South Indians.

  17. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase

    Science.gov (United States)

    Rajfer, R. A.; Kilic, A.; Neviaser, A. S.; Schulte, L. M.; Hlaing, S. M.; Landeros, J.; Ferrini, M. G.; Ebramzadeh, E.

    2017-01-01

    Objectives We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry. Results When compared with the control group, the COMB-4 group exhibited 46% higher maximum strength (t-test, p = 0.029) and 92% higher stiffness (t-test, p = 0.023), but no significant changes were observed in the tadalafil group. At days 14 and 42, there was no significant difference between the three groups with respect to callus volume, mineral content and bone density. Expression of iNOS at day 14 was significantly higher in the COMB-4 group which, as expected, had returned to baseline levels at day 42. Conclusion This study demonstrates an enhancement in fracture healing by an oral natural product known to augment iNOS expression. Cite this article: R. A. Rajfer, A. Kilic, A. S. Neviaser, L. M. Schulte, S. M. Hlaing, J. Landeros, M. G. Ferrini, E. Ebramzadeh, S-H. Park. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase: Acceleration of fracture healing via inducible nitric oxide synthase. Bone Joint Res 2017:6:–97. DOI: 10.1302/2046-3758.62.BJR-2016-0164.R2. PMID:28188129

  18. Hyperbaric oxygen upregulates cochlear constitutive nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Kao Ming-Ching

    2011-02-01

    Full Text Available Abstract Background Hyperbaric oxygen therapy (HBOT is a known adjuvant for treating ischemia-related inner ear diseases. Controversies still exist in the role of HBOT in cochlear diseases. Few studies to date have investigated the cellular changes that occur in inner ears after HBOT. Nitric oxide, which is synthesized by nitric oxide synthase (NOS, is an important signaling molecule in cochlear physiology and pathology. Here we investigated the effects of hyperbaric oxygen on eardrum morphology, cochlear function and expression of NOS isoforms in cochlear substructures after repetitive HBOT in guinea pigs. Results Minor changes in the eardrum were observed after repetitive HBOT, which did not result in a significant hearing threshold shift by tone burst auditory brainstem responses. A differential effect of HBOT on the expression of NOS isoforms was identified. Upregulation of constitutive NOS (nNOS and eNOS was found in the substructures of the cochlea after HBOT, but inducible NOS was not found in normal or HBOT animals, as shown by immunohistochemistry. There was no obvious DNA fragmentation present in this HBOT animal model. Conclusions The present evidence indicates that the customary HBOT protocol may increase constitutive NOS expression but such upregulation did not cause cell death in the treated cochlea. The cochlear morphology and auditory function are consequently not changed through the protocol.

  19. Expression of inducible nitric oxide synthase in endotoxemic rat hepatocytes is dependent on the cellular glutathione status

    NARCIS (Netherlands)

    Vos, TA; van Goor, H; Tuyt, L; de Jager-Krikken, A; Leuvenink, R; Kuipers, F; Jansen, PLM; Moshage, H

    The inducible nitric oxide synthase (iNOS) promoter contains nuclear factor kappa B (NF-kappa B) binding sites. NF-kappa B activation is determined, in part, by the intracellular redox status, The aim of this study was to determine the importance of the cellular glutathione status in relation to

  20. Expression of inducible nitric oxide synthase in trigeminal ganglion cells during culture

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Zhou, MingFang; Zinck, Tina Jovanovic

    2005-01-01

    RNA and protein could be detected. The data suggest that iNOS expression may be a molecular mechanism mediating the adaptive response of trigeminal ganglia cells to the serum free stressful stimulus the culture environment provides. It may act as a cellular signalling molecule that is expressed after cell......Nitric oxide (NO) is an important signalling molecule that has been suggested to be a key molecule for induction and maintenance of migraine attacks based on clinical studies, animal experimental studies and the expression of nitric oxide synthase (NOS) immunoreactivity within the trigeminovascular......, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. In trigeminal ganglia cells not subjected to culture, endothelial (e) and neuronal (n) but not inducible (i) NOS mRNA and protein were detected. Culture of rat neurones resulted in a rapid axonal outgrowth of NOS positive...

  1. Nitric oxide synthase-I containing cortical interneurons co-express antioxidative enzymes and anti-apoptotic Bcl-2 following focal ischemia: evidence for direct and indirect mechanisms towards their resistance to neuropathology.

    Science.gov (United States)

    Bidmon, H J; Emde, B; Kowalski, T; Schmitt, M; Mayer, B; Kato, K; Asayama, K; Witte, O W; Zilles, K

    2001-09-01

    Neuronal nitric oxide-I is constitutively expressed in approximately 2% of cortical interneurons and is co-localized with gamma-amino butric acid, somatostatin or neuropeptide Y. These interneurons additionally express high amounts of glutamate receptors which mediate the glutamate-induced hyperexcitation following cerebral injury, under these conditions nitric oxide production increases contributing to a potentiation of oxidative stress. However, perilesional nitric oxide synthase-I containing neurons are known to be resistant to ischemic and excitotoxic injury. In vitro studies show that nitrosonium and nitroxyl ions inactivate N-methyl-D-aspartate receptors, resulting in neuroprotection. The question remains of how these cells are protected against their own high intracellular nitric oxide production after activation. In this study, we investigated immunocytochemically nitric oxide synthase-I containing cortical neurons in rats after unilateral, cortical photothrombosis. In this model of focal ischemia, perilesional, constitutively nitric oxide synthase-I containing neurons survived and co-expressed antioxidative enzymes, such as manganese- and copper-zinc-dependent superoxide dismutases, heme oxygenase-2 and cytosolic glutathione peroxidase. This enhanced antioxidant expression was accompanied by a strong perinuclear presence of the antiapoptotic Bcl-2 protein. No colocalization was detectable with upregulated heme oxygenase-1 in glia and the superoxide and prostaglandin G(2)-producing cyclooxygenase-2 in neurons. These results suggest that nitric oxide synthase-I containing interneurons are protected against intracellular oxidative damage and apoptosis by Bcl-2 and several potent antioxidative enzymes. Since nitric oxide synthase-I positive neurons do not express superoxide-producing enzymes such as cyclooxygenase-1, xanthine oxidase and cyclooxygenase-2 in response to injury, this may additionally contribute to their resistance by reducing their internal

  2. Inhibition by sodium nitroprusside of the expression of inducible nitric oxide synthase in rat neutrophils.

    OpenAIRE

    Mariotto, S; Cuzzolin, L; Adami, A; Del Soldato, P; Suzuki, H; Benoni, G

    1995-01-01

    A well-known nitric oxide (NO)-releasing compound, sodium nitroprusside (SNP), decreases in a dose-dependent manner NO synthase (NOS) activity induced in rat neutrophils by treatment with lipopolysaccharide (LPS). This inhibitory action of SNP seems not to be due to its direct effect on the enzyme activity. The strong nitrosonium ion (NO+) character of SNP could be responsible for its inhibition of NOS induction in neutrophils.

  3. Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning.

    Science.gov (United States)

    Amour, Julien; Brzezinska, Anna K; Weihrauch, Dorothee; Billstrom, Amie R; Zielonka, Jacek; Krolikowski, John G; Bienengraeber, Martin W; Warltier, David C; Pratt, Philip F; Kersten, Judy R

    2009-02-01

    Nitric oxide is known to be essential for early anesthetic preconditioning (APC) and ischemic preconditioning (IPC) of myocardium. Heat shock protein 90 (Hsp90) regulates endothelial nitric oxide synthase (eNOS) activity. In this study, the authors tested the hypothesis that Hsp90-eNOS interactions modulate APC and IPC. Myocardial infarct size was measured in rabbits after coronary occlusion and reperfusion in the absence or presence of preconditioning within 30 min of isoflurane (APC) or 5 min of coronary artery occlusion (IPC), and with or without pretreatment with geldanamycin or radicicol, two chemically distinct Hsp90 inhibitors, or N-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase NOS inhibitor. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells or mouse cardiomyocytes, in the absence or presence of Hsp90 inhibitors or N-nitro-L-arginine methyl ester. Interactions between Hsp90 and eNOS, and eNOS activation, were assessed with immunoprecipitation, immunoblotting, and confocal microscopy. APC and IPC decreased infarct size (by 50% and 59%, respectively), and this action was abolished by Hsp90 inhibitors. N-nitro-L-arginine methyl ester blocked APC but not IPC. Isoflurane increased nitric oxide production in human coronary artery endothelial cells concomitantly with an increase in Hsp90-eNOS interaction (immunoprecipitation, immunoblotting, and immunohistochemistry). Pretreatment with Hsp90 inhibitors abolished isoflurane-dependent nitric oxide production and decreased Hsp90-eNOS interactions. Isoflurane did not increase nitric oxide production in mouse cardiomyocytes, and eNOS was below the level of detection. The results indicate that Hsp90 plays a critical role in mediating APC and IPC through protein-protein interactions, and suggest that endothelial cells are important contributors to nitric oxide-mediated signaling during APC.

  4. Plasmodium falciparum avoids change in erythrocytic surface expression of phagocytosis markers during inhibition of nitric oxide synthase activity

    DEFF Research Database (Denmark)

    Hempel, Casper; Kohnke, Hannes; Maretty, Lasse

    2014-01-01

    Nitric oxide (NO) accumulates in Plasmodium falciparum-infected erythrocytes. It may be produced by a parasite NO synthase (NOS) or by nitrate reduction. The parasite's benefit of NO accumulation is not understood. We investigated if inhibiting the P. falciparum NOS with specific and unspecific NOS...... increased the fraction of phosphatidyl serine exposing cells significantly. The infection did not change the level of expression of neither total CD47 nor its oxidized form. Unrelated to NOS inhibition, incubation with caveolin-1 scaffolding domain peptide lead to a decrease in oxidized CD47. In conclusion...

  5. Enhanced growth and improved vascular function in offspring from successive pregnancies in endothelial nitric oxide synthase knockout mice

    NARCIS (Netherlands)

    Longo, M; Jain, [No Value; Langenveld, J; Vedernikov, YP; Garfield, RE; Hankins, GDV; Anderson, GD; Saade, GR

    2004-01-01

    Objective: Transgenic mice that lack endothelial nitric oxide synthase have offspring with growth deficiency and abnormal vascular reactivity in later life. Our objective was to evaluate the role of parity in the modulation of the fetal programming of growth and vascular responses in these

  6. Protein kinase Cα phosphorylates a novel argininosuccinate synthase site at serine 328 during calcium-dependent stimulation of endothelial nitric-oxide synthase in vascular endothelial cells.

    Science.gov (United States)

    Haines, Ricci J; Corbin, Karen D; Pendleton, Laura C; Eichler, Duane C

    2012-07-27

    Endothelial nitric-oxide synthase (eNOS) utilizes l-arginine as its principal substrate, converting it to l-citrulline and nitric oxide (NO). l-Citrulline is recycled to l-arginine by two enzymes, argininosuccinate synthase (AS) and argininosuccinate lyase, providing the substrate arginine for eNOS and NO production in endothelial cells. Together, these three enzymes, eNOS, AS, and argininosuccinate lyase, make up the citrulline-NO cycle. Although AS catalyzes the rate-limiting step in NO production, little is known about the regulation of AS in endothelial cells beyond the level of transcription. In this study, we showed that AS Ser-328 phosphorylation was coordinately regulated with eNOS Ser-1179 phosphorylation when bovine aortic endothelial cells were stimulated by either a calcium ionophore or thapsigargin to produce NO. Furthermore, using in vitro kinase assay, kinase inhibition studies, as well as protein kinase Cα (PKCα) knockdown experiments, we demonstrate that the calcium-dependent phosphorylation of AS Ser-328 is mediated by PKCα. Collectively, these findings suggest that phosphorylation of AS at Ser-328 is regulated in accordance with the calcium-dependent regulation of eNOS under conditions that promote NO production and are in keeping with the rate-limiting role of AS in the citrulline-NO cycle of vascular endothelial cells.

  7. Opposite effect of oxidative stress on inducible nitric oxide synthase and haem oxygenase-1 expression in intestinal inflammation: anti-inflammatory effect of carbon monoxide

    NARCIS (Netherlands)

    Dijkstra, Gerard; Blokzijl, Hans; Bok, Lisette; Homan, Manon; van Goor, Harry; Faber, Klaas Nico; Jansen, Peter L. M.; Moshage, Han

    2004-01-01

    Inducible nitric oxide synthase (iNOS) is expressed in intestinal epithelial cells (IEC) of patients with active inflammatory bowel disease (IBD) and in IEC of endotoxaemic rats. The induction of iNOS in IEC is an element of the NF-kappaB-mediated survival pathway. Haem oxygenase-1 (HO-1) is an

  8. Relationship between endothelial nitric oxide synthase (eNOS) and natural history of intracranial aneurysms: meta-analysis.

    Science.gov (United States)

    Paschoal, Eric Homero Albuquerque; Yamaki, Vitor Nagai; Teixeira, Renan Kleber Costa; Paschoal Junior, Fernando Mendes; Jong-A-Liem, Glaucia Suzanna; Teixeira, Manoel Jacobsen; Yamada, Elizabeth Sumi; Ribeiro-Dos-Santos, Ândrea; Bor-Seng-Shu, Edson

    2018-01-01

    The aneurysmal subarachnoid hemorrhage is a major public health problem described as a sudden drastic event with no warning symptoms and high morbidity and mortality rates. The role of the endothelial isoform of nitric oxide synthase gene polymorphism in intracranial aneurysms (IAs) is still a matter of controversy with divergent findings among European, American, and Asian populations. Our study purposed to test the association between intracranial aneurysms formation and nitric oxide gene polymorphisms through a systematic review and meta-analysis. Systematic search on Medline, Lilacs, and EMBASE was performed. The primary search resulted in 139 papers, out of which 9 met our inclusion criteria after a full text analysis. The dominant T786C model found a significant association with IA (OR 1.22, 95 % CI 1.04-1.44, p = 0.01), so did studies of the recessive T786C model (OR 0.37, 95 % CI 0.30-0.45, p < 0.0001) but with opposite effect. Our findings support the presence of the T786C polymorphism as a predictor for the development of intracranial aneurysm in the cerebral vascular system. More studies are necessary in order to elucidate the pathways of the endothelial nitric oxide synthase (eNOS) in cerebrovascular diseases and in defining how different allelic combinations of the eNOS gene single-nucleotide polymorphism (SNP) could favor this pathological process.

  9. Inhibition by sodium nitroprusside of the expression of inducible nitric oxide synthase in rat neutrophils.

    Science.gov (United States)

    Mariotto, S; Cuzzolin, L; Adami, A; Del Soldato, P; Suzuki, H; Benoni, G

    1995-01-01

    A well-known nitric oxide (NO)-releasing compound, sodium nitroprusside (SNP), decreases in a dose-dependent manner NO synthase (NOS) activity induced in rat neutrophils by treatment with lipopolysaccharide (LPS). This inhibitory action of SNP seems not to be due to its direct effect on the enzyme activity. The strong nitrosonium ion (NO+) character of SNP could be responsible for its inhibition of NOS induction in neutrophils. PMID:7542530

  10. Corn silk induces nitric oxide synthase in murine macrophages.

    Science.gov (United States)

    Kim, Kyung A; Choi, Sang Kyu; Choi, Hye Seon

    2004-12-31

    Corn silk has been purified as an anticoagulant previously and the active component is a polysaccharide with a molecular mass of 135 kDa. It activates murine macrophages to induce nitric oxide synthase (NOS) and generate substantial amounts of NO in time and dose-dependent manners. It was detectable first at 15 h after stimulation by corn silk, peaked at 24 h, and undetectable by 48 h. Induction of NOS is inhibited by pyrolidine dithiocarbamate (PDTC) and genistein, an inhibitor of nuclear factor kappa B (NF-kappaB) and tyrosine kinase, respectively, indicating that iNOS stimulated by corn silk is associated with tyrosine kinase and NF-kappaB signaling pathways. IkappaB-alpha degradation was detectible at 10 min, and the level was restored at 120 min after treatment of corn silk. Corn silk induced nuclear translocation of NF-kappaB by phosphorylation and degradation of IkappaB-alpha.

  11. Stereochemical course of enzyme-catalyzed aminopropyl transfer: spermidine synthase

    International Nuclear Information System (INIS)

    Kullberg, D.W.; Orr, G.R.; Coward, J.K.

    1986-01-01

    The R and S enantionmers of S-adenosyl-3-[ 2 H]3-(methylthio)-1-propylamine (decarboxylated S-adenosylmethionine), previously synthesized in this laboratory, were incubated with [1,4- 2 H 4 ]-putrescine in the presence of spermidine synthase from E. coli. The resulting chiral [ 2 H 5 ]spermidines were isolated and converted to their N 1 ,N 7 -dibocspermidine-N 4 -(1S,4R)-camphanamides. The derivatives were analyzed by 500 MHz 1 H-NMR and the configuration of the chiral center assigned by correlation with the spectra of synthetic chiral [ 2 H 3 ]dibocspermidine camphanamide standards. The enzyme-catalyzed aminopropyl transfer was shown to occur with net retention of configuration, indicative of a double-displacement mechanism. This result concurs with that of a previous steady-state kinetics study of spermidine synthase isolated from E. coli, but contradicts the single-displacement mechanism suggested by a stereochemical analysis of chiral spermidines biosynthesized in E. coli treated with chirally deuterated methionines. It also indicates that this aminopropyltransferase is mechanistically distinct from the methyltransferases, which have been shown to act via a single-displacement mechanism (net inversion at -CH 3 ) in all cases studied to date

  12. Participation of hippocampal nitric oxide synthase and soluble guanylate cyclase in the modulation of behavioral responses elicited by the rat forced swimming test.

    Science.gov (United States)

    Sales, Amanda J; Hiroaki-Sato, Vinícius A; Joca, Sâmia R L

    2017-02-01

    Systemic or hippocampal administration of nitric oxide (NO) synthase inhibitors induces antidepressant-like effects in animals, implicating increased hippocampal levels of NO in the neurobiology of depression. However, the role played by different NO synthase in this process has not been clearly defined. As stress is able to induce neuroinflammatory mechanisms and trigger the expression of inducible nitric oxide synthase (iNOS) in the brain, as well as upregulate neuronal nitric oxide synthase (nNOS) activity, the aim of the present study was to investigate the possible differential contribution of hippocampal iNOS and nNOS in the modulation of the consequences of stress elicited by the forced swimming test. Male Wistar rats received intrahippocampal injections, immediately after the pretest or 1 h before the forced swimming test, of selective inhibitors of nNOS (N-propyl-L-arginine), iNOS (1400W), or sGC (ODQ), the main pharmacological target for NO. Stress exposure increased nNOS and phospho-nNOS levels at all time points, whereas iNOS expression was increased only 24 h after the pretest. All drugs induced an antidepressant-like effect. However, whereas the nNOS inhibitor was equally effective when injected at different times, the iNOS inhibitor was more effective 24 h after the pretest. These results suggest that hippocampal nNOS and iNOS contribute to increase in NO levels in response to stress, although with a differential time course after stress exposure.

  13. Identification and molecular characterization of nitric oxide synthase (NOS) gene in the intertidal copepod Tigriopus japonicus.

    Science.gov (United States)

    Jeong, Chang-Bum; Kang, Hye-Min; Seo, Jung Soo; Park, Heum Gi; Rhee, Jae-Sung; Lee, Jae-Seong

    2016-02-10

    In copepods, no information has been reported on the structure or molecular characterization of the nitric oxide synthase (NOS) gene. In the intertidal copepod Tigriopus japonicus, we identified a NOS gene that is involved in immune responses of vertebrates and invertebrates. In silico analyses revealed that nitric oxide (NO) synthase domains, such as the oxygenase and reductase domains, are highly conserved in the T. japonicus NOS gene. The T. japonicus NOS gene was highly transcribed in the nauplii stages, implying that it plays a role in protecting the host during the early developmental stages. To examine the involvement of the T. japonicus NOS gene in the innate immune response, the copepods were exposed to lipopolysaccharide (LPS) and two Vibrio sp. After exposure to different concentrations of LPS and Vibrio sp., T. japonicus NOS transcription was significantly increased over time in a dose-dependent manner, and the NO/nitrite concentration increased as well. Taken together, our findings suggest that T. japonicus NOS transcription is induced in response to an immune challenge as part of the conserved innate immunity. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Plasma membrane Ca2+-ATPase 4: interaction with constitutive nitric oxide synthases in human sperm and prostasomes which carry Ca2+/CaM-dependent serine kinase

    OpenAIRE

    Andrews, Rachel E.; Galileo, Deni S.; Martin-DeLeon, Patricia A.

    2015-01-01

    Deletion of the gene encoding the widely conserved plasma membrane calcium ATPase 4 (PMCA4), a major Ca2+ efflux pump, leads to loss of sperm motility and male infertility in mice. PMCA4's partners in sperm and how its absence exerts its effect on fertility are unknown. We hypothesize that in sperm PMCA4 interacts with endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) which are rapidly activated by Ca2+, and that these fertility-modulating proteins are present...

  15. Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians

    DEFF Research Database (Denmark)

    Ahluwalia, Tarun Veer Singh; Ahuja, Monica; Rai, Taranjit Singh

    2008-01-01

    of the constitutive endothelial nitric oxide synthase gene (eNOS) polymorphisms with type 2 diabetic nephropathy. We genotyped three polymorphisms of eNOS (Two SNPs: -786T > C, 894G > T and one 27-bp repeat polymorphism in Intron 4 (27VNTR)) in type 2 diabetic nephropathy patients (cases: n = 195) and type 2 diabetic...... without nephropathy (controls: n = 255), using validated PCR-RFLP assays. We measured serum NO levels in these subjects and examined its correlation with diabetic nephropathy and eNOS genotypes. The frequency of CC (-786T > C), TT (894G > T) and aa genotypes (27VNTR) were significantly higher in diabetic...

  16. Oxide Synthase Expression by p38 MAP Kinase

    Directory of Open Access Journals (Sweden)

    Tuija Turpeinen

    2011-01-01

    Full Text Available The role of dual specificity phosphatase 1 (DUSP1 in inducible nitric oxide synthase (iNOS expression in A549 human pulmonary epithelial cells, J774 mouse macrophages and primary mouse bone marrow-derived macrophages (BMMs was investigated. iNOS expression was induced by a cytokine mixture (TNF, IFNγ and IL-1β in A549 cells and by LPS in J774 cells, and it was inhibited by p38 MAPK inhibitors SB202190 and BIRB 796. Stimulation with cytokine mixture or LPS enhanced also DUSP1 expression. Down-regulation of DUSP1 by siRNA increased p38 MAPK phosphorylation and iNOS expression in A549 and J774 cells. In addition, LPS-induced iNOS expression was enhanced in BMMs from DUSP1(−/− mice as compared to that in BMMs from wild-type mice. The results indicate that DUSP1 suppresses iNOS expression by limiting p38 MAPK activity in human and mouse cells. Compounds that enhance DUSP1 expression or modulate its function may be beneficial in diseases complicated with increased iNOS-mediated NO production.

  17. Neuronal nitric oxide synthase is dislocated in type I fibers of myalgic muscle but can recover with physical exercise training

    DEFF Research Database (Denmark)

    Jensen, L; Andersen, L L; Schrøder, H D

    2015-01-01

    Trapezius myalgia is the most common type of chronic neck pain. While physical exercise reduces pain and improves muscle function, the underlying mechanisms remain unclear. Nitric oxide (NO) signaling is important in modulating cellular function, and a dysfunctional neuronal NO synthase (nNOS) ma...

  18. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China); Zhang, Qunye, E-mail: wz.zhangqy@sdu.edu.cn [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong (China); Li, Guorong, E-mail: grli@sdnu.edu.cn [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China)

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  19. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    International Nuclear Information System (INIS)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi; Zhang, Qunye; Li, Guorong

    2015-01-01

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation

  20. [Effect of L-arginine and the nitric oxide synthase blocker L-NNA on calcium capacity in rat liver mitochondria with differing resistance to hypoxia].

    Science.gov (United States)

    Kurhaliuk, N M; Ikkert, O V; Vovkanych, L S; Horyn', O V; Hal'kiv, M O; Hordiĭ, S K

    2001-01-01

    The effect of L-arginine and blockator of nitric oxide synthase L-NNA on processes of calcium mitochondrial capacity in liver with different resistance to hypoxia in the experiments with Wistar rats has been studied using the followrng substrates of energy support: succinic, alpha-ketoglutaric acids, alpha-ketolutarate and inhibitor succinatedehydrogenase malonate. As well we used substrates mixtures combination providing for activation of aminotransferase mechanism: glutamate and piruvate, glutamate and malate. It has been shown that L-arginine injection increases calcium mitochondrial capacity of low resistant rats using as substrates the succinate and alpha-ketoglutarate to control meanings of high resistance rats. Effects of donors nitric oxide on this processes limit NO-synthase inhibitor L-NNA.

  1. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase

    OpenAIRE

    Rajfer, R. A.; Kilic, A.; Neviaser, A. S.; Schulte, L. M.; Hlaing, S. M.; Landeros, J.; Ferrini, M. G.; Ebramzadeh, E.; Park, S-H.

    2017-01-01

    Objectives We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression na...

  2. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Elise R Hondorp

    2004-11-01

    Full Text Available In nature, Escherichia coli are exposed to harsh and non-ideal growth environments-nutrients may be limiting, and cells are often challenged by oxidative stress. For E. coli cells confronting these realities, there appears to be a link between oxidative stress, methionine availability, and the enzyme that catalyzes the final step of methionine biosynthesis, cobalamin-independent methionine synthase (MetE. We found that E. coli cells subjected to transient oxidative stress during growth in minimal medium develop a methionine auxotrophy, which can be traced to an effect on MetE. Further experiments demonstrated that the purified enzyme is inactivated by oxidized glutathione (GSSG at a rate that correlates with protein oxidation. The unique site of oxidation was identified by selectively cleaving N-terminally to each reduced cysteine and analyzing the results by liquid chromatography mass spectrometry. Stoichiometric glutathionylation of MetE by GSSG occurs at cysteine 645, which is strategically located at the entrance to the active site. Direct evidence of MetE oxidation in vivo was obtained from thiol-trapping experiments in two different E. coli strains that contain highly oxidizing cytoplasmic environments. Moreover, MetE is completely oxidized in wild-type E. coli treated with the thiol-oxidizing agent diamide; reduced enzyme reappears just prior to the cells resuming normal growth. We argue that for E. coli experiencing oxidizing conditions in minimal medium, MetE is readily inactivated, resulting in cellular methionine limitation. Glutathionylation of the protein provides a strategy to modulate in vivo activity of the enzyme while protecting the active site from further damage, in an easily reversible manner. While glutathionylation of proteins is a fairly common mode of redox regulation in eukaryotes, very few proteins in E. coli are known to be modified in this manner. Our results are complementary to the independent findings of Leichert

  3. Neuronal nitric oxide synthase in the olfactory system of an adult teleost fish Oreochromis mossambicus.

    Science.gov (United States)

    Singru, Praful S; Sakharkar, Amul J; Subhedar, Nishikant

    2003-07-11

    The aim of the present study is to explore the distribution of nitric oxide synthase in the olfactory system of an adult teleost, Oreochromis mossambicus using neuronal nitric oxide synthase (nNOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry methods. Intense nNOS immunoreactivity was noticed in several olfactory receptor neurons (ORNs), in their axonal extensions over the olfactory nerve and in some basal cells of the olfactory epithelium. nNOS containing fascicles of the ORNs enter the bulb from its rostral pole, spread in the olfactory nerve layer in the periphery of the bulb and display massive innervation of the olfactory glomeruli. Unilateral ablation of the olfactory organ resulted in dramatic loss of nNOS immunoreactivity in the olfactory nerve layer of the ipsilateral bulb. In the olfactory bulb of intact fish, some granule cells showed intense immunoreactivity; dendrites arising from the granule cells could be traced to the glomerular layer. Of particular interest is the occurrence of nNOS immunoreactivity in the ganglion cells of the nervus terminalis. nNOS containing fibers were also encountered in the medial olfactory tracts as they extend to the telencephalon. The NADPHd staining generally coincides with that of nNOS suggesting that it may serve as a marker for nNOS in the olfactory system of this fish. However, mismatch was encountered in the case of mitral cells, while all are nNOS-negative, few were NADPHd positive. The present study for the first time revealed the occurrence of nNOS immunoreactivity in the ORNs of an adult vertebrate and suggests a role for nitric oxide in the transduction of odor stimuli, regeneration of olfactory epithelium and processing of olfactory signals.

  4. Inhibition of inducible Nitric Oxide Synthase by a mustard gas analog in murine macrophages

    Directory of Open Access Journals (Sweden)

    Smith Milton

    2006-11-01

    Full Text Available Abstract Background 2-Chloroethyl ethyl sulphide (CEES is a sulphur vesicating agent and an analogue of the chemical warfare agent 2,2'-dichlorodiethyl sulphide, or sulphur mustard gas (HD. Both CEES and HD are alkylating agents that influence cellular thiols and are highly toxic. In a previous publication, we reported that lipopolysaccharide (LPS enhances the cytotoxicity of CEES in murine RAW264.7 macrophages. In the present investigation, we studied the influence of CEES on nitric oxide (NO production in LPS stimulated RAW264.7 cells since NO signalling affects inflammation, cell death, and wound healing. Murine macrophages stimulated with LPS produce NO almost exclusively via inducible nitric oxide synthase (iNOS activity. We suggest that the influence of CEES or HD on the cellular production of NO could play an important role in the pathophysiological responses of tissues to these toxicants. In particular, it is known that macrophage generated NO synthesised by iNOS plays a critical role in wound healing. Results We initially confirmed that in LPS stimulated RAW264.7 macrophages NO is exclusively generated by the iNOS form of nitric oxide synthase. CEES treatment inhibited the synthesis of NO (after 24 hours in viable LPS-stimulated RAW264.7 macrophages as measured by either nitrite secretion into the culture medium or the intracellular conversion of 4,5-diaminofluorescein diacetate (DAF-2DA or dichlorofluorescin diacetate (DCFH-DA. Western blots showed that CEES transiently decreased the expression of iNOS protein; however, treatment of active iNOS with CEES in vitro did not inhibit its enzymatic activity Conclusion CEES inhibits NO production in LPS stimulated macrophages by decreasing iNOS protein expression. Decreased iNOS expression is likely the result of CEES induced alteration in the nuclear factor kappa B (NF-κB signalling pathway. Since NO can act as an antioxidant, the CEES induced down-regulation of iNOS in LPS

  5. Intestinal nitric oxide synthase activity changes during experimental colon obstruction.

    Science.gov (United States)

    Palásthy, Zsolt; Kaszaki, József; Lázár, György; Nagy, Sándor; Boros, Mihály

    2006-08-01

    The experiments in this study were designed to follow the time course of nitric oxide (NO) synthesis in the large bowel during acute mechanical ileus. Occlusion of the mid-transverse colon was maintained for 420 min in anesthetized dogs. Strain-gauge transducers were used to analyze motility changes on the hepatic and lienal flexures, respectively. Constitutive NO synthase (cNOS) and inducible NOS (iNOS) activities were determined in tissue biopsies, and plasma nitrite/nitrate (NOx) level was measured in the portal blood. Following completion of the baseline studies, the animals were treated with either 7-nitroindazole (7-NI, selective neuronal NOS inhibitor), or N-nitro-L-arginine (NNA, non-selective NOS inhibitor). In the sham-operated group the cNOS activities differed significantly in the oral and aboral tissue samples (oral: 102.9; versus aboral: 62.1 fmol/mg protein/min). The obstruction elicited a significant increase in portal NOx and elevated tissue inducible NO synthase (iNOS) activity. NNA treatment decreased the motility index in both intestinal segments for 60 min, but 120 min later the motility index was significantly elevated (2.5-fold increase in the oral part, and 1.8-fold enhancement in the aboral segment, respectively). Treatment with 7-NI decreased the cNOS activity in the oral and aboral parts by approximately 40% and 70%, respectively, and suppressed the motility increase in the aboral colon segment. The motility of the colon was either significantly increased or decreased, depending on the type and selectivity of the NOS inhibitor compounds applied. NO of neuronal origin is a transmitter that stimulates peristaltic activity; but an increased iNOS/nNOS ratio significantly moderates the obstruction-induced motility increase.

  6. Overexpression of Rat Neurons Nitric Oxide Synthase in Rice Enhances Drought and Salt Tolerance.

    Directory of Open Access Journals (Sweden)

    Wei Cai

    Full Text Available Nitric oxide (NO has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.

  7. Effects of Cerebral Ischemia in Mice Deficient in Neuronal Nitric Oxide Synthase

    Science.gov (United States)

    Huang, Zhihong; Huang, Paul L.; Panahian, Nariman; Dalkara, Turgay; Fishman, Mark C.; Moskowitz, Michael A.

    1994-09-01

    The proposal that nitric oxide (NO) or its reactant products mediate toxicity in brain remains controversial in part because of the use of nonselective agents that block NO formation in neuronal, glial, and vascular compartments. In mutant mice deficient in neuronal NO synthase (NOS) activity, infarct volumes decreased significantly 24 and 72 hours after middle cerebral artery occlusion, and the neurological deficits were less than those in normal mice. This result could not be accounted for by differences in blood flow or vascular anatomy. However, infarct size in the mutant became larger after endothelial NOS inhibition by nitro-L-arginine administration. Hence, neuronal NO production appears to exacerbate acute ischemic injury, whereas vascular NO protects after middle cerebral artery occlusion. The data emphasize the importance of developing selective inhibitors of the neuronal isoform.

  8. Nitric oxide signalling and neuronal nitric oxide synthase in the heart under stress.

    Science.gov (United States)

    Zhang, Yin Hua

    2017-01-01

    Nitric oxide (NO) is an imperative regulator of the cardiovascular system and is a critical mechanism in preventing the pathogenesis and progression of the diseased heart. The scenario of bioavailable NO in the myocardium is complex: 1) NO is derived from both endogenous NO synthases (endothelial, neuronal, and/or inducible NOSs [eNOS, nNOS, and/or iNOS]) and exogenous sources (entero-salivary NO pathway) and the amount of NO from exogenous sources varies significantly; 2) NOSs are located at discrete compartments of cardiac myocytes and are regulated by distinctive mechanisms under stress; 3) NO regulates diverse target proteins through different modes of post-transcriptional modification (soluble guanylate cyclase [sGC]/cyclic guanosine monophosphate [cGMP]/protein kinase G [PKG]-dependent phosphorylation, S -nitrosylation, and transnitrosylation); 4) the downstream effectors of NO are multidimensional and vary from ion channels in the plasma membrane to signalling proteins and enzymes in the mitochondria, cytosol, nucleus, and myofilament; 5) NOS produces several radicals in addition to NO (e.g. superoxide, hydrogen peroxide, peroxynitrite, and different NO-related derivatives) and triggers redox-dependent responses. However, nNOS inhibits cardiac oxidases to reduce the sources of oxidative stress in diseased hearts. Recent consensus indicates the importance of nNOS protein in cardiac protection under pathological stress. In addition, a dietary regime with high nitrate intake from fruit and vegetables together with unsaturated fatty acids is strongly associated with reduced cardiovascular events. Collectively, NO-dependent mechanisms in healthy and diseased hearts are better understood and shed light on the therapeutic prospects for NO and NOSs in clinical applications for fatal human heart diseases.

  9. Allene oxide synthase, allene oxide cyclase and jasmonic acid levels in Lotus japonicus nodules.

    Directory of Open Access Journals (Sweden)

    Anna Zdyb

    Full Text Available Jasmonic acid (JA, its derivatives and its precursor cis-12-oxo phytodienoic acid (OPDA form a group of phytohormones, the jasmonates, representing signal molecules involved in plant stress responses, in the defense against pathogens as well as in development. Elevated levels of JA have been shown to play a role in arbuscular mycorrhiza and in the induction of nitrogen-fixing root nodules. In this study, the gene families of two committed enzymes of the JA biosynthetic pathway, allene oxide synthase (AOS and allene oxide cyclase (AOC, were characterized in the determinate nodule-forming model legume Lotus japonicus JA levels were to be analysed in the course of nodulation. Since in all L. japonicus organs examined, JA levels increased upon mechanical disturbance and wounding, an aeroponic culture system was established to allow for a quick harvest, followed by the analysis of JA levels in whole root and shoot systems. Nodulated plants were compared with non-nodulated plants grown on nitrate or ammonium as N source, respectively, over a five week-period. JA levels turned out to be more or less stable independently of the growth conditions. However, L. japonicus nodules formed on aeroponically grown plants often showed patches of cells with reduced bacteroid density, presumably a stress symptom. Immunolocalization using a heterologous antibody showed that the vascular systems of these nodules also seemed to contain less AOC protein than those of nodules of plants grown in perlite/vermiculite. Hence, aeroponically grown L. japonicus plants are likely to be habituated to stress which could have affected JA levels.

  10. The activity of inducible nitric oxide synthase in rejected skin xenografts is selectively inhibited by a factor produced by grafted cells

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Pindjáková, Jana; Zajícová, Alena; Krulová, Magdalena; Železná, Blanka; Matoušek, Petr; Svoboda, Petr

    2005-01-01

    Roč. 12, č. 3 (2005), s. 227-234 ISSN 0908-665X R&D Projects: GA MZd(CZ) NR7816; GA ČR(CZ) GP310/02/D162; GA ČR(CZ) GD310/03/H147; GA MŠk(CZ) ME 300; GA AV ČR KSK5020115 Institutional research plan: CEZ:AV0Z5052915; CEZ:AV0Z50110509 Keywords : inducible nitric oxide synthase production * nitric oxide * suppressive molecule Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.114, year: 2005

  11. New role for L-arginine in regulation of inducible nitric-oxide-synthase-derived superoxide anion production in Raw 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Pekarová, Michaela; Lojek, Antonín; Martíšková, Hana; Vašíček, Ondřej; Binó, Lucia; Klinke, A.; Lau, D.; Kuchta, R.; Kadlec, J.; Vrba, R.; Kubala, Lukáš

    2011-01-01

    Roč. 11, - (2011), s. 2443-2457 ISSN 1537-744X R&D Projects: GA ČR(CZ) GA524/08/1753 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : macrophage s * L-arginine * inducible nitric oxide synthase Subject RIV: BO - Biophysics Impact factor: 1.524, year: 2010

  12. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    OpenAIRE

    Ning Xia; Andrea Pautz; Ursula Wollscheid; Gisela Reifenberg; Ulrich Förstermann; Huige Li

    2014-01-01

    Artichoke (Cynara scolymus L.) is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects ...

  13. The Influence of Hyperoxia On Heat Shock Proteins Expression and Nitric Oxide Synthase Activity – the Review

    Directory of Open Access Journals (Sweden)

    Szyller Jakub

    2017-03-01

    Full Text Available Any stay in an environment with an increased oxygen content (a higher oxygen partial pressure, pO2 and an increased pressure (hyperbaric conditions leads to an intensification of oxidative stress. Reactive oxygen species (ROS damage the molecules of proteins, nucleic acids, cause lipid oxidation and are engaged in the development of numerous diseases, including diseases of the circulatory system, neurodegenerative diseases, etc. There are certain mechanisms of protection against unfavourable effects of oxidative stress. Enzymatic and non-enzymatic systems belong to them. The latter include, among others, heat shock proteins (HSP. Their precise role and mechanism of action have been a subject of intensive research conducted in recent years. Hyperoxia and hyperbaria also have an effect on the expression and activity of nitrogen oxide synthase (NOS. Its product - nitrogen oxide (NO can react with reactive oxygen species and contribute to the development of nitrosative stress. NOS occurs as isoforms in various tissues and exhibit different reactions to the discussed factors. The authors have prepared a brief review of research determining the effect of hyperoxia and hyperbaria on HSP expression and NOS activity.

  14. Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes.

    Science.gov (United States)

    Kellogg, Dean L; McCammon, Karen M; Hinchee-Rodriguez, Kathryn S; Adamo, Martin L; Roman, Linda J

    2017-09-01

    Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H 2 O 2 ) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H 2 O 2 -induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H 2 O 2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H 2 O 2 -stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H 2 O 2 -activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  15. Endothelial Nitric Oxide Synthase Phosphorylation at Threonine 495 and Mitochondrial Reactive Oxygen Species Formation in Response to a High H2O2 Concentration

    DEFF Research Database (Denmark)

    Guterbaum, Thomas Jeremy; Braunstein, Thomas Hartig; Fossum, A

    2013-01-01

    Hydrogen peroxide (H₂O₂) is produced in vessels during ischemia/reperfusion and during inflammation, both leading to vascular dysfunction. We investigated cellular pathways involved in endothelial nitric oxide synthase (eNOS) phosphorylation at Threonine 495 (Thr(495)) in human umbilical vein end...

  16. Analysis of Human Bradykinin Receptor Gene and Endothelial Nitric Oxide Synthase Gene Polymorphisms in End-Stage Renal Disease Among Malaysians

    Directory of Open Access Journals (Sweden)

    R. Vasudevan

    2014-06-01

    Full Text Available The aim of this study was to determine the association of the c.894G>T; p.Glu298Asp polymorphism and the variable number tandem repeat (VNTR polymorphism of the endothelial nitric oxide synthase (eNOS gene and c.181C>T polymorphism of the bradykinin type 2 receptor gene (B2R in Malaysian end-stage renal disease (ESRD subjects.

  17. Stimulation of Inducible Nitric Oxide Synthase Expression by Beta Interferon Increases Necrotic Death of Macrophages upon Listeria monocytogenes Infection▿

    OpenAIRE

    Zwaferink, Heather; Stockinger, Silvia; Reipert, Siegfried; Decker, Thomas

    2008-01-01

    Murine macrophage death upon infection with Listeria monocytogenes was previously shown to be increased by beta interferon, produced by the infected cells. We saw that interferon-upregulated caspase activation or other interferon-inducible, death-associated proteins, including TRAIL, protein kinase R, and p53, were not necessary for cell death. Macrophage death was reduced when inducible nitric oxide synthase (iNOS) was inhibited during infection, and iNOS-deficient macrophages were less susc...

  18. Sevoflurane-induced Preconditioning Impact of Protocol and Aprotinin Administration on Infarct Size and Endothelial Nitric-Oxide Synthase Phosphorylation in the Rat Heart In Vivo

    NARCIS (Netherlands)

    Fräßdorf, Jan; Huhn, Ragnar; Weber, Nina C.; Ebel, Dirk; Wingert, Nadja; Preckel, Benedikt; Toma, Octavian; Schlack, Wolfgang; Hollmann, Markus W.

    2010-01-01

    Background Sevoflurane induces preconditioning (SevoPC) 1 he effect of aprotinin and the involvement of endothelial nitric-oxide synthase (NOS) on SevoPC are unknown We investigated (1) whether SevoPC is strengthened by multiple preconditioning cycles (2) whether SevoPC is blocked by aprotinin, and

  19. Role of nitric oxide in methamphetamine neurotoxicity: protection by 7-nitroindazole, an inhibitor of neuronal nitric oxide synthase.

    Science.gov (United States)

    Di Monte, D A; Royland, J E; Jakowec, M W; Langston, J W

    1996-12-01

    The role of nitric oxide (NO.) in the neurotoxic effects of methamphetamine (METH) was evaluated using 7-nitroindazole (7-NI), a potent inhibitor of neuronal nitric oxide synthase. Treatment of mice with 7-NI (50 mg/kg) almost completely counteracted the loss of dopamine, 3,4-dihydroxyphenylacetic acid, and tyrosine hydroxylase immunoreactivity observed 5 days after four injections of 10 or 7.5 mg/kg METH. With the higher dose of METH, this protection at 5 days occurred despite the fact that combined administration of METH and 7-NI significantly increased lethality and exacerbated METH-induced dopamine release (as indicated by a greater dopamine depletion at 90 min and 1 day). Combined treatment with 4 x 10 mg/kg METH and 7-NI also slightly increased the body temperature of mice as compared with METH alone. Thus, the neuroprotective effects of 7-NI are independent from lethality, are not likely to be related to a reduction of METH-induced dopamine release, and are not due to a decrease in body temperature. These results indicate that NO. formation is an important step leading to METH neurotoxicity, and suggest that the cytotoxic properties of NO. may be directly involved in dopaminergic terminal damage.

  20. Cisplatin upregulates mitochondrial nitric oxide synthase and peroxynitrite formation to promote renal injury

    International Nuclear Information System (INIS)

    Jung, Michaela; Hotter, Georgina; Vinas, Jose Luis; Sola, Anna

    2009-01-01

    The mitochondria are a critical target for cisplatin-associated nephrotoxicity. Though nitric oxide formation has been implicated in the toxicity of cisplatin, this formation has not so far been related to a possible activation of mitochondrial nitric oxide synthase (mNOS). We show here that the upregulation of oxide mNOS and peroxynitrite formation in cisplatin treatment are key events that influence the development of the harmful parameters described in cisplatin-associated kidney failure. We confirm this by isolating the mitochondrial fraction of the kidney and across different access routes such as the use of a specific inhibitor of neuronal NOS, L-NPA, a peroxynitrite scavenger, FeTMPyP, and a peroxynitrite donor, SIN-1. The in vitro studies corroborated the information obtained in the in vivo experiments. The administration of cisplatin reveals a clear upregulation in the transcription of neuronal NOS and an increase in the levels of nitrites in the mitochondrial fractions of the kidneys. The upregulated transcription directly affects the cytoskeleton structure and the apoptosis. The inhibition of neuronal NOS reduces the levels of nitrites, cell death, and cytoskeleton derangement. Peroxynitrite is involved in the mechanism promoting the NOS transcription. In addition, in controls SIN-1 imitates the effects of cisplatin. In summary, we demonstrate that upregulation of mNOS in cisplatin treatment is a key component in both the initiation and the spread of cisplatin-associated damage in the kidney. Furthermore, peroxynitrite formation is directly involved in this process

  1. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid

    NARCIS (Netherlands)

    Radtke, O.A.; Kiderlen, A.F.; Kayser, Oliver; Kolodziej, H

    2004-01-01

    The effects of gallic acid on the gene expressions of inducible nitric oxide synthase (iNOS) and the cytokines interleukin (IL)-1, IL-10, IL-12, IL-18, TNF-alpha, and interferon (IFN)-gamma were investigated by reverse-transcription polymerase chain reaction (RT-PCR). The experiments were performed

  2. Contribution of myeloperoxidase and inducible nitric oxide synthase to pathogenesis of psoriasis

    Directory of Open Access Journals (Sweden)

    Nursel Dilek

    2016-12-01

    Full Text Available Introduction : Histological changes of psoriasis include invasion of neutrophils into the epidermis and formation of Munro abscesses in the epidermis. Neutrophils are the predominant white blood cells in circulation when stimulated; they discharge the abundant myeloperoxidase (MPO enzyme that uses hydrogen peroxide to oxidize chloride for killing ingested bacteria. Aim: To investigate the contribution of neutrophils to the pathogenesis of psoriasis at the blood and tissue levels through inducible nitric oxide synthase (iNOS and MPO. Material and methods: A total of 50 adult patients with a chronic plaque form of psoriasis and 25 healthy controls were enrolled to this study. Serum MPO and iNOS levels were measured using ELISA method. Two biopsy specimens were taken in each patient from the center of the lesion and uninvolved skin. Immunohistochemistry was performed for MPO and iNOS on both normal and psoriasis vulgaris biopsies. Results: While a significant difference between serum myeloperoxidase levels were detected, a similar statistical difference between participants in the serum iNOS levels was not found. In immunohistochemistry, intensely stained leukocytes with MPO and intensely staining with iNOS in psoriatic skin was observed. Conclusions : Neutrophils in psoriasis lesions are actively producing MPO and this indirectly triggers the synthesis of iNOS. Targeting of MPO or synthesis of MPO in the lesion area may contribute to development of a new treatment option.

  3. Chronic inhibition of nitric oxide synthase augments the ACTH response to exercise.

    Science.gov (United States)

    Jankord, Ryan; McAllister, Richard M; Ganjam, Venkataseshu K; Laughlin, M Harold

    2009-03-01

    Exercise can activate the hypothalamo-pituitary-adrenocortical (HPA) axis, and regular exercise training can impact how the HPA axis responds to stress. The mechanism by which acute exercise induces HPA activity is unclear. Therefore, the purpose of this study was to test the hypothesis that nitric oxide modulates the neuroendocrine component of the HPA axis during exercise. Female Yucatan miniature swine were treated with N-nitro-l-arginine methyl ester (l-NAME) to test the effect of chronic nitric oxide synthase (NOS) inhibition on the ACTH response to exercise. In addition, we tested the effect of NOS inhibition on blood flow to tissues of the HPA axis and report the effects of handling and treadmill exercise on the plasma concentrations of ACTH and cortisol. Chronic NOS inhibition decreased plasma NO(x) levels by 44%, increased mean arterial blood pressure by 46%, and increased expression of neuronal NOS in carotid arteries. Vascular conductance was decreased in the frontal cortex, the hypothalamus, and the adrenal gland. Chronic NOS inhibition exaggerated the ACTH response to exercise. In contrast, chronic NOS inhibition decreased the ACTH response to restraint, suggesting that the role of NO in modulating HPA activity is stressor dependent. These results demonstrate that NOS activity modulates the response of the neuroendocrine component of the HPA axis during exercise stress.

  4. Endothelium derived nitric oxide synthase negatively regulates the PDGF-survivin pathway during flow-dependent vascular remodeling.

    Directory of Open Access Journals (Sweden)

    Jun Yu

    Full Text Available Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known. Here we show that abnormal flow-dependent remodeling in eNOS knockout mice (eNOS (-/- is associated with activation of the platelet derived growth factor (PDGF signaling pathway leading to the induction of the inhibitor of apoptosis, survivin. Interfering with PDGF signaling or survivin function corrects the abnormal remodeling seen in eNOS (-/- mice. Moreover, nitric oxide (NO negatively regulates PDGF driven survivin expression and cellular proliferation in cultured vascular smooth muscle cells. Collectively, our data suggests that eNOS negatively regulates the PDGF-survivin axis to maintain proportional flow-dependent luminal remodeling and vascular quiescence.

  5. Biochemical identification of residues that discriminate between 3,4-dihydroxyphenylalanine decarboxylase and 3,4-dihydroxyphenylacetaldehyde synthase-mediated reactions.

    Science.gov (United States)

    Liang, Jing; Han, Qian; Ding, Haizhen; Li, Jianyong

    2017-12-01

    In available insect genomes, there are several L-3,4-dihydroxyphenylalanine (L-dopa) decarboxylase (DDC)-like or aromatic amino acid decarboxylase (AAAD) sequences. This contrasts to those of mammals whose genomes contain only one DDC. Our previous experiments established that two DDC-like proteins from Drosophila actually mediate a complicated decarboxylation-oxidative deamination process of dopa in the presence of oxygen, leading to the formation of 3,4-dihydroxyphenylacetaldehyde (DHPA), CO 2 , NH 3, and H 2 O 2 . This contrasts to the typical DDC-catalyzed reaction, which produces CO 2 and dopamine. These DDC-like proteins were arbitrarily named DHPA synthases based on their critical role in insect soft cuticle formation. Establishment of reactions catalyzed by these AAAD-like proteins solved a puzzle that perplexed researchers for years, but to tell a true DHPA synthase from a DDC in the insect AAAD family remains problematic due to high sequence similarity. In this study, we performed extensive structural and biochemical comparisons between DHPA synthase and DDC. These comparisons identified several target residues potentially dictating DDC-catalyzed and DHPA synthase-catalyzed reactions, respectively. Comparison of DHPA synthase homology models with crystal structures of typical DDC proteins, particularly residues in the active sites, provided further insights for the roles these identified target residues play. Subsequent site-directed mutagenesis of the tentative target residues and activity evaluations of their corresponding mutants determined that active site His192 and Asn192 are essential signature residues for DDC- and DHPA synthase-catalyzed reactions, respectively. Oxygen is required in DHPA synthase-mediated process and this oxidizing agent is reduced to H 2 O 2 in the process. Biochemical assessment established that H 2 O 2 , formed in DHPA synthase-mediated process, can be reused as oxidizing agent and this active oxygen species is reduced to H 2

  6. Bacterial Nitric Oxide Synthase Is Required for the Staphylococcus aureus Response to Heme Stress.

    Science.gov (United States)

    Surdel, Matthew C; Dutter, Brendan F; Sulikowski, Gary A; Skaar, Eric P

    2016-08-12

    Staphylococcus aureus is a pathogen that causes significant morbidity and mortality worldwide. Within the vertebrate host, S. aureus requires heme as a nutrient iron source and as a cofactor for multiple cellular processes. Although required for pathogenesis, excess heme is toxic. S. aureus employs a two-component system, the heme sensor system (HssRS), to sense and protect against heme toxicity. Upon activation, HssRS induces the expression of the heme-regulated transporter (HrtAB), an efflux pump that alleviates heme toxicity. The ability to sense and respond to heme is critical for the pathogenesis of numerous Gram-positive organisms, yet the mechanism of heme sensing remains unknown. Compound '3981 was identified in a high-throughput screen as an activator of staphylococcal HssRS that triggers HssRS independently of heme accumulation. '3981 is toxic to S. aureus; however, derivatives of '3981 were synthesized that lack toxicity while retaining HssRS activation, enabling the interrogation of the heme stress response without confounding toxic effects of the parent molecule. Using '3981 derivatives as probes of the heme stress response, numerous genes required for '3981-induced activation of HssRS were uncovered. Specifically, multiple genes involved in the production of nitric oxide were identified, including the gene encoding bacterial nitric oxide synthase (bNOS). bNOS protects S. aureus from oxidative stress imposed by heme. Taken together, this work identifies bNOS as crucial for the S. aureus heme stress response, providing evidence that nitric oxide synthesis and heme sensing are intertwined.

  7. The expression of neuronal nitric oxide synthase (NNOS) in brainstem and cerebellum of spontaneously hypertensive rats (SHR): The effect of chronic captopril treatment

    Czech Academy of Sciences Publication Activity Database

    Hojná, Silvie; Dobešová, Zdenka; Zicha, Josef; Kuneš, Jaroslav

    2005-01-01

    Roč. 46, č. 4 (2005), s. 895-895 ISSN 0194-911X. [Annual Meeting of the European Council for Cardiovascular Research (ECCR) /10./. 14.10.2005-16.10.2005, La Colle sur Loup] R&D Projects: GA ČR(CZ) GA305/03/0769 Keywords : nitric oxide synthase * brain * captopril * hypertension Subject RIV: ED - Physiology

  8. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    International Nuclear Information System (INIS)

    Park, Yu-Seon; An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary; Zhuo, Kai; Yoo, Tae Kyong; Chung, Chan-Hwa

    2016-01-01

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu_2O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  9. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yu-Seon [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Zhuo, Kai [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); Yoo, Tae Kyong [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Chung, Chan-Hwa, E-mail: chchung@skku.edu [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of)

    2016-12-15

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu{sub 2}O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  10. Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Saikumar, Jagannath H; Massey, Katherine J; Hong, Nancy J; Dominici, Fernando P; Carretero, Oscar A; Garvin, Jeffrey L

    2016-02-01

    Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Stêfany Bruno De Assis Cau

    2012-06-01

    Full Text Available Vascular aging is the term that describes the structural and functional disturbances of the vasculature with advancing aging. The molecular mechanisms of aging-associated endothelial dysfunction are complex, but reduced nitric oxide (NO bioavailability and altered vascular expression and activity of NO synthase (NOS enzymes have been implicated as major players. Impaired vascular relaxation in aging has been attributed to reduced endothelial NOS (eNOS-derived NO, while increased inducible NOS (iNOS expression seems to account for nitrosative stress and disrupted vascular homeostasis. Although eNOS is considered the main source of NO in the vascular endothelium, neuronal NOS (nNOS also contributes to endothelial cells-derived NO, a mechanism that is reduced in aging. Pharmacological modulation of NO generation and expression/activity of NOS isoforms may represent a therapeutic alternative to prevent the progression of cardiovascular diseases. Accordingly, this review will focus on drugs that modulate NO bioavailability, such as nitrite anions and NO-releasing non-steroidal anti-inflammatory drugs, hormones (dehydroepiandrosterone and estrogen, statins, resveratrol and folic acid, since they may be useful to treat/to prevent aging-associated vascular dysfunction. The impact of these therapies on life quality in elderly and longevity will be discussed.

  12. Inhibitory effect of organotin compounds on rat neuronal nitric oxide synthase through interaction with calmodulin

    International Nuclear Information System (INIS)

    Ohashi, Koji; Kominami, Shiro; Yamazaki, Takeshi; Ohta, Shigeru; Kitamura, Shigeyuki

    2004-01-01

    Organotin compounds, triphenyltin (TPT), tributyltin, dibutyltin, and monobutyltin (MBT), showed potent inhibitory effects on both L-arginine oxidation to nitric oxide and L-citrulline, and cytochrome c reduction catalyzed by recombinant rat neuronal nitric oxide synthase (nNOS). The two inhibitory effects were almost parallel. MBT and TPT showed the highest inhibitory effects, followed by tributyltin and dibutyltin; TPT and MBT showed inhibition constant (IC 50 ) values of around 10 μM. Cytochrome c reduction activity was markedly decreased by removal of calmodulin (CaM) from the complete mixture, and the decrease was similar to the extent of inhibition by TPT and MBT. The inhibitory effect of MBT on the cytochrome c reducing activity was rapidly attenuated upon dilution of the inhibitor, and addition of a high concentration of CaM reactivated the cytochrome c reduction activity inhibited by MBT. However, other cofactors such as FAD, FMN or tetrahydrobiopterin had no such ability. The inhibitory effect of organotin compounds (100 μM) on L-arginine oxidation of nNOS almost vanished when the amount of CaM was sufficiently increased (150-300 μM). It was confirmed by CaM-agarose column chromatography that the dissociation of nNOS-CaM complex was induced by organotin compounds. These results indicate that organotin compounds disturb the interaction between CaM and nNOS, thereby inhibiting electron transfer from the reductase domain to cytochrome c and the oxygenase domain

  13. The human coronary vasodilatory response to acute mental stress is mediated by neuronal nitric oxide synthase

    Science.gov (United States)

    Khan, Sitara G.; Melikian, Narbeh; Shabeeh, Husain; Cabaco, Ana R.; Martin, Katherine; Khan, Faisal; O’Gallagher, Kevin; Chowienczyk, Philip J.

    2017-01-01

    Mental stress-induced ischemia approximately doubles the risk of cardiac events in patients with coronary artery disease, yet the mechanisms underlying changes in coronary blood flow in response to mental stress are poorly characterized. Neuronal nitric oxide synthase (nNOS) regulates basal coronary blood flow in healthy humans and mediates mental stress-induced vasodilation in the forearm. However, its possible role in mental stress-induced increases in coronary blood flow is unknown. We studied 11 patients (6 men and 5 women, mean age: 58 ± 14 yr) undergoing elective diagnostic cardiac catheterization and assessed the vasodilator response to mental stress elicited by the Stroop color-word test. Intracoronary substance P (20 pmol/min) and isosorbide dinitrate (1 mg) were used to assess endothelium-dependent and -independent vasodilation, respectively. Coronary blood flow was estimated using intracoronary Doppler recordings and quantitative coronary angiography to measure coronary artery diameter. Mental stress increased coronary flow by 34 ± 7.0% over the preceding baseline during saline infusion (P coronary artery diameter by 6.9 ± 3.7% (P = 0.02) and 0.5 ± 2.8% (P = 0.51) in the presence of S-methyl-l-thiocitrulline. The response to substance P did not predict the response to mental stress (r2 = −0.22, P = 0.83). nNOS mediates the human coronary vasodilator response to mental stress, predominantly through actions at the level of coronary resistance vessels. NEW & NOTEWORTHY Acute mental stress induces vasodilation of the coronary microvasculature. Here, we show that this response involves neuronal nitric oxide synthase in the human coronary circulation. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/nnos-and-coronary-flow-during-mental-stress/. PMID:28646032

  14. The human coronary vasodilatory response to acute mental stress is mediated by neuronal nitric oxide synthase.

    Science.gov (United States)

    Khan, Sitara G; Melikian, Narbeh; Shabeeh, Husain; Cabaco, Ana R; Martin, Katherine; Khan, Faisal; O'Gallagher, Kevin; Chowienczyk, Philip J; Shah, Ajay M

    2017-09-01

    Mental stress-induced ischemia approximately doubles the risk of cardiac events in patients with coronary artery disease, yet the mechanisms underlying changes in coronary blood flow in response to mental stress are poorly characterized. Neuronal nitric oxide synthase (nNOS) regulates basal coronary blood flow in healthy humans and mediates mental stress-induced vasodilation in the forearm. However, its possible role in mental stress-induced increases in coronary blood flow is unknown. We studied 11 patients (6 men and 5 women, mean age: 58 ± 14 yr) undergoing elective diagnostic cardiac catheterization and assessed the vasodilator response to mental stress elicited by the Stroop color-word test. Intracoronary substance P (20 pmol/min) and isosorbide dinitrate (1 mg) were used to assess endothelium-dependent and -independent vasodilation, respectively. Coronary blood flow was estimated using intracoronary Doppler recordings and quantitative coronary angiography to measure coronary artery diameter. Mental stress increased coronary flow by 34 ± 7.0% over the preceding baseline during saline infusion ( P stress increased coronary artery diameter by 6.9 ± 3.7% ( P = 0.02) and 0.5 ± 2.8% ( P = 0.51) in the presence of S -methyl-l-thiocitrulline. The response to substance P did not predict the response to mental stress ( r 2 = -0.22, P = 0.83). nNOS mediates the human coronary vasodilator response to mental stress, predominantly through actions at the level of coronary resistance vessels. NEW & NOTEWORTHY Acute mental stress induces vasodilation of the coronary microvasculature. Here, we show that this response involves neuronal nitric oxide synthase in the human coronary circulation.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/nnos-and-coronary-flow-during-mental-stress/. Copyright © 2017 the American Physiological Society.

  15. Effects of long-term inhibition of neuronal nitric oxide synthase on blood pressure and renin release

    DEFF Research Database (Denmark)

    Ollerstam, A.; Skøtt, O.; Ek, J.

    2001-01-01

    Nitric oxide (NO) produced by neuronal NO-synthase (nNOS) in macula densa cells may be involved in the control of renin release. 7-Nitro indazole (7-NI) inhibits nNOS, and we investigated the effect of short- (4 days) and long-term (4 weeks) 7-NI treatment on blood pressure (BP), plasma renin...... LS rats (107 +/- 15 vs. 56 +/- 1 mGU mL(-1)). Stimulation of PRC in LS rats was further enhanced by 7-NI after 4 days of treatment, but not affected in rats treated for 4 weeks. This suggests that inhibition of nNOS stimulates renin release but that this stimulatory effect in the long run might...

  16. Intermittent pneumatic compression regulates expression of nitric oxide synthases in skeletal muscles.

    Science.gov (United States)

    Tan, Xiangling; Qi, Wen-Ning; Gu, Xiaosong; Urbaniak, James R; Chen, Long-En

    2006-01-01

    This study investigated the effects of intermittent pneumatic compression (IPC) on expression of nitric oxide synthase (NOS) isoforms in compressed (anterior tibialis, AT) and uncompressed (cremaster muscles, CM) skeletal muscles. Following IPC application of 0.5, 1, and 5h on both legs of rats, the endothelial NOS (eNOS) mRNA expression was significantly up-regulated to 1.2-, 1.8, and 2.7-fold from normal, respectively, in both AT and CM, and protein expression increased more than 1.5-fold of normal at each time point. Similarly, neuronal NOS expression was up-regulated, but to a lesser degree. In contrast, inducible NOS expression was significantly and time-dependently down-regulated in both muscles. After IPC cessation, eNOS levels returned to normal in both AT and CM. The results confirm our hypothesis that IPC-induced vasodilation is mediated by regulating expression of NOS isoforms, in particular eNOS, in both compressed and uncompressed skeletal muscles. The results also suggest the importance of precisely characterizing expression of each NOS isoform in tissue pathophysiology.

  17. Wounding stimulates ALLENE OXIDE SYNTHASE gene and increases the level of jasmonic acid in Ipomoea nil cotyledons

    Directory of Open Access Journals (Sweden)

    Emilia Wilmowicz

    2016-03-01

    Full Text Available Allene oxide synthase (AOS encodes the first enzyme in the lipoxygenase pathway, which is responsible for jasmonic acid (JA formation. In this study we report the molecular cloning and characterization of InAOS from Ipomoea nil. The full-length gene is composed of 1662 bp and encodes for 519 amino acids. The predicted InAOS contains PLN02648 motif, which is evolutionarily conserved and characteristic for functional enzymatic proteins. We have shown that wounding led to a strong stimulation of the examined gene activity in cotyledons and an increase in JA level, which suggest that this compound may be a modulator of stress responses in I. nil.

  18. Cyclooxygenase 2 and neuronal nitric oxide synthase expression in the renal cortex are not interdependent in states of salt deficiency

    DEFF Research Database (Denmark)

    Castrop, H; Kammerl, M; Mann, Birgitte

    2000-01-01

    Neuronal nitric oxide synthase (nNOS) and cyclooxygenase-2 (COX-2) expression in the kidney are localized to the cortical thick ascending limb of the loop of Henle (cTALH), including the macula region, and increase after salt restriction. Because of the similar localization and regulation of n...... excretion. These findings suggest that under these conditions the control of nNOS and COX-2 gene expression in the macula densa regions of the kidney cortex are not dependent on each other....

  19. eNOS对糖尿病视网膜病变的研究进展%Research Progress of Endothelial Nitric Oxide Synthase on Diabetic Retinopathy

    Institute of Scientific and Technical Information of China (English)

    汪权志; 夏媛玲

    2017-01-01

    糖尿病视网膜病变(diabetic retinopathy ,DR)是糖尿病在眼部常见并发症,微血管的病变导致相关并发症严重影响患者视觉和生活质量。而内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)作为血管内皮细胞代谢中的限速酶,在糖尿病视网膜病变(diabetic retinopathy ,DR)疾病进展中可能有一定的作用。本文对内皮型一氧化氮合酶在糖尿病视网膜病变研究进展进行综述。%Diabetic retinopathy is a common complication of diabetes in the eye, microvascular disease-related complications seriously affect the patient's visual and quality of life. Endothelial nitric oxide synthase, a rate-limiting enzyme in the metabolism of vascular endothelial cells, may play a role in the progression of diabetic retinopathy. This review summarizes the progress of endothelial nitric oxide synthase in diabetic retinopathy.

  20. Association of a neuronal nitric oxide synthase gene polymorphism with levodopa-induced dyskinesia in Parkinson's disease.

    Science.gov (United States)

    Santos-Lobato, Bruno Lopes; Borges, Vanderci; Ferraz, Henrique Ballalai; Mata, Ignacio Fernandez; Zabetian, Cyrus P; Tumas, Vitor

    2018-04-01

    Levodopa-induced dyskinesia (LID) is a common complication of advanced Parkinson's disease (PD). PD physiopathology is associated with dopaminergic and non-dopaminergic pathways, including the nitric oxide system. The present study aims to examine the association of a neuronal nitric oxide synthase gene (NOS1) single nucleotide polymorphism (rs2682826) with LID in PD patients. We studied 186 PD patients using levodopa. The presence of LID was defined as a MDS-UPDRS Part IV score ≥1 on item 4.1. We tested for association between NOS1 rs2682826 and the presence, daily frequency, and functional impact of LID using regression models, adjusting for important covariates. There was no significant association between genotype and any of the LID-related variables examined. Our results suggest that this NOS1 polymorphism does not contribute to LID susceptibility or severity. However, additional studies that include a comprehensive set of NOS1 variants will be needed to fully define the role of this gene in LID. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Isoeugenin, a Novel Nitric Oxide Synthase Inhibitor Isolated from the Rhizomes of Imperata cylindrica

    Directory of Open Access Journals (Sweden)

    Hyo-Jin An

    2015-12-01

    Full Text Available Phytochemical studies on the constituents of the rhizomes of Imperata cylindrica (Gramineae were performed using high-performance liquid chromatography (HPLC. We also aimed to search for any biologically active substance capable of inhibiting nitric oxide (NO formation in lipopolysaccharide (LPS-activated macrophage 264.7 cells, by testing four compounds isolated from this plant. Four compounds, including a new chromone, isoeugenin, along with ferulic acid, p-coumaric acid, and caffeic acid were isolated and identified by NMR spectroscopy. The structure of isoeugenin was determined as 7-hydroxy-5-methoxy-2-methylchromone by the 2D-NMR technique. Among the four compounds, isoeugenin has the lowest IC50 value on the inhibition of NO production in LPS-activated macrophage RAW264.7 cells (IC50, 9.33 μg/mL. In addition, isoeugenin significantly suppressed the LPS-induced expressions of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, and proinflammatory cytokines mRNA levels. Taken together, these results suggest that the anti-inflammatory activity of isoeugenin is associated with the down-regulation of iNOS, COX-2, and pro-inflammatory cytokines in RAW264.7 cells. Accordingly, our results suggest that the new chromone isoegenin should be considered a potential treatment for inflammatory disease.

  2. Isoeugenin, a Novel Nitric Oxide Synthase Inhibitor Isolated from the Rhizomes of Imperata cylindrica.

    Science.gov (United States)

    An, Hyo-Jin; Nugroho, Agung; Song, Byong-Min; Park, Hee-Juhn

    2015-12-01

    Phytochemical studies on the constituents of the rhizomes of Imperata cylindrica (Gramineae) were performed using high-performance liquid chromatography (HPLC). We also aimed to search for any biologically active substance capable of inhibiting nitric oxide (NO) formation in lipopolysaccharide (LPS)-activated macrophage 264.7 cells, by testing four compounds isolated from this plant. Four compounds, including a new chromone, isoeugenin, along with ferulic acid, p-coumaric acid, and caffeic acid were isolated and identified by NMR spectroscopy. The structure of isoeugenin was determined as 7-hydroxy-5-methoxy-2-methylchromone by the 2D-NMR technique. Among the four compounds, isoeugenin has the lowest IC50 value on the inhibition of NO production in LPS-activated macrophage RAW264.7 cells (IC50, 9.33 μg/mL). In addition, isoeugenin significantly suppressed the LPS-induced expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines mRNA levels. Taken together, these results suggest that the anti-inflammatory activity of isoeugenin is associated with the down-regulation of iNOS, COX-2, and pro-inflammatory cytokines in RAW264.7 cells. Accordingly, our results suggest that the new chromone isoegenin should be considered a potential treatment for inflammatory disease.

  3. Upregulation of cyclooxygenase-2 expression in porcine macula densa with chronic nitric oxide synthase inhibition.

    Science.gov (United States)

    Kommareddy, M; McAllister, R M; Ganjam, V K; Turk, J R; Laughlin, M Harold

    2011-11-01

    The objective of this study was to investigate the effects of chronic inhibition of nitric oxide synthase (NOS) on cyclooxygenase-2 (COX-2) expression in the macula densa (MD) of swine, as well as the effects on expression of related proteins. Adult female Yucatan swine were given either tap water (control, n = 6) or water with N (G)-nitro-L-arginine methyl ester (L-NAME, 100 mg/liter, n = 5) for a minimum of 30 days. Duplicate samples of kidney were fixed or snap frozen. There was a significant (P = .0082) upregulation of COX-2 mRNA expression in the MD of L-NAME, as well as an apparent increase in COX-2 protein. Plasma renin activity also increased with L-NAME treatment (control, 0.34 ± 0.08 ng/ml; L-NAME, 1.26 ± 0.03 ng/ml; P = .00000003). There were no differences between groups in expression of either inducible NOS or renin protein or in serum electrolyte concentrations. In conclusion, with chronic inhibition of NOS, COX-2 in MD is upregulated, perhaps to compensate for loss of nitric oxide. Increases in COX-2 products may counteract renal arteriolar constriction and sustain renin release.

  4. Cortisol regulates nitric oxide synthase in freshwater and seawater acclimated rainbow trout, Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Gerber, Lucie; Madsen, Steffen S; Jensen, Frank B

    2017-01-01

    Cortisol and nitric oxide (NO) are regulators of ion transport and metabolic functions in fish. In the gill, they show opposite effects on Na(+)/K(+)-ATPase (NKA) activity: cortisol stimulates NKA activity while NO inhibits NKA activity. We hypothesized that cortisol may impact NO production...... in osmoregulatory tissues by regulating NO synthase (NOS) expression. We evaluated the influence of cortisol treatment on mRNA expression of Nos1 and Nos2 in gill, kidney and middle intestine of both freshwater (FW) and seawater (SW) acclimated rainbow trout and found both tissue- and salinity-dependent effects....... Nos2 expression was down-regulated in the gill by cortisol injection in both FW and SW trout. This was substantiated by incubating gill tissue with cortisol ex vivo. Similarly, cortisol injection significantly down-regulated Nos2 expression in kidney of SW fish but not in FW fish. In the middle...

  5. Nitric oxide in the rat cerebellum after hypoxia/ischemia.

    Science.gov (United States)

    Rodrigo, José; Fernández, Ana Patricia; Alonso, David; Serrano, Julia; Fernández-Vizarra, Paula; Martínez-Murillo, Ricardo; Bentura, María Luisa; Martinez, Alfredo

    2004-01-01

    Nitric oxide is a regulatory biological substance and an important intracellular messenger that acts as a specific mediator of various neuropathological disorders. In mammals and invertebrates, nitric oxide is synthesized from L-arginine in the central and peripheral neural structures by the endothelial, neuronal and inducible enzymatic isoforms of nitric oxide synthase. Nitric oxide may affect the function of various neurotransmitter-specific systems, and is involved in neuromodulation, reproductive function, immune response, and regulation of the cerebral blood circulation. This makes nitric oxide the main candidate in brain responses to brain ischemia/hypoxia. The cerebellum has been reported to be the area of the brain that has the highest nitric oxide synthase activity and the highest concentration of glutamate and aspartate. By glutamate receptors and physiological action of nitric oxide, cyclic guanisine-5'-monophosphate may be rapidly increased. The cerebellum significantly differs with respect to ischemia and hypoxia, this response being directly related to the duration and intensity of the injury. The cerebellum could cover the eventual need for nitric oxide during the hypoxia, boosting the nitric oxide synthase activity, but overall ischemia would require de novo protein synthesis, activating the inducible nitric oxide synthase to cope with the new situation. The specific inhibitors of nitric oxide synthesis show neuroprotective effects.

  6. Effect of systemic nitric oxide synthase inhibition on optic disc oxygen partial pressure in normoxia and in hypercapnia.

    Science.gov (United States)

    Petropoulos, Ioannis K; Pournaras, Jean-Antoine C; Stangos, Alexandros N; Pournaras, Constantin J

    2009-01-01

    To investigate the effect of systemic nitric oxide synthase (NOS) inhibition on optic disc oxygen partial pressure (PO(2)) in normoxia and hypercapnia. Intervascular optic disc PO(2) was measured in 12 anesthetized minipigs by using oxygen-sensitive microelectrodes placed 0.1), despite a 21% increase of mean arterial pressure. Optic disc PO(2) increase under hypercapnia was blunted after L-NAME injection (DeltaPO(2) = 0.6 +/- 1.1 mm Hg; 3%; P > 0.1), and this effect was reversible by L-arginine. Moreover, L-NAME reduced the response to carbogen by 29% (DeltaPO(2) = 9.1 +/- 4.4 mm Hg; 49%; P = 0.01 versus before L-NAME). The response to hyperoxia was not affected. Whereas systemic NOS inhibition did not affect optic disc PO(2) in normoxia, a blunting effect was noted on the CO(2)-induced optic disc PO(2) increase. Nitric oxide appears to mediate the hypercapnic optic disc PO(2) increase.

  7. Numerical simulation of displacement instabilities of surface grooves on an alumina forming alloy during thermal cycling oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Feng Xun; Kang, Ki Ju [Chonnam National University, Gwangju (Korea, Republic of); Ding, Jun [Chongqing University of Technology, Chongqing (China)

    2009-08-15

    Displacement instability of the thermally grown oxide (TGO) is a fundamental source of failure in thermal barrier systems. In this work, a finite element analysis has been performed to analyze the displacement instability occurring at a heat resistant metal with superficial TGO subjected to thermal cycling. Lateral and in-plane growth of the TGO which happens during high temperature is simulated by means of material property change from the substrate metal to the TGO. Most of the material properties including the TGO growth are based on the results experimentally obtained in-house. Results of the finite element analyses agree well with the experimental observation, which proves the accuracy and validity of this simulation. The technique will be useful for future work on more complicated phenomena such as deformation under thermo-mechanical cycling

  8. Effect of an inhibitor of neuronal nitric oxide synthase 7-nitroindazole on cerebral hemodynamic response and brain excitability in urethane-anesthetized rats

    Czech Academy of Sciences Publication Activity Database

    Brožíčková, Carole; Otáhal, Jakub

    2013-01-01

    Roč. 62, Suppl.1 (2013), S57-S66 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP303/10/0999; GA ČR(CZ) GPP304/11/P386; GA ČR(CZ) GBP304/12/G069 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : cerebral hemodynamic response * brain excitability * neuronal nitric oxide synthase * 7-nitroindazole * rat Subject RIV: FH - Neurology Impact factor: 1.487, year: 2013

  9. Telmisartan activates endothelial nitric oxide synthase via Ser1177 phosphorylation in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Masahiro Myojo

    Full Text Available Because endothelial nitric oxide synthase (eNOS has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177 in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172 and eNOS and the concentration of intracellular guanosine 3',5'-cyclic monophosphate (cGMP. Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling.

  10. Prenatal Brain Damage in Preeclamptic Animal Model Induced by Gestational Nitric Oxide Synthase Inhibition

    Directory of Open Access Journals (Sweden)

    Begoña Pellicer

    2011-01-01

    Full Text Available Cerebral palsy is a major neonatal handicap with unknown aetiology. There is evidence that prenatal brain injury is the leading cause of CP. Severe placental pathology accounts for a high percentage of cases. Several factors predispose to prenatal brain damage but when and how they act is unclear. The aim of this paper was to determine if hypoxia during pregnancy leads to damage in fetal brain and to evaluate the localization of this injury. An animal model of chronic hypoxia produced by chronic administration of a nitric oxide synthase inhibitor (L-NAME was used to evaluate apoptotic activity in fetal brains and to localize the most sensitive areas. L-NAME reproduces a preeclamptic-like condition with increased blood pressure, proteinuria, growth restriction and intrauterine mortality. Apoptotic activity was increased in L-NAME brains and the most sensitive areas were the subventricular and pallidum zone. These results may explain the clinical features of CP. Further studies are needed.

  11. Synthesis and enzymatic evaluation of 2- and 4-aminothiazole-based inhibitors of neuronal nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Graham R. Lawton

    2009-06-01

    Full Text Available Highly potent and selective inhibitors of neuronal nitric oxide synthase (nNOS possessing a 2-aminopyridine group were recently designed and synthesized in our laboratory and were shown to have significant in vivo efficacy. In this work, analogs of our lead compound possessing 2- and 4-aminothiazole rings in place of the aminopyridine were synthesized. The less basic aminothiazole rings will be less protonated at physiological pH than the aminopyridine ring, and so the molecule will carry a lower net charge. This could lead to an increased ability to cross the blood-brain barrier thereby increasing the in vivo potency of these compounds. The 2-aminothiazole-based compound was less potent than the 2-aminopyridine-based analogue. 4-Aminothiazoles were unstable in water, undergoing tautomerization and hydrolysis to give inactive thiazolones.

  12. Oxidized phospholipids induce ceramide accumulation in RAW 264.7 macrophages: role of ceramide synthases.

    Directory of Open Access Journals (Sweden)

    Lingaraju M Halasiddappa

    Full Text Available Oxidized phospholipids (OxPLs, including 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC and 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine (POVPC are among several biologically active derivatives that are generated during oxidation of low-density lipoproteins (LDLs. These OxPLs are factors contributing to pro-atherogenic effects of oxidized LDLs (OxLDLs, including inflammation, proliferation and death of vascular cells. OxLDL also elicits formation of the lipid messenger ceramide (Cer which plays a pivotal role in apoptotic signaling pathways. Here we report that both PGPC and POVPC are cytotoxic to cultured macrophages and induce apoptosis in these cells which is associated with increased cellular ceramide levels after several hours. In addition, exposure of RAW 264.7 cells to POVPC and PGPC under the same conditions resulted in a significant increase in ceramide synthase activity, whereas, acid or neutral sphingomyelinase activities were not affected. PGPC is not only more toxic than POVPC, but also a more potent inducer of ceramide formation by activating a limited subset of CerS isoforms. The stimulated CerS activities are in line with the C16-, C22-, and C24:0-Cer species that are generated under the influence of the OxPL. Fumonisin B1, a specific inhibitor of CerS, suppressed OxPL-induced ceramide generation, demonstrating that OxPL-induced CerS activity in macrophages is responsible for the accumulation of ceramide. OxLDL elicits the same cellular ceramide and CerS effects. Thus, it is concluded that PGPC and POVPC are active components that contribute to the capacity of this lipoprotein to elevate ceramide levels in macrophages.

  13. Cooperation and competition between adenylate kinase, nucleoside diphosphokinase, electron transport, and ATP synthase in plant mitochondria studied by 31P-nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Roberts, J.K.M.; Aubert, S.; Gout, E.; Bligny, R.; Douce, R.

    1997-01-01

    Nucleotide metabolism in potato (Solanum tuberosum) mitochondria was studied using 31P-nuclear magnetic resonance spectroscopy and the O2 electrode. Immediately following the addition of ADP, ATP synthesis exceeded the rate of oxidative phosphorylation, fueled by succinate oxidation, due to mitochondrial adenylate kinase (AK) activity two to four times the maximum activity of ATP synthase. Only when the AK reaction approached equilibrium was oxidative phosphorylation the primary mechanism for net ATP synthesis. A pool of sequestered ATP in mitochondria enabled AK and ATP synthase to convert AMP to ATP in the presence of exogenous inorganic phosphate. During this conversion, AK activity can indirectly influence rates of oxidation of both succinate and NADH via changes in mitochondrial ATP. Mitochondrial nucleoside diphosphokinase, in cooperation with ATP synthase, was found to facilitate phosphorylation of nucleoside diphosphates other than ADP at rates similar to the maximum rate of oxidative phosphorylation. These results demonstrate that plant mitochondria contain all of the machinery necessary to rapidly regenerate nucleoside triphosphates from AMP and nucleoside diphosphates made during cellular biosynthesis and that AK activity can affect both the amount of ADP available to ATP synthase and the level of ATP regulating electron transport

  14. Inducible nitric-oxide synthase plays a minimal role in lymphocytic choriomeningitis virus-induced, T cell-mediated protective immunity and immunopathology

    DEFF Research Database (Denmark)

    Bartholdy, C; Nansen, A; Christensen, Jeanette Erbo

    1999-01-01

    -mediated immune response was found to be unaltered in iNOS-deficient mice compared with wild-type C57BL/6 mice, and LCMV- induced general immunosuppression was equally pronounced in both strains. In vivo analysis revealed identical kinetics of virus clearance, as well as unaltered clinical severity of systemic......By using mice with a targetted disruption in the gene encoding inducible nitric-oxide synthase (iNOS), we have studied the role of nitric oxide (NO) in lymphocytic choriomeningitis virus (LCMV)-induced, T cell-mediated protective immunity and immunopathology. The afferent phase of the T cell...... LCMV infection in both strains. Concerning the outcome of intracerebral infection, no significant differences were found between iNOS-deficient and wild-type mice in the number or composition of mononuclear cells found in the cerebrospinal fluid on day 6 post-infection. Likewise, NO did not influence...

  15. Nitric oxide: a physiologic messenger.

    Science.gov (United States)

    Lowenstein, C J; Dinerman, J L; Snyder, S H

    1994-02-01

    To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.

  16. Co-ordinate variations in methylmalonyl-CoA mutase and methionine synthase, and the cobalamin cofactors in human glioma cells during nitrous oxide exposure and the subsequent recovery phase.

    Science.gov (United States)

    Riedel, B; Fiskerstrand, T; Refsum, H; Ueland, P M

    1999-07-01

    We investigated the co-ordinate variations of the two cobalamin (Cbl)-dependent enzymes, methionine synthase (MS) and methylmalonyl-CoA mutase (MCM), and measured the levels of their respective cofactors, methylcobalamin (CH3Cbl) and adenosylcobalamin (AdoCbl) in cultured human glioma cells during nitrous oxide exposure and during a subsequent recovery period of culture in a nitrous oxide-free atmosphere (air). In agreement with published data, MS as the primary target of nitrous oxide was inactivated rapidly (initial rate of 0.06 h(-1)), followed by reduction of CH3Cbl (to ordinate distribution of Cbl cofactors during depletion and repletion.

  17. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance.

    Science.gov (United States)

    Chakraborty, Jayashree B; Mahato, Sanjit K; Joshi, Kalpana; Shinde, Vaibhav; Rakshit, Srabanti; Biswas, Nabendu; Choudhury Mukherjee, Indrani; Mandal, Labanya; Ganguly, Dipyaman; Chowdhury, Avik A; Chaudhuri, Jaydeep; Paul, Kausik; Pal, Bikas C; Vinayagam, Jayaraman; Pal, Churala; Manna, Anirban; Jaisankar, Parasuraman; Chaudhuri, Utpal; Konar, Aditya; Roy, Siddhartha; Bandyopadhyay, Santu

    2012-01-01

    Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings. © 2011 Japanese Cancer Association.

  18. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats

    International Nuclear Information System (INIS)

    Morales, Ana I.; Vicente-Sanchez, Cesar; Jerkic, Mirjana; Santiago, Jose M.; Sanchez-Gonzalez, Penelope D.; Perez-Barriocanal, Fernando; Lopez-Novoa, Jose M.

    2006-01-01

    Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd + quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity

  19. Purification and site-directed mutagenesis of linoleate 9S-dioxygenase-allene oxide synthase of Fusarium oxysporum confirms the oxygenation mechanism.

    Science.gov (United States)

    Chen, Yang; Jernerén, Fredrik; Oliw, Ernst H

    2017-07-01

    Plants and fungi form jasmonic acid from α-linolenic acid. The first two steps of biosynthesis in plants occur by sequential transformation by 13S-lipoxygenase and allene oxide synthase (AOS). The biosynthesis in fungi may follow this classical scheme, but the only fungal AOS discovered so far are cytochromes P450 (CYP) fused to 8- and 9-dioxygenases (DOX). In the present report, we purified recombinant 9S-DOX-AOS of Fusarium oxysporum from cell lysate by cobalt affinity chromatography to near homogeneity and studied key residues by site-directed mutagenesis. Sequence homology with 8R-DOX-linoleate diol synthases (8R-DOX-LDS) suggested that Tyr414 catalyzes hydrogen abstraction and that Cys1051 forms the heme thiolate ligand. Site-directed mutagenesis (Tyr414Phe; Cys1051Ser) led to loss of 9S-DOX and 9S-AOS activities, respectively, but other important residues in the CYP parts of 5,8- and 7,8-LDS or 9R-AOS were not conserved. The UV-visible spectrum of 9S-DOX-AOS showed a Soret band at 409 nm, which shifted to 413 nm in the Cys1051Ser mutant. The 9S-AOS of the Tyr414Phe mutant transformed 9S-hydroperoxides of α-linolenic and linoleic acids to allene oxides/α-ketols, but it did not transform 13-hydroperoxides. We conclude that 9S- and 8R-DOX catalyze hydrogen abstraction at C-11 and C-8, respectively, by homologous Tyr residues. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Ali, S F

    1999-12-15

    Previous studies have suggested a role for the retrograde messenger, nitric oxide (NO), in methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced dopaminergic neurotoxicity. Since evidence supported the involvement of the neuronal nitric oxide synthase (nNOS) isoform in the dopaminergic neurotoxicity, the present study was undertaken to investigate whether the inducible nitric oxide synthase (iNOS) isoform is also associated with METH- and MPTP-induced neurotoxicity. The administration of METH (5mg/kg x 3) to iNOS deficient mice [homozygote iNOS(-/-)] and wild type mice (C57BL/6) resulted in significantly smaller depletion of striatal dopaminergic markers in the iNOS(-/-) mice compared with the wild-type mice. METH-induced hyperthermia was also significantly lower in the iNOS(-/-) mice than in wild-type mice. In contrast to the outcome of METH administration, MPTP injections (20 mg/kg x 3) resulted in a similar decrease in striatal dopaminergic markers in iNOS(-/-) and wild-type mice. In the set of behavioral experiments, METH-induced locomotor sensitization was investigated. The acute administration of METH (1.0 mg/kg) resulted in the same intensity of locomotor activity in iNOS(-/-) and wild-type mice. Moreover, 68 to 72 h after the exposure to the high-dose METH regimen (5 mg/kg x 3), a marked sensitized response to a challenge injection of METH (1.0 mg/kg) was observed in both the iNOS(-/-) and wild-type mice. The finding that iNOS(-/-) mice were unprotected from MPTP-induced neurotoxicity suggests that the partial protection against METH-induced neurotoxicity observed was primarily associated with the diminished hyperthermic effect of METH seen in the iNOS(-/-) mice. Moreover, in contrast to nNOS deficiency, iNOS deficiency did not affect METH-induced behavioral sensitization. Copyright 1999 Wiley-Liss, Inc.

  1. Platelet content of nitric oxide synthase 3 phosphorylated at Serine 1177 is associated with the functional response of platelets to aspirin.

    Directory of Open Access Journals (Sweden)

    Javier Modrego

    Full Text Available OBJECTIVE: To analyse if platelet responsiveness to aspirin (ASA may be associated with a different ability of platelets to generate nitric oxide (NO. PATIENTS/METHODS: Platelets were obtained from 50 patients with stable coronary ischemia and were divided into ASA-sensitive (n = 26 and ASA-resistant (n = 24 using a platelet functionality test (PFA-100. RESULTS: ASA-sensitive platelets tended to release more NO (determined as nitrite + nitrate than ASA-resistant platelets but it did not reach statistical significance. Protein expression of nitric oxide synthase 3 (NOS3 was higher in ASA-sensitive than in ASA-resistant platelets but there were no differences in the platelet expression of nitric oxide synthase 2 (NOS2 isoform. The highest NOS3 expression in ASA-sensitive platelets was independent of the presence of T-to-C mutation at nucleotide position -786 (T(-786 → C in the NOS3-coding gene. However, platelet content of phosphorylated NOS3 at Serine (Ser(1177, an active form of NOS3, was higher in ASA-sensitive than in ASA-resistant platelets. The level of platelet NOS3 Ser(1177 phosphorylation was positively associated with the closure time in the PFA-100 test. In vitro, collagen failed to stimulate the aggregation of ASA-sensitive platelets, determined by lumiaggregometry, and it was associated with a significant increase (p = 0.018 of NOS3 phosphorylation at Ser(1177. On the contrary, collagen stimulated the aggregation of ASA-resistant platelets but did not significantly modify the platelet content of phosphorylated NOS3 Ser(1177. During collagen stimulation the release of NO from ASA-sensitive platelets was significantly enhanced but it was not modified in ASA-resistant platelets. CONCLUSIONS: Functional platelet responsiveness to ASA was associated with the platelet content of phosphorylated NOS3 at Ser(1177.

  2. Structural Basis of Catalysis in the Bacterial Monoterpene Synthases Linalool Synthase and 1,8-Cineole Synthase

    OpenAIRE

    Karuppiah, Vijaykumar; Ranaghan, Kara E.; Leferink, Nicole G. H.; Johannissen, Linus O.; Shanmugam, Muralidharan; Ní Cheallaigh, Aisling; Bennett, Nathan J.; Kearsey, Lewis J.; Takano, Eriko; Gardiner, John M.; van der Kamp, Marc W.; Hay, Sam; Mulholland, Adrian J.; Leys, David; Scrutton, Nigel S.

    2017-01-01

    Terpenoids form the largest and stereochemically most diverse class of natural products, and there is considerable interest in producing these by biocatalysis with whole cells or purified enzymes, and by metabolic engineering. The monoterpenes are an important class of terpenes and are industrially important as flavors and fragrances. We report here structures for the recently discovered Streptomyces clavuligerus monoterpene synthases linalool synthase (bLinS) and 1,8-cineole synthase (bCinS)...

  3. Synergistic Effect of Vaginal Trauma and Ovariectomy in a Murine Model of Stress Urinary Incontinence: Upregulation of Urethral Nitric Oxide Synthases and Estrogen Receptors

    Directory of Open Access Journals (Sweden)

    Huey-Yi Chen

    2014-01-01

    Full Text Available The molecular mechanisms underlying stress urinary incontinence (SUI are unclear. We aimed to evaluate the molecular alterations in mice urethras following vaginal trauma and ovariectomy (OVX. Twenty-four virgin female mice were equally distributed into four groups: noninstrumented control; vaginal distension (VD group; OVX group; and VD + OVX group. Changes in leak point pressures (LPPs, genital tract morphology, body weight gain, plasma 17β-estradiol level and expressions of neuronal nitric oxide synthase (nNOS, induced nitric oxide synthase (iNOS, and estrogen receptors (ERs—ERα and ERβ were analyzed. Three weeks after VD, the four groups differed significantly in genital size and body weight gain. Compared with the control group, the plasma estradiol levels were significantly decreased in the OVX and VD + OVX groups, and LPPs were significantly decreased in all three groups. nNOS, iNOS, and ERα expressions in the urethra were significantly increased in the VD and VD + OVX groups, whereas ERβ expression was significantly increased only in the VD + OVX group. These results show that SUI following vaginal trauma and OVX involves urethral upregulations of nNOS, iNOS, and ERs, suggesting that NO- and ER-mediated signaling might play a role in the synergistic effect of birth trauma and OVX-related SUI pathogenesis.

  4. HAEM SYNTHASE AND COBALT PORPHYRIN SYNTHASE IN VARIOUS MICRO-ORGANISMS.

    Science.gov (United States)

    PORRA, R J; ROSS, B D

    1965-03-01

    1. The preparation of a crude extract of Clostridium tetanomorphum containing cobalt porphyrin synthase but little haem-synthase activity is described. 2. The properties of cobalt porphyrin synthase in the clostridial extracts is compared with the properties of a haem synthase present in crude extracts of the yeast Torulopsis utilis. 3. Cobalt porphyrin synthase in extracts of C. tetanomorphum inserts Co(2+) ions into the following dicarboxylic porphyrins in descending order of rate of insertion: meso-, deutero- and proto-porphyrins. Esterification renders meso- and deutero-porphyrins inactive as substrates. Neither the tetracarboxylic (coproporphyrin III) nor the octacarboxylic (uroporphyrin III) compounds are converted into cobalt porphyrins by the extract, but the non-enzymic incorporation of Co(2+) ions into these two porphyrins is rapid. These extracts are unable to insert Mn(2+), Zn(2+), Mg(2+) or Cu(2+) ions into mesoporphyrin. 4. Crude extracts of T. utilis readily insert both Co(2+) and Fe(2+) ions into deutero-, meso, and proto-porphyrins. Unlike the extracts of C. tetanomorphum, these preparations catalyse the insertion of Co(2+) ions into deuteroporphyrin more rapidly than into mesoporphyrin. This parallels the formation of haems by the T. utilis extract. 5. Cobalt porphyrin synthase is present in the particulate fraction of the extracts of C. tetanomorphum but requires a heat-stable factor present in the soluble fraction. This soluble factor can be replaced by GSH. 6. Cobalt porphyrin synthase in the clostridial extract is inhibited by iodoacetamide and to a smaller extent by p-chloromercuribenzoate and N-ethylmaleimide. The haem synthases of T. utilis and Micrococcus denitrificans are also inhibited by various thiol reagents.

  5. Localization of Nitric Oxide Synthase-containing Neurons in the Bat Visual Cortex and Co-localization with Calcium-binding Proteins

    International Nuclear Information System (INIS)

    Gu, Ya-Nan; Kim, Hang-Gu; Jeon, Chang-Jin

    2015-01-01

    Microchiroptera (microbats) is a suborder of bats thought to have degenerated vision. However, many recent studies have shown that they have visual ability. In this study, we labeled neuronal nitric oxide synthase (nNOS)—the synthesizing enzyme of the gaseous non-synaptic neurotransmitter nitric oxide—and co-localized it with calbindin D28K (CB), calretinin (CR), and parvalbumin (PV) in the visual cortex of the greater horseshoe bat (Rhinolophus ferrumequinum, a species of microbats). nNOS-immunoreactive (IR) neurons were found in all layers of the visual cortex. Intensely labeled neurons were most common in layer IV, and weakly labeled neurons were most common in layer VI. Majority of the nNOS-IR neurons were round- or oval-type neurons; no pyramidal-type neurons were found. None of these neurons co-localized with CB, CR, or PV. However, the synthesis of nitric oxide in the bat visual cortex by nNOS does not depend on CB, CR, or PV

  6. Air pollution alters brain and pituitary endothelin-1 and inducible nitric oxide synthase gene expression.

    Science.gov (United States)

    Thomson, Errol M; Kumarathasan, Prem; Calderón-Garcidueñas, Lilian; Vincent, Renaud

    2007-10-01

    Recent work suggests that air pollution is a risk factor for cerebrovascular and neurodegenerative disease. Effects of inhaled pollutants on the production of vasoactive factors such as endothelin (ET) and nitric oxide (NO) in the brain may be relevant to disease pathogenesis. Inhaled pollutants increase circulating levels of ET-1 and ET-3, and the pituitary is a potential source of plasma ET, but the effects of pollutants on the expression of ET and NO synthase genes in the brain and pituitary are not known. In the present study, Fischer-344 rats were exposed by nose-only inhalation to particles (0, 5, 50mg/m3 EHC-93), ozone (0, 0.4, 0.8 ppm), or combinations of particles and ozone for 4 h. Real-time reverse transcription polymerase chain reaction was used to measure mRNA levels in the cerebral hemisphere and pituitary 0 and 24 h post-exposure. Ozone inhalation significantly increased preproET-1 but decreased preproET-3 mRNAs in the cerebral hemisphere, while increasing mRNA levels of preproET-1, preproET-3, and the ET-converting enzyme (ECE)-1 in the pituitary. Inducible NO synthase (iNOS) was initially decreased in the cerebral hemisphere after ozone inhalation, but increased 24 h post-exposure. Particles decreased tumour necrosis factor (TNF)-alpha mRNA in the cerebral hemisphere, and both particles and ozone decreased TNF-alpha mRNA in the pituitary. Our results show that ozone and particulate matter rapidly modulate the expression of genes involved in key vasoregulatory pathways in the brain and pituitary, substantiating the notion that inhaled pollutants induce cerebrovascular effects.

  7. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    Science.gov (United States)

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity. Copyright (c) 2006 John Wiley & Sons, Ltd.

  8. Nitric Oxide Synthase Type III Overexpression By Gene Therapy Exerts Antitumoral Activity In Mouse Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Raúl González

    2015-08-01

    Full Text Available Hepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO synthase type III (NOS-3 overexpression induces cell death in hepatoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers. Liver fibrosis was induced by CCl4 administration in mice. Hepa 1-6 cells were used for in vitro and in vivo experiments. The first generation adenovirus was designed to overexpress NOS-3 (or GFP and luciferase cDNA under the regulation of murine alpha-fetoprotein (AFP and Rous Sarcoma Virus (RSV promoters, respectively. Both adenoviruses were administered through the tail vein two weeks after orthotopic tumor cell implantation. AFP-NOS-3/RSV-Luciferase increased oxidative-related DNA damage, p53, CD95/CD95L expression and caspase-8 activity in cultured Hepa 1-6 cells. The increased expression of CD95/CD95L and caspase-8 activity was abolished by l-NAME or p53 siRNA. The tail vein infusion of AFP-NOS- 3/RSV-Luciferase adenovirus increased cell death markers, and reduced cell proliferation of established tumors in fibrotic livers. The increase of oxidative/nitrosative stress induced by NOS-3 overexpression induced DNA damage, p53, CD95/CD95L expression and cell death in hepatocellular carcinoma cells. The effectiveness of the gene therapy has been demonstrated in vitro and in vivo.

  9. Human endogenous retrovirus W env increases nitric oxide production and enhances the migration ability of microglia by regulating the expression of inducible nitric oxide synthase.

    Science.gov (United States)

    Xiao, Ran; Li, Shan; Cao, Qian; Wang, Xiuling; Yan, Qiujin; Tu, Xiaoning; Zhu, Ying; Zhu, Fan

    2017-06-01

    Human endogenous retrovirus W env (HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis (MS). These diseases are accompanied by immunological reactions in the central nervous system (CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter-nitric oxide (NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase (hiNOS) and enhanced the promoter activity of hiNOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.

  10. Nitric oxide synthase-3 promotes embryonic development of atrioventricular valves.

    Directory of Open Access Journals (Sweden)

    Yin Liu

    Full Text Available Nitric oxide synthase-3 (NOS3 has recently been shown to promote endothelial-to-mesenchymal transition (EndMT in the developing atrioventricular (AV canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT and NOS3(-/- mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3(-/- compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3(-/- mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1(+ cells in the AV cushion were decreased in NOS3(-/- compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ, bone morphogenetic protein (BMP2 and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3(-/- compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency.

  11. The Involvement of Arginase and Nitric Oxide Synthase in Breast Cancer Development: Arginase and NO Synthase as Therapeutic Targets in Cancer

    Directory of Open Access Journals (Sweden)

    Nikolay Avtandilyan

    2018-01-01

    Full Text Available It is well established that, during development of malignancies, metabolic changes occur, including alterations of enzyme activities and isoenzyme expression. Arginase and nitric oxide (NO synthase (NOS are two of those enzymes considered to be involved in tumorigenesis. The goal of this article was to study the involvement of arginase and NOS in the development of different stages of breast cancer. Our results have shown that human serum arginase activity and NO (resp., and NOS activity and polyamines quantities increased in parallel with cancer stage progression and decreased after neoadjuvant chemotherapy. For breast cancer, the only isoenzyme of arginase expressed in serum before and after chemotherapy was in a cationic form. The data of Lineweaver-Burk plot with a Km value of 2 mM was calculated, which is characteristic for human liver type isoform of arginase. During electrophoresis at pH 8.9, the enzyme exhibited high electrophoretic mobility and was detected near the anode. The presented results demonstrated that arginase in human serum with breast cancer and after chemotherapy is not polymorphic. We suggest that arginase and NOS inhibition has antitumor effects on cancer development, as it can inhibit polyamines and NO levels, a precursor of cancer cell proliferation, metastasis, and tumor angiogenesis.

  12. Dynamics of meso and thermo citrate synthases with implicit solvation

    Science.gov (United States)

    Cordeiro, J. M. M.

    The dynamics of hydration of meso and thermo citrate synthases has been investigated using the EEF1 methodology implemented with the CHARMM program. The native enzymes are composed of two identical subunits, each divided into a small and large domain. The dynamics behavior of both enzymes at 30°C and 60°C has been compared. The results of simulations show that during the hydration process, each subunit follows a different pathway of hydration, in spite of the identical sequence. The hydrated structures were compared with the crystalline structure, and the root mean square deviation (RMSD) of each residue along the trajectory was calculated. The regions with larger and smaller mobility were identified. In particular, helices belonging to the small domain are more mobile than those of the large domain. In contrast, the residues that constitute the active site show a much lower displacement compared with the crystalline structure. Hydration free energy calculations point out that Thermoplasma acidophilum citrate synthase (TCS) is more stable than chicken citrate synthase (CCS), at high temperatures. Such result has been ascribed to the higher number of superficial charges in the thermophilic homologue, which stabilizes the enzyme, while the mesophilic homologue denatures. These results are in accord with the experimental found that TCS keeps activity at temperatures farther apart from the catalysis regular temperature than the CCS.

  13. Expression of nitric oxide synthase during the development of RCS rat retinas.

    Science.gov (United States)

    Sharma, R K; Warfvinge, K; Ehinger, B

    2001-01-01

    Nitric oxide (NO) has been reported to be both neurodestructive and neuroprotective in the central nervous system and could possibly play an important role in neurodegenerative disorders. On the assumption that NO synthesis may influence degenerative processes in the retina, we have examined the development and distribution of nitric-oxide-synthase(NOS)-immunoreactive cells in developing Royal College of Surgeons (RCS) rat retinas, which is an animal model for retinal degeneration. An antibody against constitutive neuronal NOS was used for immunocytochemistry on RCS rat retinas from postnatal (PN) days 3, 7, 10, 14, 35, 70 and 281 and compared with that in the normal rats of PN days 3, 7, 10, 14, 54 and adults. Immunoreactive cells were not seen in PN 3 retinas but were distinctly seen in the PN 7 retina along with a plexus in the inner plexiform layer. In both groups (normal and RCS rats) a distinct sublayering of the plexus in the inner plexiform layer could be seen at PN 10, which became more distinct at PN 14. The immunoreactive cells were detected also in the oldest retina examined, which was PN 281 in the case of RCS rats. In both groups, certain amacrine cells, certain bipolar cells and certain horizontal cells were found to be immunoreactive. In conclusion, the developmental timetable of the NOS immunoreactivity was identical in the normal and the RCS rat retinas. The NOS-immunoreactive cells persisted in the RCS retinas even when the retina had degenerated extensively. Abnormalities with the inducible isoforms of NOS cannot be ruled out from this study. We conclude that the chronological and qualitative development of the constitutive neuronal NOS immunoreactivity is normal in RCS rat retinas. Copyright 2001 S. Karger AG, Basel

  14. Stereo-specific synthesis of (13r)-manoyl oxide

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a method for manufacturing enantiomerically pure (13R)-manoyl oxide, said method comprising the steps of contacting geranylgeranyl diphosphate (GGPP) with a class II diterpene synthase to obtain labd-13-en-8,15-diol diphosphate (LPP), and then contacting the LPP...... with a class I diterpene synthase to obtain (13R)-manoyl oxide. The invention further relates to (13R)-manoyl oxide obtained by the method of the invention....

  15. Effects of Chinese yellow wine on nitric oxide synthase and intercellular adhesion molecule-1 expressions in rat vascular endothelial cells.

    Science.gov (United States)

    Zhao, Fei; Ji, Zheng; Chi, Jufang; Tang, Weiliang; Zhai, Xiaoya; Meng, Liping; Guo, Hangyuan

    2016-02-01

    The objective of this study was to determine similarities in the effect of yellow wine as compared to statin and the possibility that yellow wine inhibits tumour necrosis factor-α (TNF-α)-induced nitric oxide (NO) synthesis, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1) in cultured rat vascular endothelial cells (VECs). We isolated VECs, and cultivated and purified Sprague Dawley (SD) rat thoracic aortas in vitro. We selected the optimal wine concentration using clonogenic and MTT assays to measure cell survival. Next, we divided the cells into 9 groups: (1) control, (2) TNF-α, (3) TNF-α + rosuvastatin (10 μmol/L), (4) TNF-α + ethanol 0.5%, (5) TNF-α + yellow wine 0.5%, (6) TNF-α + ethanol 1.0%, (7) TNF-α + yellow wine 1.0%, (8) TNF-α + ethanol 1.5%, and (9) TNF-α + yellow wine 1.5% and they were given the corresponding treatment for 24 h. We determined NO production with nitrate reductase. We then measured eNOS activity, and detected eNOS, iNOS, and ICAM-1 protein levels by Western blotting. Compared with the TNF-α group, NO production, eNOS activity, and eNOS protein expression in the rosuvastatin, and yellow wine 1.0%, and 1.5% groups were significantly increased. Protein expression of iNOS and ICAM-1 in the rosuvastatin, yellow wine 1.0%, and 1.5% groups were significantly decreased. Compared with the rosuvastatin group, eNOS, iNOS, and ICAM-1 protein expression in the yellow wine (0.5% -1.5%) groups were significantly different. Treatment with yellow wine increased NO production, eNOS activity, and eNOS protein expression, which decreases iNOS and ICAM-1 protein expression. We conclude that yellow wine may have similar beneficial effects as rosuvastatin on the cardiovascular system. These effects may be attributed to their anti-atherosclerotic actions.

  16. The impact of intrarenal nitric oxide synthase inhibition on renal blood flow and function in mild and severe hyperdynamic sepsis.

    Science.gov (United States)

    Ishikawa, Ken; Bellomo, Rinaldo; May, Clive N

    2011-04-01

    In experimental hyperdynamic sepsis, renal function deteriorates despite renal vasodilatation and increased renal blood flow. Because nitric oxide is increased in sepsis and participates in renal blood flow control, we investigated the effects of intrarenal Nω-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase inhibitor, in mild and severe sepsis. Prospective crossover and randomized control interventional studies. University-affiliated research institute. Thirty-two merino ewes. Examination of responses to intrarenal infusion of Nω-nitro-L-arginine methyl ester for 8 hrs in unilaterally nephrectomized normal sheep and in sheep administered Escherichia coli. : In normal sheep, Nω-nitro-L-arginine methyl ester decreased renal blood flow (301 ± 30 to 228 ± 26 mL/min) and creatinine clearance (40.0 ± 5.8 to 31.1 ± 2.8 mL/min), whereas plasma creatinine increased, but fractional excretion of sodium was unchanged. In sheep with nonhypotensive hyperdynamic sepsis, plasma creatinine increased and there were decreases in creatinine clearance (34.5 ± 4.6 to 20.1 ± 3.7 mL/min) and fractional excretion of sodium despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester normalized renal blood flow and increased urine output, but creatinine clearance did not improve and plasma creatinine and fractional excretion of sodium increased. In sheep with severe hypotensive sepsis, creatinine clearance decreased further (31.1 ± 5.4 to 16.0 ± 1.7 mL/min) despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester restored mean arterial pressure and reduced renal blood flow but did not improve plasma creatinine or creatinine clearance. In hyperdynamic sepsis, with or without hypotension, creatinine clearance decreased despite increasing renal blood flow. Intrarenal Nω-nitro-L-arginine methyl ester infusion reduced renal blood flow but did not improve creatinine clearance. These data indicate that septic acute kidney

  17. Elk-3 is a transcriptional repressor of nitric-oxide synthase 2.

    Science.gov (United States)

    Chen, Yen-Hsu; Layne, Matthew D; Chung, Su Wol; Ejima, Kuniaki; Baron, Rebecca M; Yet, Shaw-Fang; Perrella, Mark A

    2003-10-10

    The inducible isoform of nitric-oxide synthase (NOS2), a key enzyme catalyzing the dramatic increase in nitric oxide by lipopolysaccharide (LPS), plays an important role in the pathophysiology of endotoxemia and sepsis. Recent evidence suggests that Ets transcription factors may contribute to NOS2 induction by inflammatory stimuli. In this study, we investigated the role of Ets transcription factors in the regulation of NOS2 by LPS and transforming growth factor (TGF)-beta 1. Transient transfection assays in macrophages showed that Ets-2 produced an increase in NOS2 promoter activity, whereas the induction by Ets-1 was modest and NERF2 had no effect. Elk-3 (Net/Erp/Sap-2a) markedly repressed NOS2 promoter activity in a dose-dependent fashion, and overexpression of Elk-3 blunted the induction of endogenous NOS2 message. Mutation of the Net inhibitory domain of Elk-3, but not the C-terminal-binding protein interaction domain, partially alleviated this repressive effect. We also found that deletion of the Ets domain of Elk-3 completely abolished its repressive effect on the NOS2 promoter. LPS administration to macrophages led to a dose-dependent decrease in endogenous Elk-3 mRNA levels, and this decrease in Elk-3 preceded the induction of NOS2 mRNA. In a mouse model of endotoxemia, the expression of Elk-3 in kidney, lung, and heart was significantly down-regulated after systemic administration of LPS, and this down-regulation also preceded NOS2 induction. Moreover, TGF-beta 1 significantly increased endogenous Elk-3 mRNA levels that had been down-regulated by LPS in macrophages. This increase in Elk-3 correlated with a TGF-beta 1-induced down-regulation of NOS2. Taken together, our data suggest that Elk-3 is a strong repressor of NOS2 promoter activity and mRNA levels and that endogenous expression of Elk-3 inversely correlates with NOS2. Thus, Elk-3 may serve as an important mediator of NOS2 gene expression.

  18. Neuronal Nitric Oxide Synthase (NOS1) Polymorphisms Interact with Financial Hardship to Affect Depression Risk

    Science.gov (United States)

    Sarginson, Jane E; Deakin, JF William; Anderson, Ian M; Downey, Darragh; Thomas, Emma; Elliott, Rebecca; Juhasz, Gabriella

    2014-01-01

    There is increasing evidence that genetic factors have a role in differential susceptibility to depression in response to severe or chronic adversity. Studies in animals suggest that nitric oxide (NO) signalling has a key role in depression-like behavioural responses to stress. This study investigated whether genetic variation in the brain-expressed nitric oxide synthase gene NOS1 modifies the relationship between psychosocial stress and current depression score. We recruited a population sample of 1222 individuals who provided DNA and questionnaire data on symptoms and stress. Scores on the List of Life-Threatening Experiences (LTE) questionnaire for the last year and self-rated current financial hardship were used as measures of recent/ongoing psychosocial stress. Twenty SNPs were genotyped. Significant associations between eight NOS1 SNPs, comprising two regional haplotypes, and current depression score were identified that survived correction for multiple testing when current financial hardship was used as the interaction term. A smaller three-SNP haplotypes (rs10507279, rs1004356 and rs3782218) located in a regulatory region of NOS1 showed one of the strongest effects, with the A-C-T haplotype associating with higher depression scores at low adversity levels but lower depression scores at higher adversity levels (p=2.3E-05). These results suggest that NOS1 SNPs interact with exposure to economic and psychosocial stressors to alter individual's susceptibility to depression. PMID:24917196

  19. Neuronal nitric oxide synthase (NOS1) polymorphisms interact with financial hardship to affect depression risk.

    Science.gov (United States)

    Sarginson, Jane E; Deakin, J F William; Anderson, Ian M; Downey, Darragh; Thomas, Emma; Elliott, Rebecca; Juhasz, Gabriella

    2014-11-01

    There is increasing evidence that genetic factors have a role in differential susceptibility to depression in response to severe or chronic adversity. Studies in animals suggest that nitric oxide (NO) signalling has a key role in depression-like behavioural responses to stress. This study investigated whether genetic variation in the brain-expressed nitric oxide synthase gene NOS1 modifies the relationship between psychosocial stress and current depression score. We recruited a population sample of 1222 individuals who provided DNA and questionnaire data on symptoms and stress. Scores on the List of Life-Threatening Experiences (LTE) questionnaire for the last year and self-rated current financial hardship were used as measures of recent/ongoing psychosocial stress. Twenty SNPs were genotyped. Significant associations between eight NOS1 SNPs, comprising two regional haplotypes, and current depression score were identified that survived correction for multiple testing when current financial hardship was used as the interaction term. A smaller three-SNP haplotypes (rs10507279, rs1004356 and rs3782218) located in a regulatory region of NOS1 showed one of the strongest effects, with the A-C-T haplotype associating with higher depression scores at low adversity levels but lower depression scores at higher adversity levels (p=2.3E-05). These results suggest that NOS1 SNPs interact with exposure to economic and psychosocial stressors to alter individual's susceptibility to depression.

  20. Effects of Intracerebroventricularly (ICV) Injected Ghrelin on Cardiac Inducible Nitric Oxide Synthase Activity/Expression in Obese Rats.

    Science.gov (United States)

    Sudar Milovanovic, E; Jovanovic, A; Misirkic-Marjanovic, M; Vucicevic, Lj; Janjetovic, K; Isenovic, E R

    2015-11-01

    The aim of this study was to examine the effects of ghrelin on regulation of cardiac inducible nitric oxide synthase (iNOS) activity/expression in high fat (HF), obese rats.For this study, male Wistar rats fed with HF diet (30% fat) for 4 weeks were injected every 24 h for 5 days intracerebroventricularly (ICV) with ghrelin (0.3 nmol/5 µl) or with an equal volume of phosphate buffered saline (PBS). Control rats were ICV injected with an equal volume of PBS. Glucose, insulin and nitric oxide (NO) concentrations were measured in serum, while arginase activity and citrulline concentrations were measured in heart lysate. Protein iNOS and regulatory subunit of nuclear factor-κB (NFκB-p65), phosphorylation of enzymes protein kinase B (Akt) at Ser(473), and extracellular signal-regulated kinases 1/2 (ERK1/2) at Tyr(202)/Tyr(204) were determined in heart lysate by Western blot. For gene expression of iNOS qRT-PCR was used.Results show significantly (parginase activity (pactivity of cardiac iNOS via Akt phosphorylation followed by NFκB activation in HF rats. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Expression of the Inducible Nitric Oxide Synthase Isoform in Chorionic Villi in the Early Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the relationship between inducible nitric oxide synthase (iNOS) and the early spontaneous abortion. , in situ hybridization and immunohistochemistry were used to detect the expression of iNOS in trophoblasts in the early pregnancy with and without spontaneous abortion (group Ⅰ and group Ⅱ ). By light microscopy and computer color magic image analysis system (CMIAS), light density (D) and the positive cell number per statistic square (N/S) in situ hybridization were used to analyze the positive cell index, while total positive cells (N) and the positive unit (Pu) were used in immunohistochemistry. By in situ hybridization, D and N/S in trophoblasts were 0. 35±0. 028, 0. 07±0. 011 respectively in group Ⅰ and 0. 18±0. 016,0. 015±0. 003 in group Ⅱ . In terms of immunohistochemical staining, N and Pu were 0. 058±±0. 007, 11. 94±2. 01 in group Ⅰ and 0. 013±0. 009, 1. 08±0. 35 in group Ⅱ in trophoblasts. Significant differences existed between two groups. It is concluded that the higher nitric oxide produced by the higher expression of iNOS in trophoblasts might play an important role in the early spontaneous abortion.

  2. Association between Polymorphism of Endothelial Nitric Oxide Synthase Gene (Glu298Asp) and Chronic Heart Failure in Patients with Ischemic Heart Disease and Obesity

    OpenAIRE

    O.I. Kadykova; P.P. Kravchun

    2016-01-01

    The article reviewed the links between polymorphism of endothelial nitric oxide synthase gene (Glu298Asp) and the development and progression of chronic heart failure in patients with ischemic heart disease and obesity. There has been a comprehensive survey of 222 patients with ischemic heart disease. Comparison group consisted of 115 patients with ischemic heart disease with normal body weight. The control group included 35 healthy individuals. G allele and genotype G/G polymorphism of the g...

  3. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice.

    Science.gov (United States)

    Chen, Yong; Boettger, Michael K; Reif, Andreas; Schmitt, Angelika; Uçeyler, Nurcan; Sommer, Claudia

    2010-03-02

    Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1beta), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1beta. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1beta, and IL-10 following CFA, overall corroborating the inhibitor data. These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  4. Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity

    International Nuclear Information System (INIS)

    Wu Defeng; Cederbaum, Arthur

    2006-01-01

    Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 and in HepG2 E47 cells which express CYP2E1. Nitric oxide (NO) participates in the regulation of various cell activities as well as in cytotoxic events. NO may act as a protectant against cytotoxic stress or may enhance cytotoxicity when produced at elevated concentrations. The goal of the current study was to evaluate the effect of endogenously or exogenously produced NO on AA toxicity in liver cells with high expression of CYP2E1 and assess possible mechanisms for its actions. Pyrazole-induced rat hepatocytes or HepG2 cells expressing CYP2E1 were treated with AA in the presence or absence of an inhibitor of nitric oxide synthase L-N G -Nitroarginine Methylester (L-NAME) or the NO donors S-nitroso-N-acetylpenicillamine (SNAP), and (Z)-1-[-(2-aminoethyl)-N-(2-aminoethyl)]diazen-1-ium-1,2-diolate (DETA-NONO). AA decreased cell viability from 100% to 48 ± 6% after treatment for 48 h. In the presence of L-NAME, viability was further lowered to 23 ± 5%, while, SNAP or DETA-NONO increased viability to 66 ± 8 or 71 ± 6%. The L-NAME potentiated toxicity was primarily necrotic in nature. L-NAME did not affect CYP2E1 activity or CYP2E1 content. SNAP significantly lowered CYP2E1 activity but not protein. AA treatment increased lipid peroxidation and lowered GSH levels. L-NAME potentiated while SNAP prevented these changes. Thus, L-NAME increased, while NO donors decreased AA-induced oxidative stress. Antioxidants prevented the L-NAME potentiation of AA toxicity. Damage to mitochondria by AA was shown by a decline in the mitochondrial membrane potential (MMP). L-NAME potentiated this decline in MMP in association with its increase in AA-induced oxidative stress and toxicity. NO donors decreased this decline in MMP in association with their decrease in AA-induced oxidative stress and

  5. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  6. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila.

    Directory of Open Access Journals (Sweden)

    Praveen Balabaskaran Nina

    2010-07-01

    Full Text Available The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1 sector catalyzes ATP synthesis, whereas the F(o sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1 and F(o sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the F(o sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a

  7. Functional Layer-by-Layer Thin Films of Inducible Nitric Oxide (NO) Synthase Oxygenase and Polyethylenimine: Modulation of Enzyme Loading and NO-Release Activity.

    Science.gov (United States)

    Gunasekera, Bhagya; Abou Diwan, Charbel; Altawallbeh, Ghaith; Kalil, Haitham; Maher, Shaimaa; Xu, Song; Bayachou, Mekki

    2018-03-07

    Nitric oxide (NO) release counteracts platelet aggregation and prevents the thrombosis cascade in the inner walls of blood vessels. NO-release coatings also prevent thrombus formation on the surface of blood-contacting medical devices. Our previous work has shown that inducible nitric oxide synthase (iNOS) films release NO fluxes upon enzymatic conversion of the substrate l-arginine. In this work, we report on the modulation of enzyme loading in layer-by-layer (LbL) thin films of inducible nitric oxide synthase oxygenase (iNOSoxy) on polyethylenimine (PEI). The layer of iNOSoxy is electrostatically adsorbed onto the PEI layer. The pH of the iNOSoxy solution affects the amount of enzyme adsorbed. The overall negative surface charge of iNOSoxy in solution depends on the pH and hence determines the density of adsorbed protein on the positively charged PEI layer. We used buffered iNOSoxy solutions adjusted to pHs 8.6 and 7.0, while saline PEI solution was used at pH 7.0. Atomic force microscopy imaging of the outermost layer shows higher protein adsorption with iNOSoxy at pH 8.6 than with a solution of iNOSoxy at pH 7.0. Graphite electrodes with PEI/iNOSoxy films show higher catalytic currents for nitric oxide reduction mediated by iNOSoxy. The higher enzyme loading translates into higher NO flux when the enzyme-modified surface is exposed to a solution containing the substrate and a source of electrons. Spectrophotometric assays showed higher NO fluxes with iNOSoxy/PEI films built at pH 8.6 than with films built at pH 7.0. Fourier transform infrared analysis of iNOSoxy adsorbed on PEI at pH 8.6 and 7.0 shows structural differences of iNOSoxy in films, which explains the observed changes in enzymatic activity. Our findings show that pH provides a strategy to optimize the NOS loading and enzyme activity in NOS-based LbL thin films, which enables improved NO release with minimum layers of PEI/NOS.

  8. Local inhibition of hippocampal nitric oxide synthase does not impair place learning in the Morris water escape task in rats.

    Science.gov (United States)

    Blokland, A; de Vente, J; Prickaerts, J; Honig, W; Markerink-van Ittersum, M; Steinbusch, H

    1999-01-01

    Recent studies have provided evidence that nitric oxide (NO) has a role in certain forms of memory formation. Spatial learning is one of the cognitive abilities that has been found to be impaired after systemic administration of an NO-synthase inhibitor. As the hippocampus has a pivotal role in spatial orientation, the present study examined the role of hippocampal NO in spatial learning and reversal learning in a Morris task in adult rats. It was found that N omega-nitro-L-arginine infusions into the dorsal hippocampus affected the manner in which the rats were searching the submerged platform during training, but did not affect the efficiency to find the spatial location of the escape platform. Hippocampal NO-synthase inhibition did not affect the learning of a new platform position in the same water tank (i.e. reversal learning). Moreover, no treatment effects were observed in the probe trials (i.e. after acquisition and after reversal learning), indicating that the rats treated with N omega-nitro-L-arginine had learned the spatial location of the platform. These findings were obtained under conditions where the NO synthesis in the dorsal hippocampus was completely inhibited. On the basis of the present data it was concluded that hippocampal NO is not critically involved in place learning in rats.

  9. Altered contractile response due to increased beta3-adrenoceptor stimulation in diabetic cardiomyopathy: the role of nitric oxide synthase 1-derived nitric oxide.

    Science.gov (United States)

    Amour, Julien; Loyer, Xavier; Le Guen, Morgan; Mabrouk, Nejma; David, Jean-Stéphane; Camors, Emmanuel; Carusio, Nunzia; Vivien, Benoît; Andriantsitohaina, Ramaroson; Heymes, Christophe; Riou, Bruno

    2007-09-01

    In the diabetic heart, the positive inotropic response to beta-adrenoceptor stimulation is altered and beta1 and beta2 adrenoceptors are down-regulated, whereas beta3 adrenoceptor is up-regulated. In heart failure, beta3-adrenoceptor stimulation induces a negative inotropic effect that results from endothelial nitric oxide synthase (NOS3)-derived nitric oxide production. The objective of our study was to investigate the role of beta3-adrenoceptor in diabetic cardiomyopathy. beta-Adrenergic responses were investigated in vivo (dobutamine echocardiography) and in vitro (left ventricular papillary muscle) in healthy and streptozotocin-induced diabetic rats. The effect of beta3-adrenoceptor inhibition on the inotropic response was studied in vitro. Immunoblots and NOS activities were performed in heart homogenates (electron paramagnetic resonance) and isolated cardiomyocytes. Data are mean percentage of baseline +/- SD. The impaired positive inotropic effect was confirmed in diabetes both in vivo (121 +/- 15% vs. 160 +/- 16%; P < 0.05) and in vitro (112 +/- 5% vs. 179 +/- 15%; P < 0.05). In healthy rat, the positive inotropic effect was not significantly modified in presence of beta3-adrenoceptor antagonist (174 +/- 20%), nonselective NOS inhibitor (N -nitro-l-arginine methylester [l-NAME]; 183 +/- 19%), or selective NOS1 inhibitor (vinyl-l-N-5-(1-imino-3-butenyl)-l-ornithine [l-VNIO]; 172 +/- 13%). In diabetes, in parallel with the increase in beta3-adrenoceptor protein expression, the positive inotropic effect was partially restored by beta3-adrenoceptor antagonist (137 +/- 8%; P < 0.05), l-NAME (133 +/- 11%; P < 0.05), or l-VNIO (130 +/- 13%; P < 0.05). Nitric oxide was exclusively produced by NOS1 within diabetic cardiomyocytes. NOS2 and NOS3 proteins were undetectable. beta3-Adrenoceptor is involved in altered positive inotropic response to beta-adrenoceptor stimulation in diabetic cardiomyopathy. This effect is mediated by NOS1-derived nitric oxide in diabetic

  10. The Role of ?786T/C Polymorphism in the Endothelial Nitric Oxide Synthase Gene in Males with Clinical and Biochemical Features of the Metabolic Syndrome

    OpenAIRE

    Misiak, Blazej; Krolik, Marta; Kukowka, Anna; Lewera, Anna; Leszczynski, Przemyslaw; Stankiewicz-Olczyk, Joanna; Slezak, Ryszard

    2011-01-01

    Background. Extensive evidence, arising from models of endothelial nitric oxide synthase gene (NOS3)-knockout mice supports the role of endothelial malfunction in the pathogenesis of the metabolic syndrome (MS). Aims. The aim of this study was to evaluate the role of −786T/C polymorphism in the etiology of MS and assess previously reported interaction with cigarette smoking. Methods. Based on International Diabetes Federation 2005 criteria, we recruited randomly 152 subjects with MS and 75 su...

  11. Rosiglitazone Affects Nitric Oxide Synthases and Improves Renal Outcome in a Rat Model of Severe Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Boris Betz

    2012-01-01

    Full Text Available Background. Nitric oxide (NO-signal transduction plays an important role in renal ischemia/reperfusion (I/R injury. NO produced by endothelial NO-synthase (eNOS has protective functions whereas NO from inducible NO-synthase (iNOS induces impairment. Rosiglitazone (RGZ, a peroxisome proliferator-activated receptor (PPAR-γ agonist exerted beneficial effects after renal I/R injury, so we investigated whether this might be causally linked with NOS imbalance. Methods. RGZ (5 mg/kg was administered i.p. to SD-rats (f subjected to bilateral renal ischemia (60 min. Following 24 h of reperfusion, inulin- and PAH-clearance as well as PAH-net secretion were determined. Morphological alterations were graded by histopathological scoring. Plasma NOx-production was measured. eNOS and iNOS expression was analyzed by qPCR. Cleaved caspase 3 (CC3 was determined as an apoptosis indicator and ED1 as a marker of macrophage infiltration in renal tissue. Results. RGZ improves renal function after renal I/R injury (PAH-/inulin-clearance, PAH-net secretion and reduces histomorphological injury. Additionally, RGZ reduces NOx plasma levels, ED-1 positive cell infiltration and CC3 expression. iNOS-mRNA is reduced whereas eNOS-mRNA is increased by RGZ. Conclusion. RGZ has protective properties after severe renal I/R injury. Alterations of the NO pathway regarding eNOS and iNOS could be an explanation of the underlying mechanism of RGZ protection in renal I/R injury.

  12. The expression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of rats with a dihydrotestosterone (DHT) deficiency.

    Science.gov (United States)

    Kolasa, Agnieszka; Marchlewicz, Mariola; Kurzawa, Rafał; Głabowski, Wojciech; Trybek, Grzegorz; Wenda-Rózewicka, Lidia; Wiszniewska, Barbara

    2009-01-01

    In our previous studies, we showed that a finasteride-induced DHT deficiency may cause changes in the morphology of the seminiferous epithelium without any morphological alteration of the epididymis. In this study, we demonstrated the constitutive immunoexpression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of Wistar rats treated with finasteride for 28 days (the duration of two cycles of the seminiferous epithelium) and 56 days (the duration of one spermatogenesis). We noted that a 56-day finasteride treatment mainly caused a decrease in the level of circulating DHT, as well as a statistically insignificant decrease in the level of T. The hormone deficiency also led to a change in the iNOS immnoexpression in the testis and epididymis of the finasteride-treated rats. In vitro, DHT did not modify NO production by the epithelial cells of the caput epididymis even when stimulated with LPS and IFNgamma, but it did give rise to an increase in NO production by the epithelial cells of the cauda epididymis without the stimulation. DHT did not have a statistically significant influence on estradiol production by cultured, LPS- and IFNgamma-stimulated epithelial cells from the caput and cauda epididymis. In conclusion, our data clearly indicates that a finasterideinduced DHT deficiency intensifies the constitutive expression of iNOS in most rat testicular and epididymal cells, so it can be expected that the expression of inducible nitric oxide synthase (iNOS) could be regulated by DHT. On the other hand, the profile of the circulating DHT and T levels strongly suggests that the regulation of constitutive iNOS expression is complex and needs more detailed study.

  13. The T -786C, G894T, and Intron 4 VNTR (4a/b) Polymorphisms of the Endothelial Nitric Oxide Synthase Gene in Prostate Cancer Cases.

    Science.gov (United States)

    Diler, S B; Öden, A

    2016-02-01

    In previously conducted some studies it has been revealed that nitric oxide (NO) and nitric oxide synthase (NOS) system play a significant role in carcinogenesis. Nitric oxide (NO) is regulated by endothelial nitric oxide synthase (eNOS) enzyme which is one of the isoenzymes of NO synthase (NOS). In this study we have tried to come to a conclusion about whether eNOS gene T -786C, G894T and Intron 4 VNTR (4a/b) polymorphisms might be considered as a risk factor causing prostate cancer (PCa) or not. A total of 200 subjects were included in this research. 84 patients with PCa (mean age 70.0 ± 6.4) and 116 healthy controls (mean age 69.9 ± 7.5) were recruited in this case-control study. Genomic DNA was extracted using the QIAamp DNA Blood Mini Kit (QIAGEN GmbH, Maryland, USA), according to the manufacturer's guidelines. The T-786C, G894T and Intron 4 VNTR (4a/b) polymorphisms were amplified using polymerase chain reation (PCR), detected by restriction fragment length polymorphism (RFLP). For T -786C polymorphism CC genotype [odds ratio (OR): 0.34, 95% confidence interval (CI): 0.15-0.78, P = 0.009)] and allele frequency (OR: 0.631, CI: 0.421-0.946, P = 0.026) is significant for control. In patients with PCa eNOS G894T polymorphism, both GT (OR: 0.069, CI: 0.027-0.174; P = 0.0001) and TT (OR: 0.040, CI: 0.013-0.123; P = = 0.0001) genotype distribution, and also T allele frequency (OR: 0.237, CI: 0.155-0.362, P = 0.0001) were considered significant statistically. While genotype distribution for the other polymorphism eNOS, intron 4 VNTR (4a/b), is insignificant statistically, "a" allele frequency was found out to be significant (OR: 2.223, CI: 1.311-3.769, P = 0.003). In this study we indicated that genotype and allele frequencies of eNOS T -786C and G894T polymorphisms are statistically significant in patients with PCa. eNOS T -786C and G894T polymorphisms may be associated with PCa susceptibility in the Turkish population. In contrast, intron 4 VNTR (4a

  14. Expression of inducible nitric oxide synthase, caspase-3 and production of reactive oxygen intermediate on endothelial cells culture (HUVECs treated with P. falciparum infected erythrocytes and tumour necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Loeki E. Fitri

    2006-09-01

    Full Text Available Cytoadherence of P. falciparum infected erythrocytes on endothelial cells is a key factor in development of severe malaria. This process may associated with the activation of local immune that was enhanced by tumour necrosis factor-α (TNF-α. This study was conducted to see the influence of P.falciparum infected erythrocytes cytoadherence and TNF-α treatment in inducing endothelial cells activation in vitro. inducible nitric oxide synthase (iNOS and caspase-3 expression, also reactive oxygen intermediate (ROI production were used as parameters. An Experimental laboratory study had been done to observe endothelial cells activation (HUVECs after treatment with TNF-α for 20 hours or P. falciparum infected erythrocytes for 1 hour or both of them. Normal endothelial cells culture had been used as a control. Using immunocytochemistry local immune activation of endothelial cells was determined by iNOS and caspase-3 expression. Nitro Blue Tetrazolium reduction-assay was conducted to see the ROI production semi quantitatively. inducible nitric oxide synthase expression only found on endothelial cells culture treated with P. falciparum infected erythrocytes or both P. falciparum infected erythrocytes and TNF-α. Caspase-3 expression found slightly on normal endothelial cells culture. This expression increased significantly on endothelial cells culture treated with both P.falciparum infected erythrocytes and TNF-α (p=0.000. The normal endothelial cells release low level of ROI in the presence of non-specific trigger, PMA. In the presence of P. falciparum infected erythrocytes or TNF-α or both of them, some cells showed medium to high levels of ROI. Cytoadherence of P. falciparum infected erythrocytes and TNF α treatment on endothelial cells can induce activation of local immune marked by increase inducible nitric oxide synthase and release of free radicals that cause cell damage. (Med J Indones 2006; 15:151-6 Keywords: P.falciparum ,HUVECs, TNF-α, i

  15. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption.

    Science.gov (United States)

    van't Hof, R J; Armour, K J; Smith, L M; Armour, K E; Wei, X Q; Liew, F Y; Ralston, S H

    2000-07-05

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFkappaB and in NFkappaB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFkappaB in osteoclast precursors.

  16. The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo.

    Science.gov (United States)

    Itzhak, Y; Ali, S F

    1996-10-01

    The present study was undertaken to investigate whether the relatively selective neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against methamphetamine (METH)-induced neurotoxicity. Male Swiss Webster mice received the following treatments (i.p.; q 3 h x 3): (a) vehicle/saline, (b) 7-NI (25 mg/kg)/saline, (c) vehicle/METH (5 mg/kg), and (d) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (a) and (b) received two vehicle injections, and groups (c) and (d) received two 7-NI injections (25 mg/kg, each). Administration of vehicle/METH resulted in 68, 44, and 55% decreases in the concentration of dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid, respectively, and a 48% decrease in the number of [3H]mazindol binding sites in the striatum compared with control values. Treatment with 7-NI (group d) provided full protection against the depletion of dopamine and its metabolites and the loss of dopamine transporter binding sites. Administration of 7-NI/saline (group b) affected neither the tissue concentration of dopamine and its metabolites nor the binding parameters of [3H] mazindol compared with control values. 7-NI had no significant effect on animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in methamphetamine-induced neurotoxicity and also suggest that blockade of NOS may be beneficial for the management of Parkinson's disease.

  17. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    Science.gov (United States)

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFκB and in NFκB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFκB in osteoclast precursors. PMID:10869429

  18. Suppression of allene oxide synthase 3 in potato increases degree of arbuscular mycorrhizal fungal colonization.

    Science.gov (United States)

    Morcillo, Rafael Jorge León; Navarrete, María Isabel Tamayo; Bote, Juan Antonio Ocampo; Monguio, Salomé Prat; García-Garrido, José Manuel

    2016-01-15

    Arbuscular mycorrhizal (AM) is a mutually beneficial interaction among higher plants and soil fungi of the phylum Glomeromycota. Numerous studies have pointed that jasmonic acid plays an important role in the development of the intraradical fungus. This compound belongs to a group of biologically active compounds known as oxylipins which are derived from the oxidative metabolism of polyunsaturated fatty acids. Studies of the regulatory role played by oxylipins in AM colonization have generally focused on jasmonates, while few studies exist on the 9-LOX pathway of oxylipins during AM formation. Here, the cDNA of Allene oxide synthase 3 (AOS3), a key enzyme in the 9-LOX pathway, was used in the RNA interference (RNAi) system to transform potato plants in order to suppress its expression. Results show increases in AOS3 gene expression and 9-LOX products in roots of wild type potato mycorrhizal plants. The suppression of AOS3 gene expression increases the percentage of root with mycorrhizal colonization at early stages of AM formation. AOS3 RNA interference lead to an induction of LOXA and 13-LOX genes, a reduction in AOS3 derived 9-LOX oxylipin compounds and an increase in jasmonic acid content, suggesting compensation between 9 and 13-LOX pathways. The results in a whole support the hypothesis of a regulatory role for the 9-LOX oxylipin pathway during mycorrhization. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Differential regulation of glomerular and interstitial endothelial nitric oxide synthase expression in the kidney of hibernating ground squirrel.

    Science.gov (United States)

    Sandovici, Maria; Henning, Robert H; Hut, Roelof A; Strijkstra, Arjen M; Epema, Anne H; van Goor, Harry; Deelman, Leo E

    2004-09-01

    Hibernating animals transiently reduce renal function during their hypothermic periods (torpor), while completely restoring it during their periodical rewarming to euthermia (arousal). Moreover, structural integrity of the kidney is preserved throughout the hibernation. Nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) is a crucial vasodilatory mediator and a protective factor in the kidney. We investigated renal NOS expression in hibernating European ground squirrels after 1 day and 7 days of torpor (torpor short, TS, and torpor long, TL, respectively), at 1.5 and at 10 h of rewarming (arousal short, AS, and arousal long, AL, respectively), and in continuously euthermic animals after hibernation (EU). For that purpose, we performed NOS activity assay, immunohistochemistry and real-time PCR analysis. Immunohistochemistry revealed a decreased glomerular eNOS expression in hibernating animals (TS, TL, AS, and AL) compared to non-hibernating animals (EU, p EU. In all methods used, torpid and aroused squirrels did not differ. These results demonstrate differential regulation of eNOS in glomeruli and interstitium of hibernating animals, which is unaffected during arousal. The differential regulation of eNOS may serve to reduce ultrafiltration without jeopardizing tubular structures during hibernation.

  20. In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning.

    Science.gov (United States)

    Formentini, Laura; Pereira, Marta P; Sánchez-Cenizo, Laura; Santacatterina, Fulvio; Lucas, José J; Navarro, Carmen; Martínez-Serrano, Alberto; Cuezva, José M

    2014-04-01

    A key transducer in energy conservation and signaling cell death is the mitochondrial H(+)-ATP synthase. The expression of the ATPase inhibitory factor 1 (IF1) is a strategy used by cancer cells to inhibit the activity of the H(+)-ATP synthase to generate a ROS signal that switches on cellular programs of survival. We have generated a mouse model expressing a mutant of human IF1 in brain neurons to assess the role of the H(+)-ATP synthase in cell death in vivo. The expression of hIF1 inhibits the activity of oxidative phosphorylation and mediates the shift of neurons to an enhanced aerobic glycolysis. Metabolic reprogramming induces brain preconditioning affording protection against quinolinic acid-induced excitotoxicity. Mechanistically, preconditioning involves the activation of the Akt/p70S6K and PARP repair pathways and Bcl-xL protection from cell death. Overall, our findings provide the first in vivo evidence highlighting the H(+)-ATP synthase as a target to prevent neuronal cell death.

  1. Endothelium-dependent relaxation of rat aorta to a histamine H3 agonist is reduced by inhibitors of nitric oxide synthase, guanylate cyclase and Na+,K+-ATPase

    Directory of Open Access Journals (Sweden)

    D. M. Djuric

    1996-01-01

    Full Text Available The possible involvement of different effector systems (nitric oxide synthase, guanylate cyclase, β-adrenergic and muscarinic cholinergic receptors, cyclooxygenase and lipoxygenase, and Na+,K+-ATPase was evaluated in a histamine H3 receptor agonist-induced ((Rα-methylhistamine, (Rα-MeHA endothelium-dependent rat aorta relaxation assay. (Rα-MeHA (0.1 nM – 0.01 mM relaxed endothelium-dependent rat aorta, with a pD2 value of 8.22 ± 0.06, compared with a pD2 value of 7.98 ± 0.02 caused by histamine (50% and 70% relaxation, respectively. The effect of (Rα-MeHA (0.1 nM – 0.01 mM was competitively antagonized by thioperamide (1, 10 and 30 nM (pA2 = 9.21 ± 0.40; slope = 1.03 ± 0.35 but it was unaffected by pyrilamine (100 nM, cimetidine (1 μM, atropine (10 μM, propranolol (1 μM, indomethacin (10 μM or nordthydroguaiaretic acid (0.1 mM. Inhibitors of nitric oxide synthase, L-NG-monomethylarginine (L-NMMA, 10 μM and NG-nitro-L-arginine methylester (L-NOARG, 10 μM inhibited the relaxation effect of (Rα-MeHA, by approximately 52% and 70%, respectively. This inhibitory effect of L-NMMA was partially reversed by L-arginine (10 μM. Methylene blue (10 μM and ouabain (10 μM inhibited relaxation (Rα-MeHA-induced by approximately 50% and 90%, respectively. The products of cyclooxygenase and lipoxygenase are not involved in (Rα-MeHA-induced endothelium-dependent rat aorta relaxation nor are the muscarinic cholinergic and β-adrenergic receptors. The results also suggest the involvement of NO synthase, guanylate cyclase and Na+,K+-ATPase in (Rα-MeHA-induced endothelium-dependent rat aorta relaxation.

  2. Replacement of two amino acids of 9R-dioxygenase-allene oxide synthase of Aspergillus niger inverts the chirality of the hydroperoxide and the allene oxide.

    Science.gov (United States)

    Sooman, Linda; Wennman, Anneli; Hamberg, Mats; Hoffmann, Inga; Oliw, Ernst H

    2016-02-01

    The genome of Aspergillus niger codes for a fusion protein (EHA25900), which can be aligned with ~50% sequence identity to 9S-dioxygenase (DOX)-allene oxide synthase (AOS) of Fusarium oxysporum, homologues of the Fusarium and Colletotrichum complexes and with over 62% sequence identity to homologues of Aspergilli, including (DOX)-9R-AOS of Aspergillus terreus. The aims were to characterize the enzymatic activities of EHA25900 and to identify crucial amino acids for the stereospecificity. Recombinant EHA25900 oxidized 18:2n-6 sequentially to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE) and to a 9R(10)-allene oxide. 9S- and 9R-DOX-AOS catalyze abstraction of the pro-R hydrogen at C-11, but the direction of oxygen insertion differs. A comparison between twelve 9-DOX domains of 9S- and 9R-DOX-AOS revealed conserved amino acid differences, which could contribute to the chirality of products. The Gly616Ile replacement of 9R-DOX-AOS (A. niger) increased the biosynthesis of 9S-HPODE and the 9S(10)-allene oxide, whereas the Phe627Leu replacement led to biosynthesis of 9S-HPODE and the 9S(10)-allene oxide as main products. The double mutant (Gly616Ile, Phe627Leu) formed over 90% of the 9S stereoisomer of HPODE. 9S-HPODE was formed by antarafacial hydrogen abstraction and oxygen insertion, i.e., the original H-abstraction was retained but the product chirality was altered. We conclude that 9R-DOX-AOS can be altered to 9S-DOX-AOS by replacement of two amino acids (Gly616Ile, Phe627Leu) in the DOX domain. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Andersen, Nynne Bjerre; Dela, Flemming

    2014-01-01

    Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity and chan......Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity...

  4. Impaired Healing of a Cutaneous Wound in an Inducible Nitric Oxide Synthase-Knockout Mouse

    Directory of Open Access Journals (Sweden)

    Takashi Kitano

    2017-01-01

    Full Text Available Background. We investigated the effects of loss of inducible nitric oxide synthase (iNOS on the healing process of cutaneous excisional injury by using iNOS-null (KO mice. Population of granulation tissue-related cell types, that is, myofibroblasts and macrophages, growth factor expression, and reepithelialization were evaluated. Methods. KO and wild type (WT mice of C57BL/6 background were used. Under general anesthesia two round full-thickness excision wounds of 5.0 mm in diameter were produced in dorsal skin. After specific intervals of healing, macroscopic observation, histology, immunohistochemistry, and real-time reverse transcription-polymerase chain reaction (RT-PCR were employed to evaluate the healing process. Results. The loss of iNOS retards granulation tissue formation and reepithelialization in excision wound model in mice. Detailed analyses showed that myofibroblast appearance, macrophage infiltration, and mRNA expression of transforming growth factor b and of collagen 1α2 were all suppressed by lacking iNOS. Conclusions. iNOS is required in the process of cutaneous wound healing. Lacking iNOS retards macrophage invasion and its expression of fibrogenic components that might further impair fibrogenic behaviors of fibroblasts.

  5. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice

    Directory of Open Access Journals (Sweden)

    Üçeyler Nurcan

    2010-03-01

    Full Text Available Abstract Background Although it has been largely demonstrated that nitric oxide synthase (NOS, a key enzyme for nitric oxide (NO production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Results Intraperitoneal (i.p. pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor, aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor, L-N(G-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor, but not L-N(5-(1-iminoethyl-ornithine (L-NIO, a selective endothelial NOS inhibitor, significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl. injection of complete Freund's adjuvant (CFA. Real-time reverse transcription-polymerase chain reaction (RT-PCR revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF, interleukin-1 beta (IL-1β, and interleukin-10 (IL-10 gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1β. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO mice had lower gene expression of TNF, IL-1β, and IL-10 following CFA, overall corroborating the inhibitor data. Conclusion These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  6. Role of nitric oxide synthase uncoupling at rostral ventrolateral medulla in redox-sensitive hypertension associated with metabolic syndrome.

    Science.gov (United States)

    Wu, Kay L H; Chao, Yung-Mei; Tsay, Shiow-Jen; Chen, Chen Hsiu; Chan, Samuel H H; Dovinova, Ima; Chan, Julie Y H

    2014-10-01

    Metabolic syndrome (MetS), which is rapidly becoming prevalent worldwide, is long known to be associated with hypertension and recently with oxidative stress. Of note is that oxidative stress in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, contributes to sympathoexcitation and hypertension. This study sought to identify the source of tissue oxidative stress in RVLM and their roles in neural mechanism of hypertension associated with MetS. Adult normotensive rats subjected to a high-fructose diet for 8 weeks developed metabolic traits of MetS, alongside increases in sympathetic vasomotor activity and blood pressure. In RVLM of these MetS rats, the tissue level of reactive oxygen species was increased, nitric oxide (NO) was decreased, and mitochondrial electron transport capacity was reduced. Whereas the protein expression of neuronal NO synthase (nNOS) or protein inhibitor of nNOS was increased, the ratio of nNOS dimer/monomer was significantly decreased. Oral intake of pioglitazone or intracisternal infusion of tempol or coenzyme Q10 significantly abrogated all those molecular events in high-fructose diet-fed rats and ameliorated sympathoexcitation and hypertension. Gene silencing of protein inhibitor of nNOS mRNA in RVLM using lentivirus carrying small hairpin RNA inhibited protein inhibitor of nNOS expression, increased the ratio of nNOS dimer/monomer, restored NO content, and alleviated oxidative stress in RVLM of high-fructose diet-fed rats, alongside significantly reduced sympathoexcitation and hypertension. These results suggest that redox-sensitive and protein inhibitor of nNOS-mediated nNOS uncoupling is engaged in a vicious cycle that sustains the production of reactive oxygen species in RVLM, resulting in sympathoexcitation and hypertension associated with MetS. © 2014 American Heart Association, Inc.

  7. Involvement of beta 3-adrenoceptor in altered beta-adrenergic response in senescent heart: role of nitric oxide synthase 1-derived nitric oxide.

    Science.gov (United States)

    Birenbaum, Aurélie; Tesse, Angela; Loyer, Xavier; Michelet, Pierre; Andriantsitohaina, Ramaroson; Heymes, Christophe; Riou, Bruno; Amour, Julien

    2008-12-01

    In senescent heart, beta-adrenergic response is altered in parallel with beta1- and beta2-adrenoceptor down-regulation. A negative inotropic effect of beta3-adrenoceptor could be involved. In this study, the authors tested the hypothesis that beta3-adrenoceptor plays a role in beta-adrenergic dysfunction in senescent heart. beta-Adrenergic responses were investigated in vivo (echocardiography-dobutamine, electron paramagnetic resonance) and in vitro (isolated left ventricular papillary muscle, electron paramagnetic resonance) in young adult (3-month-old) and senescent (24-month-old) rats. Nitric oxide synthase (NOS) immunolabeling (confocal microscopy), nitric oxide production (electron paramagnetic resonance) and beta-adrenoceptor Western blots were performed in vitro. Data are mean percentages of baseline +/- SD. An impaired positive inotropic effect (isoproterenol) was confirmed in senescent hearts in vivo (117 +/- 23 vs. 162 +/- 16%; P < 0.05) and in vitro (127 +/- 10 vs. 179 +/- 15%; P < 0.05). In the young adult group, the positive inotropic effect was not significantly modified by the nonselective NOS inhibitor N-nitro-L-arginine methylester (L-NAME; 183 +/- 19%), the selective NOS1 inhibitor vinyl-L-N-5(1-imino-3-butenyl)-L-ornithine (L-VNIO; 172 +/- 13%), or the selective NOS2 inhibitor 1400W (183 +/- 19%). In the senescent group, in parallel with beta3-adrenoceptor up-regulation and increased nitric oxide production, the positive inotropic effect was partially restored by L-NAME (151 +/- 8%; P < 0.05) and L-VNIO (149 +/- 7%; P < 0.05) but not by 1400W (132 +/- 11%; not significant). The positive inotropic effect induced by dibutyryl-cyclic adenosine monophosphate was decreased in the senescent group with the specific beta3-adrenoceptor agonist BRL 37344 (167 +/- 10 vs. 142 +/- 10%; P < 0.05). NOS1 and NOS2 were significantly up-regulated in the senescent rat. In senescent cardiomyopathy, beta3-adrenoceptor overexpression plays an important role in the

  8. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays.

    Science.gov (United States)

    Hu, Kun; Liu, Jinwen; Chen, Jia; Huang, Yong; Zhao, Shulin; Tian, Jianniao; Zhang, Guohai

    2013-04-15

    An amplified graphene oxide (GO) based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling is developed for bioassays. The dye-labeled single-strand DNA (aptamer hairpin) was adsorbed on the surface of GO, which result in the fluorescence quenching of dye, and exhibiting minimal background fluorescence. Upon the target, primer and polymerase, the stem of the aptamer hairpin was opened, and binds with the primer to triggers the circular target strand-displacement polymerization reaction, which produces huge amounts of duplex helixes DNA and lead to strong fluorescence emission due to shielding of nucelobases within its double-helix structure. During the polymerization reaction, the primer was extended, and target was displaced. And the displaced target recognizes and hybridizes with another hairpin probe, triggering the next round of polymerization reaction, and the circle process induces fluorescence signal amplification for the detection of analyte. To test the feasibility of the aptasensor systems, interferon-gamma (IFN-γ) was employed as a model analyte. A detection limit as low as 1.5 fM is obtained based on the GO aptasensor with a linear range of three orders of magnitude. The present method was successfully applied for the detection of IFN-γ in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The protective role of nitric oxide and nitric oxide synthases in whole-body hyperthermia-induced hepatic injury in rats.

    Science.gov (United States)

    Chen, Chao-Fuh; Wang, David; Leu, Fur-Jiang; Chen, Hsing I

    2012-01-01

    The present study was designed to elucidate the role of endothelial nitric oxide (NO) synthase (eNOS), inducible NOS (iNOS)-derived NO and heat-shock protein (Hsp70) in a rat model of whole-body hyperthermia (WBH)-induced liver injury. Real-time polymerase chain reaction, immunohistochemistry and western blot were used to observe the mRNA and protein expression of eNOS, iNOS and Hsp70. Rats were exposed to hyperthermia by immersion for 60 min at a conscious state in a water bath maintained at 41°C. Plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were used to assess liver injury 15 h after the hyperthermia challenge. Nitrosative and oxidative mediators, particularly NO and hydroxyl radical were measured. Plasma AST, ALT, hydroxyl radical, and NO were significantly increased after WBH. There were 4.14 ± 0.42, 2.82 ± 0.34 and 2.91 ± 0.16-fold increases in the mRNA expression of eNOS, iNOS and Hsp70. Immunohistochemistry and western blot showed up-regulation of eNOS, iNOS and Hsp70 protein. An eNOS inhibitor (N(ω)-nitro-L-arginine methyl ester (L-NAME)), or an iNOS inhibitor (aminoguanidine (AG)), significantly aggravated the liver injury. On the contrary, administration of NO precursor, L-arginine (L-ARG), attenuated the liver injury. Hsp70 inhibitor quercetin reduced Hsp70, while aggravating the WBH-induced hepatic changes. WBH induces increases in eNOS, iNOS and Hsp70 expression with increase in NO release. The deleterious effects of L-NAME and AG and the protective effects of L-ARG and Hsp70 inhibitor on the liver function and pathology suggest that NO and heat shock protein play a beneficial role in the WBH-induced hepatic injury.

  10. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity.

    Science.gov (United States)

    Ji, Yingbin; Liu, Jian; Xing, Da

    2016-09-01

    In plants, extensive efforts have been devoted to understanding the crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling in pathogen defenses, but this crosstalk has scarcely been addressed during senescence. In this study, the effect of SA application on methyl jasmonate (MeJA)-induced leaf senescence was assessed. We found that low concentrations of SA (1-50 μM) played a delayed role against the senescence promoted by MeJA. Furthermore, low concentrations of SA enhanced plant antioxidant defenses and restricted reactive oxygen species (ROS) accumulation in MeJA-treated leaves. When applied simultaneously with MeJA, low concentrations of SA triggered a nitric oxide (NO) burst, and the elevated NO levels were linked to the nitric oxide associated 1 (NOA1)-dependent pathway via nitric oxide synthase (NOS) activity. The ability of SA to up-regulate plant antioxidant defenses, reduce ROS accumulation, and suppress leaf senescence was lost in NO-deficient Atnoa1 plants. In a converse manner, exogenous addition of NO donors increased the plant antioxidant capacity and lowered the ROS levels in MeJA-treated leaves. Taken together, the results indicate that SA at low concentrations counteracts MeJA-induced leaf senescence through NOA1-dependent NO signaling and strengthening of the antioxidant defense. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  12. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase.

    Science.gov (United States)

    Armour, K E; Armour, K J; Gallagher, M E; Gödecke, A; Helfrich, M H; Reid, D M; Ralston, S H

    2001-02-01

    Nitric oxide (NO) is a pleiotropic signaling molecule that is produced by bone cells constitutively and in response to diverse stimuli such as proinflammatory cytokines, mechanical strain, and sex hormones. Endothelial nitric oxide synthase (eNOS) is the predominant NOS isoform expressed in bone, but its physiological role in regulating bone metabolism remains unclear. Here we studied various aspects of bone metabolism in female mice with targeted disruption of the eNOS gene. Mice with eNOS deficiency (eNOS KO) had reduced bone mineral density, and cortical thinning when compared with WT controls and histomorphometric analysis of bone revealed profound abnormalities of bone formation, with reduced osteoblast numbers, surfaces and mineral apposition rate. Studies in vitro showed that osteoblasts derived from eNOS KO mice had reduced rates of growth when compared with WT and were less well differentiated as reflected by lower levels of alkaline phosphatase activity. Mice with eNOS deficiency lost bone normally following ovariectomy but exhibited a significantly blunted anabolic response to high dose exogenous estrogen. We conclude that the eNOS pathway plays an essential role in regulating bone mass and bone turnover by modulating osteoblast function.

  13. Arginine, citrulline and nitric oxide metabolism in sepsis

    Science.gov (United States)

    Arginine has vasodilatory effects, via its conversion by nitric oxide (NO) synthase into NO, and immunomodulatory actions that play important roles in sepsis. Protein breakdown affects arginine availability, and the release of asymmetric dimethylarginine, an inhibitor of NO synthase, may therefore a...

  14. The time-dependent effect of provinolsTM on brain NO synthase activity in L-NAME-induced hypertension

    Czech Academy of Sciences Publication Activity Database

    Jendeková, L.; Kojšová, S.; Andriantsitohaina, R.; Pecháňová, Olga

    2006-01-01

    Roč. 55, č. S1 (2006), S31-S37 ISSN 0862-8408 Grant - others:VEGA(SK) 2/6148/26; VEGA(SK) 1/342906 Institutional research plan: CEZ:AV0Z50110509 Keywords : red wine polyphenols * oxidative damage * nitric oxide synthase Subject RIV: ED - Physiology Impact factor: 2.093, year: 2006

  15. Interaction between Mitochondrial Reactive Oxygen Species, Heme Oxygenase, and Nitric Oxide Synthase Stimulates Phagocytosis in Macrophages

    Directory of Open Access Journals (Sweden)

    Andrea Müllebner

    2018-01-01

    Full Text Available BackgroundMacrophages are cells of the innate immune system that populate every organ. They are required not only for defense against invading pathogens and tissue repair but also for maintenance of tissue homeostasis and iron homeostasis.AimThe aim of this study is to understand whether heme oxygenase (HO and nitric oxide synthase (NOS contribute to the regulation of nicotinamide adenine dinucleotide phosphate oxidase (NOX activity and phagocytosis, two key components of macrophage function.MethodsThis study was carried out using resting J774A.1 macrophages treated with hemin or vehicle. Activity of NOS, HO, or NOX was inhibited using specific inhibitors. Reactive oxygen species (ROS formation was determined by Amplex® red assay, and phagocytosis was measured using fluorescein isothiocyanate-labeled bacteria. In addition, we analyzed the fate of the intracellular heme by using electron spin resonance.ResultsWe show that both enzymes NOS and HO are essential for phagocytic activity of macrophages. NOS does not directly affect phagocytosis, but stimulates NOX activity via nitric oxide-triggered ROS production of mitochondria. Treatment of macrophages with hemin results in intracellular accumulation of ferrous heme and an inhibition of phagocytosis. In contrast to NOS, HO products, including carbon monoxide, neither clearly affect NOX activity nor clearly affect phagocytosis, but phagocytosis is accelerated by HO-mediated degradation of heme.ConclusionBoth enzymes contribute to the bactericidal activity of macrophages independently, by controlling different pathways.

  16. Locally Different Endothelial Nitric Oxide Synthase Protein Levels in Ascending Aortic Aneurysms of Bicuspid and Tricuspid Aortic Valve

    Directory of Open Access Journals (Sweden)

    Salah A. Mohamed

    2012-01-01

    Full Text Available Aims. Dysregulated expression of the endothelial nitric oxide synthase (eNOS is observed in aortic aneurysms associated with bicuspid aortic valve (BAV. We determined eNOS protein levels in various areas in ascending aortic aneurysms. Methods and Results. Aneurysmal specimens were collected from 19 patients, 14 with BAV and 5 with tricuspid aortic valve (TAV. ENOS protein levels were measured in the outer curve (convexity, the opposite side (concavity, the distal and above the sinotubular junction (proximal aneurysm. Cultured aortic cells were treated with NO synthesis inhibitor L-NAME and the amounts of 35 apoptosis-related proteins were determined. In patients with BAV, eNOS levels were significantly lower in the proximal aorta than in the concavity and distal aorta. ENOS protein levels were also lower in the convexity than in the concavity. While the convexity and distal aorta showed similar eNOS protein levels in BAV and TAV patients, levels were higher in TAV proximal aorta. Inhibition of NO synthesis in aneurysmal aortic cells by L-NAME led to a cytosolic increase in the levels of mitochondrial serine protease HTRA2/Omi. Conclusion. ENOS protein levels were varied at different areas of the aneurysmal aorta. The dysregulation of nitric oxide can lead to an increase in proapoptotic HTRA2/Omi.

  17. Dietary supplementation with apple juice concentrate alleviates the compensatory increase in glutathione synthase transcription and activity that accompanies dietary- and genetically-induced oxidative stress.

    Science.gov (United States)

    Tchantchou, F; Graves, M; Ortiz, D; Rogers, E; Shea, T B

    2004-01-01

    Increased oxidative stress, which can arise from dietary, environmental and/or genetic sources, contributes to the decline in cognitive performance during normal aging and in neurodegenerative conditions such as Alzheimer's disease. Supplementation with fruits and vegetables that are high in antioxidant potential can compensate for dietary and/or genetic deficiencies that promote increased oxidative stress. We have recently demonstrated that apple juice concentrate (AJC) prevents the increase in oxidative damage to brain tissue and decline in cognitive performance observed when transgenic mice lacking apolipoprotein E (ApoE-/-) are maintained on a vitamin-deficient diet and challenged with excess iron (included in the diet as a pro-oxidant). However, the mechanism by which AJC provided neuroprotection was not conclusively determined. Herein, we demonstrate that supplementation with AJC also prevents the compensatory increases in glutathione synthase transcription and activity that otherwise accompany maintenance of ApoE-/- mice on this vitamin-free diet in the presence of iron. Inclusion of the equivalent composition and concentration of sugars of AJC did not prevent these increases. These findings provide further evidence that the antioxidant potential of AJC can compensate for dietary and genetic deficiencies that otherwise promote neurodegeneration.

  18. Displacer Diameter Effect in Displacer Pulse Tube Refrigerator

    Science.gov (United States)

    Zhu, Shaowei

    2017-12-01

    Gas driving displacer pulse tube refrigerators are one of the work recovery type of pulse tube refrigerators whose theoretical efficiency is the same as Stirling refrigerators'. Its cooling power is from the displacement of the displacer. Displace diameter, rod diameter and pressure drop of the regenerator influence the displacement, which are investigated by numerical simulation. It is shown that the displacement ratio of the displacer over the piston is almost not affected by the displacer diameter at the same rod diameter ratio, or displacer with different diameters almost has the same performance.

  19. Pathological Lesions and Inducible Nitric Oxide Synthase Expressions in the Liver of Mice Experimentally Infected with Clonorchis sinensis.

    Science.gov (United States)

    Yang, Qing-Li; Shen, Ji-Qing; Xue, Yan; Cheng, Xiao-Bing; Jiang, Zhi-Hua; Yang, Yi-Chao; Chen, Ying-Dan; Zhou, Xiao-Nong

    2015-12-01

    The nitric oxide (NO) formation and intrinsic nitrosation may be involved in the possible mechanisms of liver fluke-associated carcinogenesis. We still do not know much about the responses of inducible NO synthase (iNOS) induced by Clonorchis sinensis infection. This study was conducted to explore the pathological lesions and iNOS expressions in the liver of mice with different infection intensity levels of C. sinensis. Extensive periductal inflammatory cell infiltration, bile duct hyperplasia, and fibrosis were commonly observed during the infection. The different pathological responses in liver tissues strongly correlated with the infection intensity of C. sinensis. Massive acute spotty necrosis occurred in the liver parenchyma after a severe infection. The iNOS activity in liver tissues increased, and iNOS-expressing cells with morphological differences were observed after a moderate or severe infection. The iNOS-expressing cells in liver tissues had multiple origins.

  20. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  1. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    International Nuclear Information System (INIS)

    Sharma, Bhupesh; Sharma, P.M.

    2013-01-01

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  2. Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase.

    Science.gov (United States)

    Duan, Wenjuan; Zhou, Juefei; Li, Wei; Zhou, Teng; Chen, Qianqian; Yang, Fuyu; Wei, Taotao

    2013-04-01

    The activation and deactivation of Ca(2+)- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved Förster resonance energy transfer (FRET), we determined the occurrence of Ca(2+)-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca(2+) concentrations ([Ca(2+)]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca(2+)]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.

  3. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  4. Physiologic ischaemic training induces endothelial progenitor cell mobilization and myocardial angiogenesis via endothelial nitric oxide synthase related pathway in rabbits.

    Science.gov (United States)

    Xiao, Mingyue; Lu, Xiao; Li, Jianan; Li, Ling; Li, Yongxue

    2014-04-01

    Ischaemia-induced angiogenesis promises to improve neovascularization by delivery of angiogenic factors or endothelial progenitor cells (EPCs) to cardiac ischaemic areas. In order to avoid the risk of excessive myocardial ischaemia, therefore, we hypothesized that physiological ischaemic training (PIT) of normal skeletal muscle might contribute to myocardial angiogenesis via nitric oxide mediated mobilization of EPCs from the bone marrow in the established rabbit model of controllable myocardial ischaemia. The rabbits were grouped by sham-operation, myocardial ischaemia without PIT, PIT and PIT with pretreatment with the endothelial nitric oxide synthase (eNOS) inhibitor L-nitroarginine methyl ester (L-NAME). Controlled myocardial ischaemia was modelled by a water balloon constrictor implanted on the left ventricular branch in a rabbit. The PIT procedure included three cycles of 3 min of cuff inflation followed by 5 min of deflation on hind limbs of the rabbits for 4 weeks. At the endpoints, circulating EPCs (CD34/Flk-1) were measured by fluorescence-activated cell sorter; capillary density, by immunohistochemistry; blood flow, by a microsphere technique; endothelial nitric oxide synthase (eNOS) mRNA and protein, by real-time reverse transcriptase (RT)-PCR and Western blotting. The mRNA levels of eNOS were significantly higher in the PIT and L-NAME groups than in the sham-operation group (P < 0.05). Phospho-eNOS protein expression was higher in the PIT group than in the sham-operation and myocardial ischaemia without PIT groups (P < 0.05), and the effect was inhibited by L-NAME pretreatment (P < 0.05). Compared with sham-operation and myocardial ischaemia without PIT groups, the PIT group had the highest EPC count (P < 0.001), and the increase of capillary density (P < 0.01) and collateral blood flow (P < 0.05) in the ischaemic myocardium was consistent with the finding of EPC count. These effects were also inhibited by pretreatment with

  5. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigai, Emi [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Machida, Toru [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okuyama, Tetsuya [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Mori, Masatoshi; Murase, Hiromitsu; Yamanishi, Ryota [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okumura, Tadayoshi [Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga (Japan); Department of Surgery, Kansai Medical University, Hirakata, Osaka (Japan); Ikeya, Yukinobu [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga (Japan); Nishino, Hoyoku [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto (Japan); Nishizawa, Mikio, E-mail: nishizaw@sk.ritsumei.ac.jp [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan)

    2013-09-13

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.

  6. Smoking and gingivitis: focus on inducible nitric oxide synthase, nitric oxide and basic fibroblast growth factor.

    Science.gov (United States)

    Özdemir, B; Özmeric, N; Elgün, S; Barış, E

    2016-10-01

    Periodontal disease pathogenesis has been associated with smoking. Gingivitis is a mild and reversible form of periodontal disease and it tends to progress to periodontitis only in susceptible individuals. In the present study, we aimed to examine the impact of smoking on host responses in gingivitis and to evaluate and compare the inducible nitric oxide synthase (iNOS) activity in gingival tissue and NO and basic fibroblast growth factor (bFGF) levels in the gingival crevicular fluid of patients with gingivitis and healthy individuals. Forty-one participants were assigned to the gingivitis-smoker (n = 13), gingivitis (n = 13), healthy-smoker (n = 7) and healthy groups (n = 8). Clinical indices were recorded; gingival biopsy and gingival crevicular fluid samples were obtained from papillary regions. iNOS expression was evaluated by immunohistochemical staining. The immunoreactive cells were semiquantitatively assessed. For the quantitative determination of nitrite and nitrate in gingival crevicular fluid, the NO assay kit was used. The amount of bFGF in gingival crevicular fluid was determined by enzyme-linked immunosorbent assay. The gingivitis-smoker group demonstrated a stronger iNOS expression than the non-smoker gingivitis group. iNOS expression intensity was lower in the non-smoker healthy group compared to that in healthy-smokers. No significant gingival crevicular fluid NO and bFGF level changes were observed between groups. Among patients with gingivitis, a positive correlation was detected between gingival crevicular fluid NO and bFGF levels (r = 0.806, p = 0.001). Our data suggest that smoking has significant effects on iNOS expression but not on gingival crevicular fluid NO or bFGF levels in healthy and patients with gingivitis. However, our results suggest that bFGF might be involved in the regulation of NO production via iNOS. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Endothelial nitric oxide synthase gene polymorphisms and cardiovascular damage in hypertensive subjects: an Italian case-control study

    Directory of Open Access Journals (Sweden)

    Pizzo Federica

    2008-05-01

    Full Text Available Abstract Background Nitric oxide (NO synthesized by endothelial nitric oxide synthase (eNOS plays an important role in regulation of endothelial function and in the control of blood pressure. However, the results from some studies on the association between three clinically relevant eNOS gene polymorphisms (G894T, T786C and intron 4b/a and essential hypertension are unclear. We designed a case-control study to evaluate the influence of eNOS polymorphisms on target organ damage in 127 hypertensives and 67 normotensives. Clinical evaluation, biochemical parameters, Urinary Albumin Excretion (UAE and echocardiogram were performed to characterize target organ damage. eNOS polymorphism were recognized by PCR method. Results The distribution of eNOS genotypes was similar in hypertensives and normotensives but 4aa was present in the 2.5% of hypertensives and completely absent in normotensives. Subjects with 4bb, G894T, and T786C genotypes showed an increased prevalence of target organ damage. Moreover prevalence of G894T and introne 4 variants was significantly higher in hypertensives than in normotensives both with cardiovascular damage. Logistic regression analysis didn't show any association between eNOS polymorphisms, Body Mass Index (BMI, hypertension, gender and cardiovascular damage. Only the age (OR 1.11; IC 95% 1.06–1.18 was predictive of cardiovascular damage in our population. Conclusion Our results seem to indicate a lack of association with eNOS variants and cardiovascular damage onset.

  8. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases

    International Nuclear Information System (INIS)

    Huang, T.-Y.; Chu, H.-C.; Lin, Y.-L.; Lin, C.-K.; Hsieh, T.-Y.; Chang, W.-K.; Chao, Y.-C.; Liao, C.-L.

    2009-01-01

    In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitric oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.

  9. Modulation of inducible nitric oxide synthase gene expression in RAW 264.7 murine macrophages by Pacific ciguatoxin.

    Science.gov (United States)

    Kumar-Roiné, Shilpa; Matsui, Mariko; Chinain, Mireille; Laurent, Dominique; Pauillac, Serge

    2008-08-01

    To investigate the possible involvement of the nitric oxide radical (NO) in ciguatera fish poisoning (CFP), the in vitro effects of the main Pacific ciguatoxin (P-CTX-1B) and bacterial lipopolysaccharide (LPS) were comparatively studied on neuroblastoma Neuro-2a and on macrophage RAW 264.7 cell lines. NO accumulation was quantified by measuring nitrite levels in cellular supernatant using Griess reagent while the up-regulation of inducible nitric oxide synthase (iNOS) at the mRNA level was quantified via Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR). P-CTX-1B caused a concentration- and time-dependent induction of iNOS in RAW 264.7 cells but not in Neuro-2a cells. NO production was evidenced by increased nitrite levels in the 10 microM range after 48 h of RAW 264.7 cells exposure to LPS and P-CTX-1B (0.05 microg/ml and 6 nM, respectively). The expression of iNOS mRNA peaked at 8h for LPS then gradually decreased to low level at 48 h. In contrast, a sustained level was recorded with P-CTX-1B in the 8-48 h time interval. The addition of N(omega)-nitro-L-arginine methyl ester (L-NAME), a stereoselective NOS inhibitor, strongly diminished NO formation but had no effect on iNOS mRNA synthesis. The implication of NO in CFP paves the way for new therapies for both western and traditional medicines.

  10. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Iva Bozic

    2015-01-01

    Full Text Available Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation.

  11. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Science.gov (United States)

    Bozic, Iva; Savic, Danijela; Jovanovic, Marija; Bjelobaba, Ivana; Laketa, Danijela; Nedeljkovic, Nadezda; Stojiljkovic, Mirjana; Pekovic, Sanja; Lavrnja, Irena

    2015-01-01

    Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM) modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM) to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS) stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation. PMID:26413464

  12. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene.

    Science.gov (United States)

    Beekwilder, Jules; van Houwelingen, Adèle; Cankar, Katarina; van Dijk, Aalt D J; de Jong, René M; Stoopen, Geert; Bouwmeester, Harro; Achkar, Jihane; Sonke, Theo; Bosch, Dirk

    2014-02-01

    Nootkatone is one of the major terpenes in the heartwood of the Nootka cypress Callitropsis nootkatensis. It is an oxidized sesquiterpene, which has been postulated to be derived from valencene. Both valencene and nootkatone are used for flavouring citrus beverages and are considered among the most valuable terpenes used at commercial scale. Functional evaluation of putative terpene synthase genes sourced by large-scale EST sequencing from Nootka cypress wood revealed a valencene synthase gene (CnVS). CnVS expression in different tissues from the tree correlates well with nootkatone content, suggesting that CnVS represents the first dedicated gene in the nootkatone biosynthetic pathway in C. nootkatensis The gene belongs to the gymnosperm-specific TPS-d subfamily of terpenes synthases and its protein sequence has low similarity to known citrus valencene synthases. In vitro, CnVS displays high robustness under different pH and temperature regimes, potentially beneficial properties for application in different host and physiological conditions. Biotechnological production of sesquiterpenes has been shown to be feasible, but productivity of microbial strains expressing valencene synthase from Citrus is low, indicating that optimization of valencene synthase activity is needed. Indeed, expression of CnVS in Saccharomyces cerevisiae indicated potential for higher yields. In an optimized Rhodobacter sphaeroides strain, expression of CnVS increased valencene yields 14-fold to 352 mg/L, bringing production to levels with industrial potential. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity.

    Science.gov (United States)

    Thupari, J N; Pinn, M L; Kuhajda, F P

    2001-07-13

    Inhibition of fatty acid synthase (FAS) induces apoptosis in human breast cancer cells in vitro and in vivo without toxicity to proliferating normal cells. We have previously shown that FAS inhibition causes a rapid increase in malonyl-CoA levels identifying malonyl-CoA as a potential trigger of apoptosis. In this study we further investigated the role of malonyl-CoA during FAS inhibition. We have found that: [i] inhibition of FAS with cerulenin causes carnitine palmitoyltransferase-1 (CPT-1) inhibition and fatty acid oxidation inhibition in MCF-7 human breast cancer cells likely mediated by elevation of malonyl-CoA; [ii] cerulenin cytotoxicity is due to the nonphysiological state of increased malonyl-CoA, decreased fatty acid oxidation, and decreased fatty acid synthesis; and [iii] the cytotoxic effect of cerulenin can be mimicked by simultaneous inhibition of CPT-1, with etomoxir, and fatty acid synthesis with TOFA, an acetyl-CoA carboxylase (ACC) inhibitor. This study identifies CPT-1 and ACC as two new potential targets for cancer chemotherapy. Copyright 2001 Academic Press.

  14. Glyoxalase I reduces glycative and oxidative stress and prevents age-related endothelial dysfunction through modulation of endothelial nitric oxide synthase phosphorylation.

    Science.gov (United States)

    Jo-Watanabe, Airi; Ohse, Takamoto; Nishimatsu, Hiroaki; Takahashi, Masao; Ikeda, Yoichiro; Wada, Takehiko; Shirakawa, Jun-ichi; Nagai, Ryoji; Miyata, Toshio; Nagano, Tetsuo; Hirata, Yasunobu; Inagi, Reiko; Nangaku, Masaomi

    2014-06-01

    Endothelial dysfunction is a major contributor to cardiovascular disease (CVD), particularly in elderly people. Studies have demonstrated the role of glycation in endothelial dysfunction in nonphysiological models, but the physiological role of glycation in age-related endothelial dysfunction has been poorly addressed. Here, to investigate how vascular glycation affects age-related endothelial function, we employed rats systemically overexpressing glyoxalase I (GLO1), which detoxifies methylglyoxal (MG), a representative precursor of glycation. Four groups of rats were examined, namely young (13 weeks old), mid-age (53 weeks old) wild-type, and GLO1 transgenic (WT/GLO1 Tg) rats. Age-related acceleration in glycation was attenuated in GLO1 Tg rats, together with lower aortic carboxymethyllysine (CML) and urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Age-related impairment of endothelium-dependent vasorelaxation was attenuated in GLO1 Tg rats, whereas endothelium-independent vasorelaxation was not different between WT and GLO1 Tg rats. Nitric oxide (NO) production was decreased in mid-age WT rats, but not in mid-age GLO1 Tg rats. Age-related inactivation of endothelial NO synthase (eNOS) due to phosphorylation of eNOS on Thr495 and dephosphorylation on Ser1177 was ameliorated in GLO1 Tg rats. In vitro, MG increased phosphorylation of eNOS (Thr495) in primary human aortic endothelial cells (HAECs), and overexpression of GLO1 decreased glycative stress and phosphorylation of eNOS (Thr495). Together, GLO1 reduced age-related endothelial glycative and oxidative stress, altered phohphorylation of eNOS, and attenuated endothelial dysfunction. As a molecular mechanism, GLO1 lessened inhibitory phosphorylation of eNOS (Thr495) by reducing glycative stress. Our study demonstrates that blunting glycative stress prevents the long-term impact of endothelial dysfunction on vascular aging. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons

  15. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Science.gov (United States)

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  16. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Directory of Open Access Journals (Sweden)

    Elena Lima-Cabello

    2016-01-01

    Full Text Available Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome.

  17. Nitric oxide synthase 2 (NOS2) expression in histologically normal margins of oral squamous cell carcinoma.

    Science.gov (United States)

    Morelatto, Rosana; Itoiz, María-Elina; Guiñazú, Natalia; Piccini, Daniel; Gea, Susana; López-de Blanc, Silvia

    2014-05-01

    The activity of Nitric Oxide Synthase 2 (NOS2) was found in oral squamous cell carcinomas (OSCC) but not in normal mucosa. Molecular changes associated to early carcinogenesis have been found in mucosa near carcinomas, which is considered a model to study field cancerization. The aim of the present study is to analyze NOS2 expression at the histologically normal margins of OSCC. Eleven biopsy specimens of OSCC containing histologically normal margins (HNM) were analyzed. Ten biopsies of normal oral mucosa were used as controls. The activity of NOS2 was determined by immunohistochemistry. Salivary nitrate and nitrite as well as tobacco and alcohol consumption were also analyzed. The Chi-squared test was applied. Six out of the eleven HNM from carcinoma samples showed positive NOS2 activity whereas all the control group samples yielded negative (p=0.005). No statistically significant association between enzyme expression and tobacco and/or alcohol consumption and salivary nitrate and nitrite was found. NOS2 expression would be an additional evidence of alterations that may occur in a state of field cancerization before the appearance of potentially malignant morphological changes.

  18. Unchanged gene expression of glycogen synthase in muscle from patients with NIDDM following sulphonylurea-induced improvement of glycaemic control

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Bjørbaek, C

    1995-01-01

    We have previously shown that the mRNA expression of muscle glycogen synthase is decreased in non-insulin-dependent diabetic (NIDDM) patients; the objective of the present protocol was to examine whether the gene expression of muscle glycogen synthase in NIDDM is affected by chronic sulphonylurea...... as enhanced beta-cell responses to an oral glucose load. During euglycaemic, hyperinsulinaemic clamp (2 mU x kg-1 x min-1) in combination with indirect calorimetry, a 35% (p=0.005) increase in whole-body insulin-stimulated glucose disposal rate, predominantly due to an increased non-oxidative glucose....... In conclusion, improved blood glucose control in gliclazide-treated obese NIDDM patients has no impact on the gene expression of muscle glycogen synthase....

  19. A variant of the endothelial nitric oxide synthase gene (NOS3) associated with AMS susceptibility is less common in the Quechua, a high altitude Native population.

    Science.gov (United States)

    Wang, Pei; Ha, Alice Y N; Kidd, Kenneth K; Koehle, Michael S; Rupert, Jim L

    2010-01-01

    Endothelial nitric oxide synthase (eNOS) is a vascular enzyme that produces nitric oxide, a transient signaling molecule that by vasodilatation regulates blood flow and pressure. Nitric oxide is believed to play roles in both short-term acclimatization and long-term evolutionary adaptation to environmental hypoxia. Several laboratories, including ours, have shown that variants in NOS3 (the gene encoding eNOS) are overrepresented in individuals with altitude-related illnesses such as high altitude pulmonary edema (HAPE) and acute mountain sickness (AMS), suggesting that NOS3 genotypes contribute to altitude tolerance. To further test our hypothesis that the G allele at the G894T polymorphism in NOS3 (dbSNP number: rs1799983; protein polymorphism Glu298Asp) is beneficial in hypoxic environments, we compared frequencies of this allele in an altitude-adapted Amerindian population, Quechua of the Andean altiplano, with those in a lowland Amerindian population, Maya of the Yucatan Peninsula. While common in both populations, the G allele was significantly more frequent in the highlanders. Taken together, our data suggest that this variant in NOS3, which has been previously associated with higher levels of nitric oxide, contributes to both acclimatization and adaptation to altitude.

  20. Modulating central gain in tinnitus: changes in nitric oxide synthase in the ventral cochlear nucleus.

    Science.gov (United States)

    Coomber, Ben; Kowalkowski, Victoria L; Berger, Joel I; Palmer, Alan Richard; Wallace, Mark Nelson

    2015-01-01

    A significant challenge in tinnitus research lies in explaining how acoustic insult leads to tinnitus in some individuals, but not others. One possibility is genetic variability in the expression and function of neuromodulators - components of neural signaling that alter the balance of excitation and inhibition in neural circuits. An example is nitric oxide (NO) - a free radical and potent neuromodulator in the mammalian brain - that regulates plasticity via both pre-synaptic and postsynaptic mechanisms. Changes in NO have previously been implicated in tinnitus generation, specifically in the ventral cochlear nucleus (VCN). Here, we examined nitric oxide synthase (NOS) - the enzyme responsible for NO production - in the guinea pig VCN following acoustic trauma. NOS was present in most cell types - including spherical and globular bushy cells, small, medium, and large multipolar cells, and octopus cells - spanning the entire extent of the VCN. The staining pattern was symmetrical in control animals. Unilateral acoustic over-exposure (AOE) resulted in marked asymmetries between ipsilateral and contralateral sides of the VCN in terms of the distribution of NOS across the cochlear nuclei in animals with behavioral evidence of tinnitus: fewer NOS-positive cells and a reduced level of NOS staining was present across the whole extent of the contralateral VCN, relative to the ipsilateral VCN. The asymmetric pattern of NOS-containing cells was observed as early as 1 day after AOE and was also present in some animals at 3, 7, and 21 days after AOE. However, it was not until 8 weeks after AOE, when tinnitus had developed, that asymmetries were significant overall, compared with control animals. Asymmetrical NOS expression was not correlated with shifts in the threshold hearing levels. Variability in NOS expression between animals may represent one underlying difference that can be linked to whether or not tinnitus develops after noise exposure.

  1. Development of radiation-inducible promoters for use in nitric oxide synthase gene therapy of cancer

    International Nuclear Information System (INIS)

    Hirst, D.G.; Worthington, J.; Adams, C.; Robson, T.; Scott, S.D.

    2003-01-01

    Full text: The free radical nitric oxide (NO) at nM concentrations performs multiple signaling roles that are essential for survival. These processes are regulated via the enzymes nNOS and eNOS, but another isoform, inducible nitric oxide synthase (iNOS) is capable of generating much higher concentrations (mM) over longer periods, resulting in the generation of very toxic species such as peroxynitrite. At high concentrations NO has many of the characteristics of an ideal anticancer molecule: it is cytotoxic (pro-apoptotic via peroxynitrite), it is a potent chemical radiosensitizer, it is anti-angiogenic and anti-metastatic. Thus, we see iNOS gene therapy as a strategy for targeting the generation of high concentrations of NO to tumours for therapeutic benefit. iNOS gene therapy should be used in combination with radiotherapy; so it is logical that the use of a radiation-inducible promoter should be part of the targeting strategy. We have tested several candidate promoters in vitro and in vivo. The WAF1 promoter has many of the properties desirable for therapeutic use including: rapid 3-4 fold induction at X-ray doses of 2 and 4Gy and no significant leakiness. WAF1 also has the advantage of being inducible by hypoxia and by the final product, NO. We have also tested the synthetic CArG promoter and demonstrated that, in addition to a high level of radiation inducibility, it is also inducible by NO. We have also been able to demonstrate potent radiosensitization (SER 2.0-2.5) in tumour cells in vitro and in vivo using iNOS gene transfer with constitutive or radiation-inducible promoters. We have also tested the use of iNOS gene therapy in combination with cisplatin and shown significant enhancement

  2. Modulating central gain in tinnitus: Changes in nitric oxide synthase in the ventral cochlear nucleus

    Directory of Open Access Journals (Sweden)

    Ben eCoomber

    2015-03-01

    Full Text Available A significant challenge in tinnitus research lies in explaining how acoustic insult leads to tinnitus in some individuals, but not others. One possibility is genetic variability in the expression and function of neuromodulators – components of neural signalling that alter the balance of excitation and inhibition in neural circuits. An example is nitric oxide (NO – a free radical and potent neuromodulator in the mammalian brain – that regulates plasticity via both presynaptic and postsynaptic mechanisms. Changes in NO have previously been implicated in tinnitus generation, specifically in the ventral cochlear nucleus (VCN. Here, we examined nitric oxide synthase (NOS – the enzyme responsible for NO production – in the guinea pig VCN following acoustic trauma. NOS was present in most cell types – including spherical and globular bushy cells, small, medium and large multipolar cells, and octopus cells – spanning the entire extent of the VCN. The staining pattern was symmetrical in control animals. Unilateral acoustic over-exposure (AOE resulted in marked asymmetries between ipsilateral and contralateral sides of the VCN in terms of the distribution of NOS across the cochlear nuclei in animals with behavioural evidence of tinnitus: fewer NOS-positive cells and a reduced level of NOS staining was present across the whole extent of the contralateral VCN, relative to the ipsilateral VCN. The asymmetric pattern of NOS-containing cells was observed as early as one day after AOE and was also present in some animals at 3, 7 and 21 days after AOE. However it was not until eight weeks after AOE, when tinnitus had developed, that asymmetries were significant overall, compared with control animals. Asymmetrical NOS expression was not correlated with shifts in the threshold hearing levels. Variability in NOS expression between animals may represent one underlying difference that can be linked to whether or not tinnitus develops after noise

  3. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis)

    Science.gov (United States)

    Zak, Megan A.; Regish, Amy M.; McCormick, Stephen; Manzon, Richard G.

    2017-01-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19 °C) or below (8 °C) the thermal optimum (13 °C) and exposure to exogenous thyroid hormone (60 µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.

  4. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis).

    Science.gov (United States)

    Zak, Megan A; Regish, Amy M; McCormick, Stephen D; Manzon, Richard G

    2017-06-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19°C) or below (8°C) the thermal optimum (13°C) and exposure to exogenous thyroid hormone (60µg T 4 /g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    EMANUELA FELLEY-BOSCO

    2002-01-01

    Full Text Available Reactive oxygen species are now widely recognized as important players contributing both to cell homeostasis and the development of disease. In this respect nitric oxide (NO is no exception. The discussion here will center on regulation of the inducible form of nitric oxide synthase (iNOS for two reasons. First, only iNOS produces micromolar NO concentrations, amounts that are high by comparison with the picomolar to nanomolar concentrations resulting from Ca2+-controlled NO production by endothelial eNOS or neuronal nNOS. Second, iNOS is not constitutively expressed in cells and regulation of this isoenzyme, in contrast to endothelial eNOS or neuronal nNOS, is widely considered to occur at the transcriptional level only. In particular, we were interested in the possibility that caveolin-1, a protein that functions as a tumor suppressor in colon carcinoma cells (Bender et al., 2002; this issue, might regulate iNOS activity. Our results provide evidence for the existence of a post-transcriptional mechanism controlling iNOS protein levels that involves caveolin-1-dependent sequestration of iNOS within a detergent-insoluble compartment. Interestingly, despite the high degree of conservation of the caveolin-1 scaffolding domain binding motif within all NOS enzymes, the interaction detected between caveolin-1 and iNOS in vitro is crucially dependent on presence of a caveolin-1 sequence element immediately adjacent to the scaffolding domain. A model is presented summarizing the salient aspects of these results. These observations are important in the context of tumor biology, since down-regulation of caveolin-1 is predicted to promote uncontrolled iNOS activity, genotoxic damage and thereby facilitate tumor development in humans

  6. Identification, immunolocalization, and immunological characterization of nitric oxide synthase-interacting protein from Clonorchis sinensis.

    Science.gov (United States)

    Bian, Meng; Li, Shan; Wang, Xiaoyun; Xu, Yanquan; Chen, Wenjun; Zhou, Chenhui; Chen, Xueqing; He, Lei; Xu, Jin; Liang, Chi; Wu, Zhongdao; Huang, Yan; Li, Xuerong; Yu, Xinbing

    2014-05-01

    Recently, accumulating evidences indicate that nitric oxide (NO) is a potent mediator with diverse roles in regulating cellular functions, signaling pathways, and variety of pathological processes. In the present study, using data from the published genomic for Clonorchis sinensis (C. sinensis), we investigated a gene encoding nitric oxide synthase-interacting protein (NOSIP) of C. sinensis. Recombinant CsNOSIP (rCsNOSIP) was expressed and purified from Escherichia coli BL21. The open reading frame of CsNOSIP comprises 867 bp which encodes 289 amino acids and shares 72.9, 45.2, 47, 46.4, and 45.8% identity with NOSIP from Schistosoma mansoni, Xenopus laevis, Rattus norvegicus, Mus musculus, and Homo sapiens, respectively. Bioinformatics analysis suggested that the full-length sequence contains an eNOS-interacting domain and numerous B-cell epitopes. Quantitative RT-PCR indicated that CsNOSIP differentially transcribed throughout the adult worms, metacercariae, and egg stages of C. sinensis, and were highly expressed in the adult worms. Moreover, western blot analysis showed that the rCsNOSIP could be detected by the serum from BALB/c mice infected with C. sinensis and the serum from BALB/c mice immunized with excretory/secretory products (ESPs). Furthermore, immunolocalization assay showed that CsNOSIP was specifically localized in the intestine, vitellarium, and eggs of adult worm. Both immunoblot and immunolocalization results demonstrated that CsNOSIP was one component of ESPs of C. sinensis, which could be supported by SignalP analysis. Moreover, analysis of the antibody subclass and cytokine profile demonstrated that subcutaneously immunized BALB/c mice with rCsNOSIP could significantly enhance serum IgG1 level and up-regulate expression of IL-4 and IL-6 in the splenocytes. Our results suggested that CsNOSIP was an important antigen exposed to host immune system and probably involved in immune regulation of host by inducing Th2-polarized immune response.

  7. Phospholipids chiral at phosphorus. Steric course of the reactions catalyzed by phosphatidylserine synthase from Escherichia coli and yeast

    International Nuclear Information System (INIS)

    Raetz, C.R.H.; Carman, G.M.; Dowhan, W.; Jiang, R.T.; Waszkuc, W.; Loffredo, W.; Tsai, M.D.

    1987-01-01

    The steric courses of the reactions catalyzed by phosphatidylserine (PS) synthase from Escherichia coli and yeast were elucidated by the following procedure. R/sub P/ and S/sub P/ isomers of 1,2-dipalmitoyl-sn-glycero-3-[ 17 O, 18 O]phosphoethanolamine ([ 17 O, 18 O]DPPE) were synthesized and converted to (R/sub P/)- and (S/sub P/)-1,2-dipalmitoyl-sn-glycero-3-[ 16 O, 17 O, 18 O]DPPA), respectively, by incubating with phospholipase D. Condensation of [ 16 O, 17 O, 18 O]DPPA with cytidine 5'-monophosphomorpholidate in pyridine gave the desired substrate for PS synthase, [ 17 O, 18 O]cytidine 5'-diphospho-1,2-dipalmitoyl-sn-glycerol ([ 17 O, 18 O]CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of [ 17 O, 18 O]CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of [ 17 O, 18 O] CDP-DPG with a mixture of L-serine, PS synthase and PS decarboxylase gave [ 17 O, 18 O]DPPE. The configuration and isotopic enrichments of the starting [ 17 O, 18 O]DPPE and the product were analyzed by 31 P NMR following trimethylsilylation of the DPPE. The results indicate that the reaction of E. coli PS synthase proceeds with retention of configuration at phosphorus, which suggests a two-step mechanism involving a phosphatidyl-enzyme intermediate, while the yeast PS synthase catalyzes the reaction with inversion of configuration, which suggests a single-displacement mechanism. Such results lend strong support to the ping-pong mechanism proposed for the E. coli enzyme and the sequential Bi-Bi mechanism proposed for the yeast enzyme, both based on previous isotopic exchange experiments

  8. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Lampugnani, Edwin R.; Persson, Staffan

    2016-01-01

    Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated with the ...

  9. Measurement of O-GlcNAcylated endothelial nitric oxide synthase by using 2',5'-ADP-Sepharose pull-down assay.

    Science.gov (United States)

    Long, Yang; Yan, Jianghong; Luo, Suxin; Liu, Zhenguo; Xia, Yong

    2017-11-15

    Endothelial nitric oxide synthase (eNOS) plays central roles in cardiovascular regulation and disease. eNOS function is critically affected by O-linked N-acetylglucosamine (O-GlcNAc) modification. The present method for measuring O-GlcNAcylated eNOS relies on immunoprecipitation. Such method exhibits low detection efficiency and is also costly. We here report a simplified assay by employing the high binding affinity of eNOS with the 2',5'-ADP-Sepharose resins. Together with the O-GlcNAc antibody, this assay readily allows the detection of O-GlcNAcylated eNOS in both cultured endothelial cells and rat vascular tissues. By using this assay, we demonstrate that eNOS O-GlcNAcylation is markedly elevated in the vessels of diabetic rats. Thus, a 2',5'-ADP-Sepharose-based pull-down assay is developed to measure O-GlcNAcylated eNOS. This assay is simple and efficient in detecting O-GlcNAcylated eNOS in cultured cells and animal tissues under both normal and disease conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    Science.gov (United States)

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Protective effects of agmatine on lipopolysaccharide-injured microglia and inducible nitric oxide synthase activity.

    Science.gov (United States)

    Ahn, Soo Kyung; Hong, Samin; Park, Yu Mi; Choi, Ja Yong; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2012-12-17

    Proinflammatory factors released from activated microglia contribute to maintaining homeostasis against various noxious stimuli in the central nervous system. If excessive, however, they may initiate a pathologic neuroinflammatory process. In this investigation, we evaluated whether agmatine, a primary polyamine known to protect neurons, reduces lipopolysaccharide (LPS)-induced damage to microglia in vitro and in vivo. For in vitro study, BV2-immortalized murine microglia were exposed to LPS with agmatine treatment. After 24hours, cell viability and the amount of nitrite generated were determined. For in vivo study, LPS was microinjected into the corpus callosum of adult male albino mice. Agmatine was intraperitoneally administered at the time of injury. Brains were evaluated 24hours after LPS microinjection to check for immunoreactivity with a microglial marker of ionized calcium binding adaptor molecule 1 (Iba1) and inducible nitric oxide synthase (iNOS). Using western blot analysis, protein expression of iNOS as well as that of the proinflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β, was determined. Agmatine significantly reduced the LPS-induced BV2 microglial cytotoxicity from over 80% to less than 60% (pAgmatine also decreased the activities of microglia and iNOS induced by LPS microinjection into corpus callosum. Our findings reveal that agmatine attenuates LPS-induced microglial damage and suggest that agmatine may serve as a novel therapeutic strategy for neuroinflammatory diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Brassica juncea nitric oxide synthase like activity is stimulated by PKC activators and calcium suggesting modulation by PKC-like kinase.

    Science.gov (United States)

    Talwar, Pooja Saigal; Gupta, Ravi; Maurya, Arun Kumar; Deswal, Renu

    2012-11-01

    Nitric oxide (NO) is an important signaling molecule having varied physiological and regulatory roles in biological systems. The fact that nitric oxide synthase (NOS) is responsible for NO generation in animals, prompted major search for a similar enzyme in plants. Arginine dependent NOS like activity (BjNOSla) was detected in Brassica juncea seedlings using oxyhemoglobin and citrulline assays. BjNOSla showed 25% activation by NADPH (0.4 mM) and 40% by calcium (0.4 mM) but the activity was flavin mononucleotide (FMN), flavin dinucleotide (FAD) and calmodulin (CaM) independent. Pharmacological approach using mammalian NOS inhibitors, NBT (300 μM) and l-NAME (5 mM), showed significant inhibition (100% and 67% respectively) supporting that the BjNOSla operates via the oxidative pathway. Most of the BjNOSla activity (80%) was confined to shoot while root showed only 20% activity. Localization studies by NADPH-diaphorase and DAF-2DA staining showed the presence of BjNOSla in guard cells. Kinetic analysis showed positive cooperativity with calcium as reflected by a decreased K(m) (∼13%) and almost two fold increase in V(max). PMA (438 nM), a kinase activator, activated BjNOSla ∼1.9 fold while its inactive analog 4αPDD was ineffective. Calcium and PMA activated the enzyme to ∼3 folds. Interestingly, 1,2-DG6 (2.5 μM) and PS (1 μM) with calcium activated the enzyme activity to ∼7 fold. A significant inhibition of BjNOSla by PKC inhibitors-staurosporine (∼90%) and calphostin-C (∼40%), further supports involvement of PKC-like kinase. The activity was also enhanced by abiotic stress conditions (7-46%). All these findings suggest that BjNOSla generates NO via oxidative pathway and is probably regulated by phosphorylation. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage

    International Nuclear Information System (INIS)

    Hong, Chang-Won; Lee, Joon-Ho; Kim, Suwan; Noh, Jae Myoung; Kim, Young-Mee; Pyo, Hongryull; Lee, Sunyoung

    2013-01-01

    The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-N ω -nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N 6 -(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage. (author)

  14. Requirement of phosphorylatable endothelial nitric oxide synthase at Ser-1177 for vasoinhibin-mediated inhibition of endothelial cell migration and proliferation in vitro.

    Science.gov (United States)

    García, Celina; Nuñez-Anita, Rosa Elvira; Thebault, Stéphanie; Arredondo Zamarripa, David; Jeziorsky, Michael C; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2014-03-01

    Endothelial nitric oxide synthase (eNOS)-derived nitric oxide is a major vasorelaxing factor and a mediator of vasopermeability and angiogenesis. Vasoinhibins, a family of antiangiogenic prolactin fragments that include 16 K prolactin, block most eNOS-mediated vascular effects. Vasoinhibins activate protein phosphatase 2A, causing eNOS inactivation through dephosphorylation of eNOS at serine residue 1179 in bovine endothelial cells and thereby blocking vascular permeability. In this study, we examined whether human eNOS phosphorylation at S1177 (analogous to bovine S1179) influences other actions of vasoinhibins. Bovine umbilical vein endothelial cells were stably transfected with human wild-type eNOS (WT) or with phospho-mimetic (S1177D) or non-phosphorylatable (S1177A) eNOS mutants. Vasoinhibins inhibited the increases in eNOS activity, migration, and proliferation following the overexpression of WT eNOS but did not affect these responses in cells expressing S1177D and S1177A eNOS mutants. We conclude that eNOS inhibition by dephosphorylation of S1177 is fundamental for the inhibition of endothelial cell migration and proliferation by vasoinhibins.

  15. Role of Nitric Oxide in the Regulation of Renin and Vasopressin Secretion

    Science.gov (United States)

    Reid, Ian A.

    1994-01-01

    Research during recent years has established nitric oxide as a unique signaling molecule that plays important roles in the regulation of the cardiovascular, nervous, immune, and other systems. Nitric oxide has also been implicated in the control of the secretion of hormones by the pancreas, hypothalamus, and anterior pituitary gland, and evidence is accumulating that it contributes to the regulation of the secretion of renin and vasopressin, hormones that play key roles in the control of sodium and water balance. Several lines of evidence have implicated nitric oxide in the control of renin secretion. The enzyme nitric oxide synthase is present in vascular and tubular elements of the kidney, particularly in cells of the macula densa, a structure that plays an important role in the control of renin secretion. Guanylyl cyclase, a major target for nitric oxide, is also present in the kidney. Drugs that inhibit nitric oxide synthesis generally suppress renin release in vivo and in vitro, suggesting a stimulatory role for the L-arginine/nitric oxide pathway in the control of renin secretion. Under some conditions, however, blockade of nitric oxide synthesis increases renin secretion. Recent studies indicate that nitric oxide not only contributes to the regulation of basal renin secretion, but also participates in the renin secretory responses to activation of the renal baroreceptor, macula densa, and beta adrenoceptor mechanisms that regulate renin secretion. Histochemical and immunocytochemical studies have revealed the presence of nitric oxide synthase in the supraoptic and paraventricular nuclei of the hypothalamus and in the posterior pituitary gland. Colocalization of nitric oxide synthase and vasopressin has been demonstrated in some hypothalamic neurons. Nitric oxide synthase activity in the hypothalamus and pituitary is increased by maneuvers known to stimulate vasopressin secretion, including salt loading and dehydration, Administration of L-arginine and nitric

  16. Increased expression and local accumulation of the Prion Protein, Alzheimer Aβ peptides, superoxide dismutase 1, and Nitric oxide synthases 1 & 2 in muscle in a rabbit model of diabetes

    Directory of Open Access Journals (Sweden)

    Bitel Claudine L

    2010-09-01

    Full Text Available Abstract Background Muscle disease associated with different etiologies has been shown to produce localized accumulations of amyloid and oxidative stress-related proteins that are more commonly associated with neurodegeneration in the brain. In this study we examined changes in muscle tissue in a classic model of diabetes and hyperglycemia in rabbits to determine if similar dysregulation of Alzheimer Aβ peptides, the prion protein (PrP, and superoxide dismutase 1 (SOD1, as well as nitric oxide synthases is produced in muscle in diabetic animals. This wild-type rabbit model includes systemic physiological expression of human-like Alzheimer precursor proteins and Aβ peptides that are considered key in Alzheimer protein studies. Results Diabetes was produced in rabbits by injection of the toxic glucose analogue alloxan, which selectively enters pancreatic beta cells and irreversibly decreases insulin production, similar to streptozotocin. Quadriceps muscle from rabbits 16 wks after onset of diabetes and hyperglycemia were analyzed with biochemical and in situ methods. Immunoblots of whole muscle protein samples demonstrated increased PrP, SOD1, as well as neuronal and inducible Nitric oxide synthases (NOS1 and NOS2 in diabetic muscle. In contrast, we detected little change in Alzheimer Aβ precursor protein expression, or BACE1 and Presenilin 1 levels. However, Aβ peptides measured by ELISA increased several fold in diabetic muscle, suggesting a key role for Aβ cleavage in muscle similar to Alzheimer neurodegeneration in this diabetes model. Histological changes in diabetic muscle included localized accumulations of PrP, Aβ, NOS1 and 2, and SOD1, and evidence of increased central nuclei and cell infiltration. Conclusions The present study provides evidence that several classic amyloid and oxidative stress-related disease proteins coordinately increase in overall expression and form localized accumulations in diabetic muscle. The present study

  17. Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site.

    Science.gov (United States)

    Xu, Jinkun; Ai, Ying; Wang, Jianhui; Xu, Jingwei; Zhang, Yongkang; Yang, Dong

    2017-05-01

    S-limonene synthase is a model monoterpene synthase that cyclizes geranyl pyrophosphate (GPP) to form S-limonene. It is a relatively specific enzyme as the majority of its products are composed of limonene. In this study, we converted it to pinene or phellandrene synthases after introducing N345A/L423A/S454A or N345I mutations. Further studies on N345 suggest the polarity of this residue plays a critical role in limonene production by stabilizing the terpinyl cation intermediate. If it is mutated to a non-polar residue, further cyclization or hydride shifts occurs so the carbocation migrates towards the pyrophosphate, leading to the production of pinene or phellandrene. On the other hand, mutant enzymes that still possess a polar residue at this position produce limonene as the major product. N345 is not the only polar residue that may stabilize the terpinyl cation because it is not strictly conserved among limonene synthases across species and there are also several other polar residues in this area. These residues could form a "polar pocket" that may collectively play this stabilizing role. Our study provides important insights into the catalytic mechanism of limonene synthases. Furthermore, it also has wider implications on the evolution of terpene synthases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Impact of nutrient excess and endothelial nitric oxide synthase on the plasma metabolite profile in mice

    Directory of Open Access Journals (Sweden)

    Brian E Sansbury

    2014-11-01

    Full Text Available An increase in calorie consumption is associated with the recent rise in obesity prevalence. However, our current understanding of the effects of nutrient excess on major metabolic pathways appears insufficient to develop safe and effective metabolic interventions to prevent obesity. Hence, we sought to identify systemic metabolic changes caused by nutrient excess and to determine how endothelial nitric oxide synthase (eNOS—which has anti-obesogenic properties—affects systemic metabolism by measuring plasma metabolites. Wild-type (WT and eNOS transgenic (eNOS-TG mice were placed on low fat or high fat diets for six weeks, and plasma metabolites were measured using an unbiased metabolomic approach. High fat feeding in WT mice led to significant increases in fat mass, which was associated with significantly lower plasma levels of 1,5-anhydroglucitol, lysophospholipids, 3-dehydrocarnitine, and bile acids, as well as branched chain amino acids (BCAAs and their metabolites. Plasma levels of several lipids including sphingomyelins, stearoylcarnitine, dihomo-linoleate and metabolites associated with oxidative stress were increased by high fat diet. In comparison with low fat-fed WT mice, eNOS-TG mice showed lower levels of several free fatty acids, but in contrast, the levels of bile acids, amino acids, and BCAA catabolites were increased. When placed on a high fat diet, eNOS overexpressing mice showed remarkably higher levels of plasma bile acids and elevated levels of plasma BCAAs and their catabolites compared with WT mice. Treatment with GW4064, an inhibitor of bile acid synthesis, decreased plasma bile acid levels but was not sufficient to reverse the anti-obesogenic effects of eNOS overexpression. These findings reveal unique metabolic changes in response to high fat diet and eNOS overexpression and suggest that the anti-obesity effects of eNOS are likely independent of changes in the bile acid pool.

  19. Trigeminocardiac reflex by mandibular extension on rat pial microcirculation: role of nitric oxide.

    Directory of Open Access Journals (Sweden)

    Dominga Lapi

    Full Text Available In the present study we have extended our previous findings about the effects of 10 minutes of passive mandibular extension in anesthetized Wistar rats. By prolonging the observation time to 3 hours, we showed that 10 minutes mandibular extension caused a significant reduction of the mean arterial blood pressure and heart rate respect to baseline values, which persisted up to 160 minutes after mandibular extension. These effects were accompanied by a characteristic biphasic response of pial arterioles: during mandibular extension, pial arterioles constricted and after mandibular extension dilated for the whole observation period. Interestingly, the administration of the opioid receptor antagonist naloxone abolished the vasoconstriction observed during mandibular extension, while the administration of Nω-Nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, abolished the vasodilation observed after mandibular extension. Either drug did not affect the reduction of mean arterial blood pressure and heart rate induced by mandibular extension. By qRT-PCR, we also showed that neuronal nitric oxide synthase gene expression was significantly increased compared with baseline conditions during and after mandibular extension and endothelial nitric oxide synthase gene expression markedly increased at 2 hours after mandibular extension. Finally, western blotting detected a significant increase in neuronal and endothelial nitric oxide synthase protein expression. In conclusion mandibular extension caused complex effects on pial microcirculation involving opioid receptor activation and nitric oxide release by both neurons and endothelial vascular cells at different times.

  20. Effect of Interleukin-10 and Laminar Shear Stress on Endothelial Nitric Oxide Synthase and Nitric Oxide in African American Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Babbitt, Dianne M; Kim, Ji-Seok; Forrester, Steven J; Brown, Michael D; Park, Joon-Young

    2015-11-05

    African Americans have a predisposition to heightened systemic inflammation and a high prevalence of hypertension. The purpose of this study was to evaluate the influence of interleukin-10 (IL-10) and laminar shear stress (LSS) on African American endothelial cells by measuring total endothelial nitric oxide synthase (eNOS) protein expression and its phosphorylated form (p-eNOS) at Serine 1177, and nitric oxide (NO) levels, in response to IL-10 incubation and high physiological levels of LSS, used as an in vitro mimetic for aerobic exercise training (AEXT). Human umbilical vein endothelial cells (HUVEC) from an African American donor were cultured. The experimental conditions included Static, Static with IL-10 Incubation, LSS at 20 dynes/cm², and LSS at 20 dynes/cm² with IL-10 Incubation. Western blotting was used to measure eNOS and p-eNOS protein expression in the cells. A modified Griess assay was used to measure NO metabolites in the cell culture media. There were significant increases in p-eNOS, eNOS, and NO in the LSS at 20 dynes/cm² and LSS at 20 dynes/cm² with IL-10 Incubation experimental conditions when compared to the Static experimental condition. There were no other statistically significant differences demonstrating that IL-10 did not have an additive effect on eNOS activity in our study. The significant increases in p-eNOS, eNOS, and NO as a result of LSS in African American HUVECs suggest that AEXT may be a viable, nonpharmacologic method to improve vascular inflammation status and vasodilation, and thereby contribute to hypertension reduction in the African American population.

  1. Deciphering the interplay between cysteine synthase and thiol cascade proteins in modulating Amphotericin B resistance and survival of Leishmania donovani under oxidative stress

    Directory of Open Access Journals (Sweden)

    Kuljit Singh

    2017-08-01

    Full Text Available Leishmania donovani is the causative organism of the neglected human disease known as visceral leishmaniasis which is often fatal, if left untreated. The cysteine biosynthesis pathway of Leishmania may serve as a potential drug target because it is different from human host and regulates downstream components of redox metabolism of the parasites; essential for their survival, pathogenicity and drug resistance. However, despite the apparent dependency of redox metabolism of cysteine biosynthesis pathway, the role of L. donovani cysteine synthase (LdCS in drug resistance and redox homeostasis has been unexplored. Herein, we report that over-expression of LdCS in Amphotericin B (Amp B sensitive strain (S1-OE modulates resistance towards oxidative stress and drug pressure. We observed that antioxidant enzyme activities were up-regulated in S1-OE parasites and these parasites alleviate intracellular reactive oxygen species (ROS efficiently by maintaining the reduced thiol pool. In contrast to S1-OE parasites, Amp B sensitive strain (S1 showed higher levels of ROS which was positively correlated with the protein carbonylation levels and negatively correlated with cell viability. Moreover, further investigations showed that LdCS over-expression also augments the ROS-primed induction of LdCS-GFP as well as endogenous LdCS and thiol pathway proteins (LdTryS, LdTryR and LdcTXN in L. donovani parasites; which probably aids in stress tolerance and drug resistance. In addition, the expression of LdCS was found to be up-regulated in Amp B resistant isolates and during infective stationary stages of growth and consistent with these observations, our ex vivo infectivity studies confirmed that LdCS over-expression enhances the infectivity of L. donovani parasites. Our results reveal a novel crosstalk between LdCS and thiol metabolic pathway proteins and demonstrate the crucial role of LdCS in drug resistance and redox homeostasis of Leishmania. Keywords

  2. Lipopolysaccharide-induced dopaminergic cell death in rat midbrain slice cultures: role of inducible nitric oxide synthase and protection by indomethacin.

    Science.gov (United States)

    Shibata, Haruki; Katsuki, Hiroshi; Nishiwaki, Mayumi; Kume, Toshiaki; Kaneko, Shuji; Akaike, Akinori

    2003-09-01

    Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.

  3. Phenotype commitment in vascular smooth muscle cells derived from coronary atherosclerotic plaques: differential gene expression of endothelial Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    ML Rossi

    2009-06-01

    Full Text Available Unstable angina and myocardial infarction are the clinical manifestations of the abrupt thrombotic occlusion of an epicardial coronary artery as a result of spontaneous atherosclerotic plaque rupture or fissuring, and the exposure of highly thrombogenic material to blood. It has been demonstrated that the proliferation of vascular smooth muscle cells (VSMCs and impaired bioavailabilty of nitric oxide (NO are among the most important mechanisms involved in the progression of atherosclerosis. It has also been suggested that a NO imbalance in coronary arteries may be involved in myocardial ischemia as a result of vasomotor dysfunction triggering plaque rupture and the thrombotic response. We used 5’ nuclease assays (TaqMan™ PCRs to study gene expression in coronary plaques collected by means of therapeutic directional coronary atherectomy from 15 patients with stable angina (SA and 15 with acute coronary syndromes (ACS without ST elevation. Total RNA was extracted from the 30 plaques and the cDNA was amplified in order to determine endothelial nitric oxide synthase (eNOS gene expression. Analysis of the results showed that the expression of eNOS was significantly higher (p<0.001 in the plaques from the ACS patients. Furthermore, isolated VSMCs from ACS and SA plaques confirmed the above pattern even after 25 plating passages. In situ RT-PCR was also carried out to co-localize the eNOS messengers and the VSMC phenotype.

  4. Identifying the Long-Term Role of Inducible Nitric Oxide Synthase after Contusive Spinal Cord Injury Using a Transgenic Mouse Model

    Directory of Open Access Journals (Sweden)

    Dominic M. Maggio

    2017-01-01

    Full Text Available Inducible nitric oxide synthase (iNOS is a potent mediator of oxidative stress during neuroinflammation triggered by neurotrauma or neurodegeneration. We previously demonstrated that acute iNOS inhibition attenuated iNOS levels and promoted neuroprotection and functional recovery after spinal cord injury (SCI. The present study investigated the effects of chronic iNOS ablation after SCI using inos-null mice. iNOS−/− knockout and wild-type (WT control mice underwent a moderate thoracic (T8 contusive SCI. Locomotor function was assessed weekly, using the Basso Mouse Scale (BMS, and at the endpoint (six weeks, by footprint analysis. At the endpoint, the volume of preserved white and gray matter, as well as the number of dorsal column axons and perilesional blood vessels rostral to the injury, were quantified. At weeks two and three after SCI, iNOS−/− mice exhibited a significant locomotor improvement compared to WT controls, although a sustained improvement was not observed during later weeks. At the endpoint, iNOS−/− mice showed significantly less preserved white and gray matter, as well as fewer dorsal column axons and perilesional blood vessels, compared to WT controls. While short-term antagonism of iNOS provides histological and functional benefits, its long-term ablation after SCI may be deleterious, blocking protective or reparative processes important for angiogenesis and tissue preservation.

  5. Displaced Sense: Displacement, Religion and Sense-making

    OpenAIRE

    Naidu, Maheshvari

    2016-01-01

    Whether formally categorized as refugees or not, displaced migrants experience varying degrees of vulnerability in relation to where they find themselves displaced. The internally displaced furthermore squat invisibly and outside the boundaries of the legal framework and incentive structures accorded to those classified as 'refugee'. They are thus arguably, by and large, left to source sustaining solutions for themselves. This article works through the theoretical prism of sense-making theory...

  6. Metal-Insulator Transition in Copper Oxides Induced by Apex Displacements

    Directory of Open Access Journals (Sweden)

    Swagata Acharya

    2018-05-01

    Full Text Available High temperature superconductivity has been found in many kinds of compounds built from planes of Cu and O, separated by spacer layers. Understanding why critical temperatures are so high has been the subject of numerous investigations and extensive controversy. To realize high temperature superconductivity, parent compounds are either hole doped, such as La_{2}CuO_{4} (LCO with Sr (LSCO, or electron doped, such as Nd_{2}CuO_{4} (NCO with Ce (NCCO. In the electron-doped cuprates, the antiferromagnetic phase is much more robust than the superconducting phase. However, it was recently found that the reduction of residual out-of-plane apical oxygen dramatically affects the phase diagram, driving those compounds to a superconducting phase. Here we use a recently developed first-principles method to explore how displacement of the apical oxygen (AO in LCO affects the optical gap, spin and charge susceptibilities, and superconducting order parameter. By combining quasiparticle self-consistent GW (QS GW and dynamical mean-field theory (DMFT, we show that LCO is a Mott insulator, but small displacements of the apical oxygen drive the compound to a metallic state through a localization-delocalization transition, with a concomitant maximum in d-wave order parameter at the transition. We address the question of whether NCO can be seen as the limit of LCO with large apical displacements, and we elucidate the deep physical reasons why the behavior of NCO is so different from the hole-doped materials. We shed new light on the recent correlation observed between T_{c} and the charge transfer gap, while also providing a guide towards the design of optimized high-T_{c} superconductors. Further, our results suggest that strong correlation, enough to induce a Mott gap, may not be a prerequisite for high-T_{c} superconductivity.

  7. Differential requirement for nitric oxide in IGF-1-induced anti-apoptotic, anti-oxidant and anti-atherosclerotic effects

    Science.gov (United States)

    Sukhanov, Sergiy; Higashi, Yusuke; Shai, Shaw-Yung; Blackstock, Christopher; Galvez, Sarah; Vaughn, Charlotte; Titterington, Jane; Delafontaine, Patrick

    2011-01-01

    We have shown previously that insulin like-growth factor I (IGF-1) suppressed atherosclerosis in Apoe−/− mice and activated endothelial nitric oxide (NO) synthase. To determine whether IGF-1-induced atheroprotection depends on NO, IGF-1- or saline-infused mice were treated with L-NAME, the pan-NO synthase inhibitor or with D-NAME (control). IGF-1 reduced atherosclerosis in both the D-NAME and L-NAME groups suggesting that IGF-1’s anti-atherogenic effect was NO-independent. IGF-1 increased plaque smooth muscle cells, suppressed cell apoptosis and downregulated lipoprotein lipase and these effects were also NO-independent. On the contrary, IGF-1 decreased oxidative stress and suppressed TNF-α levels and these effects were blocked by L-NAME. Thus IGF-1’s anti-oxidant effect is dependent on its ability to increase NO but is distinct from its anti-atherosclerotic effect which is NO-independent. PMID:21872589

  8. Spinal motoneuron synaptic plasticity after axotomy in the absence of inducible nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Zanon Renata G

    2010-05-01

    Full Text Available Abstract Background Astrocytes play a major role in preserving and restoring structural and physiological integrity following injury to the nervous system. After peripheral axotomy, reactive gliosis propagates within adjacent spinal segments, influenced by the local synthesis of nitric oxide (NO. The present work investigated the importance of inducible nitric oxide synthase (iNOS activity in acute and late glial responses after injury and in major histocompatibility complex class I (MHC I expression and synaptic plasticity of inputs to lesioned alpha motoneurons. Methods In vivo analyses were carried out using C57BL/6J-iNOS knockout (iNOS-/- and C57BL/6J mice. Glial response after axotomy, glial MHC I expression, and the effects of axotomy on synaptic contacts were measured using immunohistochemistry and transmission electron microscopy. For this purpose, 2-month-old animals were sacrificed and fixed one or two weeks after unilateral sciatic nerve transection, and spinal cord sections were incubated with antibodies against classical MHC I, GFAP (glial fibrillary acidic protein - an astroglial marker, Iba-1 (an ionized calcium binding adaptor protein and a microglial marker or synaptophysin (a presynaptic terminal marker. Western blotting analysis of MHC I and nNOS expression one week after lesion were also performed. The data were analyzed using a two-tailed Student's t test for parametric data or a two-tailed Mann-Whitney U test for nonparametric data. Results A statistical difference was shown with respect to astrogliosis between strains at the different time points studied. Also, MHC I expression by iNOS-/- microglial cells did not increase at one or two weeks after unilateral axotomy. There was a difference in synaptophysin expression reflecting synaptic elimination, in which iNOS-/- mice displayed a decreased number of the inputs to alpha motoneurons, in comparison to that of C57BL/6J. Conclusion The findings herein indicate that i

  9. Glucose-Modulated Mitochondria Adaptation in Tumor Cells: A Focus on ATP Synthase and Inhibitor Factor 1

    Directory of Open Access Journals (Sweden)

    Irene Mavelli

    2012-02-01

    Full Text Available Warburg’s hypothesis has been challenged by a number of studies showing that oxidative phosphorylation is repressed in some tumors, rather than being inactive per se. Thus, treatments able to shift energy metabolism by activating mitochondrial pathways have been suggested as an intriguing basis for the optimization of antitumor strategies. In this study, HepG2 hepatocarcinoma cells were cultivated with different metabolic substrates under conditions mimicking “positive” (activation/biogenesis or “negative” (silencing mitochondrial adaptation. In addition to the expected up-regulation of mitochondrial biogenesis, glucose deprivation caused an increase in phosphorylating respiration and a rise in the expression levels of the ATP synthase β subunit and Inhibitor Factor 1 (IF1. Hyperglycemia, on the other hand, led to a markedly decreased level of the transcriptional coactivator PGC-α suggesting down-regulation of mitochondrial biogenesis, although no change in mitochondrial mass and no impairment of phosphorylating respiration were observed. Moreover, a reduction in mitochondrial networking and in ATP synthase dimer stability was produced. No effect on β-ATP synthase expression was elicited. Notably, hyperglycemia caused an increase in IF1 expression levels, but it did not alter the amount of IF1 associated with ATP synthase. These results point to a new role of IF1 in relation to high glucose utilization by tumor cells, in addition to its well known effect upon mitochondrial ATP synthase regulation.

  10. Pain modulation by nitric oxide in the spinal cord.

    Directory of Open Access Journals (Sweden)

    Marco Aurelio M Freire

    2009-09-01

    Full Text Available Nitric oxide (NO is a versatile messenger molecule first associated with endothelial relaxing effects. In the central nervous system (CNS, NO synthesis is primarily triggered by activation of N-methyl-D-aspartate (NMDA receptors and has a Janus face, with both beneficial and harmful properties, depending on concentration and the identity of its synthetic enzyme isoform. There are three isoforms of the NO synthesizing enzyme nitric oxide synthase (NOS: neuronal (nNOS, endothelial (eNOS, and inducible nitric oxide synthase (iNOS, each one involved with specific events in the brain. In CNS, nNOS is involved with modulation of synaptic transmission through long-term potentiation in several regions, including nociceptive circuits in the spinal cord. Here, we review the role played by NO on central pain sensitization.

  11. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  12. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    International Nuclear Information System (INIS)

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-01-01

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus

  13. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  14. Study of oxide film formed in a pre cracked CT specimen of AISI 304L during a rising displacement test in 288 C water

    International Nuclear Information System (INIS)

    Diaz S, A.; Castano M, V.

    2007-01-01

    A study of oxide film formed inside pre cracked CT specimens during a rising displacement test in high temperature water (288 C) was performed in this study, The environmental conditions used during the experiments were similar to these found in Boiling Water Reactors (BWR): Normal Water Condition (NWC - 200 ppb O 2 ) and Hydrogen Water Chemistry (HWC - 125 ppb H2). The oxide films formed were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). In both cases the oxide film consisted of two layers identified as magnetite. In the case of HWC the results agree with previous reports that mention magnetite as a stable phase in reducing conditions. However the stable phase in oxidant conditions is hematite and this work shows the presence of magnetite crystals in the narrow crack of CT specimens in spite of the oxidant environmental condition. This situation confirms that inside the pre-cracked CT specimens the environmental conditions were different from the oxidant bulk, and probably a poor oxygen access and stagnant conditions within the narrow crack promoted a localized reducing environment that permitted the magnetite formation. Is evident that the crack growth studies should consider the conditions inside crack because they are significantly different. (Author)

  15. Glycogen synthase activation by sugars in isolated hepatocytes.

    Science.gov (United States)

    Ciudad, C J; Carabaza, A; Bosch, F; Gòmez I Foix, A M; Guinovart, J J

    1988-07-01

    We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.

  16. Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro.

    Science.gov (United States)

    Yu, Zhanyang; Li, Zhaoyu; Liu, Ning; Jizhang, Yunneng; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying

    2015-06-01

    Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.

  17. Inducible nitric oxide synthase (iNOS) regulatory region variation in non-human primates.

    Science.gov (United States)

    Roodgar, Morteza; Ross, Cody T; Kenyon, Nicholas J; Marcelino, Gretchen; Smith, David Glenn

    2015-04-01

    Inducible nitric oxide synthase (iNOS) is an enzyme that plays a key role in intracellular immune response against respiratory infections. Since various species of nonhuman primates exhibit different levels of susceptibility to infectious respiratory diseases, and since variation in regulatory regions of genes is thought to play a key role in expression levels of genes, two candidate regulatory regions of iNOS were mapped, sequenced, and compared across five species of nonhuman primates: African green monkeys (Chlorocebus sabaeus), pig-tailed macaques (Macaca nemestrina), cynomolgus macaques (Macaca fascicularis), Indian rhesus macaques (Macaca mulatta), and Chinese rhesus macaques (M. mulatta). In addition, we conducted an in silico analysis of the transcription factor binding sites associated with genetic variation in these two candidate regulatory regions across species. We found that only one of the two candidate regions showed strong evidence of involvement in iNOS regulation. Specifically, we found evidence of 13 conserved binding site candidates linked to iNOS regulation: AP-1, C/EBPB, CREB, GATA-1, GATA-3, NF-AT, NF-AT5, NF-κB, KLF4, Oct-1, PEA3, SMAD3, and TCF11. Additionally, we found evidence of interspecies variation in binding sites for several regulatory elements linked to iNOS (GATA-3, GATA-4, KLF6, SRF, STAT-1, STAT-3, OLF-1 and HIF-1) across species, especially in African green monkeys relative to other species. Given the key role of iNOS in respiratory immune response, the findings of this study might help guide the direction of future studies aimed to uncover the molecular mechanisms underlying the increased susceptibility of African green monkeys to several viral and bacterial respiratory infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Threonine phosphorylation of rat liver glycogen synthase

    International Nuclear Information System (INIS)

    Arino, J.; Arro, M.; Guinovart, J.J.

    1985-01-01

    32 P-labeled glycogen synthase specifically immunoprecipitated from 32 P-phosphate incubated rat hepatocytes contains, in addition to [ 32 P] phosphoserine, significant levels of [ 32 P] phosphothreonine. When the 32 P-immunoprecipitate was cleaved with CNBr, the [ 32 P] phosphothreonine was recovered in the large CNBr fragment (CB-2, Mapp 28 Kd). Homogeneous rat liver glycogen synthase was phosphorylated by all the protein kinases able to phosphorylate CB-2 in vitro. After analysis of the immunoprecipitated enzyme for phosphoaminoacids, it was observed that only casein kinase II was able to phosphorylate on threonine and 32 P-phosphate was only found in CB-2. These results demonstrate that rat liver glycogen synthase is phosphorylated at threonine site(s) contained in CB-2 and strongly indicate that casein kinase II may play a role in the ''in vivo'' phosphorylation of liver glycogen synthase. This is the first protein kinase reported to phosphorylate threonine residues in liver glycogen synthase

  19. Architecture of the nitric-oxide synthase holoenzyme reveals large conformational changes and a calmodulin-driven release of the FMN domain.

    Science.gov (United States)

    Yokom, Adam L; Morishima, Yoshihiro; Lau, Miranda; Su, Min; Glukhova, Alisa; Osawa, Yoichi; Southworth, Daniel R

    2014-06-13

    Nitric-oxide synthase (NOS) is required in mammals to generate NO for regulating blood pressure, synaptic response, and immune defense. NOS is a large homodimer with well characterized reductase and oxygenase domains that coordinate a multistep, interdomain electron transfer mechanism to oxidize l-arginine and generate NO. Ca(2+)-calmodulin (CaM) binds between the reductase and oxygenase domains to activate NO synthesis. Although NOS has long been proposed to adopt distinct conformations that alternate between interflavin and FMN-heme electron transfer steps, structures of the holoenzyme have remained elusive and the CaM-bound arrangement is unknown. Here we have applied single particle electron microscopy (EM) methods to characterize the full-length of the neuronal isoform (nNOS) complex and determine the structural mechanism of CaM activation. We have identified that nNOS adopts an ensemble of open and closed conformational states and that CaM binding induces a dramatic rearrangement of the reductase domain. Our three-dimensional reconstruction of the intact nNOS-CaM complex reveals a closed conformation and a cross-monomer arrangement with the FMN domain rotated away from the NADPH-FAD center, toward the oxygenase dimer. This work captures, for the first time, the reductase-oxygenase structural arrangement and the CaM-dependent release of the FMN domain that coordinates to drive electron transfer across the domains during catalysis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Promoter polymorphisms in the nitric oxide synthase 3 gene are associated with ischemic stroke susceptibility in young black women.

    Science.gov (United States)

    Howard, Timothy D; Giles, Wayne H; Xu, Jianfeng; Wozniak, Marcella A; Malarcher, Ann M; Lange, Leslie A; Macko, Richard F; Basehore, Monica J; Meyers, Deborah A; Cole, John W; Kittner, Steven J

    2005-09-01

    Endothelial nitric oxide exerts a variety of protective effects on endothelial cells and blood vessels, and therefore the nitric oxide synthase 3 gene (NOS3) is a logical candidate gene for stroke susceptibility. We used the population-based Stroke Prevention in Young Women case-control study to assess the association of five NOS3 polymorphisms in 110 cases (46% black) with ischemic stroke and 206 controls (38% black), 15 to 44 years of age. Polymorphisms included 3 single nucleotide polymorphisms (SNPs) in the promoter region (-1468 T>A, -922 G>A, -786 T>C), 1 SNP in exon 7 (G894T), and 1 insertion/deletion polymorphism within intron 4. Significant associations with both the -922 G>A and -786 T>C SNPs with ischemic stroke were observed in the black, but not the white, population. This association was attributable to an increased prevalence of the -922 A allele (OR=3.0, 95% CI=1.3 to 6.8; P=0.005) and the -786 T allele (OR=2.9, 95% CI=1.3 to 6.4; P=0.005) in cases versus controls. These 2 SNPs were in strong linkage disequilibrium (D'=1.0), making it impossible to determine, within the confines of this genetic study, whether 1 or both of these polymorphisms are functionally related to NOS3 expression. Two sets of haplotypes were also identified, 1 of which may confer an increased susceptibility to stroke in blacks, whereas the other appears to be protective. Promoter variants in NOS3 may be associated with ischemic stroke susceptibility among young black women.

  1. Estrous cycle influences the expression of neuronal nitric oxide synthase in the hypothalamus and limbic system of female mice

    Directory of Open Access Journals (Sweden)

    Viglietti-Panzica Carla

    2009-07-01

    Full Text Available Abstract Background Nitric oxide plays an important role in the regulation of male and female sexual behavior in rodents, and the expression of the nitric oxide synthase (NOS is influenced by testosterone in the male rat, and by estrogens in the female. We have here quantitatively investigated the distribution of nNOS immunoreactive (ir neurons in the limbic hypothalamic region of intact female mice sacrificed during different phases of estrous cycle. Results Changes were observed in the medial preoptic area (MPA (significantly higher number in estrus and in the arcuate nucleus (Arc (significantly higher number in proestrus. In the ventrolateral part of the ventromedial nucleus (VMHvl and in the bed nucleus of the stria terminalis (BST no significant changes have been observed. In addition, by comparing males and females, we observed a stable sex dimorphism (males have a higher number of nNOS-ir cells in comparison to almost all the different phases of the estrous cycle in the VMHvl and in the BST (when considering only the less intensely stained elements. In the MPA and in the Arc sex differences were detected only comparing some phases of the cycle. Conclusion These data demonstrate that, in mice, the expression of nNOS in some hypothalamic regions involved in the control of reproduction and characterized by a large number of estrogen receptors is under the control of gonadal hormones and may vary according to the rapid variations of hormonal levels that take place during the estrous cycle.

  2. Acanthopanax divaricatus var. chiisanensis reduces blood pressure via the endothelial nitric oxide synthase pathway in the spontaneously hypertensive rat model.

    Science.gov (United States)

    Park, Soo-Yeon; Do, Gyeong-Min; Lee, Sena; Lim, Yeni; Shin, Jae-Ho; Kwon, Oran

    2014-09-01

    In this study, we investigated the antihypertensive effects of Acanthopanax divaricatus var. chiisanensis extract (AE) and its active compound, acanthoside D (AD), on arterial blood pressure (BP) in vivo and endothelial function in vitro. We hypothesized that AE has antihypertensive effects, which is attributed to enhancement of endothelial function via the improvement of nitric oxide synthesis or the angiotensin II (Ang II) response. Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) were randomly divided into 7 groups and then fed the following diets for 14 weeks: WKY fed a normal diet (WN); SHR fed a normal diet (SN); SHR fed a high-cholesterol (HC) diet (SH); SHR fed a HC diet with AE of 150, 300, 600 mg/kg body weight (SH-L, SH-M, SH-H); and SHR fed an HC diet with AD of 600 μg/kg body weight (SH-D). Blood pressure was significantly reduced in the SH-H compared with the SH from week 10 until week 14; BP was also significantly decreased in the SHR fed a HC diet with AE of 300 at week 14. Aortic wall thickness showed a tendency to decrease by AE and AD treatment. The SH-H showed increased endothelial nitric oxide synthase (eNOS) expression in the intima and media, compared with the SH. Furthermore, a significant increase in intracellular nitric oxide production was induced by AE and AD treatment in human umbilical vein endothelial cells. A significant increase of phospho-eNOS was found with a high dose of AE in human umbilical vein endothelial cells but not with AD. These results suggest that AE can regulate BP and improve endothelial function via eNOS-dependent vasodilation. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The effect of anandamide on uterine nitric oxide synthase activity depends on the presence of the blastocyst.

    Directory of Open Access Journals (Sweden)

    Micaela S Sordelli

    2011-04-01

    Full Text Available Nitric oxide production, catalyzed by nitric oxide synthase (NOS, should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot(-1 h(-1 compared to days 4 (0.34±0.03 and 5 (0.35±0.02 of pregnancy and to day 6 implantation sites (0.33±0.01. This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA, an endocannabinoid, binds to cannabinoid receptors type 1 (CB1 and type 2 (CB2, and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04 and URB-597 (1.08±0.09 vs 0.83±0.06 inhibited NOS activity in the absence of a blastocyst (pseudopregnancy through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05. While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02, a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01. Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These

  4. Deltamethrin-induced testicular apoptosis in rats: the protective effect of nitric oxide synthase inhibitor.

    Science.gov (United States)

    El-Gohary, M; Awara, W M; Nassar, S; Hawas, S

    1999-01-01

    This study is the first to examine and characterize the testicular apoptosis which might be induced due to exposure of male rats to deltamethrin. Furthermore, the role which might be played by nitric oxide (NO), as well as the other reactive oxygen species (ROS) in controlling this testicular apoptosis was assessed. Apoptosis was evaluated by DNA fragmentation detected by agarose gel electrophoresis and cellular morphology on testicular tissue sections. It was found that administration of deltamethrin (1 mg/kg daily for 21 days) to animals resulted in characteristic DNA migration patterns (laddering), thereby providing evidence that apoptosis is the major mechanism of cell death in the testicular tissues. In addition, histopathological examination of testicular tissue sections showed that apoptosis was confined to the basal germ cells, primary and secondary spermatocytes. These changes, in addition to the appearance of Sertoli cell vacuoles in deltamethrin-intoxicated animals, indicates the suppression of spermatogenesis. At the same time, the plasma levels of both NO and lipid peroxides measured as malondialdehyde (MDA) were found to be significantly increased in deltamethrin-treated animals. Administration of NO synthase (NOS) inhibitors such as N(G)-nitro monomethyl L-arginine hydrochloride (L-NMMA, 1 mg/kg) to rats 2 h before exposure to deltamethrin was effective in the reduction of the typically testicular apoptotic DNA fragmentation pattern and the associated histopathological changes. These findings may suggest that deltamethrin-induced testicular apoptosis is mediated by NO. Therefore, the pharmacological manipulation of apoptosis by selective NOS inhibitors such as L-NMMA may offer new possibilities for the control of deltamethrin-induced testicular dysfunction and infertility in the future.

  5. Effects of cavernous nerve reconstruction on expression of nitric oxide synthase isoforms in rats.

    Science.gov (United States)

    Schlenker, Boris; Matiasek, Kaspar; Saur, Dieter; Gratzke, Christian; Bauer, Ricarda M; Herouy, Yared; Arndt, Christian; Blesch, Armin; Hartung, Rudolf; Stief, Christian G; Weidner, Norbert; May, Florian

    2010-12-01

    To evaluate the expression of nitric oxide synthase (NOS) isoforms after various reconstruction techniques in rats, to improve the understanding of neuronal repair mechanisms after radical prostatectomy, as Schwann cell-seeded guidance tubes have been shown to promote cavernous nerve regeneration, and glial cell-line-derived neurotrophic factor (GDNF)-overexpressing Schwann cells enhance nerve regenerative capacity. Segments (5 mm) of the cavernous nerve were excised bilaterally, followed by immediate bilateral microsurgical reconstruction. In four rats per group, the eight nerves were reconstructed by autologous nerve grafting (A), interposition of Schwann cell-seeded silicon tubes (B), or silicon tubes seeded with GDNF-hypersecreting Schwann cells (C). Further rats were either sham-operated (D) or had nerve excision without repair (E). Erectile function was evaluated after 6 weeks by re-laparotomy, electrical nerve stimulation and morphological evaluation of reconstructed nerves. NOS isoform mRNA expression was analysed by reverse transcription-polymerase chain reaction in tissue specimens taken from the corpora cavernosa. GDNF-transduced Schwann cell grafts restored erectile function better than untransduced Schwann cell and autologous nerve grafts (88% vs 75% vs 38%; not significant). Tissue specimens in group C had the highest expression of neuronal NOS mRNA in relation to the neuronal marker PGP9.5 among all treatment groups (not significant). Compared to nerve grafts (A) and negative controls (E) nNOS/PGP9.5 expression was significantly higher (P Schwann cell grafts (P < 0.05). Restoration of erectile function is paralleled by an increase of neuronal NOS expression in rats. Further experiments will determine the physiological role of neuronal NOS in erectile nerve repair processes. © 2010 THE AUTHORS. JOURNAL COMPILATION © 2010 BJU INTERNATIONAL.

  6. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  7. Role of the L-citrulline/L-arginine cycle in iNANC nerve-mediated nitric oxide production and airway smooth muscle relaxation in allergic asthma

    NARCIS (Netherlands)

    Maarsingh, Ham; Leusink, John; Zaagsma, Johan; Meurs, Herman

    2006-01-01

    Nitric oxide synthase (NOS) converts L-arginine into nitric oxide (NO) and L-Citrulline. In NO-producing cells, L-citrulline can be recycled to L-arginine in a two-step reaction involving argininosuccinate synthase (ASS) and -lyase (ASL). In guinea pig trachea, L-arginine is a limiting factor in

  8. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis.

    Directory of Open Access Journals (Sweden)

    Mahua G Choudhury

    Full Text Available The air-breathing singhi catfish (Heteropneustes fossilis is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a the possible induction of inducible nitric oxide synthase (iNOS gene with enhanced production of nitric oxide (NO by intra-peritoneal injection of lipopolysaccharide (LPS (a bacterial endotoxin, and (b to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted

  9. Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum.

    Science.gov (United States)

    Flynn, Christopher M; Schmidt-Dannert, Claudia

    2018-06-01

    The wood-rotting mushroom Stereum hirsutum is a known producer of a large number of namesake hirsutenoids, many with important bioactivities. Hirsutenoids form a structurally diverse and distinct class of sesquiterpenoids. No genes involved in hirsutenoid biosynthesis have yet been identified or their enzymes characterized. Here, we describe the cloning and functional characterization of a hirsutene synthase as an unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain. Both the full-length fusion protein and truncated STS domain are highly product-specific 1,11-cyclizing STS enzymes with kinetic properties typical of STSs. Complementation studies in Saccharomyces cerevisiae confirmed that the HMGS domain is also functional in vivo Phylogenetic analysis shows that the hirsutene synthase domain does not form a clade with other previously characterized sesquiterpene synthases from Basidiomycota. Comparative gene structure analysis of this hirsutene synthase with characterized fungal enzymes reveals a significantly higher intron density, suggesting that this enzyme may be acquired by horizontal gene transfer. In contrast, the HMGS domain is clearly related to other fungal homologs. This STS-HMGS fusion protein is part of a biosynthetic gene cluster that includes P450s and oxidases that are expressed and could be cloned from cDNA. Finally, this unusual fusion of a terpene synthase to an HMGS domain, which is not generally recognized as a key regulatory enzyme of the mevalonate isoprenoid precursor pathway, led to the identification of additional HMGS duplications in many fungal genomes, including the localization of HMGSs in other predicted sesquiterpenoid biosynthetic gene clusters. IMPORTANCE Hirsutenoids represent a structurally diverse class of bioactive sesquiterpenoids isolated from fungi. Identification of their biosynthetic pathways will provide

  10. Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor

    Directory of Open Access Journals (Sweden)

    Nanying Shentu

    2014-05-01

    Full Text Available Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA. Based on that work, this paper presents an underground displacement inversion approach named “EELA forward modeling-approximate inversion method”. Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0–100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  11. Clinical significance of Phosphatidyl Inositol Synthase overexpression in oral cancer

    International Nuclear Information System (INIS)

    Kaur, Jatinder; Sawhney, Meenakshi; DattaGupta, Siddartha; Shukla, Nootan K; Srivastava, Anurag; Ralhan, Ranju

    2010-01-01

    We reported increased levels of Phosphatidyl Inositol synthase (PI synthase), (enzyme that catalyses phosphatidyl inositol (PI) synthesis-implicated in intracellular signaling and regulation of cell growth) in smokeless tobacco (ST) exposed oral cell cultures by differential display. This study determined the clinical significance of PI synthase overexpression in oral squamous cell carcinoma (OSCC) and premalignant lesions (leukoplakia), and identified the downstream signaling proteins in PI synthase pathway that are perturbed by smokeless tobacco (ST) exposure. Tissue microarray (TMA) Immunohistochemistry, Western blotting, Confocal laser scan microscopy, RT-PCR were performed to define the expression of PI synthase in clinical samples and in oral cell culture systems. Significant increase in PI synthase immunoreactivity was observed in premalignant lesions and OSCCs as compared to oral normal tissues (p = 0.000). Further, PI synthase expression was significantly associated with de-differentiation of OSCCs, (p = 0.005) and tobacco consumption (p = 0.03, OR = 9.0). Exposure of oral cell systems to smokeless tobacco (ST) in vitro confirmed increase in PI synthase, Phosphatidylinositol 3-kinase (PI3K) and cyclin D1 levels. Collectively, increased PI synthase expression was found to be an early event in oral cancer and a target for smokeless tobacco

  12. Association of Nitric Oxide Synthase2 gene polymorphisms with leprosy reactions in northern Indian population.

    Science.gov (United States)

    Dubey, Amit; Biswas, Sanjay Kumar; Sinha, Ekata; Chakma, Joy Kumar; Kamal, Raj; Arora, Mamta; Sagar, Harish; Natarajan, Mohan; Bhagyawant, Sameer S; Mohanty, Keshar Kunja

    2017-07-01

    The pathogen Mycobacterium leprae causes leprosy that affects mainly skin and nerves. Polymorphisms of certain genes are substantiated to be associated with the susceptibility/resistance to leprosy. The present investigation addressed the association of Nitric Oxide Synthase2 gene polymorphisms and leprosy in a population from northern part of India. A total of 323 leprosy cases and 288 healthy controls were genotyped for four NOS2 promoter variants (rs1800482, rs2779249, rs8078340 and rs2301369) using FRET technology in Real Time PCR. None of these SNPs in promoter sites was associated with susceptibility/resistance to leprosy. NOS2 rs1800482 was found to be monomorphic with GG genotype. However, NOS2-1026T allele was observed to be in higher frequency with leprosy cases (BL and LL) who were not suffering from any reactional episodes compared to cases with ENL reaction {OR=0.30, 95% CI (0.10-0.86), p=0.024}. NOS2-1026GT genotype was more prevalent in cases without reaction (BT, BB and BL) compared to RR reactional patients {OR=0.38, 95% CI (0.17-0.86), p=0.02}. Although haplotype analysis revealed that no haplotype was associated with leprosy susceptibility/resistance with statistical significance, GTG haplotype was noted to be more frequent in healthy controls. These SNPs are observed to be in linkage disequilibrium. Although, these SNPs are not likely to influence leprosy vulnerability, -1026G>T SNP was indicated to have noteworthy role in leprosy reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Nitric oxide in the stress axis

    OpenAIRE

    Lopez-Figueroa, M.O.; Day, H.E.W.; Akil, H.; Watson, S.J.

    1998-01-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbichypothalamic- ...

  14. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation.

    Science.gov (United States)

    Curran, Jerry; Tang, Lifei; Roof, Steve R; Velmurugan, Sathya; Millard, Ashley; Shonts, Stephen; Wang, Honglan; Santiago, Demetrio; Ahmad, Usama; Perryman, Matthew; Bers, Donald M; Mohler, Peter J; Ziolo, Mark T; Shannon, Thomas R

    2014-01-01

    Spontaneous calcium waves in cardiac myocytes are caused by diastolic sarcoplasmic reticulum release (SR Ca(2+) leak) through ryanodine receptors. Beta-adrenergic (β-AR) tone is known to increase this leak through the activation of Ca-calmodulin-dependent protein kinase (CaMKII) and the subsequent phosphorylation of the ryanodine receptor. When β-AR drive is chronic, as observed in heart failure, this CaMKII-dependent effect is exaggerated and becomes potentially arrhythmogenic. Recent evidence has indicated that CaMKII activation can be regulated by cellular oxidizing agents, such as reactive oxygen species. Here, we investigate how the cellular second messenger, nitric oxide, mediates CaMKII activity downstream of the adrenergic signaling cascade and promotes the generation of arrhythmogenic spontaneous Ca(2+) waves in intact cardiomyocytes. Both SCaWs and SR Ca(2+) leak were measured in intact rabbit and mouse ventricular myocytes loaded with the Ca-dependent fluorescent dye, fluo-4. CaMKII activity in vitro and immunoblotting for phosphorylated residues on CaMKII, nitric oxide synthase, and Akt were measured to confirm activity of these enzymes as part of the adrenergic cascade. We demonstrate that stimulation of the β-AR pathway by isoproterenol increased the CaMKII-dependent SR Ca(2+) leak. This increased leak was prevented by inhibition of nitric oxide synthase 1 but not nitric oxide synthase 3. In ventricular myocytes isolated from wild-type mice, isoproterenol stimulation also increased the CaMKII-dependent leak. Critically, in myocytes isolated from nitric oxide synthase 1 knock-out mice this effect is ablated. We show that isoproterenol stimulation leads to an increase in nitric oxide production, and nitric oxide alone is sufficient to activate CaMKII and increase SR Ca(2+) leak. Mechanistically, our data links Akt to nitric oxide synthase 1 activation downstream of β-AR stimulation. Collectively, this evidence supports the hypothesis that CaMKII is

  15. The Coexpression of Reelin and Neuronal Nitric Oxide Synthase in a Subpopulation of Dentate Gyrus Neurons Is Downregulated in Heterozygous Reeler Mice

    Directory of Open Access Journals (Sweden)

    Raquel Romay-Tallón

    2010-01-01

    Full Text Available Reelin is an extracellular matrix protein expressed in several interneuron subtypes in the hippocampus and dentate gyrus. Neuronal nitric oxide synthase (nNOS is also expressed by interneurons in these areas. We investigated whether reelin and nNOS are co-localized in the same population of hippocampal interneurons, and whether this colocalization is altered in the heterozygous reeler mouse. We found colocalization of nNOS in reelin-positive cells in the CA1 stratum radiatum and lacunosum moleculare, the CA3 stratum radiatum, and the dentate gyrus subgranular zone, molecular layer, and hilus. In heterozygous reeler mice, the colocalization of nNOS in reelin-positive cells was significantly decreased only in the subgranular zone and molecular layer. The coexpression of reelin and nNOS in several hippocampal regions suggests that reelin and nNOS may work synergistically to promote glutamatergic function, and the loss of this coexpression in heterozygous reeler mice may underlie some of the behavioral deficits observed in these animals.

  16. Endothelial nitric oxide synthase deficiency influences normal cell cycle progression and apoptosis in trabecular meshwork cells

    Directory of Open Access Journals (Sweden)

    Qiong Liao

    2016-06-01

    Full Text Available AIM: To clarify how the endothelial nitric oxide synthase (eNOS, NOS3 make effect on outflow facility through the trabecular meshwork (TM. METHODS: Inhibition of NOS3 gene expression in human TM cells were conducted by three siRNAs. Then the mRNA and protein levels of NOS3 in siRNA-treated and negative control (NC cells were determined, still were the collagen, type IV, alpha 1 (COL4A1 and fibronectin 1 by real-time PCR and Western blot analysis. In addition, NOS3 concentrations in culture supernatant fluids of TM cells were measured. Cell cycle and cell apoptosis analysis were performed using flow cytometry. RESULTS: The mRNA level of NOS3 was decreased by three different siRNA interference, similar results were obtained not only of the relative levels of NOS3 protein, but also the expression levels of COL4A1 and fibronectin 1. The number of cells in S phase was decreased, while contrary result was obtained in G2 phase. The number of apoptotic cells in siRNA-treated groups were significant increased compared to the NC samples. CONCLUSION: Abnormal NOS3 expression can make effects on the proteins levels of extracellular matrix component (e.g. fibronectin 1 and COL4A1. Reduced NOS3 restrains the TM cell cycle progression at the G2/M-phase transition and induced cell apoptosis.

  17. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training

    DEFF Research Database (Denmark)

    Vigelsø, Andreas; Andersen, Nynne B; Dela, Flemming

    2014-01-01

    Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity and chan......Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity...... and changes in CS activity is often assumed. However, this relationship and absolute values of CS and maximal oxygen uptake (V.O2max) has never been assessed across different studies. A systematic PubMed search on literature published from 1983 to 2013 was performed. The search profile included: citrate...... and CS activity. 70 publications with 97 intervention groups were included. There was a positive (r = 0.45) correlation (P

  18. Inhibition of muscle glycogen synthase activity and non-oxidative glucose disposal during hypoglycaemia in normal man

    DEFF Research Database (Denmark)

    Ørskov, Lotte; Bak, Jens Friis; Abildgaard, Ulrik

    1996-01-01

    The purpose of the present study was to evaluate the role of muscle glycogen synthase activity in the reduction of glucose uptake during hypoglycaemia. Six healthy young men were examined twice; during 120 min of hyperinsulinaemic (1.5 mU.kg-1. min-1) euglycaemia followed by: 1)240 min of graded ...

  19. Nitric oxide synthase during early embryonic development in silkworm Bombyx mori: Gene expression, enzyme activity, and tissue distribution.

    Science.gov (United States)

    Kitta, Ryo; Kuwamoto, Marina; Yamahama, Yumi; Mase, Keisuke; Sawada, Hiroshi

    2016-12-01

    To elucidate the mechanism for embryonic diapause or the breakdown of diapause in Bombyx mori, we biochemically analyzed nitric oxide synthase (NOS) during the embryogenesis of B. mori. The gene expression and enzyme activity of B. mori NOS (BmNOS) were examined in diapause, non-diapause, and HCl-treated diapause eggs. In the case of HCl-treated diapause eggs, the gene expression and enzyme activity of BmNOS were induced by HCl treatment. However, in the case of diapause and non-diapause eggs during embryogenesis, changes in the BmNOS activity and gene expressions did not coincide except 48-60 h after oviposition in diapause eggs. The results imply that changes in BmNOS activity during the embryogenesis of diapause and non-diapause eggs are regulated not only at the level of transcription but also post-transcription. The distribution and localization of BmNOS were also investigated with an immunohistochemical technique using antibodies against the universal NOS; the localization of BmNOS was observed mainly in the cytoplasm of yolk cells in diapause eggs and HCl-treated diapause eggs. These data suggest that BmNOS has an important role in the early embryonic development of the B. mori. © 2016 Japanese Society of Developmental Biologists.

  20. Role of Endothelial Nitric Oxide Synthase Gene Polymorphisms in Predicting Aneurysmal Subarachnoid Hemorrhage in South Indian Patients

    Directory of Open Access Journals (Sweden)

    Linda Koshy

    2008-01-01

    Full Text Available Endothelial nitric oxide synthase (eNOS gene polymorphisms have been implicated as predisposing genetic factors that can predict aneurysmal subarachnoid hemorrhage (aSAH, but with controversial results from different populations. Using a case-control study design, we tested the hypothesis whether variants in eNOS gene can increase risk of aSAH among South Indian patients, either independently, or by interacting with other risk factors of the disease. We enrolled 122 patients, along with 224 ethnically matched controls. We screened the intron-4 27-bp VNTR, the promoter T-786C and the exon-7 G894T SNPs in the eNOS gene. We found marked interethnic differences in the genotype distribution of eNOS variants when comparing the South Indian population with the reported frequencies from Caucasian and Japanese populations. Genotype distributions in control and patient populations were found to be in Hardy-Weinberg equilibrium. In patients, the allele, genotype and estimated haplotype frequencies did not differ significantly from the controls. Multiple logistic regression indicated hypertension and smoking as risk factors for the disease, however the risk alleles did not have any interaction with these risk factors. Although the eNOS polymorphisms were not found to be a likely risk factor for aSAH, the role of factors such as ethnicity, gender, smoking and hypertension should be evaluated cautiously to understand the genotype to phenotype conversion.

  1. ATP Synthase Deficiency due to TMEM70 Mutation Leads to Ultrastructural Mitochondrial Degeneration and Is Amenable to Treatment

    Directory of Open Access Journals (Sweden)

    Anne K. Braczynski

    2015-01-01

    Full Text Available TMEM70 is involved in the biogenesis of mitochondrial ATP synthase and mutations in the TMEM70 gene impair oxidative phosphorylation. Herein, we report on pathology and treatment of ATP synthase deficiency in four siblings. A consanguineous family of Roma (Gipsy ethnic origin gave birth to 6 children of which 4 were affected presenting with dysmorphic features, failure to thrive, cardiomyopathy, metabolic crises, and 3-methylglutaconic aciduria as clinical symptoms. Genetic testing revealed a homozygous mutation (c.317-2A>G in the TMEM70 gene. While light microscopy was unremarkable, ultrastructural investigation of muscle tissue revealed accumulation of swollen degenerated mitochondria with lipid crystalloid inclusions, cristae aggregation, and exocytosis of mitochondrial material. Biochemical analysis of mitochondrial complexes showed an almost complete ATP synthase deficiency. Despite harbouring the same mutation, the clinical outcome in the four siblings was different. Two children died within 60 h after birth; the other two had recurrent life-threatening metabolic crises but were successfully managed with supplementation of anaplerotic amino acids, lipids, and symptomatic treatment during metabolic crisis. In summary, TMEM70 mutations can cause distinct ultrastructural mitochondrial degeneration and almost complete deficiency of ATP synthase but are still amenable to treatment.

  2. Displacement ventilation

    DEFF Research Database (Denmark)

    Kosonen, Risto; Melikov, Arsen Krikor; Mundt, Elisabeth

    The aim of this Guidebook is to give the state-of-the art knowledge of the displacement ventilation technology, and to simplify and improve the practical design procedure. The Guidebook discusses methods of total volume ventilation by mixing ventilation and displacement ventilation and it gives...... insights of the performance of the displacement ventilation. It also shows practical case studies in some typical applications and the latest research findings to create good local micro-climatic conditions....

  3. Validity of displacement energy evaluation using molecular statics simulation in Li2O

    International Nuclear Information System (INIS)

    Oda, Takuji; Tanaka, Satoru

    2007-01-01

    Understanding on radiation damage processes in Li-containing oxides has been regarded as an important subject in fusion blanket engineering, because radiation defects significantly affect the tritium behavior and the material property. The displacement energy is a key parameter that determines the number of defects created by radiation, and thus should be evaluated. However, its determination by experiments has not been done, probably due to difficulties arising from insulating property and complicated crystalline structures of Li-containing oxides. Molecular simulation is an alternative method to evaluate the displacement energy. Two techniques have been used; one is molecular dynamics simulation (MD) and the other is molecular statics simulation (MS) with the sudden approximation. MD can provide atomic-scale views of radiation events in the dynamics and has been more widely applied. MS seems to provide less reliable results than MD for lack of the dynamics. Nevertheless, its low computational cost could be attractive for application to ternary Li-containing oxides of complicated structures. In the present work, therefore, we aimed to verify how reliable values MS can provide in comparison with MD. Li2O was chosen to be a test material, because Li2O has the simplest structure among Li-containing oxides, which facilitates verification of MS results. We evaluated threshold displacement energies by MS for a few tens of different irradiation direction, and compared with previous MD results. DL-POLY code was used for MD, while GULP code for MS. In MD, lower threshold energies have been observed for Li than O (20 eV for Li and 50 eV for O on average). This tendency was also realized in MS (15 eV for Li and 40 eV for O), although values were often underestimated by a few tens %. As for dependence of displacement energy on irradiation direction, MS basically gave results different from MD, not only in quantity but also in quality. It was considered that MS is useful to

  4. Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 ...

    African Journals Online (AJOL)

    HP

    Won Chung, Jin Uk Oh, Sehyung Lee and Sung-Jin Kim* ... was determined by Western blot analysis for iNOS and COX-2 expression in LPS-stimulated RAW ..... Nitric oxide-scavenging and antioxidant effects ofUraria crinite root. Food.

  5. Targeted overexpression of endothelial nitric oxide synthase in endothelial cells improves cerebrovascular reactivity in Ins2Akita-type-1 diabetic mice.

    Science.gov (United States)

    Chandra, Saurav B; Mohan, Sumathy; Ford, Bridget M; Huang, Lei; Janardhanan, Preethi; Deo, Kaiwalya S; Cong, Linlin; Muir, Eric R; Duong, Timothy Q

    2016-06-01

    Reduced bioavailability of nitric oxide due to impaired endothelial nitric oxide synthase (eNOS) activity is a leading cause of endothelial dysfunction in diabetes. Enhancing eNOS activity in diabetes is a potential therapeutic target. This study investigated basal cerebral blood flow and cerebrovascular reactivity in wild-type mice, diabetic mice (Ins2(Akita+/-)), nondiabetic eNOS-overexpressing mice (TgeNOS), and the cross of two transgenic mice (TgeNOS-Ins2(Akita+/-)) at six months of age. The cross was aimed at improving eNOS expression in diabetic mice. The major findings were: (i) Body weights of Ins2(Akita+/-) and TgeNOS-Ins2(Akita+/-) were significantly different from wild-type and TgeNOS mice. Blood pressure of TgeNOS mice was lower than wild-type. (ii) Basal cerebral blood flow of the TgeNOS group was significantly higher than cerebral blood flow of the other three groups. (iii) The cerebrovascular reactivity in the Ins2(Akita+/-) mice was significantly lower compared with wild-type, whereas that in the TgeNOS-Ins2(Akita+/-) was significantly higher compared with the Ins2(Akita+/-) and TgeNOS groups. Overexpression of eNOS rescued cerebrovascular dysfunction in diabetic animals, resulting in improved cerebrovascular reactivity. These results underscore the possible role of eNOS in vascular dysfunction in the brain of diabetic mice and support the notion that enhancing eNOS activity in diabetes is a potential therapeutic target. © The Author(s) 2015.

  6. Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells.

    Science.gov (United States)

    Li, Huige; Xia, Ning; Brausch, Isolde; Yao, Ying; Förstermann, Ulrich

    2004-09-01

    Nitric oxide (NO) produced by endothelial nitric-oxide synthase (eNOS) represents an antithrombotic and anti-atherosclerotic principle in the vasculature. Hence, an enhanced expression of eNOS in response to pharmacological interventions could provide protection against cardiovascular diseases. In EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells (HUVECs), an artichoke leaf extract (ALE) increased the activity of the human eNOS promoter (determined by luciferase reporter gene assay). An organic subfraction from ALE was more potent in this respect than the crude extract, whereas an aqueous subfraction of ALE was without effect. ALE and the organic subfraction thereof also increased eNOS mRNA expression (measured by an RNase protection assay) and eNOS protein expression (determined by Western blot) both in EA.hy 926 cells and in native HUVECs. NO production (measured by NO-ozone chemiluminescence) was increased by both extracts. In organ chamber experiments, ex vivo incubation (18 h) of rat aortic rings with the organic subfraction of ALE enhanced the NO-mediated vasodilator response to acetylcholine, indicating that the up-regulated eNOS remained functional. Caffeoylquinic acids and flavonoids are two major groups of constituents of ALE. Interestingly, the flavonoids luteolin and cynaroside increased eNOS promoter activity and eNOS mRNA expression, whereas the caffeoylquinic acids cynarin and chlorogenic acid were without effect. Thus, in addition to the lipid-lowering and antioxidant properties of artichoke, an increase in eNOS gene transcription may also contribute to its beneficial cardiovascular profile. Artichoke flavonoids are likely to represent the active ingredients mediating eNOS up-regulation.

  7. Prevalence of endothelial nitric oxide synthase (eNOS) gene exon 7 Glu298Asp variant in North Eastern India

    Science.gov (United States)

    Shankarishan, Priyanka; Borah, Prasanta Kumar; Ahmed, Giasuddin; Mahanta, Jagadish

    2011-01-01

    Background & objectives Endothelial nitric oxide is a potent vasodilator and impairment of its generation brought about by gene polymorphism is considered a major predictor for several diseases. A single nucleotide polymorphism G894T within exon 7 of endothelial nitric oxide synthase (eNOS-7) gene, resulting in a replacement of glutamic acid by aspartic acid, has been studied as a putative candidate gene for cardiovascular diseases. The pattern of eNOS-7 Glu298Asp variant in the Indian population is poorly known. The present study was planned to determine the prevalence of the variant of this gene among tea garden community in Assam, North-East India with high prevalence of hypertension. Methods Study participants of both sex aged ≥18 yr were recruited randomly from temporary field clinics established in tea gardens of Dibrugarh, Assam. Genomic DNA was extracted from 409 subjects by the conventional phenol-chloroform method. The prevalence of the eNOS exon 7 Glu298Asp variant was determined by polymerase chain reaction and restriction fragment length polymorphism analysis. Results The study population was in Hardy-Weinberg Equilibrium. The frequency of the eNOS GG, GT and TT genotypes was found to be 75, 22 and 3 per cent respectively and did not show any significant difference in gender wise analysis. Interpretation & conclusions Our results showed that the prevalence of the homozygous GG genotype was high (75%) and the rare mutant genotype (homozygous, TT) was 3 per cent in a population at risk with cardiovascular disease. Such population-based data on various polymorphisms can ultimately be exploited in pharmacogenomics. PMID:21623032

  8. Expression of inducible nitric oxide synthase in macrophages inversely correlates with parasitism of lymphoid tissues in dogs with visceral leishmaniasis.

    Science.gov (United States)

    Sanches, Françoise P; Tomokane, Thaise Y; Da Matta, Vânia L R; Marcondes, Mary; Corbett, Carlos E P; Laurenti, Márcia D

    2014-09-07

    There are only a few studies reporting the role of nitric oxide metabolites for controlling macrophage intracellular parasitism, and these are controversial. Therefore, the present study aimed to evaluate the expression of inducible nitric oxide synthase (iNOS) in the lymph nodes and spleen of dogs affected by visceral leishmaniasis through immunohistochemistry and to determine its correlation with tissue parasite burden and serum interferon (IFN)-γ levels. Twenty-eight dogs were selected and assigned to one of two groups, symptomatic (n = 18) and asymptomatic (n = 10), according to clinical status and laboratory evaluation. A negative control group (n = 6) from a non-endemic region for visceral leishmaniasis was included as well. Parasite density (amastigotes/mm2) was similar between clinical groups in the lymph nodes (P = 0.2401) and spleen (P = 0.8869). The density of iNOS⁺ cells was higher in infected dogs compared to controls (P spleen (P = 0.5940) densities between symptomatic and asymptomatic dogs. A positive correlation was found between the number of iNOS⁺ cells in lymph nodes and interferon-γ levels (r = 0.3776; P = 0.0303), and there was a negative correlation between parasites and iNOS⁺ cell densities both in lymph nodes (r = -0.5341; P = 0.0034) and spleen (r = -0.4669; P = 0.0329). The negative correlation observed between tissue parasitism and the expression of iNOS may be a reflection of NO acting on the control of parasites.

  9. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Mutay, E-mail: mutayaslan@akdeniz.edu.tr [Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya (Turkey); Basaranlar, Goksun [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Unal, Mustafa [Department of Ophthalmology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Ciftcioglu, Akif [Department of Pathology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Derin, Narin [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Mutus, Bulent [Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario (Canada)

    2014-11-01

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.

  10. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    Science.gov (United States)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  11. Mutations in the FMN domain modulate MCD spectra of the heme site in the oxygenase domain of inducible nitric oxide synthase.

    Science.gov (United States)

    Sempombe, Joseph; Elmore, Bradley O; Sun, Xi; Dupont, Andrea; Ghosh, Dipak K; Guillemette, J Guy; Kirk, Martin L; Feng, Changjian

    2009-05-27

    The nitric oxide synthase (NOS) output state for NO production is a complex of the flavin mononucleotide (FMN)-binding domain and the heme domain, and thereby it facilitates the interdomain electron transfer from the FMN to the catalytic heme site. Emerging evidence suggests that interdomain FMN-heme interactions are important in the formation of the output state because they guide the docking of the FMN domain to the heme domain. In this study, notable effects of mutations in the adjacent FMN domain on the heme structure in a human iNOS bidomain oxygenase/FMN construct have been observed by using low-temperature magnetic circular dichroism (MCD) spectroscopy. The comparative MCD study of wild-type and mutant proteins clearly indicates that a properly docked FMN domain contributes to the observed L-Arg perturbation of the heme MCD spectrum in the wild-type protein and that the conserved surface residues in the FMN domain (E546 and E603) play key roles in facilitating a productive alignment of the FMN and heme domains in iNOS.

  12. Increased expressions of ADAMTS-13, neuronal nitric oxide synthase, and neurofilament correlate with severity of neuropathology in Border disease virus-infected small ruminants.

    Directory of Open Access Journals (Sweden)

    Gungor Cagdas Dincel

    Full Text Available Border Disease (BD, caused by Pestivirus from the family Flaviviridae, leads to serious reproductive losses and brain anomalies such as hydranencephaly and cerebellar hypoplasia in aborted fetuses and neonatal lambs. In this report it is aimed to investigate the expression of neuronal nitric oxide synthase (nNOS, A Disintegrin And Metalloprotease with Thrombospondin type I repeats-13 (ADAMTS-13, and neurofilament (NF in the brain tissue in small ruminants infected with Border Disease Virus (BDV and to identify any correlation between hypomyelinogenesis and BD neuropathology. Results of the study revealed that the levels of ADAMTS-13 (p<0.05, nNOS (p<0.05, and NF (p<0.05 were remarkably higher in BDV-infected brain tissue than in the uninfected control. It was suggested that L-arginine-NO synthase pathway is activated after infection by BDV and that the expression of NF and nNOS is associated with the severity of BD. A few studies have focused on ADAMTS-13 expression in the central nervous system, and its function continues to remain unclear. The most prominent finding from our study was that ADAMTS-13, which contain two CUB domains, has two CUB domains and its high expression levels are probably associated with the development of the central nervous system (CNS. The results also clearly indicate that the interaction of ADAMTS-13 and NO may play an important role in the regulation and protection of the CNS microenvironment in neurodegenerative diseases. In addition, NF expression might indicate the progress of the disease. To the best of the authors'knowledge, this is the first report on ADAMTS-13 expression in the CNS of BDV-infected small ruminants.

  13. The production of nitric oxide in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Arnold, Robyn E; Weigent, Douglas A

    2003-01-01

    Growth hormone (GH) is produced by immunocompetent cells and has been implicated in the regulation of a multiplicity of functions in the immune system involved in growth and activation. However, the actions of endogenous or lymphocyte GH and its contribution to immune reactivity when compared with those of serum or exogenous GH are still unclear. In the present study, we overexpressed lymphocyte GH in EL4 lymphoma cells, which lack the GH receptor (GHR), to determine the role of endogenous GH in nitric oxide (NO) production and response to genotoxic stress. Western blot analysis demonstrated that the levels of GH increased approximately 40% in cells overexpressing GH (GHo) when compared with cells with vector alone. The results also show a substantial increase in NO production in cells overexpressing GH that could be blocked by N(G)-monomethyl-L-arginine (L-NMMA), an L-arginine analogue that competitively inhibits all three isoforms of nitric oxide synthase (NOS). No evidence was obtained to support an increase in peroxynitrite in cells overexpressing GH. Overexpression of GH increased NOS activity, inducible nitric oxide synthase (iNOS) promoter activity, and iNOS protein expression, whereas endothelial nitric oxide synthase and neuronal nitric oxide synthase protein levels were essentially unchanged. In addition, cells overexpressing GH showed increased arginine transport ability and intracellular arginase activity when compared with control cells. GH overexpression appeared to protect cells from the toxic effects of the DNA alkylating agent methyl methanesulfonate. This possibility was suggested by maintenance of the mitochondrial transmembrane potential in cells overexpressing GH when compared with control cells that could be blocked by L-NMMA. Taken together, the data support the notion that lymphocyte GH, independently of the GH receptor, may play a key role in the survival of lymphocytes exposed to stressful stimuli via the production of NO.

  14. Oxidative phosphorylation in a thermophilic, facultative chemoautotroph, Hydrogenophilus thermoluteolus, living prevalently in geothermal niches.

    Science.gov (United States)

    Wakai, Satoshi; Masanari, Misa; Ikeda, Takumi; Yamaguchi, Naho; Ueshima, Saori; Watanabe, Kaori; Nishihara, Hirofumi; Sambongi, Yoshihiro

    2013-04-01

    Hydrogenophilus is a thermophilic, facultative chemoautotroph, which lives prevalently in high temperature geothermal niches. Despite the environmental distribution, little is known about its oxidative phosphorylation. Here, we show that inverted membrane vesicles derived from Hydrogenophilus thermoluteolus cells autotrophically cultivated with H2 formed a proton gradient on the addition of succinate, dl-lactate, and NADH, and exhibited oxidation activity toward these three organic compounds. These indicate the capability of mixotrophic growth of this bacterium. Biochemical analysis demonstrated that the same vesicles contained an F-type ATP synthase. The F1 sector of the ATP synthase purified from H. thermoluteolus membranes exhibited optimal ATPase activity at 65°C. Transformed Escherichia coli membranes expressing H. thermoluteolus F-type ATP synthase exhibited the same temperature optimum for the ATPase. These findings shed light on H. thermoluteolus oxidative phosphorylation from the aspects of membrane bioenergetics and ATPase biochemistry, which must be fundamental and advantageous in the biogeochemical cycles occurred in the high temperature geothermal niches. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Inducible nitric oxide synthase in heart tissue and nitric oxide in serum of Trypanosoma cruzi-infected rhesus monkeys: association with heart injury.

    Directory of Open Access Journals (Sweden)

    Cristiano Marcelo Espinola Carvalho

    Full Text Available BACKGROUND: The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2 is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2(-/- mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. METHODOLOGY: Rhesus monkeys and C57BL/6 and Nos2(-/- mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2(+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG, echocardiogram (ECHO, creatine kinase heart isoenzyme (CK-MB activity levels in serum and connexin 43 (Cx43 expression in the cardiac tissue. RESULTS: Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC. Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2(+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2(-/- mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. CONCLUSION: T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute

  16. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3β Activity

    Directory of Open Access Journals (Sweden)

    Karthi Shanmugam

    2018-01-01

    Full Text Available Acute myocardial infarction (AMI is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R injury (IRI using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3β (GSK3β, which was confirmed by a biochemical assay and molecular docking studies.

  17. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3β Activity.

    Science.gov (United States)

    Shanmugam, Karthi; Ravindran, Sriram; Kurian, Gino A; Rajesh, Mohanraj

    2018-01-01

    Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R) injury (IRI) using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3 β (GSK3 β ), which was confirmed by a biochemical assay and molecular docking studies.

  18. Influence of nitric oxide on histamine and carbachol – induced ...

    African Journals Online (AJOL)

    The study aimed to determine the influence of nitric oxide (NO) on the action of histamine and carbachol on acid secretion in the common African toad – Bufo regularis. Gastric acidity was determined by titration method. The acid secretion was determined when nitric oxide was absent following administration of NO synthase ...

  19. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  20. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria

    Science.gov (United States)

    Argininosuccinate lyase (ASL) is required for the synthesis and channeling of L-arginine to nitric oxide synthase (NOS) for nitric oxide (NO) production. Congenital ASL deficiency causes argininosuccinic aciduria (ASA), the second most common urea cycle disorder, and leads to deficiency of both urea...

  1. Job Displacement and Crime

    DEFF Research Database (Denmark)

    Bennett, Patrick; Ouazad, Amine

    We use a detailed employer-employee data set matched with detailed crime information (timing of crime, fines, convictions, crime type) to estimate the impact of job loss on an individual's probability to commit crime. We focus on job losses due to displacement, i.e. job losses in firms losing...... a substantial share of their workers, for workers with at least three years of tenure. Displaced workers are more likely to commit offenses leading to conviction (probation, prison terms) for property crimes and for alcohol-related traffic violations in the two years following displacement. We find no evidence...... that displaced workers' propensity to commit crime is higher than non-displaced workers before the displacement event; but it is significantly higher afterwards. Displacement impacts crime over and above what is explained by earnings losses and weeks of unemployment following displacement....

  2. Participation of neuronal nitric oxide synthase in experimental neuropathic pain induced by sciatic nerve transection

    Directory of Open Access Journals (Sweden)

    M. Chacur

    2010-04-01

    Full Text Available Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO. In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT. Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test and allodynia (von Frey hair test. Control animals did not present any alteration (sham-animals. The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL, blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30 in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%. Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%, reaching the greatest increase (60% 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.

  3. Response of cardiac endothelial nitric oxide synthase to plasma viscosity modulation in acute isovolemic hemodilution

    Directory of Open Access Journals (Sweden)

    Kanyanatt Kanokwiroon

    2014-01-01

    Full Text Available Background: Endothelial nitric oxide synthase (eNOS is generally expressed in endocardial cells, vascular endothelial cells and ventricular myocytes. However, there is no experimental study elucidating the relationship between cardiac eNOS expression and elevated plasma viscosity in low oxygen delivery pathological conditions such as hemorrhagic shock-resuscitation and hemodilution. This study tested the hypothesis that elevated plasma viscosity increases cardiac eNOS expression in a hemodilution model, leading to positive effects on cardiac performance. Materials and Methods: Two groups of golden Syrian hamster underwent an acute isovolemic hemodilution where 40% of blood volume was exchanged with 2% (low-viscogenic plasma expander [LVPE] or 6% (high-viscogenic plasma expander [HVPE] of dextran 2000 kDa. In control group, experiment was performed without hemodilution. All groups were performed in awake condition. Experimental parameters, i.e., mean arterial blood pressure (MAP, heart rate, hematocrit, blood gas content and viscosity, were measured. The eNOS expression was evaluated by eNOS Western blot analysis. Results: After hemodilution, MAP decreased to 72% and 93% of baseline in the LVPE and HVPE, respectively. Furthermore, pO 2 in the LVPE group increased highest among the groups. Plasma viscosity in the HVPE group was significantly higher than that in control and LVPE groups. The expression of eNOS in the HVPE group showed higher intensity compared to other groups, especially compared with the control group. Conclusion: Our results demonstrated that cardiac eNOS has responded to plasma viscosity modulation with HVPE and LVPE. This particularly supports the previous studies that revealed the positive effects on cardiac function in animals hemodiluted with HVPE.

  4. Effects of creep and oxidation on reduced modulus in high-temperature nanoindentation

    International Nuclear Information System (INIS)

    Li, Yan; Fang, Xufei; Lu, Siyuan; Yu, Qingmin; Hou, Guohui; Feng, Xue

    2016-01-01

    Nanoindentation tests were performed on single crystal Ni-based superalloy at temperatures ranging from 20 °C to 800 °C in inert environment. Load-displacement curves at temperatures higher than 500 °C exhibit obvious creep inferred by increasing displacements at load-holding segments. Load-displacement curves obtained at 800 °C also display negative unloading stiffness. Examination of the microstructure beneath the indented area using Transmission Electron Microscope (TEM) reveals abundant dislocation piling up as well as oxide formation on the substrate. A method considering the creep effect is proposed to calculate the reduced modulus. In addition, a dimensionless ratio relating indentation depth and oxide film thickness is introduced to explain the oxidation effect on the mechanical properties derived from the load-displacement curves.

  5. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia.

    Science.gov (United States)

    Jullien, Frédéric; Moja, Sandrine; Bony, Aurélie; Legrand, Sylvain; Petit, Cécile; Benabdelkader, Tarek; Poirot, Kévin; Fiorucci, Sébastien; Guitton, Yann; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis

    2014-01-01

    In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.

  6. Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    Displacement ventilation is an interesting new type of air distribution principle which should be considered in connection with design of comfort ventilation in both smal1 and large spaces. Research activities on displacement ventilation are large all over the world and new knowledge of design...... methods appears continuously. This book gives an easy introduction to the basis of displacement ventilation and the chapters are written in the order which is used in a design procedure. The main text is extended by five appendices which show some of the new research activities taking place at Aalborg...

  7. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System

    Science.gov (United States)

    Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.

    2015-01-01

    Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in

  8. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    2014-01-01

    Full Text Available Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1 which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4. CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation.

  9. Nitric oxide synthase inhibition and cerebrovascular regulation

    DEFF Research Database (Denmark)

    Iadecola, C; Pelligrino, D A; Moskowitz, M A

    1994-01-01

    tone and may play an important role in selected vasodilator responses of the cerebral circulation. Furthermore, evidence has been presented suggesting that NO participates in the mechanisms of cerebral ischemic damage. Despite the widespread attention that NO has captured in recent years and the large......There is increasing evidence that nitric oxide (NO) is an important molecular messenger involved in a wide variety of biological processes. Recent data suggest that NO is also involved in the regulation of the cerebral circulation. Thus, NO participants in the maintenance of resting cerebrovascular...

  10. Multitracer Stable Isotope Quantification of Arginase and Nitric Oxide Synthase Activity in a Mouse Model of Pseudomonas Lung Infection

    Directory of Open Access Journals (Sweden)

    Hartmut Grasemann

    2014-01-01

    Full Text Available Cystic fibrosis airways are deficient for L-arginine, a substrate for nitric oxide synthases (NOSs and arginases. The rationale for this study was to quantify NOS and arginase activity in the mouse lung. Anesthetized unventilated mice received a primed constant stable isotope intravenous infusion containing labeled L-arginine, ornithine, and citrulline. The isotopic enrichment of each of the infused isotopomers and its product amino acids were measured in plasma and organ homogenates using liquid chromatography-tandem mass spectrometry. The effect of infection was studied three days after direct tracheal instillation of Pseudomonas-coated agar beads. In the infusion model, lung infection resulted in a significant (28-fold increase in NOS activity in lung but not in trachea, kidney, liver, or plasma. Absolute rates of arginase activity in solid tissues could not be calculated in this model. In an isolated lung perfusion model used for comparison increased NOS activity in infected lungs was confirmed (28.5-fold and lung arginase activity was increased 9.7-fold. The activity of L-arginine metabolizing enzymes can be measured using stable isotope conversion in the mouse. Accumulation of L-ornithine in the whole mouse model hindered the exact quantification of arginase activity in the lung, a problem that was overcome utilizing an isolated lung perfusion model.

  11. Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells.

    Science.gov (United States)

    Friedl, R; Moeslinger, T; Kopp, B; Spieckermann, P G

    2001-12-01

    1. In this study, we investigated the effect of Panax ginseng root aqueous extracts upon inducible nitric oxide synthesis in RAW 264.7 cells. Panax ginseng root extract has been used in the Asian world for centuries as a traditional herb to enhance physical strength and resistance and is becoming more and more popular in Europe and North America. 2. Incubation of murine macrophages (RAW 264.7 cells) with increasing amounts of aqueous extracts of Panax ginseng (0.05 - 0.8 microg microl(-1)) showed a dose dependent stimulation of inducible nitric oxide synthesis. 3. Polysaccharides isolated from Panax ginseng showed strong stimulation of inducible nitric oxide synthesis, whereas a triterpene-enriched fraction from an aqueous extract of Panax ginseng did not show any stimulation. 4. Inducible nitric oxide synthase protein expression was enhanced in a dose dependent manner as revealed by immunoblotting when cells were incubated with increasing amounts of Panax ginseng extract. This was associated with an incline in inducible nitric oxide synthase mRNA-levels as determined by semiquantitative polymerase chain reaction and electromobility shift assay studies indicated enhanced nuclear factor-kappaB DNA binding activity. 5. As nitric oxide plays an important role in immune function, Panax ginseng treatment could modulate several aspects of host defense mechanisms due to stimulation of the inducible nitric oxide synthase.

  12. Resveratrol and Endothelial Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-10-01

    Full Text Available Nitric oxide (NO derived from the endothelial NO synthase (eNOS has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

  13. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-03-01

    Full Text Available Artichoke (Cynara scolymus L. is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC. Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1–100 µg/mL, 6 h or 24 h. Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  14. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells.

    Science.gov (United States)

    Xia, Ning; Pautz, Andrea; Wollscheid, Ursula; Reifenberg, Gisela; Förstermann, Ulrich; Li, Huige

    2014-03-24

    Artichoke (Cynara scolymus L.) is one of the world's oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1-100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  15. Interaction between neuronal nitric oxide synthase signaling and temperature influences sarcoplasmic reticulum calcium leak: role of nitroso-redox balance.

    Science.gov (United States)

    Dulce, Raul A; Mayo, Vera; Rangel, Erika B; Balkan, Wayne; Hare, Joshua M

    2015-01-02

    Although nitric oxide (NO) signaling modulates cardiac function and excitation-contraction coupling, opposing results because of inconsistent experimental conditions, particularly with respect to temperature, confound the ability to elucidate NO signaling pathways. Here, we show that temperature significantly modulates NO effects. To test the hypothesis that temperature profoundly affects nitroso-redox equilibrium, thereby affecting sarcoplasmic reticulum (SR) calcium (Ca(2+)) leak. We measured SR Ca(2+) leak in cardiomyocytes from wild-type (WT), NO/redox imbalance (neuronal nitric oxide synthase-deficient mice-1 [NOS1(-/-)]), and hyper S-nitrosoglutathione reductase-deficient (GSNOR(-/-)) mice. In WT cardiomyocytes, SR Ca(2+) leak increased because temperature decreased from 37°C to 23°C, whereas in NOS1(-/-) cells, the leak suddenly increased when the temperature surpassed 30°C. GSNOR(-/-) cardiomyocytes exhibited low leak throughout the temperature range. Exogenously added NO had a biphasic effect on NOS1(-/-) cardiomyocytes; reducing leak at 37°C but increasing it at subphysiological temperatures. Oxypurinol and Tempol diminished the leak in NOS1(-/-) cardiomyocytes. Cooling from 37°C to 23°C increased reactive oxygen species generation in WT but decreased it in NOS1(-/-) cardiomyocytes. Oxypurinol further reduced reactive oxygen species generation. At 23°C in WT cells, leak was decreased by tetrahydrobiopterin, an essential NOS cofactor. Cooling significantly increased SR Ca(2+) content in NOS1(-/-) cells but had no effect in WT or GSNOR(-/-). Ca(2+) leak and temperature are normally inversely proportional, whereas NOS1 deficiency reverses this effect, increasing leak and elevating reactive oxygen species production because temperature increases. Reduced denitrosylation (GSNOR deficiency) eliminates the temperature dependence of leak. Thus, temperature regulates the balance between NO and reactive oxygen species which in turn has a major effect on SR

  16. Modulation of cholinergic airway reactivity and nitric oxide production by endogenous arginase activity

    NARCIS (Netherlands)

    Meurs, Herman; Hamer, M.A M; Pethe, S; Vadon-Le Goff, S; Boucher, J.-L; Zaagsma, Hans

    1 Cholinergic airway constriction is functionally antagonized by agonist-induced constitutive nitric oxide synthase (cNOS)-derived nitric oxide (NO). Since cNOS and arginase, which hydrolyzes L-arginine to L-ornithine and urea, use L-arginine as a common substrate, competition between both enzymes

  17. The role of nitric oxide in aspirin induced thrombolysis in vitro and the purification of aspirin activated nitric oxide synthase from human blood platelets.

    Science.gov (United States)

    Karmohapatra, Soumendra K; Chakraborty, Kushal; Kahn, Nighat N; Sinha, Asru K

    2007-11-01

    Aspirin, a well-known inhibitor of platelet aggregation, is extensively used for the prevention/treatment of coronary artery disease. The beneficial and antithrombotic effects of the compound are related to the inhibition of platelet cyclooxygenase. It is currently believed that aspirin has no effect on the formed thrombus, which results in coronary artery disease. It was found that the exposure of platelets to 4.0 microM aspirin either in vitro or in vivo resulted in fibrinolysis of the formed "clot" produced by the recalcification of platelet-rich plasma due to the production of NO in these cells by the compound. The lysis of clot in the presence of aspirin was found to be related to the fibrinolysis with simultaneous appearance of fibrin degradation products due to the generation of serine proteinase activity by NO in the assay mixture. The aspirin activated nitric oxide synthase that catalyzed the synthesis of NO in platelets was solubilized by Triton X-100 treatment and purified to homogeneity by chromatography on DEAE cellulose and Sephadex G-50 columns. The enzyme was found to be a single chain polypeptide with M.W. 19 kDa. The treatment of human plasminogen with NO was found to directly activate the zymogen to plasmin with the production of preactivation peptide in the absence of cofactors, or cells without the formation of cyclic GMP in the assay mixture. (c) 2007 Wiley-Liss, Inc.

  18. Morphological alterations and NO-synthase expression in the heart after continuous light exposure of rats

    Czech Academy of Sciences Publication Activity Database

    Paulis, L.; Važan, R.; Šimko, F.; Pecháňová, Olga; Styk, J.; Babál, P.; Janega, P.

    2007-01-01

    Roč. 56, Suppl.2 (2007), S71-S76 ISSN 0862-8408 Grant - others:VEGA(SK) 1/3429/06; VEGA(SK) 2/6148/26; VEGA(SK) 2/5110/25; -(SK) 29/2007; -(SK) 30/2007; -(SK) SP51/0280900/0280901; -(SK) APVT-51-027404; -(SK) APVT51-018004 Institutional research plan: CEZ:AV0Z50110509 Keywords : myocardium * collagen I/III * nitric oxide synthase Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.505, year: 2007

  19. Comparison of total body water determinations in lactating women by anthropometry, water displacement, and deuterium isotope dilution

    International Nuclear Information System (INIS)

    Wong, W.; Butte, N.; Lee, L.; Garza, C.; Klein, P.

    1986-01-01

    To expand the limited data on the total body water in lactating women, the authors have determined total body water contents, in eight subjects from anthropometric measurements, water displacement, and isotope dilution of deuterium oxide. On the day of the study, their skinfold thicknesses were measured over the biceps and triceps muscles and at the suprailiac and subscapular areas. Their body densities were measured by water displacement. Deuterium oxide was administered orally at 100 mg/kg of body weight. One predose milk sample was collected from each subject. The milk samples were defatted by centrifugation and the milk water was reduced to hydrogen gas for hydrogen isotope ratio measurements by gas-isotope-ratio mass spectrometry. The results indicated that total body water in lactating women estimated from anthropometric measurements was 49.7 +/- 3.3% of body weight, by water displacement was 54.9 +/- 7.2%, and by isotope dilution was 50.8 +/- 3.7%

  20. Strand displacement activated peroxidase activity of hemin for fluorescent DNA sensing.

    Science.gov (United States)

    Wang, Quanbo; Xu, Nan; Gui, Zhen; Lei, Jianping; Ju, Huangxian; Yan, Feng

    2015-10-07

    To efficiently regulate the catalytic activity of the peroxidase mimic hemin, this work designs a double-stranded DNA probe containing an intermolecular dimer of hemin, whose peroxidase activity can be activated by a DNA strand displacement reaction. The double-stranded probe is prepared by annealing two strands of hemin labelled DNA oligonucleotides. Using the fluorescent oxidation product of tyramine by H2O2 as a tracing molecule, the low peroxidase activity of the hemin dimer ensures a low fluorescence background. The strand displacement reaction of the target DNA dissociates the hemin dimer and thus significantly increases the catalytic activity of hemin to produce a large amount of dityramine for fluorescence signal readout. Based on the strand displacement regulated peroxidase activity, a simple and sensitive homogeneous fluorescent DNA sensing method is proposed. The detection can conveniently be carried out in a 96-well plate within 20 min with a detection limit of 0.18 nM. This method shows high specificity, which can effectively distinguish single-base mismatched DNA from perfectly matched target DNA. The DNA strand displacement regulated catalytic activity of hemin has promising application in the determination of various DNA analytes.

  1. Neuronal nitric oxide synthase-rescue of dystrophin/utrophin double knockout mice does not require nNOS localization to the cell membrane.

    Directory of Open Access Journals (Sweden)

    Michelle Wehling-Henricks

    Full Text Available Survival of dystrophin/utrophin double-knockout (dko mice was increased by muscle-specific expression of a neuronal nitric oxide synthase (nNOS transgene. Dko mice expressing the transgene (nNOS TG+/dko experienced delayed onset of mortality and increased life-span. The nNOS TG+/dko mice demonstrated a significant decrease in the concentration of CD163+, M2c macrophages that can express arginase and promote fibrosis. The decrease in M2c macrophages was associated with a significant reduction in fibrosis of heart, diaphragm and hindlimb muscles of nNOS TG+/dko mice. The nNOS transgene had no effect on the concentration of cytolytic, CD68+, M1 macrophages. Accordingly, we did not observe any change in the extent of muscle fiber lysis in the nNOS TG+/dko mice. These findings show that nNOS/NO (nitric oxide-mediated decreases in M2c macrophages lead to a reduction in the muscle fibrosis that is associated with increased mortality in mice lacking dystrophin and utrophin. Interestingly, the dramatic and beneficial effects of the nNOS transgene were not attributable to localization of nNOS protein at the cell membrane. We did not detect any nNOS protein at the sarcolemma in nNOS TG+/dko muscles. This important observation shows that sarcolemmal localization is not necessary for nNOS to have beneficial effects in dystrophic tissue and the presence of nNOS in the cytosol of dystrophic muscle fibers can ameliorate the pathology and most importantly, significantly increase life-span.

  2. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    International Nuclear Information System (INIS)

    Hwang, Yong Pil; Kim, Hyung Gyun; Hien, Tran Thi; Jeong, Myung Ho; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-01-01

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-α-stimulated monocytes to endothelial cells and suppressed the TNF-α induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-α-induced nuclear factor-κB activation, which was attenuated by pretreatment with N G -nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: ► Puerarin induced the phosphorylation of eNOS and the production of NO. ► Puerarin activated eNOS through ER-dependent PI3-kinase and Ca 2+ -dependent AMPK. ► Puerarin-induced NO was involved in the inhibition of NF-kB activation. ► Puerarin may help for prevention of vascular dysfunction and diabetes.

  3. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Berta Alquézar

    2017-08-01

    Full Text Available Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck genome sequence allowed us to characterize for the first time the terpene synthase (TPS family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.

  4. Evolution of the F0F1 ATP synthase complex in light of the patchy distribution of different bioenergetic pathways across prokaryotes.

    Directory of Open Access Journals (Sweden)

    Vassiliki Lila Koumandou

    2014-09-01

    Full Text Available Bacteria and archaea are characterized by an amazing metabolic diversity, which allows them to persist in diverse and often extreme habitats. Apart from oxygenic photosynthesis and oxidative phosphorylation, well-studied processes from chloroplasts and mitochondria of plants and animals, prokaryotes utilize various chemo- or lithotrophic modes, such as anoxygenic photosynthesis, iron oxidation and reduction, sulfate reduction, and methanogenesis. Most bioenergetic pathways have a similar general structure, with an electron transport chain composed of protein complexes acting as electron donors and acceptors, as well as a central cytochrome complex, mobile electron carriers, and an ATP synthase. While each pathway has been studied in considerable detail in isolation, not much is known about their relative evolutionary relationships. Wanting to address how this metabolic diversity evolved, we mapped the distribution of nine bioenergetic modes on a phylogenetic tree based on 16S rRNA sequences from 272 species representing the full diversity of prokaryotic lineages. This highlights the patchy distribution of many pathways across different lineages, and suggests either up to 26 independent origins or 17 horizontal gene transfer events. Next, we used comparative genomics and phylogenetic analysis of all subunits of the F0F1 ATP synthase, common to most bacterial lineages regardless of their bioenergetic mode. Our results indicate an ancient origin of this protein complex, and no clustering based on bioenergetic mode, which suggests that no special modifications are needed for the ATP synthase to work with different electron transport chains. Moreover, examination of the ATP synthase genetic locus indicates various gene rearrangements in the different bacterial lineages, ancient duplications of atpI and of the beta subunit of the F0 subcomplex, as well as more recent stochastic lineage-specific and species-specific duplications of all subunits. We

  5. Decreased hippocampal homoarginine and increased nitric oxide and nitric oxide synthase levels in rats parallel training in a radial arm maze.

    Science.gov (United States)

    Sase, Ajinkya; Nawaratna, Gayan; Hu, Shengdi; Wu, Guoyao; Lubec, Gert

    2016-09-01

    L-homoarginine (hArg) is derived from enzymatic guanidination of lysine. It was demonstrated that hArg is a substrate for nitric oxide (NO) synthesis, blocks lysine transport and inhibits the uptake of arginine into synaptosomes and modulates GABA responses ex vivo. As there is limited information on its physiological roles in the brain, the aim of the study was to show whether hippocampal or frontal lobe (FL) hArg is paralleling training in the radial arm maze (RAM) or NO formation. Hippocampi and FL of male Sprague-Dawley rats were taken from trained or yoked in a RAM. Then hArg and metabolites, NO and NO synthase (NOS) were determined by standard methods. The animals learned the task in the RAM showing significant reduction of working memory errors. hArg showed decreased levels in both brain regions of trained animals as compared to yoked animals. Nitrate plus nitrite (NOx) concentrations and NOS activity were significantly increased in hippocampi, F(1,36) = 170.5; P ≤ 0.0001 and FL, F(1,36) = 74.67; P ≤ 0.0001 of trained animals as compared to yoked animals. Levels of hArg were negatively correlated with NOx in hippocampus (r = -0.6355; P = 0.0483) but not in FL and with lysine in the FL (r = -0.6650; P = 0.0358). NOx levels were positively correlated with NOS in both the hippocampus (r = 0.7474; P = 0.0129) and FL (r = 0.9563; P ≤  0.0001). These novel findings indicate that hArg is linked to NO formation in hippocampus but not in FL and is paralleling spatial memory in the RAM.

  6. ORIGINAL ARTICLE Relationship between endothelial nitric oxide ...

    African Journals Online (AJOL)

    salah

    The haplotype analysis confirmed ... hand, no consistent association was shown between the two SNPs and SBP or. DBP. ... Endothelial nitric oxide synthase gene polymorphisms and risk of MI .... type (-786T*+894G), the haplotypes ... Tests adjusted for age, BMI, diabetes, current smoking and alcohol consumption.

  7. Trypanosoma cruzi: Serum levels of nitric oxide and expression of inducible nitric oxide synthase in myocardium and spleen of dogs in the acute stage of infection with metacyclic or blood trypomastigotes.

    Science.gov (United States)

    Vieira, Paula Melo de Abreu; Francisco, Amanda Fortes; de Souza, Sheler Martins; Malaquias, Luiz Cosme Cotta; Reis, Alexandre Barbosa; Giunchetti, Rodolfo Cordeiro; Veloso, Vanja Maria; de Lana, Marta; Tafuri, Washington Luiz; Carneiro, Cláudia Martins

    2009-01-01

    The participation of nitric oxide (NO) in the control of blood parasitemia and parasitism during the acute phase of infection in dogs inoculated with blood trypomastigotes (BT) or metacyclic trypomastigotes (MT group) of Berenice-78 Trypanosoma cruzi strain has been evaluated. Animals of the MT group (n=4) presented increased levels of serum NO throughout the infection when compared with the BT (n=4) or control (n=4) groups, and a delay in parasitemia peak compared with the BT group. In spleen fragments, tissue parasitism was not observed but the MT group presented larger areas associated with inducible NO synthase (iNOS) in relation to BT and control groups. Heart fragments of MT-infected animals exhibited comparatively low tissue parasitism and high iNOS expression, while animals of the BT group presented high inflammatory infiltrate, high tissue parasitism and low iNOS expression. These results indicate that the source of inoculum can interfere with the development of the acute phase of Chagas disease, and may also trigger a distinct parasite-host interaction during this phase.

  8. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis)

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Mahua G. [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India); Saha, Nirmalendu, E-mail: nsaha@nehu.ac.in [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer High environmental ammonia caused more production and accumulation of NO in air-breathing catfish (Heteropneustes fossilis). Black-Right-Pointing-Pointer Hyper-ammonia stress caused induction and zonal specific expression of iNOS enzyme protein, mRNA expression in different tissues. Black-Right-Pointing-Pointer Activation of NF{kappa}B that resulted under hyper-ammonia stress was believed to be the cause of induction of iNOS gene. - Abstract: Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from L-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50 mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly

  9. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis)

    International Nuclear Information System (INIS)

    Choudhury, Mahua G.; Saha, Nirmalendu

    2012-01-01

    Highlights: ► High environmental ammonia caused more production and accumulation of NO in air-breathing catfish (Heteropneustes fossilis). ► Hyper-ammonia stress caused induction and zonal specific expression of iNOS enzyme protein, mRNA expression in different tissues. ► Activation of NFκB that resulted under hyper-ammonia stress was believed to be the cause of induction of iNOS gene. - Abstract: Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from L-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50 mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly throughout the organ. Hyper-ammonia stress also led to activation and nuclear

  10. Hypercapnic vasodilatation in isolated rat basilar arteries is exerted via low pH and does not involve nitric oxide synthase stimulation or cyclic GMP production

    DEFF Research Database (Denmark)

    You, J P; Wang, Qian; Zhang, W

    1994-01-01

    this relaxation by 54% and 70%, respectively. The effect of L-NOARG was completely reversed by L-arginine. Blockade of nerve excitation with tetrodotoxin (TTX) had no affect on the 15% CO2 elicited vasodilatation. Measurements of cGMP in vessel segments showed no significant increase in cGMP content in response...... to hypercapnia. L-NOARG and MB, but not TTX, significantly reduced the basal cGMP content in cerebral vessels. Adding 1.5% halothane to the incubation medium did not result in a significant increase in cGMP content. Lowering the pH by cumulative application of 0.12 M HCl resulted in relaxation identical...... elicits vasodilatation of isolated rat basilar arteries by a mechanism independent of nitric oxide synthase (NOS) activity. The markedly reduced basal cGMP levels in cerebral vessels by L-NOARG and MB suggest that there exists a basal NO formation in the cerebral vessel wall....

  11. Displacement characteristics of a piezoactuator-based prototype microactuator with a hydraulic displacement amplification system

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhara [NMAMIT, Nitte (India); Rao, Rathnamala [NITK, Surathkal (India)

    2015-11-15

    In this study, a new piezoactuator-based prototype microactuator is proposed with a hydraulic displacement amplification system. A piezoactuator is used to deflect a diaphragm which displaces a certain volume of hydraulic fluid into a smaller-diameter piston chamber, thereby amplifying the displacement at the other end of the piston. An electro-mechanical model is implemented to estimate the displacement of a multilayer piezoelectric actuator for the applied input voltage considering the hysteresis behavior. The displacement characteristics of the proposed microactuator are studied for triangular actuation voltage signal. Results of the experiments and simulation of the displacement behavior of the stacked piezoactuator and the amplified displacement of the prototype actuator were compared. Experimental results suggest that the mathematical model developed for the new piezoactuator-based prototype actuator is capable of estimating its displacement behavior accurately, within an error of 1.2%.

  12. Displacement characteristics of a piezoactuator-based prototype microactuator with a hydraulic displacement amplification system

    International Nuclear Information System (INIS)

    Muralidhara; Rao, Rathnamala

    2015-01-01

    In this study, a new piezoactuator-based prototype microactuator is proposed with a hydraulic displacement amplification system. A piezoactuator is used to deflect a diaphragm which displaces a certain volume of hydraulic fluid into a smaller-diameter piston chamber, thereby amplifying the displacement at the other end of the piston. An electro-mechanical model is implemented to estimate the displacement of a multilayer piezoelectric actuator for the applied input voltage considering the hysteresis behavior. The displacement characteristics of the proposed microactuator are studied for triangular actuation voltage signal. Results of the experiments and simulation of the displacement behavior of the stacked piezoactuator and the amplified displacement of the prototype actuator were compared. Experimental results suggest that the mathematical model developed for the new piezoactuator-based prototype actuator is capable of estimating its displacement behavior accurately, within an error of 1.2%.

  13. Glucose Oxidation on Gold-modified Copper Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jieun; Pyo, Sung Gyu; Son, Hyungbin; Kim, Sookil [Chung-Ang Univ., Seoul (Korea, Republic of); Ahn, Sang Hyun; Son, Hyungbin [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-09-15

    The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

  14. Measuring vulnerability to disaster displacement

    Science.gov (United States)

    Brink, Susan A.; Khazai, Bijan; Power, Christopher; Wenzel, Friedemann

    2015-04-01

    Large scale disasters can cause devastating impacts in terms of population displacement. Between 2008 and 2013, on average 27 million people were displaced annually by disasters (Yonetani 2014). After large events such as hurricane Katrina or the Port-au-Prince earthquake, images of inadequate public shelter and concerns about large scale and often inequitable migration have been broadcast around the world. Population displacement can often be one of the most devastating and visible impacts of a natural disaster. Despite the importance of population displacement in disaster events, measures to understand the socio-economic vulnerability of a community often use broad metrics to estimate the total socio-economic risk of an event rather than focusing on the specific impacts that a community faces in a disaster. Population displacement is complex and multi-causal with the physical impact of a disaster interacting with vulnerability arising from the response, environmental issues (e.g., weather), cultural concerns (e.g., expectations of adequate shelter), and many individual factors (e.g., mobility, risk perception). In addition to the complexity of the causes, population displacement is difficult to measure because of the wide variety of different terms and definitions and its multi-dimensional nature. When we speak of severe population displacement, we may refer to a large number of displaced people, an extended length of displacement or associated difficulties such as poor shelter quality, risk of violence and crime in shelter communities, discrimination in aid, a lack of access to employment or other difficulties that can be associated with large scale population displacement. We have completed a thorough review of the literature on disaster population displacement. Research has been conducted on historic events to understand the types of negative impacts associated with population displacement and also the vulnerability of different groups to these impacts. We

  15. Nocardia iowensis sp. nov., an organism rich in biocatalytically important enzymes and nitric oxide synthase

    Science.gov (United States)

    Lamm, Andrew S.; Khare, Arshdeep; Conville, Patricia; Lau, Peter C. K.; Bergeron, Hélène; Rosazza, John P. N.

    2009-01-01

    Nocardia strain NRRL 5646, isolated from a garden soil sample in Osceola, Iowa, USA, was initially of interest as an antibiotic producer. It contained biocatalytically important enzymes and represented the first described nitric oxide synthase enzyme system in bacteria. The present polyphasic taxonomic study was undertaken to differentiate strain NRRL 5646T from related species of the genus Nocardia. Chemotaxonomic analyses included determinations of the fatty acid methyl ester profile (C16 : 1ω6c/C16 : 1ω7c, C16 : 0, C18 : 1ω9c and C18 : 0 10-methyl as major components), quinone [cyclo MK-8(H4) as the major component], polar lipid (diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside as major components) and mycolic acid. These results supported its placement within the genus Nocardia. Biochemical testing and 16S rRNA, 65-kDa heat-shock protein (hsp65) and preprotein translocase (secA1) gene sequence analyses differentiated strain NRRL 5646T from recognized Nocardia species. Previous studies have demonstrated that other genetic sequences (carboxylic acid reductase, Nocardia phosphopantetheinyl transferase and GTP cyclohydrolase I) from strain NRRL 5646T can also be used to substantiate its uniqueness. The level of 16S rRNA gene sequence similarity between strain NRRL 5646T and the type strains of Nocardia tenerifensis and Nocardia brasiliensis was 98.8 %. However, strain NRRL 5646T could be clearly distinguished from these Nocardia species based on DNA–DNA hybridization data. Consequently, strain NRRL 5646T is considered to represent a novel species of the genus Nocardia, for which the name Nocardia iowensis sp. nov. is proposed. The type strain is NRRL 5646T (=UI 122540T=NRRL B-24671T=DSM 45197T). PMID:19622667

  16. Probabilistic modelling of the high-pressure arc cathode spot displacement dynamic

    International Nuclear Information System (INIS)

    Coulombe, Sylvain

    2003-01-01

    A probabilistic modelling approach for the study of the cathode spot displacement dynamic in high-pressure arc systems is developed in an attempt to interpret the observed voltage fluctuations. The general framework of the model allows to define simple, probabilistic displacement rules, the so-called cathode spot dynamic rules, for various possible surface states (un-arced metal, arced, contaminated) and to study the resulting dynamic of the cathode spot displacements over one or several arc passages. The displacements of the type-A cathode spot (macro-spot) in a magnetically rotating arc using concentric electrodes made up of either clean or contaminated metal surfaces is considered. Experimental observations for this system revealed a 1/f -tilde1 signature in the frequency power spectrum (FPS) of the arc voltage for anchoring arc conditions on the cathode (e.g. clean metal surface), while it shows a 'white noise' signature for conditions favouring a smooth movement (e.g. oxide-contaminated cathode surface). Through an appropriate choice of the local probabilistic displacement rules, the model is able to correctly represent the dynamic behaviours of the type-A cathode spot, including the FPS for the arc elongation (i.e. voltage) and the arc erosion trace formation. The model illustrates that the cathode spot displacements between re-strikes can be seen as a diffusion process with a diffusion constant which depends on the surface structure. A physical interpretation for the jumping probability associated with the re-strike event is given in terms of the electron emission processes across dielectric contaminants present on the cathode surface

  17. Effects of Tributyltin Chloride on Cybrids with or without an ATP Synthase Pathologic Mutation.

    Science.gov (United States)

    López-Gallardo, Ester; Llobet, Laura; Emperador, Sonia; Montoya, Julio; Ruiz-Pesini, Eduardo

    2016-09-01

    The oxidative phosphorylation system (OXPHOS) includes nuclear chromosome (nDNA)- and mitochondrial DNA (mtDNA)-encoded polypeptides. Many rare OXPHOS disorders, such as striatal necrosis syndromes, are caused by genetic mutations. Despite important advances in sequencing procedures, causative mutations remain undetected in some patients. It is possible that etiologic factors, such as environmental toxins, are the cause of these cases. Indeed, the inhibition of a particular enzyme by a poison could imitate the biochemical effects of pathological mutations in that enzyme. Moreover, environmental factors can modify the penetrance or expressivity of pathological mutations. We studied the interaction between mitochondrially encoded ATP synthase 6 (p.MT-ATP6) subunit and an environmental exposure that may contribute phenotypic differences between healthy individuals and patients suffering from striatal necrosis syndromes or other mitochondriopathies. We analyzed the effects of the ATP synthase inhibitor tributyltin chloride (TBTC), a widely distributed environmental factor that contaminates human food and water, on transmitochondrial cell lines with or without an ATP synthase mutation that causes striatal necrosis syndrome. Doses were selected based on TBTC concentrations previously reported in human whole blood samples. TBTC modified the phenotypic effects caused by a pathological mtDNA mutation. Interestingly, wild-type cells treated with this xenobiotic showed similar bioenergetics when compared with the untreated mutated cells. In addition to the known genetic causes, our findings suggest that environmental exposure to TBTC might contribute to the etiology of striatal necrosis syndromes. López-Gallardo E, Llobet L, Emperador S, Montoya J, Ruiz-Pesini E. 2016. Effects of tributyltin chloride on cybrids with or without an ATP synthase pathologic mutation. Environ Health Perspect 124:1399-1405; http://dx.doi.org/10.1289/EHP182.

  18. The Tomato Terpene Synthase Gene Family1[W][OA

    Science.gov (United States)

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  19. Influence of age-related changes in nitric oxide synthase-expressing neurons in the rat supraoptic nucleus on inhibition of salivary secretion.

    Science.gov (United States)

    Tanaka, Takehiko; Tamada, Yoshitaka; Suwa, Fumihiko

    2008-02-01

    Age-related inhibition of salivary secretion has been demonstrated in rats, and the nitric oxide (NO) present in the supraoptic nucleus (SON) and the medial septal area has been reported to play an inhibitory role in the regulation of salivary secretion. In the present study, we investigated the age-related changes occurring in the NO synthase (NOS)-expressing neurons in the SON, which is related to the production of NO, and discussed the interrelation between the age-related changes in the NOS-expressing neurons and the age-related inhibition of salivary secretion. Nissl staining and reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry were performed for young adult and aged rats. Quantitative analysis was also performed using the Nissl-stained and NADPH-d-positive neurons. Although the numbers of the Nissl-stained neurons did not change, significant age-related increases were detected in cell number, cell size and reactive density of the NADPH-d-positive neurons. Therefore, the production of NO in the SON neurons increased with age. We concluded that the age-related increase in the NO in the SON might be a factor that contributes to the age-related inhibition of salivary secretion.

  20. Inducible nitric oxide synthase (iNOS) in gingival tissues of chronic periodontitis with and without diabetes: immunohistochemistry and RT-PCR study.

    Science.gov (United States)

    Shaker, Olfat; Ghallab, Noha A; Hamdy, Ebtehal; Sayed, Safinaz

    2013-10-01

    There is few data concerning the pathogenesis and contribution of inducible nitric oxide synthase (iNOS) in the inflammatory reactions of the periodontium in the course of diabetes. This study evaluated the expression of iNOS in the gingival biopsies of periodontitis patients with and without type 2 diabetes. 80 subjects were evaluated in four groups: patients with chronic periodontitis and diabetes, patients with chronic periodontitis, periodontally healthy patients with diabetes, and systemically and periodontally healthy control subjects. Gingival biopsies were subjected to immunohistochemistry as well as reverse transcription polymerase chain reaction (RT-PCR) for determination of iNOS. All diseased gingival tissues had a significant increase in iNOS expression by immunohistochemistry (Pperiodontitis and diabetic patients regarding iNOS(+) cells. Meanwhile, these two groups had significantly increased iNOS(+) cells when compared to periodontitis patients (Pperiodontitis showed significantly higher levels of iNOS mRNA expression compared to samples from periodontitis patients and diabetic patients (Pperiodontitis, periodontitis patients and diabetic patients, the higher mRNA for iNOS observed in diabetes and periodontitis may indicate a possible involvement of this mediator in the periodontal destruction of type 2 diabetes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Isolation and functional effects of monoclonal antibodies binding to thymidylate synthase.

    Science.gov (United States)

    Jastreboff, M M; Todd, M B; Malech, H L; Bertino, J R

    1985-01-29

    Monoclonal antibodies against electrophoretically pure thymidylate synthase from HeLa cells have been produced. Antibodies (M-TS-4 and M-TS-9) from hybridoma clones were shown by enzyme-linked immunoassay to recognize thymidylate synthase from a variety of human cell lines, but they did not bind to thymidylate synthase from mouse cell lines. The strongest binding of antibodies was observed to enzyme from HeLa cells. These two monoclonal antibodies bind simultaneously to different antigenic sites on thymidylate synthase purified from HeLa cells, as reflected by a high additivity index and results of cross-linked radioimmunoassay. Both monoclonal antibodies inhibit the activity of thymidylate synthase from human cell lines. The strongest inhibition was observed with thymidylate synthase from HeLa cells. Monoclonal antibody M-TS-9 (IgM subclass) decreased the rate of binding of [3H]FdUMP to thymidylate synthase in the presence of 5,10-methylenetetrahydrofolate while M-TS-4 (IgG1) did not change the rate of ternary complex formation. These data indicate that the antibodies recognize different epitopes on the enzyme molecule.

  2. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W. (UIUC); (Iowa State); (Penn)

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  3. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    Science.gov (United States)

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. © 2016 Elsevier Inc. All rights reserved.

  4. Evolutionary and mechanistic insights from the reconstruction of α-humulene synthases from a modern (+)-germacrene A synthase.

    Science.gov (United States)

    Gonzalez, Veronica; Touchet, Sabrina; Grundy, Daniel J; Faraldos, Juan A; Allemann, Rudolf K

    2014-10-15

    Germacrene A synthase (GAS) from Solidago canadensis catalyzes the conversion of farnesyl diphosphate (FDP) to the plant sesquiterpene (+)-germacrene A. After diphosphate expulsion, farnesyl cation reacts with the distal 10,11-double bond to afford germacrene A (>96%) and <2% α-humulene, which arises from 1,11-cyclization of FDP. The origin of the 1,11-activity of GAS was investigated by amino acid sequence alignments of 1,10- and 1,11-synthases and comparisons of X-ray crystal structures with the homology model of GAS; a triad [Thr 401-Gly 402-Gly 403] that might be responsible for the predominant 1,10-cyclization activity of GAS was identified. Replacement of Gly 402 with residues of increasing size led to a progressive increase of 1,11-cyclization. The catalytic robustness of these 1,10- /1,11-GAS variants point to Gly 402 as a functional switch of evolutionary significance and suggests that enzymes with strict functionalities have evolved from less specific ancestors through a small number of substitutions. Similar results were obtained with germacrene D synthase (GDS) upon replacement of the homologous active-site residue Gly 404: GDS-G404V generated approximately 20% bicyclogermacrene, a hydrocarbon with a cyclopropane ring that underlines the dual 1,10-/1,11-cyclization activity of this mutant. This suggests that the reaction pathways to germacrenes and humulenes might be connected through a bridged 1,10,11-carbocation intermediate or transition state that resembles bicyclogermacrene. Mechanistic studies using [1-(3)H1]-10-fluorofarnesyl diphosphate and deuterium-labeling experiments with [12,13-(2)H6]-FDP support a germacrene-humulene rearrangement linking 1,10- and 1,11-pathways. These results support the bioinformatics proposal that modern 1,10-synthases could have evolved from promiscuous 1,11-sesquiterpene synthases.

  5. Oxidative stress in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Shyamal K Goswami

    2015-01-01

    Full Text Available Oxidative stress caused by various oxygen containing free radicals and reactive species (collectively called "Reactive Oxygen Species" or ROS has long been attributed to cardiovascular diseases. In human body, major oxidizing species are super oxide, hydrogen peroxide, hydroxyl radical, peroxy nitrite etc. ROS are produced from distinct cellular sources, enzymatic and non-enzymatic; have specific physicochemical properties and often have specific cellular targets. Although early studies in nineteen sixties and seventies highlighted the deleterious effects of these species, later it was established that they also act as physiological modulators of cellular functions and diseases occur only when ROS production is deregulated. One of the major sources of cellular ROS is Nicotinamide adenine dinucleotide phosphate oxidases (Noxes that are expressed in almost all cell types. Superoxide and hydrogen peroxide generated from them under various conditions act as signal transducers. Due to their immense importance in cellular physiology, various Nox inhibitors are now being developed as therapeutics. Another free radical of importance in cardiovascular system is nitric oxide (a reactive nitrogen species generated from nitric oxide synthase(s. It plays a critical role in cardiac function and its dysregulated generation along with superoxide leads to the formation of peroxynitrite a highly deleterious agent. Despite overwhelming evidences of association between increased level of ROS and cardiovascular diseases, antioxidant therapies using vitamins and omega 3 fatty acids have largely been unsuccessful till date. Also, there are major discrepancies between studies with laboratory animals and human trials. It thus appears that the biology of ROS is far complex than anticipated before. A comprehensive understanding of the redox biology of diseases is thus needed for developing targeted therapeutics.

  6. Resonant neutron-induced atomic displacements

    Energy Technology Data Exchange (ETDEWEB)

    Elmaghraby, Elsayed K., E-mail: e.m.k.elmaghraby@gmail.com

    2017-05-01

    Highlights: • Neutron induced atomic displacements was investigated based on scattering of energy of neutron. • Model for cascade function (multiplication of displacements with increasing energy transfer) was proposed and justified. • Parameterizations for the dpa induced in all elements were performed. • Table containing all necessary parameters to calculate the displacement density induced by neutron is given. • Contribution of non resonance displacement and resonant-neutron induced displacements are distinguished. - Abstract: A model for displacement cascade function was modified to account for the continuous variation of displacement density in the material in response to neutron exposure. The model is based on the Gaussian distribution of displacement energies of atoms in a material. Analytical treatment for moderated epithermal neutron field was given in which the displacement density was divided into two terms, discrete-resonance term and continuum term. Calculation are done for all isotopes using ENDF/B VII.1 data files and temperature dependent cross section library. Weighted elemental values were reported a fitting was performed to obtain energy-dependent formula of displacement density and reduce the number of parameters. Results relevant the present specification of the cascade function are tabulated for each element to enable calculation of displacement density at any value of displacement energy in the between 5 eV and 55 eV.

  7. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice.

    Science.gov (United States)

    Hong, Yet Hoi; Frugier, Tony; Zhang, Xinmei; Murphy, Robyn M; Lynch, Gordon S; Betik, Andrew C; Rattigan, Stephen; McConell, Glenn K

    2015-05-01

    Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ. Copyright © 2015 the American Physiological Society.

  8. Endothelial nitric oxide synthase single nucleotide polymorphism and left ventricular function in early chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Sourabh Chand

    Full Text Available Chronic kidney disease (CKD is associated with accelerated cardiovascular disease and heart failure. Endothelial nitric oxide synthase (eNOS Glu298Asp single nucleotide polymorphism (SNP genotype has been associated with a worse phenotype amongst patients with established heart failure and in patients with progression of their renal disease. The association of a cardiac functional difference in non-dialysis CKD patients with no known previous heart failure, and eNOS gene variant is investigated.140 non-dialysis CKD patients, who had cardiac magnetic resonance (CMR imaging and tissue doppler echocardiography as part of two clinical trials, were genotyped for eNOS Glu298Asp SNP retrospectively.The median estimated glomerular filtration rate (eGFR was 50 mls/min and left ventricular ejection fraction (LVEF was 74% with no overt diastolic dysfunction in this cohort. There were significant differences in LVEF across eNOS genotypes with GG genotype being associated with a worse LVEF compared to other genotypes (LVEF: GG 71%, TG 76%, TT 73%, p = 0.006. After multivariate analysis, (adjusting for age, eGFR, baseline mean arterial pressure, contemporary CMR heart rate, total cholesterol, high sensitive C-reactive protein, body mass index and gender GG genotype was associated with a worse LVEF, and increased LV end-diastolic and systolic index (p = 0.004, 0.049 and 0.009 respectively.eNOS Glu298Asp rs1799983 polymorphism in CKD patients is associated with relevant sub-clinical cardiac remodelling as detected by CMR. This gene variant may therefore represent an important genetic biomarker, and possibly highlight pathways for intervention, in these patients who are at particular risk of worsening cardiac disease as their renal dysfunction progresses.

  9. Posttranslational inactivation of endothelial nitric oxide synthase in the transgenic sickle cell mouse penis

    Science.gov (United States)

    Musicki, Biljana; Champion, Hunter C.; Hsu, Lewis L.; Bivalacqua, Trinity J.; Burnett, Arthur L.

    2017-01-01

    INTRODUCTION Sickle cell disease (SCD)-associated priapism is characterized by endothelial nitric oxide synthase (eNOS) dysfunction in the penis. However, the mechanism of decreased eNOS function/activation in the penis in association with SCD is not known. AIMS Our hypothesis in the present study was that eNOS is functionally inactivated in the SCD penis in association with impairments in eNOS posttranslational phosphorylation and the enzyme’s interactions with its regulatory proteins. METHODS Sickle cell transgenic (sickle) mice were used as an animal model of SCD. Wild type (WT) mice served as controls. Penes were excised at baseline for molecular studies. eNOS phosphorylation on Ser-1177 (positive regulatory site) and Thr-495 (negative regulatory site), total eNOS, and phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177) expressions, and eNOS interactions with heat shock protein 90 (HSP90) and caveolin-1 were measured by Western blot. Constitutive NOS catalytic activity was measured by conversion of L-[14C]arginine-to-L-[14C]citrulline in the presence of calcium. MAIN OUTCOME MEASURES Molecular mechanisms of eNOS dysfunction in the sickle mouse penis. RESULTS eNOS phosphorylated on Ser-1177, an active portion of eNOS, was decreased in the sickle mouse penis compared to WT penis. eNOS interaction with its positive protein regulator HSP90, but not with its negative protein regulator caveolin-1, and phosphorylated AKT expression, as well as constitutive NOS activity, were also decreased in the sickle mouse penis compared to WT penis. eNOS phosphorylated on Thr-495, total eNOS, HSP90, and caveolin-1 protein expressions in the penis were not affected by SCD. CONCLUSION These findings provide a molecular basis for chronically reduced eNOS function in the penis by SCD, which involves decreased eNOS phosphorylation on Ser-1177 and decreased eNOS-HSP90 interaction. PMID:21143412

  10. Polymorphisms in nitric oxide synthase and endothelin genes among children with obstructive sleep apnea.

    Science.gov (United States)

    Chatsuriyawong, Siriporn; Gozal, David; Kheirandish-Gozal, Leila; Bhattacharjee, Rakesh; Khalyfa, Ahamed A; Wang, Yang; Sukhumsirichart, Wasana; Khalyfa, Abdelnaby

    2013-09-06

    Obstructive sleep apnea (OSA) is associated with adverse and interdependent cognitive and cardiovascular consequences. Increasing evidence suggests that nitric oxide synthase (NOS) and endothelin family (EDN) genes underlie mechanistic aspects of OSA-associated morbidities. We aimed to identify single nucleotide polymorphisms (SNPs) in the NOS family (3 isoforms), and EDN family (3 isoforms) to identify potential associations of these SNPs in children with OSA. A pediatric community cohort (ages 5-10 years) enriched for snoring underwent overnight polysomnographic (NPSG) and a fasting morning blood draw. The diagnostic criteria for OSA were an obstructive apnea-hypopnea Index (AHI) >2/h total sleep time (TST), snoring during the night, and a nadir oxyhemoglobin saturation DNA from peripheral blood was extracted and allelic frequencies were assessed for, NOS1 (209 SNPs), NOS2 (122 SNPs), NOS3 (50 SNPs), EDN1 (43 SNPs), EDN2 (48 SNPs), EDN3 (14 SNPs), endothelin receptor A, EDNRA, (27 SNPs), and endothelin receptor B, EDNRB (23 SNPs) using a custom SNPs array. The relative frequencies of NOS-1,-2, and -3, and EDN-1,-2,-3,-EDNRA, and-EDNRB genotypes were evaluated in 608 subjects [128 with OSA, and 480 without OSA (NOSA)]. Furthermore, subjects with OSA were divided into 2 subgroups: OSA with normal endothelial function (OSA-NEF), and OSA with endothelial dysfunction (OSA-ED). Linkage disequilibrium was analyzed using Haploview version 4.2 software. For NOSA vs. OSA groups, 15 differentially distributed SNPs for NOS1 gene, and 1 SNP for NOS3 emerged, while 4 SNPs for EDN1 and 1 SNP for both EDN2 and EDN3 were identified. However, in the smaller sub-group for whom endothelial function was available, none of the significant SNPs was retained due to lack of statistical power. Differences in the distribution of polymorphisms among NOS and EDN gene families suggest that these SNPs could play a contributory role in the pathophysiology and risk of OSA-induced cardiovascular

  11. Cloning, expression, and characterization of recombinant nitric oxide synthase-like protein from Bacillus anthracis

    International Nuclear Information System (INIS)

    Midha, Shuchi; Mishra, Rajeev; Aziz, M.A.; Sharma, Meenakshi; Mishra, Ashish; Khandelwal, Puneet; Bhatnagar, Rakesh

    2005-01-01

    Nitric oxide synthase (NOS) is amongst a family of evolutionarily conserved enzymes, involved in a multi-turnover process that results in NO as a product. The significant role of NO in various pathological and physiological processes has created an interest in this enzyme from several perspectives. This study describes for the first time, cloning and expression of a NOS-like protein, baNOS, from Bacillus anthracis, a pathogenic bacterium responsible for causing anthrax. baNOS was expressed in Escherichia coli as a soluble and catalytically active enzyme. Homology models generated for baNOS indicated that the key structural features that are involved in the substrate and active site interaction have been highly conserved. Further, the behavior of baNOS in terms of heme-substrate interactions and heme-transitions was studied in detail. The optical perturbation spectra of the heme domain demonstrated that the ligands perturb the heme site in a ligand specific manner. baNOS forms a five-coordinate, high-spin complex with L-arginine analogs and a six-coordinate low-spin complex with inhibitor imidazole. Studies indicated that the binding of L-arginine, N ω -hydroxy-L-arginine, and imidazole produces various spectroscopic species that closely correspond to the equivalent complexes of mammalian NOS. The values of spectral binding constants further corroborated these results. The overall conservation of the key structural features and the correlation of heme-substrate interactions in baNOS and mammalian NOS, thus, point towards an interesting phenomenon of convergent evolution. Importantly, the NO generated by NOS of mammalian macrophages plays a potent role in antimicrobicidal activity. Because of the existence of high structural and behavioral similarity between mammalian NOS and baNOS, we propose that NO produced by B. anthracis may also have a pivotal pathophysiological role in anthrax infection. Therefore, this first report of characterization of a NOS-like protein

  12. Enantioselective synthesis of the novel chiral sulfoxide derivative as a glycogen synthase kinase 3beta inhibitor.

    Science.gov (United States)

    Saitoh, Morihisa; Kunitomo, Jun; Kimura, Eiji; Yamano, Toru; Itoh, Fumio; Kori, Masakuni

    2010-09-01

    Glycogen synthase kinase 3beta (GSK-3beta) inhibitors are expected to be attractive therapeutic agents for the treatment of Alzheimer's disease (AD). Recently we discovered sulfoxides (S)-1 as a novel GSK-3beta inhibitor having in vivo efficacy. We investigated practical asymmetric preparation methods for the scale-up synthesis of (S)-1. The highly enantioselective synthesis of (S)-1 (94% ee) was achieved by titanium-mediated oxidation with D-(-)-diethyl tartrate on gram scale.

  13. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO2 and Oxidation of CO by Clostridium acetobutylicum.

    Science.gov (United States)

    Carlson, Ellinor D; Papoutsakis, Eleftherios T

    2017-08-15

    With recent advances in synthetic biology, CO 2 could be utilized as a carbon feedstock by native or engineered organisms, assuming the availability of electrons. Two key enzymes used in autotrophic CO 2 fixation are the CO dehydrogenase (CODH) and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which form a bifunctional heterotetrameric complex. The CODH/ACS complex can reversibly catalyze CO 2 to CO, effectively enabling a biological water-gas shift reaction at ambient temperatures and pressures. The CODH/ACS complex is part of the Wood-Ljungdahl pathway (WLP) used by acetogens to fix CO 2 , and it has been well characterized in native hosts. So far, only a few recombinant CODH/ACS complexes have been expressed in heterologous hosts, none of which demonstrated in vivo CO 2 reduction. Here, functional expression of the Clostridium carboxidivorans CODH/ACS complex is demonstrated in the solventogen Clostridium acetobutylicum , which was engineered to express CODH alone or together with the ACS. Both strains exhibited CO 2 reduction and CO oxidation activities. The CODH reactions were interrogated using isotopic labeling, thus verifying that CO was a direct product of CO 2 reduction, and vice versa. CODH apparently uses a native C. acetobutylicum ferredoxin as an electron carrier for CO 2 reduction. Heterologous CODH activity depended on actively growing cells and required the addition of nickel, which is inserted into CODH without the need to express the native Ni insertase protein. Increasing CO concentrations in the gas phase inhibited CODH activity and altered the metabolite profile of the CODH-expressing cells. This work provides the foundation for engineering a complete and functional WLP in nonnative host organisms. IMPORTANCE Functional expression of CO dehydrogenase (CODH) from Clostridium carboxidivorans was demonstrated in C. acetobutylicum , which is natively incapable of CO 2 fixation. The expression of CODH, alone or together with the C. carboxidivorans

  14. The primary defect in glycogen synthase activity is not based on increased glycogen synthase kinase-3a activity in diabetic myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael; Brusgaard, Klaus; Handberg, Aa.

    2004-01-01

    The mechanism responsible for the diminished activation of glycogen synthase (GS) in diabetic myotubes remains unclear, but may involve increased activity and/or expression of glycogen synthase kinase-3 (GSK-3). In myotubes established from type 2 diabetic and healthy control subjects we determined...

  15. Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Itzhak, Y; Gandia, C; Huang, P L; Ali, S F

    1998-03-01

    Methamphetamine (METH) is a powerful psychostimulant that produces dopaminergic neurotoxicity manifested by a decrease in the levels of dopamine, tyrosine hydroxylase activity and dopamine transporter (DAT) binding sites in the nigrostriatal system. We have recently reported that blockade of the neuronal nitric oxide synthase (nNOS) isoform by 7-nitroindazole provides protection against METH-induced neurotoxicity in Swiss Webster mice. The present study was undertaken to investigate the effect of a neurotoxic dose of METH on mutant mice lacking the nNOS gene [nNOS(-/-)] and wild-type controls. In addition, we sought to investigate the behavioral outcome of exposure to a neurotoxic dose of METH. Homozygote nNOS(-/-), heterozygote nNOS(+/-) and wild-type animals were administered either saline or METH (5 mg/kg x 3). Dopamine, DOPAC and HVA levels, as well as DAT binding site levels, were determined in striatal tissue derived 72 h after the last METH injection. This regimen of METH given to nNOS(-/-) mice affected neither the tissue content of dopamine and its metabolites nor the number of DAT binding sites. Although a moderate reduction in the levels of dopamine (35%) and DAT binding sites (32%) occurred in striatum of heterozygote nNOS(+/-) mice, a more profound depletion of the dopaminergic markers (up to 68%) was observed in the wild-type animals. METH-induced hyperthermia was observed in all animal strains examined except the nNOS(-/-) mice. Investigation of the animals' spontaneous locomotor activity before and after administration of the neurotoxic dose of METH (5 mg/kg x 3) revealed no differences. A low dose of METH (1.0 mg/kg) administered to naive animals (nNOS(-/-) and wild-type) resulted in a similar intensity of locomotor stimulation. However, 68 to 72 h after exposure to the high-dose METH regimen, a marked sensitized responses to a challenge METH injection was observed in the wild-type mice but not in the nNOS(-/-) mice. Taken together, these results

  16. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    DEFF Research Database (Denmark)

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along...... with reduced reagent usage, it allows further reduction in the use of radioactive isotopes and flammable organic solvents. The sesquiterpene synthases previously characterized were expressed in yeast, and the plant-derived Thapsia garganica kunzeaol synthase TgTPS2 was tested in this method. KM for TgTPS2...... was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s-1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s-1 μM-1 for TgTPS2. The kinetic parameters were in agreement with previously published data....

  17. Delignification of softwood kraft pulp by chlorine dioxide in a laboratory bleaching liquor displacement reactor

    International Nuclear Information System (INIS)

    Hamzeh, Y.; Izadyar, S.

    2008-01-01

    The chlorine dioxide delignification efficiency of softwood kraft pulp in the laboratory liquor displacement reactor (fixed bed reactor) was investigated and compared with conventional batch reactor. The comparison of two reactors was made based on the effective efficiency and overall efficiency of chlorine dioxide. Effective efficiency corresponds to the oxidizing capacity of chlorine dioxide which consumed by organic materials. Comparison of two reactors based on the effective efficiency showed that the selectivity of delignification significantly enhanced in the displacement reactor in which the primary reaction products are eliminated from reaction zone by displacing flow. On the other hand, the formation of high amounts of chlorate in the reaction zone of displacement reactor reduces the overall efficiency of chlorine dioxide delignification stage. Thus, in spite of significant decrease in useless secondary reactions, this type of reactor would not be cost effective in the industrial scale

  18. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues.

    Directory of Open Access Journals (Sweden)

    Hyun Jo Koo

    Full Text Available The essential oils of ginger (Zingiber officinale and turmeric (Curcuma longa contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+-germacrene D synthase and (S-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (--caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+-α-turmerone and (+-β-turmerone, are produced from (--α-zingiberene and (--β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase.

  19. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    Science.gov (United States)

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  20. Job Displacement and Crime

    DEFF Research Database (Denmark)

    Bennett, Patrick; Ouazad, Amine

    theory of crime. Marital dissolution is more likely post-displacement, and we find small intra-family externalities of adult displacement on younger family members’ crime. The impact of displacement on crime is stronger in municipalities with higher capital and labor income inequalities....

  1. Plasma membrane Ca2+-ATPase 4: interaction with constitutive nitric oxide synthases in human sperm and prostasomes which carry Ca2+/CaM-dependent serine kinase.

    Science.gov (United States)

    Andrews, Rachel E; Galileo, Deni S; Martin-DeLeon, Patricia A

    2015-11-01

    Deletion of the gene encoding the widely conserved plasma membrane calcium ATPase 4 (PMCA4), a major Ca(2+) efflux pump, leads to loss of sperm motility and male infertility in mice. PMCA4's partners in sperm and how its absence exerts its effect on fertility are unknown. We hypothesize that in sperm PMCA4 interacts with endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) which are rapidly activated by Ca(2+), and that these fertility-modulating proteins are present in prostasomes, which deliver them to sperm. We show that in human sperm PMCA4 is present on the acrosome, inner acrosomal membrane, posterior head, neck, midpiece and the proximal principal piece. PMCA4 localization showed inter- and intra-individual variation and was most abundant at the posterior head/neck junction, co-localizing with NOSs. Co-immunoprecipitations (Co-IP) revealed a close association of PMCA4 and the NOSs in Ca(2+) ionophore-treated sperm but much less so in uncapacitated untreated sperm. Fluorescence resonance energy transfer (FRET) showed a similar Ca(2+)-related association: PMCA4 and the NOSs are within 10 nm apart, and preferentially so in capacitated, compared with uncapacitated, sperm. FRET efficiencies varied, being significantly (P < 0.001) higher at high cytosolic Ca(2+) concentration ([Ca(2+)]c) in capacitated sperm than at low [Ca(2+)]c in uncapacitated sperm for the PMCA4-eNOS complex. These dynamic interactions were not seen for PMCA4-nNOS complexes, which had the highest FRET efficiencies. Further, along with Ca(2+)/CaM-dependent serine kinase (CASK), PMCA4 and the NOSs are present in the seminal plasma, specifically in prostasomes where Co-IP showed complexes similar to those in sperm. Finally, flow cytometry demonstrated that following co-incubation of sperm and seminal plasma, PMCA4 and the NOSs can be delivered in vitro to sperm via prostasomes. Our findings indicate that PMCA4 interacts simultaneously with the NOSs preferentially at

  2. Activation of neuronal nitric oxide synthase in cerebellum of chronic hepatic encephalopathy rats is associated with up-regulation of NADPH-producing pathway.

    Science.gov (United States)

    Singh, Santosh; Trigun, Surendra K

    2010-09-01

    Cerebellum-associated functions get affected during mild hepatic encephalopathy (MHE) in patients with chronic liver failure (CLF). Involvement of nitrosative and antioxidant factors in the pathogenesis of chronic hepatic encephalopathy is an evolving concept and needs to be defined in a true CLF animal model. This article describes profiles of NADPH-dependent neuronal nitric oxide synthase (nNOS) and those of glutathione peroxidase and glutathione reductase (GR) vis-a-vis regulation of NADPH-producing pathway in the cerebellum of CLF rats induced by administration of thioacetamide (100 mg kg⁻¹ b.w., i.p.) up to 10 days and confirming MHE on Morris water maze tests. Significant increases in the expression of nNOS protein and nitric oxide (NOx) level coincided with a similar increment in NADPH-diaphorase activity in the cerebellum of CLF rats. Glutathione peroxidase and GR utilize NADPH to regenerate reduced glutathione (GSH) in the cells. Both these enzymes and GSH level were found to be static and thus suggested efficient turnover of GSH in the cerebellum of MHE rats. Relative levels of glucose-6-phosphate dehydrogenase (G6PD) vs. phosphofructokinase 2 (PFK2) determine the rate of pentose phosphate pathway (PPP) responsible to synthesize NADPH. The cerebellum of CLF rats showed overactivation of G6PD with a significant decline in the expression of PFK2 and thus suggested activation of PPP in the cerebellum during MHE. It is concluded that concordant activations of PPP and nNOS in cerebellum of MHE rats could be associated with the implication of NOx in the pathogenesis of MHE.

  3. HIV-1 Myristoylated Nef Treatment of Murine Microglial Cells Activates Inducible Nitric Oxide Synthase, NO2 Production and Neurotoxic Activity.

    Directory of Open Access Journals (Sweden)

    Giorgio Mangino

    Full Text Available The potential role of the human immunodeficiency virus-1 (HIV-1 accessory protein Nef in the pathogenesis of neuroAIDS is still poorly understood. Nef is a molecular adapter that influences several cellular signal transduction events and membrane trafficking. In human macrophages, Nef expression induces the production of extracellular factors (e.g. pro-inflammatory chemokines and cytokines and the recruitment of T cells, thus favoring their infection and its own transfer to uninfected cells via exosomes, cellular protrusions or cell-to-cell contacts. Murine cells are normally not permissive for HIV-1 but, in transgenic mice, Nef is a major disease determinant. Both in human and murine macrophages, myristoylated Nef (myr+Nef treatment has been shown to activate NF-κB, MAP kinases and interferon responsive factor 3 (IRF-3, thereby inducing tyrosine phosphorylation of signal transducers and activator of transcription (STAT-1, STAT-2 and STAT-3 through the production of proinflammatory factors.We report that treatment of BV-2 murine microglial cells with myr+Nef leads to STAT-1, -2 and -3 tyrosine phosphorylation and upregulates the expression of inducible nitric oxide synthase (iNOS with production of nitric oxide. We provide evidence that extracellular Nef regulates iNOS expression through NF-κB activation and, at least in part, interferon-β (IFNβ release that acts in concert with Nef. All of these effects require both myristoylation and a highly conserved acidic cluster in the viral protein. Finally, we report that Nef induces the release of neurotoxic factors in the supernatants of microglial cells.These results suggest a potential role of extracellular Nef in promoting neuronal injury in the murine model. They also indicate a possible interplay between Nef and host factors in the pathogenesis of neuroAIDS through the production of reactive nitrogen species in microglial cells.

  4. Unexpected neuronal protection of SU5416 against 1-Methyl-4-phenylpyridinium ion-induced toxicity via inhibiting neuronal nitric oxide synthase.

    Directory of Open Access Journals (Sweden)

    Wei Cui

    Full Text Available SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2 for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP(+-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP(+-increased intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by MPP(+. Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC(50 value of 22.7 µM. In addition, knock-down of nNOS expression using short hairpin RNA (shRNA abolished the neuroprotective effects of SU5416 against MPP(+-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity. In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity.

  5. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Pil; Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Hien, Tran Thi [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Jeong, Myung Ho [Heart Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyungsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  6. Erection capability is potentiated by long-term sildenafil treatment: role of blood flow-induced endothelial nitric-oxide synthase phosphorylation.

    Science.gov (United States)

    Musicki, Biljana; Champion, Hunter C; Becker, Robyn E; Liu, Tongyun; Kramer, Melissa F; Burnett, Arthur L

    2005-07-01

    Despite demonstrated clinical efficacy of sildenafil for the temporary treatment of erectile dysfunction, the possibility that sildenafil used long-term durably augments erectile ability remains unclear. We investigated whether continuous long-term administration of sildenafil at clinically relevant levels to aged rats "primes" the penis for improved erectile ability and involves nitric oxide (NO) or RhoA/Rho-kinase signaling pathways. In aged, but not young rats, sildenafil prolonged erection and increased the protein expressions of phosphorylated endothelial NO synthase (eNOS) at serine-1177 and phosphorylated Akt at serine-473 in penes. Only in the young rat penis, protein expressions of phosphodiesterase-5 and phosphomyosin phosphatase target subunit 1, a marker of Rho-kinase activity, were increased by sildenafil. Sildenafil inhibited phosphodiesterase-5 activity in penes of young and aged rats coincident with assayed free plasma levels of the drug equivalent to clinically therapeutic measurements. We conclude that erectile ability can be enhanced under preconditions of erectile impairment by long-term inhibition of phosphodiesterase-5 and that the effect is mediated by Akt-dependent eNOS phosphorylation. The lack of erectile ability enhancement in young rats by long-term phosphodiesterase-5 inhibition may relate to restrained NO signaling by phosphodiesterase-5 up-regulation, lack of incremental Akt and eNOS phosphorylation, and heightened Rho-kinase signaling in the penis.

  7. NMDA receptor blockade alters the intracellular distribution of neuronal nitric oxide synthase in the superficial layers of the rat superior colliculus

    Directory of Open Access Journals (Sweden)

    R.E. de Bittencourt-Navarrete

    2009-02-01

    Full Text Available Nitric oxide (NO is a molecular messenger involved in several events of synaptic plasticity in the central nervous system. Ca2+ influx through the N-methyl-D-aspartate receptor (NMDAR triggers the synthesis of NO by activating the enzyme neuronal nitric oxide synthase (nNOS in postsynaptic densities. Therefore, NMDAR and nNOS are part of the intricate scenario of postsynaptic densities. In the present study, we hypothesized that the intracellular distribution of nNOS in the neurons of superior colliculus (SC superficial layers is an NMDAR activity-dependent process. We used osmotic minipumps to promote chronic blockade of the receptors with the pharmacological agent MK-801 in the SC of 7 adult rats. The effective blockade of NMDAR was assessed by changes in the protein level of the immediate early gene NGFI-A, which is a well-known NMDAR activity-dependent expressing transcription factor. Upon chronic infusion of MK-801, a decrease of 47% in the number of cells expressing NGFI-A was observed in the SC of treated animals. Additionally, the filled dendritic extent by the histochemical product of nicotinamide adenine di-nucleotide phosphate diaphorase was reduced by 45% when compared to the contralateral SC of the same animals and by 64% when compared to the SC of control animals. We conclude that the proper intracellular localization of nNOS in the retinorecipient layers of SC depends on NMDAR activation. These results are consistent with the view that the participation of NO in the physiological and plastic events of the central nervous system might be closely related to an NMDAR activity-dependent function.

  8. Monitoring transient elastic energy storage within the rotary motors of single FoF1-ATP synthase by DCO-ALEX FRET

    Science.gov (United States)

    Ernst, Stefan; Düser, Monika G.; Zarrabi, Nawid; Börsch, Michael

    2012-03-01

    The enzyme FoF1-ATP synthase provides the 'chemical energy currency' adenosine triphosphate (ATP) for living cells. Catalysis is driven by mechanochemical coupling of subunit rotation within the enzyme with conformational changes in the three ATP binding sites. Proton translocation through the membrane-bound Fo part of ATP synthase powers a 10-step rotary motion of the ring of c subunits. This rotation is transmitted to the γ and ɛ subunits of the F1 part. Because γ and ɛ subunits rotate in 120° steps, we aim to unravel this symmetry mismatch by real time monitoring subunit rotation using single-molecule Förster resonance energy transfer (FRET). One fluorophore is attached specifically to the F1 motor, another one to the Fo motor of the liposome-reconstituted enzyme. Photophysical artifacts due to spectral fluctuations of the single fluorophores are minimized by a previously developed duty cycle-optimized alternating laser excitation scheme (DCO-ALEX). We report the detection of reversible elastic deformations between the rotor parts of Fo and F1 and estimate the maximum angular displacement during the load-free rotation using Monte Carlo simulations.

  9. The Role of -786T/C Polymorphism in the Endothelial Nitric Oxide Synthase Gene in Males with Clinical and Biochemical Features of the Metabolic Syndrome.

    Science.gov (United States)

    Misiak, Blazej; Krolik, Marta; Kukowka, Anna; Lewera, Anna; Leszczynski, Przemyslaw; Stankiewicz-Olczyk, Joanna; Slezak, Ryszard

    2011-01-01

    Background. Extensive evidence, arising from models of endothelial nitric oxide synthase gene (NOS3)-knockout mice supports the role of endothelial malfunction in the pathogenesis of the metabolic syndrome (MS). Aims. The aim of this study was to evaluate the role of -786T/C polymorphism in the etiology of MS and assess previously reported interaction with cigarette smoking. Methods. Based on International Diabetes Federation 2005 criteria, we recruited randomly 152 subjects with MS and 75 subjects without MS. Results. Allelic and genotype frequencies did not differ significantly between both groups. Total cholesterol level (CHOLT) and intima-media thickness of carotid arteries were significantly higher in -786CC homozygotes, in comparison with -786TC and -786TT patients. Regarding current smoking status, -786C allele was associated with higher CHOLT than -786T allele. Conclusion. Our study indicates the putative role of -786T/C polymorphism in the development of hypercholesterolemia, in patients with MS, which might be enhanced by cigarette smoking.

  10. Salt and nitric oxide synthase inhibition-induced hypertension: kidney dysfunction and brain anti-oxidant capacity.

    Science.gov (United States)

    Oktar, Süleyman; Ilhan, Selçuk; Meydan, Sedat; Aydin, Mehmet; Yönden, Zafer; Gökçe, Ahmet

    2010-01-01

    The specific aim of this study was to examine the effects of salt-loading on kidney function and brain antioxidant capacity. Wistar rats were divided into four groups: Control rats were given normal drinking water and no drug treatment for 2 weeks. LNNA group: rats were given normal drinking water and the nitric oxide (NO) inhibitor NG-nitro-L-arginine (L-NNA), 3 mg/kg/day. LNNA + Salt group: rats were given drinking water containing salt 2% and 3 mg/kg L-NNA. Salt group: rats were given drinking water containing salt 2% and no drug treatment. Basal blood pressure and the levels of serum BUN, creatinine, uric acid, cortisol, electrolyte, serum antioxidant capacity, and oxidative stress were measured. NO, superoxide dismutase (SOD), and catalase (CAT) levels were measured in the hypothalamus, brainstem, and cerebellum. Salt overload increased the blood pressure of the LNNA + Salt group. Salt-loading enhanced BUN, creatinine, sodium retention. High salt produced an increase in uric acid levels and a decrease in cortisol levels in serum. Additionally, the oxidative stress index in serum increased in the LNNA + Salt group. Salt-loading enhanced brain NO levels, but not SOD and CAT activity. L-NNA increased brain SOD activity, but not CAT and NO levels. In conclusion, salt-loading causes hypertension, kidney dysfunction, and enhances oxidative stress in salt-sensitive rats.

  11. In vivo characterization of the novel imidazopyridine BYK191023 [2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3H-imidazo[4,5-b]pyridine], a potent and highly selective inhibitor of inducible nitric-oxide synthase.

    Science.gov (United States)

    Lehner, Martin D; Marx, Degenhard; Boer, Rainer; Strub, Andreas; Hesslinger, Christian; Eltze, Manfrid; Ulrich, Wolf-Rüdiger; Schwoebel, Frank; Schermuly, Ralph Theo; Barsig, Johannes

    2006-04-01

    Excessive release of nitric oxide from inducible nitric-oxide synthase (iNOS) has been postulated to contribute to pathology in a number of inflammatory diseases. We recently identified imidazopyridine derivatives as a novel class of potent nitricoxide synthase inhibitors with high selectivity for the inducible isoform. In the present study, we tested the in vivo potency of BYK191023 [2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3H-imidazo-[4,5-b]pyridine], a selected member of this inhibitor class, in three different rat models of lipopolysaccharide-induced systemic inflammation. Delayed administration of BYK191023 dose-dependently suppressed the lipopolysaccharide-induced increase in plasma nitrate/nitrite (NO(x)) levels with an ED(50) of 14.9 micromol/kg/h. In a model of systemic hypotension following high-dose lipopolysaccharide challenge, curative administration of BYK191023 at a dose that inhibited 83% of the NO(x) increase completely prevented the gradual decrease in mean arterial blood pressure observed in vehicle-treated control animals. The vasopressor effect was specific for endotoxemic animals since BYK191023 did not affect blood pressure in saline-challenged controls. In addition, in a model of lipopolysaccharide-induced vascular hyporesponsiveness, BYK191023 infusion partially restored normal blood pressure responses to norepinephrine and sodium nitroprusside via an l-arginine competitive mechanism. Taken together, BYK191023 is a member of a novel class of highly isoform-selective iNOS inhibitors with promising in vivo activity suitable for mechanistic studies on the role of selective iNOS inhibition as well as clinical development.

  12. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    Directory of Open Access Journals (Sweden)

    Kawamukai Makoto

    2004-11-01

    Full Text Available Abstract Background Isopentenyl diphosphate (IPP, a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  13. Treatment Of Sunitinib-Induced Hypertension In Solid Tumors By Nitric Oxid Donors

    Directory of Open Access Journals (Sweden)

    Luís A. Leon

    2015-08-01

    Hypertension (HT is one of the most common adverse effects of angiogenesis inhibitors. Hypertension observed in clinical trials appears to correlate with the potency of VEGF kinase inhibitor against VEGFR-2: agents with higher potency are associated with a higher incidence of hypertension. Although the exact mechanism by TKIs induce hypertension has not yet been completely clarified, two key hypotheses have been postulated. First, some studies have pointed to a VEGF inhibitors-induced decrease in nitric oxide synthase (NOS and nitric oxide (NO production, that can result in vasoconstriction and increased blood pressure. VEGF, mediated by PI3K/Akt and MAPK pathway, upregulates the endothelial nitric oxide synthase enzyme leading to up-regulation of NO production. So inhibition of signaling through the VEGF pathway would lead to a decrease in NO production, resulting in an increase in vascular resistance and blood pressure. Secondly a decrease in the number of microvascular endothelial cells and subsequent depletion of normal microvessel density (rarefaction occurs upon VEGF signaling inhibition.

  14. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  15. Beta-Glucan Synthase Gene Expression in Pleurotus sp

    International Nuclear Information System (INIS)

    Azhar Mohamad; Nie, H.J.

    2016-01-01

    Pleurotus sp. is a popular edible mushroom, containing various functional component, in particular, Beta-glucan. Beta-glucans is a part of glucan family of polysaccharides and supposedly contribute to medicinal and nutritional value of Pleurotus.sp. In order to understand the distribution of Beta-glucan in Pleurotus.sp, the Beta-glucan synthase gene expression was determined and compared in different part of Pleurotus, namely mycelium, stripe and cap. The Pleurotus.sp RNA was extracted using commercial kit, employing Tissuelyser ll (Qiagen, USA) to disrupt the cell walls. Then the RNA was quantified by Nano drop (Thermo Fisher, USA) and visualized using denaturing agarose gel. RNA with good OD 260.280 reading (∼2.0) was chosen and converted to cDNA. Using Laccase synthase gene as home keeping gene, Beta-glucan synthase gene expression was quantified using CFX 96 Real Time PCR detection system (Biorad, USA). Preliminary result shows that Beta-glucan synthase was relatively expressed the most in stripe, followed by mycelium and barely in cap. (author)

  16. Molecular dynamics studies of displacement cascades in Fe-Y{sub 2}TiO{sub 5} system

    Energy Technology Data Exchange (ETDEWEB)

    Dholakia, Manan, E-mail: manan@igcar.gov.in; Chandra, Sharat; Jaya, S. Mathi [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, TN (India)

    2016-05-23

    The effect of displacement cascade on Fe-Y{sub 2}TiO{sub 5} bilayer is studied using classical molecular dynamics simulations. Different PKA species – Fe, Y, Ti and O – with the same PKA energy of 8 keV are used to produce displacement cascades that encompass the interface. It is shown that Ti atom has the highest movement in the ballistic regime of cascades which can lead to Ti atoms moving out of the oxide clusters into the Fe matrix in ODS alloys.

  17. Internal Displacement: Livelihood saving responses

    OpenAIRE

    Deborah Hines

    2001-01-01

    Deborah Hines explores how to assist the internally displaced and those prone to displacement. She considers the major causes of internal displacement, making the case for a more comprehensive set of policy and operational actions in response to situations of internal displacement. Development (2001) 44, 34–39. doi:10.1057/palgrave.development.1110289

  18. Neuroprotective properties of nitric oxide and S-nitrosoglutathione

    International Nuclear Information System (INIS)

    Rauhala, Pekka; Andoh, Tsugunobu; Chiueh, C.C.

    2005-01-01

    Oxidative stress and apoptosis may play an important role in the neurodegeneration. The present paper outlines antioxidative and antiapototic mechanisms of nitric oxide and S-nitrosothiols, which could mediate neuroprotection. Nitric oxide generated by nitric oxide synthase or released from an endogenous S-nitrosothiol, S-nitrosoglutathione may up-regulate antioxidative thioredoxin system and antiapototic Bcl-2 protein through a cGMP-dependent mechanism. Moreover, nitric oxide radicals have been shown to have direct antioxidant effect through their reaction with free radicals and iron-oxygen complexes. In addition to serving as a stabilizer and carrier of nitric oxide, S-nitrosoglutathione may have protective effect through transnitrosylation reactions. Based on these new findings, a hypothesis arises that the homeostasis of nitric oxide, S-nitrosothiols, glutathione, and thioredoxin systems is important for protection against oxidative stress, apoptosis, and related neurodegenerative disorders

  19. Genetic Manipulation of Leishmania donovani to Explore the Involvement of Argininosuccinate Synthase in Oxidative Stress Management

    Science.gov (United States)

    Sardar, Abul Hasan; Jardim, Armando; Ghosh, Ayan Kumar; Mandal, Abhishek; Das, Sushmita; Saini, Savita; Abhishek, Kumar; Singh, Ruby; Verma, Sudha; Kumar, Ajay; Das, Pradeep

    2016-01-01

    Reactive oxygen and nitrogen species (ROS and RNS) produced by the phagocytic cells are the most common arsenals used to kill the intracellular pathogens. However, Leishmania, an intracellular pathogen, has evolved mechanisms to survive by counterbalancing the toxic oxygen metabolites produced during infection. Polyamines, the major contributor in this anti-oxidant machinery, are largely dependent on the availability of L-arginine in the intracellular milieu. Argininosuccinate synthase (ASS) plays an important role as the rate-limiting step required for converting L-citrulline to argininosuccinate to provide arginine for an assortment of metabolic processes. Leishmania produce an active ASS enzyme, yet it has an incomplete urea cycle as it lacks an argininosuccinate lyase (ASL). There is no evidence for endogenous synthesis of L-arginine in Leishmania, which suggests that these parasites salvage L-arginine from extracellular milieu and makes the biological function of ASS and the production of argininosuccinate in Leishmania unclear. Our previous quantitative proteomic analysis of Leishmania promastigotes treated with sub-lethal doses of ROS, RNS, or a combination of both, led to the identification of several differentially expressed proteins which included ASS. To assess the involvement of ASS in stress management, a mutant cell line with greatly reduced ASS activity was created by a double-targeted gene replacement strategy in L. donovani promastigote. Interestingly, LdASS is encoded by three copies of allele, but Western blot analysis showed the third allele did not appear to express ASS. The free thiol levels in the mutant LdASS-/-/+ cell line were decreased. Furthermore, the cell viability in L-arginine depleted medium was greatly attenuated on exposure to different stress environments and was adversely impacted in its ability to infect mice. These findings suggest that ASS is important for Leishmania donovani to counterbalance the stressed environments

  20. Sequence analysis of cereal sucrose synthase genes and isolation ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... sequencing of sucrose synthase gene fragment from sor- ghum using primers designed at their conserved exons. MATERIALS AND METHODS. Multiple sequence alignment. Sucrose synthase gene sequences of various cereals like rice, maize, and barley were accessed from NCBI Genbank database.

  1. Extracellular Protein Kinase A Modulates Intracellular Calcium/Calmodulin-Dependent Protein Kinase II, Nitric Oxide Synthase, and the Glutamate-Nitric Oxide-cGMP Pathway in Cerebellum. Differential Effects in Hyperammonemia.

    Science.gov (United States)

    Cabrera-Pastor, Andrea; Llansola, Marta; Felipo, Vicente

    2016-12-21

    Extracellular protein kinases, including cAMP-dependent protein kinase (PKA), modulate neuronal functions including N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation. NMDA receptor activation increases calcium, which binds to calmodulin and activates nitric oxide synthase (NOS), increasing nitric oxide (NO), which activates guanylate cyclase, increasing cGMP, which is released to the extracellular fluid, allowing analysis of this glutamate-NO-cGMP pathway in vivo by microdialysis. The function of this pathway is impaired in hyperammonemic rats. The aims of this work were to assess (1) whether the glutamate-NO-cGMP pathway is modulated in cerebellum in vivo by an extracellular PKA, (2) the role of phosphorylation and activity of calcium/calmodulin-dependent protein kinase II (CaMKII) and NOS in the pathway modulation by extracellular PKA, and (3) whether the effects are different in hyperammonemic and control rats. The pathway was analyzed by in vivo microdialysis. The role of extracellular PKA was analyzed by inhibiting it with a membrane-impermeable inhibitor. The mechanisms involved were analyzed in freshly isolated cerebellar slices from control and hyperammonemic rats. In control rats, inhibiting extracellular PKA reduces the glutamate-NO-cGMP pathway function in vivo. This is due to reduction of CaMKII phosphorylation and activity, which reduces NOS phosphorylation at Ser1417 and NOS activity, resulting in reduced guanylate cyclase activation and cGMP formation. In hyperammonemic rats, under basal conditions, CaMKII phosphorylation and activity are increased, increasing NOS phosphorylation at Ser847, which reduces NOS activity, guanylate cyclase activation, and cGMP. Inhibiting extracellular PKA in hyperammonemic rats normalizes CaMKII phosphorylation and activity, NOS phosphorylation, NOS activity, and cGMP, restoring normal function of the pathway.

  2. [Effect of vitamin C on the condition of NO-synthase system in experimental stomach ulcer].

    Science.gov (United States)

    Zhuroms'kyĭ, V S; Skliarov, O Ia

    2011-01-01

    We investigated the effect of Vitamin C (Vit C) on the changes of activity of the enzymes of NO-synthase system, nitric oxide content, lipoperoxidation processes, activity of SOD and catalase in gastric mucosa (GM), and concentrations of L-arginine, Vit C and Vit E in the blood of rats under conditions of experimental ulcer of the stomach caused by adrenaline injection. Vit C displayed a pronounced antioxidant action, reduced the degree of destructive affections, diminished the activity of iNOS and lipoperoxidation processes, decreased the NO content and SOD activity. Furthermore, the concentration of L-arginine and Vit C in the blood was increased. Combined action of Vit C with L-arginine reduced the degree of GM lesions, activity of eNOS and the content of NO in GM whereas the concentration of L-arginine in blood was increased. Under conditions of Vit C action and iNOS and COX-2 blockage, the activity of NO-synthases and lipoperoxidation processes were slightly decreased, indicating on dominant action of Vit C.

  3. Asymmetric dimethylarginine, oxidative stress, and vascular nitric oxide synthase in essential hypertension

    DEFF Research Database (Denmark)

    Wang, Dan; Strandgaard, Svend; Iversen, Jens

    2009-01-01

    that the patients in this study have increased circulating levels of the cNOS inhibitor, asymmetric dimethylarginine (ADMA), or the lipid peroxidation product of linoleic acid, 13-hydroxyoctadecadienoic acid (HODE), which is a marker of reactive oxygen species. Patients had significantly (P ... and hypertensive subjects, the individual values for plasma levels of ADMA and HODE were both significantly (P inversely correlated with microvascular EDRF/NO and positively correlated with mean blood pressure. In conclusion, elevated levels of ADMA and oxidative stress in a group of hypertensive...

  4. Sucrose Phosphate Synthase and Sucrose Accumulation at Low Temperature 1

    Science.gov (United States)

    Guy, Charles L.; Huber, Joan L. A.; Huber, Steven C.

    1992-01-01

    The influence of growth temperature on the free sugar and sucrose phosphate synthase content and activity of spinach (Spinacia oleracea) leaf tissue was studied. When plants were grown at 25°C for 3 weeks and then transferred to a constant 5°C, sucrose, glucose, and fructose accumulated to high levels during a 14-d period. Predawn sugar levels increased from 14- to 20-fold over the levels present at the outset of the low-temperature treatment. Sucrose was the most abundant free sugar before, during, and after exposure to 5°C. Leaf sucrose phosphate synthase activity was significantly increased by the low-temperature treatment, whereas sucrose synthase and invertases were not. Synthesis of the sucrose phosphate synthase subunit was increased during and after low-temperature exposure and paralleled an increase in the steady-state level of the subunit. The increases in sucrose and its primary biosynthetic enzyme, sucrose phosphate synthase, are discussed in relation to adjustment of metabolism to low nonfreezing temperature and freezing stress tolerance. Images Figure 1 Figure 2 Figure 3 PMID:16652990

  5. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice

    Directory of Open Access Journals (Sweden)

    Tanda Koichi

    2009-06-01

    Full Text Available Abstract Background Neuronal nitric oxide synthase (nNOS is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice. Results nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice. Conclusion These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders.

  6. The joint effect of the endothelin receptor B gene (EDNRB polymorphism rs10507875 and nitric oxide synthase 3 gene (NOS3 polymorphism rs869109213 in Slovenian patients with type 2 diabetes mellitus and diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Dejan Bregar

    2018-02-01

    Full Text Available Increasing evidence suggests that endothelin and nitric oxide synthase genes and their products exert biological effects on the vasculature via the nitric oxide or endothelin pathway. The aim of the study was to evaluate the association of rs10507875 and rs869109213 (alone or in interaction with diabetic retinopathy (DR in subjects with type 2 diabetes mellitus (T2DM. We genotyped the single nucleotide polymorphism rs10507875 of the endothelin receptor B gene (EDNRB and variable number tandem repeats rs869109213 of the nitric oxide synthase 3 gene (NOS3 in 270 Slovenian patients with DR and T2DM and 256 controls with T2DM without clinical signs of DR. The genotyping was performed using either real-time polymerase chain reaction (PCR or standard PCR. We found a significant association between the genotypes of NOS3 rs869109213 polymorphism and the risk of DR in the co-dominant model (4a4b genotype; 1.99-fold increased risk [1.09-3.65]; 95% confidence interval [CI]; p = 0.02, co-dominant model (4a4a genotype; 4.16-fold increased risk [1.03-16.74]; 95% CI; p = 0.04, and dominant model (4a4a and 4a4b genotypes; 2.22-fold increased risk [1.26-3.92]; 95% CI; p = 0.01 compared to the 4b4b genotype. Moreover, the joint effect of the two polymorphisms on DR risk was greater than the individual effect of each polymorphism in the analyzed genetic models. Additionally, adjusted odds ratio showed an increased risk in dominant × dominant (4.15-fold [1.40-12.26]; 95% CI; p = 0.01 and recessive × dominant (2.24-fold [1.25-4.01]; 95% CI; p = 0.02 genotype combinations of the two polymorphisms. In conclusion, our results indicate that NOS3 rs869109213 polymorphism alone or in a combination with EDNRB rs10507875 polymorphism may be associated with DR in Slovenian patients with T2DM.

  7. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    Science.gov (United States)

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.

  8. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    Science.gov (United States)

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  9. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression.

    Science.gov (United States)

    Tabrizian, Kaveh; Azami, Kian; Belaran, Maryam; Soodi, Maliheh; Abdi, Khosrou; Fanoudi, Sahar; Sanati, Mehdi; Mottaghi Dastjerdi, Negar; Soltany Rezaee-Rad, Mohammad; Sharifzadeh, Mohammad

    2016-10-01

    Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.

  10. Repeated treatment with nitric oxide synthase inhibitor attenuates learned helplessness development in rats and increases hippocampal BDNF expression.

    Science.gov (United States)

    Stanquini, Laura Alves; Biojone, Caroline; Guimarães, Francisco Silveira; Joca, Sâmia Regiane

    2017-11-20

    Nitric oxide synthase (NOS) inhibitors induce antidepressant-like effects in animal models sensitive to acute drug treatment such as the forced swimming test. However, it is not yet clear if repeated treatment with these drugs is required to induce antidepressant-like effects in preclinical models. The aim of this study was to test the effect induced by acute or repeated (7 days) treatment with 7-nitroindazole (7-NI), a preferential inhibitor of neuronal NOS, in rats submitted to the learned helplessness (LH) model. In addition, we aimed at investigating if 7-NI treatment would increase brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus, similarly to the effect of prototype antidepressants. Animals were submitted to a pre-test (PT) session with inescapable footshocks or habituation (no shocks) to the experimental shuttle box. Six days later they were exposed to a test with escapable footshocks. Independent groups received acute (a single injection after PT or before test) or repeated (once a day for 7 days) treatment with vehicle or 7-NI (30 mg/kg). Repeated, but not acute, treatment with 7-NI attenuated LH development. The effect was similar to repeated imipramine treatment. Moreover, in an independent experimental group, only repeated treatment with 7-NI and imipramine increased BDNF protein levels in the hippocampus. The results suggest the nitrergic system could be a target for the treatment of depressive-like conditions. They also indicate that, similar to the positive control imipramine, the antidepressant-like effects of NOS inhibition could involve an increase in hippocampal BDNF levels.

  11. Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase.

    Science.gov (United States)

    Zucker, Stephen D; Vogel, Megan E; Kindel, Tammy L; Smith, Darcey L H; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E

    2015-11-15

    Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression. Copyright © 2015 the American Physiological Society.

  12. Active-site-directed inhibition of 3-hydroxy-3-methylglutaryl coenzyme A synthase by 3-chloropropionyl coenzyme A

    International Nuclear Information System (INIS)

    Miziorko, H.M.; Behnke, C.E.

    1985-01-01

    3-Chloropropionyl coenzyme A (3-chloropropionyl-CoA) irreversibly inhibits avian liver 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA synthase). Enzyme inactivation follows pseudo-first-order kinetics and is retarded in the presence of substrates, suggesting that covalent labeling occurs at the active site. A typical rate saturation effect is observed when inactivation kinetics are measured as a function of 3-chloropropionyl-CoA concentration. These data indicate a Ki = 15 microM for the inhibitor and a limiting kinact = 0.31 min-1. [1- 14 C]-3-Chloropropionyl-CoA binds covalently to the enzyme with a stoichiometry (0.7 per site) similar to that measured for acetylation of the enzyme by acetyl-CoA. While the acetylated enzyme formed upon incubation of HMG-CoA synthase with acetyl-CoA is labile to performic acid oxidation, the adduct formed upon 3-chloropropionyl-CoA inactivation is stable to such treatment. Therefore, such an adduct cannot solely involve a thio ester linkage. Exhaustive Pronase digestion of [ 14 C]-3-chloropropionyl-CoA-labeled enzyme produces a radioactive compound which cochromatographs with authentic carboxyethylcysteine using reverse-phase/ion-pairing high-pressure liquid chromatography and both silica and cellulose thin-layer chromatography systems. This suggests that enzyme inactivation is due to alkylation of an active-site cysteine residue

  13. Lipoplex gene transfer of inducible nitric oxide synthase inhibits the reactive intimal hyperplasia after expanded polytetrafluoroethylene bypass grafting.

    Science.gov (United States)

    Pfeiffer, Tomas; Wallich, Martina; Sandmann, Wilhelm; Schrader, Jürgen; Gödecke, Axel

    2006-05-01

    Intimal hyperplasia (IH) is most commonly the cause of graft occlusion in infrainguinal bypass grafting for arterial occlusive disease. We investigated the influence of nitric oxide on the IH of the arterial vessel wall at the region of prosthetic bypass anastomoses. Experiments were performed in 10 Foxhound dogs. We used a technique of inducible nitric oxide synthase (iNOS) overexpression by a non-virus-mediated, liposome-based iNOS gene transfer. The plasmid pSCMV-iNOS, which drives the expression of iNOS under control of the cytomegalovirus promoter, was complexed with cationic liposomes (lipoplexes). Segments of both carotid arteries were pretreated by intramural injection of a lipoplex solution by using an infiltrator balloon catheter (Infiltrator Drug Delivery Balloon System). In each dog, iNOS was administered at one side, and a control vector (pSCMV2) was administered at the contralateral side. Carotid arteries were ligated, and bypass grafts (expanded polytetrafluoroethylene, 6-mm, ring enforced) were implanted on both sides. The proximal and distal anastomoses (end-to-side fashion; running nonabsorbable sutures) were placed in the pretreated regions. After 6 months, the prostheses were excised, and the intimal thicknesses of 50 cross sections (orcein staining) of each anastomosis were measured planimetrically. The average reduction of the neointima thickness of the iNOS side in proximal anastomoses at the prosthetic wall, suture region, and arterial wall was 43%, 52%, and 81%, respectively. In distal anastomoses, the average reduction was 40%, 47%, and 52%, respectively. All differences of neointima thickness between the iNOS and control sides were statistically significant (Wilcoxon test; P < or = .05). Inducible NOS expression is an efficient approach for inhibition of IH. In contrast to earlier studies, which investigated the efficacy of gene therapeutic NOS expression at 3 to 4 weeks after intervention, the novelty of our findings is that a single

  14. Inhibitors of Fatty Acid Synthase for Prostate Cancer

    Science.gov (United States)

    2012-05-01

    compounds. For example, numerous classes of acetyl- cholinesterase inhibitors have been developed, m any with fe mtomolar binding affinities (7). This...AD_________________ Award Number: W81XWH-09-1-0204 TITLE: Inhibitors of Fatty Acid Synthase for...CONTRACT NUMBER Inhibitors of Fatty Acid Synthase for Prostate Cancer 5b. GRANT NUMBER W81XWH-09-1-0204 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  15. Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases*

    Science.gov (United States)

    Shaw, Jeffrey J.; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J.; Dunican, Brian F.; Portero, Carolina E.; Narváez-Trujillo, Alexandra; Strobel, Scott A.

    2015-01-01

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  16. Virtual Screening of Novel Glucosamine-6-Phosphate Synthase Inhibitors.

    Science.gov (United States)

    Lather, Amit; Sharma, Sunil; Khatkar, Anurag

    2018-01-01

    Infections caused by microorganisms are the major cause of death today. The tremendous and improper use of antimicrobial agents leads to antimicrobial resistance. Various currently available antimicrobial drugs are inadequate to control the infections and lead to various adverse drug reactions. Efforts based on computer-aided drug design (CADD) can excavate a large number of databases to generate new, potent hits and minimize the requirement of time as well as money for the discovery of newer antimicrobials. Pharmaceutical sciences also have made development with advances in drug designing concepts. The current research article focuses on the study of various G-6-P synthase inhibitors from literature cited molecular database. Docking analysis was conducted and ADMET data of various molecules was evaluated by Schrodinger Glide and PreADMET software, respectively. Here, the results presented efficacy of various inhibitors towards enzyme G-6-P synthase. Docking scores, binding energy and ADMET data of various molecules showed good inhibitory potential toward G-6-P synthase as compared to standard antibiotics. This novel antimicrobial drug target G-6-P synthase has not so extensively been explored for its application in antimicrobial therapy, so the work done so far proved highly essential. This article has helped the drug researchers and scientists to intensively explore about this wonderful antimicrobial drug target. The Schrodinger, Inc. (New York, USA) software was utilized to carry out the computational calculations and docking studies. The hardware configuration was Intel® core (TM) i5-4210U CPU @ 2.40GHz, RAM memory 4.0 GB under 64-bit window operating system. The ADMET data was calculated by using the PreADMET tool (PreADMET ver. 2.0). All the computational work was completed in the Laboratory for Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D. University, Rohtak, INDIA. Molecular docking studies were carried out to identify the binding

  17. Class II recombinant phosphoribosyl diphosphate synthase from spinach

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    to other PRPP synthases the activity of spinach PRPP synthase isozyme 3 is independent of P(i), and the enzyme is inhibited by ribonucleoside diphosphates in a purely competitive manner, which indicates a lack of allosteric inhibition by these compounds. In addition spinach PRPP synthase isozyme 3 shows...... an unusual low specificity toward diphosphoryl donors by accepting dATP, GTP, CTP, and UTP in addition to ATP. The kinetic mechanism of the enzyme is an ordered steady state Bi Bi mechanism with K(ATP) and K(Rib-5-P) values of 170 and 110 micrometer, respectively, and a V(max) value of 13.1 micromol (min x...... mg of protein)(-1). The enzyme has an absolute requirement for magnesium ions, and maximal activity is obtained at 40 degrees C at pH 7.6....

  18. Transcriptional coupling of synaptic transmission and energy metabolism: role of nuclear respiratory factor 1 in co-regulating neuronal nitric oxide synthase and cytochrome c oxidase genes in neurons.

    Science.gov (United States)

    Dhar, Shilpa S; Liang, Huan Ling; Wong-Riley, Margaret T T

    2009-10-01

    Neuronal activity is highly dependent on energy metabolism; yet, the two processes have traditionally been regarded as independently regulated at the transcriptional level. Recently, we found that the same transcription factor, nuclear respiratory factor 1 (NRF-1) co-regulates an important energy-generating enzyme, cytochrome c oxidase, as well as critical subunits of glutamatergic receptors. The present study tests our hypothesis that the co-regulation extends to the next level of glutamatergic synapses, namely, neuronal nitric oxide synthase, which generates nitric oxide as a downstream signaling molecule. Using in silico analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, promoter mutations, and NRF-1 silencing, we documented that NRF-1 functionally bound to Nos1, but not Nos2 (inducible) and Nos3 (endothelial) gene promoters. Both COX and Nos1 transcripts were up-regulated by depolarizing KCl treatment and down-regulated by TTX-mediated impulse blockade in neurons. However, NRF-1 silencing blocked the up-regulation of both Nos1 and COX induced by KCl depolarization, and over-expression of NRF-1 rescued both Nos1 and COX transcripts down-regulated by TTX. These findings are consistent with our hypothesis that synaptic neuronal transmission and energy metabolism are tightly coupled at the molecular level.

  19. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    Science.gov (United States)

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  20. Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution

    International Nuclear Information System (INIS)

    Ogawa, Takuya; Yoshimura, Tohru; Hemmi, Hisashi

    2010-01-01

    The gene of (all-E) geranylfarnesyl diphosphate synthase that is responsible for the biosynthesis of methanophenazine, an electron carrier utilized for methanogenesis, was cloned from a methanogenic archaeon Methanosarcina mazei Goe1. The properties of the recombinant enzyme and the results of phylogenetic analysis suggest that the enzyme is closely related to (all-E) prenyl diphosphate synthases that are responsible for the biosynthesis of respiratory quinones, rather than to the enzymes involved in the biosynthesis of archaeal membrane lipids, including (all-E) geranylfarnesyl diphosphate synthase from a thermophilic archaeon.

  1. Changes in angiotensin AT1 receptor mRNA levels in the rat brain after immobilization stress and inhibition of central nitric oxide synthase.

    Science.gov (United States)

    Kiss, A; Jurkovicova, D; Jezova, D; Krizanova, O

    2001-06-01

    To study functional interactions between angiotensin II AT1 receptors and nitric oxide (NO) activity in different brain areas in rats exposed to immobilization stress. Central inhibition of nitric oxide synthase (NOS) was provided by intracerebroventricular (i.c.v.) administration of (N-omega-nitro-L-arginine-methylester) L-NAME and analysis of AT1 receptor mRNA was performed using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) technique. The immobilization in prone position lasted 2 hrs and the rats were sacrificed 24 hr later. The hypothalamus, hippocampus, thalamus, and cortex were isolated from fresh brains. In the cortex, gene expression of AT1 receptors was unaffected either by L-NAME treatment, or by a single exposure to immobilization stress for 2 hours followed by 24 hours of rest. In the hippocampus, the repeated treatment with L-NAME increased mRNA levels of AT1 receptors approximately 9-times compared to those in the control (untreated) group. Immobilization also increased AT1 receptor mRNA levels in the hippocampus which was similar to that induced by the L-NAME. The increase of AT1 receptor mRNA levels in the hippocampus of immobilized rats was not further altered when the animals were pretreated with L-NAME. In control rats, exposure to immobilization resulted in a significant rise in mRNA levels coding for AT1 receptors in the hypothalamus, but not in the thalamus. L-NAME treatment showed a tendency of increase in AT1 receptor mRNA levels in the hypothalamus. Moreover, when animals treated with L-NAME were subjected to immobilization, a further increase in AT1 receptor mRNA levels was observed in the hypothalamus in comparison with corresponding controls. The present data indicate that a single immobilization stress results in increased gene expression of AT1 receptors in the hypothalamus and hippocampus. The rise in AT1 mRNA levels in the same brain structures after repeated treatment with L-NAME allow to suggest an

  2. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity

    DEFF Research Database (Denmark)

    Yang, Ting; Gao, Liping; Hu, Hao

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first path-way-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate...

  3. Fiber type-specific nitric oxide protects oxidative myofibers against cachectic stimuli.

    Directory of Open Access Journals (Sweden)

    Zengli Yu

    2008-05-01

    Full Text Available Oxidative skeletal muscles are more resistant than glycolytic muscles to cachexia caused by chronic heart failure and other chronic diseases. The molecular mechanism for the protection associated with oxidative phenotype remains elusive. We hypothesized that differences in reactive oxygen species (ROS and nitric oxide (NO determine the fiber type susceptibility. Here, we show that intraperitoneal injection of endotoxin (lipopolysaccharide, LPS in mice resulted in higher level of ROS and greater expression of muscle-specific E3 ubiqitin ligases, muscle atrophy F-box (MAFbx/atrogin-1 and muscle RING finger-1 (MuRF1, in glycolytic white vastus lateralis muscle than in oxidative soleus muscle. By contrast, NO production, inducible NO synthase (iNos and antioxidant gene expression were greatly enhanced in oxidative, but not in glycolytic muscles, suggesting that NO mediates protection against muscle wasting. NO donors enhanced iNos and antioxidant gene expression and blocked cytokine/endotoxin-induced MAFbx/atrogin-1 expression in cultured myoblasts and in skeletal muscle in vivo. Our studies reveal a novel protective mechanism in oxidative myofibers mediated by enhanced iNos and antioxidant gene expression and suggest a significant value of enhanced NO signaling as a new therapeutic strategy for cachexia.

  4. The use of a displacement device negatively affects the performance of dogs (Canis familiaris) in visible object displacement tasks.

    Science.gov (United States)

    Müller, Corsin A; Riemer, Stefanie; Range, Friederike; Huber, Ludwig

    2014-08-01

    Visible and invisible displacement tasks have been used widely for comparative studies of animals' understanding of object permanence, with evidence accumulating that some species can solve invisible displacement tasks and, thus, reach Piagetian stage 6 of object permanence. In contrast, dogs appear to rely on associative cues, such as the location of the displacement device, during invisible displacement tasks. It remains unclear, however, whether dogs, and other species that failed in invisible displacement tasks, do so because of their inability to form a mental representation of the target object, or simply because of the involvement of a more salient but potentially misleading associative cue, the displacement device. Here we show that the use of a displacement device impairs the performance of dogs also in visible displacement tasks: their search accuracy was significantly lower when a visible displacement was performed with a displacement device, and only two of initially 42 dogs passed the sham-baiting control conditions. The negative influence of the displacement device in visible displacement tasks may be explained by strong associative cues overriding explicit information about the target object's location, reminiscent of an overshadowing effect, and/or object individuation errors as the target object is placed within the displacement device and moves along a spatiotemporally identical trajectory. Our data suggest that a comprehensive appraisal of a species' performance in object permanence tasks should include visible displacement tasks with the same displacement device used in invisible displacements, which typically has not been done in the past.

  5. In vitro and in vivo evidences that antioxidant action contributes to the neuroprotective effects of the neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-nitroindazole.

    Science.gov (United States)

    Thomas, Bobby; Saravanan, Karuppagounder S; Mohanakumar, Kochupurackal P

    2008-05-01

    The neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7-NI) is neuroprotective against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Monoamine oxidase (MAO)-B inhibitory action partially contributes to this effect. We tested the hypothesis that 7-NI could be a powerful hydroxyl radical (OH) scavenger, and interferes with oxidative stress caused by MPTP. We measured OH, reduced glutathione (GSH), as well as superoxide dismutase (SOD) and catalase activities in the nucleus caudatus putamen and substantia nigra of Balb/c mice following MPTP and/or 7-NI administration. The nNOS inhibitor caused dose-dependent inhibition in the production of OH in (i) Fenton-like reaction employing ferrous citrate in a cell-free system in test tubes, (ii) in isolated mitochondrial preparation in presence of MPP+, and (iii) in the striatum of mice systemically treated with MPTP. An MPTP-induced depletion of GSH in both the nuclei was blocked by 7-NI, which was dose-dependent (10-50mg/kg), but independent of MAO-B inhibition. The nNOS-mediated recovery of GSH paralleled attenuation of MPTP-induced depletion of striatal dopamine. MPTP-induced increase in the activities of striatal or nigral SOD and catalase were significantly attenuated by 7-NI treatment. These results suggest potent antioxidant action of 7-NI in its neuroprotective effects against MPTP-induced neurotoxicity.

  6. Displacement data assimilation

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, W. Steven [Pacific Northwest Laboratory, Richland, WA 99354 (United States); Venkataramani, Shankar [Department of Mathematics and Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721 (United States); Mariano, Arthur J. [Rosenstiel School of Marine & Atmospheric Science, University of Miami, Miami, FL 33149 (United States); Restrepo, Juan M., E-mail: restrepo@math.oregonstate.edu [Department of Mathematics, Oregon State University, Corvallis, OR 97331 (United States)

    2017-02-01

    We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information is important. While the displacement transformation is generic, here we implement it within an ensemble Kalman Filter framework and demonstrate its effectiveness in tracking stochastically perturbed vortices.

  7. Inducible nitric oxide synthase, nitrotyrosine and apoptosis in gastric adenocarcinomas and their correlation with a poor survival

    Science.gov (United States)

    Li, Long-Gang; Xu, Hui-Mian

    2005-01-01

    AIM: To detect the presence of inducible nitric oxide synthase (iNOS), nitrotyrosine (NT) and apoptosis in gastric adenocarcinomas and their possible correlations with the clinicopathological characteristics and prognosis of gastric adenocarcinoma. METHODS: Sixty-six specimens of gastric adenocarcinoma and corresponding adjacent normal gastric tissues were studied. Immunohistochemistry was employed to localize iNOS and NT protein and an immunohistochemical scoring system was used. The occurrence of apoptotic cell death (apoptotic index [AI]) was analyzed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick-end labeling (TUNEL) method. RESULTS: Results showed that iNOS expression was detected at an intermediate or high level in 41 of 66 (62%) specimens of gastric adenocarcinoma. NT expression was 58%. Neither of them was found in the normal gastric tissues; there were significant positive correlations among iNOS expression, NT expression and AI. Many clinicopathologic characteristics of gastric adenocarcinoma, such as tumor size, depth of invasion, lymph node metastasis and TNM staging, were related to iNOS and NT expressions (P<0.05). In 66 surviving patients, the 5-year survival rate of 41 patients who had tumors with intermediate or high iNOS expressions and high AIs (4.09%; 19.96%) was significantly lower than that of 25 patients who had tumors with negative or low iNOS expressions and low AIs (0.79%; 47.14%) (P = 0.001). COX’s multivariate analysis revealed that the iNOS expression was identified as one of the significant independent prognostic factors predictive of a poor survival (relative risk [RR] = 2.69). CONCLUSION: NO produced by iNOS may play a stronger role in promoting gastric adenocarcinoma growth than in suppressing its growth. iNOS and NT expressions by gastric adenocarcinoma may correlate with a poor survival. PMID:15849807

  8. Melatonin inhibits endothelin-1 and induces endothelial nitric oxide ...

    African Journals Online (AJOL)

    Although, I/R augmented the endothelin-1 (ET-1) gene expression and the level of big endothelin-1 (big ET-1) in liver tissue, melatonin attenuated these increases. Conversely, non-significant decrease in endothelial nitric oxide synthase (eNOS) mRNA expression in I/R group was significantly elevated by melatonin in ...

  9. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Giralt, M; Carrasco, J

    2000-01-01

    of the antioxidants Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, and catalase remained unaffected by the IL-6 deficiency. The lesioned mice showed increased oxidative stress, as judged by malondialdehyde (MDA) and nitrotyrosine (NITT) levels and by formation of inducible nitric oxide synthase (iNOS). IL-6KO mice...

  10. Partial deletion of argininosuccinate synthase protects from pyrazole plus lipopolysaccharide-induced liver injury by decreasing nitrosative stress

    Science.gov (United States)

    Lu, Yongke; Leung, Tung Ming; Ward, Stephen C.

    2012-01-01

    Argininosuccinate synthase (ASS) is the rate-limiting enzyme in the urea cycle. Along with nitric oxide synthase (NOS)-2, ASS endows cells with the l-citrulline/nitric oxide (NO·) salvage pathway to continually supply l-arginine from l-citrulline for sustained NO· generation. Because of the relevant role of NOS in liver injury, we hypothesized that downregulation of ASS could decrease the availability of intracellular substrate for NO· synthesis by NOS-2 and, hence, decrease liver damage. Previous work demonstrated that pyrazole plus LPS caused significant liver injury involving NO· generation and formation of 3-nitrotyrosine protein adducts; thus, wild-type (WT) and Ass+/− mice (Ass−/− mice are lethal) were treated with pyrazole plus LPS, and markers of nitrosative stress, as well as liver injury, were analyzed. Partial ablation of Ass protected from pyrazole plus LPS-induced liver injury by decreasing nitrosative stress and hepatic and circulating TNFα. Moreover, apoptosis was prevented, since pyrazole plus LPS-treated Ass+/− mice showed decreased phosphorylation of JNK; increased MAPK phosphatase-1, which is known to deactivate JNK signaling; and lower cleaved caspase-3 than treated WT mice, and this was accompanied by less TdT-mediated dUTP nick end labeling-positive staining. Lastly, hepatic neutrophil accumulation was almost absent in pyrazole plus LPS-treated Ass+/− compared with WT mice. Partial Ass ablation prevents pyrazole plus LPS-mediated liver injury by reducing nitrosative stress, TNFα, apoptosis, and neutrophil infiltration. PMID:22052013

  11. Effects of intermittent fasting on age-related changes on Na,K-ATPase activity and oxidative status induced by lipopolysaccharide in rat hippocampus.

    Science.gov (United States)

    Vasconcelos, Andrea Rodrigues; Kinoshita, Paula Fernanda; Yshii, Lidia Mitiko; Marques Orellana, Ana Maria; Böhmer, Ana Elisa; de Sá Lima, Larissa; Alves, Rosana; Andreotti, Diana Zukas; Marcourakis, Tania; Scavone, Cristoforo; Kawamoto, Elisa Mitiko

    2015-05-01

    Chronic neuroinflammation is a common characteristic of neurodegenerative diseases, and lipopolysaccharide (LPS) signaling is linked to glutamate-nitric oxide-Na,K-ATPase isoforms pathway in central nervous system (CNS) and also causes neuroinflammation. Intermittent fasting (IF) induces adaptive responses in the brain that can suppress inflammation, but the age-related effect of IF on LPS modulatory influence on nitric oxide-Na,K-ATPase isoforms is unknown. This work compared the effects of LPS on the activity of α1,α2,3 Na,K-ATPase, nitric oxide synthase gene expression and/or activity, cyclic guanosine monophosphate, 3-nitrotyrosine-containing proteins, and levels of thiobarbituric acid-reactive substances in CNS of young and older rats submitted to the IF protocol for 30 days. LPS induced an age-related effect in neuronal nitric oxide synthase activity, cyclic guanosine monophosphate, and levels of thiobarbituric acid-reactive substances in rat hippocampus that was linked to changes in α2,3-Na,K-ATPase activity, 3-nitrotyrosine proteins, and inducible nitric oxide synthase gene expression. IF induced adaptative cellular stress-response signaling pathways reverting LPS effects in rat hippocampus of young and older rats. The results suggest that IF in both ages would reduce the risk for deficits on brain function and neurodegenerative disorders linked to inflammatory response in the CNS. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Displacement cascades in diatomic materials

    International Nuclear Information System (INIS)

    Parkin, D.M.; Coulter, C.A.

    1981-01-01

    A new function, the specified-projectile displacement function p/sub ijk/ (E), is introduced to describe displacement cascades in polyatomic materials. This function describes the specific collision events that produce displacements and hence adds new information not previously available. Calculations of p/sub ijk/ (E) for MgO, Al 2 O 3 and TaO are presented and discussed. Results show that the parameters that have the largest effect on displacement collision events are the PKA energy and the mass ratio of the atom types in the material. It is further shown that the microscopic nature of the displacement events changes over the entire recoil energy range relevant to fusion neutron spectra and that these changes are different in materials whose mass ratio is near one than in those where it is far from one

  13. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  14. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide

    Science.gov (United States)

    Chiou, Wen-Fei; Chen, Chieh-Fu; Lin, Jin-Jung

    2000-01-01

    Andrographolide, an active component found in leaves of Andrographis paniculata, has been reported to exhibit nitric oxide (NO) inhibitory property in endotoxin-stimulated macrophages, however, the detailed mechanisms remain unclear. In the present study we investigated the effect of andrographolide on the expression of inducible NO synthase (iNOS) mRNA, protein, and enzyme activity in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) plus interferon-γ (IFN-γ).RAW 264.7 cells stimulated with LPS/IFN-γ activated NO production; in this condition andrographolide (1–100 μM) inhibited NO production in a dose-dependent manner with an IC50 value of 17.4±1.1 μM. Andrographolide also reduces the expression of iNOS protein level but without a significant effect on iNOS mRNA. The reduction of iNOS activity is thought to be caused by decreased expression of iNOS protein.In a protein stability assay, andrographolide moderately but significantly reduced the amount of iNOS protein as suggested by accelerating degradation. Furthermore, andrographolide also inhibited total protein de novo synthesis as demonstrated by [35S]-methionine incorporation.As a whole, these data suggest that andrographolide inhibits NO synthesis in RAW 264.7 cells by reducing the expression of iNOS protein and the reduction could occur through two additional mechanisms: prevention of the de novo protein synthesis and decreasing the protein stability via a post-transcriptional mechanism. It is also possible that inhibition of iNOS protein expression and NO production under immune stimulation and/or bacteria infection may explain, in part, the beneficial effects of andrographolide as an anti-inflammatory agent. PMID:10780958

  15. Vildagliptin Stimulates Endothelial Cell Network Formation and Ischemia-induced Revascularization via an Endothelial Nitric-oxide Synthase-dependent Mechanism*

    Science.gov (United States)

    Ishii, Masakazu; Shibata, Rei; Kondo, Kazuhisa; Kambara, Takahiro; Shimizu, Yuuki; Tanigawa, Tohru; Bando, Yasuko K.; Nishimura, Masahiro; Ouchi, Noriyuki; Murohara, Toyoaki

    2014-01-01

    Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production. PMID:25100725

  16. Inhibitors of Fatty Acid Synthase for Prostate Cancer. Revision

    Science.gov (United States)

    2013-05-01

    acetyl- cholinesterase inhibitors have been developed, many with femtomolar binding affinities (7). This body of literature also confirms that the...AD_________________ Award Number: W81XWH-09-1-0204 TITLE: Inhibitors of Fatty Acid Synthase for...May 2013 2. REPORT TYPE Revised Final 3. DATES COVERED 01 May 2009-30 Apr 2013 4. TITLE AND SUBTITLE Inhibitors of Fatty Acid Synthase for

  17. Prostaglandin H synthase immunoreactivity in human gut. An immunohistochemical study

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Rumessen, J J; Qvortrup, Klaus

    1991-01-01

    Prostaglandins exhibit a variety of actions on intestinal smooth muscle depending upon the type, dose and muscle layer studied. As the cellular origin of prostaglandin H (PGH) synthase has not been established with certainty in the human gut wall, we studied the localization of PGH synthase...

  18. Role of Nitric Oxide Synthase on Blood Pressure Regulation and Vascular Function in Pregnant Rats on a High-Fat Diet.

    Science.gov (United States)

    Palei, Ana C; Spradley, Frank T; Granger, Joey P

    2017-03-01

    While obesity is a leading risk factor for preeclampsia, the mechanisms whereby obese women are more susceptible to pregnancy-induced hypertension are unclear. As high-fat diet (HFD) is an important contributor to the development of obesity, we tested the hypothesis that pregnant rats on HFD have hypertension and endothelial dysfunction due to reduced nitric oxide synthase (NOS). Twelve-week-old Sprague-Dawley female rats were fed normal diet (ND, 13% fat kcal) or HFD (40% fat kcal) for 9 weeks. Timed-pregnant rats were then generated and the effect of HFD on mean arterial blood pressure (MAP) and vascular function was assessed on gestational day (GD) 19. MAP was not different between HFD and ND pregnant rats. Intriguingly, sensitivity to acetylcholine-induced endothelium-dependent vasorelaxation was enhanced in small mesenteric arteries of HFD dams compared to ND controls (logEC50 -7.9 ± 0.3 vs. -6.7 ± 0.3 M; P hydrochloride (100 mg/l, drinking water) from GD 14 to 19. It was found that NOS inhibition increased MAP equally in HFD and ND groups. Contrary to our initial hypothesis, HFD dams were normotensive and presented increased endothelial function and NO/NOS3 levels. This enhanced NOS-mediated vascular function does not appear to have a major impact on blood pressure regulation of HFD-fed pregnant rats. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  19. Single dose of inducible nitric oxide synthase inhibitor induces prolonged inflammatory cell accumulation and fibrosis around injured tendon and synovium

    Directory of Open Access Journals (Sweden)

    Homa Darmani

    2004-01-01

    Full Text Available THE aim of the current study was to investigate the effect of inhibition of nitric oxide (NO production after injury on inflammatory cell accumulation and fibrosis around digital flexor tendon and synovium. A standard crush injury was applied to the flexor tendons of the middle digit of the hindpaw and the overlying muscle and synovium of female Wistar rats. Thirty animals received an intraperitoneal injection of either isotonic saline or N(G-nitro-l-arginine methyl ester (L-NAME; 5 mg/kg immediately following the crush injury, and five animals were then sacrificed at various intervals and the paws processed for histology. Another group of five animals was sacrificed after 3 days for nitrite determinations. The results showed that nitrite production and hence NO synthase activity is doubled at the acute phase of tendon wound healing, and we can prevent this by administering a single dose of L-NAME immediately after injury. The incidence and severity of fibrocellular adhesions between tendon and synovium was much more marked in animals treated with L-NAME. Treatment with L-NAME elicited a chronic inflammatory response characterised by a persistent and extraordinarily severe accumulation of large numbers of inflammatory cells in the subcutaneous tissues, in muscle and in tendon. These findings indicate that in the case of injured tendon and synovium, NO could act to protect the healing tissue from an uncontrolled inflammatory response.

  20. Toll-like Receptor 4 Signaling Confers Cardiac Protection Against Ischemic Injury via Inducible Nitric Oxide Synthase- and Soluble Guanylate Cyclase-dependent Mechanisms

    Science.gov (United States)

    Wang, E; Feng, Yan; Zhang, Ming; Zou, Lin; Li, Yan; Buys, Emmanuel S.; Huang, Peigen; Brouckaert, Peter; Chao, Wei

    2011-01-01

    Background Prior administration of a small dose of lipopolysaccharide confers a cardiac protection against ischemia-reperfusion injury. However, the signaling mechanisms that control the protection are incompletely understood. We tested the hypothesis that TLR4 mediates the ability of lipopolysaccharide to protect against cardiac ischemia-reperfusion injury through distinct intracellular pathways involving myeloid differentiation factor 88 (MyD88), TIR-domain-containing adaptor protein inducing interferon-β–mediated transcription-factor (Trif), inducible nitric-oxide synthase (iNOS), and soluble guanylate cyclase (sGC). Methods Wild-type mice and the genetically modified mice, i.e., TLR4-deficient (TLR4-def), TLR2 knockout (TLR2−/−), MyD88−/−, Trif−/−, iNOS−/−, and sGCα1−/−, were treated with normal saline or 0.1 mg/kg of lipopolysaccharide, intraperitoneally. Twenty-four hours later, isolated hearts were perfused in a Langendorff apparatus and subsequently subjected to 30 min of global ischemia and reperfusion for up to 60 min. Left ventricular function and myocardial infarction sizes were examined. Results Compared to saline-treated mice, lipopolysaccharide-treated mice had markedly improved left ventricular developed pressure and dP/dtmax (P < 0.01) and reduced MI sizes (37.2 ± 3.4% vs. 19.8 ± 4.9%, P < 0.01) after ischemia-reperfusion. The cardiac protective effect of lipopolysaccharide was abolished in the TLR4-def and MyD88−/− mice, but remained intact in TLR2−/− or Trif−/− mice. iNOS−/− mice or wild-type mice treated with the iNOS inhibitor 1400W failed to respond to the TLR4-induced nitric oxide production and were not protected by the lipopolysaccharide preconditioning. While sGC 1−/− mice had robust nitric oxide production in response to lipopolysaccharide, they were not protected by the TLR4-elicited cardiac protection. Conclusions TLR4 activation confers a potent cardiac protection against ischemia

  1. Effects of a Mixed Zone on TGO Displacement Instabilities of Thermal Barrier Coatings at High Temperature in Gas-Cooled Fast Reactors

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available Thermally grown oxide (TGO, commonly pure α-Al2O3, formed on protective coatings acts as an insulation barrier shielding cooled reactors from high temperatures in nuclear energy systems. Mixed zone (MZ oxide often grows at the interface between the alumina layer and top coat in thermal barrier coatings (TBCs at high temperature dwell times accompanied by the formation of alumina. The newly formed MZ destroys interface integrity and significantly affects the displacement instabilities of TGO. In this work, a finite element model based on material property changes was constructed to investigate the effects of MZ on the displacement instabilities of TGO. MZ formation was simulated by gradually changing the metal material properties into MZ upon thermal cycling. Quantitative data show that MZ formation induces an enormous stress in TGO, resulting in a sharp change of displacement compared to the alumina layer. The displacement instability increases with an increase in the MZ growth rate, growth strain, and thickness. Thus, the formation of a MZ accelerates the failure of TBCs, which is in agreement with previous experimental observations. These results provide data for the understanding of TBC failure mechanisms associated with MZ formation and of how to prolong TBC working life.

  2. Functional Characterization of Sesquiterpene Synthase from Polygonum minus

    Directory of Open Access Journals (Sweden)

    Su-Fang Ee

    2014-01-01

    Full Text Available Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS has a complete open reading frame (ORF of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of β-sesquiphellandrene.

  3. Modelling toehold-mediated RNA strand displacement.

    Science.gov (United States)

    Šulc, Petr; Ouldridge, Thomas E; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A

    2015-03-10

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperature and make two experimentally testable predictions: that the displacement is faster if the toehold is placed at the 5' end of the substrate; and that the displacement slows down with increasing temperature for longer toeholds. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Arctigenin, a Potent Ingredient of Arctium lappa L., Induces Endothelial Nitric Oxide Synthase and Attenuates Subarachnoid Hemorrhage-Induced Vasospasm through PI3K/Akt Pathway in a Rat Model.

    Science.gov (United States)

    Chang, Chih-Zen; Wu, Shu-Chuan; Chang, Chia-Mao; Lin, Chih-Lung; Kwan, Aij-Lie

    2015-01-01

    Upregulation of protein kinase B (PKB, also known as Akt) is observed within the cerebral arteries of subarachnoid hemorrhage (SAH) animals. This study is of interest to examine Arctigenin, a potent antioxidant, on endothelial nitric oxide synthase (eNOS) and Akt pathways in a SAH in vitro study. Basilar arteries (BAs) were obtained to examine phosphatidylinositol-3-kinase (PI3K), phospho-PI3K, Akt, phospho-Akt (Western blot) and morphological examination. Endothelins (ETs) and eNOS evaluation (Western blot and immunostaining) were also determined. Arctigenin treatment significantly alleviates disrupted endothelial cells and tortured internal elastic layer observed in the SAH groups (p Arctigenin (p Arctigenin might exert dural effects in preventing SAH-induced vasospasm through upregulating eNOS expression via the PI3K/Akt signaling pathway and attenuate endothelins after SAH. Arctigenin shows therapeutic promise in the treatment of cerebral vasospasm following SAH.

  5. Structure of the human beta-ketoacyl [ACP] synthase from the mitochondrial type II fatty acid synthase

    DEFF Research Database (Denmark)

    Christensen, Caspar Elo; Kragelund, Birthe B; von Wettstein-Knowles, Penny

    2007-01-01

    Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual...... activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high...... degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic...

  6. Genetic Manipulation of Leishmania donovani to Explore the Involvement of Argininosuccinate Synthase in Oxidative Stress Management.

    Directory of Open Access Journals (Sweden)

    Abul Hasan Sardar

    2016-03-01

    Full Text Available Reactive oxygen and nitrogen species (ROS and RNS produced by the phagocytic cells are the most common arsenals used to kill the intracellular pathogens. However, Leishmania, an intracellular pathogen, has evolved mechanisms to survive by counterbalancing the toxic oxygen metabolites produced during infection. Polyamines, the major contributor in this anti-oxidant machinery, are largely dependent on the availability of L-arginine in the intracellular milieu. Argininosuccinate synthase (ASS plays an important role as the rate-limiting step required for converting L-citrulline to argininosuccinate to provide arginine for an assortment of metabolic processes. Leishmania produce an active ASS enzyme, yet it has an incomplete urea cycle as it lacks an argininosuccinate lyase (ASL. There is no evidence for endogenous synthesis of L-arginine in Leishmania, which suggests that these parasites salvage L-arginine from extracellular milieu and makes the biological function of ASS and the production of argininosuccinate in Leishmania unclear. Our previous quantitative proteomic analysis of Leishmania promastigotes treated with sub-lethal doses of ROS, RNS, or a combination of both, led to the identification of several differentially expressed proteins which included ASS. To assess the involvement of ASS in stress management, a mutant cell line with greatly reduced ASS activity was created by a double-targeted gene replacement strategy in L. donovani promastigote. Interestingly, LdASS is encoded by three copies of allele, but Western blot analysis showed the third allele did not appear to express ASS. The free thiol levels in the mutant LdASS-/-/+ cell line were decreased. Furthermore, the cell viability in L-arginine depleted medium was greatly attenuated on exposure to different stress environments and was adversely impacted in its ability to infect mice. These findings suggest that ASS is important for Leishmania donovani to counterbalance the stressed

  7. Packed red blood cells are an abundant and proximate potential source of nitric oxide synthase inhibition.

    Directory of Open Access Journals (Sweden)

    Charles F Zwemer

    Full Text Available We determined, for packed red blood cells (PRBC and fresh frozen plasma, the maximum content, and ability to release the endogenous nitric oxide synthase (NOS inhibitors asymmetric dimethylarginine (ADMA and monomethylarginine (LNMMA.ADMA and LNMMA are near equipotent NOS inhibitors forming blood's total NOS inhibitory content. The balance between removal from, and addition to plasma determines their free concentrations. Removal from plasma is by well-characterized specific hydrolases while formation is restricted to posttranslational protein methylation. When released into plasma they can readily enter endothelial cells and inhibit NOS. Fresh rat and human whole blood contain substantial protein incorporated ADMA however; the maximum content of ADMA and LNMMA in PRBC and fresh frozen plasma has not been determined.We measured total (free and protein incorporated ADMA and LNMMA content in PRBCs and fresh frozen plasma, as well as their incubation induced release, using HPLC with fluorescence detection. We tested the hypothesis that PRBC and fresh frozen plasma contain substantial inhibitory methylarginines that can be released chemically by complete in vitro acid hydrolysis or physiologically at 37°C by enzymatic blood proteolysis.In vitro strong-acid-hydrolysis revealed a large PRBC reservoir of ADMA (54.5 ± 9.7 µM and LNMMA (58.9 ± 28.9 μM that persisted over 42-d at 6° or -80°C. In vitro 5h incubation at 37°C nearly doubled free ADMA and LNMMNA concentration from PRBCs while no change was detected in fresh frozen plasma.The compelling physiological ramifications are that regardless of storage age, 1 PRBCs can rapidly release pathologically relevant quantities of ADMA and LNMMA when incubated and 2 PRBCs have a protein-incorporated inhibitory methylarginines reservoir 100 times that of normal free inhibitory methylarginines in blood and thus could represent a clinically relevant and proximate risk for iatrogenic NOS inhibition upon

  8. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    Science.gov (United States)

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively). Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Nitrile in the Hole: Discovery of a Small Auxiliary Pocket in Neuronal Nitric Oxide Synthase Leading to the Development of Potent and Selective 2-Aminoquinoline Inhibitors.

    Science.gov (United States)

    Cinelli, Maris A; Li, Huiying; Chreifi, Georges; Poulos, Thomas L; Silverman, Richard B

    2017-05-11

    Neuronal nitric oxide synthase (nNOS) inhibition is a promising strategy to treat neurodegenerative disorders, but the development of nNOS inhibitors is often hindered by poor pharmacokinetics. We previously developed a class of membrane-permeable 2-aminoquinoline inhibitors and later rearranged the scaffold to decrease off-target binding. However, the resulting compounds had decreased permeability, low human nNOS activity, and low selectivity versus human eNOS. In this study, 5-substituted phenyl ether-linked aminoquinolines and derivatives were synthesized and assayed against purified NOS isoforms. 5-Cyano compounds are especially potent and selective rat and human nNOS inhibitors. Activity and selectivity are mediated by the binding of the cyano group to a new auxiliary pocket in nNOS. Potency was enhanced by methylation of the quinoline and by introduction of simple chiral moieties, resulting in a combination of hydrophobic and auxiliary pocket effects that yielded high (∼500-fold) n/e selectivity. Importantly, the Caco-2 assay also revealed improved membrane permeability over previous compounds.

  10. The Role of −786T/C Polymorphism in the Endothelial Nitric Oxide Synthase Gene in Males with Clinical and Biochemical Features of the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Blazej Misiak

    2011-01-01

    Full Text Available Background. Extensive evidence, arising from models of endothelial nitric oxide synthase gene (NOS3-knockout mice supports the role of endothelial malfunction in the pathogenesis of the metabolic syndrome (MS. Aims. The aim of this study was to evaluate the role of −786T/C polymorphism in the etiology of MS and assess previously reported interaction with cigarette smoking. Methods. Based on International Diabetes Federation 2005 criteria, we recruited randomly 152 subjects with MS and 75 subjects without MS. Results. Allelic and genotype frequencies did not differ significantly between both groups. Total cholesterol level (CHOLT and intima-media thickness of carotid arteries were significantly higher in −786CC homozygotes, in comparison with −786TC and −786TT patients. Regarding current smoking status, −786C allele was associated with higher CHOLT than −786T allele. Conclusion. Our study indicates the putative role of −786T/C polymorphism in the development of hypercholesterolemia, in patients with MS, which might be enhanced by cigarette smoking.

  11. The Role of −786T/C Polymorphism in the Endothelial Nitric Oxide Synthase Gene in Males with Clinical and Biochemical Features of the Metabolic Syndrome

    Science.gov (United States)

    Misiak, Blazej; Krolik, Marta; Kukowka, Anna; Lewera, Anna; Leszczynski, Przemyslaw; Stankiewicz-Olczyk, Joanna; Slezak, Ryszard

    2011-01-01

    Background. Extensive evidence, arising from models of endothelial nitric oxide synthase gene (NOS3)-knockout mice supports the role of endothelial malfunction in the pathogenesis of the metabolic syndrome (MS). Aims. The aim of this study was to evaluate the role of −786T/C polymorphism in the etiology of MS and assess previously reported interaction with cigarette smoking. Methods. Based on International Diabetes Federation 2005 criteria, we recruited randomly 152 subjects with MS and 75 subjects without MS. Results. Allelic and genotype frequencies did not differ significantly between both groups. Total cholesterol level (CHOLT) and intima-media thickness of carotid arteries were significantly higher in −786CC homozygotes, in comparison with −786TC and −786TT patients. Regarding current smoking status, −786C allele was associated with higher CHOLT than −786T allele. Conclusion. Our study indicates the putative role of −786T/C polymorphism in the development of hypercholesterolemia, in patients with MS, which might be enhanced by cigarette smoking. PMID:22164159

  12. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    International Nuclear Information System (INIS)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S.

    1991-01-01

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-[ 35 S]methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate

  13. Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase

    Science.gov (United States)

    Ober, Dietrich; Hartmann, Thomas

    1999-01-01

    Pyrrolizidine alkaloids are preformed plant defense compounds with sporadic phylogenetic distribution. They are thought to have evolved in response to the selective pressure of herbivory. The first pathway-specific intermediate of these alkaloids is the rare polyamine homospermidine, which is synthesized by homospermidine synthase (HSS). The HSS gene from Senecio vernalis was cloned and shown to be derived from the deoxyhypusine synthase (DHS) gene, which is highly conserved among all eukaryotes and archaebacteria. DHS catalyzes the first step in the activation of translation initiation factor 5A (eIF5A), which is essential for eukaryotic cell proliferation and which acts as a cofactor of the HIV-1 Rev regulatory protein. Sequence comparison provides direct evidence for the evolutionary recruitment of an essential gene of primary metabolism (DHS) for the origin of the committing step (HSS) in the biosynthesis of pyrrolizidine alkaloids. PMID:10611289

  14. MRI of displaced meniscal fragments

    International Nuclear Information System (INIS)

    Dunoski, Brian; Zbojniewicz, Andrew M.; Laor, Tal

    2012-01-01

    A torn meniscus frequently requires surgical fixation or debridement as definitive treatment. Meniscal tears with associated fragment displacement, such as bucket handle and flap tears, can be difficult to recognize and accurately describe on MRI, and displaced fragments can be challenging to identify at surgery. A displaced meniscal fragment can be obscured by synovium or be in a location not usually evaluated at arthroscopy. We present a pictorial essay of meniscal tears with displaced fragments in patients referred to a pediatric hospital in order to increase recognition and accurate interpretation by the radiologist, who in turn can help assist the surgeon in planning appropriate therapy. (orig.)

  15. MRI of displaced meniscal fragments

    Energy Technology Data Exchange (ETDEWEB)

    Dunoski, Brian [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Children' s Hospital of Michigan, Department of Radiology, Detroit, MI (United States); Zbojniewicz, Andrew M.; Laor, Tal [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2012-01-15

    A torn meniscus frequently requires surgical fixation or debridement as definitive treatment. Meniscal tears with associated fragment displacement, such as bucket handle and flap tears, can be difficult to recognize and accurately describe on MRI, and displaced fragments can be challenging to identify at surgery. A displaced meniscal fragment can be obscured by synovium or be in a location not usually evaluated at arthroscopy. We present a pictorial essay of meniscal tears with displaced fragments in patients referred to a pediatric hospital in order to increase recognition and accurate interpretation by the radiologist, who in turn can help assist the surgeon in planning appropriate therapy. (orig.)

  16. Serum Iron and Nitric Oxide Production in Trypanosoma brucei ...

    African Journals Online (AJOL)

    JTEkanem

    reduction in the serum iron status and a modulation of nitric oxide synthase activity of T. brucei infected rats. ... inflammation and tissue damage15. ... The serum iron level was determined ... concentration or of total nitrate and nitrite ... 15. 16. 17. 18. Days. S e ru m iro n lev e l mg. /ml. Infected treated. Infected untreated. 0.

  17. Inhibition of iNOS and DNA Oxidation by Methanol Extract of ...

    African Journals Online (AJOL)

    Purpose: To investigate the antioxidant properties of the methanol extract of S. tenuifolia as well as its effect on inducible nitric oxide synthase (iNOS) and cycleooxygenase-2 (COX-2) expression in lipopolysaccharides (LPS)-induced cell damage in macrophage cells. Methods: The antioxidant activities of the plant extract ...

  18. Structure of the dimeric form of CTP synthase from Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Lauritsen, Iben; Willemoës, Martin; Jensen, Kaj Frank

    2011-01-01

    CTP synthase catalyzes the last committed step in de novo pyrimidine-nucleotide biosynthesis. Active CTP synthase is a tetrameric enzyme composed of a dimer of dimers. The tetramer is favoured in the presence of the substrate nucleotides ATP and UTP; when saturated with nucleotide, the tetramer...... completely dominates the oligomeric state of the enzyme. Furthermore, phosphorylation has been shown to regulate the oligomeric states of the enzymes from yeast and human. The crystal structure of a dimeric form of CTP synthase from Sulfolobus solfataricus has been determined at 2.5 Å resolution...

  19. Gemfibrozil, a Lipid-lowering Drug, Inhibits the Induction of Nitric-oxide Synthase in Human Astrocytes*

    Science.gov (United States)

    Pahan, Kalipada; Jana, Malabendu; Liu, Xiaojuan; Taylor, Bradley S.; Wood, Charles; Fischer, Susan M.

    2007-01-01

    Gemfibrozil, a lipid-lowering drug, inhibited cytokine-induced production of NO and the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astrocytes. Similar to gemfibrozil, clofibrate, another fibrate drug, also inhibited the expression of iNOS. Inhibition of human iNOS promoter-driven luciferase activity by gemfibrozil in cytokine-stimulated U373MG astroglial cells suggests that this compound inhibits the transcription of iNOS. Since gemfibrozil is known to activate peroxisome proliferator-activated receptor-α (PPAR-α), we investigated the role of PPAR-α in gemfibrozil-mediated inhibition of iNOS. Gemfibrozil induced peroxisome proliferator-responsive element (PPRE)-dependent luciferase activity, which was inhibited by the expression of ΔhPPAR-α, the dominant-negative mutant of human PPAR-α. However, ΔhPPAR-α was unable to abrogate gemfibrozil-mediated inhibition of iNOS suggesting that gemfibrozil inhibits iNOS independent of PPAR-α. The human iNOS promoter contains consensus sequences for the binding of transcription factors, including interferon-γ (IFN-γ) regulatory factor-1 (IRF-1) binding to interferon-stimulated responsive element (ISRE), signal transducer and activator of transcription (STAT) binding to γ-activation site (GAS), nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein β (C/EBPβ); therefore, we investigated the effect of gemfibrozil on the activation of these transcription factors. The combination of interleukin (IL)-1β and IFN-γ induced the activation of NF-κB, AP-1, C/EBPβ, and GAS but not that of ISRE, suggesting that IRF-1 may not be involved in cytokine-induced expression of iNOS in human astrocytes. Interestingly, gemfibrozil strongly inhibited the activation of NF-κB, AP-1, and C/EBPβ but not that of GAS in cytokine-stimulated astroglial cells. These results suggest that gemfibrozil inhibits the induction of iNOS probably by

  20. Effects of threshold displacement energy on defect production by displacement cascades in α, β and γ-LiAlO2

    International Nuclear Information System (INIS)

    Tsuchihira, H.; Oda, T.; Tanaka, S.

    2013-01-01

    Threshold displacement energy evaluation and a series of displacement cascade simulations in α, β, and γ-LiAlO 2 were performed using molecular dynamics. Threshold displacement energy evaluations indicated that higher absolute ionic charge values and larger densities both increase threshold displacement energy. The displacement cascade simulations suggest that the influence of different crystal structures on the number of interstitial atoms generated in a displacement cascade is explainable almost entirely by the difference of the threshold displacement energy

  1. Effect of displaced versus non-displaced pelvic fractures on long-term racing performance in 31 Thoroughbred racehorses.

    Science.gov (United States)

    Hennessy, S E; Muurlink, M A; Anderson, G A; Puksmann, T N; Whitton, R C

    2013-06-01

    To evaluate the long-term racing prognosis for Thoroughbred racehorses with displaced versus non-displaced fractures of the pelvis identified by scintigraphy. Retrospective case analysis. Medical records of 31 Thoroughbred racehorses presenting to the University of Melbourne Equine Centre with fractures of the pelvis that were identified by scintigraphy were reviewed. Pelvic fracture site was determined and defined as displaced or non-displaced based on ultrasound and/or radiographic findings. Race records were analysed for each horse, with a minimum of 24 months' follow-up, and correlated with fracture type to determine long-term prognosis for racing. Results are expressed as median and range. Fractures at a single site were more common (n = 22) than fractures involving two sites (n = 9) and the ilial wing was the most commonly affected (n = 12). Thoroughbred racehorses with displaced pelvic fractures at any site (n = 12) raced fewer times within 24 months of diagnosis than horses with non-displaced fractures (n = 19) (median 0.5, range 0-13 vs 7, 0-24; P = 0.037), but there was no clear statistical difference in race earnings between the two groups (median A$0, range A$0-$123,250 vs A$14,440, A$0-$325,500, respectively; P = 0.080). Four horses with displaced fractures (33%) were euthanased on humane grounds because of persistent severe pain. When these horses were excluded from the analysis, there were no differences in performance variables between horses with a displaced or non-displaced pelvic fracture. Thoroughbred racehorses with a displaced or non-displaced pelvic fracture that survive the initial post-injury period have a good prognosis for racing. © 2013 The Authors. Australian Veterinary Journal © 2013 Australian Veterinary Association.

  2. Adrenoceptor-activated nitric oxide synthesis in salivary acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia; Dissing, Steen; Tritsaris, Katerina

    2000-01-01

    We investigated the cellular regulation of nitric oxide synthase (NOS) activity in isolated acinar cells from rat parotid and human labial salivary glands, using the newly developed fluorescent nitric oxide (NO) indicator, DAF-2. We found that sympathetic stimulation with norepinephrine (NE) caused...... a strong increase in NO synthesis that was not seen after parasympathetic stimulation with acetylcholine. In rat parotid acinar cells, we furthermore investigated to which extent the NOS activity was dependent on the intracellular free Ca2+ concentration ([Ca2+]i) by simultaneously measuring NO synthesis...

  3. Association of endothelial nitric oxide synthase gene polymorphism with the risk of Henoch-Schönlein purpura/Henoch-Schönlein purpura nephritis.

    Science.gov (United States)

    Zhong, Weiqiang; Zhou, Tian-Biao; Jiang, Zongpei

    2015-04-01

    Association between endothelial nitric oxide synthase (eNOS) gene polymorphism and Henoch-Schönlein purpura (HSP)/Henoch-Schönlein purpura nephritis (HSPN) risk is still controversial. A meta-analysis was performed to evaluate the association between eNOS gene polymorphism and HSP/HSPN susceptibility. A predefined literature search and selection of eligible relevant studies were performed to collect data from electronic database. Three articles were identified for the analysis of association between eNOS gene polymorphism and HSPN/HSP risk. eNOS G894T gene polymorphism was not associated with HSPN susceptibility and the risk of patients with HSP developing into HSPN. Interestingly, eNOS G894T T allele and GG genotype were associated with HSP susceptibility, but not the TT genotype. eNOS T786C TT genotype was associated with HSPN susceptibility, but not C allele and CC genotype. Furthermore, eNOS T786C gene polymorphism was not associated with HSP risk and the risk of patients with HSP developing into HSPN. In conclusion, eNOS T786C TT genotype was associated with and eNOS G894T T allele and GG genotype were associated with HSP susceptibility. However, more studies should be performed in the future.

  4. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants.

    Science.gov (United States)

    Degenhardt, Jörg; Köllner, Tobias G; Gershenzon, Jonathan

    2009-01-01

    The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.

  5. Dealcoholized red and white wines decrease oxidative stress associated with inflammation in rats

    Czech Academy of Sciences Publication Activity Database

    López, D.; Pavelková, Martina; Gallová, Lucie; Simonetti, P.; Gardana, C.; Lojek, Antonín; Loaiza, R.; Mitjavila, M.T.

    2007-01-01

    Roč. 98, č. 3 (2007), s. 611-619 ISSN 0007-1145 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : free radicals * nitric oxide synthase * polyphenols Subject RIV: BO - Biophysics Impact factor: 2.339, year: 2007

  6. Rocuronium Bromide Inhibits Inflammation and Pain by Suppressing Nitric Oxide Production and Enhancing Prostaglandin E2 Synthesis in Endothelial Cells.

    Science.gov (United States)

    Baek, Sang Bin; Shin, Mal Soon; Han, Jin Hee; Moon, Sang Woong; Chang, Boksoon; Jeon, Jung Won; Yi, Jae Woo; Chung, Jun Young

    2016-12-01

    Rocuronium bromide is a nondepolarizing neuromuscular blocking drug and has been used as an adjunct for relaxation or paralysis of the skeletal muscles, facilitation of endotracheal intubation, and improving surgical conditions during general anesthesia. However, intravenous injection of rocuronium bromide induces injection pain or withdrawal movement. The exact mechanism of rocuronium bromide-induced injection pain or withdrawal movement is not yet understood. We investigated whether rocuronium bromide treatment is involved in the induction of inflammation and pain in vascular endothelial cells. For this study, calf pulmonary artery endothelial (CPAE) cells were used, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Western blot, nitric oxide detection, and prostaglandin E 2 immunoassay were conducted. Rocuronium bromide treatment inhibited endothelial nitric oxide synthase and suppressed nitric oxide production in CPAE cells. Rocuronium bromide activated cyclooxygenase-2, inducible nitric oxide synthase and increased prostaglandin E 2 synthesis in CPAE cells. Rocuronium bromide induced inflammation and pain in CPAE cells. Suppressing nitric oxide production and enhancing prostaglandin E 2 synthesis might be associated with rocuronium bromide-induced injection pain or withdrawal movement.

  7. How to protect liver graft with nitric oxide

    Institute of Scientific and Technical Information of China (English)

    Hassen Ben Abdennebi; Mohamed Amine Zaoualí; Izabel Alfany-Fernandez; Donia Tabka; Joan Roselló-Catafau

    2011-01-01

    Organ preservation and ischemia reperfusion injury associated with liver transplantation play an important role in the induction of graft injury. One of the earliest events associated with the reperfusion injury is endothelial cell dysfunction. It is generally accepted that endothelial nitric oxide synthase (e-NOS) is cell-protective by mediating vasodilatation, whereas inducible nitric oxide synthase mediates liver graft injury after transplantation. We conducted a critical review of the literature evaluating the potential applications of regulating and promoting e-NOS activity in liver preservation and transplantation, showing the most current evidence to support the concept that enhanced bioavailability of NO derived from e-NOS is detrimental to ameliorate graft liver preservation, as well as preventing subsequent graft reperfusion injury. This review deals mainly with the beneficial effects of promoting "endogenous" pathways for NO generation, via e-NOS inducer drugs in cold preservation solution, surgical strategies such as ischemic preconditioning, and alternative "exogenous" pathways that focus on the enrichment of cold storage liquid with NO donors. Finally, we also provide a basic bench-to-bed side summary of the liver physiology and cell signalling mechanisms that account for explaining the e-NOS protective effects in liver preservation and transplantation.

  8. Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium.

    Science.gov (United States)

    Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un

    2016-12-01

    Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.

  9. Stabilization of polymer solutions in the presence of oxidizing agents

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A; Serino, A; Jenkins, D; Lichaa, P M

    1974-01-01

    Many investigators in the field of heavy oil recovery techniques have confirmed the recovery efficiency which, in the miscible displacement method, has utilized polymer solutions as additives to the injection fluids. The viscosity increase of the displacing phase has lowered the mobility ratio with a significant improvement in the sweep efficiency. Recently, others have reported a notable improvement in the recovery of heavy crude by this same method of miscible displacement which causes a mobile fluid bank between the crude and the displacing fluid. There is an intervening oxidation reaction, promoting the in situ formation of surface-active agents on the interface of these 2 fluids. This study describes the effect on degradation of polymer solutions by such oxidizing agents as potassium chromate and potassium permanganate. The degradation of any polymer solution with or without additives is increased materially by an increase in temperature. The presence of NaCl brine is not often of any great significance in the time of gelation, especially with polymers of the polysaccharide type. (18 refs.)

  10. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    NARCIS (Netherlands)

    Maarsingh, H; Tio, MA; Zaagsma, J; Meurs, H

    2005-01-01

    Background: Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using

  11. Fundamentals of displacement production in irradiated metals

    International Nuclear Information System (INIS)

    Doran, D.G.

    1975-09-01

    Radioinduced displacement damage in metals is described. Discussions are included on the displacement event itself, calculation of displacement rates in general, the manner in which different types of radiation interact with metals to produce displacements, the similarities and differences in the types of damage produced, the current status of computer simulations of displacement cascades, experimental evidence regarding cascades, and aspects of correlating damage produced by different types of radiation

  12. Modelling Toehold-Mediated RNA Strand Displacement

    OpenAIRE

    Šulc, Petr; Ouldridge, Thomas E.; Romano, Flavio; Doye, Jonathan P.K.; Louis, Ard A.

    2015-01-01

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperat...

  13. Measurement of interfacial displacement of a liquid film in microchannels using laser focus displacement meter

    International Nuclear Information System (INIS)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji; Hibiki, Takashi

    2004-01-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in micro- and mini-channels. To prevent the tube wall signal from disturbing that of the gas-liquid interface, a fluorocarbon tube with water box was used; the refraction index of this device is same as that for water. With this method, accurate instantaneous measurements of interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement using measured displacement in a fluorocarbon tube of 25 μm to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with real displacement within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 μm at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film less than 1 μm in thickness in slug and annular flow regions. (author)

  14. Vildagliptin stimulates endothelial cell network formation and ischemia-induced revascularization via an endothelial nitric-oxide synthase-dependent mechanism.

    Science.gov (United States)

    Ishii, Masakazu; Shibata, Rei; Kondo, Kazuhisa; Kambara, Takahiro; Shimizu, Yuuki; Tanigawa, Tohru; Bando, Yasuko K; Nishimura, Masahiro; Ouchi, Noriyuki; Murohara, Toyoaki

    2014-09-26

    Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Expression of Nitric Oxide Synthase Isoenzyme in Lung Tissue of Smokers with and without Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Wen-Ting Jiang

    2015-01-01

    Full Text Available Background: It has been demonstrated that only 10%-20% cigarette smokers finally suffer chronic obstructive pulmonary disease (COPD. The underlying mechanism of development remains uncertain so far. Nitric oxide (NO has been found to be closely associated with the pathogenesis of COPD, the alteration of NO synthase (NOS expression need to be revealed. The study aimed to investigate the alterations of NOS isoforms expressions between smokers with and without COPD, which might be helpful for identifying the susceptibility of smokers developing into COPD. Methods: Peripheral lung tissues were obtained from 10 nonsmoker control subjects, 15 non-COPD smokers, and 15 smokers with COPD. Neuronal NOS (nNOS, inducible NOS (iNOS, and endothelial NOS (eNOS mRNA and protein levels were measured in each sample by using real-time polymerase chain reaction and Western blotting. Results: INOS mRNA was significantly increased in patients with COPD compared with nonsmokers and smokers with normal lung function (P < 0.001, P = 0.001, respectively. iNOS protein was also higher in COPD patients than nonsmokers and smokers with normal lung function (P < 0.01 and P = 0.01, respectively. However, expressions of nNOS and eNOS did not differ among nonsmokers, smokers with and without COPD. Furthermore, there was a negative correlation between iNOS protein level and lung function parameters forced expiratory volume in 1 s (FEV 1 (% predicted (r = −0.549, P = 0.001 and FEV 1 /forced vital capacity (%, r = −0.535, P = 0.001. Conclusions: The expression of iNOS significantly increased in smokers with COPD compared with that in nonsmokers or smokers without COPD. The results suggest that iNOS might be involved in the pathogenesis of COPD, and may be a potential marker to identify the smokers who have more liability to suffer COPD.

  16. Overexpression Myocardial Inducible Nitric Oxide Synthase Exacerbates Cardiac Dysfunction and Beta-Adrenergic Desensitization in Experimental Hypothyroidism☆,☆☆

    Science.gov (United States)

    Shao, Qun; Cheng, Heng-Jie; Callahan, Michael F.; Kitzman, Dalane W; Li, Wei-Min; Cheng, Che Ping

    2015-01-01

    Background Altered nitric oxide synthase (NOS) has been implicated in the pathophysiology of heart failure (HF). Recent evidence links hypothyroidism to the pathology of HF. However, the precise mechanisms are incompletely understood. The alterations and functional effects of cardiac NOS in hypothyroidism are unknown. We tested the hypothesis that hypothyroidism increases cadiomyocyte inducible NOS (iNOS) expression, which plays an important role in hypothyroidism-induced depression of cardiomyocyte contractile properties, [Ca2+]i transient ([Ca2+]iT), and β-adrenergic hyporesponsiveness. Methods and Results We simultaneously evaluated LV functional performance and compared myocyte three NOS, β-adrenergic receptors (AR) and SERCA2a expressions and assessed cardiomyocyte contractile and [Ca2+]iT responses to β-AR stimulation with and without pretreatment of iNOS inhibitor (1400W, 10−5 mol/L) in 26 controls and 26 rats with hypothyroidism induced by methimazole (~30 mg/kg/day for 8 weeks in the drinking water). Compared with controls, in hypothyroidism, total serum T3 and T4 were significantly reduced followed by significantly decreased LV contractility (EES) with increased LV time constant of relaxation. These LV abnormalities were accompanied by concomitant significant decreases in myocyte contraction (dL/dtmax), relaxation (dR/dtmax), and [Ca2+]iT. In hypothyroidism, isoproterenol (10−8 M) produced significantly smaller increases in dL/dtmax, dR/dtmax and [Ca2+]iT. These changes were associated with decreased β1-AR and SERCA2a, but significantly increased iNOS. Moreover, only in hypothyroidism, pretreatment with iNOS inhibitor significantly improved basal and isoproterenol-stimulated myocyte contraction, relaxation and [Ca2+]iT. Conclusions Hypothyroidism produces intrinsic defects of LV myocyte force-generating capacity and relaxation with β-AR desensitization. Up-regulation of cadiomyocyte iNOS may promote progressive cardiac dysfunction in

  17. Molecular size estimation of plasma membrane β-glucan synthase from red beet root

    International Nuclear Information System (INIS)

    Sloan, M.E.; Eiberger, L.L.; Wasserman, B.P.

    1986-01-01

    Cellulose and cell wall β-D-glucans in higher plants are thought to be synthesized by the plasma membrane enzyme, β-glucan synthase. This enzyme has never been purified to homogeneity, hence its subunit composition is unknown. Partial purification of red beet root glucan synthase by glycerol density gradient centrifugation followed by SDS-PAGE yielded a highly enriched subunit of 68 kDa. Radiation inactivation of plasma membranes gave a molecular size the 450 kDa for the holoenzyme complex. This suggests that glucan synthase consists of 6 to 7 subunits and confirms electron microscope studies showing that glucan synthases exist as multi-subunit complexes embedded within the membrane

  18. Compensatory upregulation of respiratory chain complexes III and IV in isolated deficiency of ATP synthase due to TMEM70 mutation

    Czech Academy of Sciences Publication Activity Database

    Karbanová-Havlíčková, Vendula; Vrbacká-Čížková, Alena; Hejzlarová, Kateřina; Nůsková, Hana; Stránecký, V.; Potocká, Andrea; Kmoch, S.; Houštěk, Josef

    2012-01-01

    Roč. 1817, č. 7 (2012), s. 1037-1043 ISSN 0005-2728 R&D Projects: GA MZd(CZ) NS9759; GA ČR(CZ) GAP303/11/0970; GA ČR(CZ) GD303/03/H065; GA MŠk(CZ) 1M0520 Grant - others:Univerzita Karlova(CZ) 370411 Institutional research plan: CEZ:AV0Z50110509 Keywords : ATP synthase * TMEM70 * disease * gene expression profiling * oxidative phosphorylation * mitochondrial biogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.624, year: 2012

  19. Local lymphocytes and nitric oxide synthase in the uterine cervical stroma of patients with grade III cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Cléber Sergio da Silva

    2010-01-01

    Full Text Available OBJECTIVES: Precancerous and cancerous cells can trigger an immune response that may limit tumor development and can be used as a prognostic marker. The aims of the present study were to quantify the presence of B and T lymphocytes, macrophages and cells expressing inducible nitric oxide synthase (iNOS in the cervical stroma of women with grade III cervical intraepithelial neoplasia (CIN III or in the intratumoral and peritumoral tissue of women with stage I invasive carcinoma. METHODS: Cervical tissue specimens were obtained from 60 women (20 each from control tissues, CIN III and invasive carcinomas. The average ages in the control, CIN III and invasive groups were 43.9 (± 4.3, 35.5 (± 9.5, and 50 (± 11.2 years, respectively. The specimens were immunohistochemically labeled with antibodies to identify T lymphocytes (CD3, cytotoxic lymphocytes (CD8, B lymphocytes (CD20, macrophages (CD68 and iNOS. We evaluated the markers in the stroma above the squamocolumnar junction (control, at the intraepithelial lesion (CIN cases, and in the nfiltrating tumor. Two independent observers performed the immunohistochemical analysis. RESULTS: T lymphocytes, B lymphocytes, macrophages and iNOS were present more frequently (P<0.05 in the stroma of peritumoral invasive tumors compared to the controls and intratumoral invasive cancer samples. CD3+ and CD20+ lymphocytes were present more frequently in CIN III patients compared to samples from patients with intratumoral invasive cancer (P<0.05. CONCLUSION: High numbers of T and B lymphocytes, macrophages and iNOS-expressing cells in the peritumoral stroma of the invasive tumors were observed. Cell migration appeared to be proportional to the progression of the lesion.

  20. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Giovanna Romano

    Full Text Available Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  1. Optical Method for Detecting Displacements and Strains at Ultra-High Temperatures During Thermo-Mechanical Testing

    Science.gov (United States)

    Smith, Russell W. (Inventor); Rivers, H. Kevin (Inventor); Sikora, Joseph G. (Inventor); Roth, Mark C. (Inventor); Johnston, William M. (Inventor)

    2016-01-01

    An ultra-high temperature optical method incorporates speckle optics for sensing displacement and strain measurements well above conventional measurement techniques. High temperature pattern materials are used which can endure experimental high temperature environments while simultaneously having a minimum optical aberration. A purge medium is used to reduce or eliminate optical distortions and to reduce, and/or eliminate oxidation of the target specimen.

  2. SCREENING OF 6-PYRUVOYL-TETRAHYDROPTERIN SYNTHASE ACTIVITY DEFICIENCY AMONG HYPERP HENYLALANINEMIC PATIENTS

    Directory of Open Access Journals (Sweden)

    DURDI QUJEQ

    1999-10-01

    Full Text Available A deficiency of the phenylalanine hydroxylase activity or its cofactor tetrahydrobiopterin may"nlead to hyperphenylalamnemia and as a result, loss of IQ, poor school performance, and"nbehavior problems occurs. Deficiency in 6-pyruvoyl-tetrahydropterin synthase activity is the"nmajor cause of tetrahydrobiopterin deficient phenylketonuria. In this study, blood specimens"nfrom 165 healthy volunteers and 127 children with phenylketonuria were used to determine"nthe 6-pyruvoyl-tetrahydropterin synthase activity. It was found that the activity of 6-"npyruvoyl- tetrahydropterin synthase was decreased in comparison with control [23.46 +/-"n2.94, (mean +/- SD, mmol/ ml/h, n=I27 vs. 127.63 +/- 4.52, n=165, p<0.05]. Results of"nthis study indicate that examination of 6-pyruvoyl-tetrahydropterin synthase activity is helpful"nand may lead to the diagnosis cause of hyperphenylalaninemia.

  3. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content......, whereas impaired insulin activation of muscle glycogen synthase represents a consistent, molecular defect found in both type 2 diabetic and high-risk individuals. Despite several studies of the insulin signaling pathway believed to mediate dephosphorylation and hence activation of glycogen synthase......, the molecular mechanisms responsible for this defect remain unknown. Recently, the use of phospho-specific antibodies in human diabetic muscle has revealed hyperphosphorylation of glycogen synthase at sites not regulated by the classical insulin signaling pathway. In addition, novel approaches such as gene...

  4. Displacement functions for diatomic materials

    International Nuclear Information System (INIS)

    Panrkin, D.M.; Coulter, C.A.

    1979-01-01

    An extension of the methods of Lindhard et at. was used to calculate the total displacement function n/sub ij/(E) for a number of diatomic materials, where n/sub ij/(E) is defined to be the average number of atoms of type j which are displaced from their sites in a displacement cascade initiated by a PKA of type i and energy E. From the n/sub ij/(E) one can calculate the fraction n/sub ij/(E) of the displacements produced by a type i PKA with energy E which are of type j. Values of the n/sub ij/ for MgO, CaO, Al 2 O 3 , and TaO are presented. It is shown that for diatomic materials with mass ratios reasonably near one (e.g., MgO, Al 2 O 3 ) and equal displacement thresholds for the two species the n/sub ij/ become independent of the PKA type i at energies only a few times threshold. However, for larger mass ratios the n/sub ij/ do not become independent of i until much larger, energies are reached - e.g. > 10 5 eV for TaO. In addition, it is found that the n/sub ij/ depend sensitively on the displacement thresholds, with very dramatic charges occuring when the two thresholds become significantly different from one another

  5. Modulation of hyaluronan synthase activity in cellular membrane fractions

    OpenAIRE

    Vigetti, Davide; Genasetti, A; Karousou, Evgenia; Viola, Manuela; Clerici, M; Bartolini, B; Moretto, Paola; DE LUCA, Giancarlo; Hascall, Vc; Passi, Alberto

    2009-01-01

    Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in euk...

  6. Etiopathogenesis of abomasal displacement in cattle

    Directory of Open Access Journals (Sweden)

    Šamanc Horea

    2003-01-01

    Full Text Available Abomasal displacement presents topographic gastropathy, where this organ has changed its position, and there is simultaneous dilatation which can vary in intensity. The incidence of this disorder in herds of high-yield dairy cows varies to a great degree (1 to 18 %. Abomasal displacement was established in herds of East-Frisian cows in 1 to 3% animals, and in Holstein cow herds in 5 to 18 % animals. The most frequent abomasal displacement is to the left (88%. There is significant seasonal variation in the incidence of abomasal displacement. About two-thirds of cases of abomasal displacement are diagnosed from October until April. The disorder appears more frequently in cows with repeated lactations. It has been established that it appears after the first calving in 27.8% cases, after the second to fifth calving in 66.7% cases, and after the sixth and seventh calving in 5.5% of the cows. The response of endocrine pancreas B-cells for insulin secretion to hyperglycaemia caused by applying an excess-glucose test is reduced in cows with left abomasal displacement, and there is constant hyperglycaemia in cows with right abomasal displacement. The excess-glucose test indicates a disrupted function of the endocrine pancreas in diseased animals. It has been determined through examinations of Aml genotypes in Holstein cow herds in connection with the appearance of abomasal displacement, that the occurrence of this disorder cannot be attributed to a genetic predisposition.

  7. Conflict, displacement and health in the Middle East.

    Science.gov (United States)

    Mowafi, Hani

    2011-01-01

    Displacement is a hallmark of modern humanitarian emergencies. Displacement itself is a traumatic event that can result in illness or death. Survivors face challenges including lack of adequate shelter, decreased access to health services, food insecurity, loss of livelihoods, social marginalisation as well as economic and sexual exploitation. Displacement takes many forms in the Middle East and the Arab World. Historical conflicts have resulted in long-term displacement of Palestinians. Internal conflicts have driven millions of Somalis and Sudanese from their homes. Iraqis have been displaced throughout the region by invasion and civil strife. In addition, large numbers of migrants transit Middle Eastern countries or live there illegally and suffer similar conditions as forcibly displaced people. Displacement in the Middle East is an urban phenomenon. Many displaced people live hidden among host country populations in poor urban neighbourhoods - often without legal status. This represents a challenge for groups attempting to access displaced populations. Furthermore, health information systems in host countries often do not collect data on displaced people, making it difficult to gather data needed to target interventions towards these vulnerable populations. The following is a discussion of the health impacts of conflict and displacement in the Middle East. A review was conducted of published literature on migration and displacement in the region. Different cases are discussed with an emphasis on the recent, large-scale and urban displacement of Iraqis to illustrate aspects of displacement in this region.

  8. Gender-based violence in conflict and displacement: qualitative findings from displaced women in Colombia.

    Science.gov (United States)

    Wirtz, Andrea L; Pham, Kiemanh; Glass, Nancy; Loochkartt, Saskia; Kidane, Teemar; Cuspoca, Decssy; Rubenstein, Leonard S; Singh, Sonal; Vu, Alexander

    2014-01-01

    Gender-based violence (GBV) is prevalent among, though not specific to, conflict affected populations and related to multifarious levels of vulnerability of conflict and displacement. Colombia has been marked with decades of conflict, with an estimated 5.2 million internally displaced persons (IDPs) and ongoing violence. We conducted qualitative research to understand the contexts of conflict, displacement and dynamics with GBV. This as part of a multi-phase, mixed method study, in collaboration with UNHCR, to develop a screening tool to confidentially identify cases of GBV for referral among IDP women who were survivors of GBV. Qualitative research was used to identify the range of GBV, perpetrators, contexts in conflict and displacement, barriers to reporting and service uptake, as well as to understand experiences of service providers. Thirty-five female IDPs, aged 18 years and older, who self-identified as survivors of GBV were enrolled for in-depth interviews in San Jose de Guaviare and Quibdo, Colombia in June 2012. Thirty-one service providers participated in six focus group discussions and four interviews across these sites. Survivors described a range of GBV across conflict and displacement settings. Armed actors in conflict settings perpetrated threats of violence and harm to family members, child recruitment, and, to a lesser degree, rape and forced abortion. Opportunistic violence, including abduction, rape, and few accounts of trafficking were more commonly reported to occur in the displacement setting, often perpetrated by unknown individuals. Intrafamilial violence, intimate partner violence, including physical and sexual violence and reproductive control were salient across settings and may be exacerbated by conflict and displacement. Barriers to reporting and services seeking were reported by survivors and providers alike. Findings highlight the need for early identification of GBV cases, with emphasis on confidential approaches and active

  9. A high-throughput colorimetric screening assay for terpene synthase activity based on substrate consumption.

    Directory of Open Access Journals (Sweden)

    Maiko Furubayashi

    Full Text Available Terpene synthases catalyze the formation of a variety of terpene chemical structures. Systematic mutagenesis studies have been effective in providing insights into the characteristic and complex mechanisms of C-C bond formations and in exploring the enzymatic potential for inventing new chemical structures. In addition, there is growing demand to increase terpene synthase activity in heterologous hosts, given the maturation of metabolic engineering and host breeding for terpenoid synthesis. We have developed a simple screening method for the cellular activities of terpene synthases by scoring their substrate consumption based on the color loss of the cell harboring carotenoid pathways. We demonstrate that this method can be used to detect activities of various terpene synthase or prenyltransferase genes in a high-throughput manner, irrespective of the product type, enabling the mutation analysis and directed evolution of terpene synthases. We also report the possibility for substrate-specific screening system of terpene synthases by taking advantage of the substrate-size specificity of C30 and C40 carotenoid pathways.

  10. Displacement sensing system and method

    Science.gov (United States)

    VunKannon, Jr., Robert S

    2006-08-08

    A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.

  11. Cloning and sequence analysis of putative type II fatty acid synthase ...

    Indian Academy of Sciences (India)

    Prakash

    Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L. ... acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, β-ketoacyl-ACP .... Helix II plays a dominant role in the interaction ... main distinguishing features of plant ACPs in plastids and ..... synthase component; J. Biol.

  12. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia).

    Science.gov (United States)

    Landmann, Christian; Fink, Barbara; Festner, Maria; Dregus, Márta; Engel, Karl-Heinz; Schwab, Wilfried

    2007-09-15

    The essential oil of lavender (Lavandula angustifolia) is mainly composed of mono- and sesquiterpenes. Using a homology-based PCR strategy, two monoterpene synthases (LaLIMS and LaLINS) and one sesquiterpene synthase (LaBERS) were cloned from lavender leaves and flowers. LaLIMS catalyzed the formation of (R)-(+)-limonene, terpinolene, (1R,5S)-(+)-camphene, (1R,5R)-(+)-alpha-pinene, beta-myrcene and traces of alpha-phellandrene. The proportions of these products changed significantly when Mn(2+) was supplied as the cofactor instead of Mg(2+). The second enzyme LaLINS produced exclusively (R)-(-)-linalool, the main component of lavender essential oil. LaBERS transformed farnesyl diphosphate and represents the first reported trans-alpha-bergamotene synthase. It accepted geranyl diphosphate with higher affinity than farnesyl diphosphate and also produced monoterpenes, albeit at low rates. LaBERS is probably derived from a parental monoterpene synthase by the loss of the plastidial signal peptide and by broadening its substrate acceptance spectrum. The identification and description of the first terpene synthases from L. angustifolia forms the basis for the biotechnological modification of essential oil composition in lavender.

  13. Immunohistochemical localization of gastrin-releasing peptide, neuronal nitric oxide synthase and neurone-specific enolase in the uterus of the North American opossum, Didelphis virginiana.

    Science.gov (United States)

    Kumano, A; Sasaki, M; Budipitojo, T; Kitamura, N; Krause, W J; Yamada, J

    2005-08-01

    The present study has demonstrated the immunohistochemical localization of gastrin-releasing peptide (GRP), neuronal nitric oxide synthase (nNOS) and neurone-specific enolase (NSE) in the uterus of the North American opossum. Although the presence of GRP, nNOS and NSE has been reported recently in the uterus of eutherian species this is the first description of these peptides in a metatherian species. Metatherian mammals are of interest because in these species it is the prolonged lactation phase of development that is the period of primary reproductive investment rather than intrauterine development as is true of eutherian mammals. The opossum, like other marsupial species, has a very abbreviated gestation period which in Didelphis lasts only 12.5 days. GRP was localized in the cytoplasm of cells forming the surface lining epithelium and the glandular epithelium of the opossum endometrium late in pregnancy, at 11.5 days of gestation. Likewise, immunoreactivities of nNOS and NSE were found primarily within the epithelial cells of the endometrium at 11.5 days of gestation. As these peptides and enzymes appear primarily at the time of establishment of the yolk sac placenta (between day 10 and day 12.5 gestation), the present results strongly suggest that these factors may play a fundamental role in the placentation of the opossum.

  14. Effects of Fault Displacement on Emplacement Drifts

    International Nuclear Information System (INIS)

    Duan, F.

    2000-01-01

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10 -5 adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M and O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure

  15. ARGINASE ENZYMES IN ISOLATED AIRWAYS FROM NORMAL AND NITRIC OXIDE SYNTHASE 2-KNOCKOUT MICE EXPOSED TO OVALBUMIN

    Science.gov (United States)

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.; Last, Michael S.; Kenyon, Nicholas J.; Last, Jerold A.

    2009-01-01

    Arginase has been suggested to compete with nitric oxide synthase (NOS) for their common substrate, L-arginine. To study the mechanisms underlying this interaction, we compared arginase expression in isolated airways and the consequences of inhibiting arginase activity in vivo with NO production, lung inflammation, and lung function in both C57BL/6 and NOS2 knockout mice undergoing ovalbumin-induced airway inflammation, a mouse model of asthma. Arginases I and II were measured by western blot in isolated airways from sensitized C57BL/6 mice exposed to ovalbumin aerosol. Physiological and biochemical responses---inflammation, lung compliance, airway hyperreactivity, exhaled NO concentration, arginine concentration--were compared with the responses of NOS2 knockout mice. NOS2 knockout mice had increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity. Both arginase I and arginase II were constitutively expressed in the airways of normal C57BL/6 mice. Arginase I was up-regulated approximately 8-fold in the airways of C57BL/6 mice exposed to ovalbumin. Expression of both arginase isoforms were significantly upregulated in NOS2 knockout mice exposed to ovalbumin, with about 40- and 4-fold increases in arginases I and II, respectively. Arginine concentration in isolated airways was not significantly different in any of the groups studied. Inhibition of arginase by systemic treatment of C57BL/6 mice with a competitive inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA), significantly decreased the lung inflammatory response to ovalbumin in these animals. We conclude that NOS2 knockout mice are more sensitive to ovalbumin-induced airway inflammation and its sequelae than are C57BL/6 mice, as determined by increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity, and that these findings are strongly correlated with increased expression of both arginase isoforms in the airways of the NOS2

  16. Nitric oxide synthesis-promoting effects of valsartan in human umbilical vein endothelial cells via the Akt/adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway

    Directory of Open Access Journals (Sweden)

    Yingshuai Zhao

    2017-05-01

    Full Text Available Valsartan (VAL, an antagonist of angiotensin II receptor type 1, has antihypertensive and multiple cardiovascular protective effects. The pleiotropic functions of VAL are related to the increased synthesis and biological activity of intravascular nitric oxide (NO. In this study, the role and mechanisms of VAL in the synthesis of NO were examined in human umbilical vein endothelial cells (HUVECs. Ten µmol/L of VAL was used to treat EA.hy926 cells for 30 minutes, 1, 3, 6, 12, and 24 hours, and three concentrations of VAL (i.e., 10, 1, and 0.1 µmol/L were used to treat EA.hy926 cells for 24 hours. The cells were divided into five groups: control, VAL, VAL + Compound C (adenosine monophosphate-activated protein kinase [AMPK] inhibitor, 1 µmol/L, VAL + LY294002 (Akt [protein kinase B] inhibitor, 10 µmol/L, and VAL + L-nitro-arginine methyl ester (L-NAME, endothelial NO synthase [eNOS] inhibitor, 500 µmol/L groups. The NO content in the VAL-treated HUVEC line (EA.hy926 was detected using the nitrate reductase method, and western blot was used to detect the phosphorylation of Akt, AMPK, and eNOS, as well as the changes in total protein levels. VAL increased NO synthesis in EA.hy926 cells in time- and dose-dependent manners (p < 0.05 and the intracellular phosphorylation levels of Akt, AMPK, and eNOS at the corresponding time points. LY294002, Compound C, and L-NAME could inhibit the VAL-promoted NO synthesis. VAL activated Akt, AMPK, and eNOS, thus promoting NO synthesis and playing a protective role in endothelial cells. These results partially explained the mechanisms underlying the cardiovascular protective effects of VAL.

  17. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    Science.gov (United States)

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Nitric oxide synthase 2 is required for conversion of pro-fibrogenic inflammatory CD133(+) progenitors into F4/80(+) macrophages in experimental autoimmune myocarditis.

    Science.gov (United States)

    Blyszczuk, Przemyslaw; Berthonneche, Corrine; Behnke, Silvia; Glönkler, Marcel; Moch, Holger; Pedrazzini, Thierry; Lüscher, Thomas F; Eriksson, Urs; Kania, Gabriela

    2013-02-01

    Experimental autoimmune myocarditis (EAM) model mirrors important mechanisms of inflammatory dilated cardiomyopathy (iDCM). In EAM, inflammatory CD133(+) progenitors are a major cellular source of cardiac myofibroblasts in the post-inflammatory myocardium. We hypothesized that exogenous delivery of macrophage-colony-stimulating factor (M-CSF) can stimulate macrophage lineage differentiation of inflammatory progenitors and, therefore, prevent their naturally occurring myofibroblast fate in EAM. EAM was induced in wild-type (BALB/c) and nitric oxide synthase 2-deficient (Nos2(-/-)) mice and CD133(+) progenitors were isolated from inflamed hearts. In vitro, M-CSF converted inflammatory CD133(+) progenitors into nitric oxide-producing F4/80(+) macrophages and prevented transforming growth factor-β-mediated myofibroblast differentiation. Importantly, only a subset of heart-infiltrating CD133(+) progenitors expresses macrophage-specific antigen F4/80 in EAM. These CD133(+)/F4/80(hi) cells show impaired myofibrogenic potential compared with CD133(+)/F4/80(-) cells. M-CSF treatment of wild-type mice with EAM at the peak of disease markedly increased CD133(+)/F4/80(hi) cells in the myocardium, and CD133(+) progenitors isolated from M-CSF-treated mice failed to differentiate into myofibroblasts. In contrast, M-CSF was not effective in converting CD133(+) progenitors from inflamed hearts of Nos2(-/-) mice into macrophages, and M-CSF treatment did not result in increased CD133(+)/F4/80(hi) cell population in hearts of Nos2(-/-) mice. Accordingly, M-CSF prevented post-inflammatory fibrosis and left ventricular dysfunction in wild-type but not in Nos2(-/-) mice. Active and NOS2-dependent induction of macrophage lineage differentiation abrogates the myofibrogenic potential of heart-infiltrating CD133(+) progenitors. Modulating the in vivo differentiation fate of specific progenitors might become a novel approach for the treatment of inflammatory heart diseases.

  19. Colonic Oxidative and Mitochondrial Function in Parkinson’s Disease and Idiopathic REM Sleep Behavior Disorder

    OpenAIRE

    Morén, C.; González-Casacuberta, Í.; Navarro-Otano, J.; Juárez-Flores, D.; Vilas, D.; Garrabou, G.; Milisenda, J. C.; Pont-Sunyer, C.; Catalán-García, M.; Guitart-Mampel, M.; Tobías, E.; Cardellach, F.; Valldeoriola, F.; Iranzo, A.; Tolosa, E.

    2017-01-01

    Objective To determine potential mitochondrial and oxidative alterations in colon biopsies from idiopathic REM sleep behavior disorder (iRBD) and Parkinson's disease (PD) subjects. Methods Colonic biopsies from 7 iRBD subjects, 9 subjects with clinically diagnosed PD, and 9 healthy controls were homogenized in 5% w/v mannitol. Citrate synthase (CS) and complex I (CI) were analyzed spectrophotometrically. Oxidative damage was assessed either by lipid peroxidation, through malondialdehyde and h...

  20. The oxidative hypothesis of senescence

    Directory of Open Access Journals (Sweden)

    Gilca M

    2007-01-01

    Full Text Available The oxidative hypothesis of senescence, since its origin in 1956, has garnered significant evidence and growing support among scientists for the notion that free radicals play an important role in ageing, either as "damaging" molecules or as signaling molecules. Age-increasing oxidative injuries induced by free radicals, higher susceptibility to oxidative stress in short-lived organisms, genetic manipulations that alter both oxidative resistance and longevity and the anti-ageing effect of caloric restriction and intermittent fasting are a few examples of accepted scientific facts that support the oxidative theory of senescence. Though not completely understood due to the complex "network" of redox regulatory systems, the implication of oxidative stress in the ageing process is now well documented. Moreover, it is compatible with other current ageing theories (e.g., those implicating the mitochondrial damage/mitochondrial-lysosomal axis, stress-induced premature senescence, biological "garbage" accumulation, etc. This review is intended to summarize and critically discuss the redox mechanisms involved during the ageing process: sources of oxidant agents in ageing (mitochondrial -electron transport chain, nitric oxide synthase reaction- and non-mitochondrial- Fenton reaction, microsomal cytochrome P450 enzymes, peroxisomal β -oxidation and respiratory burst of phagocytic cells, antioxidant changes in ageing (enzymatic- superoxide dismutase, glutathione-reductase, glutathion peroxidase, catalase- and non-enzymatic glutathione, ascorbate, urate, bilirubine, melatonin, tocopherols, carotenoids, ubiquinol, alteration of oxidative damage repairing mechanisms and the role of free radicals as signaling molecules in ageing.

  1. High-displacement spiral piezoelectric actuators

    Science.gov (United States)

    Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.

    1999-10-01

    A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.

  2. Selective nitrergic neurodegeneration in diabetes mellitus–a nitric oxide-dependent phenomenon

    Science.gov (United States)

    Cellek, Selim; Rodrigo, José; Lobos, Edgar; Fernández, Patricia; Serrano, Julia; Moncada, Salvador

    1999-01-01

    In vitro and in vivo studies have demonstrated a dysfunctional nitrergic system in diabetes mellitus, thus explaining the origin of diabetic impotence. However, the mechanism of this nitrergic defect is not understood.In the penises of streptozotocin (STZ)-induced diabetic rats, here, we show by immunohistochemistry that nitrergic nerves undergo selective degeneration since the noradrenergic nerves which have an anti-erectile function in the penis remained intact.Nitrergic relaxation responses in vitro and erectile responses to cavernous nerve stimulation in vivo were attenuated in these animals, whereas noradrenergic responses were enhanced.Activity and protein amount of neuronal nitric oxide synthase (nNOS) were also reduced in the penile tissue of diabetic rats.We, thus, hypothesized that NO in the nitrergic nerves may be involved in the nitrergic nerve damage, since only the nerves which contain neuronal NO synthase underwent degeneration.We administered an inhibitor of NO synthase, NG-nitro-L-arginine methyl ester (L-NAME), in the drinking water of rats for up to 12 weeks following the establishment of diabetes with STZ.Here we demonstrate that this compound protected the nitrergic nerves from morphological and functional impairment. Our results show that selective nitrergic degeneration in diabetes is NO-dependent and suggest that inhibition of NO synthase is neuroprotective in this condition. PMID:10588937

  3. The polyketide components of waxes and the Cer-cqu gene cluster encoding a novel polyketide synthase, the β-diketone synthase, DKS

    DEFF Research Database (Denmark)

    von Wettstein, Penny

    2017-01-01

    The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue-grey color. Identification of the barley Cer-c, -q and -u genes forming the 101 kb...... Cer-cqu gene cluster encoding a novel polyketide synthase-the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms...

  4. Mechanistic studies of 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase

    International Nuclear Information System (INIS)

    Dotson, G.D.; Woodard, R.W.

    1994-01-01

    The enzyme 3-deOXY-D-manno-octulosonic acid 8-phosphate synthase (KDO 8-P synthase) catalyses the condensation of arabinose 5-phosphate (A 5-P) with phosphoenolpyruvate (PEP) to give the unique eight-carbon acidic sugar 3-deoxy-D-nianno-octulosonic acid 8-phosphate (KDO 8-P) found only in gram-negative bacteria and required for lipid A maturation and cellular growth. The E. coli gene kdsA that encodes KDO 8-P synthase has been amplified by standard PCR methodologies. The synthetic gene, subcloned into the expression vector pT7-7 was used to infect E. coli BL 21 (DE 3). Purification of crude supernatant from this transformant on Q Sepharose yields >200 mg of near-homogeneous KDO 8-P synthase per liter of cell culture. To explore the mechanism of KDO 8-P synthase, we prepared (E)- and (Z)-(3 2 H)PEP, (2- 13 C)PEP, and (2- 13 C, 18 O)PEP chemically from the appropriately labeled 3-bromopyruvates by reaction with trimethylphosphite under Perkow reaction conditions. Our 1 H-NMR analysis of the stereochemistry at C3 of the KDO 8-Ps, obtained by separate incubation of (E)- and (Z)-(3- 2 H)PEP with A 5-P in the presence of KDO 8-P synthase, demonstrated that the reaction is stereospecific with respect to both the C3 of PEP and the C1 carbonyl of A 5-P. (Z)-(3- 2 H)PEP gave predominantly (3S)-(3 2 H)KDO 8-P and (E)-(3- 2 H)PEP gave predominantly (3R)-(3 2 H)KDO-8P, which indicates condensation of the si face of PEP upon the re face of A 5-P-an orientation analogous to that seen with the similar aldehyde Iyase DAH 7-P synthase. The fate of the enolic oxygen of (2- 13 C, 18 O)PEP, during the course of the KDO 8-P synthase-catalyzed reaction as monitored by both 13 C- and 31 P-NMR spectroscopy demonstrated that the inorganic phosphate (Pi) and not the KDO 8-P contained the 18 O

  5. Mechanistic studies of 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Dotson, G.D.; Woodard, R.W. [Univ. of Michigan, Ann Arbor, MI (United States)

    1994-12-01

    The enzyme 3-deOXY-D-manno-octulosonic acid 8-phosphate synthase (KDO 8-P synthase) catalyses the condensation of arabinose 5-phosphate (A 5-P) with phosphoenolpyruvate (PEP) to give the unique eight-carbon acidic sugar 3-deoxy-D-nianno-octulosonic acid 8-phosphate (KDO 8-P) found only in gram-negative bacteria and required for lipid A maturation and cellular growth. The E. coli gene kdsA that encodes KDO 8-P synthase has been amplified by standard PCR methodologies. The synthetic gene, subcloned into the expression vector pT7-7 was used to infect E. coli BL 21 (DE 3). Purification of crude supernatant from this transformant on Q Sepharose yields >200 mg of near-homogeneous KDO 8-P synthase per liter of cell culture. To explore the mechanism of KDO 8-P synthase, we prepared (E)- and (Z)-(3{sup 2}H)PEP, (2-{sup 13}C)PEP, and (2-{sup 13}C,{sup 18}O)PEP chemically from the appropriately labeled 3-bromopyruvates by reaction with trimethylphosphite under Perkow reaction conditions. Our {sup 1}H-NMR analysis of the stereochemistry at C3 of the KDO 8-Ps, obtained by separate incubation of (E)- and (Z)-(3-{sup 2}H)PEP with A 5-P in the presence of KDO 8-P synthase, demonstrated that the reaction is stereospecific with respect to both the C3 of PEP and the C1 carbonyl of A 5-P. (Z)-(3-{sup 2}H)PEP gave predominantly (3S)-(3{sup 2}H)KDO 8-P and (E)-(3-{sup 2}H)PEP gave predominantly (3R)-(3{sup 2}H)KDO-8P, which indicates condensation of the si face of PEP upon the re face of A 5-P-an orientation analogous to that seen with the similar aldehyde Iyase DAH 7-P synthase. The fate of the enolic oxygen of (2-{sup 13}C, {sup 18}O)PEP, during the course of the KDO 8-P synthase-catalyzed reaction as monitored by both {sup 13}C- and {sup 31}P-NMR spectroscopy demonstrated that the inorganic phosphate (Pi) and not the KDO 8-P contained the {sup 18}O.

  6. Crystallization of Δ1-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    International Nuclear Information System (INIS)

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi; Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota; Shoyama, Yukihiro; Morimoto, Satoshi

    2005-01-01

    Δ 1 -Tetrahydrocannabinolic acid (THCA) synthase from C. sativa was crystallized. The crystal diffracted to 2.7 Å resolution with sufficient quality for further structure determination. Δ 1 -Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å 3 Da −1 assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively

  7. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2015-01-01

    Full Text Available The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i the supply of ADP and Mg2+, supported by adenylate kinase (AK equilibrium in the intermembrane space, (ii the supply of phosphate via membrane transporter in symport with H+, and (iii the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.

  8. Peroneal tendon displacement accompanying intra-articular calcaneal fractures.

    Science.gov (United States)

    Toussaint, Rull James; Lin, Darius; Ehrlichman, Lauren K; Ellington, J Kent; Strasser, Nicholas; Kwon, John Y

    2014-02-19

    Peroneal tendon displacement (subluxation or dislocation) accompanying an intra-articular calcaneal fracture is often undetected and under-treated. The goals of this study were to determine (1) the prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures, (2) the association of tendon displacement with fracture classifications, (3) the association of tendon displacement with heel width, and (4) the rate of missed diagnosis of the tendon displacement on radiographs and computed tomography (CT) scans and the resulting treatment rate. A retrospective radiographic review of all calcaneal fractures presenting at three institutions from June 30, 2006, to June 30, 2011, was performed. CT imaging of 421 intra-articular calcaneal fractures involving the posterior facet was available for review. The prevalence of peroneal tendon displacement was noted and its associations with fracture classification and heel width were evaluated. Peroneal tendon displacement was identified in 118 (28.0%) of the 421 calcaneal fracture cases. The presence of tendon displacement was significantly associated with joint-depression fractures compared with tongue-type fractures (p displacement had been identified in the radiology reports. Although sixty-five (55.1%) of the fractures with tendon displacement had been treated with internal fixation, the tendon displacement was treated surgically in only seven (10.8%) of these cases. Analysis of CT images showed a 28% prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures. Surgeons and radiologists are encouraged to consider this association.

  9. Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in β-thalassemic erythropoiesis.

    Science.gov (United States)

    De Franceschi, Lucia; Bertoldi, Mariarita; De Falco, Luigia; Santos Franco, Sara; Ronzoni, Luisa; Turrini, Franco; Colancecco, Alessandra; Camaschella, Clara; Cappellini, Maria Domenica; Iolascon, Achille

    2011-11-01

    β-thalassemic syndromes are inherited red cell disorders characterized by severe ineffective erythropoiesis and increased levels of reactive oxygen species whose contribution to β-thalassemic anemia is only partially understood. We studied erythroid precursors from normal and β-thalassemic peripheral CD34(+) cells in two-phase liquid culture by proteomic, reverse transcriptase polymerase chain reaction and immunoblot analyses. We measured intracellular reactive oxygen species, heme levels and the activity of δ-aminolevulinate-synthase-2. We exposed normal cells and K562 cells with silenced peroxiredoxin-2 to H(2)O(2) and generated a recombinant peroxiredoxin-2 for kinetic measurements in the presence of H(2)O(2) or hemin. In β-thalassemia the increased production of reactive oxygen species was associated with down-regulation of heme oxygenase-1 and biliverdin reductase and up-regulation of peroxiredoxin-2. In agreement with these observations in β-thalassemic cells we found decreased heme levels related to significantly reduced activity of the first enzyme of the heme pathway, δ-aminolevulinate synthase-2 without differences in its expression. We demonstrated that the activity of recombinant δ-aminolevulinate synthase-2 is inhibited by both reactive oxygen species and hemin as a protective mechanism in β-thalassemic cells. We then addressed the question of the protective role of peroxiredoxin-2 in erythropoiesis by exposing normal cells to oxidative stress and silencing peroxiredoxin-2 in human erythroleukemia K562 cells. We found that peroxiredoxin-2 expression is up-regulated in response to oxidative stress and required for K562 cells to survive oxidative stress. We then showed that peroxiredoxin-2 binds heme in erythroid precursors with high affinity, suggesting a possible multifunctional cytoprotective role of peroxiredoxin-2 in β-thalassemia. In β-thalassemic erythroid cells the reduction of δ-aminolevulinate synthase-2 activity and the increased

  10. A displacement assay for the sensing of carbohydrate using zinc oxide biotracers

    International Nuclear Information System (INIS)

    Yang Chi; Xu Chunxiang; Wang Xuemei; Xiao Zhongdang; Gu Baoxiang

    2012-01-01

    Due to the high isoelectric point of the ZnO quantum dots (QDs), ZnO QDs were employed as biolabels for carbohydrates to construct a biosensor for determination of the carcinoembryonic antigen (CEA), which act as the carbohydrate. The assay was based on the competition between a quantum dots labeled CEA and analyte CEA using concanavalin A (Con A) as the recognition element. The extent of completion was monitored by the square wave stripping voltammetry. The displacement assay results showed that there are two changes model of the current response to the analyte CEA concentration (0–30 ng/mL and 30–80 ng/mL). The most likely reason for this was also discussed in the paper.

  11. Purification and characterization of CDP-diacylglycerol synthase from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kelley, M.J.; Carman, G.M.

    1987-01-01

    The membrane-associated phospholipid biosynthetic enzyme CDP-diacylglycerol synthase (CTP:phosphatidate cytidylyltransferase was purified 2300-fold from Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of mitochondrial membranes, CDP-diacylglycerol-Sepharose affinity chromatography, and hydroxylapatite chromatography. The procedure resulted in a nearly homogeneous enzyme preparation as determined by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radiation inactivation of mitochondrial associated and purified CDP-diacylglycerol synthase suggested that the molecular weight of the native enzyme was 114,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme preparation yielded two subunits with molecular weights of 56,000 and 54,000. Antibodies prepared against the purified enzyme immunoprecipitated CDP-diacylglycerol synthase activity and subunits. CDP-diacylglycerol synthase activity was dependent on magnesium ions and Triton X-100 at pH 6.5. Thio-reactive agents inhibited activity. The activation energy for the reaction was 9 kcal/mol, and the enzyme was thermally labile above 30 degrees C. The Km values for CTP and phosphatidate were 1 and 0.5 mM, respectively, and the Vmax was 4700 nmol/min/mg. Results of kinetic and isotopic exchange reactions suggested that the enzyme catalyzes a sequential Bi Bi reaction mechanism

  12. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe

    2014-08-01

    Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Project-induced displacement, secondary stressors, and health.

    Science.gov (United States)

    Cao, Yue; Hwang, Sean-Shong; Xi, Juan

    2012-04-01

    It has been estimated that about 15 million people are displaced by development projects around the world each year. Despite the magnitude of people affected, research on the health and other impacts of project-induced displacement is rare. This study extends existing knowledge by exploring the short-term health impact of a large scale population displacement resulting from China's Three Gorges Dam Project. The study is theoretically guided by the stress process model, but we supplement it with Cernea's impoverishment risks and reconstruction (IRR) model widely used in displacement literature. Our panel analysis indicates that the displacement is associated positively with relocatees' depression level, and negatively with their self-rated health measured against a control group. In addition, a path analysis suggests that displacement also affects depression and self-rated health indirectly by changing social integration, socioeconomic status, and community resources. The importance of social integration as a protective mechanism, a factor that has been overlooked in past studies of population displacement, is highlighted in this study. Published by Elsevier Ltd.

  14. Isolation and Characterization of Three New Monoterpene Synthases from Artemisia annua

    Science.gov (United States)

    Ruan, Ju-Xin; Li, Jian-Xu; Fang, Xin; Wang, Ling-Jian; Hu, Wen-Li; Chen, Xiao-Ya; Yang, Chang-Qing

    2016-01-01

    Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography–mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant–environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant. PMID:27242840

  15. Isolation and characterization of three new monoterpene synthases from Artemisia annua

    Directory of Open Access Journals (Sweden)

    Ju-Xin eRuan

    2016-05-01

    Full Text Available Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5 and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography-mass spectrometry (GC-MS detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate (MeJA, salicylic acid (SA and gibberellin (GA, suggesting a role of these monoterpene synthases in plant-environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant.

  16. Valsartan regulates the interaction of angiotensin II type 1 receptor and endothelial nitric oxide synthase via Src/PI3K/Akt signalling.

    Science.gov (United States)

    Su, Kuo-Hui; Tsai, Jin-Yi; Kou, Yu Ru; Chiang, An-Na; Hsiao, Sheng-Huang; Wu, Yuh-Lin; Hou, Hsin-Han; Pan, Ching-Chian; Shyue, Song-Kun; Lee, Tzong-Shyuan

    2009-06-01

    Valsartan, a selective angiotensin II type 1 receptor (AT1R) blocker, has beneficial effects in the cardiovascular system in part by its increase of nitric oxide (NO) bioavailability, yet the mechanisms are unclear. We investigated the molecular mechanisms underlying this effect in endothelial cells (ECs). NO production was examined by Griess reagent assay, DAF-2 DA fluorescence staining and cGMP ELISA kits. Protein interaction was determined by western blotting and immunoprecipitation. Treating bovine or human aortic ECs with valsartan increased NO production, as evidenced by elevated level of stable NO metabolites and intracellular cGMP. Valsartan increased the phosphorylation but not the protein level of endothelial NO synthase (eNOS). Inhibition of phosphoinositide-3 kinase (PI3K)/Akt and Src pathways by specific inhibitors suppressed valsartan-induced NO release. In addition, valsartan increased the tyrosine residue phosphorylation of AT1R, which was attenuated by inhibition of Src but not PI3K activities. Valsartan also suppressed the interaction of eNOS and AT1R, which was blocked by Src or PI3K inhibition. Valsartan-induced NO production in ECs is mediated through Src/PI3K/Akt-dependent phosphorylation of eNOS. Valsartan-induced AT1R phosphorylation depends on Src but not PI3K, whereas valsartan-induced suppression of AT1R-eNOS interaction depends on Src/PI3K/Akt signalling. These results indicate a novel vasoprotective mechanism of valsartan in upregulating NO production in ECs.

  17. Chronic wheel running reduces maladaptive patterns of methamphetamine intake: regulation by attenuation of methamphetamine-induced neuronal nitric oxide synthase

    Science.gov (United States)

    Engelmann, Alexander J.; Aparicio, Mark B.; Kim, Airee; Sobieraj, Jeffery C.; Yuan, Clara J.; Grant, Yanabel

    2013-01-01

    We investigated whether prior exposure to chronic wheel running (WR) alters maladaptive patterns of excessive and escalating methamphetamine intake under extended access conditions, and intravenous methamphetamine self-administration-induced neurotoxicity. Adult rats were given access to WR or no wheel (sedentary) in their home cage for 6 weeks. A set of WR rats were injected with 5-bromo-2′-deoxyuridine (BrdU) to determine WR-induced changes in proliferation (2-h old) and survival (28-day old) of hippocampal progenitors. Another set of WR rats were withdrawn (WRw) or continued (WRc) to have access to running wheels in their home cages during self-administration days. Following self-administration [6 h/day], rats were tested on the progressive ratio (PR) schedule. Following PR, BrdU was injected to determine levels of proliferating progenitors (2-h old). WRc rats self-administered significantly less methamphetamine than sedentary rats during acquisition and escalation sessions, and demonstrated reduced motivation for methamphetamine seeking. Methamphetamine reduced daily running activity of WRc rats compared with that of pre-methamphetamine days. WRw rats self-administered significantly more methamphetamine than sedentary rats during acquisition, an effect that was not observed during escalation and PR sessions. WR-induced beneficial effects on methamphetamine self-administration were not attributable to neuroplasticity effects in the hippocampus and medial prefrontal cortex, but were attributable to WR-induced inhibition of methamphetamine-induced increases in the number of neuronal nitric oxide synthase expressing neurons and apoptosis in the nucleus accumbens shell. Our results demonstrate that WR prevents methamphetamine-induced damage to forebrain neurons to provide a beneficial effect on drug-taking behavior. Importantly, WR-induced neuroprotective effects are transient and continued WR activity is necessary to prevent compulsive methamphetamine intake

  18. Carbon monoxide releasing molecule induces endothelial nitric oxide synthase activation through a calcium and phosphatidylinositol 3-kinase/Akt mechanism.

    Science.gov (United States)

    Yang, Po-Min; Huang, Yu-Ting; Zhang, Yu-Qi; Hsieh, Chia-Wen; Wung, Being-Sun

    2016-12-01

    The production of nitric oxide (NO) by endothelial NO synthase (eNOS) plays a major role in maintaining vascular homeostasis. This study elucidated the potential role of carbon monoxide (CO)-releasing molecules (CORMs) in NO production and explored the underlying mechanisms in endothelial cells. We observed that 25μM CORM-2 could increase NO production and stimulate an increase in the intracellular Ca 2+ level. Furthermore, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetra acetic acid caused CORM-2-induced NO production, which was abolished by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetraacetoxy-methyl ester (BAPTA-AM), indicating that intracellular Ca 2+ release plays a major role in eNOS activation. The inhibition of the IP3 receptor diminished the CORM-2-induced intracellular Ca 2+ increase and NO production. Furthermore, CORM-2 induced eNOS Ser 1179 phosphorylation and eNOS dimerization, but it did not alter eNOS expression. CORM-2 (25μM) also prolonged Akt phosphorylation, lasting for at least 12h. Pretreatment with phosphatidylinositol 3-kinase inhibitors (wortmannin or LY294002) inhibited the increases in NO production and phosphorylation but did not affect eNOS dimerization. CORM-2-induced eNOS Ser 1179 phosphorylation was intracellularly calcium-dependent, because pretreatment with an intracellular Ca 2+ chelator (BAPTA-AM) inhibited this process. Although CORM-2 increases intracellular reactive oxygen species (ROS), pretreatment with antioxidant enzyme catalase and N-acetyl-cysteine did not abolish the CORM-2-induced eNOS activity or phosphorylation, signifying that ROS is not involved in this activity. Hence, CORM-2 enhances eNOS activation through intracellular calcium release, Akt phosphorylation, and eNOS dimerization. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Morphometric evaluation of nitric oxide synthase isoforms and their cytokine regulators predict pulmonary dysfunction and survival in systemic sclerosis

    Directory of Open Access Journals (Sweden)

    E.R. Parra

    2013-01-01

    Full Text Available Because histopathological changes in the lungs of patients with systemic sclerosis (SSc are consistent with alveolar and vessel cell damage, we presume that this interaction can be characterized by analyzing the expression of proteins regulating nitric oxide (NO and plasminogen activator inhibitor-1 (PAI-1 synthesis. To validate the importance of alveolar-vascular interactions and to explore the quantitative relationship between these factors and other clinical data, we studied these markers in 23 cases of SSc nonspecific interstitial pneumonia (SSc-NSIP. We used immunohistochemistry and morphometry to evaluate the amount of cells in alveolar septa and vessels staining for NO synthase (NOS and PAI-1, and the outcomes of our study were cellular and fibrotic NSIP, pulmonary function tests, and survival time until death. General linear model analysis demonstrated that staining for septal inducible NOS (iNOS related significantly to staining of septal cells for interleukin (IL-4 and to septal IL-13. In univariate analysis, higher levels of septal and vascular cells staining for iNOS were associated with a smaller percentage of septal and vascular cells expressing fibroblast growth factor and myofibroblast proliferation, respectively. Multivariate Cox model analysis demonstrated that, after controlling for SSc-NSIP histological patterns, just three variables were significantly associated with survival time: septal iNOS (P=0.04, septal IL-13 (P=0.03, and septal basic fibroblast growth factor (bFGF; P=0.02. Augmented NOS, IL-13, and bFGF in SSc-NSIP histological patterns suggest a possible functional role for iNOS in SSc. In addition, the extent of iNOS, PAI-1, and IL-4 staining in alveolar septa and vessels provides a possible independent diagnostic measure for the degree of pulmonary dysfunction and fibrosis with an impact on the survival of patients with SSc.

  20. Immunohistochemical evaluation of inducible nitric oxide synthase in the epithelial lining of odontogenic cysts: A qualitative and quantitative analysis.

    Science.gov (United States)

    Akshatha, B K; Karuppiah, Karpagaselvi; Manjunath, G S; Kumarswamy, Jayalakshmi; Papaiah, Lokesh; Rao, Jyothi

    2017-01-01

    The three common odontogenic cysts include radicular cysts (RCs), dentigerous cysts (DCs), and odontogenic keratocysts (OKCs). Among these 3 cysts, OKC is recently been classified as benign keratocystic odontogenic tumor attributing to its aggressive behavior, recurrence rate, and malignant potential. The present study involved qualitative and quantitative analysis of inducible nitric oxide synthase (iNOS) expression in epithelial lining of RCs, DCs, and OKCs, compare iNOS expression in epithelial linings of all the 3 cysts and determined overexpression of iNOS in OKCs which might contribute to its aggressive behavior and malignant potential. The present study is to investigate the role of iNOS in the pathogenesis of OKCs, DCs, and RCs by evaluating the iNOS expression in the epithelial lining of these cysts. Analysis of iNOS expression in epithelial lining cells of 20 RCs, 20 DCs, and 20 OKCs using immunohistochemistry done. The percentage of positive cells and intensity of stain was assessed and compared among all the 3 cysts using contingency coefficient. Kappa statistics for the two observers were computed for finding interobserver agreement. The percentage of iNOS-positive cells was found to be remarkably high in OKCs (12/20) -57.1% as compared to RCs (6/20) - 28.6% and DCs (3/20) - 14.3%. The interobserver agreement for iNOS-positive percentage cells was arrived with kappa values with OKCs → Statistically significant ( P > 0.000), RCs → statistically significant ( P > 0.001) with no significant values for DCs. No statistical difference exists among 3 study samples in regard to the intensity of staining with iNOS. Increased iNOS expression in OKCs may contribute to bone resorption and accumulation of wild-type p53, hence, making OKCs more aggressive.