WorldWideScience

Sample records for oxide supported nickel

  1. Hydrogenation of Levulinic Acid over Nickel Catalysts Supported on Aluminum Oxide to Prepare γ-Valerolactone

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2015-12-01

    Full Text Available Four types of nickel catalysts supported on aluminum oxide (Ni/Al2O3 with different nickel loadings were synthesized using the co-precipitation method and were used for the hydrogenation of levulinic acid (LA to prepare γ-valerolactone (GVL. The synthesized Ni/Al2O3 catalysts exhibited excellent catalytic activity in dioxane, and the activity of the catalysts was excellent even after being used four times in dioxane. The catalytic activity in dioxane as a solvent was found to be superior to the activity in water. Nitrogen physisorption, X-ray diffraction, and transmission electron microscopy were employed to characterize the fresh and used catalysts. The effects of the nickel loading, temperature, hydrogen pressure, and substrate/catalyst ratio on the catalytic activity were investigated.

  2. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Science.gov (United States)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-07-01

    Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  3. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gen [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Pan, Zhanchang, E-mail: panzhanchang@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Li, Wuyi; Yu, Ke [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Xia, Guowei; Zhao, Qixiang; Shi, Shikun [Victory Giant Technology (Hui Zhou) Co., Ltd., Huizhou 516083 (China); Hu, Guanghui; Xiao, Chumin; Wei, Zhigang [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China)

    2017-07-15

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  4. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    International Nuclear Information System (INIS)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-01-01

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  5. High electrocatalytic performance of nitrogen-doped carbon nanofiber-supported nickel oxide nanocomposite for methanol oxidation in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Al-Enizi, Abdullah M. [Department of Chemistry, King Saud University, PO Box: 2455, Riyadh 11451 (Saudi Arabia); Elzatahry, Ahmed A., E-mail: aelzatahry@ksu.edu.sa [Materials Science and Technology Program, College of Arts and Science, Qatar University, Doha 2713 (Qatar); Advanced Technology and New Materials Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, Alexandria 21934 (Egypt); Abdullah, Aboubakr M., E-mail: bakr@qu.edu.qa [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Vinu, Ajayan [Future Industries Institute, University of South Australia, Building X-X2-09, Mawson Lakes Campus, Mawson Lakes 5095 SA (Australia); Iwai, Hideo [Materials Analysis Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 (Japan); Al-Deyab, Salem S. [Petrochemical Research Chair, Department of Chemistry, King Saud University, PO Box: 2455, Riyadh 11451 (Saudi Arabia)

    2017-04-15

    Highlights: • A mixture of Polyvinylpyrrolidone (PVP), graphene and emeraldine base polyaniline (PANi) was electrospun and used as starting materials to prepare a nitrogen-doped carbon nanofiber (N-CNF). • Nickel oxide was loaded on the N-CNF to form a nanocomposite which was calcined later at different temperatures. • The effect of calcination temperature on the electrocatalytic behavior of the nanocomposite was studied which shows that the nanocomposite calcined at 500 °C was proved to be very high compared to the other calcination temperatures. • The stability of catalyst was excellent and its resistance to the adsorption of the intermediates generated from the methanol oxidation was very high. - Abstract: Nitrogen-Doped Carbon Nanofiber (N-CNF)–supported NiO composite was prepared by electrospinning a sol-gel mixture of graphene and polyaniline (PANi) with aqueous solutions of Polyvinylpyrrolidone (PVP) followed by a high-temperature annealing process. The electrospun was stabilized for 2 h at 280 °C, carbonized for 5 h at 1200 °C then loaded by 10% NiO. The electrocatalytic activities of the produced nanocomposite have been studied using cyclic voltammetry, and chronoamperometry. Also, N-CNF was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and scanning-electron microscopy (SEM). The obtained N-doped carbon nanofiber was found to have a nitrogen content of 2.6 atomic% with a diameter range of (140–160) nm, and a surface area (393.3 m{sup 2} g{sup −1}). In addition, it showed a high electrocatalytic behavior towards methanol oxidation reaction in alkaline medium and high stability and resistivity to the adsorption of intermediates.

  6. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  7. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  8. Spectrochemical analysis of impurities in nickel and in nickel oxide

    International Nuclear Information System (INIS)

    Goldbart, Z.; Lorber, A.; Harel, A.

    1981-11-01

    Various spectrochemical methods are described for the quantitative determination of 23 impurities in metallic nickel and in nickel oxide. The average limit of detection is from 1 to 5 ppm and the dynamic range lies over 2.5 orders of magnitude. The elements that were determined are: Al,B,Ba,Bi,Ca,Cd,Co,Cu,Fe,Ga,Ge,In,Mg,Mn,Mo,Nb,Si,Sn,Sr,Ti,Cr,V. (author)

  9. Nickel exposure and plasma levels of biomarkers for assessing oxidative stress in nickel electroplating workers.

    Science.gov (United States)

    Tsao, Yu-Chung; Gu, Po-Wen; Liu, Su-Hsun; Tzeng, I-Shiang; Chen, Jau-Yuan; Luo, Jiin-Chyuan John

    2017-07-01

    The mechanism of nickel-induced pathogenesis remains elusive. To examine effects of nickel exposure on plasma oxidative and anti-oxidative biomarkers. Biomarker data were collected from 154 workers with various levels of nickel exposure and from 73 controls. Correlations between nickel exposure and oxidative and anti-oxidative biomarkers were determined using linear regression models. Workers with a exposure to high nickel levels had significantly lower levels of anti-oxidants (glutathione and catalase) than those with a lower exposure to nickel; however, only glutathione showed an independent association after multivariable adjustment. Exposure to high levels of nickel may reduce serum anti-oxidative capacity.

  10. Essential elucidation for preparation of supported nickel phosphide upon nickel phosphate precursor

    International Nuclear Information System (INIS)

    Liu, Xuguang; Xu, Lei; Zhang, Baoquan

    2014-01-01

    Preparation of supported nickel phosphide (Ni 2 P) depends on nickel phosphate precursor, generally related to its chemical composition and supports. Study of this dependence is essential and meaningful for the preparation of supported Ni 2 P with excellent catalytic activity. The chemical nature of nickel phosphate precursor is revealed by Raman and UV–vis spectra. It is found that initial P/Ni mole ratio ≥0.8 prohibits the Ni-O-Ni bridge bonding (i.e., nickel oxide). This chemical bonding will not result in Ni 2 P structure, verified by XRD characterization results. The alumina (namely, γ-Al 2 O 3 , θ-Al 2 O 3 , or α-Al 2 O 3 ) with distinct physiochemical properties also results in diverse chemical nature of nickel phosphate, and then different nickel phosphides. The influence of alumina support on producing Ni 2 P was explained by the theory of surface energy heterogeneity, calculated by the NLDFT method based on N 2 -sorption isotherm. The uniform surface energy of α-Al 2 O 3 results only in the nickel phosphosate precursor and thus the Ni 2 P phase. - Graphical abstract: Surface energy heterogeneity in alumina (namely α-Al 2 O 3 , θ-Al 2 O 3 , and γ-Al 2 O 3 ) supported multi-oxidic precursors with different reducibilities and thus diverse nickel phosphides (i.e., Ni 3 P, Ni 12 P 5 , Ni 2 P). - Highlights: • Preparing pure Ni 2 P. • Elucidating nickel phosphate precursor. • Associating with surface energy

  11. Nanoroses of nickel oxides: Synthesis, electron tomography study, and application in CO oxidation and energy storage

    KAUST Repository

    Fihri, Aziz; Sougrat, Rachid; Baby, Rakhi Raghavan; Rahal, Raed; Cha, Dong Kyu; Hedhili, Mohamed N.; Bouhrara, Mohamed; Alshareef, Husam N.; Polshettiwar, Vivek

    2012-01-01

    Nickel oxide and mixed-metal oxide structures were fabricated by using microwave irradiation in pure water. The nickel oxide self-assembled into unique rose-shaped nanostructures. These nickel oxide roses were studied by performing electron

  12. Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel-cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Alaric C.W. [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Chen, Luwei; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Kee Leong, Weng [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Johnson, Brian F.G.; Khimyak, Tetyana [University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW (United Kingdom)

    2007-05-15

    Activity, selectivity, and coking-resistance of a series of Ni{sub x}Co{sub y} (where x,y are the respective metal loadings of 0, 1, 2 or 3 wt.%; x+y=3) bimetallic catalysts supported on CaAl{sub 2}O{sub 4}/Al{sub 2}O{sub 3} have been studied for hydrogen/synthesis gas production via the catalytic partial oxidation (CPO) of methane. Catalysts were characterized by temperature programmed reduction (TPR), transmission electron microscopy (TEM) and X-ray fluorescence multi-element analysis (XRF). Their activity for the partial oxidation of methane to hydrogen and carbon monoxide (at 1 bar, gas hourly space velocity (GHSV) of 144,000cm{sup 3}g{sup -1}h{sup -1} and CH{sub 4}/O{sub 2} molar ratio of 2) was investigated, and coke deposited on the spent catalysts was studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and thermogravimetric analysis (TGA). The activity was found to decrease in the order of Ni{sub 2}Co>Ni{sub 3}>NiCo{sub 2}>>Co{sub 3}, while CO and H{sub 2} selectivities were found to be in the order ofNi{sub 2}Co>Ni{sub 3}{approx}NiCo{sub 2}>Co{sub 3}. Ni{sub 2}Co is also shown to be more resistant to coking as compared to Ni{sub 3}, which is a current catalyst of choice. Results show that not only does Ni{sub 2}Co have the highest activity and selectivity among all the catalysts tested, it is also relatively resistant to coking. This finding would be helpful for catalyst design to achieve high coking resistivity catalysts for hydrogen production from CPO of methane. (author)

  13. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    OpenAIRE

    Lota, Katarzyna; Sierczynska, Agnieszka; Lota, Grzegorz

    2011-01-01

    In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD). The morphology of the composite...

  14. Controllable fabrication of Pt nanocatalyst supported on N-doped carbon containing nickel nanoparticles for ethanol oxidation.

    Science.gov (United States)

    Yu, Jianguo; Dai, Tangming; Cao, Yuechao; Qu, Yuning; Li, Yao; Li, Juan; Zhao, Yongnan; Gao, Haiyan

    2018-08-15

    In this paper, platinum nanoparticles were deposited on a carbon carrier with the partly graphitized carbon and the highly dispersive carbon-coated nickel particles. An efficient electron transfer structure can be fabricated by controlling the contents of the deposited platinum. The high resolution transmission electron microscopy images of Pt 2 /Ni@C N-doped sample prove the electron transfer channel from Pt (1 1 1) crystal planes to graphite (1 0 0) or Ni (1 1 1) crystal planes due to these linked together crystal planes. The Pt 3 /Ni@C N-doped with low Pt contents cannot form the electron transfer structure and the Pt 1 /Ni@C N-doped with high Pt contents show an obvious aggregation of Pt nanoparticles. The electrochemical tests of all the catalysts show that the Pt 2 /Ni@C N-doped sample presents the highest catalytic activity, the strongest CO tolerance and the best catalytic stability. The high performance is attributed to the efficient electronic transport structure of the Pt 2 /Ni@C N-doped sample and the synergistic effect between Pt and Ni nanoparticles. This paper provides a promising method for enhancing the conductivity of electrode material. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Three-dimensional carbon nanotube networks with a supported nickel oxide nanonet for high-performance supercapacitors.

    Science.gov (United States)

    Wu, Mao-Sung; Zheng, Yo-Ru; Lin, Guan-Wei

    2014-08-04

    A three-dimensional porous carbon nanotube film with a supported NiO nanonet was prepared by simple electrophoretic deposition and hydrothermal synthesis, which could deliver a high specific capacitance of 1511 F g(-1) at a high discharge current of 50 A g(-1) due to the significantly improved transport of the electrolyte and electrons.

  16. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    International Nuclear Information System (INIS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-01-01

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  17. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljlbuaa@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Tongxiang, Liang; Chen, Wang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  18. Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as High-Performance Catalysts for Electrochemical Water Splitting

    Czech Academy of Sciences Publication Activity Database

    Fominykh, K.; Feckl, J. M.; Sicklinger, J.; Döblinger, M.; Böcklein, S.; Ziegler, J.; Peter, L.; Rathouský, Jiří; Scheidt, E.-W.; Bein, T.; Fattakhova-Rohlfing, D.

    2014-01-01

    Roč. 24, č. 21 (2014), s. 3123-3129 ISSN 1616-301X Institutional support: RVO:61388955 Keywords : electrocatalysis * nickel oxide * nanocrystals Subject RIV: CG - Electrochemistry Impact factor: 11.805, year: 2014

  19. PREPARATION OF NICKEL - COBALT SPINEL OXIDES NixCO3 ...

    African Journals Online (AJOL)

    degree of crystallinity give rise to reversible nickel incorporation. Pellets ... are of interest in solid oxide fuel cell and this is one of the features which make them attractive ... oxide system can only be obtained in a limited composition extent.

  20. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Robert W. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 - 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  1. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  2. Nonlinear oxidation kinetics of nickel cermets

    International Nuclear Information System (INIS)

    Galinski, Henning; Bieberle-Huetter, Anja; Rupp, Jennifer L.M.; Gauckler, Ludwig J.

    2011-01-01

    The oxidation of a cermet of screen-printed nickel (Ni) and gadolinia-doped ceria (CGO) with an approximate median porosity of 50 vol.% has been studied via in situ X-ray diffraction and focused ion beam nanotomography in the temperature range 773-848 K. The oxidation kinetics of Ni to NiO is found to be highly nonlinear with an apparent activation energy of 2.8(2) eV in this temperature range. The nonlinear oxidation kinetics found is in good agreement with theoretical works on oxide growth driven by nonlinear inbuilt fields. Stress-induced Kirkendall void formation has been identified as the physical process that enhances the oxidation of Ni/CGO cermets. Compressive stresses within the Ni matrix result from the thermal expansion mismatch of Ni and CGO and cause plastic deformation as they exceed the yield stress of the Ni matrix. The pore size distribution of Kirkendall voids formed has been measured by FIB nanotomography and shows a significant temperature dependence. It is shown that even one cycle of reoxidation changes irreversibly the microstructure of the cermet which can be interpreted as the onset and main contribution to the mechanical degradation of the cermet.

  3. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.

    Science.gov (United States)

    Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili

    2015-12-09

    Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes.

  4. Enhanced photovoltaic performance of dye-sensitized solar cells based on nickel oxide supported on nitrogen-doped graphene nanocomposite as a photoanode.

    Science.gov (United States)

    Ranganathan, Palraj; Sasikumar, Ragu; Chen, Shen-Ming; Rwei, Syang-Peng; Sireesha, Pedaballi

    2017-10-15

    We applied the nitrogen-doped graphene@nickel oxide (NGE/NiO) nanocomposite doped TiO 2 as a photo-anode for dye-sensitized solar cells (DSSCs) on fluorine-doped tin oxide (FTO) substrates by screen printing method. Power conversion efficiency (PCE) of 9.75% was achieved for this DSSCs device, which is greater than that of DSSCs devices using GO/TiO 2 , and NiO/TiO 2 based photo-anodes (PCE=8.55, and 9.11%). Also, the fill factor (FF) of the DSSCs devices using the NGE/NiO/TiO 2 nanocomposite photo-anode was better than that of other photo-anodes. The NGE/NiO/TiO 2 short-circuit photocurrent density (J sc ) of 19.04mAcm -2 , open circuit voltage (V oc ) of 0.76V, fill factor (FF) of 0.67 and dye absorption rate 0.21×10 -6 molcm -2 . The obtained results suggest that as-prepared NGE/NiO/TiO 2 nanocomposite is suitable photo-anode for DSSCs application. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    Directory of Open Access Journals (Sweden)

    Katarzyna Lota

    2011-01-01

    Full Text Available In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD. The morphology of the composites was observed by SEM. The electrochemical performances of composite electrodes used in electrochemical capacitors were studied in addition to the properties of electrode consisting of separate active carbon and nickel oxide only. The electrochemical measurements were carried out using cyclic voltammetry, galvanostatic charge/discharge, and impedance spectroscopy. The composites were tested in 6 M KOH aqueous electrolyte using two- and three-electrode Swagelok systems. The results showed that adding only a few percent of nickel oxide to active carbon provided the highest value of capacity. It is the confirmation of the fact that such an amount of nickel oxide is optimal to take advantage of both components of the composite, which additionally can be a good solution as a negative electrode in asymmetric configuration of electrode materials in an electrochemical capacitor.

  6. Oxidation mechanism and passive behaviour of nickel in molten carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, J.P.T. (ECN Fossil Fuels, Petten (Netherlands)); Ament, P.C.H.; De Wit, J.H.W. (Div. of Corrosion, Lab. for Maaterials Sceince, Delft Univ. of Technology, Delft (Netherlands))

    1994-07-01

    The oxidation and passivation mechanism and the passive behaviour of nickel in molten carbonate have been investigated with impedance measurements. The oxidation of nickel proceeds according to a dissolution and reprecipitation process. The slowest steps in the reaction sequence are the dissociation reaction of the carbonate and the diffusion of the formed NiO to the metal surface. In the passive range, dissolution of Ni[sup 2+] proceeds after diffusion of Ni[sup 2+] through the oxide layer. The Ni[sup 2+] is formed at the metal/oxide interface. The slowest process is the diffusion of bivalent nickel ions through the passive scale. The formation of trivalent nickel ions probably takes place at the oxide/melt interface. This reaction is accompanied by the incorporation of an oxygen ion and a nickel vacancy in the NiO lattice. The trivalent nickel ions and the nickel vacancy diffuse to the bulk of the oxide scale. The slowest step in this sequence is the dissociation of the carbonate ions and the incorporation of the oxygen ion in the NiO lattice. 9 figs., 2 tabs., 11 refs.

  7. Kinetics of oxidation of nickel(II) aza macrocycles by ...

    Indian Academy of Sciences (India)

    The kinetics of the oxidation of nickel (II) hexaaza and nickel (II) pentaaza macrocycles by the peroxydisulphate anion, S2O8 2-, were studied in aqueous media. Effect of H on reaction rate was also studied. The rate increases with increase of S2OO8 2- concentration. Rates are almost independent of acid between H 4 ...

  8. In situ Reduction and Oxidation of Nickel from Solid Oxide Fuel Cells in a Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Faes, Antonin; Jeangros, Quentin; Wagner, Jakob Birkedal

    2009-01-01

    Environmental transmission electron microscopy was used to characterize in situ the reduction and oxidation of nickel from a Ni/YSZ solid oxide fuel cell anode support between 300-500{degree sign}C. The reduction is done under low hydrogen pressure. The reduction initiates at the NiO/YSZ interface...

  9. Characterization of composite metal-ceramic of nickel-oxide cerium doped gadolinium

    International Nuclear Information System (INIS)

    Silva, M.L.A. da; Varela, M.C.R.S.

    2016-01-01

    Composite nickel doped cerium oxide are used in SOFC anode materials. In this study we evaluated the effect of the presence of gadolinium on the properties of composite nickel and ceria and. The supports were synthesized by sol-gel method. The impregnation with nickel nitrate was taken sequentially, followed by calcination. The materials were characterized by X-ray diffraction, measurement of specific surface area, temperature programmed reduction, Raman spectroscopy. The presence of gadolinium retained the fluorite structure of ceria by forming a solid solution, also not influencing significantly on the specific surface area of the support. On the other hand, there was a decrease in the area catalysts, which can be attributed to sintering of nickel. Furthermore, addition of gadolinium favored the formation of intrinsic and extrinsic vacancies in cerium oxide, which leads to an increase in the ionic conductivity of the solid, desirable property for an SOFC anode catalyst. (author)

  10. Reduced Graphene Oxide on Nickel Foam for Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Uma Ramabadran

    2017-11-01

    Full Text Available The focus of this paper is the investigation of reduced graphene oxide (GO/nickel foam (RGON samples for use as supercapacitor electrodes. Nickel foam samples were soaked in a GO suspension and dried before being subjected to two different methods to remove oxygen. Atmospheric pressure annealed (APA samples were treated with a varying number (10–18 of nitrogen plasma jet scans, where sample temperatures did not exceed 280 °C. Furnace annealed (FA samples were processed in an atmosphere of hydrogen and argon, at temperatures ranging from 600 °C to 900 °C. Environmental Scanning Electron Microscope (ESEM data indicated that the carbon to oxygen (C:O ratio for APA samples was minimized at an intermediate number of plasma scans. Fourier Transform Infrared Spectroscopic (FTIR and Raman spectroscopic data supported this finding. ESEM analysis from FA samples showed that with increasing temperatures of annealing, GO is transformed to reduced graphene oxide (RGO, with C:O ratios exceeding 35:1. X-ray Photoelectron Spectroscopy (XPS and X-ray diffraction (XRD data indicated the formation of RGO with an increasing annealing temperature until 800 °C, when oxygen reincorporation in the surface atomic layers becomes an issue. Supercapacitors, constructed using the FA samples, demonstrated performances that correlated with surface atomic layer optimization of the C:O ratio.

  11. Engineered Nickel Oxide Nanoparticle Causes Substantial Physicochemical Perturbation in Plants

    Directory of Open Access Journals (Sweden)

    Indrani Manna

    2017-11-01

    Full Text Available Concentration of engineered nickel oxide nanoparticle (NiO-NP in nature is on the rise, owing to large scale industrial uses, which have accreted the scope of its exposure to plants, the primary producers of the ecosystem. Though an essential micronutrient for the animal system, supported by numerous studies confirming its toxicity at higher dosages, nickel oxide is graded as a human carcinogen by WHO. A few studies do depict toxicity and bioaccumulation of nickel in plants; however, interaction of NiO-NP with plants is not well-elucidated. It is known that exposure to NiO-NP can incite stress response, leading to cytotoxicity and growth retardation in some plants, but a defined work on the intricate physicochemical cellular responses and genotoxic challenges is wanting. The present study was planned to explore cytotoxicity of NiO-NP in the model plant, Allium cepa L., its internalization in the tissue and concomitant furore created in the antioxidant enzyme system of the plant. The prospect of the NiO-NP causing genotoxicity was also investigated. Detailed assessments biochemical profiles and genotoxicity potential of NiO-NP on A. cepa L. was performed and extended to four of its closest economically important relatives, Allium sativum L., Allium schoenoprasum L., Allium porrum L., and Allium fistulosum L. Growing root tips were treated with seven different concentrations of NiO-NP suspension (10–500 mg L−1, with deionised distilled water as negative control and 0.4 mM EMS solution as positive control. Study of genotoxic endpoints, like, mitotic indices (MI, chromosomal aberrations (CAs, and chromosome breaks confirmed NiO-NP induced genotoxicity in plants, even at a very low dose (10 mg L−1. That NiO-NP also perturbs biochemical homeostasis, disrupting normal physiology of the cell, was confirmed through changes in state of lipid peroxidation malonaldehyde (MDA, as well as, in oxidation marker enzymes, like catalase (CAT, super oxide

  12. Nanoroses of nickel oxides: Synthesis, electron tomography study, and application in CO oxidation and energy storage

    KAUST Repository

    Fihri, Aziz

    2012-04-11

    Nickel oxide and mixed-metal oxide structures were fabricated by using microwave irradiation in pure water. The nickel oxide self-assembled into unique rose-shaped nanostructures. These nickel oxide roses were studied by performing electron tomography with virtual cross-sections through the particles to understand their morphology from their interior to their surface. These materials exhibited promising performance as nanocatalysts for CO oxidation and in energy storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Preparation of self-supporting metallic foils of nickel isotopes

    International Nuclear Information System (INIS)

    Sugai, Isao.

    1975-01-01

    This is the fourth report on the practical methods of target preparation for use in low energy nuclear experiments following the previous one (INS-J-150). An electroplating method has been developed as a dependable and reproducible technique for making self-supporting metallic foils of nickel in the thickness range of 0.5 to 10 mg/cm 2 . The procedures minimized the necessary amount of material so that nickel isotopes could be processed economically. Impurity contamination of the nickel foils during the electroplating process was less than 500 ppm, and the thickness variation in each foil was less than 3% of the central thickness. (auth.)

  14. Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo

    2012-01-01

    A method for the preparation of NiO and Nb-NiO nanocomposites is developed, based on the slow oxidation of a nickel-rich Nb-Ni gel obtained in citric acid. The resulting materials have higher surface areas than those obtained by the classical evaporation method from nickel nitrate and ammonium niobium oxalate. These consist in NiO nanocrystallites (7-13 nm) associated, at Nb contents >3 at.%., with an amorphous thin layer (1-2 nm) of a niobium-rich mixed oxide with a structure similar to that of NiNb 2O 6. Unlike bulk nickel oxides, the activity of these nanooxides for low-temperature ethane oxidative dehydrogenation (ODH) has been related to their redox properties. In addition to limiting the size of NiO crystallites, the presence of the Nb-rich phase also inhibits NiO reducibility. At Nb content >5 at.%, Nb-NiO composites are thus less active for ethane ODH but more selective, indicating that the Nb-rich phase probably covers part of the unselective, non-stoichiometric, active oxygen species of NiO. This geometric effect is supported by high-resolution transmission electron microscopy observations. The close interaction between NiO and the thin Nb-rich mixed oxide layer, combined with possible restructuration of the nanocomposite under ODH conditions, leads to significant catalyst deactivation at high Nb loadings. Hence, the most efficient ODH catalysts obtained by this method are those containing 3-4 at.% Nb, which combine high activity, selectivity, and stability. The impact of the preparation method on the structural and catalytic properties of Nb-NiO nanocomposites suggests that further improvement in NiO-catalyzed ethane ODH can be expected upon optimization of the catalyst. © 2011 Elsevier Inc. All rights reserved.

  15. Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications

    Energy Technology Data Exchange (ETDEWEB)

    Denayer, Jessica [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Bister, Geoffroy [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Simonis, Priscilla [Laboratory LPS, University of Namur, rue de bruxelles 61, 5000 Namur (Belgium); Colson, Pierre; Maho, Anthony [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Aubry, Philippe [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Vertruyen, Bénédicte [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Henrist, Catherine, E-mail: catherine.henrist@ulg.ac.be [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Lardot, Véronique; Cambier, Francis [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Cloots, Rudi [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium)

    2014-12-01

    Highlights: • Surfactant-assisted USP: a novel and low cost process to obtain high quality nickel oxide films, with or without lithium dopant. • Increased uniformity and reduced light scattering thanks to the addition of a surfactant. • Improved electrochromic performance (coloration efficiency and contrast) for lithium-doped films by comparison with the undoped NiO film. - Abstract: Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the sprayed solution has led to improved uniformity and reduced light scattering compared to films made without surfactant. Furthermore, the presence of lithium ions in NiO films has resulted in improved electrochromic performances (coloration contrast and efficiency), but with a slight decrease of the electrochromic switching kinetics.

  16. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    Science.gov (United States)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  17. Nickel Oxide and Nickel Co-doped Graphitic Carbon Nitride Nanocomposites and its Octylphenol Sensing Application

    KAUST Repository

    Gong, Wanyun

    2015-11-16

    Nickel oxide and nickel co-doped graphitic carbon nitride (NiO-Ni-GCN) nanocomposites were successfully prepared by thermal treatment of melamine and NiCl2 6H2O. NiO-Ni-GCN nanocomposites showed superior electrochemical catalytic activity for the oxidation of octylphenol to pure GCN. A detection method of octylphenol in environmental water samples was developed based at NiO-Ni-GCN nanocomposites modified electrode under infrared light irradiation. Differential pulse voltammetry was used as the analytic technique of octylphenol, exhibiting stable and specific concentration-dependent oxidation signal in the presence of octylphenol in the range of 10nM to 1μM and 1μM to 50μM, with a detection limit of 3.3nM (3S/N). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nickel Oxide and Nickel Co-doped Graphitic Carbon Nitride Nanocomposites and its Octylphenol Sensing Application

    KAUST Repository

    Gong, Wanyun; Zou, Jing; Zhang, Sheng; Zhou, Xin; Jiang, Jizhou

    2015-01-01

    Nickel oxide and nickel co-doped graphitic carbon nitride (NiO-Ni-GCN) nanocomposites were successfully prepared by thermal treatment of melamine and NiCl2 6H2O. NiO-Ni-GCN nanocomposites showed superior electrochemical catalytic activity for the oxidation of octylphenol to pure GCN. A detection method of octylphenol in environmental water samples was developed based at NiO-Ni-GCN nanocomposites modified electrode under infrared light irradiation. Differential pulse voltammetry was used as the analytic technique of octylphenol, exhibiting stable and specific concentration-dependent oxidation signal in the presence of octylphenol in the range of 10nM to 1μM and 1μM to 50μM, with a detection limit of 3.3nM (3S/N). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of nickel oxide substitution on bioactivity and mechanical ...

    Indian Academy of Sciences (India)

    In the present work, the effect of addition of nickel oxide that annualizes the .... for required dimension using grinding machine, then sam- ples were subjected to ... the hardness testing machine, the size of the sample was. 10 × 10 × 10 mm ...

  20. Electrocatalytic oxidation of some anti-inflammatory drugs on a nickel hydroxide-modified nickel electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hajjizadeh, M. [Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Haghgoo, S. [Center of Quality Control of Drug, Tehran (Iran, Islamic Republic of)

    2007-12-31

    The electrocatalytic oxidation of several anti-inflammatory drugs (mefenamic acid, diclofenac and indomethacin) was investigated on a nickel hydroxide-modified nickel (NHMN) electrode in alkaline solution. This oxidation process and its kinetics were studied using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of drugs, the anodic peak current of low-valence nickel species increases, followed by a decrease in the corresponding cathodic current. This pattern indicates that drugs were oxidized on the redox mediator immobilized on the electrode surface via an electrocatalytic mechanism. A mechanism based on the electrochemical generation of Ni(III) active sites and their subsequent consumption by drugs was also investigated. The corresponding rate law under the control of charge transfer was developed and kinetic parameters were derived. In this context, the charge-transfer resistance accessible both theoretically and through impedancemetry was used as a criterion. The rate constants of the catalytic oxidation of drugs and the electron-transfer coefficients are reported. A sensitive, simple and time-saving amperometric procedure was developed for the analysis of these drugs in bulk form and for the direct assay of tablets, using the NHMN electrode.

  1. Electrocatalytic oxidation of some anti-inflammatory drugs on a nickel hydroxide-modified nickel electrode

    International Nuclear Information System (INIS)

    Hajjizadeh, M.; Jabbari, A.; Heli, H.; Moosavi-Movahedi, A.A.; Haghgoo, S.

    2007-01-01

    The electrocatalytic oxidation of several anti-inflammatory drugs (mefenamic acid, diclofenac and indomethacin) was investigated on a nickel hydroxide-modified nickel (NHMN) electrode in alkaline solution. This oxidation process and its kinetics were studied using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of drugs, the anodic peak current of low-valence nickel species increases, followed by a decrease in the corresponding cathodic current. This pattern indicates that drugs were oxidized on the redox mediator immobilized on the electrode surface via an electrocatalytic mechanism. A mechanism based on the electrochemical generation of Ni(III) active sites and their subsequent consumption by drugs was also investigated. The corresponding rate law under the control of charge transfer was developed and kinetic parameters were derived. In this context, the charge-transfer resistance accessible both theoretically and through impedancemetry was used as a criterion. The rate constants of the catalytic oxidation of drugs and the electron-transfer coefficients are reported. A sensitive, simple and time-saving amperometric procedure was developed for the analysis of these drugs in bulk form and for the direct assay of tablets, using the NHMN electrode

  2. Potassium/calcium/nickel oxide catalysts for the oxidative coupling of methane

    NARCIS (Netherlands)

    Dooley, K.; Dooley, Kerry M.; Ross, J.R.H.; Ross, Julian R.H.

    1992-01-01

    A series of potassium/calcium/nickel oxides were tested for the oxidative coupling of methane (OCM) at 843–943 K and water addition to the feed at 0–66 mol-%. The K/Ni ratios varied from 0.0–0.6 and Ca/Ni from 0.0–11; catalysts with no nickel were also tested. At least 10% water in the feed and

  3. 76 FR 47996 - Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule

    Science.gov (United States)

    2011-08-08

    ... Safety and Health Administration (OSHA) Permissible Exposure Level (PEL) of 0.1 mg/m\\3\\ for nickel. The... 2070-AB27 Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule AGENCY: Environmental... lithium manganese nickel oxide (CAS No. 182442-95-1), which was the subject of premanufacture notice (PMN...

  4. Process for electroforming nickel containing dispersed thorium oxide particles therein

    International Nuclear Information System (INIS)

    Malone, G.A.

    1975-01-01

    Nickel electroforming is effected by passing a direct current through a bath containing a dissolved nickel salt or a mixture of such salts, such as those present in sulfamate or Watts baths, and finely divided sol-derived thorium oxide particles of 75 to 300 angstroms, preferably 100 to 200 angstroms diameters therein, at a pH in the range of 0.4 to 1.9, preferably 0.8 to 1.3. The nickel so deposited, as on a pre-shaped stainless steel cathode, may be produced in desired shape and may be removed from the cathode and upon removal, without additional working, possesses desirable engineering properties at elevated temperatures, e.g., 1,500 to 2,200 0 F. Although the material produced is of improved high temperature stability, hardness, and ductility, compared with nickel alone, it is still ductile at room temperature and has properties equivalent or superior to nickel at room temperatures up to 1,500 0 F. Further improvements in mechanical properties of the material may be obtained by working. Also disclosed are electrodeposition baths, methods for their manufacture, and products resulting from the electrodeposition process. (U.S.)

  5. Engineered nickel oxide nanoparticle causes substantial physicochemical perturbation in plants

    Science.gov (United States)

    Manna, Indrani; Bandyopadhyay, Maumita

    2017-11-01

    Concentration of engineered NiO-NP in nature is on the rise, owing to large scale industrial uses and human interventions, which have accreted the scope of exposure especially at the primary trophic levels of the ecosystem. Nickel content in air, drinking water and soil is already above permissible limits in most parts of the developed world. Though nickel oxide is an essential micronutrient in the animal system, it has already been graded as a human carcinogen by WHO, and numerous studies have established the toxic nature of nickel in higher dosage in the animal system. Though studies depicting toxicity and bioaccumulation of nickel in plants is documented, the interaction of nickel oxide nanoparticle with plants is not fully a well-studied, well elucidated topic. What is known is that, exposure to nickel oxide nanoparticle, arouses stress response and leads to cytotoxicity and growth retardation in a handful of plants, a defined work on the intricate physicochemical cellular responses and genotoxic challenges has been so far absent. We have tried to fill in such gaps with this study. We planned the work around pertinent hypotheses like: whether NiO-NP cause cytotoxicity in a model plant system (Allium cepa L.)?If so, does internalization of nickel ion (the potent toxic) take place in the tissue? Does internalized NiO-NP create furore in the antioxidant enzyme system of the plant leading to cytotoxicity? In that case, whether the ENP causes genotoxicity and leads to pycknosis of the cell. The study has been designed to assess the change in biochemical profile and genotoxicity potential of NiO-NP at a wide range of concentrations using root tips of Allium cepa L., the model system for study of cytotoxicity and genotoxicity, and four of its closest relatives, Allium sativum L., Allium schoenoprasum L., Allium porrum L., Allium fistulosum L., chosen for their immense economic importance. Growing root tips were treated with seven different concentrations of Ni

  6. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide

    International Nuclear Information System (INIS)

    Lai, Teh-Long; Lai, Yuan-Lung; Yu, Jen-Wei; Shu, Youn-Yuen; Wang, Chen-Bin

    2009-01-01

    Coralloid nanostructured nickel hydroxide hydrate has been successfully synthesized by a simple microwave-assisted hydrothermal process using nickel sulfate hexahydrate as precursor and urea as hydrolysis-controlling agent. A pure coralloid nanostructured nickel oxide can be obtained from the nickel hydroxide hydrate after calcination at 400 deg. C. The thermal property, structure and morphology of samples were characterized by thermogravimetry (TG), temperature-programmed reduction (TPR), X-ray (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  7. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Teh-Long [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Lai, Yuan-Lung [Department of Mechanical and Automation Engineering, Da-Yeh University, Changhua 515, Taiwan (China); Yu, Jen-Wei [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Shu, Youn-Yuen, E-mail: shuyy@nknucc.nknu.edu.tw [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Wang, Chen-Bin, E-mail: chenbin@ccit.edu.tw [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 335, Taiwan (China)

    2009-10-15

    Coralloid nanostructured nickel hydroxide hydrate has been successfully synthesized by a simple microwave-assisted hydrothermal process using nickel sulfate hexahydrate as precursor and urea as hydrolysis-controlling agent. A pure coralloid nanostructured nickel oxide can be obtained from the nickel hydroxide hydrate after calcination at 400 deg. C. The thermal property, structure and morphology of samples were characterized by thermogravimetry (TG), temperature-programmed reduction (TPR), X-ray (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  8. Oxidation resistance of nickel alloys at high temperature

    International Nuclear Information System (INIS)

    Tyuvin, Yu.D.; Rogel'berg, I.L.; Ryabkina, M.M.; Plakushchaya, A.F.

    1977-01-01

    The heat resistance properties of nickel alloys Ni-Cr-Si, Ni-Si-Al, Ni-Si-Mn and Ni-Al-Mn have been studied by the weight method during oxidation in air at 1000 deg and 1200 deg C. It is demonstrated that manganese reduces the heat resistance properties of Ni-Si and Ni-Al alloys, whilst the addition of over 3% aluminium enhances the heat resistance properties of Ni-Si (over 1.5%) alloys. The maximum heat resistance properties are shown by Ni-Si-Al and Ni-Cr-Si alloys with over 2% Si. These alloys offer 3 to 4 times better oxidation resistance as compared with pure nickel at 1000 deg C and 10 times at 1200 deg C

  9. Size-dependent magnetic properties of branchlike nickel oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2017-01-01

    Full Text Available Branchlike nickel oxide nanocrystals with narrow size distribution are obtained by a solution growth method. The size-dependent of magnetic properties of the nickel oxides were investigated. The results of magnetic characterization indicate that the NiO nanocrystals with size below 12.8 nm show very weak ferromagnetic state at room temperature due to the uncompensated spins. Both of the average blocking temperature (Tb and the irreversible temperature (Tirr increase with the increase of nanoparticle sizes, while both the remnant magnetization and the coercivity at 300 K increase with the decrease of the particle sizes. Moreover, the disappearance of two-magnon (2M band and redshift of one-phonon longitudinal (1LO and two-phonon LO in vibrational properties due to size reduction are observed. Compared to the one with the spherical morphological, it is also found that nano-structured nickel oxides with the branchlike morphology have larger remnant magnetization and the coercivity at 5 K due to their larger surface-to-volume ratio and greater degree of broken symmetry at the surface or the higher proportion of broken bonds.

  10. Formation and microstructure of nickel oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Marcius, Marijan [Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Ristic, Mira, E-mail: ristic@irb.hr [Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Ivanda, Mile; Music, Svetozar [Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Difference in NiO films formed on Ni plate or glass substrate were found. Black-Right-Pointing-Pointer NiO particle sizes on Ni plate changed from nano to micron dimensions. Black-Right-Pointing-Pointer NiO particle sizes on glass substrate changed from {approx}16 to {approx}27 nm. Black-Right-Pointing-Pointer Raman and UV/Vis/NIR spectra are related to the microstructure of NiO films. - Abstract: The formation and microstructure of NiO films on different substrates were monitored using XRD, Raman, UV/Vis/NIR and FE-SEM/EDS techniques. The formation of NiO films on Ni plates in air atmosphere between 400 and 800 Degree-Sign C was confirmed by XRD and Raman spectroscopy. The origin of Raman bands and corresponding Raman shifts in the samples are discussed. An increase in the size of NiO particles in the films from nano to micro dimensions was demonstrated. A change in the atomic ratio Ni:O with an increase in heating temperature was observed. Polished Ni plates coated with a thin Ni-acetate layer upon heating at high temperatures gave similar NiO microstructures on the surface like in the case of non-treated Ni plates. Glass substrates coated with thin Ni-acetate films upon heating between 400 and 800 Degree-Sign C yielded pseudospherical NiO nanoparticles. The dominant Raman band as an indicator of NiO formation on a glass substrate was shown. The formation of NiO nanoparticles on glass substrates with maximum size distribution from 16 to 27 nm in a broad temperature range from 400 to 800 Degree-Sign C can be explained by the absence of a constant source of metallic nickel which was present in the case of Ni plates.

  11. Nickel-foam-supported ruthenium oxide/graphene sandwich composite constructed via one-step electrodeposition route for high-performance aqueous supercapacitors

    Science.gov (United States)

    Li, Meng; He, Hanwei

    2018-05-01

    A high-performance supercapacitor both considered high power and high energy density is needed for its applications such as portable electronics and electric vehicles. Herein, we construct a high-performance ruthenium oxide/graphene (RuO2-ERG) composite directly grown on Ni foam through cyclic voltammetric deposition process. The RuO2-ERG composite with sandwich structure is achieved effectively from a mixed solution of graphene oxide and ruthenium trichloride in the -1.4 V to 1.0 V potential range at a scan rate of 5 mV s-1. The electrochemical performance is optimized by tuning the concentration of the ruthenium trichloride. This integrative RuO2-ERG composite electrode can effectively maintains the accessible surface for redox reaction and stable channels for electrolyte penetration, leading to an improved electrochemical performance. Symmetrical aqueous supercapacitors based on RuO2-ERG electrodes exhibit a wider operational voltage window of 1.5 V. The optimized RuO2-ERG electrode displays a superior specific capacitance with 89% capacitance retention upon increasing the current density by 50 times. A high energy density of 43.8 W h kg-1 at a power density of 0.75 kW kg-1 is also obtained, and as high as 39.1 W h kg-1 can be retained at a power density of 37.5 kW kg-1. In addition, the capacitance retention is still maintained at 92.8% even after 10,000 cycles. The excellent electrochemical performance, long-term cycle stability, and the ease of preparation demonstrate that this typical RuO2-ERG electrode has great potentialities to develop high-performance supercapacitors.

  12. Additive effect of Ce, Mo and K to nickel-cobalt aluminate supported solid oxide fuel cell for direct internal reforming of methane

    International Nuclear Information System (INIS)

    Kwak, Bu Ho; Park, Jungdeok; Yoon, Heechul; Kim, Hyeon Hui; Kim, Lim; Chung, Jong Shik

    2014-01-01

    Direct internal reforming of methane (steam/carbon=0.031, 850 .deg. C) is tested using button cells of Ni-YSZ/YSZ/LSM in which the anode layer is supported either on Ni-YSZ or on Ni-CoAl 2 O 4 . The Ni-CoAl 2 O 4 supported cell shows little degradation with operating time, as a result of higher resistance against carbon deposition, whereas the Ni-YSZ supported cell deactivates quickly and suffers fracture in 50 h. Upon incorporation of additives such as K, Ce, or Mo into the Ni-CoAl 2 O 4 support, cells with 0.5 wt% CeO 2 exhibit the best stable performance as a result of reduced coke formation. Cells with 0.5 wt% Mo exhibit the lowest performance. Although no carbon deposit is detected in the cells with K 2 CO 3 additives, their performance is worse than that in the CeO 2 case, and, in constant-current mode, there is a sudden voltage drop to zero after a certain period of time; this time becomes shorter with increasing K content. The injection of potassium into the anode side facilitates the generation of OH - and CO 3 2- in the anode and promotes the diffusion of these ions to the cathode. Increased polarization resistance at the cathode and increased electrolyte resistance result in such a sudden failure

  13. Controlled synthesis of size-tunable nickel and nickel oxide nanoparticles using water-in-oil microemulsions

    International Nuclear Information System (INIS)

    Kumar, Ajeet; Saxena, Amit; Shankar, Ravi; Mozumdar, Subho; De, Arnab

    2013-01-01

    Industrial demands have generated a growing need to synthesize pure metal and metal–oxide nanoparticles of a desired size. We report a novel and convenient method for the synthesis of spherical, size tunable, well dispersed, stable nickel and nickel oxide nanoparticles by reduction of nickel nitrate at room temperature in a TX-100/n-hexanol/cyclohexane/water system by a reverse microemulsion route. We determined that reduction with alkaline sodium borohydrate in nitrogen atmosphere leads to the formation of nickel nanoparticles, while the use of hydrazine hydrate in aerobic conditions leads to the formation of nickel oxide nanoparticles. The influence of several reaction parameters on the size of nickel and nickel oxide nanoparticles were evaluated in detail. It was found that the size can be easily controlled either by changing the molar ratio of water to surfactant or by simply altering the concentration of the reducing agent. The morphology and structure of the nanoparticles were characterized by quasi-elastic light scattering (QELS), transmission electron microscopy (TEM), x-ray diffraction (XRD), electron diffraction analysis (EDA) and energy dispersive x-ray (EDX) spectroscopy. The results show that synthesized nanoparticles are of high purity and have an average size distribution of 5–100 nm. The nanoparticles prepared by our simple methodology have been successfully used for catalyzing various chemical reactions. (paper)

  14. Additive effect of Ce, Mo and K to nickel-cobalt aluminate supported solid oxide fuel cell for direct internal reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Bu Ho; Park, Jungdeok; Yoon, Heechul; Kim, Hyeon Hui; Kim, Lim; Chung, Jong Shik [POSTECH, Pohang (Korea, Republic of)

    2014-01-15

    Direct internal reforming of methane (steam/carbon=0.031, 850 .deg. C) is tested using button cells of Ni-YSZ/YSZ/LSM in which the anode layer is supported either on Ni-YSZ or on Ni-CoAl{sub 2}O{sub 4}. The Ni-CoAl{sub 2}O{sub 4} supported cell shows little degradation with operating time, as a result of higher resistance against carbon deposition, whereas the Ni-YSZ supported cell deactivates quickly and suffers fracture in 50 h. Upon incorporation of additives such as K, Ce, or Mo into the Ni-CoAl{sub 2}O{sub 4} support, cells with 0.5 wt% CeO{sub 2} exhibit the best stable performance as a result of reduced coke formation. Cells with 0.5 wt% Mo exhibit the lowest performance. Although no carbon deposit is detected in the cells with K{sub 2}CO{sub 3} additives, their performance is worse than that in the CeO{sub 2} case, and, in constant-current mode, there is a sudden voltage drop to zero after a certain period of time; this time becomes shorter with increasing K content. The injection of potassium into the anode side facilitates the generation of OH{sup -} and CO{sub 3}{sup 2-} in the anode and promotes the diffusion of these ions to the cathode. Increased polarization resistance at the cathode and increased electrolyte resistance result in such a sudden failure.

  15. Evolution of grain structure in nickel oxide scales

    International Nuclear Information System (INIS)

    Atkinson, H.V.

    1987-01-01

    In systems such as the oxidation of nickel, in which grain-boundary diffusion in the oxide can control the rate of oxidation, understanding of the factors governing the grain structure is of importance. High-purity mechanically polished polycrystalline nickel was oxidized at 700 0 C, 800 0 C, and 1000 0 C for times up to 20 hr in 1 atm O 2 . The scale microstructures were examined by parallel and transverse cross section transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Texture coefficients were found by x-ray diffraction (XRD). Each grain in the transverse section grain boundary networks was systematically analyzed for width parallel to the Ni-NiO interface and perpendicular length, for boundary radius of curvature and for number of sides. The variation of these parameters with depth in the scale was examined. In particular, grains were increasingly columnar (i.e., with ratio of grain length to width > 1) at higher temperatures and longer times. Columnar grain boundaries tended to be fairly static; the columnar grain width was less than the rate controlling grain size predicted from the oxidation rate. The mean boundary curvature per grain provided a guide to the tendency for grain growth, except in the region of the Ni-NiO interface, where the boundaries were thought to be pinned

  16. Hydrogen-water deuterium exchange over metal oxide promoted nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sagert, N H; Shaw-Wood, P E; Pouteau, R M.L. [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1975-11-01

    Specific rates have been measured for hydrogen-water deuterium isotope exchange over unsupported nickel promoted with about 20% of various metal oxides. The oxides used were Cr/sub 2/O/sub 3/, MoO/sub 2/, MnO, WO/sub 2/-WO/sub 3/, and UO/sub 2/. Nickel surface areas, which are required to measure the specific rates, were determined by hydrogen chemisorption. Specific rates were measured as a function of temperature in the range 353 to 573 K and as a function of the partial pressure of hydrogen and water over a 10-fold range of partial pressure. The molybdenum and tungsten oxides gave the highest specific rates, and manganese and uranium oxides the lowest. Chromium oxide was intermediate, although it gave the highest rate per gram of catalyst. The orders with respect to hydrogen and water over molybdenum oxide and tungsten oxide promoted nickel were consistent with a mechanism in which nickel oxide is formed from the reaction of water with the catalyst, and then is reduced by hydrogen. Over manganese and uranium oxide promoted catalysts, these orders are consistent with a mechanism in which adsorbed water exchanges with chemisorbed hydrogen atoms on the nickel surface. Chromium oxide is intermediate. It was noted that those oxides which favored the nickel oxide route had electronic work functions closest to those of metallic nickel and nickel oxide.

  17. The influence of ion implantation on the oxidation of nickel

    International Nuclear Information System (INIS)

    Goode, P.D.

    1975-11-01

    The effects of ion implantation on the oxidation of polycrystalline nickel have been studied for a range of implanted species: viz. He, Li, Ne, Ca, Ti, Ni, Co, Xe, Ce and Bi. The oxides were grown in dry oxygen at 630 0 C and the 16 O(d,p) 17 O nuclear reaction technique used to determine the amount of oxygen taken up. The influence of atomic and ionic size, valency and electronegativity of the implanted impurities was studied as also were the effects of ion bombardment damage and the influence of sputtering during implantation. Atomic size and the annealing of disorder were found to have a marked influence on oxide growth rate. The dependence of oxidation on annealing was further studied by implanting polycrystalline specimens with self ions and observing the oxide growth rate as a function of annealing temperature. A peak in the curve was found at 400 0 C and a similar peak observed at a somewhat higher temperature for oxidised single crystals. It is concluded that the oxidation rate will be influenced by those factors which alter the epitaxial relationship between metal and growing oxide. Such factors include atomic size of the implanted species, surface strain induced by implantation and changes in surface topography as a result of sputtering. In addition a model based on vacancy assisted cation migration is proposed to explain enhanced oxidation observed over a limited temperature range. (author)

  18. Strength of Anode‐Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Faes, A.; Frandsen, Henrik Lund; Kaiser, Andreas

    2011-01-01

    Nickel oxide and yttria doped zirconia composite strength is crucial for anode‐supported solid oxide fuel cells, especially during transient operation, but also for the initial stacking process, where cell curvature after sintering can cause problems. This work first compares tensile and ball....... Even though the electrolyte is to the tensile side, it is found that the anode support fails due to the thermo‐mechanical residual stresses....

  19. Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors

    International Nuclear Information System (INIS)

    Wu, M.-S.; Hsieh, H.-H.

    2008-01-01

    Nickel hydroxide powder prepared by directly chemical precipitation method at room temperature has a nanoplatelet-like morphology and could be converted into nickel oxide at annealing temperature higher than 300 deg. C, confirmed by the thermal gravimetric analysis and X-ray diffraction. Annealing temperature influences significantly both the electrical conductivity and the specific surface area of nickel oxide/hydroxide powder, and consequently determines the capacitor behavior. Electrochemical capacitive behavior of the synthesized nickel hydroxide/oxide film is investigated by cyclic voltammetry and electrochemical impedance spectroscope methods. After 300 deg. C annealing, the highest specific capacitance of 108 F g -1 is obtained at scan rate of 10 mV s -1 . When annealing temperature is lower than 300 deg. C, the electrical conductivity of nickel hydroxide dominates primarily the capacitive behavior. When annealing temperature is higher than 300 deg. C, both electrical conductivity and specific surface area of the nickel oxide dominate the capacitive behavior

  20. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; Hale, William G.; Wang, Hsinping; Zhou, Xinghao; Plymale, Noah T.; Omelchenko, Stefan T.; He, Jr-Hau; Papadantonakis, Kimberly M.; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide

  1. Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo; Ould-Chikh, Samy; Anjum, Dalaver Hussain; Sun, Miao; Biausque, Gregory; Basset, Jean-Marie; Caps, Valerie

    2012-01-01

    evaporation method from nickel nitrate and ammonium niobium oxalate. These consist in NiO nanocrystallites (7-13 nm) associated, at Nb contents >3 at.%., with an amorphous thin layer (1-2 nm) of a niobium-rich mixed oxide with a structure similar

  2. Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Adekunle, Abolanle S.; Ozoemena, Kenneth I. [Department of Chemistry, University of Pretoria, Pretoria 0002 (South Africa)

    2008-08-01

    The electron transfer behaviour of nickel film-decorated single-walled carbon nanotubes (SWCNTs-Ni) at edge plane pyrolytic graphite electrodes (EPPGEs) was investigated. The impact of SWCNTs on the redox properties of the nickel film was investigated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS). From EIS data, obtained using ferrocyanide/ferricyanide as a redox probe, we show that the electrodes based on nickel and nickel oxide films follow electrical equivalent circuit models typical of partial charge transfer or adsorption-controlled kinetics, resembling the 'electrolyte-insulator-semiconductor sensors (EIS)'. From the models, we prove that EPPGE-SWCNT-Ni exhibits the least resistance to charge transport compared to other electrodes (approximately 30 times faster than the EPPGE-SWCNT-NiO, 25 times faster than EPPGE-SWCNT, and over 300 times faster than the bare EPPGE) suggesting the ability of the SWCNTs to act as efficient conducting species that facilitate electron transport of the integrated nickel and nickel oxide particles. (author)

  3. Monodispersed macroporous architecture of nickel-oxide film as an anode material for thin-film lithium-ion batteries

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Lin, Ya-Ping

    2011-01-01

    A nickel-oxide film with monodispersed open macropores was prepared on a stainless-steel substrate by electrophoretic deposition of a polystyrene-sphere monolayer followed by anodic electrodeposition of nickel oxy-hydroxide. The deposited films convert to cubic nickel oxide after annealing at 400 o C for 1 h. Galvanostatic charge and discharge results indicate that the nickel-oxide film with monodispersed open macropores is capable of delivering a higher capacity than the bare nickel-oxide film, especially in high-rate charge and discharge processes. The lithiation capacity of macroporous nickel oxide reaches 1620 mA h g -1 at 1 C current discharge and decreases to 990 mA h g -1 at 15 C current discharge. The presence of monodispersed open macropores in the nickel-oxide film might facilitate the electrolyte penetration, diffusion, and migration. Electrochemical reactions between nickel oxide and lithium ions are therefore markedly improved by this tailored film architecture.

  4. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Haibin Jiang

    2016-06-01

    Full Text Available Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  5. Stability, carbon resistance, and reactivity toward autothermal reforming of nickel on ceria-based supports

    International Nuclear Information System (INIS)

    Sutthisripok, W.; Laosiripojana, N.

    2004-01-01

    'Full text:' Solid Oxide Fuel Cell (SOFC) normally requires a reformer unit, where the fuel such as natural gas, methane, methanol, or ethanol can be reformed to hydrogen before introducing to the main part of fuel cell. Nickel on commercial supports such as Al2O3, MgO, ZrO2 has been widely reported to be used as the reforming catalyst commercially. Carbon formation and catalyst deactivation are always the main problems of using this type of catalyst. It is well established that CeO2 and CeO2-ZrO2 have been applied as the catalysts in a wide variety of reactions involving oxidation or partial oxidation of hydrocarbons (e.g. automotive catalysis). In order to quantify the performance of nickel on CeO2 and CeO2-ZrO2 supports for reformer application, the stabilities toward methane steam reforming and the carbon formation resistance were studied. After 18 hours, nickel on CeO2-ZrO2 with the Ce/Zr ratio of 3/1 presented the best performance in term of stability and activity. It also provided excellent resistance toward carbon formation compared to commercial Ni/Al2O3. The autothermal reforming of methane over Ni catalyst on CeO2 and CeO2-ZrO2 supports were also investigated. Ni/Ce-ZrO2 with the Ce/ Zr ratio of 3/1 also showed the best performance. The kinetics of this reaction was also studied. In the temperature range of 750-900C, the reaction order in methane was always closed to 1. The catalyst showed a slight positive effect of hydrogen and a negative effect of steam on the steam reforming rate. The addition of oxygen increased the steam reforming rate. However, the productions of CO and H2 decreased with increasing oxygen partial pressure. (author)

  6. A Miniaturized Nickel Oxide Thermistor via Aerosol Jet Technology.

    Science.gov (United States)

    Wang, Chia; Hong, Guan-Yi; Li, Kuan-Ming; Young, Hong-Tsu

    2017-11-12

    In this study, a miniaturized thermistor sensor was produced using the Aerosol Jet printing process for temperature sensing applications. A nickel oxide nanoparticle ink with a large temperature coefficient of resistance was fabricated. The thermistor was printed with a circular NiO thin film in between the two parallel silver conductive tracks on a cutting tool insert. The printed thermistor, which has an adjustable dimension with a submillimeter scale, operates over a range of 30-250 °C sensitively (B value of ~4310 K) without hysteretic effects. Moreover, the thermistor may be printed on a 3D surface through the Aerosol Jet printing process, which has increased capability for wide temperature-sensing applications.

  7. Fabrication technology of CNT-Nickel Oxide based planar pseudocapacitor for MEMS and NEMS

    Science.gov (United States)

    Lebedev, E. A.; Kitsyuk, E. P.; Gavrilin, I. M.; Gromov, D. G.; Gruzdev, N. E.; Gavrilov, S. A.; Dronov, A. A.; Pavlov, A. A.

    2015-11-01

    Fabrication technology of planar pseudocapacitor (PsC) based on carbon nanotube (CNT) forest, synthesized using plasma enhanced chemical vapor deposition (PECVD) method, covered with thin nickel oxide layer deposited by successive ionic layer adsorption and reaction (SILAR) method, is demonstrated. Dependences of deposited oxide layers thickness on device specific capacities is studied. It is shown that pseudocapacity of nickel oxide thin layer increases specific capacity of the CNT's based device up to 2.5 times.

  8. The Effect of Annealing Temperature on Nickel on Reduced Graphene Oxide Catalysts on Urea Electrooxidation

    International Nuclear Information System (INIS)

    Glass, Dean E.; Galvan, Vicente; Prakash, G.K. Surya

    2017-01-01

    Highlights: •Nickel was reduced on graphene oxide and annealed under argon from 300 to 700 °C. •Nickel was oxidized from the removal of oxygen groups on the graphene oxide. •Higher annealed catalysts displayed decreased urea electrooxidation currents. •Micro direct urea/hydrogen peroxide fuel cells were employed for the first time. •Ni/rGO catalysts displayed enhanced fuel cell performance than the bare nickel. -- Abstract: The annealing temperature effects on nickel on reduced graphene oxide (Ni/rGO) catalysts for urea electrooxidation were investigated. Nickel chloride was directly reduced in an aqueous solution of graphene oxide (GO) followed by annealing under argon at 300, 400, 500, 600, and 700 °C, respectively. X-ray Diffraction (XRD) patterns revealed an increase in the crystallite size of the nickel nanoparticles while the Raman spectra displayed an increase in the graphitic disorder of the reduced graphene oxide at higher annealing temperatures due to the removal of oxygen functional groups. The Ni/rGO catalysts annealed at higher temperatures displayed oxidized nickel surface characteristics from the Ni 2p X-ray Photoelectron Spectra (XPS) due to the oxidation of the nickel from the oxygen functional groups in the graphitic lattice. In the half-cell testing, the onset potential of urea electrooxidation decreased while the urea electrooxidation currents decreased as the annealing temperature was increased. The nickel catalyst annealed at 700 °C displayed a 31% decrease in peak power density while the catalyst annealed at 300 °C displayed a 13% increase compared with the unannealed Ni/rGO catalyst in the micro direct urea/hydrogen peroxide fuel cells tests.

  9. Gas-phase hydrogenation of benzene on supported nickel catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Franco, H.A.; Phillips, M.J.

    1980-06-01

    The reaction of 22.66-280 Pa benzene with 72.39-122.79 Pa hydrogen on kieselguhr-supported nickel at 392.2/sup 0/-468.2/sup 0/K yielded only cyclohexane and was independent of 5.33-40 Pa cyclohexane added to the feed of the differential flow reactor. Best fit for the kinetic data was obtained with a rate equation developed by van Meerten and Coenen which assumed that all hydrogen addition steps have the same rate constant and are slow. An observed rate maximum at 458/sup 0/K may be the result of an increasing rate constant and decreasing cyclohexyl surface coverage as the temperature increases. Temperature-programed hydrogen desorption showed a series of desorption peaks at 358/sup 0/-600/sup 0/K, including one at 453/sup 0/K, which may be due to the hydrogen involved in the surface reaction.

  10. Hydrothermal synthesis of nickel oxide nanosheets for lithium-ion batteries and supercapacitors with excellent performance.

    Science.gov (United States)

    Mondal, Anjon Kumar; Su, Dawei; Wang, Ying; Chen, Shuangqiang; Wang, Guoxiu

    2013-11-01

    Nickel oxide nanosheets have been successfully synthesized by a facile ethylene glycol mediated hydrothermal method. The morphology and crystal structure of the nickel oxide nanosheets were characterized by X-ray diffraction, field-emission SEM, and TEM. When applied as electrode materials for lithium-ion batteries and supercapacitors, nickel oxide nanosheets exhibited a high, reversible lithium storage capacity of 1193 mA h g(-1) at a current density of 500 mA g(-1), an enhanced rate capability, and good cycling stability. Nickel oxide nanosheets also demonstrated a superior specific capacitance of 999 F g(-1) at a current density of 20 A g(-1) in supercapacitors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization of composite metal-ceramic of nickel-oxide cerium doped gadolinium; Caracterizacao de compositos ceramica-metal de niquel e oxido de cerio dopado com gadolinio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.L.A. da, E-mail: maria.andrade@pro.unifacs.br [Universidade Salvador (UNIFACS), BA (Brazil). Escola de Engenharia, Arquitetura e TI; Universidade Federal da Bahia (UFBA), BA (Brazil); Varela, M.C.R.S. [Universidade Federal da Bahia (UFBA), BA (Brazil)

    2016-07-01

    Composite nickel doped cerium oxide are used in SOFC anode materials. In this study we evaluated the effect of the presence of gadolinium on the properties of composite nickel and ceria and. The supports were synthesized by sol-gel method. The impregnation with nickel nitrate was taken sequentially, followed by calcination. The materials were characterized by X-ray diffraction, measurement of specific surface area, temperature programmed reduction, Raman spectroscopy. The presence of gadolinium retained the fluorite structure of ceria by forming a solid solution, also not influencing significantly on the specific surface area of the support. On the other hand, there was a decrease in the area catalysts, which can be attributed to sintering of nickel. Furthermore, addition of gadolinium favored the formation of intrinsic and extrinsic vacancies in cerium oxide, which leads to an increase in the ionic conductivity of the solid, desirable property for an SOFC anode catalyst. (author)

  12. An Electrochemical Investigation of Methanol Oxidation on Nickel ...

    African Journals Online (AJOL)

    NICO

    Cyclic voltammetry, electrooxidation, glassy carbon electrode, methanol, nickel hydroxide nanoparticles. 1. ... substrate at room temperature without templates. Recently, we ... placed in ethanol and sonicated to remove adsorbed particles.

  13. Thermal Oxidation of a Carbon Condensate Formed in High-Frequency Carbon and Carbon-Nickel Plasma Flow

    Science.gov (United States)

    Churilov, G. N.; Nikolaev, N. S.; Cherepakhin, A. V.; Dudnik, A. I.; Tomashevich, E. V.; Trenikhin, M. V.; Bulina, N. G.

    2018-02-01

    We have reported on the comparative characteristics of thermal oxidation of a carbon condensate prepared by high-frequency arc evaporation of graphite rods and a rod with a hollow center filled with nickel powder. In the latter case, along with different forms of nanodisperse carbon, nickel particles with nickel core-carbon shell structures are formed. It has been found that the processes of the thermal oxidation of carbon condensates with and without nickel differ significantly. Nickel particles with the carbon shell exhibit catalytic properties with respect to the oxidation of nanosized carbon structures. A noticeable difference between the temperatures of the end of the oxidation process for various carbon nanoparticles and nickel particles with the carbon shell has been established. The study is aimed at investigations of the effect of nickel nanoparticles on the dynamics of carbon condensate oxidation upon heating in the argon-oxygen flow.

  14. Study of the oxidation kinetics of the nickel-molybdenum alloy

    International Nuclear Information System (INIS)

    Gouillon, Marie-Josephe

    1974-01-01

    This research thesis reports the study of the oxidation of a nickel-molybdenum alloy in the high-nickel-content part of this alloy. After a bibliographical study on the both metals, the author proposes a physical model based on observed phenomena and based on experimental results. Based on a thermodynamic study, the author compares the stability of the different oxides which may be formed, and reports a prediction of oxides obtained on the alloy during oxidation. Qualitative and quantitative studies have been performed by scanning electron microscopy coupled with electronic microprobe analysis to investigate morphological characteristics on oxidation films. A kinetic study by thermogravimetry shows a decrease of the alloy oxidation rate with respect to that of pure nickel at temperatures lower than 800 degrees C. This result is interpreted by the intervention of two opposed diffusion phenomena which act against each other [fr

  15. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks

    Science.gov (United States)

    Jones, J. Graham; Warner, C. G.

    1972-01-01

    Graham Jones, J., and Warner, C. G. (1972).Brit. J. industr. Med.,29, 169-177. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks. Occupational and medical histories, smoking habits, respiratory symptoms, chest radiographs, and ventilatory capacities were studied in 14 steelworkers employed as deseamers of steel ingots for periods of up to 16 years. The men were exposed for approximately five hours of each working shift to fume concentrations ranging from 1·3 to 294·1 mg/m3 made up mainly of iron oxide with varying proportions of chromium oxide and nickel oxide. Four of the men, with 14 to 16 years' exposure, showed radiological evidence of pneumoconiosis classified as ILO categories 2 or 3. Of these, two had pulmonary function within the normal range and two had measurable loss of function, moderate in one case and mild in the other. Many observers would diagnose these cases as siderosis but the authors consider that this term should be reserved for cases exposed to pure iron compounds. The correct diagnosis is mixed-dust pneumoconiosis and the loss of pulmonary function is caused by the effects of the mixture of metallic oxides. It is probable that inhalation of pure iron oxide does not cause fibrotic pulmonary changes, whereas the inhalation of iron oxide plus certain other substances obviously does. Images PMID:5021996

  16. Clad modified optical fiber gas sensors based on nanocrystalline nickel oxide embedded coatings

    Science.gov (United States)

    Yamini, K.; Renganathan, B.; Ganesan, A. R.; Prakash, T.

    2017-07-01

    A clad modified optical fiber gas sensor for sensing volatile organic compound vapours (VOCs) such as formaldehyde (HCHO), ammonia (NH3), ethanol (C2H5OH) and methanol (CH3OH) up to 500 ppm was studied using nanocrystalline nickel oxide embedded coatings. Prior to the measurements, nickel oxide in two different crystallite sizes such as 24 nm and 76 nm was synthesized by calcination of reverse precipitated nickel hydroxide subsequently at 450 °C and 900 °C for 30 min. Then, samples physical properties were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Our gas sensing measurement concludes that the lower crystallite size (24 nm) nickel oxide nanocrystals exhibits superior performance to formaldehyde and ethanol vapours as compared with other two VOCs, the observed experimental results were discussed in detail.

  17. Negative differential resistance in nickel octabutoxy phthalocyanine and nickel octabutoxy phthalocyanine/graphene oxide ultrathin films

    Science.gov (United States)

    Sarkar, Arup; Suresh, K. A.

    2018-04-01

    We find negative differential resistance (NDR) at room temperature in ultrathin films of nickel (II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine [NiPc(OBu)8] deposited on highly ordered pyrolytic graphite (HOPG) substrate [NiPc(OBu)8/HOPG] and NiPc(OBu)8 on graphene oxide (GO) deposited on HOPG [NiPc(OBu)8/GO/HOPG]. For the NiPc(OBu)8/HOPG system, NiPc(OBu)8 was transferred four times onto HOPG by the Langmuir-Blodgett (LB) technique. We have prepared a stable Langmuir monolayer of amphiphilic GO at the air-water interface and transferred it onto HOPG by the LB technique. Further, the monolayer of NiPc(OBu)8 was transferred four times for good coverage on GO to obtain the NiPc(OBu)8/GO/HOPG system. The current-voltage characteristics were carried out using a current sensing atomic force microscope (CSAFM) with a platinum (Pt) tip that forms Pt/NiPc(OBu)8/HOPG and Pt/NiPc(OBu)8/GO/HOPG junctions. The CSAFM, UV-visible spectroscopy, and cyclic voltammetry studies show that the NDR effect occurs due to molecular resonant tunneling. In the Pt/NiPc(OBu)8/GO/HOPG junction, we find that due to the presence of GO, the features of NDR become more prominent. Also, GO causes a shift in NDR voltage towards a lower value in the negative bias direction. We attribute this behavior to the role of GO in injecting holes into the NiPc(OBu)8 film.

  18. Nickel Dermatitis - Nickel Excretion

    DEFF Research Database (Denmark)

    Menné, T.; Thorboe, A.

    1976-01-01

    Nickel excretion in urine in four females -sensitive to nickel with an intermittent dyshidrotic eruption was measured with flameless atomic absorption. Excretion of nickel was found to be increased in association with outbreaks of vesicles. The results support the idea that the chronic condition ...

  19. Early stages of oxidation of ion-implanted nickel at high temperature

    International Nuclear Information System (INIS)

    Peide, Z.; Grant, W.A.; Procter, R.P.M.

    1981-01-01

    The early stages of oxidation of nickel implanted with nickel, chromium, or lithium ions in oxygen at 1100 0 C have been studied using various electron-optical techniques. The unimplanted metal develops initially a fine-grained, convoluted scale having a ridged, cellular structure. Subsequently, the oxide grains increase in size significantly and oxidation becomes predominantly controlled by diffusion of Ni /sup 2+/ ions across a compact, columnar scale. Implantation of the surface with nickel ions has no significant effect on the initial oxidation behavior. However, after implantation with chromium or lithium ions, the development of the NiO scale is, in the early stages of oxidation, suppressed by formation of NiCr 2 O 4 or LiO 2 nodules, respectively. Subsequently, the implanted species are incorporated into the steady-state NiO scale where they dope the oxide and thus influence the diffusion rate of Ni /sup 2+/ ions through it. As would be predicted, the steady-state oxidation rate of chromium-implanted nickel is increased while that of lithium- implanted nickel is decreased compared with that of the unimplanted metal

  20. Well-defined mono(η3-allyl)nickel complex MONi(η3-C3H5) (M = Si or Al) grafted onto silica or alumina: A molecularly dispersed nickel precursor for syntheses of supported small size nickel nanoparticles

    KAUST Repository

    Li, Lidong; Abou-Hamad, Edy; Anjum, Dalaver H.; Zhou, Lu; Laveille, Paco; Emsley, Lyndon; Basset, Jean-Marie

    2014-01-01

    Preparing evenly-dispersed small size nickel nanoparticles over inert oxides remains a challenge today. In this context, a versatile method to prepare supported small size nickel nanoparticles (ca. 1-3 nm) with narrow size distribution via a surface organometallic chemistry (SOMC) route is described. The grafted mono(η3-allyl)nickel complexes MONi(η 3-C3H5) (M = Si or Al) as precursors are synthesized and fully characterized by elemental analysis, FTIR spectroscopy and paramagnetic solid-state NMR. © 2014 the Partner Organisations.

  1. Electrodeposition of Manganese-Nickel Oxide Films on a Graphite Sheet for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hae-Min Lee

    2014-01-01

    Full Text Available Manganese-nickel (Mn-Ni oxide films were electrodeposited on a graphite sheet in a bath consisting of manganese acetate and nickel chloride, and the structural, morphological, and electrochemical properties of these films were investigated. The electrodeposited Mn-Ni oxide films had porous structures covered with nanofibers. The X-ray diffractometer pattern revealed the presence of separate manganese oxide (g-MnO2 and nickel oxide (NiO in the films. The electrodeposited Mn-Ni oxide electrode exhibited a specific capacitance of 424 F/g in Na2SO4 electrolyte. This electrode maintained 86% of its initial specific capacitance over 2000 cycles of the charge-discharge operation, showing good cycling stability.

  2. Carbon-encapsulated nickel-iron nanoparticles supported on nickel foam as a catalyst electrode for urea electrolysis

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Jao, Chi-Yu; Chuang, Farn-Yih; Chen, Fang-Yi

    2017-01-01

    Highlights: • Electrochemical process can purify the urea-rich wastewater, producing hydrogen gas. • Carbon-encapsulated nickel iron nanoparticles (CE-NiFe) are prepared by pyrolysis. • An ultra-thin layer of CE-NiFe nanoparticles is attached to the 3D Ni foam. • CE-NiFe nanoparticles escalate both the urea electrolysis and hydrogen evolution. - Abstract: A cyanide-bridged bimetallic coordination polymer, nickel hexacyanoferrate, could be pyrolyzed to form carbon-encapsulated nickel-iron (CE-NiFe) nanoparticles. The formation of nitrogen-doped spherical carbon shell with ordered mesoporous structure prevented the structural damage of catalyst cores and allowed the migration and diffusion of electrolyte into the hollow carbon spheres. An ultra-thin layer of CE-NiFe nanoparticles could be tightly attached to the three-dimensional macroporous nickel foam (NF) by electrophoretic deposition. The CE-NiFe nanoparticles could lower the onset potential and increase the current density in anodic urea electrolysis and cathodic hydrogen production as compared with bare NF. Macroporous NF substrate was very useful for the urea electrolysis and hydrogen production, which allowed for fast transport of electron, electrolyte, and gas products. The superior electrocatalytic ability of CE-NiFe/NF electrode in urea oxidation and water reduction made it favorable for versatile applications such as water treatment, hydrogen generation, and fuel cells.

  3. Kinetic studies of isooctane partial oxidation over a nickel-based catalyst

    International Nuclear Information System (INIS)

    Ibrahim, Hussameldin; Idem, Raphael; Aboudheir, Ahmed

    2006-01-01

    The production of hydrogen (H 2 ) for fuel cell applications in mobile vehicles by reforming technologies such as partial oxidation of various fossil fuels has gained much attention recently. In this study, the production of H 2 by the catalytic partial oxidation of isooctane ((C 8 H 18 ) used here as a surrogate for gasoline) was investigated over alumina (AI 2 O 3 )supported nickel (Ni) catalyst. The work investigated the kinetics of the partial oxidation of isooctane over a stable Ni/□-AI 2 O 3 catalyst in the range of 863 to 913 K, at atmospheric pressure, W/F i c8 in the range of 1.97 to 8.58 g h mol - 1, and molar feed ratio in the range of 2.0 to 8.0 experiments to obtain kinetic data were performed in a 12.7 mm diameter Inconel micro-reactor housed in an electrically controlled furnace. The chemical reaction was then modeled using rate models developed from the Langmuir-Hinshelwood-hougen-Watson (LHHW) and Eley-Rideal (ER) formulations. The model parameters were estimated using an adaptive Gauss-Newton and Marquardi-Levenberg minimization algorithm. Rival models were screened for their thermodynamic consistency and physicochemical significance of estimated parameters. Langmuir-Hinshelwood-hougen-Watson mechanism requiring the dissociative adsorption of isooctane and oxygen on two different sites appeared to be the most likely pathway for the partial oxidation reaction of isooctane. Reaction order with respect to isooctane indicates the strong coverage of nickel by isooctane. The activation energy of 73±3.1 kJ mol - 1 estimated from the LHHW model is consistent with the trend observed with lower hydrocarbons.(Author)

  4. Absolute determination by X-ray diffraction of a binary or ternary mixture: nickel oxide and fluoride in a nickel powder (1960)

    International Nuclear Information System (INIS)

    Charpin, P.; Hauptman, A.

    1960-01-01

    The method employed is based upon the comparison between computed and measured intensities for conveniently selected X-Ray diffraction lines of each component of the powder. Care must be taken to allow for absorption, both inside each grain and in overall sample. This method has been applied to the determination of nickel oxide and fluoride in a nickel powder. (author) [fr

  5. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    Science.gov (United States)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  6. Effect of charge state and stoichiometry on the structure and reactivity of nickel oxide clusters with CO

    Science.gov (United States)

    Johnson, Grant E.; Reilly, Nelly M.; Castleman, A. W., Jr.

    2009-02-01

    The collision induced fragmentation and reactivity of cationic and anionic nickel oxide clusters with carbon monoxide were studied experimentally using guided-ion-beam mass spectrometry. Anionic clusters with a stoichiometry containing one more oxygen atom than nickel atom (NiO2-, Ni2O3-, Ni3O4- and Ni4O5-) were found to exhibit dominant products resulting from the transfer of a single oxygen atom to CO, suggesting the formation of CO2. Of these four species, Ni2O3- and Ni4O5- were observed to be the most reactive having oxygen transfer products accounting for approximately 5% and 10% of the total ion intensity at a maximum pressure of 15 mTorr of CO. Our findings, therefore, indicate that anionic nickel oxide clusters containing an even number of nickel atoms and an odd number of oxygen atoms are more reactive than those with an odd number of nickel atoms and an even number of oxygen atoms. The majority of cationic nickel oxides, in contrast to anionic species, reacted preferentially through the adsorption of CO onto the cluster accompanied by the loss of either molecular O2 or nickel oxide units. The adsorption of CO onto positively charged nickel oxides, therefore, is exothermic enough to break apart the gas-phase clusters. Collision induced dissociation experiments, employing inert xenon gas, were also conducted to gain insight into the structural properties of nickel oxide clusters. The fragmentation products were found to vary considerably with size and stoichiometry as well as ionic charge state. In general, cationic clusters favored the collisional loss of molecular O2 while anionic clusters fragmented through the loss of both atomic oxygen and nickel oxide units. Our results provide insight into the effect of ionic charge state on the structure of nickel oxide clusters. Furthermore, we establish how the size and stoichiometry of nickel oxide clusters influences their ability to oxidize CO, an important reaction for environmental pollution abatement.

  7. Microstructural characteristics of high-temperature oxidation in nickel-base superalloy

    International Nuclear Information System (INIS)

    Khalid, F.A.

    1997-01-01

    Superalloys are used for aerospace and nuclear applications where they can withstand high-temperature and severe oxidizing conditions. High-temperature oxidation behavior of a nickel-base superalloy is examined using optical and scanning electron microscopical techniques. The morphology of the oxide layers developed is examined, and EDX microanalysis reveals diffusion of the elements across the oxide-metal interface. Evidence of internal oxidation is presented, and the role of structural defects is considered. The morphology of the oxide-metal interface formed in the specimens exposed in steam and air is examined to elucidate the mechanism of high-temperature oxidation

  8. Properties of Copper Doped Neodymium Nickelate Oxide as Cathode Material for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Lee Kyoung-Jin

    2016-06-01

    Full Text Available Mixed ionic and electronic conducting K2NiF4-type oxide, Nd2Ni1-xCuxO4+δ (x=0~1 powders were synthesized by solid state reaction technique and solid oxide fuel cells consisting of a Nd2Ni1-xCuxO4+δ cathode, a Ni-YSZ anode and ScSZ as an electrolyte were fabricated. The effect of copper substitution for nickel on the electrical and electrochemical properties was examined. Small amount of copper doping (x=0.2 resulted in the increased electrical conductivity and decreased polarization resistance. It appears that this phenomenon was associated with the high mean valence of nickel and copper and the resulting excess oxygen (δ. It was found that power densities of the cell with the Nd2Ni1-xCuxO4+δ (x=0.1 and 0.2 cathode were higher than that of the cell with the Nd2NiO4+δ cathode.

  9. Catalytic CO Oxidation over Au Nanoparticles Loaded Nanoporous Nickel Phosphate Composite

    Directory of Open Access Journals (Sweden)

    Xiaonan Leng

    2015-01-01

    Full Text Available Au/nickel phosphate-5 (Au/VSB-5 composite with the noble metal loading amount of 1.43 wt.% is prepared by using microporous VSB-5 nanocrystals as the support. Carbon monoxide (CO oxidation reaction is carried out over the sample with several catalytic cycles. Complete conversion of CO is achieved at 238°C over the catalyst at the first catalytic cycle. The catalytic activity improved greatly at the second cycle with the complete conversion fulfilled at 198°C and preserved for the other cycles. A series of experiments such as X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, ultraviolet-visible (UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS are carried out to characterize the catalysts before and after the reaction to study the factors influencing this promotion at the second cycle.

  10. Microstructure and magnetooptics of silicon oxide with implanted nickel nanoparticles

    International Nuclear Information System (INIS)

    Edel’man, I. S.; Petrov, D. A.; Ivantsov, R. D.; Zharkov, S. M.; Khaibullin, R. I.; Valeev, V. F.; Nuzhdin, V. I.; Stepanov, A. L.

    2011-01-01

    Metallic nickel nanoparticles of various sizes are formed in a thin near-surface layer in an amorphous SiO 2 matrix during 40-keV Ni + ion implantation at a dose of (0.25−1.0) × 10 17 ions/cm 2 . The micro-structure of the irradiated layer and the crystal structure, morphology, and sizes of nickel particles formed at various irradiation doses are studied by transmission electron microscopy and electron diffraction. The magnetooptical Faraday effect and the magnetic circular dichroism in an ensemble of nickel nanoparticles are studied in the optical range. The permittivity ε tensor components are calculated for the implanted samples using an effective medium model with allowance for the results of magnetooptical measurements. The spectral dependences of the tensor ε components are found to be strongly different from those of a continuous metallic nickel film. These differences are related to a disperse structure of the magnetic nickel phase and to a surface plasma resonance in the metal nanoparticles.

  11. Synthesis of carbon-supported nickel catalysts for the dry reforming of CH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Fidalgo, B.; Zubizarreta, L.; Bermudez, J.M.; Arenillas, A.; Menendez, J.A. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2010-07-15

    A series of carbon-based nickel (Ni) catalysts was prepared in order to investigate the effect of the preparation method on the dispersion of Ni and its final catalytic activity in the dry reforming of methane, i.e. CH{sub 4} + CO{sub 2} 2H{sub 2} + 2CO. Three parameters were studied: (i) the influence of the surface chemistry of the carbon used as support; (ii) the method of drying (conventional vs. microwave drying); and, (iii) the temperature of the reduction stage. In order to study the role of the surface chemistry of the commercial activated carbon used as support, the active carbon was tested as received and oxidized. Although a better Ni dispersion was achieved over the oxidized support, the conversions were much lower. It was also found that microwave drying offers various advantages over conventional drying, the main one being that less time is required to prepare the catalyst. Two reduction temperatures were used (300 and 500 C), being found that it is necessary to adjust this parameter to prevent the Ni particles from sintering. (author)

  12. Nickel Oxide (NiO nanoparticles prepared by solid-state thermal decomposition of Nickel (II schiff base precursor

    Directory of Open Access Journals (Sweden)

    Aliakbar Dehno Khalaji

    2015-06-01

    Full Text Available In this paper, plate-like NiO nanoparticles were prepared by one-pot solid-state thermal decomposition of nickel (II Schiff base complex as new precursor. First, the nickel (II Schiff base precursor was prepared by solid-state grinding using nickel (II nitrate hexahydrate, Ni(NO32∙6H2O, and the Schiff base ligand N,N′-bis-(salicylidene benzene-1,4-diamine for 30 min without using any solvent, catalyst, template or surfactant. It was characterized by Fourier Transform Infrared spectroscopy (FT-IR and elemental analysis (CHN. The resultant solid was subsequently annealed in the electrical furnace at 450 °C for 3 h in air atmosphere. Nanoparticles of NiO were produced and characterized by X-ray powder diffraction (XRD at 2θ degree 0-140°, FT-IR spectroscopy, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The XRD and FT-IR results showed that the product is pure and has good crystallinity with cubic structure because no characteristic peaks of impurity were observed, while the SEM and TEM results showed that the obtained product is tiny, aggregated with plate-like shape, narrow size distribution with an average size between 10-40 nm. Results show that the solid state thermal decomposition method is simple, environmentally friendly, safe and suitable for preparation of NiO nanoparticles. This method can also be used to synthesize nanoparticles of other metal oxides.

  13. Nickel exposure induces oxidative damage to mitochondrial DNA in Neuro2a cells: the neuroprotective roles of melatonin.

    Science.gov (United States)

    Xu, Shang-Cheng; He, Min-Di; Lu, Yong-Hui; Li, Li; Zhong, Min; Zhang, Yan-Wen; Wang, Yuan; Yu, Zheng-Ping; Zhou, Zhou

    2011-11-01

    Recent studies suggest that oxidative stress and mitochondrial dysfunction play important roles in the neurotoxicity of nickel. Because mitochondrial DNA (mtDNA) is highly vulnerable to oxidative stress and melatonin can efficiently protect mtDNA against oxidative damage in various pathological conditions, the aims of this study were to determine whether mtDNA oxidative damage was involved in the neurotoxicity of nickel and to assay the neuroprotective effects of melatonin in mtDNA. In this study, we exposed mouse neuroblastoma cell lines (Neuro2a) to different concentrations of nickel chloride (NiCl(2), 0.125, 0.25, and 0.5 mm) for 24 hr. We found that nickel significantly increased reactive oxygen species (ROS) production and mitochondrial superoxide levels. In addition, nickel exposure increased mitochondrial 8-hydroxyguanine (8-OHdG) content and reduced mtDNA content and mtDNA transcript levels. Consistent with this finding, nickel was found to destroy mtDNA nucleoid structure and decrease protein levels of Tfam, a key protein component for nucleoid organization. However, all the oxidative damage to mtDNA induced by nickel was efficiently attenuated by melatonin pretreatment. Our results suggest that oxidative damage to mtDNA may account for the neurotoxicity of nickel. Melatonin has great pharmacological potential in protecting mtDNA against the adverse effects of nickel in the nervous system. © 2011 John Wiley & Sons A/S.

  14. Synthesis and characterization of nickel oxide doped barium strontium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M. [Dept. of Electrical Engineering, Bengal Institute of Technology Kolkata (India); Mukherjee, S. [Dept. of Metallurgical Engineering, Jadavpur University, Kolkata (India); Maitra, S. [Govt. College of Engg. and Ceramic Technology, Kolkata (India)

    2012-01-15

    Barium strontium titanate (BST) ceramics (Ba{sub 0.6}Sr{sub 0.4})TiO{sub 3} were synthesized by solid state sintering using barium carbonate, strontium carbonate and rutile as the precursor materials. The samples were doped with nickel oxide in different proportions. Different phases present in the sintered samples were determined from X-ray diffraction investigation and the distribution of different phases in the microstructure was assessed from scanning electron microscopy study. It was observed that the dielectric properties of BST were modified significantly with nickel oxide doping. These ceramics held promise for applications in tuned circuits. (author)

  15. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode

    Science.gov (United States)

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-08-01

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm-2 (specific capacitance of 50 F g-1) at a charge/discharge current density of 1 mA cm-2 and a maximum energy density of 39.9 W h kg-1 (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm-2, with a capacitance retention of 95% after 3000 cycles.

  16. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.

    Science.gov (United States)

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-09-07

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm(-2) (specific capacitance of 50 F g(-1)) at a charge/discharge current density of 1 mA cm(-2) and a maximum energy density of 39.9 W h kg(-1) (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm(-2), with a capacitance retention of 95% after 3000 cycles.

  17. Oxidation characteristics of porous-nickel prepared by powder metallurgy and cast-nickel at 1273 K in air for total oxidation time of 100 h

    Directory of Open Access Journals (Sweden)

    Lamiaa Z. Mohamed

    2017-11-01

    Full Text Available The oxidation behavior of two types of inhomogeneous nickel was investigated in air at 1273 K for a total oxidation time of 100 h. The two types were porous sintered-nickel and microstructurally inhomogeneous cast-nickel. The porous-nickel samples were fabricated by compacting Ni powder followed by sintering in vacuum at 1473 K for 2 h. The oxidation kinetics of the samples was determined gravimetrically. The topography and the cross-section microstructure of each oxidized sample were observed using optical and scanning electron microscopy. X-ray diffractometry and X-ray energy dispersive analysis were used to determine the nature of the formed oxide phases. The kinetic results revealed that the porous-nickel samples had higher trend for irreproducibility. The average oxidation rate for porous- and cast-nickel samples was initially rapid, and then decreased gradually to become linear. Linear rate constants were 5.5 × 10−8 g/cm2 s and 3.4 × 10−8 g/cm2 s for the porous- and cast-nickel samples, respectively. Initially a single-porous non-adherent NiO layer was noticed on the porous- and cast-nickel samples. After a longer time of oxidation, a non-adherent duplex NiO scale was formed. The two layers of the duplex scales were different in color. NiO particles were observed in most of the pores of the porous-nickel samples. Finally, the linear oxidation kinetics and the formation of porous non-adherent duplex oxide scales on the inhomogeneous nickel substrates demonstrated that the addition of new layers of NiO occurred at the scale/metal interface due to the thermodynamically possible reaction between Ni and the molecular oxygen migrating inwardly.

  18. Oxidation characteristics of porous-nickel prepared by powder metallurgy and cast-nickel at 1273 K in air for total oxidation time of 100 h.

    Science.gov (United States)

    Mohamed, Lamiaa Z; Ghanem, Wafaa A; El Kady, Omayma A; Lotfy, Mohamed M; Ahmed, Hafiz A; Elrefaie, Fawzi A

    2017-11-01

    The oxidation behavior of two types of inhomogeneous nickel was investigated in air at 1273 K for a total oxidation time of 100 h. The two types were porous sintered-nickel and microstructurally inhomogeneous cast-nickel. The porous-nickel samples were fabricated by compacting Ni powder followed by sintering in vacuum at 1473 K for 2 h. The oxidation kinetics of the samples was determined gravimetrically. The topography and the cross-section microstructure of each oxidized sample were observed using optical and scanning electron microscopy. X-ray diffractometry and X-ray energy dispersive analysis were used to determine the nature of the formed oxide phases. The kinetic results revealed that the porous-nickel samples had higher trend for irreproducibility. The average oxidation rate for porous- and cast-nickel samples was initially rapid, and then decreased gradually to become linear. Linear rate constants were 5.5 × 10 -8  g/cm 2  s and 3.4 × 10 -8  g/cm 2  s for the porous- and cast-nickel samples, respectively. Initially a single-porous non-adherent NiO layer was noticed on the porous- and cast-nickel samples. After a longer time of oxidation, a non-adherent duplex NiO scale was formed. The two layers of the duplex scales were different in color. NiO particles were observed in most of the pores of the porous-nickel samples. Finally, the linear oxidation kinetics and the formation of porous non-adherent duplex oxide scales on the inhomogeneous nickel substrates demonstrated that the addition of new layers of NiO occurred at the scale/metal interface due to the thermodynamically possible reaction between Ni and the molecular oxygen migrating inwardly.

  19. Conversion of Methane into Methanol and Ethanol over Nickel Oxide on Ceria-Zirconia Catalysts in a Single Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Okolie, Chukwuemeka [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA; Belhseine, Yasmeen F. [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA; Lyu, Yimeng [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA; Yung, Matthew M. [National Renewable Energy Laboratory, Golden CO 80401 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Lab, Richland WA 99354 USA; Kovarik, Libor [Environmental Molecular Sciences Laboratory, Pacific Northwest National Lab, Richland WA 99354 USA; Stavitski, Eli [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton NY 11973 USA; Sievers, Carsten [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA

    2017-09-26

    Direct conversion of methane into alcohols is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can selectively oxidize methane to methanol and ethanol in a single, steady-state process at 723 K using O2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to the synergy between the small Lewis acidic NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.

  20. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  1. Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Inamdar, A.I.; Kim, YoungSam; Im, Hyunsik [Department of Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Pawar, S.M.; Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Kim, Hyungsang [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2011-02-15

    A porous nickel oxide film is successfully synthesized by means of a chemical bath deposition technique from an aqueous nickel nitrate solution. The formation of a rock salt NiO structure is confirmed with XRD measurements. The electrochemical supercapacitor properties of the nickel oxide film are examined using cyclic voltammetery (CV), galvanostatic and impedance measurements in two different electrolytes, namely, NaOH and KOH. A specific capacitance of {proportional_to}129.5 F g{sup -1} in the NaOH electrolyte and {proportional_to}69.8 F g{sup -1} in the KOH electrolyte is obtained from a cyclic voltammetery study. The electrochemical stability of the NiO electrode is observed for 1500 charge-discharge cycles. The capacitative behaviour of the NiO electrode is confirmed from electrochemical impedance measurements. (author)

  2. Structural, optical and dielectric properties of pure and chromium (Cr) doped nickel oxide nanoparticles

    Science.gov (United States)

    Gupta, Jhalak; Ahmed, Arham S.

    2018-05-01

    The pure and Cr doped nickel oxide (NiO) nanoparticles have been synthesized by cost effective co-precipitation method having nickel nitrate as initial precursor. The synthesized samples were characterized by X-Ray diffraction (XRD), UV-Visible Spectroscopy(UV-Vis) and LCR meter for structural, optical and dielectric properties respectively. The crystallite size of pure nickel oxide nanoparticles characterized by XRD using Debye Scherer's formula was found to be 21.7nm and the same decreases on increasing Cr concentration whereas optical and dielectric properties were analyzed by UV-Vis and LCR meter respectively. The energy band gaps were determined by UV-Vis using Tauc relation.

  3. In situ photoelectrochemistry and Raman spectroscopic characterization on the surface oxide film of nickel electrode in 30 wt.% KOH solution

    International Nuclear Information System (INIS)

    Nan Junmin; Yang Yong; Lin Zugeng

    2006-01-01

    The oxide films of nickel electrode formed in 30 wt.% KOH solution under potentiodynamic conditions were characterized by means of electrochemical, in situ PhotoElectrochemistry Measurement (PEM) and Confocal Microprobe Raman spectroscopic techniques. The results showed that a composite oxide film was produced on nickel electrode, in which aroused cathodic or anodic photocurrent depending upon polarization potentials. The cathodic photocurrent at -0.8 V was raised from the amorphous film containing nickel hydroxide and nickel monoxide, and mainly attributed to the formation of NiO through the separation of the cavity and electron when laser light irradiates nickel electrode. With the potential increasing to more positive values, Ni 3 O 4 and high-valence nickel oxides with the structure of NiO 2 were formed successively. The composite film formed in positive potential aroused anodic photocurrent from 0.33 V. The anodic photocurrent was attributed the formation of oxygen through the cavity reaction with hydroxyl on solution interface. In addition, it is demonstrated that the reduction resultants of high-valence nickel oxides were amorphous, and the oxide film could not be reduced completely. A stable oxide film could be gradually formed on the surface of nickel electrode with the cycling and aging in 30 wt.% KOH solution

  4. Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy

    NARCIS (Netherlands)

    Maheshwari, Arpit; Heck, Michael; Santarelli, Massimo

    2018-01-01

    The cycle aging of a commercial 18650 lithium-ion battery with graphite anode and lithium nickel manganese cobalt (NMC) oxide-based cathode at defined operating conditions is studied by regular electrochemical characterization, electrochemical impedance spectroscopy (EIS) and post-mortem analysis.

  5. Reduction of nickel oxide particles by hydrogen studied in an environmental TEM

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2013-01-01

    In situ reduction of nickel oxide (NiO) particles is performed under 1.3 mbar of hydrogen gas (H2) in an environmental transmission electron microscope (ETEM). Images, diffraction patterns and electron energy-loss spectra (EELS) are acquired to monitor the structural and chemical evolution of the...

  6. X-ray diffraction on nanoparticles chromium and nickel oxides obtained by gelatin using synchrotron radiation

    International Nuclear Information System (INIS)

    Menezes, Alan Silva de; Medeiros, Angela Maria de Lemos; Miranda, Marcus Aurelio Ribeiro; Almeida, Juliana Marcela Abraao; Remedios, Claudio Marcio Rocha; Silva, Lindomar R.D. da; Gouveia, S.T.; Sasaki, Jose Marcos; Jardim, P.M.

    2003-01-01

    Full text: Cr 2 O 3 nanoparticles has many applications like green pigments, wear resistance, and coating materials for thermal protection. Several methods to produce chromium oxide nanoparticles have already been studied, gas condensation, laser induced pyrolysis, microwave plasma, sol-gel and gamma radiation methods. Many applications for this kind of material can be provide concerning the particle size. For instance, particle size approximately of 200 nm are preferable as pigment due to its opacity and below 50 nm can be used as transparent pigment. In this work we have demonstrated that chromium and nickel oxide nanoparticles can be prepared by gelatin method. X-Ray diffraction (XRD) show that mean particle size for chromium oxide of 15-150 nm and nickel oxide of 90 nm were obtained for several temperature of sintering. The X-Ray powder diffraction pattern were performed using Synchrotron Radiation X-Ray source at XRD1 beamline in National Laboratory of Light Synchrotron (LNLS). (author)

  7. Pd supported on carbon containing nickel, nitrogen and sulfur for ethanol electrooxidation.

    Science.gov (United States)

    Yang, Zi-Rui; Wang, Shang-Qing; Wang, Jing; Zhou, Ai-Ju; Xu, Chang-Wei

    2017-11-13

    Carbon material containing nickel, nitrogen and sulfur (Ni-NSC) has been synthesized using metal-organic frameworks (MOFs) as precursor by annealing treatment with a size from 200 to 300 nm. Pd nanoparticles supported on the Ni-NSC (Pd/Ni-NSC) are used as electrocatalysts for ethanol oxidation in alkaline media. Due to the synergistic effect between Pd and Ni, S, N, free OH radicals can form on the surface of Ni, N and S atoms at lower potentials, which react with CH 3 CO intermediate species on the Pd surface to produce CH 3 COO - and release the active sites. On the other hand, the stronger binding force between Pd and co-doped N and S is responsible for enhancing dispersion and preventing agglomeration of the Pd nanoparticles. The Pd(20 wt%)/Ni-NSC shows better electrochemical performance of ethanol oxidation than the traditional commercial Pd(20 wt%)/C catalyst. Onset potential on the Pd(20 wt%)/Ni-NSC electrode is 36 mV more negative compared with that on the commercial Pd(20 wt%)/C electrode. The Pd(20 wt%)/Ni-NSC in this paper demonstrates to have excellent electrocatalytic properties and is considered as a promising catalyst in alkaline direct ethanol fuel cells.

  8. Three dimensional characterization of nickel coarsening in solid oxide cells via ex-situ ptychographic nano-tomography

    DEFF Research Database (Denmark)

    De Angelis, Salvatore; Jørgensen, Peter Stanley; Tsai, Esther Hsiao Rho

    2018-01-01

    Nickel coarsening is considered a significant cause of solid oxide cell (SOC) performance degradation. Therefore, understanding the morphological changes in the nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode is crucial for the wide spread usage of SOC technology. This paper reports...... a study of the initial 3D microstructure evolution of a SOC analyzed in the pristine state and after 3 and 8 h of annealing at 850 °C, in dry hydrogen. The analysis of the evolution of the same location of the electrode shows a substantial change of the nickel and pore network during the first 3 h...... of treatment, while only negligible changes are observed after 8 h. The nickel coarsening results in loss of connectivity in the nickel network, reduced nickel specific surface area and decreased total triple phase boundary density. For the condition of this experiment, nickel coarsening is shown...

  9. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes II. Steam:carbon ratio and current density

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2015-03-01

    For the second part of a two part publication, coking thresholds with respect to molar steam:carbon ratio (SC) and current density in nickel-based solid oxide fuel cells were determined. Anode-supported button cell samples were exposed to 2-component and 5-component gas mixtures with 1 ≤ SC ≤ 2 and zero fuel utilization for 10 h, followed by measurement of the resulting carbon mass. The effect of current density was explored by measuring carbon mass under conditions known to be prone to coking while increasing the current density until the cell was carbon-free. The SC coking thresholds were measured to be ∼1.04 and ∼1.18 at 600 and 700 °C, respectively. Current density experiments validated the thresholds measured with respect to fuel utilization and steam:carbon ratio. Coking thresholds at 600 °C could be predicted with thermodynamic equilibrium calculations when the Gibbs free energy of carbon was appropriately modified. Here, the Gibbs free energy of carbon on nickel-based anode support cermets was measured to be -6.91 ± 0.08 kJ mol-1. The results of this two part publication show that thermodynamic equilibrium calculations with appropriate modification to the Gibbs free energy of solid-phase carbon can be used to predict coking thresholds on nickel-based anodes at 600-700 °C.

  10. A Versatile Route for the Synthesis of Nickel Oxide Nanostructures Without Organics at Low Temperature

    Directory of Open Access Journals (Sweden)

    Shah MA

    2008-01-01

    Full Text Available AbstractNickel oxide nanoparticles and nanoflowers have been synthesized by a soft reaction of nickel powder and water without organics at 100 °C. The mechanism for the formation of nanostructures is briefly described in accordance with decomposition of metal with water giving out hydrogen. The structure, morphology, and the crystalline phase of resulting nanostructures have been characterized by various techniques. Compared with other methods, the present method is simple, fast, economical, template-free, and without organics. In addition, the approach is nontoxic without producing hazardous waste and could be expanded to provide a general and convenient strategy for the synthesis of nanostructures to other functional nanomaterials.

  11. Hydrogenation of surface carbon on alumina-supported nickel

    Energy Technology Data Exchange (ETDEWEB)

    Mccarthy, J.G.; Wise, H.

    1979-05-01

    The methanation of carbon deposited by CO or ethylene decomposition on Girdler G-65 catalyst (25Vertical Bar3< nickel, 8Vertical Bar3< alkali, mostly CaO, 4Vertical Bar3< C as graphite, on alumina) was studied by temperature-programed desorption and temperature-programed surface reaction. Four types of carbon were identified: ..cap alpha..-carbon consisted of isolated carbon atoms bonded to nickel and reacting with hydrogen at 470/sup 0/ +/- 20/sup 0/K; ..gamma..-carbon was probably a bulk carbide, most likely Ni/sub 3/C, which had a reaction peak at 550/sup 0/K; ..beta..-carbon consisted of amorphous, polymerized carbon, which had a reaction peak at 680/sup 0/K; and an unreactive crystalline graphite-like species. The ..cap alpha..-form was thermally unstable and transformed into the ..beta..-form above 600/sup 0/K. Both ..cap alpha..- and ..beta..-forms slowly converted to inert graphite above 600/sup 0/K. The evidence suggested that synthesis gas methanation proceeds by dissociative adsorption of CO as the rate-determining step which forms a very reactive carbon adatom state (..cap alpha..') which converts to the ..cap alpha..-state in the absence of hydrogen and to methane in the presence of hydrogen.

  12. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass.

    Directory of Open Access Journals (Sweden)

    Marcia Regina Salvadori

    Full Text Available The use of dead biomass of the fungus Hypocrea lixii as a biological system is a new, effective and environmentally friendly bioprocess for the production and uptake of nickel oxide nanoparticles (NPs, which has become a promising field in nanobiotechnology. Dead biomass of the fungus was successfully used to convert nickel ions into nickel oxide NPs in aqueous solution. These NPs accumulated intracellularly and extracellularly on the cell wall surface through biosorption. The average size, morphology and location of the NPs were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The NPs were mainly spherical and extra and intracellular NPs had an average size of 3.8 nm and 1.25 nm, respectively. X-ray photoelectron spectroscopy analysis confirmed the formation of nickel oxide NPs. Infrared spectroscopy detected the presence of functional amide groups, which are probable involved in particle binding to the biomass. The production of the NPs by dead biomass was analyzed by determining physicochemical parameters and equilibrium concentrations. The present study opens new perspectives for the biosynthesis of nanomaterials, which could become a potential biosorbent for the removal of toxic metals from polluted sites.

  13. The study of chlorination of nickel oxide by chlorine and calcium chloride in the presence of active additives

    OpenAIRE

    Ilic, Ilija; Krstev, Boris; Stopic, Srecko; Cerovic, K

    1997-01-01

    Chlorination of nickel oxide by chlorine and calcium chloride in the presence of C, BaS and S were studied, both experimentally and theoretically. Chlorination of nickel oxide by chlorine was carried out in the temperature range 573-873 K and by calcium chloride in the temperature range 1023-1223 K. The results obtained of the chlorination of nickel oxide by chlorine showed that C has the strongest and S the weakest effect on the process. Addition of BaS has a favorable effect on the chlorina...

  14. Preparation by thermal evaporation under vacuum of thin nickel films without support

    International Nuclear Information System (INIS)

    Prugne, P.; Garin, P.; Lechauguette, G.

    1959-01-01

    This note deals with the preparation of nickel films without support by means of the technique described but using a new evaporation apparatus. In effect it was necessary, in order to obtain these nickel films, to modify the thermal evaporation conditions. An attempt to obtain a film without support after evaporation in a conventional apparatus led almost invariably to defeat. This appeared to be due to the high concentration of oxygen and of various vapors (diffusion pumps, degassing, etc.) present in the residual atmosphere of the conventional evaporation system. Reprint of a paper published in 'Le Vide, N. 74, March-April 1958, p. 82-83

  15. Optical and structural characterization of nickel oxide-based thin films obtained by chemical bath deposition

    International Nuclear Information System (INIS)

    Vidales-Hurtado, M.A.; Mendoza-Galvan, A.

    2008-01-01

    Nickel oxide-based thin films were obtained using the chemical bath deposition method on glass and silicon substrates. The precursor solution used was a mixture of nickel nitrate, urea, and deionized water. Molar concentration of nickel (0.3-1.0 M), deposition time, and immersing cycles were considered as deposition variables. Infrared spectroscopy and X-ray diffraction data reveal that all as-deposited films correspond to the transparent turbostratic phase α(II)-Ni(OH) 2 . However, the rate of deposition depends on nickel content in the solution. After annealing in air at temperatures above of 300 deg. C, the films are transformed to the NiO phase and show a grey/black color. In these films, scanning electron microscopy images show aggregates of thin stacked sheets on their surface, such aggregates can be easily removed leaving only a thin NiO layer of about 30 nm adhered firmly to the substrate, regardless of nickel concentration in the solution and deposition time. In order to obtain thicker NiO films with good optical properties a procedure is developed performing several immersing-annealing cycles

  16. RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells.

    Science.gov (United States)

    Zhang, He; Zhang, Lingling; Han, Yujie; Yu, You; Xu, Miao; Zhang, Xueping; Huang, Liang; Dong, Shaojun

    2017-11-15

    In this study, three-dimensional reduced graphene oxide/Au NPs/nitrogen-doped carbon nanotubes (RGO/Au NPs/N-doped CNTs) assembly supported on nickel foam was utilized as an anode for enzymatic biofuel cells (EBFCs). 3D RGO/Au NPs was obtained by electrodepositing reduced graphene oxide on nickel foam (Ni foam), while Au NPs were co-deposited during the process. Afterwards, nitrogen doped CNTs (N-CNTs) were allowed to grow seamlessly on the surfaces of 3D RGO/Au NPs via a simple chemical vapor deposition (CVD) process. In this nanostructure, Au NPs co-deposition and nitrogen doping offer more active sites for bioelectrocatalysis. Additionally, N-CNTs were demonstrated providing high specific surface area for enzyme immobilization and facilitating the electron transfer between glucose oxidase (GOx) and electrode. The resulting bioanode achieved efficient glucose oxidation with high current densities of 7.02mAcm -2 (0.3V vs. Ag/AgCl). Coupling with a Pt cathode, the fabricated glucose/air biofuel cell exhibited an open-circuit potential of 0.32V and generated a maximum power density 235µWcm -2 at 0.15V. This novel electrode substrate achieved high performance in current density at bioelectrochemical systems and could be useful for further exploiting the application of three dimensional carbon-based nanomaterials in EBFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. SOFC anode. Hydrogen oxidation at porous nickel and nickel/zirconia electrodes

    NARCIS (Netherlands)

    de Boer, B.

    1998-01-01

    In the ongoing search for alternative and environmental friendly power generation facilities, the fuel cell is a good candidate. There are several types of fuel cells with large differences in application, size, cost and operating range. The Solid Oxide Fuel Cell (SOFC) is a high temperature fuel

  18. Investigation of the supported nickel catalysts by XAS and XRD, using synchrotron radiation

    International Nuclear Information System (INIS)

    Aldea, N.; Marginean, P.; Gluhoi, A.; Yaning, Xie; Dong, Bazohong

    2001-01-01

    In the first part of the paper we present a study based on EXAFS spectroscopy. This method can yield structural information about the local environment around a specific atomic constituent in the amorphous materials, the location and chemical state of any catalytic atom on any support or point defect structures in alloys and composites. EXAFS is a specific technique of the scattering of X-ray on materials. The present study is aimed toward elucidating the local structure of Ni atoms and their interaction with oxide support. In this case, we analyse the first three shells of coordination. The second aim of the paper consists in X-ray diffraction on the same samples. X-ray diffraction method which is capable to determine average particle size, microstrains, probability of faults as well as particle size distribution function of supported Ni catalysts is presented. The method is based on the Fourier analysis of X-Ray diffraction profiles such as (111) (200) and (220). We are going to work out a chemisorption model by the correlation of the local and global structure connected with the specific surface. On the other hand, we will try to estimate specific surface values determined by classical method with occupation factor evaluated by the geometrical Ni clusters. The results obtained on supported nickel catalysts which are used in H/D isotopic exchange reactions are reported. The global structure is obtained with a new fitting method based on the Generalised Fermi Function facilities for approximation and Fourier transform of the experimental X-Ray line profiles. Both types of measurements were performed on Beijing Synchrotron Radiation Facilities (BSRF). (authors)

  19. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.

    Science.gov (United States)

    Zhang, Haiming; Yu, Xinzhi; Guo, Di; Qu, Baihua; Zhang, Ming; Li, Qiuhong; Wang, Taihong

    2013-08-14

    Supercapacitors with potential high power are useful and have attracted much attention recently. Graphene-based composites have been demonstrated to be promising electrode materials for supercapacitors with enhanced properties. To improve the performance of graphene-based composites further and realize their synthesis with large scale, we report a green approach to synthesize bacteria-reduced graphene oxide-nickel sulfide (BGNS) networks. By using Bacillus subtilis as spacers, we deposited reduced graphene oxide/Ni3S2 nanoparticle composites with submillimeter pores directly onto substrate by a binder-free electrostatic spray approach to form BGNS networks. Their electrochemical capacitor performance was evaluated. Compared with stacked reduced graphene oxide-nickel sulfide (GNS) prepared without the aid of bacteria, BGNS with unique nm-μm structure exhibited a higher specific capacitance of about 1424 F g(-1) at a current density of 0.75 A g(-1). About 67.5% of the capacitance was retained as the current density increased from 0.75 to 15 A g(-1). At a current density of 75 A g(-1), a specific capacitance of 406 F g(-1) could still remain. The results indicate that the reduced graphene oxide-nickel sulfide network promoted by bacteria is a promising electrode material for supercapacitors.

  20. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    Science.gov (United States)

    Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-12-01

    3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM-1 cm-2, and a possible mechanism was also given in the paper.

  1. Roentgenoelectronic investigation into oxidation of iron-chromium and iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Akimov, A.G.; Rozenfel'd, I.L.; Kazanskij, L.P.; Machavariani, G.V.

    1978-01-01

    Kinetics of iron-chromium and iron-chromium-nickel alloy oxidation (of the Kh13 and Kh18N10T steels) in oxygen was investigated using X-ray electron spectroscopy. It was found that according to X-ray electron spectra chromium oxidation kinetics in the iron-chromium alloy differs significantly from oxidation kinetics of chromium pattern. Layer by layer X-ray electron analysis showed that chromium is subjected to a deeper oxidation as compared to iron, and accordingly, Cr 2 O 3 layer with pure iron impregnations is placed between the layer of mixed oxide (Fe 3 O 4 +Cr 2 O 3 ) and metal. A model of the iron-chromium alloy surface is suggested. The mixed oxide composition on the steel surface is presented as spinel Fesub(2+x)Crsub(1-x)Osub(y)

  2. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  3. Structural analysis of nickel doped cerium oxide catalysts for fuel reforming in solid oxide fuel cells

    Science.gov (United States)

    Cavendish, Rio

    As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO 2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.

  4. Wet chemical synthesis of nickel supported on alumina catalysts

    International Nuclear Information System (INIS)

    Freire, Ranny Rodrigues; Costa, Talita Kenya Oliveira; Morais, Ana Carla da Fonseca Ferreira; Costa, Ana Cristina Figueiredo de Melo; Freitas, Normanda Lino de

    2016-01-01

    Heterogenic catalysts are those found to be in a different phase on the reaction when compared to the reactants and products. Preferred when compared to homogeneous catalysts due to the easiness on which the separation is processed. The objective of this study is to obtain and characterize Alumina based catalysts impregnated with Nickel (Al_2O_3), by wet impregnation. The alumina was synthesized by combustion reaction. Before and after the impregnation the catalysts were characterized by X-ray diffraction (XRD), granulometric analysis, the textural analysis will be held by nitrogen adsorption (BET), energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results show a presence of a stable crystalline phase of Al2O3 in all the studied samples and after the impregnation the second phase formed was of NiO and NiAl_2O_4. The Al_2O_3 e Ni/Al_2O_3 catalysts resulted in clusters with a medium diameter of 18.9 and 14.2 μm, respectively. The catalysts show a medium-pore characteristic (medium pore diameter between 2 and 50 nm), the superficial area to Al_2O_3 and Ni/Al_2O_3 catalysts were 8.69 m"2/g and 5.56 m"2/g, respectively. (author)

  5. Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance

    Science.gov (United States)

    Xia, Yang; Zhu, Derong; Si, Shihui; Li, Degeng; Wu, Sen

    2015-06-01

    Porous nickel foam is used as a substrate for the development of rechargeable zinc//polyaniline battery, and the cathode electrophoresis of PANI microparticles in non-aqueous solution is applied to the fabrication of Ni foam supported PANI electrode, in which the corrosion of the nickel foam substrate is prohibited. The Ni foam supported PANI cathode with high loading is prepared by PANI electrophoretic deposition, and followed by PANI slurry casting under vacuum filtration. The electrochemical charge storage performance for PANI material is significantly improved by using nickel foam substrate via the electrophoretic interlayer. The specific capacity of the nickel foam-PANI electrode with the electrophoretic layer is higher than the composite electrode without the electrophoretic layer, and the specific capacity of PANI supported by Ni foam reaches up to 183.28 mAh g-1 at the working current of 2.5 mA cm-2. The present electrophoresis deposition method plays the facile procedure for the immobilization of PANI microparticles onto the surface of non-platinum metals, and it becomes feasible to the use of the Ni foam supported PANI composite cathode for the Zn/PANI battery in weak acidic electrolyte.

  6. Structure and stability of nickel/nickel oxide core-shell nanoparticles

    International Nuclear Information System (INIS)

    D'Addato, S; Grillo, V; Valeri, S; Frabboni, S; Altieri, S; Tondi, R

    2011-01-01

    The results of a combined x-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HR-TEM) study of Ni nanoparticles (NP), before and after oxidation, are presented. An experimental set-up was realized for the preparation and study of pre-formed NP films, concentrating the attention on Ni NP in the diameter range between 4 and 8 nm. The XPS data were taken in situ from NPs after different stages of oxidation, including controlled dosing of O 2 gas in the experimental system and exposure to the atmosphere. The Ni 2p structure is a combination of spectra from metallic Ni in the NP core and from the oxide shell. The signal from the NP core was observed even for samples after exposure to air. From the comparison of HR-TEM experimental images with theoretical simulations, it was found that the Ni NP core has a regular multitwinned icosahedral structure, composed of single-crystal tetrahedra with (111) faces. The NiO phase is clearly observed forming islands on the NP surface.

  7. Structure and stability of nickel/nickel oxide core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    D' Addato, S; Grillo, V; Valeri, S; Frabboni, S [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Altieri, S; Tondi, R, E-mail: sergio.daddato@unimore.it [Dipartimento di Fisica, Universita di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2011-05-04

    The results of a combined x-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HR-TEM) study of Ni nanoparticles (NP), before and after oxidation, are presented. An experimental set-up was realized for the preparation and study of pre-formed NP films, concentrating the attention on Ni NP in the diameter range between 4 and 8 nm. The XPS data were taken in situ from NPs after different stages of oxidation, including controlled dosing of O{sub 2} gas in the experimental system and exposure to the atmosphere. The Ni 2p structure is a combination of spectra from metallic Ni in the NP core and from the oxide shell. The signal from the NP core was observed even for samples after exposure to air. From the comparison of HR-TEM experimental images with theoretical simulations, it was found that the Ni NP core has a regular multitwinned icosahedral structure, composed of single-crystal tetrahedra with (111) faces. The NiO phase is clearly observed forming islands on the NP surface.

  8. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes I. Fuel utilization

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2015-03-01

    In the first of a two part publication, the effect of fuel utilization (Uf) on carbon deposition rates in solid oxide fuel cell nickel-based anodes was studied. Representative 5-component CH4 reformate compositions (CH4, H2, CO, H2O, & CO2) were selected graphically by plotting the solutions to a system of mass-balance constraint equations. The centroid of the solution space was chosen to represent a typical anode gas mixture for each nominal Uf value. Selected 5-component and 3-component gas mixtures were then delivered to anode-supported cells for 10 h, followed by determination of the resulting deposited carbon mass. The empirical carbon deposition thresholds were affected by atomic carbon (C), hydrogen (H), and oxygen (O) fractions of the delivered gas mixtures and temperature. It was also found that CH4-rich gas mixtures caused irreversible damage, whereas atomically equivalent CO-rich compositions did not. The coking threshold predicted by thermodynamic equilibrium calculations employing graphite for the solid carbon phase agreed well with empirical thresholds at 700 °C (Uf ≈ 32%); however, at 600 °C, poor agreement was observed with the empirical threshold of ∼36%. Finally, cell operating temperatures correlated well with the difference in enthalpy between the supplied anode gas mixtures and their resulting thermodynamic equilibrium gas mixtures.

  9. Catalytic Water Oxidation by a Bio-inspired Nickel Complex with Redox Active Ligand

    Science.gov (United States)

    Wang, Dong; Bruner, Charlie O.

    2017-01-01

    The oxidation of water to dioxygen is important in natural photosynthesis. One of nature’s strategies for managing such multi-electron transfer reactions is to employ redox active metal-organic cofactor arrays. One prototype example is the copper-tyrosinate active site found in galactose oxidase. In this work, we have implemented such a strategy to develop a bio-inspired nickel-phenolate complex capable of catalyzing the oxidation of water to O2 electrochemically at neutral pH with a modest overpotential. The employment of the redox-active ligand turned out to be a useful strategy to avoid the formation of high-valent nickel intermediates while a reasonable turnover rate (0.15 s−1) is retained. PMID:29099176

  10. Catalytic Water Oxidation by a Bio-inspired Nickel Complex with a Redox-Active Ligand.

    Science.gov (United States)

    Wang, Dong; Bruner, Charlie O

    2017-11-20

    The oxidation of water (H 2 O) to dioxygen (O 2 ) is important in natural photosynthesis. One of nature's strategies for managing such multi-electron transfer reactions is to employ redox-active metal-organic cofactor arrays. One prototype example is the copper tyrosinate active site found in galactose oxidase. In this work, we have implemented such a strategy to develop a bio-inspired nickel phenolate complex capable of catalyzing the oxidation of H 2 O to O 2 electrochemically at neutral pH with a modest overpotential. Employment of the redox-active ligand turned out to be a useful strategy to avoid the formation of high-valent nickel intermediates while a reasonable turnover rate (0.15 s -1 ) is retained.

  11. Synthesis of Nickel Oxide Nanoparticles Using Gelatine as a Green Template for Photocatalytic Degradation of Dye

    OpenAIRE

    JAY YANG LEE

    2018-01-01

    Nickel oxide (NiO) nanoparticles were synthesized through sol-gel method with an environmentally friendly templating agent, which is gelatin. The synthesized NiO were characterized to determine the chemical and physical properties of the nanoparticles. The optimum synthesis parameters were used in photocatalytic degradation of Reactive Black 5 and Acid Yellow 25 dye to determine the catalytic activity of the nanoparticles.

  12. Electron paramagnetic resonance response and magnetic interactions in ordered solid solutions of lithium nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Azzoni, C.B. [Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, Pavia (Italy); Paleari, A. [Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica, Universita di Milano, Milan (Italy); Massarotti, V.; Capsoni, D. [Dipartimento di Chimica-Fisica, Universita di Pavia, Pavia (Italy)

    1996-09-23

    EPR data of ordered solid solutions of lithium nickel oxides are reported as a function of the lithium content. The features of the signal and the EPR centre density are analysed by a model of dynamical trapping of holes in [(Ni{sup 2+}-O-Ni{sup 2+})-h{sup +}] complexes. The possible origin of the interactions responsible for the magnetic ordering and some features of the transport properties are also discussed. (author)

  13. Entropy and mobility of argon physically adsorbed on pure nickel oxide or containing chemisorbed phases

    International Nuclear Information System (INIS)

    Ranc, Rene

    1960-01-01

    This research thesis addresses the adsorption thermodynamic mechanism. It reports the calculation of the variations of differential entropy in order to determine the adsorption model for argon on nickel oxide at low temperatures. It is based on the use of De Boer and Kruyer method. The result does not reveal any important difference between a naked surface and a surface containing chemisorbed elements. The author discusses the various application of this entropy calculation [fr

  14. Ni/SiO2 Catalyst Prepared with Nickel Nitrate Precursor for Combination of CO2 Reforming and Partial Oxidation of Methane: Characterization and Deactivation Mechanism Investigation

    Directory of Open Access Journals (Sweden)

    Sufang He

    2015-01-01

    Full Text Available The performance of Ni/SiO2 catalyst in the process of combination of CO2 reforming and partial oxidation of methane to produce syngas was studied. The Ni/SiO2 catalysts were prepared by using incipient wetness impregnation method with nickel nitrate as a precursor and characterized by FT-IR, TG-DTA, UV-Raman, XRD, TEM, and H2-TPR. The metal nickel particles with the average size of 37.5 nm were highly dispersed over the catalyst, while the interaction between nickel particles and SiO2 support is relatively weak. The weak NiO-SiO2 interaction disappeared after repeating oxidation-reduction-oxidation in the fluidized bed reactor at 700°C, which resulted in the sintering of metal nickel particles. As a result, a rapid deactivation of the Ni/SiO2 catalysts was observed in 2.5 h reaction on stream.

  15. Structural characterization of nickel oxide/hydroxide nanosheets produced by CBD technique

    Energy Technology Data Exchange (ETDEWEB)

    Taşköprü, T., E-mail: ttaskopru@anadolu.edu.tr [Department of Physics, Anadolu University, Eskişehir 26470 (Turkey); Department of Physics, Çankırı Karatekin University, Çankırı 18100 (Turkey); Zor, M.; Turan, E. [Department of Physics, Anadolu University, Eskişehir 26470 (Turkey)

    2015-10-15

    Graphical abstract: SEM images of (a) as deposited β-Ni(OH)2 and (b) NiO samples deposited with pH 10 solution. The inset figures shows the absorbance spectra of (a) β-Ni(OH)2 and (b) NiO samples. - Highlights: • The formation of β-Ni(OH){sub 2} and NiO were confirmed with XRD, SEM, FT-IR and Raman. • Porous nickel oxide was synthesized after heat treatment of nickel hydroxide. • The increase in pH value changes the nanoflake structure to hexagonal nanosheet. • On increasing the pH from 8 to 11, the band gap decreases from 3.52 to 3.37 eV. - Abstract: Nickel hydroxide samples were deposited onto glass substrates using Ni(NO{sub 3}){sub 2}·6H{sub 2}O and aqueous ammonia by chemical bath deposition technique. The influence of pH of solution was investigated by means of X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, optical absorption and BET analysis. The as-deposited samples were identified as β-Ni(OH){sub 2}, were transformed into NiO after heat treatment in air at 500 °C for 2 h. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets. The optical transitions observed in the absorbance spectra below optical band gap is due to defects or Ni{sup 2+} vacancies in NiO samples. The band gap energy of NiO samples changes between 3.37 and 3.52 eV depending on the pH values.

  16. Nickel evaporation in high vacuum and formation of nickel oxide nanoparticles on highly oriented pyrolytic graphite. X-ray photoelectron spectroscopy and atomic force microscopy study

    Czech Academy of Sciences Publication Activity Database

    Franc, Jiří; Bastl, Zdeněk

    2008-01-01

    Roč. 516, č. 18 (2008), s. 6095-6103 ISSN 0040-6090 R&D Projects: GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503 Keywords : nickel oxide nanoparticles * vapour deposition * XPS * AFM Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.884, year: 2008

  17. Synthesis and characterization of nickel oxide particulate annealed at different temperatures

    Science.gov (United States)

    Sharma, Khem Raj; Thakur, Shilpa; Negi, N. S.

    2018-04-01

    Nickel oxide has been synthesized by solution combustion technique. The nickel oxide ceramic was annealed at 600°C and 1000°C for 2 hours. Structural, electrical, dielectric and magnetic properties were analyzed which are strongly dependent upon the synthesis method. Structural properties were examined by X-ray diffractometer (XRD), which confirmed the purity and cubic phase of nickel oxide. XRD data reveals the increase in crystallite size and decrease in full width half maximum (FWHM) as the annealing temperature increases. Electrical conductivity is found to increase from 10-6 to 10-5 (Ω-1cm-1) after annealing. Dielectric constant is observed to increase from 26 to 175 when the annealing temperature is increased from 600°C to 1000°C. Low value of coercive field is found which shows weak ferromagnetic behavior of NiO. It is observed that all the properties of NiO particulate improve with increasing annealing temperature.

  18. Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Marín, E. [Departamento de Ingeniería en Metalurgia y Materiales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México 07300 (Mexico); Villalpando, I. [Centro de Investigación para los Recursos Naturales, Salaices, Chihuahua 33941 (Mexico); Trejo-Valdez, M. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, México, Ciudad de México 07738 (Mexico); Cervantes-Sodi, F. [Departamento de Física y Matemáticas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, Ciudad de México 01219 (Mexico); Vargas-García, J.R. [Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico Nacional, Ciudad de México 07738 (Mexico); Torres-Torres, C., E-mail: ctorrest@ipn.mx [Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738 (Mexico)

    2017-06-15

    Highlights: • Nickel oxide decorated carbon nanotubes were prepared by chemical vapor deposition. • Contrast in photoconductivity phenomena in the nanohybrid was analyzed. • Electrical and nonlinear optical properties were evaluated. • A Wheatstone bridge sensor based metal/carbon nanostructures was proposed. - Abstract: Within this work was explored the influence of nickel oxide decoration on the photoconductive effects exhibited by multiwall carbon nanotubes. Samples in thin film form were prepared by a chemical vapor deposition method. Experiments for evaluating the photo-response of the nanomaterials at 532 nanometers wavelength were undertaken. A contrasting behavior in the photoelectrical characteristics of the decorated nanostructures was analyzed. The decoration technique allowed us to control a decrease in photoconduction of the sample from approximately 100 μmhos/cm to −600 μmhos/cm. Two-wave mixing experiments confirmed an enhancement in nanosecond nonlinearities derived by nickel oxide contributions. It was considered that metallic nanoparticles present a strong responsibility for the evolution of the optoelectronic phenomena in metal/carbon nanohybrids. Impedance spectroscopy explorations indicated that a capacitive behavior correspond to the samples. A potential development of high-sensitive Wheatstone bridge sensors based on the optoelectrical performance of the studied samples was proposed.

  19. In situ oxidation and reduction of triangular nickel nanoplates via environmental transmission electron microscopy

    KAUST Repository

    LAGROW, A.P.; AlYami, Noktan; LLOYD, D.C.; Bakr, Osman; BOYES, E.D.; GAI, P.L.

    2017-01-01

    Understanding the oxidation and reduction mechanisms of transition metals, such as nickel (Ni), is important for their use in industrial applications of catalysis. A powerful technique for investigating the redox reactive species is in situ environmental transmission electron microscopy (ETEM), where oxidation and reduction can be tracked in real time. One particular difficulty in understanding the underlying reactions is understanding the underlying morphology of the starting structure in a reaction, in particular the defects contained in the material, and the exposed surface facets. Here-in, we use a colloidal nanoparticle synthesis in a continuous flow reactor to form nanoplates of nickel coated with oleylamine as a capping agent. We utilise an in situ heating procedure at 300 °C in vacuum to remove the oleylamine ligands, and then oxidise the Ni nanoparticles at 25 °C with 2 Pa oxygen, and follow the nanoparticles initial oxidation. After that, the nanoparticles are oxidised at 200 and 300 °C, making the size of the oxide shell increase to ∼4 nm. The oxide shell could be reduced under 2 Pa hydrogen at 500 °C to its initial size of ∼1 nm. High temperature oxidation encouraged the nanoparticles to form pure NiO nanoparticles, which occurred via the Kirkendall effect leading to hollowing and void formation.

  20. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  1. In situ oxidation and reduction of triangular nickel nanoplates via environmental transmission electron microscopy

    KAUST Repository

    LAGROW, A.P.

    2017-08-29

    Understanding the oxidation and reduction mechanisms of transition metals, such as nickel (Ni), is important for their use in industrial applications of catalysis. A powerful technique for investigating the redox reactive species is in situ environmental transmission electron microscopy (ETEM), where oxidation and reduction can be tracked in real time. One particular difficulty in understanding the underlying reactions is understanding the underlying morphology of the starting structure in a reaction, in particular the defects contained in the material, and the exposed surface facets. Here-in, we use a colloidal nanoparticle synthesis in a continuous flow reactor to form nanoplates of nickel coated with oleylamine as a capping agent. We utilise an in situ heating procedure at 300 °C in vacuum to remove the oleylamine ligands, and then oxidise the Ni nanoparticles at 25 °C with 2 Pa oxygen, and follow the nanoparticles initial oxidation. After that, the nanoparticles are oxidised at 200 and 300 °C, making the size of the oxide shell increase to ∼4 nm. The oxide shell could be reduced under 2 Pa hydrogen at 500 °C to its initial size of ∼1 nm. High temperature oxidation encouraged the nanoparticles to form pure NiO nanoparticles, which occurred via the Kirkendall effect leading to hollowing and void formation.

  2. Oxidation of nickel particles in an environmental TEM

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    nanometres in size. These domains impinge and cover the particles surface. As the temperature increases under O2, the NiO film grows and creates irregular structures composed of many crystallites. The reaction kinetics are inferred by EELS using different techniques analyzing changes in shapes of the Ni L2...... temperature, providing new insights into oxidation/corrosion processes....

  3. PREPARATION OF NICKEL - COBALT SPINEL OXIDES NixCO3 ...

    African Journals Online (AJOL)

    During the last decade, the improvement of the alkaline water electrolysis cells has drained a lot of interest, especially due to an increase in consummation and prices of natural energetic resources. Oxides constitute a wide class of materials with good electrocatalytic activity for many electrode reactions from O2 evolution to ...

  4. Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors

    Science.gov (United States)

    Chang, Jie; Sun, Jing; Xu, Chaohe; Xu, Huan; Gao, Lian

    2012-10-01

    Nickel cobalt oxides with various Ni/Co ratios were synthesized using a facile template-free approach for electrochemical supercapacitors. The texture and morphology of the nanocomposites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller analysis (BET). The results show that a hierarchical porous structure assembled from nanoflakes with a thickness of ~10 nm was obtained, and the ratio of nickel to cobalt in the nanocomposites was very close to the precursors. Cyclic voltammetry (CV) and galvanostatic charge and discharge tests were carried out to study the electrochemical performance. Both nickel cobalt oxides (Ni-Co-O-1 with Ni : Co = 1, Ni-Co-O-2 with Ni : Co = 2) outperform pure NiO and Co3O4. The Ni-Co-O-1 and Ni-Co-O-2 possess high specific capacities of 778.2 and 867.3 F g-1 at 1 A g-1 and capacitance retentions of 84.1% and 92.3% at 10 A g-1, respectively. After full activation, the Ni-Co-O-1 and Ni-Co-O-2 could achieve a maximum value of 971 and 1550 F g-1 and remain at ~907 and ~1450 F g-1 at 4 A g-1, respectively. Also, the nickel cobalt oxides show high capacity retention when fast charging.Nickel cobalt oxides with various Ni/Co ratios were synthesized using a facile template-free approach for electrochemical supercapacitors. The texture and morphology of the nanocomposites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller analysis (BET). The results show that a hierarchical porous structure assembled from nanoflakes with a thickness of ~10 nm was obtained, and the ratio of nickel to cobalt in the nanocomposites was very close to the precursors. Cyclic voltammetry (CV) and galvanostatic charge and discharge tests were carried out to study the electrochemical performance. Both nickel cobalt oxides (Ni-Co-O-1 with Ni : Co = 1, Ni-Co-O-2 with Ni

  5. Thermogravimetric study of the reduction of oxides of nickel and chromium

    Science.gov (United States)

    Herbell, T. P.

    1973-01-01

    The effectiveness of hydrogen, carbon and hydrogen-carbon in reducing NiO, Cr2O3, mixed NiO-Cr2O3 and oxidized Ni-20Cr was evaluated by thermogravimetry. NiO was effectively reduced by all three atmospheres, Cr2O3 only by hydrogen-carbon, NiO-Cr2O3 by hydrogen and hydrogen-carbon and oxidized Ni-20Cr by hydrogen, hydrogen-carbon and partially by carbon alone. The results indicate that nickel and carbon promote the reduction of Cr2O3.

  6. Behaviour of nickel and nickel oxide thin films in chloride media; Comportamiento de peliculas delgadas de niquel y oxido de niquel en NaCl al 3%

    Energy Technology Data Exchange (ETDEWEB)

    Magana, C. R.; Angeles, M. E.; Rodriguez, F. J.

    2006-07-01

    The aim of this work is to study the behaviour of both: a nickel thin film deposited on steel AISI 1018 (UNS G 10180) and a superior nickel oxide electrochemically obtained on the film; with the purpose of decreasing the corrosion rate of low carbon steel immersed in a solution of NaCl 3% wt, thus efficient anti corrosive protection could be obtained. Two film deposition techniques were used, electrochemical and magnetron DC sputtering; and the protective properties of deposited films exposed to the aggressive media, were evaluated. The characterization of different films was carried out by using electrochemical techniques: polarization curves and electrochemical impedance. (Author)

  7. Fabrication of nickel-foam-supported layered zinc-cobalt hydroxide nanoflakes for high electrochemical performance in supercapacitors.

    Science.gov (United States)

    Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Liu, Xiaohe; Ma, Renzhi; Qiu, Guanzhou

    2014-10-04

    Nickel foam supported Zn-Co hydroxide nanoflakes were fabricated by a facile solvothermal method. Benefited from the unique structure of Zn-Co hydroxide nanoflakes on a nickel foam substrate, the as prepared materials exhibited an excellent specific capacitance of 901 F g(-1) at 5 A g(-1) and remarkable cycling stability as electrode materials in supercapacitors.

  8. Structural, optical and electrical characteristics of nickel oxide thin films synthesised through chemical processing method

    Science.gov (United States)

    Akinkuade, Shadrach; Mwankemwa, Benanrd; Nel, Jacqueline; Meyer, Walter

    2018-04-01

    A simple and cheap chemical deposition method was used to produce a nickel oxide (NiO) thin film on glass substrates from a solution that contained Ni2+ and monoethanolamine. Thermal treatment of the film at temperatures above 350 °C for 1 h caused decomposition of the nickel hydroxide into nickel oxide. Structural, optical and electrical properties of the film were studied using X-ray diffraction (XRD), spectrophotometry, current-voltage measurements and scanning electron microscopy (SEM). The film was found to be polycrystalline with interplanar spacing of 0.241 nm, 0.208 nm and 0.148 nm for (111), (200) and (220) planes respectively, the lattice constant a was found to be 0.417 nm. The film had a porous surface morphology, formed from a network of nanowalls of average thickness of 66.67 nm and 52.00 nm for as-deposited and annealed films respectively. Transmittance of visible light by the as-deposited film was higher and the absorption edge of the film blue-shifted after annealing. The optical band gap of the annealed film was 3.8 eV. Electrical resistivity of the film was 378 Ωm.

  9. Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells

    Directory of Open Access Journals (Sweden)

    Kezban Ada

    2010-04-01

    Full Text Available The aim of this study was to observe the cytotoxicity and apoptotic effects of nickel oxide nanoparticles on humancervix epithelioid carcinoma cell line (HeLa. Nickel oxide precursors were synthesized by an nickel sulphate-excess ureareaction in boiling aqueous solution. The synthesized NiO nanoparticles (<200 nm were investigated by X-ray diffractionanalysis and transmission electron microscopy techniques. For cytotoxicity experiments, HeLa cells were incubated in50-500 μg/mL NiO for 2, 6, 12 and 16 hours. The viable cells were counted with a haemacytometer using light microscopy.The cytotoxicity was observed low in 50-200 μg/mL concentration for 16 h, but high in 400-500 μg/mL concentration for2-6 h. HeLa cells' cytoplasm membrane was lysed and detached from the well surface in 400 μg/mL concentration NiOnanoparticles. Double staining and M30 immunostaining were performed to quantify the number of apoptotic cells in cultureon the basis of apoptotic cell nuclei scores. The apoptotic effect was observed 20% for 16 h incubation.

  10. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation

    International Nuclear Information System (INIS)

    Yan Wei; Wang Dan; Botte, Gerardine G.

    2012-01-01

    Nickel–Cobalt bimetallic hydroxide electrocatalysts, synthesized through a one-step electrodeposition method, were evaluated for the oxidation of urea in alkaline conditions with the intention of reducing the oxidation overpotential for this reaction. The Nickel–Cobalt bimetallic hydroxide catalysts were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, cyclic voltammetry (CV), and polarization techniques. A significant reduction in the overpotential (150 mV) of the reaction was observed with the Nickel–Cobalt bimetallic hydroxide electrode (ca. 43% Co content) when compared to a nickel hydroxide electrode. The decrease of the urea oxidation potential on the Nickel–Cobalt bimetallic hydroxide electrodes reveals great potential for future applications of urea electro-oxidation, including wastewater remediation, hydrogen production, sensors, and fuel cells.

  11. Diffusion of Nickel into Ferritic Steel Interconnects of Solid Oxide Fuel/Electrolysis Stacks

    DEFF Research Database (Denmark)

    Molin, Sebastian; Chen, Ming; Bowen, Jacob R.

    2013-01-01

    diffusion of nickel from the Ni/YSZ electrode or the contact layer into the interconnect plate. Such diffusion can cause austenization of the ferritic structure and could possibly alter corrosion properties of the steel. Whereas this process has already been recognized by SOFC stack developers, only...... a limited number of studies have been devoted to the phenomenon. Here, diffusion of Ni into ferritic Crofer 22 APU steel is studied in a wet hydrogen atmosphere after 250 hours of exposure at 800 °C using Ni-plated (~ 10 micron thick coatings) sheet steel samples as a model system. Even after...... this relatively short time all the metallic nickel in the coating has reacted and formed solid solutions with iron and chromium. Diffusion of Ni into the steel causes formation of the austenite FCC phase. The microstructure and composition of the oxide scale formed on the sample surface after 250 hours is similar...

  12. High-performance Electrochemical Energy Storage Electrodes Based on Nickel Oxide-coated Nickel Foam Prepared by Sparking Method

    International Nuclear Information System (INIS)

    Chuminjak, Yaowamarn; Daothong, Suphaporn; Kuntarug, Aekapong; Phokharatkul, Ditsayut; Horprathum, Mati; Wisitsoraat, Anurat; Tuantranont, Adisorn; Jakmunee, Jaroon; Singjai, Pisith

    2017-01-01

    Highlights: • NiO particles (3-10 nm) were sparked on Ni foams with varying times (45-180 min). • Larger NiO nanoparticles were aggregated to foam-like structure at a longer time. • The optimal time of 45 min led to a high specific capacity of 920 C/g at 1 A/g. • The specific capacity remained as high as 699 (76% of 920) C/g at 20 A/g. • The optimal electrode exhibited 96% capacity retention after 1000 cycles at 4 A/g. - Abstract: In this work, high-performance electrochemical energy storage electrodes were developed based on nickel oxide (NiO)-coated nickel (Ni) foams prepared by a sparking method. NiO nanoparticles deposited on Ni foams with varying sparking times from 45 to 180 min were structurally characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. In addition, the electrochemical energy storage characteristics of the electrodes were evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. It was found that NiO nanoparticles sparked on Ni foam with a longer time would be agglomerated and formed a foam-like network with large pore sizes and a lower surface area, leading to inferior charge storage behaviors. The NiO/Ni foam electrode prepared with the shortest sparking of 45 min displayed high specific capacities of 920 C g"-"1 (1840 F g"-"1) at 1 A g"-"1 and 699 (76% of 920) C g"-"1 at 20 A g"-"1 in a potential window of 0-0.5 V vs. Ag/AgCl as well as a good cycling performance with 96% capacity retention at 4 A g"-"1 after 1000 cycles and a low equivalent series resistance of 0.4 Ω. Therefore, NiO/Ni foam electrodes prepared by the sparking method are highly promising for high-capacity energy storage applications.

  13. Cyclic Oxidation and Hot Corrosion Behavior of Nickel-Iron-Based Superalloy

    Science.gov (United States)

    Chellaganesh, D.; Adam Khan, M.; Winowlin Jappes, J. T.; Sathiyanarayanan, S.

    2018-01-01

    The high temperature oxidation and hot corrosion behavior of nickel-iron-based superalloy are studied at 900 ° and 1000 °C. The significant role of alloying elements with respect to the exposed medium is studied in detail. The mass change per unit area was catastrophic for the samples exposed at 1000 °C and gradual increase in mass change was observed at 900 °C for both the environments. The exposed samples were further investigated with SEM, EDS and XRD analysis to study the metallurgical characteristics. The surface morphology has expressed the in situ nature of the alloy and its affinity toward the environment. The EDS and XRD analysis has evidently proved the presence of protective oxides formation on prolonged exposure at elevated temperature. The predominant oxide formed during the exposure at high temperature has a major contribution toward the protection of the samples. The nickel-iron-based superalloy is less prone to oxidation and hot corrosion when compared to the existing alloy in gas turbine engine simulating marine environment.

  14. Effect study of the support in nickel and cobalt catalysts for obtaining hydrogen from ethanol steam reforming

    International Nuclear Information System (INIS)

    Silva, Sirlane Gomes da

    2013-01-01

    A range of oxide-supported metal catalysts have been investigated for the steam reforming of ethanol for the production of hydrogen and subsequent application in fuel cells. The catalysts were synthesized by the co-precipitation and internal gelification methods using cobalt and nickel as active metals supported on aluminum, zirconium, lanthanum and cerium oxides. After prepared and calcined at 550 Cº the solids were fully characterized by different techniques such as X-rays diffraction(DRX), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy, nitrogen adsorption (B.E.T), temperature-programmed reduction in H2 (TPR-H2) and thermogravimetric analysis. The catalytic tests were performed in a monolithic quartz reactor and submitted to different thermodynamic conditions of steam reforming of ethanol at temperatures varying from 500º C to 800 ºC. The product gas streams from the reactor were analyzed by an on-line gas chromatograph. The cobalt/nickel catalyst supported on a ceria-lanthania mixture (Co 10% / Ni 5% - CeO 2 La 2 O 3 ) showed good catalytic performance in hydrogen selectivity reaching a concentration greater than 65%, when compared to other catalytic systems such as: Co 10% / Ni5% - CeO 2 ; Co 10% / Ni 5% - CeO 2 ZrO 2 ; Co 10% / Ni 5% - ZrO 2 ; Co 10% / Ni 5% - La 2 O 3 ; Co 10% / Ni 5% - CeO 2 La 2 O 3 /K 2% ; Co 10 % / Ni 5% - CeO 2 La 2 O 3 / Na 2% ; Ni 10% / Co 5% - CeO 2 La 2 O 3 ; Co-Al 2 O 3 e Co-Al 2 O 3 CeO 2 . (author)

  15. Nitric oxide and bcl-2 mediated the apoptosis induced by nickel(II) in human T hybridoma cells

    International Nuclear Information System (INIS)

    Guan Fuqin; Zhang Dongmei; Wang Xinchang; Chen Junhui

    2007-01-01

    Although effects of nickel(II) on the immune system have long been recognized, little is known about the effects of nickel(II) on the induction of apoptosis and related signaling events in T cells. In the present study, we investigated the roles and signaling pathways of nickel(II) in the induction of apoptosis in a human T cell line jurkat. The results showed that the cytotoxic effects of Ni involved significant morphological changes and chromosomal condensation (Hoechst 33258 staining). Analyses of hypodiploid cells and FITC-Annexin V and PI double staining showed significant increase of apoptosis in jurkat cells 6, 12 and 24 h after nickel(II) treatment. Flow cytometry analysis also revealed that the loss of mitochondrial membrane potential (MMP) occurred concomitantly with the onset of NiCl 2 -induced apoptosis. Induction of apoptotic cell death by nickel was mediated by reduction of bcl-2 expression. Furthermore, nickel stimulated the generation of nitric oxide (NO). These results suggest that nickel(II) chloride induces jurkat cells apoptosis via nitric oxide generation, mitochondrial depolarization and bcl-2 suppression

  16. Comparative study of the influence of antimony oxide additives (III) and nickel hydroxide (II) on electrochemical behavior of cadmium electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kadnikova, N.V.; Lvova, L.A.; Ryabskaya, I.A.

    1983-01-01

    Comparative study of the influence of additives indicated that with partial or complete replacement in the active mass of the cadmium electrode of nickel hydroxide (II) by antimony oxide (III), the electrochemical characteristics do not significantly change. During prolonged storage of charged cadmium electrodes the presence of nickel hydroxide (II) and intermetal compound (IMC) of cadmium with nickel is formed and the specific surface increases. In the case of adding antimony (III) formation of noticeable quantities of IMC of cadmium with antimony is not observed. The specific surface is reduced during storage.

  17. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  18. High temperature oxidation behavior of gamma-nickel+gamma'-nickel aluminum alloys and coatings modified with platinum and reactive elements

    Science.gov (United States)

    Mu, Nan

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000°C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455°C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain beta-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used beta-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt+Hf-modified gamma-Ni+gamma'-Ni 3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase gamma-Ni and gamma'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al 2O3 formation by suppressing the NiO growth on both gamma-Ni and gamma'-Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures (˜970°C) in the very early stage of oxidation. It

  19. Highly Reversible Electrochemical Insertion of Lithium, Accompanied With a Marked Color Change, Occuring in Microcrystalline Lithium Nickel Oxide Films

    OpenAIRE

    Campet, G.; Portier, J.; Morel, B.; Ferry, D.; Chabagno, J. M.; Benotmane, L.; Bourrel, M.

    1992-01-01

    Thin films of lithium-nickel oxide, whose texture consists of microcrystallites with an average grain size of 50 Å, permit highly reversible electrochemical insertion of lithium ions in Li+ conducting electrolytes. Therefore, the corresponding materials would be of great interest for energy storage applications. In addition, the lithium insertion/extraction reactions in the nickel-based layers are accompanied with a marked color change, making these films of interest for the devel...

  20. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    International Nuclear Information System (INIS)

    Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-01-01

    Graphical abstract: The enzyme-less amperometric sensor based on 3-D periodic mesoporous NiO nanomaterials used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM"−"1 cm"−"2. - Highlights: • Microwave-assisted method was used to fabricate the 3-D periodic mesoporous NiO particles. • The mesoporous nickel oxide was applied to nonenzymatic uric acid biosensor. • The detection limit is 0.005 μM over wide linear detection ranges up to 0.374 mM. • The sensitivity is 756.26 μA mM"−"1 cm"−"2. - Abstract: 3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N_2 adsorption–desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM"−"1 cm"−"2, and a possible mechanism was also given in the paper.

  1. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei; Cao, Yang, E-mail: caowang507@163.com; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-12-30

    Graphical abstract: The enzyme-less amperometric sensor based on 3-D periodic mesoporous NiO nanomaterials used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM{sup −1} cm{sup −2}. - Highlights: • Microwave-assisted method was used to fabricate the 3-D periodic mesoporous NiO particles. • The mesoporous nickel oxide was applied to nonenzymatic uric acid biosensor. • The detection limit is 0.005 μM over wide linear detection ranges up to 0.374 mM. • The sensitivity is 756.26 μA mM{sup −1} cm{sup −2}. - Abstract: 3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N{sub 2} adsorption–desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM{sup −1} cm{sup −2}, and a possible mechanism was also given in the paper.

  2. Study of the high temperature oxidation of nickel; Contribution a l'etude de l'oxydation du nickel aux temperatures elevees

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-11-01

    The parabolic oxidation of nickel by oxygen and by air at atmospheric pressure has been studied in the temperature range 600 to 1400 C, in particular by thermogravimetric and micrographic techniques. The mechanism of the reaction has been determined; it has been shown in particular that the break in the Arrhenius plot of the kinetics, occurring at about 950 C, is the result of a stimulation of the diffusion across the nickel prot-oxide film above this temperature; this is the result of the presence of excess nickel vacancies in the film. A systematic study has also been made of the influence of the oxygen pressure P{sub O{sub 2}} (10{sup -2} torr {<=} P{sub O{sub 2}} {<=} 760 torr) on the parabolic oxidation of nickel between 800 and 1400 C. In the range 1000 to 1400 C, the activation energy of the process decreases monotonously from 57 to 34 kcal/mole as P{sub O{sub 2}} decreases from 760 to 1 torr. Furthermore, it has been shown that the parabolic oxidation constant is proportional to P{sub O{sub 2}}{sup 1/n} the value of n is not invariant however in the temperature range examined, but decreases from 6 to about 3 when the temperature increases from 900 to 1400 C. Finally, a study has been made of the oxidation of nickel in carbon dioxide at atmospheric pressure between 750 and 1400 C. The main reaction is Ni + CO{sub 2} {yields} NiO + CO, and corresponds, with a good approximation, to the reaction of the metal with the oxygen produced by the thermal dissociation of the CO{sub 2}. (author) [French] L'oxydation parabolique du nickel avec l'oxygene et l'air a la pression atmospherique a ete etudiee dans l'intervalle de temperatures 600-1400 C, surtout par voies thermogravimetrique et micrographique. Le mecanisme de la reaction a ete precise; en particulier, il a ete montre que la brisure de la courbe d'Arrhenius traduisant sa cinetique, qui se produit a 950 C environ, resulte d'une stimulation de la diffusion dans la pellicule de protoxyde de nickel au dessous de

  3. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.

    Science.gov (United States)

    Sun, Ke; Saadi, Fadl H; Lichterman, Michael F; Hale, William G; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T; Omelchenko, Stefan T; He, Jr-Hau; Papadantonakis, Kimberly M; Brunschwig, Bruce S; Lewis, Nathan S

    2015-03-24

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).

  4. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke

    2015-03-11

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). © 2015, National Academy of Sciences. All rights reserved.

  5. Influence of coprecipitation and mechanical mixture methods on the characteristics of nickel oxide-alumina composites; Influencia dos metodos de coprecipitacao e mistura mecanica nas caracteristicas de compositos oxido de niquel-alumina

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, G.L.; Yoshito, W.K.; Ussui, V.; Lima, N.B. de; Lazar, D.R.R., E-mail: gcordeiro@usp.br [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais

    2014-07-01

    Alumina-supported nickel catalysts are currently used in the reforming process due to low cost and high activity for hydrogen production from alcohols. In this work, the effect of preparation methods on nickel oxide-alumina based materials has been investigated. Nickel content was fixed at 15 wt%. Ceramic powders were obtained by coprecipitation in ammonia medium and mechanical mixture. Coprecipitated materials were calcined in air at 750 deg C to obtain the corresponding oxides. Materials obtained by mechanical mixture were prepared by wet milling of nickel oxide and alumina powders, both synthesized by precipitation and calcination in air at 450 and 750 deg C, respectively. Powders were characterized by X-ray diffraction, nitrogen gas sorption by applying the BET method, laser diffraction, scanning electron microscopy, electrophoretic mobility measurements for zeta potential determination and infrared spectroscopy. The results showed that coprecipitation method allowed the production of mixed oxides with high surface area (232,7 ± 3,2 m{sup 2}.g{sup -1}) and normal granulometric distribution while mechanical mixture led to the formation of materials constituted by gamma alumina and nickel oxide phases, with low surface area (136,2 ± 0,5 m{sup 2}.g{sup -1}) and bimodal granulometric distribution. (author)

  6. Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L.

    Directory of Open Access Journals (Sweden)

    Abdallah Oukarroum

    2015-01-01

    Full Text Available The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs and nickel(II oxide as bulk (NiO-Bulk. Plants were exposed during 24 h to 0–1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS formation, especially at high concentration (1000 mg/L. These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing.

  7. A highly efficient microfluidic nano biochip based on nanostructured nickel oxide.

    Science.gov (United States)

    Ali, Md Azahar; Solanki, Pratima R; Patel, Manoj K; Dhayani, Hemant; Agrawal, Ved Varun; John, Renu; Malhotra, Bansi D

    2013-04-07

    We present results of the studies relating to fabrication of a microfluidic biosensor chip based on nickel oxide nanorods (NRs-NiO) that is capable of directly measuring the concentration of total cholesterol in human blood through electrochemical detection. Using this chip we demonstrate, with high reliability and in a time efficient manner, the detection of cholesterol present in buffer solutions at clinically relevant concentrations. The microfluidic channel has been fabricated onto a nickel oxide nanorod-based electrode co-immobilized with cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) that serves as the working electrode. Bare indium tin oxide served as the counter electrode. A Ag/AgCl wire introduced to the outlet of the microchannel acts as a reference electrode. The fabricated NiO nanorod-based electrode has been characterized using X-ray diffraction, Raman spectroscopy, HR-TEM, FT-IR, UV-visible spectroscopy and electrochemical techniques. The presented NRs-NiO based microfluidic sensor exhibits linearity in the range of 1.5-10.3 mM, a high sensitivity of 0.12 mA mM(-1) cm(-2) and a low value of 0.16 mM of the Michaelis-Menten constant (Km).

  8. Iron-Induced Activation of Ordered Mesoporous Nickel Cobalt Oxide Electrocatalyst for the Oxygen Evolution Reaction.

    Science.gov (United States)

    Deng, Xiaohui; Öztürk, Secil; Weidenthaler, Claudia; Tüysüz, Harun

    2017-06-28

    Herein, ordered mesoporous nickel cobalt oxides prepared by the nanocasting route are reported as highly active oxygen evolution reaction (OER) catalysts. By using the ordered mesoporous structure as a model system and afterward elevating the optimal catalysts composition, it is shown that, with a simple electrochemical activation step, the performance of nickel cobalt oxide can be significantly enhanced. The electrochemical impedance spectroscopy results indicated that charge transfer resistance increases for Co 3 O 4 spinel after an activation process, while this value drops for NiO and especially for CoNi mixed oxide significantly, which confirms the improvement of oxygen evolution kinetics. The catalyst with the optimal composition (Co/Ni 4/1) reaches a current density of 10 mA/cm 2 with an overpotential of a mere 336 mV and a Tafel slope of 36 mV/dec, outperforming benchmarked and other reported Ni/Co-based OER electrocatalysts. The catalyst also demonstrates outstanding durability for 14 h and maintained the ordered mesoporous structure. The cyclic voltammograms along with the electrochemical measurements in Fe-free KOH electrolyte suggest that the activity boost is attributed to the generation of surface Ni(OH) 2 species that incorporate Fe impurities from the electrolyte. The incorporation of Fe into the structure is also confirmed by inductively coupled plasma optical emission spectrometry.

  9. Inkjet-printed p-type nickel oxide thin-film transistor

    Science.gov (United States)

    Hu, Hailong; Zhu, Jingguang; Chen, Maosheng; Guo, Tailiang; Li, Fushan

    2018-05-01

    High-performance inkjet-printed nickel oxide thin-film transistors (TFTs) with Al2O3 high-k dielectric have been fabricated using a sol-gel precursor ink. The "coffee ring" effect during the printing process was facilely restrained by modifying the viscosity of the ink to control the outward capillary flow. The impacts on the device performance was studied in detail in consideration of annealing temperature of the nickel oxide film and the properties of dielectric layer. The optimized switching ability of the device were achieved at an annealing temperature of 280 °C on a 50-nm-thick Al2O3 dielectric layer, with a hole mobility of 0.78 cm2/V·s, threshold voltage of -0.6 V and on/off current ratio of 5.3 × 104. The as-printed p-type oxide TFTs show potential application in low-cost, large-area complementary electronic devices.

  10. Cermet sintering on the oase of molybdenum, nickel, aluminium oxide in dry and wet hydrogen medium

    International Nuclear Information System (INIS)

    Fedotov, A.V.; Lutskaya, E.Eh.

    1985-01-01

    Cermet sintering on the base of molybdenum, nickel and aluminium oxide in dry and wer hydrogen medium is studied. It is stated that presence of water vapours permits to decrease sintering temperature of molybdenum containing cermets and to prepare dense nickeliferous cermets. Cermet density can he rather high at final stages of sintering that is probably conditioned by decrease of growth rate of corundum crystals. Pressing pressure activates cermet siptering at intermediate stages and it is low effective at finite stages of condensation. Constancy of relative reduction of void volume is preserved only at final stages of sintering

  11. Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    The oxidation of nickel particles was studied in situ in an environmental transmission electron microscope in 3.2 mbar of O2 between ambient temperature and 600°C. Several different transmission electron microscopy imaging techniques, electron diffraction and electron energy-loss spectroscopy were...... diffusion of Ni2+ along NiO grain boundaries, self-diffusion of Ni2+ ions and vacancies, growth of NiO grains and nucleation of voids at Ni/NiO interfaces. We also observed the formation of transverse cracks in a growing NiO film in situ in the electron microscope....

  12. Preparation and supercapacitor application of the single crystal nickel hydroxide and oxide nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Department of Materials Science and Engineering, Yunnan University, 650091 Kunming (China); Ni, Haifang [Institute of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Cai, Yun; Cai, Xiaoyan [Department of Materials Science and Engineering, Yunnan University, 650091 Kunming (China); Liu, Yongjun [Advanced Analysis and Measurement Center, Yunnan University, 650091 Kunming (China); Chen, Gang [Department of Materials Science and Engineering, Yunnan University, 650091 Kunming (China); Fan, Li-Zhen, E-mail: fanlizhen@ustb.edu.cn [Institute of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Wang, Yude, E-mail: ydwang@ynu.edu.cn [Department of Materials Science and Engineering, Yunnan University, 650091 Kunming (China)

    2013-09-01

    Graphical abstract: The nickel hydroxide and nickel oxide nanosheets prepared using CTAB at room temperature exhibit a high specific capacitance, prompt charge/discharge rate. - Highlights: • The nickel hydroxide nanosheets were prepared using CTAB at room temperature. • Ni(OH){sub 2} nanosheet can be successfully converted to NiO nanosheet via calcination. • The NiO nanosheet has a specific capacitance of 388 F g{sup −1} at 5 A g{sup −1} in KOH solution. • Anneal temperature impacts capacitive properties as electrode. - Abstract: The single crystalline Ni(OH){sub 2} nanosheets were synthesized by a simple chemical precipitation method using nickel chloride as precursors and ammonia as precipitating agent. The Ni(OH){sub 2} nanosheets were successfully converted to NiO nanosheets via calcination under appropriate conditions. Analytical methods such as X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and Fourier transformed infrared (FTIR) spectra were employed to characterize the morphology and microstructure of the final products. The experimental results revealed that Ni(OH){sub 2} nanosheets were shape-preserved transformed to NiO nanosheets at 250 °C for 24 h. Ni(OH){sub 2} and NiO nanosheets were directly functionalized as supercapacitor electrodes for potential energy storage applications, whose charge–discharge properties, electrochemical impedance spectra, cyclic voltammetry, and cycle performance were examined. The experimental results show that the single-crystalline NiO nanosheets are a promising candidate for the supercapacitor electrode. They exhibit a high specific capacitance, prompt charge/discharge rate.

  13. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  14. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  15. Three dimensional characterization of nickel coarsening in solid oxide cells via ex-situ ptychographic nano-tomography

    Science.gov (United States)

    De Angelis, Salvatore; Jørgensen, Peter Stanley; Tsai, Esther Hsiao Rho; Holler, Mirko; Kreka, Kosova; Bowen, Jacob R.

    2018-04-01

    Nickel coarsening is considered a significant cause of solid oxide cell (SOC) performance degradation. Therefore, understanding the morphological changes in the nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode is crucial for the wide spread usage of SOC technology. This paper reports a study of the initial 3D microstructure evolution of a SOC analyzed in the pristine state and after 3 and 8 h of annealing at 850 °C, in dry hydrogen. The analysis of the evolution of the same location of the electrode shows a substantial change of the nickel and pore network during the first 3 h of treatment, while only negligible changes are observed after 8 h. The nickel coarsening results in loss of connectivity in the nickel network, reduced nickel specific surface area and decreased total triple phase boundary density. For the condition of this experiment, nickel coarsening is shown to be predominantly curvature driven, and changes in the electrode microstructure parameters are discussed in terms of local microstructural evolution.

  16. Decomposition of hydrogen peroxide on nickel oxide - vanadium pentoxide catalysts and the effect of ionizing radiation on them

    International Nuclear Information System (INIS)

    Mucka, V.

    1984-01-01

    Some physico-chemical and catalytic properties of nickel oxide-vanadium pentoxide two-component catalysts were studied over the entire concentration range of the components, using the decomposition of hydrogen peroxide in an aqueous solution as the test reaction. The two oxides were found to affect each other; this was shown by the dependences of the specific surface area, the V 4+ ion concentration, and the catalyst activity on the system composition. At low vanadium pentoxide concentrations (up to 15 mol%) the reaction took place on nickel oxide modified with vanadium pentoxide, whereas in the region of higher vanadium pentoxide concentrations the decomposition of the peroxide was catalyzed primarily in the homogeneous phase by vanadium(V) peroxide ions; in a sample with 30 mol% V 2 O 5 , trivalent vanadium also played a part. With catalysts obtained by mere mechanical mixing of the two oxides, a modified activity was observed in the region of high excess of nickel oxide. The activity of catalyst, particularly pure nickel oxide, was increased by its partial reduction and decreased by its exposure to gamma radiation if the dose was higher than 10 5 Gy. The effects observed are interpreted in terms of the concept of bivalent catalytic centres. (author)

  17. Preliminary results on the chemical characterisation of the cathode nickel--emissive layer interface in oxide cathodes

    International Nuclear Information System (INIS)

    Jenkins, S.N.; Barber, D.K.; Whiting, M.J.; Baker, M.A.

    2003-01-01

    In cathode ray tube (CRT) thermionic oxide cathodes, the nickel-oxide interface properties are key to understanding the mechanisms of operation. At the elevated operational temperatures, free barium is formed at the interface by the reaction of reducing activators, from the nickel alloy, with barium oxide. The free barium diffuses to the outer surface of the oxide providing a low work function electron-emitting surface. However, during cathode life an interface layer grows between the nickel alloy and oxide, comprised of reaction products. The interfacial layer sets limits on the cathode performance and useful operational lifetime by inhibiting the barium reducing reaction. This paper discusses sample preparation procedures for exposure of the interface and the use of several surface and bulk analytical techniques to study interface layer formation. SEM, AES and SIMS data are presented, which provide preliminary insight into the mechanisms operating during the cathode's lifetime. There is evidence that the activator elements in the nickel alloy base, Al and Mg, are able to diffuse to the surface of the oxide during activation and ageing and that these elements are enriched at the interface after accelerated life

  18. Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance.

    Science.gov (United States)

    Su, Dawei; Kim, Hyun-Soo; Kim, Woo-Seong; Wang, Guoxiu

    2012-06-25

    Mesoporous nickel oxide nanowires were synthesized by a hydrothermal reaction and subsequent annealing at 400 °C. The porous one-dimensional nanostructures were analysed by field-emission SEM, high-resolution TEM and N(2) adsorption/desorption isotherm measurements. When applied as the anode material in lithium-ion batteries, the as-prepared mesoporous nickel oxide nanowires demonstrated outstanding electrochemical performance with high lithium storage capacity, satisfactory cyclability and an excellent rate capacity. They also exhibited a high specific capacitance of 348 F g(-1) as electrodes in supercapacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    International Nuclear Information System (INIS)

    Sun, Wei; Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong; Wang, Wencheng; Wang, Lei

    2014-01-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E 0′ ) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H 2 O 2 . Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized

  20. Synthesis of nickel oxide - zirconia composites by coprecipitation route followed by hydrothermal treatment

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci; Paschoal, Jose Octavio Armani

    2009-01-01

    Nickel oxide-yttria stabilized zirconia (NiO-YSZ) for use as solid oxide fuel cell anode were synthesized by coprecipitation to obtain amorphous zirconia and crystallized β-nickel gels of the corresponding metal hydroxides. Hydrothermal treatment at 200°C and 220 psi from 2 up to 16 hours, under stirring, was performed to produce nanocrystalline powder. The as-synthesized powders were uniaxially pressed and sintered in air. Powders were characterized by X-ray diffraction, laser scattering, scanning and transmission electron microscopy (SEM/TEM), gas adsorption technique (BET) and TGDTA thermal analysis. Ceramic samples were characterized by dilatometric analysis and density measurements by Archimedes method. The characteristics of hydrothermally synthesized powders and compacts were compared to those produced without temperature and pressure application. Crystalline powders were obtained after hydrothermal process, excluding the calcination step from this route. The specific surface area of powders decreases with increasing time of hydrothermal treatment while the agglomerate mean size is not affected by this parameter. (author)

  1. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent.

    Science.gov (United States)

    Sathyavathi, S; Manjula, A; Rajendhran, J; Gunasekaran, P

    2014-08-01

    In the present study, a nickel resistant bacterium MRS-1 was isolated from nickel electroplating industrial effluent, capable of converting soluble NiSO4 into insoluble NiO nanoparticles and identified as Microbacterium sp. The formation of NiO nanoparticles in the form of pale green powder was observed on the bottom of the flask upon prolonged incubation of liquid nutrient medium containing high concentration of 2000ppm NiSO4. The properties of the produced NiO nanoparticles were characterized. NiO nanoparticles exhibited a maximum absorbance at 400nm. The NiO nanoparticles were 100-500nm in size with unique flower like structure. The elemental composition of the NiO nanoparticles was 44:39. The cells of MRS-1 were utilized for the treatment of nickel electroplating industrial effluent and showed nickel removal efficiency of 95%. Application of Microbacterium sp. MRS-1 would be a potential bacterium for bioremediation of nickel electroplating industrial waste water and simultaneous synthesis of NiO nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    Science.gov (United States)

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  3. Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors

    Science.gov (United States)

    Ferreira, C. S.; Passos, R. R.; Pocrifka, L. A.

    2014-12-01

    The present study reports the synthesis and morphological, structural and electrochemical characterization of ternary oxides mixture containing nickel, cobalt and tin. The ternary oxide is synthesized by Pechini method with subsequent deposition onto a titanium substrate in a thin-film form. XRD and EDS analysis confirm the formation of ternary film with amorphous nature. SEM analysis show that cracks on the film favor the gain of the surface area that is an interesting feature for electrochemical capacitors. The ternary film is investigated in KOH electrolyte solution using cyclic voltammetry and charge-discharge study with a specific capacitance of 328 F g-1, and a capacitance retention of 86% over 600 cycles. The values of specific power and specific energy was 345.7 W kg-1 and 18.92 Wh kg-1, respectively.

  4. Evaluation of Heat Capacity and Resistance to Cyclic Oxidation of Nickel Superalloys

    Directory of Open Access Journals (Sweden)

    Przeliorz R.

    2014-08-01

    Full Text Available Paper presents the results of evaluation of heat resistance and specific heat capacity of MAR-M-200, MAR-M-247 and Rene 80 nickel superalloys. Heat resistance was evaluated using cyclic method. Every cycle included heating in 1100°C for 23 hours and cooling for 1 hour in air. Microstructure of the scale was observed using electron microscope. Specific heat capacity was measured using DSC calorimeter. It was found that under conditions of cyclically changing temperature alloy MAR-M-247 exhibits highest heat resistance. Formed oxide scale is heterophasic mixture of alloying elements, under which an internal oxidation zone was present. MAR-M-200 alloy has higher specific heat capacity compared to MAR-M-247. For tested alloys in the temperature range from 550°C to 800°C precipitation processes (γ′, γ″ are probably occurring, resulting in a sudden increase in the observed heat capacity.

  5. Investigation of Electrical and Optical Characteristics of Nanohybride Composite (Polyvinyl Alcohol / Nickel Oxide

    Directory of Open Access Journals (Sweden)

    A. Hayati

    2014-01-01

    Full Text Available Some issues; leakage, tunneling currents, boron diffusion are threatening SiO2 to be used as a good gate dielectric for the future of the CMOS (complementary metal- oxide- semiconductor transistors. For finding an alternative and novel gate dielectric, the NiO (Nickel oxide and PVA (polyvinyl alcohol nano powders were synthesized with the sol-gel method and their nano structural properties were studied using the X-ray diffraction (XRD, Atomic force microscopy (AFM, Scanning electron microscopy (SEM, UV-Vis spectrophotometer and GPS 132 techniques. The obtained results indicated that the sample (5 g NiO and 0.02g PVA prepared at 30˚C, annealed in an oven at a temperature of 80˚C can fill this gap due to its higher dielectric constant, better morphology, less rough surface and less leakage current.

  6. Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol

    International Nuclear Information System (INIS)

    Liu, Yong; Liu, Lan; Shan, Jun; Zhang, Jingdong

    2015-01-01

    Highlights: • Pd and reduced graphene oxide are deposited on foam-Ni via electrodeposition. • Pd particles supported on RGO possess large active surface area. • Pd/RGO/foam-Ni shows high electrocatalytic activity for dechlorination of 4-CP. • 100% 4-CP can be removed on Pd/RGO/foam-Ni under optimum ECH conditions. - Abstract: A high-performance palladium (Pd) and reduced graphene oxide (RGO) composite electrode was prepared on foam-nickel (foam-Ni) via two-step electrodeposition processes. The scanning electron microscopic (SEM) observation showed that the obtained Pd/RGO/foam-Ni composite electrode displayed a uniform and compact morphology. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopic (XPS) analysis confirmed the successful deposition of Pd and RGO on nickel substrate. The cyclic voltammetric (CV) measurements indicated that the presence of RGO greatly enhanced the active surface area of Pd particles deposited on foam-Ni. The as-deposited Pd/RGO/foam-Ni electrode was applied to electrocatalytic hydrodechlorination (ECH) of 4-chlorophenol (4-CP). Various factors influencing the dechlorination of 4-CP such as dechlorination current, initial concentration of 4-CP, Na 2 SO 4 concentration and initial pH were systematically investigated. The thermodynamic analysis showed that the dechlorination reaction of 4-CP at different temperatures followed the first-order kinetics and the activation energy for 4-CP dechlorination on Pd/RGO/foam-Ni electrode was calculated to be 51.96 kJ mol −1 . Under the optimum conditions, the dechlorination efficiency of 4-CP could reach 100% after 60-min ECH treatment. Moreover, the prepared Pd/RGO/foam-Ni composite electrode showed good stability for recycling utilization in ECH of 4-CP

  7. Salinity-dependent nickel accumulation and oxidative stress responses in the euryhaline killifish (Fundulus heteroclitus).

    Science.gov (United States)

    Blewett, Tamzin A; Wood, Chris M

    2015-02-01

    The mechanisms of nickel (Ni) toxicity in marine fish remain unclear, although evidence from freshwater (FW) fish suggests that Ni can act as a pro-oxidant. This study investigated the oxidative stress effects of Ni on the euryhaline killifish (Fundulus heteroclitus) as a function of salinity. Killifish were exposed to sublethal levels (5, 10, and 20 mg L(-1)) of waterborne Ni for 96 h in FW (0 ppt) and 100 % saltwater (SW) (35 ppt). In general, SW was protective against both Ni accumulation and indicators of oxidative stress [protein carbonyl formation and catalase (CAT) activity]. This effect was most pronounced at the highest Ni exposure level. For example, FW intestine showed increased Ni accumulation relative to SW intestine at 20 mg Ni L(-1), and this was accompanied by significantly greater protein carbonylation and CAT activity in this tissue. There were exceptions, however, in that although liver of FW killifish at the highest exposure concentration showed greater Ni accumulation relative to SW liver, levels of CAT activity were greatly decreased. This may relate to tissue- and salinity-specific differences in oxidative stress responses. The results of the present study suggest (1) that there was Ni-induced oxidative stress in killifish, (2) that the effects of salinity depend on differences in the physiology of the fish in FW versus SW, and (3) that increased levels of cations (sodium, calcium, potassium, and magnesium) and anions (SO4 and Cl) in SW are likely protective against Ni accumulation in tissues exposed to the aquatic environment.

  8. In situ oxidation state profiling of nickel hexacyanoferrate derivatized electrodes using line-imaging Raman spectroscopy and multivariate calibration

    International Nuclear Information System (INIS)

    Haight, S.M.; Schwartz, D.T.

    1999-01-01

    Metal hexacyanoferrate compounds show promise as electrochemically switchable ion exchange materials for use in the cleanup of radioactive wastes such as those found in storage basins and underground tanks at the Department of Energy's Hanford Nuclear Reservation. Reported is the use of line-imaging Raman spectroscopy for the in situ determination of oxidation state profiles in nickel hexacyanoferrate derivatized electrodes under potential control in an electrochemical cell. Line-imaging Raman spectroscopy is used to collect 256 contiguous Raman spectra every ∼5 microm from thin films (ca. 80 nm) formed by electrochemical derivatization of nickel electrodes. The cyanide stretching region of the Raman spectrum of the film is shown to be sensitive to iron oxidation state and is modeled by both univariate and multivariate correlations. Although both correlations fit the calibration set well, the multivariate (principle component regression or PCR) model's predictions of oxidation state are less sensitive to noise in the spectrum, yielding a much smoother oxidation state profile than the univariate model. Oxidation state profiles with spatial resolution of approximately 5 microm are shown for a nickel hexacyanoferrate derivatized electrode in reduced, intermediate, and oxidized states. In situ oxidation state profiles indicate that the 647.1 nm laser illumination photo-oxidizes the derivatized electrodes. This observation is confirmed using photoelectrochemical methods

  9. Nickel-regulated heart rate variability: The roles of oxidative stress and inflammation

    International Nuclear Information System (INIS)

    Chuang, Hsiao-Chi; Hsueh, Tzu-Wei; Chang, Chuen-Chau; Hwang, Jing-Shiang; Chuang, Kai-Jen; Yan, Yuan-Horng; Cheng, Tsun-Jen

    2013-01-01

    Heart rate variability (HRV) has been reported to be a putative marker of cardiac autonomic imbalance caused by exposure to ambient particulate matter (PM). Our objective in this study was to determine the effects on HRV from exposure to nickel, an important chemical component of ambient PM that results in oxidative stress and inflammation. HRV data were collected for 72 h before lung exposure (baseline) and 72 h after intratracheal exposure (response) to nickel sulphate (NiSO 4 ; 526 μg) in Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rats. The antioxidant N-acetyl-L-cysteine (NAC) and the anti-inflammatory celecoxib were intraperitoneally injected to examine post-exposure oxidative and inflammatory responses. Self-controlled experiments examined the effects of NiSO 4 exposure on average normal-to-normal intervals (ANN), natural logarithm-transformed standard deviation of the normal-to-normal intervals (LnSDNN) and root mean square of successive differences of adjacent normal-to-normal intervals (LnRMSSD); the resulting data were sequentially analysed using the generalised estimating equation model. HRV effects on NiSO 4 -exposed SH rats were greater than those on NiSO 4 -exposed WKY rats. After adjusted the HRV responses in the WKY rats as control, ANN and LnRMSSD were found to be quadratically increased over 72 h after exposure to NiSO 4 . Both NAC and celecoxib mitigated the NiSO 4 -induced alterations in HRV during the exposure period. The results suggest that concurrent Ni-induced oxidative stress and inflammatory responses play important roles in regulating HRV. These findings help bridge the gap between epidemiological and clinical studies on the plausible mechanisms of the cardiovascular consequences induced by chemical components in ambient PM. -- Highlights: ► To determine the effects on HRV from exposure to nickel. ► ANN and LnRMSSD were found to be quadratically increased after exposure to Ni. ► NAC and celecoxib mitigated the Ni

  10. Nickel-regulated heart rate variability: The roles of oxidative stress and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Hsiao-Chi, E-mail: r92841005@ntu.edu.tw [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Tzu-Wei, E-mail: r95841015@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Chuen-Chau, E-mail: nekota@tmu.edu.tw [Department of Anaesthesiology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan (China); Hwang, Jing-Shiang, E-mail: jshwang@stat.sinica.edu.tw [Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (China); Chuang, Kai-Jen, E-mail: kjc@tmu.edu.tw [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Yan, Yuan-Horng, E-mail: d97841006@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2013-01-15

    Heart rate variability (HRV) has been reported to be a putative marker of cardiac autonomic imbalance caused by exposure to ambient particulate matter (PM). Our objective in this study was to determine the effects on HRV from exposure to nickel, an important chemical component of ambient PM that results in oxidative stress and inflammation. HRV data were collected for 72 h before lung exposure (baseline) and 72 h after intratracheal exposure (response) to nickel sulphate (NiSO{sub 4}; 526 μg) in Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rats. The antioxidant N-acetyl-L-cysteine (NAC) and the anti-inflammatory celecoxib were intraperitoneally injected to examine post-exposure oxidative and inflammatory responses. Self-controlled experiments examined the effects of NiSO{sub 4} exposure on average normal-to-normal intervals (ANN), natural logarithm-transformed standard deviation of the normal-to-normal intervals (LnSDNN) and root mean square of successive differences of adjacent normal-to-normal intervals (LnRMSSD); the resulting data were sequentially analysed using the generalised estimating equation model. HRV effects on NiSO{sub 4}-exposed SH rats were greater than those on NiSO{sub 4}-exposed WKY rats. After adjusted the HRV responses in the WKY rats as control, ANN and LnRMSSD were found to be quadratically increased over 72 h after exposure to NiSO{sub 4}. Both NAC and celecoxib mitigated the NiSO{sub 4}-induced alterations in HRV during the exposure period. The results suggest that concurrent Ni-induced oxidative stress and inflammatory responses play important roles in regulating HRV. These findings help bridge the gap between epidemiological and clinical studies on the plausible mechanisms of the cardiovascular consequences induced by chemical components in ambient PM. -- Highlights: ► To determine the effects on HRV from exposure to nickel. ► ANN and LnRMSSD were found to be quadratically increased after exposure to Ni. ► NAC and

  11. Borate electrolyte additives for high voltage lithium nickel manganese oxide electrode: A comparative study

    International Nuclear Information System (INIS)

    Chen, Zhiting; Wang, Cun; Xing, Lidan; Wang, Xianshu; Tu, Wenqiang; Zhu, Yunmin; Li, Weishan

    2017-01-01

    Highlights: •TMB and TEB effective improve the cyclic stability of LNMO at high voltage. •The performance of LNMO with TMB-containing electrolyte is superior to that of TEB. •LNMO shows catalytic effect on the oxidation reaction of TEB. •The film generated in TMB shows better ability on suppressing LNMO shedding than TEB. -- Abstract: Trimethyl borate (TMB) and triethyl borate (TEB) are used as film-forming electrolyte additives for high voltage Lithium nickel manganese oxide (LNMO) cathode. DFT calculation and initial charge curve of LNMO reveal that the oxidation activity of TEB is higher than that of TMB. Addition of 2% TMB and 2% TEB effectively improve the capacity retention of high voltage LNMO from 23.4% to 85.3% and 72.6% after 600 cycles, respectively. The film generated in TMB-containing electrolyte shows better ability on suppressing the LNMO shedding in comparison with that of TEB, resulting in higher capacity retention of LNMO in TMB-containing electrolyte at high voltage. The superior performance of LNMO with TMB-containing electrolyte should be ascribed to its less intense film-forming reaction which generates a denser protective surface film on LNMO surface. However, why LNMO shows catalyzation effect on TEB oxidation but not on TMB is unclear, which needs further intensive investigation.

  12. Temperature dependence of nickel oxide effect on the optoelectronic properties of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, R., E-mail: riahirim01@gmail.com [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Research and Technology Center of Energy, Tourist Road Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Faculty of Sciences Tunis–El Manar University (Tunisia); Derbali, L. [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Research and Technology Center of Energy, Tourist Road Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Ouertani, B. [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Research and Technology Center of Energy, Tourist Road Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Environment Science and Technology of Borj-Cedria (Tunisia); Ezzaouia, H. [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Research and Technology Center of Energy, Tourist Road Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2017-05-15

    Highlights: • The treatment of porous silicon (PS) with nickel oxide (NiO) decreases the reflectivity significantly. • FTIR analysis showed a substitution of Si−H bonds to Si−O−Si and Si−O−Ni after the thermal annealing. • Annealing the treated NiO/PS at 400 °C leads to a noticeable improvement of the photoluminescence (PL) intensity. • A blueshift was obtained in the PL spectra due to the decrease of silicon nanocrystallites size after exceeding 400 °C. - Abstract: This paper investigates the effect of Nickel oxide (NiO) on the structural and optical properties of porous silicon (PS). Our investigations showed an obvious improvement of porous silicon optoelectronique properties after coating the PS with NiO thin film as a passivating process. The as-prepared NiO/PS thin film was subjected to a thermal annealing to study the effect of temperature on the efficiency of this treatment. The deposition of NiO onto the porous silicon layer was performed using the spray pyrolysis method. The surface modification of the as-prepared NiO/PS samples was investigated after annealing at various temperatures, using an infrared furnace, ranging between 300 °C and 600 °C. The X-ray Diffraction results showed that obtained films show cubic structure with preferred (200) plane orientation. We found an obvious dependence of the PS nanocrystallites size (nc-Si) to the annealing temperature. Photoluminescence (PL) is directly related to the electronic structure and transitions. The characteristic change of the band gap with decrease in size of the nanostructures can be pointed out by the observed blue shift in the photoluminescence spectra. Nickel oxide treatment of Porous silicon led to a significant increase of photoluminescence with a resulting blue-shift at higher annealing temperature. The surface morphology was examined by scanning electron microscope (SEM), and FTIR spectroscopy was used to study the chemical composition of the films. Moreover, the total

  13. Temperature dependence of nickel oxide effect on the optoelectronic properties of porous silicon

    International Nuclear Information System (INIS)

    Riahi, R.; Derbali, L.; Ouertani, B.; Ezzaouia, H.

    2017-01-01

    Highlights: • The treatment of porous silicon (PS) with nickel oxide (NiO) decreases the reflectivity significantly. • FTIR analysis showed a substitution of Si−H bonds to Si−O−Si and Si−O−Ni after the thermal annealing. • Annealing the treated NiO/PS at 400 °C leads to a noticeable improvement of the photoluminescence (PL) intensity. • A blueshift was obtained in the PL spectra due to the decrease of silicon nanocrystallites size after exceeding 400 °C. - Abstract: This paper investigates the effect of Nickel oxide (NiO) on the structural and optical properties of porous silicon (PS). Our investigations showed an obvious improvement of porous silicon optoelectronique properties after coating the PS with NiO thin film as a passivating process. The as-prepared NiO/PS thin film was subjected to a thermal annealing to study the effect of temperature on the efficiency of this treatment. The deposition of NiO onto the porous silicon layer was performed using the spray pyrolysis method. The surface modification of the as-prepared NiO/PS samples was investigated after annealing at various temperatures, using an infrared furnace, ranging between 300 °C and 600 °C. The X-ray Diffraction results showed that obtained films show cubic structure with preferred (200) plane orientation. We found an obvious dependence of the PS nanocrystallites size (nc-Si) to the annealing temperature. Photoluminescence (PL) is directly related to the electronic structure and transitions. The characteristic change of the band gap with decrease in size of the nanostructures can be pointed out by the observed blue shift in the photoluminescence spectra. Nickel oxide treatment of Porous silicon led to a significant increase of photoluminescence with a resulting blue-shift at higher annealing temperature. The surface morphology was examined by scanning electron microscope (SEM), and FTIR spectroscopy was used to study the chemical composition of the films. Moreover, the total

  14. Supercapacitive properties of symmetry and the asymmetry two electrode coin type supercapacitor cells made from MWCNTS/nickel oxide nanocomposite

    CSIR Research Space (South Africa)

    Adekunle, AS

    2011-10-01

    Full Text Available Supercapacitive properties of synthesised nickel oxides (NiO) nanoparticles integrated with multi-walled carbon nanotubes (MWCNT) in a two-electrode coin cell type supercapacitor were investigated. Successful formation of the MWCNT-NiO nanocomposite...

  15. Nickel oxide film with open macropores fabricated by surfactant-assisted anodic deposition for high capacitance supercapacitors.

    Science.gov (United States)

    Wu, Mao-Sung; Wang, Min-Jyle

    2010-10-07

    Nickel oxide film with open macropores prepared by anodic deposition in the presence of surfactant shows a very high capacitance of 1110 F g(-1) at a scan rate of 10 mV s(-1), and the capacitance value reduces to 950 F g(-1) at a high scan rate of 200 mV s(-1).

  16. Nickel oxide crystalline nano flakes: synthesis, characterization and their use as anode in lithium-ion batteries

    DEFF Research Database (Denmark)

    Ahmadi, Majid; Younesi, Reza; Vegge, Tejs

    2014-01-01

    Nickel oxide crystalline nano flakes (NONFs)—only about 10 nm wide—were produced using a simple and inexpensive chemistry method followed by a short annealing in ambient air. In a first step, Ni(OH)2 sheets were synthesized by adding sodium hydroxide (NaOH) drop-wise in a Ni(NO3)2 aqueous solutio...

  17. Fabrication of Nickel Nanotube Using Anodic Oxidation and Electrochemical Deposition Technologies and Its Hydrogen Storage Property

    Directory of Open Access Journals (Sweden)

    Yan Lv

    2016-01-01

    Full Text Available Electrochemical deposition technique was utilized to fabricate nickel nanotubes with the assistance of AAO templates. The topography and element component of the nickel nanotubes were characterized by TEM and EDS. Furthermore, the nickel nanotube was made into microelectrode and its electrochemical hydrogen storage property was studied using cyclic voltammetry. The results showed that the diameter of nickel nanotubes fabricated was around 20–100 mm, and the length of the nanotube could reach micron grade. The nickel nanotubes had hydrogen storage property, and the hydrogen storage performance was higher than that of nickel powder.

  18. OXIDATIVE-REFORMING OF METHANE AND PARTIAL OXIDATION OF METHANE REACTIONS OVER NiO/PrO2/ZrO2 CATALYSTS: EFFECT OF NICKEL CONTENT

    Directory of Open Access Journals (Sweden)

    Y. J. O. Asencios

    Full Text Available Abstract In this work the behavior of NiO-PrO2-ZrO2 catalysts containing various nickel loadings was evaluated in the partial oxidation of methane and oxidative-reforming reactions of methane. The catalysts were characterized by X-Ray Diffraction Analysis (in situ-XRD, Temperature Programmed Reduction (H2-TPR, Scanning Electron Microscopy (SEM/EDX and Adsorption-Desorption of nitrogen (BET area. The reactions were carried out at 750 °C and 1 atm for 5 hours. The catalysts were studied with different nickel content: 0, 5, 10 and 15% (related to total weight of catalyst, wt%. In both reactions, the catalyst containing the mixture of the three oxides (NiO/PrO2/ZrO2 with 15% nickel (15NiPrZr catalyst showed the best activity for the conversion of the reactants into Syngas and showed high selectivity for H2 and CO. The results suggest that the promoter PrO2 and the Niº centers are in a good proportion in the catalyst with 15% Ni. Our results showed that low nickel concentrations in the catalyst led to high metallic dispersion; however, very low nickel concentrations did not favor the methane transformation into Syngas. The catalyst containing only NiO/ZrO2 in the mixture was not sufficient for the catalysis. The presence of the promoter PrO2 was very important for the catalysis of the POM.

  19. Synthesis and characterization of cobalt doped nickel oxide thin films by spray pyrolysis method

    Science.gov (United States)

    Sathisha, D.; Naik, K. Gopalakrishna

    2018-05-01

    Cobalt (Co) doped nickel oxide (NiO) thin films were deposited on glass substrates at a temperature of about 400 °C by spray pyrolysis method. The effect of Co doping concentration on structural, optical and compositional properties of NiO thin films was investigated. X-ray diffraction result shows that the deposited thin films are polycrystalline in nature. Surface morphologies of the deposited thin films were observed by FESEM and AFM. EDS spectra showed the incorporation of Co dopants in NiO thin films. Optical properties of the grown thin films were characterized by UV-visible spectroscopy. It was found that the optical band gap energy and transmittance of the films decrease with increasing Co doping concentration.

  20. Ultra High Electrical Performance of Nano Nickel Oxide and Polyaniline Composite Materials

    Directory of Open Access Journals (Sweden)

    Xiaomin Cai

    2017-07-01

    Full Text Available The cooperative effects between the PANI (polyaniline/nano-NiO (nano nickel oxide composite electrode material and redox electrolytes (potassium iodide, KI for supercapacitor applications was firstly discussed in this article, providing a novel method to prepare nano-NiO by using β-cyelodextrin (β-CD as the template agent. The experimental results revealed that the composite electrode processed a high specific capacitance (2122.75 F·g−1 at 0.1 A·g−1 in 0.05 M KI electrolyte solution, superior energy density (64.05 Wh·kg−1 at 0.2 A·g−1 in the two-electrode system and excellent cycle performance (86% capacitance retention after 1000 cycles at 1.5 A·g−1. All those ultra-high electrical performances owe to the KI active material in the electrolyte and the PANI coated nano-NiO structure.

  1. Free volume dependence on electrical properties of Poly (styrene co-acrylonitrile)/Nickel oxide polymer nanocomposites

    Science.gov (United States)

    Ningaraju, S.; Hegde, Vinayakaprasanna N.; Prakash, A. P. Gnana; Ravikumar, H. B.

    2018-04-01

    Polymer nanocomposites of Poly (styrene co-acrylonitrile)/Nickel Oxide (PSAN/NiO) have been prepared. The increased free volume sizes up to 0.4 wt% of NiO loading indicates overall reduction in packing density of polymer network. The decreased o-Ps lifetime (τ3) at higher concentration of NiO indicates improved interfacial interaction between the surface of NiO nanoparticles and side chain of PSAN polymer matrix. The increased AC/DC conductivity at lower wt% of NiO loading demonstrates increased number of electric charge carriers/mobile ions and their mobility. The increased dielectric constant and dielectric loss up to 0.4 wt% of NiO loading suggests the increased dipoles polarization.

  2. Theoretical studies on the catalytic oxidation of carbon monoxide on nickel clusters

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K.; Kojima, I.; Miyazaki, E.

    1986-01-01

    Complete neglect of differential overlap (CNDO) molecular orbital calculations using the method of Anno and Sakai for the evaluation of the valence orbital ionization potential (VOIP) were performed with the aim of studying the oxidation of carbon monoxide on nickel clusters. A cluster surface was assumed to be preadsorbed with oxygen and the variation of various bond energies with the approach of a carbon monoxide molecule was studied for different models. Various possibilities for the reaction path are discussed in the light of the theoretical findings and it is suggested that at a low coverage of oxygen the reaction may follow a Langmuir-Hinshelwood path, whereas at a high coverage, an Eley-Rideal path might be more probable. 55 references, 13 figures.

  3. FTIR study of the influence of minor alloying elements on the high temperature oxidation of nickel alloys

    International Nuclear Information System (INIS)

    Lenglet, M.; Delaunay, F.; Lefez, B.

    1997-01-01

    The purpose of this paper is to study the reflectance spectra of the different single oxide layer systems : Cr 2 O 3 /Fe, MnCr 2 O 4 /Fe, TiO 2 /Fe, NiCr 2 O 4 /Fe and NiFe 2 O 4 /Fe and to extend the theoretical calculations to multilayer oxide systems on metallic substrates. The interpretation of the resulting reflectance spectra for these systems is used to explain the initial stages of oxide formation and the influence of minor alloying elements on the high temperature oxidation of three commercial nickel alloys : Incoloy 800, Inconel 600 and X. (orig.)

  4. A green synthetic strategy of nickel hexacyanoferrate nanoparticals supported on the graphene substrate and its non-enzymatic amperometric sensing application

    Science.gov (United States)

    xue, Zhonghua; He, Nan; Rao, Honghong; Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui; Lu, Xiaoquan

    2017-02-01

    Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.

  5. Supported versus colloidal zinc oxide for advanced oxidation processes

    Science.gov (United States)

    Laxman, Karthik; Al Rashdi, Manal; Al Sabahi, Jamal; Al Abri, Mohammed; Dutta, Joydeep

    2017-07-01

    Photocatalysis is a green technology which typically utilizes either supported or colloidal catalysts for the mineralization of aqueous organic contaminants. Catalyst surface area and surface energy are the primary factors determining its efficiency, but correlation between the two is still unclear. This work explores their relation and hierarchy in a photocatalytic process involving both supported and colloidal catalysts. In order to do this the active surface areas of supported zinc oxide nanorods (ZnO NR's) and colloidal zinc oxide nanoparticles (having different surface energies) were equalized and their phenol oxidation mechanism and capacity was analyzed. It was observed that while surface energy had subtle effects on the oxidation rate of the catalysts, the degradation efficiency was primarily a function of the surface area; which makes it a better parameter for comparison when studying different catalyst forms of the same material. Thus we build a case for the use of supported catalysts, wherein their catalytic efficiency was tested to be unaltered over several days under both natural and artificial light, suggesting their viability for practical applications.

  6. The application and study of an oxide-impregnated nickel-matrix cathode for Beijing proton linac

    International Nuclear Information System (INIS)

    Xia Dehong; Shi Rongjian

    1996-01-01

    A low power consumption oxide-impregnated nickel-matrix cathode used in the Duoplasmatron ion source of the Beijing Proton Linac (BPL) is presented. Its structure, treatment process of nickel-foam rubber on metal matrix surface and manufacture of dip coating carbonate are briefly introduced. The activation method and experiment results of the cathode are described. The principal factors which influence the cathode lifetime are discussed. The lifetime of the cathode is up to 2110 h while the extracted pulsed beam current is about 200 mA

  7. Synthesis of Complex-Alloyed Nickel Aluminides from Oxide Compounds by Aluminothermic Method

    Directory of Open Access Journals (Sweden)

    Victor Gostishchev

    2018-06-01

    Full Text Available This paper deals with the investigation of complex-alloyed nickel aluminides obtained from oxide compounds by aluminothermic reduction. The aim of the work was to study and develop the physicochemical basis for obtaining complex-alloyed nickel aluminides and their application for enhancing the properties of coatings made by electrospark deposition (ESD on steel castings, as well as their use as grain refiners for tin bronze. The peculiarities of microstructure formation of master alloys based on the Al–TM (transition metal system were studied using optical, electronic scanning microscopy and X-ray spectral microanalysis. There were regularities found in the formation of structural components of aluminum alloys (Ni–Al, Ni-Al-Cr, Ni-Al-Mo, Ni-Al-W, Ni-Al-Ti, Ni-Cr-Mo-W, Ni-Al-Cr-Mo-W-Ti, Ni-Al-Cr-V, Ni-Al-Cr-V-Mo and changes in their microhardness, depending on the composition of the charge, which consisted of oxide compounds, and on the amount of reducing agent (aluminum powder. It is shown that all the alloys obtained are formed on the basis of the β phase (solid solution of alloying elements in nickel aluminide and quasi-eutectic, consisting of the β′ phase and intermetallics of the alloying elements. The most effective alloys, in terms of increasing microhardness, were Al-Ni-Cr-Mo-W (7007 MPa and Al-Ni-Cr-V-Mo (7914 MPa. The perspective is shown for applying the synthesized intermetallic master alloys as anode materials for producing coatings by electrospark deposition on steel of C1030 grade. The obtained coatings increase the heat resistance of steel samples by 7.5 times, while the coating from NiAl-Cr-Mo-W alloy remains practically nonoxidized under the selected test conditions. The use of NiAl intermetallics as a modifying additive (0.15 wt. % in tin bronze allows increasing the microhardness of the α-solid solution by 1.9 times and the microhardness of the eutectic (α + β phase by 2.7 times.

  8. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy.

    Science.gov (United States)

    Maher, Robert C; Shearing, Paul R; Brightman, Edward; Brett, Dan J L; Brandon, Nigel P; Cohen, Lesley F

    2016-01-01

    The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single-step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance.

  9. Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions

    KAUST Repository

    Paeng, Dongwoo; Lee, Daeho; Yeo, Junyeob; Yoo, Jae-Hyuck; Allen, Frances I.; Kim, Eunpa; So, Hongyun; Park, Hee K.; Minor, Andrew M.; Grigoropoulos, Costas P.

    2015-01-01

    © 2015 American Chemical Society. This work is concerned with the kinetics of laser-induced reductive sintering of nonstoichiometric crystalline nickel oxide (NiO) nanoparticles (NPs) under ambient conditions. The mechanism of photophysical reductive sintering upon irradiation using a 514.5 nm continuous-wave (CW) laser on NiO NP thin films has been studied through modulating the laser power density and illumination time. Protons produced due to high-temperature decomposition of the solvent present in the NiO NP ink, oxygen vacancies in the NiO NPs, and electronic excitation in the NiO NPs by laser irradiation all affect the early stage of the reductive sintering process. Once NiO NPs are reduced by laser irradiation to Ni, they begin to coalesce, forming a conducting material. In situ optical and electrical measurements during the reductive sintering process take advantage of the distinct differences between the oxide and the metallic phases to monitor the transient evolution of the process. We observe four regimes: oxidation, reduction, sintering, and reoxidation. A characteristic time scale is assigned to each regime.

  10. Promotion of Water-mediated Carbon Removal by Nanostructured Barium Oxide/nickel Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    L Yang; Y Choi; W Qin; H Chen; K Blinn; M Liu; P Liu; J Bai; T Tyson; M Liu

    2011-12-31

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C{sub 3}H{sub 8}, CO and gasified carbon fuels at 750 C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H2O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.

  11. Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions

    KAUST Repository

    Paeng, Dongwoo

    2015-03-19

    © 2015 American Chemical Society. This work is concerned with the kinetics of laser-induced reductive sintering of nonstoichiometric crystalline nickel oxide (NiO) nanoparticles (NPs) under ambient conditions. The mechanism of photophysical reductive sintering upon irradiation using a 514.5 nm continuous-wave (CW) laser on NiO NP thin films has been studied through modulating the laser power density and illumination time. Protons produced due to high-temperature decomposition of the solvent present in the NiO NP ink, oxygen vacancies in the NiO NPs, and electronic excitation in the NiO NPs by laser irradiation all affect the early stage of the reductive sintering process. Once NiO NPs are reduced by laser irradiation to Ni, they begin to coalesce, forming a conducting material. In situ optical and electrical measurements during the reductive sintering process take advantage of the distinct differences between the oxide and the metallic phases to monitor the transient evolution of the process. We observe four regimes: oxidation, reduction, sintering, and reoxidation. A characteristic time scale is assigned to each regime.

  12. The TEXTOR helium self-pumping experiment: Design, plans, and supporting ion-beam data on helium retention in nickel

    International Nuclear Information System (INIS)

    Brooks, J.N.; Krauss, A.; Mattas, R.F.; Smith, D.L.; Nygren, R.E.; Doyle, B.L.; McGrath, R.T.; Walsh, D.; Dippel, K.H.; Finken, K.H.

    1990-01-01

    A proof-of-principle experiment to demonstrate helium self-pumping in a tokamak is being undertaken in TEXTOR. The experiment will use a helium self-pumping module installed in a modified ALT-I limiter head. The module consists of two, ∼25 x 25 cm 2 heated nickel alloy trapping plates, a nickel deposition filament array, and associated diagnostics. Between plasma shots a coating of ∼50 angstrom nickel will be deposited on the two trapping plates. During a shot helium and hydrogen ions will impinge on the plates through a ∼3 cm wide entrance slot. The helium removal capability, due to trapping in the nickel, will be assessed for a variety of plasma conditions. In support of the tokamak experiment, the trapping of helium over a range of ion fluences and surface temperatures, and detrapping during subsequent exposure to hydrogen, were measured in ion beam experiments using evaporated nickel surfaces similar to that expected in TEXTOR. Also, the retention of H and He after exposure of a nickel surface to mixed He/H plasmas has bee measured. The results appear favorable, showing high helium trapping (∼10--50% He/Ni) and little or no detrapping by hydrogen. The TEXTOR experiment is planned to begin in 1991. 12 refs., 2 figs., 2 tabs

  13. The TEXTOR helium self-pumping experiment: Design, plans, and supporting ion-beam data on helium retention in nickel

    International Nuclear Information System (INIS)

    Brooks, J.N.; Krauss, A.; Mattas, R.F.; Smith, D.L.; Nygren, R.E.; Doyle, B.L.; McGrath, R.T.; Walsh, D.; Dippel, K.H.; Finken, K.H.

    1990-01-01

    A proof-of-principle experiment to demonstrate helium self-pumping in a tokamak is being undertaken in TEXTOR. The experiment will use a helium self-pumping module installed in a modified ALT-I limiter head. The module consists of two, ≅ 25x25 cm 2 heated nickel alloy trapping plates, a nickel deposition filament array, and associated diagnostics. Between plasma shots a coating of ≅ 50A nickel will be deposited on the two trapping plates. During a shot helium and hydrogen ions will impinge on the plates through a ≅ 3 cm wide entrance slot. The helium removal capability, due to trapping in the nickel, will be assessed for a variety of plasma conditions. In support of the tokamak experiment, the trapping of helium over a range of ion fluences and surface temperatures, and detrapping during subsequent exposure to hydrogen, were measured in ion beam experiments using evaporated nickel surfaces similar to that expected in TEXTOR. Also, the retention of H and He after exposure of a nickel surface to mixed He/H plasmas has been measured. The results appear favorable, showing high helium trapping (≅ 10-50% He/Ni) and little or no detrapping by hydrogen. The TEXTOR experiment is planned to begin in 1991. (orig.)

  14. Contribution to the study of the oxidation reaction of the carbon oxide in contact with catalysts issued from the decomposition of nickel hydro-aluminates at various temperatures

    International Nuclear Information System (INIS)

    Samaane, Mikhail

    1966-01-01

    Addressing the study of the oxidation reaction of carbon oxide which produces carbon dioxide, this research thesis reports the study of this reaction in presence of catalysts (2NiO + Al 2 O 3 , NiAl 2 O 4 and NiO + NiAl 2 O 4 ) issued from the decomposition of nickel hydro-aluminates at different temperatures. The first part describes experimental techniques and the nature of materials used in this study. The second part reports the study of the catalytic activity of the 2NiO+Al 2 O 3 catalyst during the oxidation of CO. Preliminary studies are also reported: structure and texture of nickel hydro-aluminate which is the raw material used to produce catalysts, activation of this compound to develop the catalytic activity in CO oxidation, chemisorption of CO, O 2 and CO 2 on the 2NiO+Al 2 O 3 solid, interaction of adsorbed gases at the solid surface, and kinetic study of the oxidation reaction. The third part reports the study of the catalytic activity in the oxidation reaction of CO of spinel catalysts (NiAl 2 O 4 and NiO+NiAl 2 O 4 ) obtained by calcination of nickel hydro-aluminates at high temperature. The formation of the spinel phase, the chemisorption of CO, O 2 and CO 2 on NiAl 2 O 4 , and the kinetic of the oxidation reaction are herein studied

  15. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

    International Nuclear Information System (INIS)

    Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi

    2010-01-01

    A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO 4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.

  16. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

    Science.gov (United States)

    Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi

    2010-10-01

    A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.

  17. Thermodynamic properties of compounds of Na2O with the oxides of chromium, nickel, and iron

    International Nuclear Information System (INIS)

    Shaiu, B.J.

    1976-10-01

    Results of emf measurements on Na 2 O solid electrolytes in binary compounds with Cr 2 O 3 , FeO, and NiO are presented along with thermodynamic properties of these compounds. It was found that reliable thermodynamic data for compounds of NaCrO 2 , Na 2 FeO 2 , NaFeO 2 , Na 2 NiO 2 , and NaNiO 2 at 500 to 800 0 can be obtained by using emf measurements with solid electrolyte cells. The pretreatment of heating the cells in a vacuum of 10 -2 torr at 500 0 C or above for about 12 hours causes the emf dependence on temperature to be very small. The measurements were carried out over the temperature range in which no phase transformations occurred, the ΔC/sub p/ for the compounds involved was reasonably considered as approximately zero. Linear emf-temperature plots were therefore expected for these cells and the equation of ΔG 0 /sub f/ was indeed valid for constant values of ΔH 0 /sub f/ and ΔS 0 /sub f/. The formation of compound NaCrO 2 is thermodynamically favorable in a sodium loop made of austenic stainless steels. The critical oxygen concentration for the formation of NaCrO 2 shows that it is stable in liquid sodium in temperature range from 400 to 1100 0 C and Cr 2 O 3 does not exist with the double oxide in liquid sodium. The existence temperature for (Na 2 O) 2 .FeO in equilibrium with oxygen saturated liquid sodium is 693 0 K or above, for Na 2 FeO 2 it is 1141 0 K or above and for NaFeO 2 it is greater than or equal to 1173 0 K. The double oxides of nickel with sodium oxide are much less stable than the iron double oxides and do therefore not exist in liquid sodium. The nickel in austenitic stainless steel shows the least attack by oxygen saturated liquid sodium

  18. Does airborne nickel exposure induce nickel sensitization?

    Science.gov (United States)

    Mann, Eugen; Ranft, Ulrich; Eberwein, Georg; Gladtke, Dieter; Sugiri, Dorothee; Behrendt, Heidrun; Ring, Johannes; Schäfer, Torsten; Begerow, Jutta; Wittsiepe, Jürgen; Krämer, Ursula; Wilhelm, Michael

    2010-06-01

    Nickel is one of the most prevalent causes of contact allergy in the general population. This study focuses on human exposure to airborne nickel and its potential to induce allergic sensitization. The study group consisted of 309 children at school-starter age living in the West of Germany in the vicinity of two industrial sources and in a rural town without nearby point sources of nickel. An exposure assessment of nickel in ambient air was available for children in the Ruhr district using routinely monitored ambient air quality data and dispersion modelling. Internal nickel exposure was assessed by nickel concentrations in morning urine samples of the children. The observed nickel sensitization prevalence rates varied between 12.6% and 30.7%. Statistically significant associations were showed between exposure to nickel in ambient air and urinary nickel concentration as well as between urinary nickel concentration and nickel sensitization. Furthermore, an elevated prevalence of nickel sensitization was associated with exposure to increased nickel concentrations in ambient air. The observed associations support the assumption that inhaled nickel in ambient air might be a risk factor for nickel sensitization; further studies in larger collectives are necessary.

  19. Absolute determination by X-ray diffraction of a binary or ternary mixture: nickel oxide and fluoride in a nickel powder (1960); Dosage absolu par diffraction X d'un melange binaire ou ternaire: oxyde et fluorure de nickel dans une poudre de nickel (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Charpin, P; Hauptman, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The method employed is based upon the comparison between computed and measured intensities for conveniently selected X-Ray diffraction lines of each component of the powder. Care must be taken to allow for absorption, both inside each grain and in overall sample. This method has been applied to the determination of nickel oxide and fluoride in a nickel powder. (author) [French] La methode utilisee, dite 'absolue' est basee sur le calcul des intensites theoriques de raies de diffraction convenablement choisies. Elle n'est applicable que si l'absorption est negligeable a travers chaque grain constituant l'echantillon et a travers l'echantillon total. Elle a ete employee pour doser, ensemble ou separement, de l'oxyde et du fluorure de nickel dans une poudre de nickel. (auteur)

  20. [Spectralsignatures of nickel and vanadium supported photocatalysts and their photocatalytic properties].

    Science.gov (United States)

    Hai, Feng; Zhang, Qian-Cheng; Wang, Zhi-Wei; Jian, Li

    2011-04-01

    Using SiO2, activated carbon (AC) and Al2O3 as supports, the supported photocatalysts Ni-V-O/SiO2, Ni-V-O/AC and Ni-V-O/Al2O3 were prepared by impregnation method, and their spectralsignatures were investigated. The carbonylation of methanol with CO2 under UV irradiation was used as a probe reaction to compare the photocatalytic performance of the prepared catalysts. Integrated with the testing results of carbonylation, the effects of different supports on selectivity for the carbonylation products of methyl formate (MF) and dimethyl carbonate (DMC) were discussed by pyridine-IR and UV-Vis techniques. XRD results showed that the particles of nickel and vanadium supported on SiO2 had the highest degree of dispersion. Results of pyridine-IR indicated that all catalysts retained Lewis acid sites. The acid strength was different from catalyst samples with different supports but with the same active components. The acid strengths could be arranged as follows: Ni-V-O/SiO2 > Ni-V-O/Al2 O3 > Ni-V-O/AC. Different acid strengths exhibited different influence on the selectivity of products MF and DMC of carbonylation. The surface acid strengths of catalysts were the major factor influencing the selectivity of carbonylation products.

  1. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  2. Batch fabrication of mesoporous boron-doped nickel oxide nanoflowers for electrochemical capacitors

    International Nuclear Information System (INIS)

    Yang, Jing-He; Yu, Qingtao; Li, Yamin; Mao, Liqun; Ma, Ding

    2014-01-01

    Highlights: • A new facile liquid-phase method has been employed for synthesis boron-doped NiO nanoflowers. • The specific surface area of NiO is as high as 200 m 2 g −1 . • NiO nanoflowers exhibit a high specific capacitance of ∼1309 F g −1 at a charge and discharge current density of 3 A g −1 . • NiO nanoflowers have excellent cycling ability and even after 2500 cycles there is no significant reduction in specific capacitance. - Abstract: Boron-doped nickel oxide (B-NiO) nanoflowers are prepared by simple thermal decomposition of nickel hydroxide. B-NiO is porous sphere with a diameter of about 400 nm. B-NiO nanoflowers are composed of approximately 30 nm nanoplates and the thickness of the nanosheets is approximately 3 nm. The specific surface area of the material is as high as 200 m 2 g −1 and the pore size distribution curves of B-NiO has three typical peaks in the range of mesoporous (5 nm, 13 nm and 18 nm). As an electrode for supercapacitors, the crystalline B-NiO nanoflowers have favorable characteristics, for instance, a specific capacitance of 1309 F g −1 at a current density of 3 A g −1 and no significant reduction in Coulombic efficiency after 2500 cycles at 37.5 A g −1 . This remarkable electrochemical performance will make B-NiO nanoflowers a promising electrode material for high performance supercapacitors

  3. 2D nickel oxide nanosheets with highly porous structure for high performance capacitive energy storage

    Science.gov (United States)

    Li, Zijiong; Zhang, Weiyang; Liu, Yanyue; Guo, Jinjin; Yang, Baocheng

    2018-01-01

    Developing advanced electrochemical electrode materials with excellent performance is critical to their future energy storage devices. Herein, we design and synthesize two-dimensional (2D) porous structure nickel oxide (NiO) nanosheets via a facile and scalable hydrothermal approach, and further heating. The effects of heating time on the electrochemical performances are investigated. The results indicate that the maximum specific capacitance is achieved for NiO nanosheets when heating temperature and time are 300 °C and 3 h, respectively (namely NiO-3). The as-prepared NiO-3 nanosheet are grown uniform on the skeleton of reduced graphene oxide (rGO). The optimum NiO/rGO displays a reversible discharge capacity of 781.7 F g-1 at 1 A g-1, and shows an ultra-long life-span with over 94% capacitance retention after 4000 cycles. The enhanced electrochemical properties for NiO/rGO can be ascribed to a collaborative effect between NiO and rGO, which possess high capacitance storage ability and excellent conductivity, respectively.

  4. Toxicity of Nickel Oxide Nanoparticles on a Freshwater Green Algal Strain of Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Abdallah Oukarroum

    2017-01-01

    Full Text Available A freshwater microalga strain of Chlorella vulgaris was used to investigate toxic effects induced by nickel oxide nanoparticles (NiO-NPs in suspension. Algal cells were exposed during 96 h to 0–100 mg L−1 of NiO-NPs and analyzed by flow cytometry. Physicochemical characterization of nanoparticles in tested media showed a soluble fraction (free Ni2+ of only 6.42% for 100 mg L−1 of NiO-NPs, indicating the low solubility capacity of these NPs. Toxicity analysis showed cellular alterations which were related to NiO-NPs concentration, such as inhibition in cell division (relative cell size and granularity, deterioration of the photosynthetic apparatus (chlorophyll synthesis and photochemical reactions of photosynthesis, and oxidative stress (ROS production. The change in cellular viability demonstrated to be a very sensitive biomarker of NiO-NPs toxicity with EC50 of 13.7 mg L−1. Analysis by TEM and X-ray confirmed that NiO-NPs were able to cross biological membranes and to accumulate inside algal cells. Therefore, this study provides a characterization of both physicochemical and toxicological properties of NiO-NPs suspensions in tested media. The use of the freshwater strain of C. vulgaris demonstrated to be a sensitive bioindicator of NiO-NPs toxicity on the viability of green algae.

  5. Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Zhang, Bing; He, Yu; Liu, Bingqian; Tang, Dianping

    2015-01-01

    We have developed a new class of organic–inorganic hybrid nanostructures based on the use of reduced graphene oxide (rGO), polyaniline, and a nickel metal nanostructure. It was applied to efficient non-enzymatic sensing of glucose based on its electrocatalytic oxidation. Scanning electron microscopy and energy-dispersive X-Ray were employed to characterize the material. It is shown that the doped polyaniline plays an important role in the formation of the hybrid nanostructures. Improved analytical performance is found when the hybrid nanostructures were placed on a glassy carbon electrode and used for non-enzymatic sensing of glucose at a typical working potential of +450 mV and a pH value of 13. Features include a fast response (∼2 s), high sensitivity (6,050 μA mM −1 cm −2 ), a linear range from 0.1 μM to 1.0 mM, and a low detection limit (0.08 μM). The response to glucose follows a Michaelis-Menten kinetic behavior, and the K M value was determined to be 0.241 μM. Reproducibility and specificity are acceptable. Fructose and maltose do not interfere significantly. Importantly, the methodology was validated and evaluated for the analysis of 15 spiked human serum specimens, receiving in a good accordance with the results obtained by the non-enzymatic glucose sensing and the commercialized personal glucose meter. (author)

  6. Hydrogen production by steam reforming of liquefied natural gas over a nickel catalyst supported on mesoporous alumina xerogel

    Science.gov (United States)

    Seo, Jeong Gil; Youn, Min Hye; Cho, Kyung Min; Park, Sunyoung; Song, In Kyu

    Mesoporous alumina xerogel (A-SG) is prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/A-SG catalyst is then prepared by an impregnation method, and is applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of the mesoporous alumina xerogel support on the catalytic performance of Ni/A-SG catalyst is investigated. For the purpose of comparison, a nickel catalyst supported on commercial alumina (A-C) is also prepared by an impregnation method (Ni/A-C). Both the hydroxyl-rich surface and the electron-deficient sites of the A-SG support enhance the dispersion of the nickel species on the support during the calcination step. The formation of the surface nickel aluminate phase in the Ni/A-SG catalyst remarkably increases the reducibility and stability of the catalyst. Furthermore, the high-surface area and the well-developed mesoporosity of the Ni/A-SG catalyst enhance the gasification of surface hydrocarbons that are adsorbed in the reaction. In the steam reforming of LNG, the Ni/A-SG catalyst exhibits a better catalytic performance than the Ni/A-C catalyst in terms of LNG conversion and hydrogen production. Moreover, the Ni/A-SG catalyst shows strong resistance toward catalyst deactivation.

  7. Combination of Asymmetric Supercapacitor Utilizing Activated Carbon and Nickel Oxide with Cobalt Polypyridyl-Based Dye-Sensitized Solar Cell

    International Nuclear Information System (INIS)

    Bagheri, Narjes; Aghaei, Alireza; Ghotbi, Mohammad Yeganeh; Marzbanrad, Ehsan; Vlachopoulos, Nick; Häggman, Leif; Wang, Michael; Boschloo, Gerrit; Hagfeldt, Anders; Skunik-Nuckowska, Magdalena; Kulesza, Pawel J.

    2014-01-01

    Highlights: • Dye Solar Cell and supercapacitor are integrated into a single device capable of generation and storage of energy. • The solar cell part of the device utilizes the Co-based electrolyte and nickel/PEDOT counter electrode. • A cobalt-doped nickel oxide together with activated carbon is used in the capacitor part of the device. • The integrated photocapacitor is characterized by the capacitance of 32 F g −1 and the total efficiency of 0.6%. - Abstract: A dye-sensitized solar cell (DSC) based on the metal-free organic sensitizer and the cobalt (II, III) polypyridyl electrolyte was integrated here within an asymmetric supercapacitor utilizing cobalt-doped nickel oxide and activated carbon as positive and negative electrodes, respectively. A low cost nickel foil served as intermediate (auxiliary) bifunctional electrode separating two parts of the device and permitting the DSC electrolyte regeneration at one side and charge storage within cobalt-doped nickel oxide at the other. The main purpose of the research was to develop an integrated photocapacitor system capable of both energy generation and its further storage. Following irradiation at the 100 mW cm −2 level, the solar cell generated an open-circuit voltage of 0.8 V and short-circuit current of 8 mA cm −2 which corresponds to energy conversion efficiency of 4.9%. It was further shown that upon integration with asymmetric supercapacitor, the photogenerated energy was directly injected into porous charge storage electrodes thus resulting in specific capacitance of 32 F g −1 and energy density of 2.3 Wh kg −1 . The coulumbic and total (energy conversion and charge storage) efficiency of photocapacitor were equal to 54% and 0.6%, respectively

  8. Sonochemical fabrication of petal array-like copper/nickel oxide composite foam as a pseudocapacitive material for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Namachivayam; Edison, Thomas Nesakumar Jebakumar Immanuel [School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Sethuraman, Mathur Gopalakrishnan, E-mail: mgsethu@gmail.com [Department of Chemistry, Gandhigram Rural Institute – Deemed University, Gandhigram, 624 302, Dindigul District, Tamil Nadu (India); Lee, Yong Rok, E-mail: yrlee@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2017-02-28

    Highlights: • A composite Ni foam textured with Cu particles was fabricated by a sonication method. • The foam can be used as a pseudocapacitive material for energy storage applications. • The foam has a high specific capacitance of 1773 F g{sup −1} at a scan rate of 5 mV s{sup −1}. - Abstract: Copper/nickel oxide composite foam (Cu/Ni) with petal array-like textures were successfully fabricated via a facile sonochemical approach, and its applications as a pseudocapacitive material for energy storage were examined. The nickel foam was immersed into a mixture of copper chloride (CuCl{sub 2}) and hydrochloric acid (HCl) and subsequently sonicated for 30 min at 60 °C. As a result of galvanic replacement, nickel was oxidized while copper was reduced, and the walls of the nickel foam were coated with copper particles. Studies using field emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopic analyses confirmed the morphology and chemical structure of the as-obtained Cu/Ni oxide composite foam. The supercapacitive performance of the as-fabricated Cu/Ni oxide composite foam was evaluated in 2 M KOH by employing cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy analyses. Cyclic voltammograms revealed that the Cu/Ni oxide composite foam exhibited pseudocapacitive behavior and delivered a high specific capacitance of 1773 F g{sup −1} at a scan rate of 5 mV s{sup −1}. This improvement may be attributed to the morphology, surface functionalization with heteroatoms, hydrogen evolution, and high conductivity, along with the low resistance due to short path lengths for electron transportation.

  9. The application of inelastic neutron scattering to investigate the steam reforming of methane over an alumina-supported nickel catalyst

    International Nuclear Information System (INIS)

    McFarlane, Andrew R.; Silverwood, Ian P.; Norris, Elizabeth L.; Ormerod, R. Mark; Frost, Christopher D.; Parker, Stewart F.; Lennon, David

    2013-01-01

    Highlights: • Inelastic neutron scattering has been used to investigate a Ni/alumina catalyst. • The extent of hydrogen retention by the catalyst has been determined. • Filamentous carbon is identified as a by-product. - Abstract: An alumina-supported nickel catalyst, previously used in methane reforming experiments employing CO 2 as the oxidant, is applied here in the steam reforming variant of the process. Micro-reactor experiments are used to discern an operational window compatible with sample cells designed for inelastic neutron scattering (INS) experiments. INS spectra are recorded after 6 h reaction of a 1:1 mixture of CH 4 and H 2 O at 898 K. Weak INS spectra are observed, indicating minimal hydrogen retention by the catalyst in this operational regime. Post-reaction, the catalyst is further characterised by powder X-ray diffraction, transmission electron microscopy and Raman scattering. In a comparable fashion to that seen for the ‘dry’ reforming experiments, the catalyst retains substantial quantities of carbon in the form of filamentous coke. The role for hydrogen incorporation by the catalyst is briefly considered

  10. The application of inelastic neutron scattering to investigate the steam reforming of methane over an alumina-supported nickel catalyst

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Andrew R.; Silverwood, Ian P. [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Norris, Elizabeth L.; Ormerod, R. Mark [Department of Chemistry, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG (United Kingdom); Frost, Christopher D.; Parker, Stewart F. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Lennon, David, E-mail: David.Lennon@glasgow.ac.uk [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-12-12

    Highlights: • Inelastic neutron scattering has been used to investigate a Ni/alumina catalyst. • The extent of hydrogen retention by the catalyst has been determined. • Filamentous carbon is identified as a by-product. - Abstract: An alumina-supported nickel catalyst, previously used in methane reforming experiments employing CO{sub 2} as the oxidant, is applied here in the steam reforming variant of the process. Micro-reactor experiments are used to discern an operational window compatible with sample cells designed for inelastic neutron scattering (INS) experiments. INS spectra are recorded after 6 h reaction of a 1:1 mixture of CH{sub 4} and H{sub 2}O at 898 K. Weak INS spectra are observed, indicating minimal hydrogen retention by the catalyst in this operational regime. Post-reaction, the catalyst is further characterised by powder X-ray diffraction, transmission electron microscopy and Raman scattering. In a comparable fashion to that seen for the ‘dry’ reforming experiments, the catalyst retains substantial quantities of carbon in the form of filamentous coke. The role for hydrogen incorporation by the catalyst is briefly considered.

  11. Magnetism, spin-lattice-orbital coupling and exchange-correlation energy in oxide heterostructures: Nickelate, titanate, and ruthenate

    Science.gov (United States)

    Han, Myung-Joon

    Many interesting physical phenomena and material characteristics in transition-metal oxides (TMO) come out of the intriguing interplay between charge, spin, orbital, and lattice degrees of freedom. In the thin film and/or heterointerface form of TMO, this feature can be controlled and thus be utilized. Simultaneously, however, its detailed characteristic is more difficult to be identified experimentally. For this reason, the first-principles-based approach has been playing an important role in this field of research. In this talk, I will try to give an overview of current status of first-principles methodologies especially for the magnetism in the correlated oxide heterostructures or thin films. Nickelate, titanate, and ruthenate will be taken as representative examples to demonstrate the powerfulness of and the challenges to the current methodologies On the one hand, first-principles calculation provides the useful information, understanding and prediction which can hardly be obtained from other theoretical and experimental techniques. Nickelate-manganite superlattices (LaNiO3/LaMnO3 and LaNiO3/CaMnO3) are taken as examples. In this interface, the charge transfer can induce the ferromagnetism and it can be controlled by changing the stacking sequence and number of layers. The exchange-correlation (XC) functional dependence seems to give only quantitatively different answers in this case. On the other hand, for the other issues such as orbital polarization/order coupled with spin order, the limitation of current methodology can be critical. This point will be discussed with the case of tatinate superlattice (LaTiO3/LaAlO3) . For ruthenates (SrRuO3\\ and Sr2RuO4) , we found that the probably more fundamental issue could be involved. The unusually strong dependence on the XC functional parametrization is found to give a qualitatively different conclusion for the experimentally relevant parameter regions. This work was supported by National Research Foundation of

  12. Experimental Study and Mathematical Modeling of Self-Sustained Kinetic Oscillations in Catalytic Oxidation of Methane over Nickel.

    Science.gov (United States)

    Lashina, Elena A; Kaichev, Vasily V; Saraev, Andrey A; Vinokurov, Zakhar S; Chumakova, Nataliya A; Chumakov, Gennadii A; Bukhtiyarov, Valerii I

    2017-09-21

    The self-sustained kinetic oscillations in the oxidation of CH 4 over Ni foil have been studied at atmospheric pressure using an X-ray diffraction technique and mass spectrometry. It has been shown that the regular oscillations appear under oxygen-deficient conditions; CO, CO 2 , H 2 , and H 2 O are detected as the products. According to in situ X-ray diffraction measurements, nickel periodically oxidizes to NiO initiating the reaction-rate oscillations. To describe the oscillations, we have proposed a five-stage mechanism of the partial oxidation of methane over Ni and a corresponding three-variable kinetic model. The mechanism considers catalytic methane decomposition, dissociative adsorption of oxygen, transformation of chemisorbed oxygen to surface nickel oxide, and reaction of adsorbed carbon and oxygen species to form CO. Analysis of the kinetic model indicates that the competition of two processes, i.e., the oxidation and the carbonization of the catalyst surface, is the driving force of the self-sustained oscillations in the oxidation of methane. We have compared this mechanism with the detailed 18-stage mechanism described previously by Lashina et al. (Kinetics and Catalysis 2012, 53, 374-383). It has been shown that both kinetic mechanisms coupled with a continuous stirred-tank reactor model describe well the oscillatory behavior in the oxidation of methane under non-isothermal conditions.

  13. Investigation on reactivity of iron nickel oxides in chemical looping dry reforming

    International Nuclear Information System (INIS)

    Huang, Zhen; He, Fang; Chen, Dezhen; Zhao, Kun; Wei, Guoqiang; Zheng, Anqing; Zhao, Zengli; Li, Haibin

    2016-01-01

    Iron nickel oxides as oxygen carriers were investigated to clarify the reaction mechanism of NiFe_2O_4 material during the chemical looping dry reforming (CLDR) process. The thermodynamic analysis showed that metallic Fe can be oxidized into Fe_3O_4 by CO_2, but metallic Ni cannot. The oxidizability of the four oxygen carriers was in the order of NiO > synthetic NiFe_2O_4 spinel > NiO-Fe_2O_3 mixed oxides > Fe_2O_3, and the reducibility sequence of their reduced products was synthetic NiFe_2O_4 spinel > NiO-Fe_2O_3 mixed oxides > Fe_2O_3 > NiO. The NiO showed the best oxidizability but it was easy to cause CH_4 cracking and its reduced product (Ni) did not recover lattice oxygen under CO_2 atmosphere. It only produced 74 mL CO for 1 g Fe_2O_3 during the CO_2 reforming because of its weak oxidizability. The Redox ability of synthetic NiFe_2O_4 was obvious higher than that of NiO-Fe_2O_3 mixed oxides due to the synergistic effect of metallic Fe-Ni in the spinel structure. 1 g synthetic NiFe_2O_4 can produce 238 mL CO, which was twice higher than that of 1 g NiO-Fe_2O_3 mixed oxides (111 mL). A part of Fe element was divorced from the NiFe_2O_4 spinel structure after one cycle, which was the major reason for degradation of reactivity of NiFe_2O_4 oxygen carrier. - Highlights: • A synergistic effect of Fe/Ni can improve the reactivity of oxygen carrier (OC). • The oxidizability sequence of four OCs is NiO > NiFe_2O_4 > mixed NiO + Fe_2O_3 > Fe_2O_3. • The reducibility sequence of four OCs is NiFe_2O_4 > mixed NiO + Fe_2O_3 > Fe_2O_3 > NiO. • The formation of Fe (Ni) alloy phase facilitates more CO_2 reduced into CO. • Part of Fe is divorced from the spinel structure, leading to the degeneration of OC reactivity.

  14. Atomically Monodisperse Nickel Nanoclusters as Highly Active Electrocatalysts for Water Oxidation

    KAUST Repository

    Joya, Khurram

    2016-04-08

    Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 and initiate the oxygen evolution at an amazingly low overpotential of ~1.51 V (vs RHE; η ≈ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm–2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec–1 is observed using Ni4(PET)8. These results are comparable to the state-of-the art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm–2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.

  15. Tuning crystal phase of NiS_x through electro-oxidized nickel foam: A novel route for preparing efficient electrocatalysts for oxygen evolution reaction

    International Nuclear Information System (INIS)

    Li, Xiao; Shang, Xiao; Rao, Yi; Dong, Bin; Han, Guan-Qun; Hu, Wen-Hui; Liu, Yan-Ru; Yan, Kai-Li; Chi, Jing-Qi; Chai, Yong-Ming; Liu, Chen-Guang

    2017-01-01

    Highlights: • Electro-oxidized nickel foam as a support has been used to prepare NiS_x phases. • Ni(OH)_2 layer on electro-oxidized NF is responsible for the growth of β-NiS. • NiS_x/NF(Ox) composed of β-NiS and Ni_3S_2 has enhanced electrocatalytic activity. • The growth mechanisms of mixed NiS_x phases of NiS_x/NF(Ox) have been discussed. - Abstract: A facile solvothermal sulfurization using electro-oxidized nickel foam (NF(Ox)) as support has been applied to prepare NiS_x/NF(Ox) electrocatalyst with highly efficient activity for oxygen evolution reaction (OER). XRD patterns confirm the composition of NiS_x/NF(Ox): two kinds of crystal phase including β-NiS and Ni_3S_2. While using bare NF as support under identical conditions, only Ni_3S_2 phase can be detected. SEM images reveal two kinds of morphologies of NiS_x/NF(Ox) including pyramids structure of β-NiS and nanorod-like structure of Ni_3S_2, which implies the tuning effect of electro-pretreatment of NF on the selective preparation of NiS_x crystal phase. It can be speculated that Ni(OH)_2 layer derived from electro-oxidized NF is responsible for the growth of β-NiS while metallic Ni is transformed into Ni_2S_3 during sulfurization. Electrochemical measurements for OER indicate the enhanced electrocatalytic activity of NiS_x/NF(Ox) with a small overpotential of 72 mV to reach 10 mA cm"−"2 compared with Ni_3S_2/NF, which may be ascribed to the improved electron-transfer kinetics relating to the unique atomic configurations and crystalline structures of β-NiS. The electro-oxidation pretreatment of nickel foam provides a simple and convenient method by tuning different NiS_x crystal phases for preparing excellent OER eletrocatalysts.

  16. Tuning crystal phase of NiS{sub x} through electro-oxidized nickel foam: A novel route for preparing efficient electrocatalysts for oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao; Shang, Xiao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Rao, Yi [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580, PR China (China); Dong, Bin, E-mail: dongbin@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580, PR China (China); Han, Guan-Qun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580, PR China (China); Hu, Wen-Hui; Liu, Yan-Ru; Yan, Kai-Li; Chi, Jing-Qi; Chai, Yong-Ming [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chen-Guang, E-mail: cgliu@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China)

    2017-02-28

    Highlights: • Electro-oxidized nickel foam as a support has been used to prepare NiS{sub x} phases. • Ni(OH){sub 2} layer on electro-oxidized NF is responsible for the growth of β-NiS. • NiS{sub x}/NF(Ox) composed of β-NiS and Ni{sub 3}S{sub 2} has enhanced electrocatalytic activity. • The growth mechanisms of mixed NiS{sub x} phases of NiS{sub x}/NF(Ox) have been discussed. - Abstract: A facile solvothermal sulfurization using electro-oxidized nickel foam (NF(Ox)) as support has been applied to prepare NiS{sub x}/NF(Ox) electrocatalyst with highly efficient activity for oxygen evolution reaction (OER). XRD patterns confirm the composition of NiS{sub x}/NF(Ox): two kinds of crystal phase including β-NiS and Ni{sub 3}S{sub 2}. While using bare NF as support under identical conditions, only Ni{sub 3}S{sub 2} phase can be detected. SEM images reveal two kinds of morphologies of NiS{sub x}/NF(Ox) including pyramids structure of β-NiS and nanorod-like structure of Ni{sub 3}S{sub 2}, which implies the tuning effect of electro-pretreatment of NF on the selective preparation of NiS{sub x} crystal phase. It can be speculated that Ni(OH){sub 2} layer derived from electro-oxidized NF is responsible for the growth of β-NiS while metallic Ni is transformed into Ni{sub 2}S{sub 3} during sulfurization. Electrochemical measurements for OER indicate the enhanced electrocatalytic activity of NiS{sub x}/NF(Ox) with a small overpotential of 72 mV to reach 10 mA cm{sup −2} compared with Ni{sub 3}S{sub 2}/NF, which may be ascribed to the improved electron-transfer kinetics relating to the unique atomic configurations and crystalline structures of β-NiS. The electro-oxidation pretreatment of nickel foam provides a simple and convenient method by tuning different NiS{sub x} crystal phases for preparing excellent OER eletrocatalysts.

  17. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T. [VTT Manufacturing Technology, Espoo (Finland)

    1999-01-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  18. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    International Nuclear Information System (INIS)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T.

    1999-01-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  19. The Properties Of And Transport Phenomena In Oxide Films On Iron, Nickel, Chromium And Their Alloys In Aqueous Environments

    International Nuclear Information System (INIS)

    Saario, T.; Laitinen, T.; Maekelae, K.; Bojinov, M.; Betova, I.

    1998-07-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown, pitting, stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more dense structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  20. Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods

    Directory of Open Access Journals (Sweden)

    Amira M. Mahmoud

    2015-03-01

    Full Text Available Environmental pollution by heavy metal is arising as the most endangering tasks to both water sources and atmosphere quality today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. To limit the spread of the heavy metals within water sources, nickel oxide nanoparticles adsorbents were synthesized and characterized with the aim of removal of one of the aggressive heavy elements, namely; lead ions. Nano nickel oxide adsorbents were prepared using NaOH and oxalic acid dissolved in ethanol as precursors. The results indicated that adsorption capacity of Pb(II ion by NiO-org catalyst is favored than that prepared using NaOH as a precipitant. Nickel oxide nanoparticles prepared by the two methods were characterized structurally and chemically through XRD, DTA, TGA, BET and FT-IR. Affinity and efficiency sorption parameters of the solid nano NiO particles, such as; contact time, initial concentration of lead ions and the dosage of NiO nano catalyst and competitive adsorption behaviors were studied. The results showed that the first-order reaction law fit the reduction of lead ion, also showed good linear relationship with a correlation coefficient (R2 larger than 0.9.

  1. Mesoporous Nickel Oxide (NiO) Nanopetals for Ultrasensitive Glucose Sensing

    Science.gov (United States)

    Mishra, Suryakant; Yogi, Priyanka; Sagdeo, P. R.; Kumar, Rajesh

    2018-01-01

    Glucose sensing properties of mesoporous well-aligned, dense nickel oxide (NiO) nanostructures (NSs) in nanopetals (NPs) shape grown hydrothermally on the FTO-coated glass substrate has been demonstrated. The structural study based investigations of NiO-NPs has been carried out by X-ray diffraction (XRD), electron and atomic force microscopies, energy dispersive X-ray (EDX), and X-ray photospectroscopy (XPS). Brunauer-Emmett-Teller (BET) measurements, employed for surface analysis, suggest NiO's suitability for surface activity based glucose sensing applications. The glucose sensor, which immobilized glucose on NiO-NPs@FTO electrode, shows detection of wide range of glucose concentrations with good linearity and high sensitivity of 3.9 μA/μM/cm2 at 0.5 V operating potential. Detection limit of as low as 1 μΜ and a fast response time of less than 1 s was observed. The glucose sensor electrode possesses good anti-interference ability, stability, repeatability & reproducibility and shows inert behavior toward ascorbic acid (AA), uric acid (UA) and dopamine acid (DA) making it a perfect non-enzymatic glucose sensor.

  2. Effect of CTAB concentration on synthesis of nickel doped manganese oxide nanoparticles

    Science.gov (United States)

    Shobana, R.; Saravanakumar, B.; Ravi, G.; Yuvakkumar, R.

    2018-05-01

    In this work the effect of concentration of cetyltrimethylammonium bromide (CTAB) in the synthesis of Nickel doped Manganese oxide (Ni-MnO2) nanoparticles have been carried out by adopting the sol-gel process. The synthesized products were characterized by XRD, Infra- Red (FTIR) and SEM analysis. The XRD confirms the formation of Ni-MnO2 nanoparticles illustrate peak at 31.4° with lattice plane (-231). The IR spectra correspond to the peak at 592 and 846 cm-1 attributed to the characteristics peak for Ni-MnO2 nanoparticles. The SEM images for all three Ni-MnO2 nanoparticles for different concentration of CTAB allows us to assess the formation route of nano tentacles from 10 mM, 30 mM and 50 mM. The configured nano tentacles of Ni-MnO2 nanoparticles presumably leads to more significantly change its properties, particularly in its electrochemical properties show the ways to be suitable candidates for supercapacitor, battery, photo catalytic and fuel cell applications.

  3. Preparation and characterization of nickel oxide nanoparticles and their application in glucose and methanol sensing

    Directory of Open Access Journals (Sweden)

    Mahsa Hasanzadeh

    2015-03-01

    Full Text Available In this work, a low cost glucose and methanol nonenzymatic sensor was prepared using nickel oxide (NiO nanofilm electrodeposited on a bare Cu electrode. Electrochemical deposition was assisted with cetyl trimethylammonium bromide (CTAB as a template. Scanning electron microscopy (SEM was applied to observe the surface morphology of the modified electrode. Cyclic voltammetry (CV and amperometry techniques were used to study the electrocatalytic behavior of NiO porous film in glucose and methanol detection. For glucose sensing, the electrode showed a linear relationship in the concentration range of 0.01-2.14 mM with a low limit of detection (LOD 1.7 µM (signal/noise ratio (S/N=3. Moreover, high sensitivities of 4.02 mA mM−1 cm−2 and 0.38 mA mM−1 cm−2 respectively in glucose and methanol monitoring suggested the modified electrode as an excellent sensor. The NiO-Cu modified electrode was relatively insensitive to common biological interferers. This sensor possessed good poison resistance towards chloride ions, and long term stability and significant selectivity towards glucose and methanol. Finally the proposed sensor was successfully applied for determination of glucose in human blood serum samples.

  4. Nonlinear system identification of the reduction nickel oxide smelting process in electric arc furnace

    Science.gov (United States)

    Gubin, V.; Firsov, A.

    2018-03-01

    As the title implies the article describes the nonlinear system identification of the reduction smelting process of nickel oxide in electric arc furnaces. It is suggested that for operational control ratio of components of the charge must be solved the problem of determining the qualitative composition of the melt in real time. The use of 0th harmonic of phase voltage AC furnace as an indirect measure of the melt composition is proposed. Brief description of the mechanism of occurrence and nature of the non-zero 0th harmonic of the AC voltage of the arc is given. It is shown that value of 0th harmonic of the arc voltage is not function of electrical parameters but depends of the material composition of the melt. Processed industrial data are given. Hammerstein-Wiener model is used for description of the dependence of 0th harmonic of the furnace voltage from the technical parameters of melting furnace: the melt composition and current. Recommendations are given about the practical use of the model.

  5. Vibration Durability Testing of Nickel Cobalt Aluminum Oxide (NCA Lithium-Ion 18650 Battery Cells

    Directory of Open Access Journals (Sweden)

    James Michael Hooper

    2016-04-01

    Full Text Available This paper outlines a study undertaken to determine if the electrical performance of Nickel Cobalt Aluminum Oxide (NCA 3.1 Ah 18650 battery cells can be degraded by road induced vibration typical of an electric vehicle (EV application. This study investigates if a particular cell orientation within the battery assembly can result in different levels of cell degradation. The 18650 cells were evaluated in accordance with Society of Automotive Engineers (SAE J2380 standard. This vibration test is synthesized to represent 100,000 miles of North American customer operation at the 90th percentile. This study identified that both the electrical performance and the mechanical properties of the NCA lithium-ion cells were relatively unaffected when exposed to vibration energy that is commensurate with a typical vehicle life. Minor changes observed in the cell’s electrical characteristics were deemed not to be statistically significant and more likely attributable to laboratory conditions during cell testing and storage. The same conclusion was found, irrespective of cell orientation during the test.

  6. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats.

    Science.gov (United States)

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs.

  7. "Smart" nickel oxide based core-shell nanoparticles for combined chemo and photodynamic cancer therapy.

    Science.gov (United States)

    Bano, Shazia; Nazir, Samina; Munir, Saeeda; AlAjmi, Mohamed Fahad; Afzal, Muhammad; Mazhar, Kehkashan

    2016-01-01

    We report "smart" nickel oxide nanoparticles (NOPs) as multimodal cancer therapy agent. Water-dispersible and light-sensitive NiO core was synthesized with folic acid (FA) connected bovine serum albumin (BSA) shell on entrapped doxorubicin (DOX). The entrapped drug from NOP-DOX@BSA-FA was released in a sustained way (64 hours, pH=5.5, dark conditions) while a robust release was found under red light exposure (in 1/2 hour under λmax=655 nm, 50 mW/cm(2), at pH=5.5). The cell viability, thiobarbituric acid reactive substances and diphenylisobenzofuran assays conducted under light and dark conditions revealed a high photodynamic therapy potential of our construct. Furthermore, we found that the combined effect of DOX and NOPs from NOP-DOX@BSA-FA resulted in cell death approximately eightfold high compared to free DOX. We propose that NOP-DOX@BSA-FA is a potential photodynamic therapy agent and a collective drug delivery system for the systemic administration of cancer chemotherapeutics resulting in combination therapy.

  8. Microstructural evaluation of ceria-samaria-gadolinia-nickel oxide composite after reduction in hydrogen atmosphere

    International Nuclear Information System (INIS)

    Arakaki, A. R.; Yoshito, W.K.; Ussui, V.; Lazar, D.R.R.

    2012-01-01

    The ceria-samaria-gadolinia-nickel composite (Ni-SGDC), used as Solid Oxide Fuel Cell (SOFC) anode, was obtained by 'in situ' reduction of NiO-SGDC, with composition Ce 0,8 (SmGd) 0,2 O 1,9 /NiO and mass proportion 40:60%. The composite was produced by hydroxides coprecipitation using CTAB surfactant, followed by solvothermal treatment in butanol, calcination at 600 deg C, pressing and sintering at 1350 deg C for 1 h. The composite reduction kinetic was evaluated in a tubular furnace under dynamic atmosphere of 4% H2 /Air, fixing the temperature at 900 deg C and time between 10 and 120 minutes. The microstructural characterization was performed by optical and scanning electron microscopy. The samples were characterized either by X-ray diffraction and density measurements by immersion technique in water. It was verified that the NiO reduced fraction reached values between 80 and 90% and the achieved porosity (about 30%) is acceptable to a good anode performance (author)

  9. Fabrication of nickel oxide and Ni-doped indium tin oxide thin films using pyrosol process

    International Nuclear Information System (INIS)

    Nakasa, Akihiko; Adachi, Mami; Usami, Hisanao; Suzuki, Eiji; Taniguchi, Yoshio

    2006-01-01

    Organic light emitting diodes (OLEDs) need indium tin oxide (ITO) anodes with highly smooth surface. The work function of ITO, about 4.8 eV, is generally rather lower than the optimum level for application to OLEDs. In this work, NiO was deposited by pyrosol process on pyrosol ITO film to increase the work function of the ITO for improving the performance of OLEDs. It was confirmed that NiO was successfully deposited on pyrosol ITO film and the NiO deposition increased the work function of pyrosol ITO, using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and atmospheric photoelectron spectroscopy. Furthermore, doping ITO with Ni succeeded in producing the Ni-doped ITO film with high work function and lower sheet resistance

  10. Study of Supported Nickel Catalysts Prepared by Aqueous Hydrazine Method. Hydrogenating Properties and Hydrogen Storage: Support Effect. Silver Additive Effect

    International Nuclear Information System (INIS)

    Wojcieszak, R.

    2006-06-01

    We have studied Ni or NiAg nano-particles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports (γ-Al 2 O 3 , amorphous or crystallized SiO 2 , Nb 2 O 5 , CeO 2 and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N 2 , FTIR and FTIR-Pyridine, TEM, STEM, EDS, H 2 -TPR, H 2 -adsorption, H 2 -TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO 2 or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0.53%/30 bars), probably through the hydrogen spillover effect. (author)

  11. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2).

    Science.gov (United States)

    Ahamed, Maqusood; Ali, Daoud; Alhadlaq, Hisham A; Akhtar, Mohd Javed

    2013-11-01

    Increasing use of nickel oxide nanoparticles (NiO NPs) necessitates an improved understanding of their potential impact on human health. Previously, toxic effects of NiO NPs have been investigated, mainly on airway cells. However, information on effect of NiO NPs on human liver cells is largely lacking. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and induction of apoptotic response in human liver cells (HepG2) due to NiO NPs exposure. Prepared NiO NPs were crystalline and spherical shaped with an average diameter of 44 nm. NiO NPs induced cytotoxicity (cell death) and ROS generation in HepG2 cells in dose-dependent manner. Further, ROS scavenger vitamin C reduced cell death drastically caused by NiO NPs exposure indicating that oxidative stress plays an important role in NiO NPs toxicity. Micronuclei induction, chromatin condensation and DNA damage in HepG2 cells treated with NiO NPs suggest that NiO NPs induced cell death via apoptotic pathway. Quantitative real-time PCR analysis showed that following the exposure of HepG2 cells to NiO NPs, the expression level of mRNA of apoptotic genes (bax and caspase-3) were up-regulated whereas the expression level of anti-apoptotic gene bcl-2 was down-regulated. Moreover, activity of caspase-3 enzyme was also higher in NiO NPs treated cells. To the best of our knowledge this is the first report demonstrating that NiO NPs caused cytotoxicity via ROS and induced apoptosis in HepG2 cells, which is likely to be mediated through bax/bcl-2 pathway. This work warrants careful assessment of Ni NPs before their commercial and industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Synthesis and characterization of mesoporous materials for CO_2 capture: influence of nickel oxide

    International Nuclear Information System (INIS)

    Nascimento, Alexsandra Rodrigues do

    2014-01-01

    Several materials are currently under study for the CO_2 capture process, like the metal oxides and mixed metal oxides, zeolites, carbonaceous materials, metal-organic frameworks (MOF's) organosilica and modified silica surfaces. In this work, evaluated the adsorption capacity of CO_2 in mesoporous materials of different structures, such as MCM-48 and SBA-15 without impregnating and impregnated with nickel in the proportions 5 %, 10 % and 20 % (m/m), known as 5Ni-MCM-48, 10Ni-MCM-48, 20Ni-MCM-48 and 5Ni-SBA-15, 10Ni-SBA-15, 20Ni-SBA-15. The materials were characterized by means of X-ray diffraction (XRD), thermal analysis (TG and DTG), Fourier transform infrared spectroscopy (FT-IR), N_2 adsorption and desorption (BET) and scanning electron microscopy (SEM) with EDS. The adsorption process was performed varying the pressure of 100 - 4000 kPa and keeping the temperature constant and equal to 298 K. At a pressure of 100 kPa, higher concentrations of adsorption occurred for the materials 5Ni-MCM-48 (0.795 mmol g"-"1) and SBA-15 (0.914 mmol g"-"1) is not impregnated, and at a pressure of 4000 kPa for MCM-48 materials (14.89 mmol g"-"1) and SBA-15 (9.97 mmol g"-"1) not impregnated. The results showed that the adsorption capacity varies positively with the specific area, however, has a direct dependency on the type and geometry of the porous structure of channels. The data were fitted using the Langmuir and Freundlich models and were evaluated thermodynamic parameters Gibbs free energy and entropy of the adsorption system. (author)

  13. Sub-acute nickel exposure impairs behavior, alters neuronal microarchitecture, and induces oxidative stress in rats' brain.

    Science.gov (United States)

    Ijomone, Omamuyovwi Meashack; Okori, Stephen Odey; Ijomone, Olayemi Kafilat; Ebokaiwe, Azubike Peter

    2018-02-26

    Nickel (Ni) is a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for neurological symptoms in humans. The present study investigated the behavior and histomorphological alterations in brain of rats sub-acutely exposed to nickel chloride (NiCl 2 ) and the possible involvement of oxidative stress. Rats were administered with 5, 10 or 20 mg/kg NiCl 2 via intraperitoneal injections for 21 days. Neurobehavioral assessment was performed using the Y-maze and open field test (OFT). Histomorphological analyses of brain tissues, as well as biochemical determination of oxidative stress levels were performed. Results showed that Ni treatments significantly reduced body weight and food intake. Cognitive and motor behaviors on the Y-maze and OFT, respectively, were compromised following Ni treatments. Administration of Ni affected neuronal morphology in the brain and significantly reduced percentage of intact neurons in both hippocampus and striatum. Additionally, markers of oxidative stress levels and nitric oxide (NO) levels were significantly altered following Ni treatments. These data suggest that compromised behavior and brain histomorphology following Ni exposures is associated with increase in oxidative stress.

  14. The effect of CTAB on synthesis in butanol of samaria and gadolinia doped ceria - nickel oxide ceramics

    International Nuclear Information System (INIS)

    Arakaki, A.R.; Cunha, S.M.; Yoshito, W.K.; Ussui, V.; Lazar, D.R.R.

    2011-01-01

    In this work it was synthesized doped ceria and Samaria gadolinia - nickel oxide ceramics, mainly applied as anodes Fuel Cells Solid Oxide. Powders of composition Ce 0,8 (SmGd) 0,2 O 1,9 /NiO and mass ratio of 40: 60% were initially synthesized by hydroxides coprecipitation and then treated solvo thermically in butanol. Cerium samarium, gadolinium and nickel chlorides and CTAB with molar ratio metal / CTAB ranging from 1 to 3, were used as raw materials Powders were treated in butanol at 150 deg C for 16h. The powders were analyzed by X-ray diffraction, scanning electron microscopy, specific surface area for adsorption of nitrogen and particle size distribution by laser beam scattering. The ceramics were analyzed by scanning electron microscopy and density measurements by immersion technique in water. The results showed that the powders had the characteristic crystalline structures of ceria and nickel hydroxide, and high specific surface area (80 m 2 / g). The characterizations of ceramics demonstrated high chemical homogeneity and porosity values of 30%. (author)

  15. Waterborne cadmium and nickel impact oxidative stress responses and retinoid metabolism in yellow perch

    International Nuclear Information System (INIS)

    Defo, Michel A.; Bernatchez, Louis; Campbell, Peter G.C.; Couture, Patrice

    2014-01-01

    Highlights: • Cd and Ni affected indicators of retinoid metabolism and oxidative stress in fish. • Liver rdh-2 transcription levels increase in fish exposed to waterborne Cd. • Liver REH and LdRAT activities increase with increasing kidney Cd concentration. • Changes at molecular levels do not always mean changes at the functional levels. • Multi-level biological approaches are needed when assessing fish metal toxicology. - Abstract: In this experiment, we studied the transcriptional and functional (enzymatic) responses of yellow perch (Perca flavescens) to metal stress, with a focus on oxidative stress and vitamin A metabolism. Juvenile yellow perch were exposed to two environmentally relevant concentrations of waterborne cadmium (Cd) and nickel (Ni) for a period of 6 weeks. Kidney Cd and Ni bioaccumulation significantly increased with increasing metal exposure. The major retinoid metabolites analyzed in liver and muscle decreased with metal exposure except at high Cd exposure where no variation was reported in liver. A decrease in free plasma dehydroretinol was also observed with metal exposure. In the liver of Cd-exposed fish, both epidermal retinol dehydrogenase 2 transcription level and corresponding enzyme activities retinyl ester hydrolase and lecithin dehydroretinyl acyl transferase increased. In contrast, muscle epidermal retinol dehydrogenase 2 transcription level decreased with Cd exposure. Among antioxidant defences, liver transcription levels of catalase, microsomal glutathione-S-transferase-3 and glucose-6-phosphate dehydrogenase were generally enhanced in Cd-exposed fish and this up-regulation was accompanied by an increase in the activities of corresponding enzymes, except for microsomal glutathione-S-transferase. No consistent pattern in antioxidant defence responses was observed between molecular and biochemical response when fish were exposed to Ni, suggesting a non-synchronous response of antioxidant defence in fish exposed to

  16. Waterborne cadmium and nickel impact oxidative stress responses and retinoid metabolism in yellow perch

    Energy Technology Data Exchange (ETDEWEB)

    Defo, Michel A. [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada); Bernatchez, Louis [Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec G1V 0A6 (Canada); Campbell, Peter G.C. [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada); Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada)

    2014-09-15

    Highlights: • Cd and Ni affected indicators of retinoid metabolism and oxidative stress in fish. • Liver rdh-2 transcription levels increase in fish exposed to waterborne Cd. • Liver REH and LdRAT activities increase with increasing kidney Cd concentration. • Changes at molecular levels do not always mean changes at the functional levels. • Multi-level biological approaches are needed when assessing fish metal toxicology. - Abstract: In this experiment, we studied the transcriptional and functional (enzymatic) responses of yellow perch (Perca flavescens) to metal stress, with a focus on oxidative stress and vitamin A metabolism. Juvenile yellow perch were exposed to two environmentally relevant concentrations of waterborne cadmium (Cd) and nickel (Ni) for a period of 6 weeks. Kidney Cd and Ni bioaccumulation significantly increased with increasing metal exposure. The major retinoid metabolites analyzed in liver and muscle decreased with metal exposure except at high Cd exposure where no variation was reported in liver. A decrease in free plasma dehydroretinol was also observed with metal exposure. In the liver of Cd-exposed fish, both epidermal retinol dehydrogenase 2 transcription level and corresponding enzyme activities retinyl ester hydrolase and lecithin dehydroretinyl acyl transferase increased. In contrast, muscle epidermal retinol dehydrogenase 2 transcription level decreased with Cd exposure. Among antioxidant defences, liver transcription levels of catalase, microsomal glutathione-S-transferase-3 and glucose-6-phosphate dehydrogenase were generally enhanced in Cd-exposed fish and this up-regulation was accompanied by an increase in the activities of corresponding enzymes, except for microsomal glutathione-S-transferase. No consistent pattern in antioxidant defence responses was observed between molecular and biochemical response when fish were exposed to Ni, suggesting a non-synchronous response of antioxidant defence in fish exposed to

  17. In situ fabrication of nickel based oxide on nitrogen-doped graphene for high electrochemical performance supercapacitors

    Science.gov (United States)

    Pan, Denghui; Zhang, Mingmei; Wang, Ying; Yan, Zaoxue; Jing, Junjie; Xie, Jimin

    2017-10-01

    In this article, we synthesize Ni(OH)2 homogeneous grown on nitrogen-doped graphene (Ni(OH)2/NG), subsequently, small and uniform nickel oxide nanoparticle (NiO/NG) is also successfully obtained through tube furnace calcination method. The high specific capacitance of the NiO/NG electrode can reach to 1314.1 F/g at a charge and discharge current density of 2 A/g, meanwhile the specific capacitance of Ni(OH)2/NG electrode is also 1350 F/g. The capacitance of NiO/NG can remain 93.7% of the maximum value after 1000 cycles, while the Ni(OH)2/NG electrode losses 16.9% of the initial capacitance after 1000 cycles. It can be attributed to nickel hydroxide instability during charge-discharge cycles.

  18. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan

    2017-01-01

    is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration...... outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate......Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters...

  19. Carbon supported Pt-NiO nanoparticles for ethanol electro-oxidation in acid media

    Science.gov (United States)

    Comignani, Vanina; Sieben, Juan Manuel; Brigante, Maximiliano E.; Duarte, Marta M. E.

    2015-03-01

    In the present work, the influence of nickel oxide as a co-catalyst of Pt nanoparticles for the electro-oxidation of ethanol in the temperature range of 23-60 °C was investigated. The carbon supported nickel oxide and platinum nanoparticles were prepared by hydrothermal synthesis and microwave-assisted polyol process respectively, and characterized by XRD, EDX, TEM and ICP analysis. The electrocatalytic activity of the as-prepared materials was studied by cyclic voltammetry and chronoamperometry. Small metal nanoparticles with sizes in the range of 3.5-4.5 nm were obtained. The nickel content in the as-prepared Pt-NiO/C catalysts was between 19 and 35 at.%. The electrochemical experiments showed that the electrocatalytic activity of the Pt-NiO/C materials increase with NiO content in the entire temperature range. The apparent activation energy (Ea,app) for the overall ethanol oxidation reaction was found to decrease with NiO content (24-32 kJ mol-1 at 0.3 V), while for Pt/C the activation energy exceeds 48 kJ mol-1. The better performance of the Pt-NiO/C catalysts compared to Pt/C sample is ascribed to the activation of both the C-H and O-H bonds via oxygen-containing species adsorbed on NiO molecules and the modification of the surface electronic structure (changes in the density of states near the Fermi level).

  20. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water

    International Nuclear Information System (INIS)

    Ma, Wei; Zong, Panpan; Cheng, Zihong; Wang, Baodong; Sun, Qi

    2014-01-01

    Highlights: • Biomass and fly ash which were widespread for adsorption of heavy metal ions. • Preparation of catalyst by saturated adsorbents for 2-chlorophenol ozone degradation. • This work demonstrated that the O 3 /catalyst process was an effective pathway. • The use of nickel ions, fly ash and sawdust to achieve the recycling utilization of resources. -- Abstract: This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid–solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH = 7 with a 2:1 liquid–solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03–0.1 min −1 ) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH = 7.0 compared with ozonation alone

  1. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wei, E-mail: chmawv@yahoo.com [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Zong, Panpan; Cheng, Zihong [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Baodong; Sun, Qi [National Institute of Clean-and-low Carbon Energy, Beijing 102209 (China)

    2014-02-15

    Highlights: • Biomass and fly ash which were widespread for adsorption of heavy metal ions. • Preparation of catalyst by saturated adsorbents for 2-chlorophenol ozone degradation. • This work demonstrated that the O{sub 3}/catalyst process was an effective pathway. • The use of nickel ions, fly ash and sawdust to achieve the recycling utilization of resources. -- Abstract: This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid–solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH = 7 with a 2:1 liquid–solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03–0.1 min{sup −1}) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH = 7.0 compared with ozonation alone.

  2. Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: a new class of solid oxide fuel cell electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2001-02-01

    The electroactivity of surfactant-templated mesoporous yttria stabilized zirconia, containing nanoclusters of platinum or nickel oxide, is explored by alternating current (AC) complex impedance spectroscopy. The observed oxygen ion and mixed oxygen ion-electron charge-transport behavior for these materials, compared to the sintered-densified non-porous crystalline versions, is ascribed to the unique integration of mesoporosity and nanocrystallinity within the binary and ternary solid solution microstructure. These attributes inspire interest in this new class of materials as candidates for the development of improved performance solid oxide fuel cell electrodes. (orig.)

  3. Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cell

    DEFF Research Database (Denmark)

    Reolon, R. P.; Sanna, S.; Xu, Yu

    2018-01-01

    A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte and nanostruct......A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte......, electrochemical performances are steady, indicating the stability of the cell. Under electrical load, a progressive degradation is activated. Post-test analysis reveals both mechanical and chemical degradation of the cell. Cracks and delamination of the thin films promote a significant nickel diffusion and new...

  4. Dispersive kinetic model for the non-isothermal reduction of nickel oxide by hydrogen

    International Nuclear Information System (INIS)

    Adnadevic, Borivoj; Jankovic, Bojan

    2008-01-01

    The kinetics of the non-isothermal reduction process of powder nickel oxide samples using hydrogen was investigated by temperature-programmed experiments at the different constant heating rates. The new procedure for the determination of density distribution function of activation energies (ddfE a ), evaluated from the experimentally obtained non-isothermal conversion curves, was developed. The analytical relationships between the corresponding thermo-kinetic parameters for the investigated reduction process were established. From the influence of heating rate on the basic characteristics of ddfE a 's, it was concluded that the evaluated ddfE a 's are completely independent of the heating rate (v h ). It was found that the value of activation energy at the peak of the distribution curve (E a,max ), at all considered heating rates, is in good agreement with the value of E a,0 (96.6 kJ mol -1 ) calculated from the isoconversional dependence of activation energy, in the conversion range of 0.20≤α≤0.60. From the appearances of the true compensation effect, it was concluded that the factor that produces the changes of kinetic parameter values is a conversion fraction (α). Using the model prediction, the experimentally obtained conversion curves are completely described by the evaluated distribution curves (g(E a ) vhj ) at all considered heating rates. It was concluded that the assumption about the distribution of potential energies of oxygen vacancies presented in NiO samples leads to the distribution of activation energies, which determine the kinetics of non-isothermal reduction processes

  5. Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): Generation of paramagnetic centers

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Alzate-Carvajal, Natalia [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Henao-Holguín, Laura V. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Rybak-Akimova, Elena V. [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico)

    2016-05-15

    Highlights: • [Ni(cyclam)]{sup 2+} and [Ni(tet b)]{sup 2+} cations coordinate to carboxylic groups of GO. • The coordination takes place under basic conditions in aqueous-based medium. • The coordination results in the conversion from low-spin to high-spin Ni(II). • Functionalized GO samples were characterized by various instrumental techniques. - Abstract: We describe a novel approach to functionalization of graphene oxide (GO) which allows for a facile generation of paramagnetic centers from two diamagnetic components. Coordination attachment of [Ni(cyclam)]{sup 2+} or [Ni(tet b)]{sup 2+} tetraazamacrocyclic cations to carboxylic groups of GO takes place under basic conditions in aqueous-based reaction medium. The procedure is very straightforward and does not require high temperatures or other harsh conditions. Changing the coordination geometry of Ni(II) from square-planar tetracoordinated to pseudooctahedral hexacoordinated brings about the conversion from low-spin to high-spin state of the metal centers. Even though the content of tetraazamacrocyclic complexes in functionalized GO samples was found to be relatively low (nickel content of ca. 1 wt%, as determined by thermogravimetric analysis, elemental analysis and energy dispersive X-ray spectroscopy), room temperature magnetic susceptibility measurements easily detected the appearance of paramagnetic properties in GO + [Ni(cyclam)] and GO + [Ni(tet b)] nanohybrids, with effective magnetic moments of 1.95 BM and 2.2 BM for, respectively. According to density functional theory calculations, the main spin density is localized at the macrocyclic complexes, without considerable extension to graphene sheet, which suggests insignificant ferromagnetic coupling in the nanohybrids, in agreement with the results of magnetic susceptibility measurements. The coordination attachment of Ni(II) tetraazamacrocycles to GO results in considerable changes in Fourier-transform infrared and X-ray photoelectron spectra

  6. "Smart" nickel oxide based core–shell nanoparticles for combined chemo and photodynamic cancer therapy

    Directory of Open Access Journals (Sweden)

    Bano S

    2016-07-01

    Full Text Available Shazia Bano,1–3,* Samina Nazir,2,* Saeeda Munir,3 Mohamed Fahad AlAjmi,4 Muhammad Afzal,1 Kehkashan Mazhar3 1Department of Physics, The Islamia University of Bahawalpur, 2Nanosciences and Technology Department, National Centre for Physics, Islamabad, 3Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan; 4College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia *These authors contributed equally to this work Abstract: We report “smart” nickel oxide nanoparticles (NOPs as multimodal cancer therapy agent. Water-dispersible and light-sensitive NiO core was synthesized with folic acid (FA connected bovine serum albumin (BSA shell on entrapped doxorubicin (DOX. The entrapped drug from NOP-DOX@BSA-FA was released in a sustained way (64 hours, pH=5.5, dark conditions while a robust release was found under red light exposure (in 1/2 hour under λmax=655 nm, 50 mW/cm2, at pH=5.5. The cell viability, thiobarbituric acid reactive substances and diphenylisobenzofuran assays conducted under light and dark conditions revealed a high photodynamic therapy potential of our construct. Furthermore, we found that the combined effect of DOX and NOPs from NOP-DOX@BSA-FA resulted in cell death approximately eightfold high compared to free DOX. We propose that NOP-DOX@BSA-FA is a potential photodynamic therapy agent and a collective drug delivery system for the systemic administration of cancer chemotherapeutics resulting in combination therapy. Keywords: light-triggered drug release, cancer, bovine serum albumin, multi-model therapy

  7. Magnetic Reduced Graphene Oxide/Nickel/Platinum Nanoparticles Micromotors for Mycotoxin Analysis.

    Science.gov (United States)

    Molinero-Fernández, Águeda; Jodra, Adrián; Moreno-Guzmán, María; López, Miguel Ángel; Escarpa, Alberto

    2018-05-17

    Magnetic reduced graphene oxide/nickel/platinum nanoparticles (rGO/Ni/PtNPs) micromotors for mycotoxin analysis in food samples were developed for food-safety diagnosis. While the utilization of self-propelled micromotors in bioassays has led to a fundamentally new approach, mainly due to the greatly enhanced target-receptor contacts owing to their continuous movement around the sample and the associated mixing effect, herein the magnetic properties of rGO/Ni/PtNPs micromotors for mycotoxin analysis are additionally explored. The micromotor-based strategy for targeted mycotoxin biosensing focused on the accurate control of micromotor-based operations: 1) on-the-move capture of free aptamers by exploiting the adsorption (outer rGO layer) and catalytic (inner PtNPs layer) properties and 2) micromotor stopped flow in just 2 min by exploiting the magnetic properties (intermediate Ni layer). This strategy allowed fumonisin B1 determination with high sensitivity (limit of detection: 0.70 ng mL -1 ) and excellent accuracy (error: 0.05 % in certified reference material and quantitative recoveries of 104±4 % in beer) even in the presence of concurrent ochratoxin A (105-108±8 % in wines). These results confirm the developed approach as an innovative and reliable analytical tool for food-safety monitoring, and confirm the role of micromotors as a new paradigm in analytical chemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Deposition efficiency in the preparation of ozone-producing nickel and antimony doped tin oxide anodes

    Directory of Open Access Journals (Sweden)

    Staffan Sandin

    2017-03-01

    Full Text Available The influence of precursor salts in the synthesis of nickel and antimony doped tin oxide (NATO electrodes using thermal decomposition from dissolved chloride salts was investigated. The salts investigated were SnCl4×5H2O, SnCl2×2H2O, SbCl3 and NiCl2×6H2O. It was shown that the use of SnCl4×5H20 in the preparation process leads to a tin loss of more than 85 %. The loss of Sb can be as high as 90 % while no indications of Ni loss was observed. As a consequence, the concentration of Ni in the NATO coating will be much higher than in the precursor solution. This high and uncontrolled loss of precursors during the preparation process will lead to an unpredictable composition in the NATO coating and will have negative economic and environmental effects. It was found that using SnCl2×2H20 instead of SnCl4×5H2O can reduce the tin loss to less than 50 %. This tin loss occurs at higher temperatures than when using SnCl4×5H2O where the tin loss occurs from 56 – 147 °C causing the composition to change both during the drying (80 – 110 °C and calcination (460 -550 °C steps of the preparation process. Electrodes coated with NATO based on the two different tin salts were investigated for morphology, composition, structure, and ozone electrocatalytic properties.

  9. Direct formation of reduced graphene oxide and 3D lightweight nickel network composite foam by hydrohalic acids and its application for high-performance supercapacitors.

    Science.gov (United States)

    Huang, Haifu; Tang, Yanmei; Xu, Lianqiang; Tang, Shaolong; Du, Youwei

    2014-07-09

    Here, a novel graphene composite foam with 3D lightweight continuous and interconnected nickel network was successfully synthesized by hydroiodic (HI) acid using nickel foam as substrate template. The graphene had closely coated on the backbone of the 3D nickel conductive network to form nickel network supported composite foam without any polymeric binder during the HI reduction of GO process, and the nickel conductive network can be maintained even in only a small amount of nickel with 1.1 mg/cm(2) and had replaced the traditional current collector nickel foam (35 mg/cm(2)). In the electrochemical measurement, a supercapacitor device based on the 3D nickel network and graphene composite foam exhibited high rate capability of 100 F/g at 0.5 A/g and 86.7 F/g at 62.5 A/g, good cycle stability with capacitance retention of 95% after 2000 cycles, low internal resistance (1.68 Ω), and excellent flexible properties. Furthermore, the gravimetric capacitance (calculated using the total mass of the electrode) was high up to 40.9 F/g. Our work not only demonstrates high-quality graphene/nickel composite foam, but also provides a universal route for the rational design of high performance of supercapacitors.

  10. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    Science.gov (United States)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  11. Systematic study of nickel oxide ceramic pigment using Ni C O3.2 Ni(O H)2.4 H2 O as precursor

    International Nuclear Information System (INIS)

    Azevedo, Emilio; Longo, Elson

    1997-01-01

    The ability of some ceramics silicate and oxides have to accommodate impurity in the crystal lattice to a large colors diversity. These impurities can be both interstitial or substitutional creating crystal fields in accordance with ion-impurity valence. The technical procedures used to characterize the pigments were: DRX, IV, MEV, and BET. To optimize this property systematic studies were done for nickel oxide with a composition of 0,3% to 30%. In this work it was studied nickel oxide synthesis based on feldspar using Pechini chemistry synthesis. To obtain this powder. (author)

  12. Chemical changes in carbon Nanotube-Nickel/Nickel Oxide Core/Shell nanoparticle heterostructures treated at high temperatures

    International Nuclear Information System (INIS)

    Chopra, Nitin; McWhinney, Hylton G.; Shi Wenwu

    2011-01-01

    Heterostructures composed of carbon nanotube (CNT) coated with Ni/NiO core/shell nanoparticles (denoted as CNC heterostructures) were synthesized in a wet-chemistry and single-step synthesis route involving direct nucleation of nanoparticles on CNT surface. Two different aspects of CNC heterostructures were studied here. First, it was observed that the nanoparticle coatings were more uniform on the as-produced and non-purified CNTs compared to purified (or acid treated) CNTs. These heterostructures were characterized using electron microscopy, Raman spectroscopy, and energy dispersive spectroscopy. Second, thermal stability of CNC heterostructures was studied by annealing them in N 2 -rich (O 2 -lean) environment between 125 and 750 deg. C for 1 h. A detailed X-ray photoelectron spectroscopy and Raman spectroscopy analysis was performed to evaluate the effects of annealing temperatures on chemical composition, phases, and stability of the heterostructures. It was observed that the CNTs present in the heterostructures completely decomposed and core Ni nanoparticle oxidized significantly between 600 and 750 deg. C. - Research Highlights: → Heterostructures composed of CNTs coated with Ni/NiO core/shell nanoparticles. → Poor nanoparticle coverage on purified CNT surface compared to non-purified CNTs. → CNTs in heterostructures decompose between 600 and 750 deg. C in N 2 -rich atmosphere. → Metallic species in heterostructures were oxidized at higher temperatures.

  13. A green synthetic strategy of nickel hexacyanoferrate nanoparticals supported on the graphene substrate and its non-enzymatic amperometric sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhonghua, E-mail: xzh@nwnu.edu.cn [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); He, Nan [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Rao, Honghong [College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070 (China); Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Lu, Xiaoquan, E-mail: luxq@nwnu.edu.cn [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2017-02-28

    Highlights: • A sensitive non-enzymatic glucose sensor was explored by using a facile and green strategy. • Well dispersed and uniform NiHCF nanoparticles can be effectively produced by the introduction of electrochemical reduction graphene oxide films. • Metal hexacyanoferrate as a potential electron mediator was proposed and applied into non-enzymatic sensing. - Abstract: Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.

  14. A green synthetic strategy of nickel hexacyanoferrate nanoparticals supported on the graphene substrate and its non-enzymatic amperometric sensing application

    International Nuclear Information System (INIS)

    Xue, Zhonghua; He, Nan; Rao, Honghong; Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui; Lu, Xiaoquan

    2017-01-01

    Highlights: • A sensitive non-enzymatic glucose sensor was explored by using a facile and green strategy. • Well dispersed and uniform NiHCF nanoparticles can be effectively produced by the introduction of electrochemical reduction graphene oxide films. • Metal hexacyanoferrate as a potential electron mediator was proposed and applied into non-enzymatic sensing. - Abstract: Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.

  15. In situ X-ray absorption fine structure studies on the structure of nickel phosphide catalyst supported on K-USY

    CERN Document Server

    Kawai, T; Suzuki, S

    2003-01-01

    Local structure around Ni in a nickel phosphide catalyst supported on K-USY was investigated by an situ X-ray absorption fine structure (XAFS) method during the reduction process of the catalyst and the hydrodesulfurization (HDS) reaction of thiophene. In the passivated sample, Ni phosphide was partially oxidized but after the reduction, 1.1 nm diameter Ni sub 2 P particles were formed with Ni-P and Ni-Ni distances at 0.218 and 0.261 nm, respectively, corresponding to those of bulk Ni sub 2 P. In situ XAFS cleary revealed that the Ni sub 2 P structure was stable under reaction conditions and was an active structure for the HDS process.

  16. Catalytic properties of nickel ferrites for oxidation of glucose, β-nicotiamide adenine dinucleotide (NADH) and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, R. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Gutiérrez, S. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Menéndez, N. [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain)

    2014-02-15

    Highlights: ► NiFe{sub 2}O{sub 4} nanoparticles obtained by electrochemical method are effective catalyst. ► A partially inverse spinel was obtained with 57% Fe{sup 3+} in tetrahedral position. ► A non-enzymatic electrode using NiFe{sub 2}O{sub 4} nanoparticles has been manufactured. -- Abstract: Nickel ferrite nanoparticles (NiFe{sub 2}O{sub 4}) were synthesized by electrochemical method and used as catalyst for direct oxidation of glucose, NADH and methanol. Characterization of these nanoparticles was carried out by X-ray diffraction, Mössbauer spectroscopy, and colloidal properties such as hydrodynamic radius and Zeta potential. To evaluate the catalytic properties of these nanoparticles against the oxidation process, paste graphite electrodes mixing nickel ferrites and different conductive materials (graphite, carbon nanotubes) and binders agents (mineral oil, 1-octylpyridinium hexafluorophosphate (nOPPF6)) were used. The results prove good catalytic properties of these materials, with an oxidation potential around 0.75, 0.5 and 0.8 V for glucose, NADH, and methanol, respectively.

  17. Low-temperature positron lifetime and Doppler-broadening measurements for single-crystal nickel oxide containing cation vacancies

    International Nuclear Information System (INIS)

    Waber, J.T.; Snead, C.L. Jr.; Lynn, K.G.

    1985-01-01

    Lifetime and Doppler-broadening measurements for positron annihilation in substoichiometric nickelous oxide have been made concomitantly from liquid-helium to room temperature. The concentration of cation vacancies is readily controlled by altering the ambient oxygen pressure while annealing the crystals at 1673 0 K. It was found that neither of the three lifetimes observed or their relative intensities varied significantly with the oxygen pressure, and the bulk rate only increased slightly when the specimen was cooled from room to liquid-helium temperatures. These results are interpreted as indicating that some of the positrons are trapped by the existing cation vacancies and a smaller fraction by vacancy clusters

  18. Secondary promoters in alumina-supported nickel-molybdenum hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J.M.

    1992-01-01

    Two secondary promoters, phosphorus and fluoride, have been investigated for their influences on the physicochemical properties of alumina-supported nickel-molybdenum hydroprocessing catalysts. Model compound reactions and infrared spectroscopy were used to probe the functionalities of the different catalysts, and the catalysts were tested in the hydroprocessing of a low-nitrogen and a high-nitrogen (quinoline-spiked) gas oil feed to assess the utility of the model compound reaction studies. Fluoride-promoted catalysts with high cumene hydrocracking activity and with comparable thiophene hydrodesulphurization (HDS) activity to Ni-Mo/Al[sub 2]O[sub 3] can be prepared by coimpregnation of the F, Ni and Mo additives. Fluoride promotes the hydrogenation (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of a low-nitrogen feed. Fluoride promotes the quinoline hydrodenitrogenation (HDN) activity of Ni-Mo/Al[sub 2]O[sub 3] catalysts. Impregnation of phosphorus prior to the metal additives results in catalysts which are more active in HDS. Phosphorus increases indirectly the Broensted acidity of the catalyst by increasing the activity of the MoS[sub 2]-associated acid sites. Phosphorus promotes the HDSW and HYD activities of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of the low-N feed. A promotional effect of phosphorus is seen in quinoline HDN. P- and F-promoted Ni-MO/Al[sub 2]O[sub 3] catalysts are very active in quinoline HDN and maintain good activity in HDS and HYD of the high-N feed. Thiophene HDS was a good reaction for probing the activity of catalysts in the HDS of sterically-unhindered molecules, but an inaccurate probe for the HDS of hindered compounds.

  19. Platinum-nickel alloy nanoparticles supported on carbon for 3-pentanone hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lihua, E-mail: lihuazhu@stu.xmu.edu.cn [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Zheng, Tuo; Yu, Changlin [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zheng, Jinbao [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Tang, Zhenbiao [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zhang, Nuowei [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Shu, Qing [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Chen, Bing H., E-mail: chenbh@xmu.edu.cn [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2017-07-01

    Highlights: • The PtNi/Ni(OH){sub 2}/C catalyst was successfully synthesized at room temperature. • PtNi alloy/C was obtained after PtNi/Ni(OH){sub 2}/C reduced in hydrogen at 300 °C. • Nanostructures of the PtNi catalysts were characterized by numerous techniques. • PtNi alloy/C exhibited high catalytic activity for 3-pentanone hydrogenation. - Abstract: In this work, we prepared the Ni/Ni(OH){sub 2}/C sample at room temperature by hydrazine hydrate reducing method. The galvanic replacement reaction method was applied to deposit platinum on the Ni/Ni(OH){sub 2} nanoparticles, to prepare the PtNi/Ni(OH){sub 2}/C catalyst. The catalyst of platinum-nickel alloy nanoparticles supported on carbon (signed as PtNi/C) was obtained by the thermal treatment of PtNi/Ni(OH){sub 2}/C in flowing hydrogen at 300 °C for 2 h. The size, nanostructure, surface properties, Pt and Ni chemical states of the PtNi/C catalyst were analyzed using powder X-ray diffraction (XRD), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM), high-angle annular dark-field scanning TEM (HAADF-STEM) and elemental energy dispersive X-ray spectroscopy (EDS) line scanning, X-ray photoelectron spectroscopy (XPS) and high-sensitivity low-energy ion scattering spectroscopy (HS-LEIS) techniques. The as-synthesized PtNi/C catalyst showed enhanced catalytic performance relative to the Ni/Ni(OH){sub 2}/C, Ni/C, Pt/C and PtNi/Ni(OH){sub 2}/C catalysts for 3-pentanone hydrogenation due to electron synergistic effect between Pt and Ni species in the PtNi/C catalyst. The PtNi/C catalyst also had exceling stability, with industrial application value.

  20. Electrochemical Impedance Spectroscopy Illuminating Performance Evolution of Porous Core–Shell Structured Nickel/Nickel Oxide Anode Materials

    International Nuclear Information System (INIS)

    Yan, Bo; Li, Minsi; Li, Xifei; Bai, Zhimin; Dong, Lei; Li, Dejun

    2015-01-01

    Highlights: • The electrochemical reaction kinetics of the Ni/NiO anode was studied for the first time. • Charge transfer resistance is main contribution to total resistance during discharge process. • The slow growth of the SEI film is responsible for the capacity fading upon cycling. • Some promising strategies to optimize NiO anode performance were summarized. - Abstract: The electrochemical reaction kinetics of the porous core–shell structured Ni/NiO anode for Li ion battery application is systematically investigated by monitoring the electrochemical impedance evolution for the first time. The electrochemical impedance under prescribed condition is measured by using impedance spectroscopy in equilibrium conditions at various depths of discharge (DOD) during charge–discharge cycles. The Nyquist plots of the binder-free porous Ni/NiO electrode are interpreted with a selective equivalent circuit composed of solution resistance, solid electrolyte interphase (SEI) film, charge transfer and solid state diffusion. The impedance analysis shows that the change of charge transfer resistance is the main contribution to the total resistance change during discharge, and the surface configuration of the obtained electrode may experience significant change during the first two cycles. Meanwhile, the increase of internal resistance reduced the utilization efficiency of the active material may be another convincing factor to increase the irreversible capacity. In addition, the impedance evolution of the as-prepared electrode during charge–discharge cycles reveals that the slow growth of the SEI film is responsible for the capacity fading after long term cycling. As a result, several strategies are summarized to optimize the electrochemical performances of transition metal oxide anodes for lithium ion batteries

  1. Gold nanoparticles supported on magnesium oxide for CO oxidation

    Science.gov (United States)

    Carabineiro, Sónia Ac; Bogdanchikova, Nina; Pestryakov, Alexey; Tavares, Pedro B.; Fernandes, Lisete Sg; Figueiredo, José L.

    2011-06-01

    Au was loaded (1 wt%) on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH)2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved). The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts.

  2. Gold nanoparticles supported on magnesium oxide for CO oxidation

    Directory of Open Access Journals (Sweden)

    Bogdanchikova Nina

    2011-01-01

    Full Text Available Abstract Au was loaded (1 wt% on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved. The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts.

  3. High Current Oxide Cathodes

    National Research Council Canada - National Science Library

    Luhmann, N

    2000-01-01

    The aim of the AASERT supported research is to develop the plasma deposition/implantation process for coating barium, strontium and calcium oxides on nickel substrates and to perform detailed surface...

  4. Effect of mechanical activation on the interaction of nickel and molybdenum oxides

    International Nuclear Information System (INIS)

    Radchenko, E.D.; Chukin, G.D.; Irisova, K.N.; Mikhailov, V.I.; Nefedov, B.K.; Samgina, T.Yu.

    1986-01-01

    The authors study the interaction in mixtures of ammonium paramolybdate and nickel nitrate, subjected to mechanochemical activation, by the methods of Raman scattering of light (RS) and derivatography. The ratios of the components NiO:MoO 3 , obtained by decomposition of the starting ammonium paramolybdate and nickel nitrate, encountered most often in catalysts of hydrogenation processes are presented. The RS spectra of the mechanochemically activated samples differ little from one another. With thermal treatment the amount of the MoO 3 phase relative to P-NiMoO 4 is higher than in samples not subjected to mechanochemical activation

  5. Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lingamdinne, Lakshmi Prasanna; Choi, Yu-Lim [Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Kim, Im-Soon [Graduate School of Environmental Studies, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Yang, Jae-Kyu [Ingenium College of Liberal Arts, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Koduru, Janardhan Reddy, E-mail: reddyjchem@gmail.com [Graduate School of Environmental Studies, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Chang, Yoon-Young, E-mail: yychang@kw.ac.kr [Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (Korea, Republic of)

    2017-03-15

    Highlights: • Novel porous Ferromagnetic, GONF and Superparamagnetic, rGONF preparation. • The nanosize particles GONF (41.14 nm) and rGONF (32.16 nm) preparation. • Adsorption mechanism and modeling developments for radionuclides. • Zeta potential and surface site density of nanocomposites for comparison. - Abstract: For the removal of uranium(VI) (U(VI)) and thorium(IV) (Th(IV)), graphene oxide based inverse spinel nickel ferrite (GONF) nanocomposite and reduced graphene oxide based inverse spinel nickel ferrite (rGONF) nanocomposite were prepared by co-precipitation of GO with nickel and iron salts in one pot. The spectral characterization analyses revealed that GONF and rGONF have a porous surface morphology with an average particle size of 41.41 nm and 32.16 nm, respectively. The magnetic property measurement system (MPMS) studies confirmed the formation of ferromagnetic GONF and superparamagnetic rGONF. The adsorption kinetics studies found that the pseudo-second-order kinetics was well tune to the U(VI) and Th(IV) adsorption. The results of adsorption isotherms showed that the adsorption of U(VI) and Th(IV) were due to the monolayer on homogeneous surface of the GONF and rGONF. The adsorptions of both U(VI) and Th(IV) were increased with increasing system temperature from 293 to 333 ± 2 K. The thermodynamic studies reveal that the U(VI) and Th(IV) adsorption onto GONF and rGONF was endothermic. GONF and rGONF, which could be separated by external magnetic field, were recycled and re-used for up to five cycles without any significant loss of adsorption capacity.

  6. Hydrogen Production by Steam Reforming of Ethanol over Nickel Catalysts Supported on Sol Gel Made Alumina: Influence of Calcination Temperature on Supports.

    Science.gov (United States)

    Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H

    2013-05-30

    Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/Al S.G. ) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/Al S.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/Al S.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.

  7. Tris(trimethylsilyl)phosphate as electrolyte additive for self-discharge suppression of layered nickel cobalt manganese oxide

    International Nuclear Information System (INIS)

    Liao, Xiaolin; Zheng, Xiongwen; Chen, Jiawei; Huang, Ziyu; Xu, Mengqing; Xing, Lidan; Liao, Youhao; Lu, Qilun; Li, Xiangfeng; Li, Weishan

    2016-01-01

    Highlights: • TMSP is effective for self-discharge suppression of the charged NCM under 4.5 V. • TMSP oxidizes preferentially forming protective cathode interface film on NCM. • The film suppresses electrolyte decomposition and prevents NCM destruction. - Abstract: Application of layered nickel cobalt manganese oxide as cathode under higher potential than conventional 4.2 V yields a significant improvement in energy density of lithium ion battery. However, the cathode fully charged under high potential suffers serious self-discharge, in which the interaction between the cathode and electrolyte proceeds without potential limitation. In this work, we use tris(trimethylsilyl)phosphate (TMSP) as an electrolyte additive to solve this problem. A representative layered nickel cobalt manganese oxide, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , is considered. The effect of TMSP on self-discharge behavior of LiNi 1/3 Co 1/3 Mn 1/3 O 2 is evaluated by physical and electrochemical methods. It is found that the self-discharge of charged LiNi 1/3 Co 1/3 Mn 1/3 O 2 can be suppressed significantly by using TMSP. TMSP is oxidized preferentially in comparison with the standard electrolyte during initial charging process forming a protective cathode interface film, which avoids the interaction between cathode and electrolyte at any potential and thus prevents electrolyte decomposition and protects LiNi 1/3 Co 1/3 Mn 1/3 O 2 from structure destruction.

  8. Supporting Information Synthesis Procedure: Graphene oxide (GO ...

    Indian Academy of Sciences (India)

    SS

    Synthesis Procedure: Graphene oxide (GO) was prepared by a modified Hummers method using expandable .... anode material for Li ion batteries, J. Solid State Electrochem. ... coupling, doping and nonadiabatic effects, Solid State Commun.

  9. Storage and characterization of the hydrogen in mixed oxides on base of cerium-nickel and zirconium or the aluminium

    International Nuclear Information System (INIS)

    Debeusscher, S.

    2008-12-01

    The mixed oxides based on cerium-nickel and zirconium or aluminium are able to store large quantities of hydrogen, To determine nature, reactivity and properties of hydrogen species (spill-over, direct desorption), the solid were studied by different physicochemical techniques in the dried, calcined and partially reduced states: XRD, porosity, TGA, TPR, TPA, TPD, chemical titration and inelastic neutron scattering (INS). Solids are mainly meso-porous with a common pore size at 4 nm, They are constituted of CeO 2 phase, Ce-Ni or Ce-Ni-Zr solid solution and of Ni(OH) 2 in the dried state and NiO in the calcined state. The Ni species are in various environments and the strong interactions between the cations in solid solution and at different particles interface influence their reducibility and the creation of anionic vacancies. Activation in H 2 in temperature is determining for hydrogen storage in the solid while calcination step is not necessary. INS Analyses evidence that the hydrogen species inserted during treatment in H 2 are H + (OH - ), hydride H - and H * (metallic nickel) species, present in various chemical environments, in particular for hydride species. All kinds of hydrogen species participate to the reaction during the chemical titration in agreement with the proposed hydrogenation mechanism. The study of the adsorption of hydrogen shows that this step is fast and in quantity of the same order as that measured by chemical titration. The direct desorption of H 2 is very low, linked to the presence of hydrogen in interaction with metallic nickel (H *- .). Desorption of water is also observed, in parallel, corresponding to the elimination of groups. The hydride species are not desorbed. These various observations allow connecting hydrogen species properties with their localization in the structure and to model active sites. (author)

  10. Preparation and characterization of alumina supported nickel-oxalate catalyst for the hydrodeoxygenation of oleic acid into normal and iso-octadecane biofuel

    International Nuclear Information System (INIS)

    Ayodele, O.B.; Togunwa, Olayinka S.; Abbas, Hazzim F.; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Highlights: • Preparation of nickel oxalate complex as catalyst precursor. • Incorporation of nickel oxalate complex into alumina support. • Characterization of the alumina supported nickel oxalate catalyst. • Hydrodeoxygenation of oleic acid with nickel oxalate catalyst. • Nickel oxalate catalyst reusability studies. - Abstract: In this study, nickel II oxalate complex (NiOx) was prepared by functionalization of nickel with oxalic acid (OxA) and incorporated into Al 2 O 3 to synthesize alumina supported nickel oxalate (NiOx/Al 2 O 3 ) catalyst for the hydrodeoxygenation (HDO) of oleic acid (OA) into biofuel. The synthesized NiOx/Al 2 O 3 was characterized and the X-ray fluorescence and elemental dispersive X-ray results showed that NiOx was successfully incorporated into the structure of Al 2 O 3 . The X-ray diffraction and Raman spectroscopy results confirmed that highly dispersed Ni species are present in the NiOx/Al 2 O 3 due to the functionalization with OxA. The catalytic activity of the NiOx/Al 2 O 3 on the HDO of OA produced a mixture of 21% iso-C18 and 72% n-C18 at a 360 °C, 20 bar, 30 mg NiOx/Al 2 O 3 loading pressure and gas flow rate of 100 mL/min. The presence of i-C 18 was ascribed to the OxA functionalization which increased the acidity of NiOx/Al 2 O 3 . The NiOx/Al 2 O 3 reusability study showed consistent HDO ability after 5 runs. These results are promising for further research into biofuel production for commercialization

  11. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    Science.gov (United States)

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  12. Palm H-FAME Production through Partially Hydrogenation using Nickel/Carbon Catalyst to Increase Oxidation Stability

    Directory of Open Access Journals (Sweden)

    Ramayeni Elsa

    2018-01-01

    Full Text Available One of the methods to improve the oxidation stability of palm biodiesel is through partially hydrogenation. The production using Nickel/Carbon catalyst to speed up the reaction rate. Product is called Palm H-FAME (Hydrogenated FAME. Partial hydrogenation breaks the unsaturated bond on FAME (Fatty Acid Methyl Ester, which is a key component of the determination of oxidative properties. Changes in FAME composition by partial hydrogenation are predicted to change the oxidation stability so it does not cause deposits that can damage the injection system of diesel engine, pump system, and storage tank. Partial hydrogenation is carried out under operating conditions of 120 °C and 6 bar with 100:1, 100:3, 100:5, 100:10 % wt catalyst in the stirred batch autoclave reactor. H-FAME synthesis with 100:5 % wt Ni/C catalyst can decrease the iodine number which is the empirical measure of the number of unsaturated bonds from 91.78 to 82.38 (g-I2/100 g with an increase of oxidation stability from 585 to 602 minutes.

  13. Solar absorption and thermal emission properties of multiwall carbon nanotube/nickel oxide nanocomposite thin films synthesized by sol-gel process

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2012-05-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs)/nickel oxide (NiO) nanocomposites were successfully prepared by a sol–gel process and coated on an aluminium substrate. The MWCNTs were chemically functionalized and then added into NiO alcogels, and magnetic...

  14. Combined cycling and calendar capacity fade modeling of a Nickel-Manganese-Cobalt Oxide Cell with real-life profile validation

    DEFF Research Database (Denmark)

    de Hoog, Joris; Timmermans, Jean-Marc; Stroe, Daniel-Ioan

    2017-01-01

    This paper presents the development of a semi-empirical combined lifetime model for a Nickel Manganese Cobalt Oxide (NMC) cathode and a graphite anode based cell, considered as one of the most promising candidates for the automotive industry. The development of this model was based on a thorough...

  15. Influence of Nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release.

    Science.gov (United States)

    Clarke, B; Carroll, W; Rochev, Y; Hynes, M; Bradley, D; Plumley, D

    2006-10-01

    Medical implants and devices are now used successfully in surgical procedures on a daily basis. Alloys of nickel and titanium, and in particular Nitinol are of special interest in the medical device industry, because of their shape memory and superelastic properties. The corrosion behavior of nitinol in the body is also of critical importance because of the known toxicological effects of nickel. The stability of a NiTi alloy in the physiological environment is dependant primarily on the properties of the mostly TiO(2) oxide layer that is present on the surface. For the present study, a range of nitinol wires have been prepared using different drawing processes and a range of surface preparation procedures. It is clear from the results obtained that the wire samples with very thick oxides also contain a high nickel content in the oxide layer. The untreated samples with the thicker oxides show the lowest pitting potential values and greater nickel release in both long and short-term experiments. It was also found that after long-term immersion tests breakdown potentials increased for samples that exhibited lower values initially. From these results it would appear that surface treatment is essential for the optimum bioperformance of nitinol. (c) 2006 Wiley Periodicals, Inc

  16. Interfacial bonding stabilizes rhodium and rhodium oxide nanoparticles on layered Nb oxide and Ta oxide supports.

    Science.gov (United States)

    Strayer, Megan E; Binz, Jason M; Tanase, Mihaela; Shahri, Seyed Mehdi Kamali; Sharma, Renu; Rioux, Robert M; Mallouk, Thomas E

    2014-04-16

    Metal nanoparticles are commonly supported on metal oxides, but their utility as catalysts is limited by coarsening at high temperatures. Rhodium oxide and rhodium metal nanoparticles on niobate and tantalate supports are anomalously stable. To understand this, the nanoparticle-support interaction was studied by isothermal titration calorimetry (ITC), environmental transmission electron microscopy (ETEM), and synchrotron X-ray absorption and scattering techniques. Nanosheets derived from the layered oxides KCa2Nb3O10, K4Nb6O17, and RbTaO3 were compared as supports to nanosheets of Na-TSM, a synthetic fluoromica (Na0.66Mg2.68(Si3.98Al0.02)O10.02F1.96), and α-Zr(HPO4)2·H2O. High surface area SiO2 and γ-Al2O3 supports were also used for comparison in the ITC experiments. A Born-Haber cycle analysis of ITC data revealed an exothermic interaction between Rh(OH)3 nanoparticles and the layered niobate and tantalate supports, with ΔH values in the range -32 kJ·mol(-1) Rh to -37 kJ·mol(-1) Rh. In contrast, the interaction enthalpy was positive with SiO2 and γ-Al2O3 supports. The strong interfacial bonding in the former case led to "reverse" ripening of micrometer-size Rh(OH)3, which dispersed as 0.5 to 2 nm particles on the niobate and tantalate supports. In contrast, particles grown on Na-TSM and α-Zr(HPO4)2·H2O nanosheets were larger and had a broad size distribution. ETEM, X-ray absorption spectroscopy, and pair distribution function analyses were used to study the growth of supported nanoparticles under oxidizing and reducing conditions, as well as the transformation from Rh(OH)3 to Rh nanoparticles. Interfacial covalent bonding, possibly strengthened by d-electron acid/base interactions, appear to stabilize Rh(OH)3, Rh2O3, and Rh nanoparticles on niobate and tantalate supports.

  17. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Won-Yong Jeon

    2015-12-01

    Full Text Available Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO electrodes (DSPNCE were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH2/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV, scanning from 0–1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM, X-ray photoelectron spectroscopy (XPS, and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0–10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA or ascorbic acid (AA. Therefore, this approach allowed the development of a simple, disposable glucose biosensor.

  18. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes.

    Science.gov (United States)

    Jeon, Won-Yong; Choi, Young-Bong; Kim, Hyug-Han

    2015-12-10

    Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO) electrodes (DSPNCE) were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH)₂/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV), scanning from 0-1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0-10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA) or ascorbic acid (AA). Therefore, this approach allowed the development of a simple, disposable glucose biosensor.

  19. Influence of the alloy composition on the oxidation and internal-nitridation behaviour of nickel-base superalloys

    International Nuclear Information System (INIS)

    Krupp, U.; Christ, H.-J.

    1999-01-01

    Internal nitridation of nickel-base superalloys takes place as a consequence of the failure of protecting oxide scales (Al 2 O 3 and Cr 2 O 3 , respectively) and leads to a deterioration of the material properties due to near-surface embrittlement caused by the nitrides precipitated (TiN and AlN, respectively) and due to near-surface dissolution of the γ' phase. By using thermogravimetric methods in a temperature range between 800 C and 1100 C supplemented by microstructural examinations, the failure potential due to internal nitridation could be documented. A quantification was carried out by extending the experimental program to thermogravimetric studies in a nearly oxygen-free nitrogen atmosphere which was also applied to various model alloys of the system Ni-Cr-Al-Ti. It could be shown that the nitrogen diffusivity and solubility in nickel-base alloys is influenced particularly by the chromium concentration. An increasing chromium content leads to an enhanced internal-nitridation attack. (orig.)

  20. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes

    Science.gov (United States)

    Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan; Graves, Christopher

    2018-01-01

    Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate the problem, but only to a certain extent. This work shows that a typical SOEC stack converting CO2 to CO and O2 is limited to as little as 15-45% conversion due to risk of carbon formation. Furthermore, cells operated in CO2-electrolysis mode are poisoned by reactant gases containing ppb-levels of sulfur, in contrast to ppm-levels for operation in fuel cell mode.

  1. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  2. Electrocontact material based on silver dispersion-strengthened by nickel, titanium, and zinc oxides

    Science.gov (United States)

    Zeer, G. M.; Zelenkova, E. G.; Belousov, O. V.; Beletskii, V. V.; Nikolaev, S. V.; Ledyaeva, O. N.

    2017-09-01

    Samples of a composite electrocontact material based on silver strengthened by the dispersed phases of zinc and titanium oxides have been investigated by the electron microscopy and energy dispersive X-ray spectroscopy. A uniform distribution of the oxide phases containing 2 wt % zinc oxide in the initial charge has been revealed. The increase in the amount of zinc oxide leads to an increase of the size of the oxide phases. It has been shown that at the zinc oxide content of 2 wt %, the minimum wear is observed in the process of electroerosion tests; at 3 wt %, an overheating and welding of the contacts are observed.

  3. 'Methane oxidation on supported gold catalysts'

    DEFF Research Database (Denmark)

    Walther, Guido

    2008-01-01

    steady-state activity measurements were performed to obtain the reaction rates for CO and H2 oxidation. These reactions were studied on three different gold particle sizes using either O2 or N2O as oxidation agents. Using particle size distributions obtained from TEM analysis, it was found that the CO......Methane (CH4), a major compound of natural gas, has been suggested as a future energy carrier. However, it is also known to be a strong greenhouse gas. The use of CH4 obtained from crude oil as an associated gas is often uneconomical, and it is thus burned off. Avoiding flaring and making...... the energy stored in the molecule available, is a major research challenge. In this PhD thesis, CH4 oxidation on nanoparticular gold is studied both experimentally and theoretically. In the course of this PhD project, CH4 oxidation was experimentally found more likely to form CO2 and H2O than other low index...

  4. Nickel doped indium tin oxide anode and effect on dark spot development of organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.M. [Southern Taiwan University, Department of Electro-Optical Engineering, 1 Nan-Tai St, Yung-Kang City, Tainan County 710, Taiwan (China)], E-mail: tedhsu@mail.stut.edu.tw; Kuo, C.S.; Hsu, W.C.; Wu, W.T. [Southern Taiwan University, Department of Electro-Optical Engineering, 1 Nan-Tai St, Yung-Kang City, Tainan County 710, Taiwan (China)

    2009-01-01

    This article demonstrated that introducing nickel (Ni) atoms into an indium tin oxide (ITO) anode could considerably decrease ITO surface roughness and eliminate the formation of dark spots of an organic light-emitting device (OLED). A dramatic drop in surface roughness from 6.52 nm of an conventional ITO to 0.46 nm of an 50 nm Ni(50 W)-doped ITO anode was observed, and this led to an improved lifetime performance of an Alq3 based OLED device attributed to reduced dark spots. Reducing thickness of Ni-doped ITO anode was found to worsen surface roughness. Meanwhile, the existence of Ni atoms showed little effect on deteriorating the light-emitting mechanism of OLED devices.

  5. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials.

    Science.gov (United States)

    Chen, Hao; Zhou, Shuxue; Wu, Limin

    2014-06-11

    This paper reports the first nickel hydroxide-manganese dioxide-reduced graphene oxide (Ni(OH)2-MnO2-RGO) ternary hybrid sphere powders as supercapacitor electrode materials. Due to the abundant porous nanostructure, relatively high specific surface area, well-defined spherical morphology, and the synergetic effect of Ni(OH)2, MnO2, and RGO, the electrodes with the as-obtained Ni(OH)2-MnO2-RGO ternary hybrid spheres as active materials exhibited significantly enhanced specific capacitance (1985 F·g(-1)) and energy density (54.0 Wh·kg(-1)), based on the total mass of active materials. In addition, the Ni(OH)2-MnO2-RGO hybrid spheres-based asymmetric supercapacitor also showed satisfying energy density and electrochemical cycling stability.

  6. Prediction of the mass gain during high temperature oxidation of aluminized nanostructured nickel using adaptive neuro-fuzzy inference system

    Science.gov (United States)

    Hayati, M.; Rashidi, A. M.; Rezaei, A.

    2012-10-01

    In this paper, the applicability of ANFIS as an accurate model for the prediction of the mass gain during high temperature oxidation using experimental data obtained for aluminized nanostructured (NS) nickel is presented. For developing the model, exposure time and temperature are taken as input and the mass gain as output. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the network. We have compared the proposed ANFIS model with experimental data. The predicted data are found to be in good agreement with the experimental data with mean relative error less than 1.1%. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling the mass gain for NS materials.

  7. Effects of nickel-oxide nanoparticle pre-exposure dispersion status on bioactivity in the mouse lung.

    Science.gov (United States)

    Sager, Tina; Wolfarth, Michael; Keane, Michael; Porter, Dale; Castranova, Vincent; Holian, Andrij

    2016-01-01

    Nanotechnology is emerging as one of the world's most promising new technologies. From a toxicology perspective, nanoparticles possess two features that promote their bioactivity. The first involves physical-chemical characteristics of the nanoparticle, which include the surface area of the nanoparticle. The second feature is the ability of the nanoparticle to traverse cell membranes. These two important nanoparticle characteristics are greatly influenced by placing nanoparticles in liquid medium prior to animal exposure. Nanoparticles tend to agglomerate and clump in suspension, making it difficult to reproducibly deliver them for in vivo or in vitro experiments, possibly affecting experimental variability. Thus, we hypothesize that nanoparticle dispersion status will correlate with the in vivo bioactivity/toxicity of the particle. To test our hypothesis, nano-sized nickel oxide was suspended in four different dispersion media (phosphate-buffered saline (PBS), dispersion medium (DM), a combination of dipalmitoyl-phosphatidyl choline (DPPC) and albumin in concentrations that mimic diluted alveolar lining fluid), Survanta®, or pluronic (Pluronic F-68). Well-dispersed and poorly dispersed suspensions were generated in each media by varying sonication time on ice utilizing a Branson Sonifer 450 (25W continuous output, 20 min or 5 min, respectively). Mice (male, C57BL/6J, 7-weeks-old) were given 0-80 µg/mouse of nano-sized nickel oxide in the different states of dispersion via pharyngeal aspiration. At 1 and 7 d post-exposure, mice underwent whole lung lavage to assess pulmonary inflammation and injury as a function of dispersion status, dose and time. The results show that pre-exposure dispersion status correlates with pulmonary inflammation and injury. These results indicate that a greater degree of pre-exposure dispersion increases pulmonary inflammation and cytotoxicity, as well as decreases in the integrity of the blood-gas barrier in the lung.

  8. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.

    Science.gov (United States)

    O'Hagan, Molly; Shaw, Wendy J; Raugei, Simone; Chen, Shentan; Yang, Jenny Y; Kilgore, Uriah J; DuBois, Daniel L; Bullock, R Morris

    2011-09-14

    Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in

  9. Visibility and oxidation stability of hybrid-type copper mesh electrodes with combined nickel-carbon nanotube coating

    Science.gov (United States)

    Kim, Bu-Jong; Hwang, Young-Jin; Park, Jin-Seok

    2017-04-01

    Hybrid-type transparent conductive electrodes (TCEs) were fabricated by coating copper (Cu) meshes with carbon nanotube (CNT) via electrophoretic deposition, and with nickel (Ni) via electroplating. For the fabricated electrodes, the effects of the coating with CNT and Ni on their transmittance and reflectance in the visible-light range, electrical sheet resistance, and chromatic parameters (e.g., redness and yellowness) were characterized. Also, an oxidation stability test was performed by exposing the electrodes to air for 20 d at 85 °C and 85% temperature and humidity conditions, respectively. It was discovered that the CNT coating considerably reduced the reflectance of the Cu meshes, and that the Ni coating effectively protected the Cu meshes against oxidation. Furthermore, after the coating with CNT, both the redness and yellowness of the Cu mesh regardless of the Ni coating approached almost zero, indicating a natural color. The experiment results confirmed that the hybrid-type Cu meshes with combined Ni-CNT coating improved characteristics in terms of reflectance, sheet resistance, oxidation stability, and color, superior to those of the primitive Cu mesh, and also simultaneously satisfied most of the requirements for TCEs.

  10. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    International Nuclear Information System (INIS)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral; Florio, Daniel Zanetti de

    2017-01-01

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  11. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral, E-mail: shaynnedn@hotmail.com, E-mail: nataliakm@usp.br, E-mail: fntabuti@ipen.br, E-mail: fabiocf@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Florio, Daniel Zanetti de, E-mail: daniel.florio@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2017-01-15

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  12. Nickel extraction from nickel matte

    Science.gov (United States)

    Subagja, R.

    2018-01-01

    In present work, the results of research activities to make nickel metal from nickel matte are presented. The research activities were covering a) nickel matte characterization using Inductively Couple plasma (ICP), Electron Probe Micro Analyzer (EPMA) and X-Ray Diffraction (XRD), b) nickel matte dissolution process to dissolve nickel from nickel matte into the spent electrolyte solutions that contains hydrochloric acid, c) purification of nickel chloride leach solution by copper cementation process to remove copper using nickel matte, selective precipitation process to remove iron, solvent extraction using Tri normal octyl amine to separate cobalt from nickel chloride solutions and d) Nickel electro winning process to precipitate nickel into the cathode surface from purified nickel chloride solution by using direct current. The research activities created 99, 72 % pure nickel metal as the final product of the process.

  13. Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium

    Science.gov (United States)

    Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as a green oxidant. Catalysts could be easily recovered after completion of the reac...

  14. Photoelectrochemical characterization of squaraine-sensitized nickel oxide cathodes deposited via screen-printing for p-type dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Naponiello, Gaia; Venditti, Iole [Department of Chemistry, Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy); Zardetto, Valerio [Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome - Tor Vergata, via del Politecnico 1, 00133 Rome (Italy); Saccone, Davide [Department of Chemistry and NIS, Interdepartmental Centre of Excellence, University of Torino, via Pietro Giuria 7, I-10125 Torino (Italy); Di Carlo, Aldo [Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome - Tor Vergata, via del Politecnico 1, 00133 Rome (Italy); Fratoddi, Ilaria [Department of Chemistry, Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy); Center for Nanotechnology for Engineering (CNIS), Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy); Barolo, Claudia [Department of Chemistry and NIS, Interdepartmental Centre of Excellence, University of Torino, via Pietro Giuria 7, I-10125 Torino (Italy); Dini, Danilo, E-mail: danilo.dini@uniroma1.it [Department of Chemistry, Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy)

    2015-11-30

    Graphical abstract: Screen-printing method has been adopted for the deposition of nickel oxide thin film electrodes with mesoporous features. Nickel oxide was sensitized with three newly synthesized squaraines (VG1C8,VG10C8 and DS2/35) and employed as photoelectroactive cathode of p-type dye-sensitized solar cells. Colorant erythrosine b (EB) was taken as commercial benchmark for comparative purposes. Sensitization was successful with the attainment of overall conversion efficiencies in the order of 0.025% when the mesoporous surface of nickel oxide was alkali treated. The prolongation of nickel oxide sensitization time up to 16 h led to a general increase of the open circuit voltage in the corresponding solar cells. - Highlights: • We deposited nickel oxide with screen-printing technique utilizing nickel oxide nanoparticles. • We employed screen-printed nickel oxide as cathodes of p-DSCs. • We employed new squaraine as sensitizers of screen-printed nickel oxide. • Further progress is expected when the formulation of the screen-printing paste will be optimized. - Abstract: In the present paper we report on the employment of the screen-printing method for the deposition of nickel oxide (NiO{sub x}) layers when preformed nanoparticles of the metal oxide (diameter < 50 nm) constitute the precursors in the paste. The applicative purpose of this study is the deposition of mesoporous NiO{sub x} electrodes in the configuration of thin films (thickness, l ≤ 4 μm) for the realization of p-type dye-sensitized solar cells (p-DSCs). Three different squaraine-based dyes (here indicated with VG1C8, VG10C8 and DS2/35), have been used for the first time as sensitizers of a p-type DSC electrode. VG1C8 and VG10C8 present two carboxylic groups as anchoring moieties, whereas DS2/35 sensitizer possesses four acidic anchoring groups. All three squaraines are symmetrical and differ mainly for the extent of electronic conjugation. The colorant erythrosine b (ERY B) was taken as

  15. p-p Heterojunction of Nickel Oxide-Decorated Cobalt Oxide Nanorods for Enhanced Sensitivity and Selectivity toward Volatile Organic Compounds.

    Science.gov (United States)

    Suh, Jun Min; Sohn, Woonbae; Shim, Young-Seok; Choi, Jang-Sik; Song, Young Geun; Kim, Taemin L; Jeon, Jong-Myeong; Kwon, Ki Chang; Choi, Kyung Soon; Kang, Chong-Yun; Byun, Hyung-Gi; Jang, Ho Won

    2018-01-10

    The utilization of p-p isotype heterojunctions is an effective strategy to enhance the gas sensing properties of metal-oxide semiconductors, but most previous studies focused on p-n heterojunctions owing to their simple mechanism of formation of depletion layers. However, a proper choice of isotype semiconductors with appropriate energy bands can also contribute to the enhancement of the gas sensing performance. Herein, we report nickel oxide (NiO)-decorated cobalt oxide (Co 3 O 4 ) nanorods (NRs) fabricated using the multiple-step glancing angle deposition method. The effective decoration of NiO on the entire surface of Co 3 O 4 NRs enabled the formation of numerous p-p heterojunctions, and they exhibited a 16.78 times higher gas response to 50 ppm of C 6 H 6 at 350 °C compared to that of bare Co 3 O 4 NRs with the calculated detection limit of approximately 13.91 ppb. Apart from the p-p heterojunctions, increased active sites owing to the changes in the orientation of the exposed lattice surface and the catalytic effects of NiO also contributed to the enhanced gas sensing properties. The advantages of p-p heterojunctions for gas sensing applications demonstrated in this work will provide a new perspective of heterostructured metal-oxide nanostructures for sensitive and selective gas sensing.

  16. Influence of supports on catalytic behavior of nickel catalysts in carbon dioxide reforming of toluene as a model compound of tar from biomass gasification.

    Science.gov (United States)

    Kong, Meng; Fei, Jinhua; Wang, Shuai; Lu, Wen; Zheng, Xiaoming

    2011-01-01

    A series of supported Ni catalysts including Ni/MgO, Ni/γ-Al2O3, Ni/α-Al2O3, Ni/SiO2 and Ni/ZrO2 was tested in CO2 reforming of toluene as a model compound of tar from biomass gasification in a fluidized bed reactor, and characterized by the means of temperature programmed reduction with hydrogen (H2-TPR), XRD, TEM and temperature programmed oxidation (TPO). Combining the characterization results with the performance tests, the activity of catalyst greatly depended on Ni particles size, and the stability was affected by the coke composition. Both of them (Ni particle size and coke composition) were closely related to the interaction between nickel and support which would determine the chemical environment where Ni inhabited. The best catalytic performance was observed on Ni/MgO due to the strong interaction between NiO and MgO via the formation of Ni-Mg-O solid solution, and the highest dispersion of Ni particle in the basic environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Properties of large Li ion cells using a nickel based mixed oxide

    Science.gov (United States)

    Broussely, M.; Blanchard, Ph; Biensan, Ph; Planchat, J. P.; Nechev, K.; Staniewicz, R. J.

    The possible use of LiNiO 2 similar to LiCoO 2, as a positive material in rechargeable lithium batteries was recognized 20 years ago and starting 10 years later, many research studies led to material improvement through substitution of some of the nickel ions by other metallic ions. These modifications improve the thermal stability at high charge level or overcharge, as well as cycling and storage properties. Commercial material is now available at large industrial scale, which allows its use in big "industrial" Li ion batteries. Using low cost raw material (Ni), it is expected to be cost competitive with the manganese based systems usually mentioned as low cost on the total cell $/Wh basis. Providing higher energy density, and demonstrating excellent behavior on storage and extended cycle life, LiNiO 2 has definite advantages over the manganese system. Thanks to their properties, these batteries have demonstrated their ability to be used in lot of applications, either for transportation or standby. Their light weight makes them attractive for powering satellites. Although safety improvements are always desirable for all non-aqueous batteries using flammable organic electrolytes, suitable battery designs allow the systems to reach the acceptable level of safety required by many users. Beside the largely distributed lead acid and nickel cadmium batteries, Li ion will found its place in the "industrial batteries" market, in a proportion directly linked to its future cost reduction.

  18. Dehydrogenation of Ethylbenzene with Carbon Dioxide as Soft Oxidant over Supported Vanadium-Antimony Oxide Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Do Young; Vislovskiy, Vladislav P.; Yoo, Jin S.; Chang, Jong San [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Sang Eon [Inha University, Incheon (Korea, Republic of); Park, Min Seok [Mongolia International University, Ulaanbaatar (Mongolia)

    2005-11-15

    This work presents that carbon dioxide, which is a main contributor to the global warming effect, could be utilized as a selective oxidant in the oxidative dehydrogenation of ethylbenzene. The dehydrogenation of ethylbenzene over alumina-supported vanadium-antimony oxide catalyst has been studied under different atmospheres such as inert nitrogen, steam, oxygen or carbon dioxide as diluent or oxidant. Among them, the addition of carbon dioxide gave the highest styrene yield (up to 82%) and styrene selectivity (up to 97%) along with stable activity. Carbon dioxide could play a beneficial role of a selective oxidant in the improvement of the catalytic behavior through the oxidative pathway.

  19. Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium

    Science.gov (United States)

    Abdel Rahim, M. A.; Abdel Hameed, R. M.; Khalil, M. W.

    The use of Ni as a catalyst for the electro-oxidation of methanol in alkaline medium was studied by cyclic voltammetry. It was found that only Ni dispersed on graphite shows a catalytic activity towards methanol oxidation but massive Ni does not. Ni was dispersed on graphite by the electro-deposition from acidic NiSO 4 solution using potentiostatic and galvanostatic techniques. The catalytic activity of the C/Ni electrodes towards methanol oxidation was found to vary with the amount of electro-deposited Ni. The dependence of the oxidation current on methanol concentration and scan rate was discussed. It was concluded from the electro-chemical measurements and SEM analysis that methanol oxidation starts as Ni-oxide is formed on the electrode surface.

  20. A series of octanuclear-nickel(II) complexes supported by thiacalix[4]arenes.

    Science.gov (United States)

    Xiong, Kecai; Jiang, Feilong; Gai, Yanli; Zhou, Youfu; Yuan, Daqiang; Su, Kongzhao; Wang, Xinyi; Hong, Maochun

    2012-03-05

    A series of discrete complexes, [Ni(8)(BTC4A)(2)(μ(6)-CO(3))(2)(μ-CH(3)COO)(4)(dma)(4)]·H(2)O (1), [Ni(8)(BTC4A)(2)(μ(6)-CO(3))(2)(μ-Cl)(2)(μ-HCOO)(2)(dma)(4)]·2DMF·2CH(3)CN (2), [Ni(8)(PTC4A)(2) (μ(6)-CO(3))(2)(μ-CH(3)COO)(4)(dma)(4)]·DMF (3), and [Ni(8)(PTC4A)(2)(μ(6)-CO(3))(2)(μ-OH)(μ-HCOO)(3) (dma)(4)] (4) (p-tert-butylthiacalix[4]arene = H(4)BTC4A, p-phenylthiacalix[4]arene = H(4)PTC4A, dma = dimethylamine, and DMF = N,N'-dimethylformamide), have been prepared under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction analyses, powder XRD, and IR spectroscopy. These four complexes are stacked by dumbbell-like building blocks with one chairlike octanuclear-nickel(II) core, which is capped by two thiacalix[4]arene molecules and connected by two in situ generated carbonato anions and different auxiliary anions. This work implied that not only the solvent molecules but also the upper-rim groups of thiacalix[4]arenes have significant effects on the self-assembly of the dumbbell-like building blocks. The magnetic properties of complexes 1-4 were examined, indicating strong antiferromagnetic interactions between the nickel(II) ions in the temperature range of 50-300 K.

  1. Ultrathin copper aluminum and nickel aluminide protective oxidation studied with an x-ray photoelectron spectrometer

    Science.gov (United States)

    Moore, J. F.; McCann, M. P.; Pellin, M. J.; Zinovev, A.; Hryn, J. N.

    2003-09-01

    Oxidation in a regime where diffusion is rapid and pressures are low is addressed. Kinetic effects under these conditions are minimized and a protective oxide film of near-equilibrium composition that is a few nanometers thick may form. Ultrathin oxides have great potential for addressing the corrosion resistance of metals, since they do not always suffer stress-induced cracking upon thermal cycling, and can be reformed under high temperature, oxidizing environments. Ultrathin oxide films are also preferable to those on a thick oxide scale for electrochemical applications due to their electrical properties. To study the growth of these oxide films, we have developed a high signal x-ray photoelectron spectrometer. The instrument can measure the near-surface composition during growth under oxygen partial pressures of up to 10-5 mbar and surface temperatures up to 1300 K. Under these conditions, films grow to a level of 3 nm in 1 h. Experiments with Cu-Al alloys show rapid segregation of Al upon oxygen exposure at 875 K, whereas exposures at lower temperatures result in a mixed oxide. With a Ni-Al intermetallic, higher temperatures were needed to preferentially segregate Al. Thermal cycling followed by exposure to chlorine in the same instrument is used as a measure of the degree of corrosion resistance of the oxides in question.

  2. Impact of Weak Agostic Interactions in Nickel Electrocatalysts for Hydrogen Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Klug, Christina M. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States; O’Hagan, Molly [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States; Bullock, R. Morris [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States; Appel, Aaron M. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States; Wiedner, Eric S. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States

    2017-06-08

    To understand how H2 binding and oxidation is influenced by [Ni(PR2NR'2)2]2+ PR2NR'2 catalysts with H2 binding energies close to thermoneutral, two [Ni(PPh2NR'2)2]2+ (R = Me or C14H29) complexes with phenyl substituents on phosphorous and varying alkyl chain lengths on the pendant amine were studied. In the solid state, [Ni(PPh2NMe2)2]2+ exhibits an anagostic interaction between the Ni(II) center and the α-CH3 of the pendant amine, and DFT and variable-temperature 31P NMR experiments suggest than the anagostic interaction persists in solution. The equilibrium constants for H2 addition to these complexes was measured by 31P NMR spectroscopy, affording free energies of H2 addition (ΔG°H2) of –0.8 kcal mol–1 in benzonitrile and –1.6 to –2.3 kcal mol–1 in THF. The anagostic interaction contributes to the low driving force for H2 binding by stabilizing the four-coordinate Ni(II) species prior to binding of H2. The pseudo-first order rate constants for H2 addition at 1 atm were measured by variable scan rate cyclic voltammetry, and were found to be similar for both complexes, less than 0.2 s–1 in benzonitrile and 3 –6 s–1 in THF. In the presence of exogenous base and H2 , turnover frequencies of electrocatalytic H2 oxidation were measured to be less than 0.2 s–1 in benzonitrile and 4 –9 s–1 in THF. These complexes are slower electrocatalysts for H2 oxidation than previously studied [Ni(PR2NR'2)2]2+ complexes due to a competition between H2 binding and formation of the anagostic interaction. However, the decrease in catalytic rate is accompanied by a beneficial 130 mV decrease in overpotential. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Computational resources were provided at the National Energy Research Scientific Computing Center (NERSC) at Lawrence

  3. Effect of annealing temperature on physical properties of solution processed nickel oxide thin films

    Science.gov (United States)

    Sahoo, Pooja; Thangavel, R.

    2018-05-01

    In this report, NiO thin films were prepared at different annealing temperatures from nickel acetate precursor by sol-gel spin coating method. These films were characterized by different analytical techniques to obtain their structural, optical morphological and electrical properties using X-ray diffractometer (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis NIR double beam spectrophotometer and Keithley 2450 source meter respectively. FESEM images clearly indicates the formation of a homogenous and porous films. Due to their porosity, they can be used in sensing applications. The optical absorption spectra elucidated that the films are highly transparent and have a suitable band gap which are in similar agreement with earlier reports. The current enhancement under illumination shows the suitability of nanostructured NiO thin films in its application in photovoltaics.

  4. Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eungje; Blauwkamp, Joel; Castro, Fernando C.; Wu, Jinsong; Dravid, Vinayak P.; Yan, Pengfei; Wang, Chongmin; Kim, Soo; Wolverton, Christopher; Benedek, Roy; Dogan, Fulya; Park, Joong Sun; Croy, Jason R.; Thackeray, Michael M.

    2016-10-19

    Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3(1-x)LiMO2 (M=Ni, Mn, Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to manganese and nickel ions in close-packed oxides and (2) their higher potential (~3.6 V vs. Li0) relative to manganese oxide spinels (~2.9 V vs. Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we have revisited the structural and electrochemical properties of lithiated spinels in the LiCo1-xNixO2 (0x0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1-xNixO2 structures, when prepared in air between 400 and 800 C, and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentration, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.

  5. Growth Stresses in Thermally Grown Oxides on Nickel-Based Single-Crystal Alloys

    Science.gov (United States)

    Rettberg, Luke H.; Laux, Britta; He, Ming Y.; Hovis, David; Heuer, Arthur H.; Pollock, Tresa M.

    2016-03-01

    Growth stresses that develop in α-Al2O3 scale that form during isothermal oxidation of three Ni-based single crystal alloys have been studied to elucidate their role in coating and substrate degradation at elevated temperatures. Piezospectroscopy measurements at room temperature indicate large room temperature compressive stresses in the oxides formed at 1255 K or 1366 K (982 °C or 1093 °C) on the alloys, ranging from a high of 4.8 GPa for René N4 at 1366 K (1093 °C) to a low of 3.8 GPa for René N5 at 1255 K (982 °C). Finite element modeling of each of these systems to account for differences in coefficients of thermal expansion of the oxide and substrate indicates growth strains in the range from 0.21 to 0.44 pct at the oxidation temperature, which is an order of magnitude higher than the growth strains measured in the oxides on intermetallic coatings that are typically applied to these superalloys. The magnitudes of the growth strains do not scale with the parabolic oxidation rate constants measured for the alloys. Significant spatial inhomogeneities in the growth stresses were observed, due to (i) the presence of dendritic segregation and (ii) large carbides in the material that locally disrupts the structure of the oxide scale. The implications of these observations for failure during cyclic oxidation, fatigue cycling, and alloy design are considered.

  6. Corrosion of pre-oxidized nickel alloy X-750 in simulated BWR environment

    Energy Technology Data Exchange (ETDEWEB)

    Tuzi, Silvia, E-mail: silvia.tuzi@chalmers.se [Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Lai, Haiping [Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Göransson, Kenneth [Westinghouse Electric Sweden AB, SE-721 63 Västerås (Sweden); Thuvander, Mattias; Stiller, Krystyna [Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2017-04-01

    Samples of pre-oxidized Alloy X-750 were exposed to a simulated boiling water reactor environment in an autoclave at a temperature of 286 °C and a pressure of 80 bar for four weeks. The effect of alloy iron content on corrosion was investigated by comparing samples with 5 and 8 wt% Fe, respectively. In addition, the effect of two different surface pre-treatments was investigated. The microstructure of the formed oxide scales was studied using mainly electron microscopy. The results showed positive effects of an increased Fe content and of removing the deformed surface layer by pickling. After four weeks of exposure the oxide scale consists of oxides formed in three different ways. The oxide formed during pre-oxidization at 700 °C, mainly consisting of chromia, is partly still present. There is also an outer oxide consisting of NiFe{sub 2}O{sub 4} crystals, reaching a maximum size of 3 μm, which has formed by precipitation of dissolved metal ions. Finally, there is an inner nanocrystalline and porous oxide, with a metallic content reflecting the alloy composition, which has formed by corrosion.

  7. Effect of sub-acute exposure to nickel nanoparticles on oxidative stress and histopathological changes in Mozambique tilapia, Oreochromis mossambicus.

    Science.gov (United States)

    Jayaseelan, Chidambaram; Abdul Rahuman, Abdul; Ramkumar, Rajendiran; Perumal, Pachiappan; Rajakumar, Govindasamy; Vishnu Kirthi, Arivarasan; Santhoshkumar, Thirunavukkarasu; Marimuthu, Sampath

    2014-09-01

    The aim of the present study was to assess the oxidative stress, antioxidant response and histopathological changes of nickel nanoparticles (Ni NPs) exposure (14 days) in Mozambique tilapia, Oreochromis mossambicus. Ni NPs were synthesized by metal salt reduction method and characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The XRD peaks at 44°, 51° and 76° were indexed to the (111), (200) and (220) Bragg's reflections of cubic structure of Nickel, respectively. The crystallite sizes were calculated using Scherrer's formula applied to the major intense peaks and found to be the size of 56nm. TEM images showed that the synthesized Ni NPs are spherical in shape. Biochemical analysis indicated that the superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activity was significantly affected by Ni NPs treated O. mossambicus. Reduced antioxidant enzymes and the contents of antioxidants were lowered in the liver and gills of fishes treated with Ni NPs. After 14 days of exposure, a significant accumulation of Ni in the Ni NPs in experimental group was observed in the gill and skin tissues, with the highest levels found in the liver. Ni NPs exposed fish showed nuclear hypertrophy (NH), nuclear degeneration (ND), necrosis (NC) and irregular-shaped nuclei were observed in liver tissue. The hyperplasia of the gill epithelium (GE), lamellar fusion of secondary lamellae (LF), dilated marginal channel (MC), epithelial lifting (EL) and epithelial rupture were observed in gill tissue. Degeneration in muscle bundles (DM), focal area of necrosis (NC) vacuolar degeneration in muscle bundles (VD), edema between muscle bundles (ED) and splitting of muscle fibers were noticed in skin tissue. Further ecotoxicological evaluation will be made concerning the risk of Ni NPs on aquatic environment. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Salinity-dependent nickel accumulation and effects on respiration, ion regulation and oxidative stress in the galaxiid fish, Galaxias maculatus.

    Science.gov (United States)

    Blewett, Tamzin A; Wood, Chris M; Glover, Chris N

    2016-07-01

    Inanga (Galaxias maculatus) are a euryhaline and amphidromous Southern hemisphere fish species inhabiting waters highly contaminated in trace elements such as nickel (Ni). Ni is known to exert its toxic effects on aquatic biota via three key mechanisms: inhibition of respiration, impaired ion regulation, and stimulation of oxidative stress. Inanga acclimated to freshwater (FW), 50% seawater (SW) or 100% SW were exposed to 0, 150 or 2000 μg Ni L(-1), and tissue Ni accumulation, metabolic rate, ion regulation (tissue ions, calcium (Ca) ion influx), and oxidative stress (catalase activity, protein carbonylation) were measured after 96 h. Ni accumulation increased with Ni exposure concentration in gill, gut and remaining body, but not in liver. Only in the gill was Ni accumulation affected by exposure salinity, with lower branchial Ni burdens in 100% and 50% SW inanga, relative to FW fish. There were no Ni-dependent effects on respiration, or Ca influx, and the only Ni-dependent effect on tissue ion content was on gill potassium. Catalase activity and protein carbonylation were affected by Ni, primarily in FW, but only at 150 μg Ni L(-1). Salinity therefore offsets the effects of Ni, despite minimal changes in Ni bioavailability. These data suggest only minor effects of Ni in inanga, even at highly elevated environmental Ni concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Facile fabrication of graphene/nickel oxide composite with superior supercapacitance performance by using alcohols-reduced graphene as substrate

    International Nuclear Information System (INIS)

    Deng, Peng; Zhang, Haiyan; Chen, Yiming; Li, Zhenghui; Huang, Zhikun; Xu, Xingfa; Li, Yunyong; Shi, Zhicong

    2015-01-01

    Highlights: • G/NiO was synthesized by using alcohols-reduced graphene as substrate. • G/NiO presents a globule-on-sheet structure and reveals a synergistic effect. • G/NiO displays high specific capacitance and superior cycling stability. - Abstract: Graphene/nickel oxide composite (G/NiO) was synthesized through a facile hydrothermal method and subsequently microwave thermal treatment by using alcohols-reduced graphene as substrate. The as-prepared G/NiO was characterized by X-ray diffraction, Raman spectra, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The results indicate that the graphene oxide has been successfully reduced to graphene, and NiO nanoparticles are homogeneous anchored on the surface of graphene, forming a globule-on-sheet structure. The loading content of NiO nanoparticles anchoring on the surface of graphene nanosheets can be controlled by adjusting the hydrothermal temperature. The G/NiO displays superior electrochemical performance with a specific capacitance of 530 F g −1 at 1 A g −1 in 2 M of NaOH. After 5000 cycles, the supercapacitor still maintains a specific capacitance of 490 F g −1 (92% retention of the initial capacity), exhibiting excellent cycling stability

  10. Three-dimensional hole transport in nickel oxide by alloying with MgO or ZnO

    Science.gov (United States)

    Alidoust, Nima; Carter, Emily A.

    2015-11-01

    It has been shown previously that the movement of a hole in nickel oxide is confined to two dimensions, along a single ferromagnetic plane. Such confinement may hamper hole transport when NiO is used as a p-type transparent conductor in various solar energy conversion technologies. Here, we use the small polaron model, along with unrestricted Hartree-Fock and complete active space self-consistent field calculations to show that forming substitutional MxNi1-xO alloys with M = Mg or Zn reduces the barrier for movement of a hole away from the ferromagnetic plane to which it is confined. Such reduction occurs for hole transfer alongside one or two M ions that have been substituted for Ni ions. Furthermore, the Mg and Zn ions do not trap holes on O sites in their vicinity, and NiO's transparency is preserved upon forming the alloys. Thus, forming MxNi1-xO alloys with M = Mg or Zn may enhance NiO's potential as a p-type transparent conducting oxide, by disrupting the two-dimensional confinement of holes in pure NiO.

  11. Preparation and characterization of nickel catalysts supported on cerium for obtaining hydrogen from steam reforming of ethanol

    International Nuclear Information System (INIS)

    Urbaninho, A.B.; Bergamaschi, V.S.; Ferreira, J.C.

    2016-01-01

    The Ni/Ce catalysts for were prepared by co- precipitation method with a view to their use in steam reforming of ethanol to produce a hydrogen-rich gas mixture. The catalysts were characterized by scanning electron microscopy; x-ray dispersive Spectroscopy and surface area BET method. This paper proposes to prepare, characterize and test nickel catalyst supported on cerium in order to obtain a material with higher activity and selectivity of the catalyst using the steam reforming reaction of ethanol, by varying the reaction temperature, molar ratio water/ethanol and uptime. The catalytic tests were monitored by chemical analysis of syngas from steam reforming of ethanol using an analysis online by gas Chromatograph in the reactor. (author)

  12. Electrochemical Characterization of Nanoporous Nickel Oxide Thin Films Spray-Deposited onto Indium-Doped Tin Oxide for Solar Conversion Scopes

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2015-01-01

    Full Text Available Nonstoichiometric nickel oxide (NiOx has been deposited as thin film utilizing indium-doped tin oxide as transparent and electrically conductive substrate. Spray deposition of a suspension of NiOx nanoparticles in alcoholic medium allowed the preparation of uniform NiOx coatings. Sintering of the coatings was conducted at temperatures below 500°C for few minutes. This scalable procedure allowed the attainment of NiOx films with mesoporous morphology and reticulated structure. The electrochemical characterization showed that NiOx electrodes possess large surface area (about 1000 times larger than their geometrical area. Due to the openness of the NiOx morphology, the underlying conductive substrate can be contacted by the electrolyte and undergo redox processes within the potential range in which NiOx is electroactive. This requires careful control of the conditions of polarization in order to prevent the simultaneous occurrence of reduction/oxidation processes in both components of the multilayered electrode. The combination of the open structure with optical transparency and elevated electroactivity in organic electrolytes motivated us to analyze the potential of the spray-deposited NiOx films as semiconducting cathodes of dye-sensitized solar cells of p-type when erythrosine B was the sensitizer.

  13. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries

    Science.gov (United States)

    Joulié, M.; Laucournet, R.; Billy, E.

    2014-02-01

    A hydrometallurgical process is developed to recover valuable metals of the lithium nickel cobalt aluminum oxide (NCA) cathodes from spent lithium-ion batteries (LIBs). Effect of parameters such as type of acid (H2SO4, HNO3 and HCl), acid concentration (1-4 mol L-1), leaching time (3-18 h) and leaching temperature (25-90 °C) with a solid to liquid ratio fixed at 5% (w/v) are investigated to determine the most efficient conditions of dissolution. The preliminary results indicate that HCl provides higher leaching efficiency. In optimum conditions, a complete dissolution is performed for Li, Ni, Co and Al. In the nickel and cobalt recovery process, at first the Co(II) in the leaching liquor is selectively oxidized in Co(III) with NaClO reagent to recover Co2O3, 3H2O by a selective precipitation at pH = 3. Then, the nickel hydroxide is precipitated by a base addition at pH = 11. The recovery efficiency of cobalt and nickel are respectively 100% and 99.99%.

  14. Effects of nickel exposure on testicular function, oxidative stress, and male reproductive dysfunction in Spodoptera litura Fabricius.

    Science.gov (United States)

    Sun, Hongxia; Wu, Wenjing; Guo, Jixing; Xiao, Rong; Jiang, Fengze; Zheng, Lingyan; Zhang, Guren

    2016-04-01

    Nickel is an environmental pollutant that adversely affects the male reproductive system. In the present study, the effects of nickel exposure on Spodoptera litura Fabricius were investigated by feeding larvae artificial diets containing different doses of nickel for three generations. Damage to testes and effects on male reproduction were examined. The amount of nickel that accumulated in the testes of newly emerged males increased as the nickel dose in the diet increased during a single generation. Nickel exposure increased the amount of thiobarbituric acid reactive substances and decreased the amount of glutathione in treatment groups compared with the control. The activity levels of the antioxidant response indices superoxide dismutases, catalase, and glutathione peroxidase in the testes showed variable dose-dependent relationships with nickel doses and duration of exposure. Nickel doses also disrupted the development of the testes by decreasing the weight and volume of testes and the number of eupyrene and apyrene sperm bundles in treatment groups compared with the control. When the nickel-treated males mated with normal females, fecundity was inhibited by the higher nickel doses in all three generations, but fecundity significantly increased during the second generation, which received 5 mg kg(-1) nickel. Hatching rates in all treatments significantly decreased in a dose-dependent manner in the three successive generations. The effects of nickel on these parameters correlated with the duration of nickel exposure. Results indicate assays of testes may be a novel and efficient means of evaluating the effects of heavy metals on phytophagous insects in an agricultural environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Characterization and assessment of dermal and inhalable nickel exposures in nickel production and primary user industries.

    Science.gov (United States)

    Hughson, G W; Galea, K S; Heim, K E

    2010-01-01

    The aim of this study was to measure the levels of nickel in the skin contaminant layer of workers involved in specific processes and tasks within the primary nickel production and primary nickel user industries. Dermal exposure samples were collected using moist wipes to recover surface contamination from defined areas of skin. These were analysed for soluble and insoluble nickel species. Personal samples of inhalable dust were also collected to determine the corresponding inhalable nickel exposures. The air samples were analysed for total inhalable dust and then for soluble, sulfidic, metallic, and oxidic nickel species. The workplace surveys were carried out in five different workplaces, including three nickel refineries, a stainless steel plant, and a powder metallurgy plant, all of which were located in Europe. Nickel refinery workers involved with electrolytic nickel recovery processes had soluble dermal nickel exposure of 0.34 microg cm(-2) [geometric mean (GM)] to the hands and forearms. The GM of soluble dermal nickel exposure for workers involved in packing nickel salts (nickel chloride hexahydrate, nickel sulphate hexahydrate, and nickel hydroxycarbonate) was 0.61 microg cm(-2). Refinery workers involved in packing nickel metal powders and end-user powder operatives in magnet production had the highest dermal exposure (GM = 2.59 microg cm(-2) soluble nickel). The hands, forearms, face, and neck of these workers all received greater dermal nickel exposure compared with the other jobs included in this study. The soluble nickel dermal exposures for stainless steel production workers were at or slightly above the limit of detection (0.02 microg cm(-2) soluble nickel). The highest inhalable nickel concentrations were observed for the workers involved in nickel powder packing (GM = 0.77 mg m(-3)), although the soluble component comprised only 2% of the total nickel content. The highest airborne soluble nickel exposures were associated with refineries using

  16. Engineering one-dimensional and two-dimensional birnessite manganese dioxides on nickel foam-supported cobalt–aluminum layered double hydroxides for advanced binder-free supercapacitors

    KAUST Repository

    Hao, Xiaodong

    2014-11-19

    © The Royal Society of Chemistry. We report a facile decoration of the hierarchical nickel foam-supported CoAl layered double hydroxides (CoAl LDHs) with MnO2 nanowires and nanosheets by a chemical bath method and a hydrothermal approach for high-performance supercapacitors. We demonstrate that owing to the sophisticated configuration of binder-free LDH@MnO2 on the conductive Ni foam (NF), the designed NF/LDH@MnO2 nanowire composites exhibit a highly boosted specific capacitance of 1837.8 F g-1 at a current density of 1 A g-1, a good rate capability, and an excellent cycling stability (91.8% retention after 5000 cycles). By applying the hierarchical NF/LDH@MnO2 nanowires as the positive electrode and activated microwave exfoliated graphite oxide activated graphene as the negative electrode, the fabricated asymmetric supercapacitor produces an energy density of 34.2 Wh kg-1 with a maximum power density of 9 kW kg-1. Such strategies with controllable assembly capability could open up a new and facile avenue in fabricating advanced binder-free energy storage electrodes. This journal is

  17. High temperature oxidation and electrochemical investigations on nickel-base alloys

    International Nuclear Information System (INIS)

    Obigodi-Ndjeng, Georgia

    2011-01-01

    This study examined high-temperature oxidation behavior of different Ni-base alloys. In addition, electrochemical characterization of the alloy's corrosion behavior was carried out, including comparison of the properties of native passive films grown at room temperature and high temperature oxide scales. PWA 1483 (single-crystalline Ni-base superalloy) and model alloys Ni-Cr-X (where X is either Co or Al) were oxidized at 800 and 900 C in air for different time periods. The superalloy showed the best oxidation behavior at both temperatures, which might be due to the fact that the oxidation growth function is subparabolic for the model alloys and parabolic for the superalloy at 800 C. At higher temperatures, changes in the kinetics are induced, as the oxides grow faster, thus only PWA 1483 growth follows the parabolic law. Different scales in a typical sandwich form were detected, with the inner layer comprised of mostly Cr 2 O 3 , the middle layer was mixture of different oxides and spinels, depending on the alloying elements, and the oxide at the interface oxygen/oxide was found to be NiO. The influence of sample preparation could also be shown, as rougher surfaces change the oxidation kinetics from parabolic and subparabolic for polished samples to linear. The influence of moisture on the oxidation behavior of the 2 nd generation single crystal Ni-base superalloys (PWA 1484, PWA 1487, CMSX 4, Rene N5 and Rene N5+) was studied at 1000 C after 100 h oxidation period. It was found that the moisture increased the oxidation rate and mostly the transient oxides growth rate. The water vapor content in air also influenced the behavior of these alloys, as they showed a higher mass gain in air + 30% water vapor than in air + 10% water vapor. The alloys PWA 1484 and CMSX 4 showed respectively the worst and best behavior in all the studied atmospheres. The addition of reactive elements, such as Yttrium, Hafnium and Lanthanum is likely to enhance the oxidation behavior of PWA

  18. Microstructural evolution of nanograin nickel-zirconia cermet anode materials for solid oxide fuel cell applications

    International Nuclear Information System (INIS)

    Nayak, Bibhuti Bhusan

    2012-01-01

    The aim of the study is to study the structure, microstructure, porosity, thermal expansion, electrical conductivity and electrochemical behavior of the anode material thus synthesized in order to find its suitability for solid oxide fuel cell (SOFC) anode application

  19. Preventive effect of zinc on nickel-induced oxidative liver injury in rats

    African Journals Online (AJOL)

    MIDOU

    2013-12-18

    Dec 18, 2013 ... induced oxidative liver injury and lipid peroxidation probably due to its antioxidant proprieties. ... enzyme in every enzyme classification (Coyle et al.,. 2002). Others .... control group had a regular histological structure with a.

  20. Engineering one-dimensional and two-dimensional birnessite manganese dioxides on nickel foam-supported cobalt–aluminum layered double hydroxides for advanced binder-free supercapacitors

    KAUST Repository

    Hao, Xiaodong; Zhang, Yuxin; Diao, Zengpeng; Chen, Houwen; Zhang, Aiping; Wang, Zhongchang

    2014-01-01

    © The Royal Society of Chemistry. We report a facile decoration of the hierarchical nickel foam-supported CoAl layered double hydroxides (CoAl LDHs) with MnO2 nanowires and nanosheets by a chemical bath method and a hydrothermal approach for high

  1. Specification and prediction of nickel mobilization using artificial intelligence methods

    Science.gov (United States)

    Gholami, Raoof; Ziaii, Mansour; Ardejani, Faramarz Doulati; Maleki, Shahoo

    2011-12-01

    Groundwater and soil pollution from pyrite oxidation, acid mine drainage generation, and release and transport of toxic metals are common environmental problems associated with the mining industry. Nickel is one toxic metal considered to be a key pollutant in some mining setting; to date, its formation mechanism has not yet been fully evaluated. The goals of this study are 1) to describe the process of nickel mobilization in waste dumps by introducing a novel conceptual model, and 2) to predict nickel concentration using two algorithms, namely the support vector machine (SVM) and the general regression neural network (GRNN). The results obtained from this study have shown that considerable amount of nickel concentration can be arrived into the water flow system during the oxidation of pyrite and subsequent Acid Drainage (AMD) generation. It was concluded that pyrite, water, and oxygen are the most important factors for nickel pollution generation while pH condition, SO4, HCO3, TDS, EC, Mg, Fe, Zn, and Cu are measured quantities playing significant role in nickel mobilization. SVM and GRNN have predicted nickel concentration with a high degree of accuracy. Hence, SVM and GRNN can be considered as appropriate tools for environmental risk assessment.

  2. Electrochemical and surface characterisation of oxide films on nano-grain nickel films electrodeposited on INCOLOY-800

    International Nuclear Information System (INIS)

    Navin Vinayak, S.; Sunitha, Y.; Rangarajan, S.; Narasimhan, S.V.

    2008-01-01

    Nano materials have different properties from the corresponding bulk materials because of fine grain size, large fraction of surface atoms, high surface energy and high grain boundary volume fraction. For similar reasons, the nano-alloy coatings show superior high-temperature corrosion resistance and are generally more resistant to stress corrosion cracking. Hence, it is of interest to know the materials performance, if the structural materials used in nuclear reactors are made of nano-grains. In Indian PHWRs, Incoloy-800 is being used as the steam generator tubing material. It's corrosion resistance property is very important as it forms not only the pressure boundary between the radioactive primary water and non-active secondary water but also from the view point of loss of heavy water, in case of any corrosion damage. In this paper, the corrosion resistance of the oxide films formed on nano-grain nickel film electrodeposited on Incoloy-800 (a) in the presence of saccharine (WS) and (b) in the absence of saccharine (WOS) were compared with that formed on Commercial Ni foil, using electrochemical dc polarization and ac impedance techniques. The surface morphology, elemental analysis and grain size were studied with SEM, EDX and XRD techniques respectively. The nano-grain nickel films were prepared on Incoloy-800 by electrodeposition using Watt's Bath with saccharine sodium as a surfactant. The oxide films were developed by exposing them to LiOH solution (pH-10.0) at 245 deg C for 3 days (A-group) and 7 days (B-group). XRD results showed that the grain size of Ni formed in the absence of saccharine (WOS) was ∼ 60 nm and did not change after being autoclaved. But, for Ni formed in the presence of saccharine (WS), the grain size was ∼ 16 nm which increased to 40-50 nm after being autoclaved. With both A and B-group specimens, the PDAP curves showed an active-passive transition, a passive region and a transpassive region in 2N H 2 SO 4 . However, the critical

  3. Material properties of oxide dispersion strengthened (ODS) ferritic steels for core materials of FBR. Mechanical strength properties of sodium exposed and Nickel diffused materials. Interim report

    International Nuclear Information System (INIS)

    Kato, Shoichi; Yoshida, Eiichi

    2004-02-01

    An oxide dispersion strengthened (ODS) ferritic steel have excellent resistance to swelling and superior creep strength, they are expected to be used as a long-life cladding material in future advanced fast reactor. In this study, sodium environmental effects on the ODS steel developed by JNC were clarified through tensile test after sodium exposure for maximum 10,000hrs and creep-rupture test in sodium at elevated temperature. The exposure to sodium was conducted using a sodium test loop constituted by austenitic steels. For the conditions of sodium exposure test, the sodium temperatures were 923 K and 973 K, the oxygen concentration in sodium was below 2ppm and sodium flow rate on the surface of specimen was less than 1x10 -4 m/s. Further the specimen with the nickel diffused was prepared, which is simulate to nickel diffusing through sodium from the surface of structural stainless steels. The main results obtained were as follows; (1) The results showed excellent sodium-resistance up to a high temperature of about 973 K in stagnant sodium conditions, and its considered that the effects of sodium environment of tensile properties were negligible. In case of stagnant sodium condition, creep-rupture strength in sodium was equal to the in argon gas, and no sodium environmental effect was observed. The same is true for the creep-rupture ductility. (2) The tensile properties of nickel diffused test specimens at high temperatures simulating microstructure change were equal to that of the thermal aging process specimens. These tensile tests suggest that sodium environmental effects can be ignored. However, the effect of nickel diffusion on creep strength are not clear at present and experimental investigation are being conducted. (3) The coefficient of nickel diffusion in the ODS steel can be estimated based on the results of nickel concentration measurement. This value is larger than that of the diffusion coefficient for typical α-Fe steel at temperature below 973 K

  4. Hydrothermal synthesis of graphene/nickel oxide nanocomposites used as the electrode for supercapacitors.

    Science.gov (United States)

    Zhou, Zhongnian; Ni, Haifang; Fan, Li-Zhen

    2014-07-01

    Graphene (GR)-based nanocomposites with different mass ratios of NiO and GR are prepared via hydrothermal method using Ni(NO3)2 as the origin of nickel and urea as the hydrolysis-controlling agent. The morphology and electrochemical performance of the GR/NiO nanocomposites are closely associated with the mass ratios of GR to NiO. The chemical composition and morphology of the composites together with the pure GR and NiO are characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). It is found that the GR sheets and NiO particles form uniform nanocomposites with the NiO particles absorbed on the GR surface. A specific capacitance of 384 F g(-1) at a current density of 0.1 A g(-1) is achieved when the coating amount of NiO is up to 74 wt%. In addition, the attenuation of the specific capacitance is less than 6% after 500 cycles, indicating such nanocomposite has excellent cycling performance.

  5. Defect engineering of mesoporous nickel ferrite and its application for highly enhanced water oxidation catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Qiudi; Liu, Cunming; Wan, Yangyang; Wu, Xiaojun; Zhang, Xiaoyi; Du, Pingwu

    2018-02-01

    Spinel nickel ferrite (NiFe2O4) emerges as a promising low-cost catalyst for water splitting but it usually shows low catalytic activity because of its limited number of active sites and poor conductivity. For the first time, herein we have successfully overcome its weaknesses using defect engineering approach by creating oxygen vacancies in NiFe2O4. The existence of oxygen vacancy not only shifts up the d-band center, strengthens the adsorption of H2O, and thus provides more active catalytic sites, but also tunes the electron configuration and creates massive number of defective donor states in the band gap to facilitate charge transfer processes. The optimal defective catalyst showed significantly enhanced catalytic OER performance with an OER overpotential as low as 0.35 V at 10 mA cm-2 and a Tafel slope of only ~40 mV dec-1. Moreover, the impressive specific mass and area current density of 17.5 A g-1 and 0.106 A m-2 at 1.58 V vs. RHE have been achieved, which are ~23 and ~36 times higher than that of defect-free counterpart, respectively.

  6. High Temperature Oxidation of Nickel-based Cermet Coatings Composed of Al2O3 and TiO2 Nanosized Particles

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-09-01

    New technological challenges in oil production require materials that can resist high temperature oxidation. In-Situ Combustion (ISC) oil production technique is a new method that uses injection of air and ignition techniques to reduce the viscosity of bitumen in a reservoir and as a result crude bitumen can be produced and extracted from the reservoir. During the in-situ combustion process, production pipes and other mechanical components can be exposed to air-like gaseous environments at extreme temperatures as high as 700 °C. To protect or reduce the surface degradation of pipes and mechanical components used in in-situ combustion, the use of nickel-based ceramic-metallic (cermet) coating produced by co-electrodeposition of nanosized Al2O3 and TiO2 have been suggested and earlier research on these coatings have shown promising oxidation resistance against atmospheric oxygen and combustion gases at elevated temperatures. Co-electrodeposition of nickel-based cermet coatings is a low-cost method that has the benefit of allowing both internal and external surfaces of pipes and components to be coated during a single electroplating process. Research has shown that the volume fraction of dispersed nanosized Al2O3 and TiO2 particles in the nickel matrix which affects the oxidation resistance of the coating can be controlled by the concentration of these particles in the electrolyte solution, as well as the applied current density during electrodeposition. This paper investigates the high temperature oxidation behaviour of novel nanostructured cermet coatings composed of two types of dispersed nanosized ceramic particles (Al2O3 and TiO2) in a nickel matrix and produced by coelectrodeposition technique as a function of the concentration of these particles in the electrolyte solution and applied current density. For this purpose, high temperature oxidation tests were conducted in dry air for 96 hours at 700 °C to obtain mass changes (per unit of area) at specific time

  7. Effects of Nickel Particle Size and Graphene Support on the Electrochemical Performance of Lithium/Dissolved Polysulfide Batteries

    International Nuclear Information System (INIS)

    Mosavati, Negar; Chitturi, Venkateswara Rao; Arava, Leela Mohana Reddy; Salley, Steven O.; Ng, K.Y. Simon

    2015-01-01

    Highlights: • Electrodes with different nano size Ni particles are prepared. • The electrocatalytic effect of Ni nanoparticle sizes is investigated. • The graphene supported Ni nanoparticle is synthesized. • The effect of the graphene support to the anchor Ni nanoparticle is investigated. • Ni/graphene electrode exhibits remarkably enhanced discharge capacity. - Abstract: The electrocatalytic effect of nickel (Ni) nanoparticle sizes on the lithium polysulfide conversion reactions in dissolved lithium sulfur battery configuration is investigated. The Ni particles of 20 nm with the higher cathode surface area show a superior capacity of 1066 mAh g −1 sulfur compared to Ni particles of 40 and 100 nm for the first cycle. In addition, to further improve the capacity retention and discharge capacity of the cell, the effect of the graphene support on Ni nanoparticle dispersion and cycling performance is investigated. The results show a significant improvement in the discharge capacity compared to the other electrodes. This could be explained by the homogeneous distribution of Ni nanoparticle within the carbon matrix, which suppress the agglomeration and surface area loss of the Ni nanoparticle after cycling; as well as a synergetic effect of graphene structure and Ni nanoparticle.

  8. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    Science.gov (United States)

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  9. Strength degradation of oxidized graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheon

    2010-01-01

    Air-ingress events caused by large pipe breaks are important accidents considered in the design of Very High Temperature Gas-Cooled Reactors (VHTRs). A main safety concern for this type of event is the possibility of core collapse following the failure of the graphite support column, which can be oxidized by ingressed air. In this study, the main target is to predict the strength of the oxidized graphite support column. Through compression tests for fresh and oxidized graphite columns, the compressive strength of IG-110 was obtained. The buckling strength of the IG-110 column is expressed using the following empirical straight-line formula: σ cr,buckling =91.34-1.01(L/r). Graphite oxidation in Zone 1 is volume reaction and that in Zone 3 is surface reaction. We notice that the ultimate strength of the graphite column oxidized in Zones 1 and 3 only depends on the slenderness ratio and bulk density. Its strength degradation oxidized in Zone 1 is expressed in the following nondimensional form: σ/σ 0 =exp(-kd), k=0.114. We found that the strength degradation of a graphite column, oxidized in Zone 3, follows the above buckling empirical formula as the slenderness of the column changes. (author)

  10. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gentil, Solène [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR5249, CEA, 38000 Grenoble France; Lalaoui, Noémie [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Dutta, Arnab [Pacific Northwest National Laboratory, Richland WA 99532 USA; Current address: Chemistry Department, IIT Gandhinagar, Gujarat 382355 India; Nedellec, Yannig [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Cosnier, Serge [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Shaw, Wendy J. [Pacific Northwest National Laboratory, Richland WA 99532 USA; Artero, Vincent [Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR5249, CEA, 38000 Grenoble France; Le Goff, Alan [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France

    2017-01-12

    A biomimetic nickel bis-diphosphine complex incorporating the amino-acid arginine in the outer coordination sphere, was immobilized on modified single-wall carbon nanotubes (SWCNTs) through electrostatic interactions. The sur-face-confined catalyst is characterized by a reversible 2-electron/2-proton redox process at potentials close to the equibrium potential of the H+/H2 couple. Consequently, the functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2/2H+ interconversion over a broad range of pH. This system exhibits catalytic bias, analogous to hydrogenases, resulting in high turnover frequencies at low overpotentials for electrocatalytic H2 oxida-tion between pH 0 and 7. This allowed integrating such bio-inspired nanomaterial together with a multicopper oxi-dase at the cathode side in a hybrid bioinspired/enzymatic hydrogen fuel cell. This device delivers ~2 mW cm–2 with an open-circuit voltage of 1.0 V at room temperature and pH 5, which sets a new efficiency record for a bio-related hydrogen fuel cell with base metal catalysts.

  11. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells.

    Science.gov (United States)

    Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab; Nedellec, Yannig; Cosnier, Serge; Shaw, Wendy J; Artero, Vincent; Le Goff, Alan

    2017-02-06

    A biomimetic nickel bis-diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H 2 /2 H + interconversion from pH 0 to 9, with catalytic preference for H 2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio-inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni-based PEMFC reaches 14 mW cm -2 , only six-times-less as compared to full-Pt conventional PEMFC. The Pt-free enzyme-based fuel cell delivers ≈2 mW cm -2 , a new efficiency record for a hydrogen biofuel cell with base metal catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Iron Is the Active Site in Nickel/Iron Water Oxidation Electrocatalysts

    Directory of Open Access Journals (Sweden)

    Bryan M. Hunter

    2018-04-01

    Full Text Available Efficient catalysis of the oxygen-evolution half-reaction (OER is a pivotal requirement for the development of practical solar-driven water splitting devices. Heterogeneous OER electrocatalysts containing first-row transition metal oxides and hydroxides have attracted considerable recent interest, owing in part to the high abundance and low cost of starting materials. Among the best performing OER electrocatalysts are mixed Fe/Ni layered double hydroxides (LDH. A review of the available experimental data leads to the conclusion that iron is the active site for [NiFe]-LDH-catalyzed alkaline water oxidation.

  13. A study of the oxidation of nickel-titanium intermetallics. II. Phase composition of the scale

    Energy Technology Data Exchange (ETDEWEB)

    Chuprina, V G [Institut Problem Materialovedeniia, Kiev (Ukrainian SSR)

    1989-06-01

    The phase composition of the scale formed on NiTi during oxidation in air in the temperature range 600-1000 C was investigated by X-ray diffraction and layer-by-layer metallographic analyses. The scale was found to contain NiO, NiO.TiO2, TiO2, Ti2O3, Ti3O5, Ni, and Ni(Ti) solid solution; an Ni3Ti sublayer was present at the scale-alloy boundary. Oxygen diffusion in the scale toward the sublayer and counterdiffusion of Ni(+2) were found to be the principal processes responsible for NiTi oxidation. 8 refs.

  14. Thermally oxidized Inconel 600 and 690 nickel-based alloys characterizations by combination of global photoelectrochemistry and local near-field microscopy techniques (STM, STS, AFM, SKPFM)

    Science.gov (United States)

    Mechehoud, F.; Benaioun, N. E.; Hakiki, N. E.; Khelil, A.; Simon, L.; Bubendorff, J. L.

    2018-03-01

    Thermally oxidized nickel-based alloys are studied by scanning tunnelling microscopy (STM), scanning tunnelling spectroscopy (STS), atomic force microscopy (AFM), scanning kelvin probe force microscopy (SKPFM) and photoelectro-chemical techniques as a function of oxidation time at a fixed temperature of 623 K. By photoelectrochemistry measurements we identify the formation of three oxides NiO, Fe2O3, Cr2O3 and determine the corresponding gap values. We use these values as parameter for imaging the surface at high bias voltage by STM allowing the spatial localization and identification of both NiO, Fe2O3 oxide phases using STS measurements. Associated to Kelvin probe measurements we show also that STS allow to distinguished NiO from Cr2O3 and confirm that the Cr2O3 is not visible at the surface and localized at the oxide/steel interface.

  15. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Science.gov (United States)

    Mondon, A.; Wang, D.; Zuschlag, A.; Bartsch, J.; Glatthaar, M.; Glunz, S. W.

    2014-12-01

    In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel-silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide a continuous nickel silicide of greater depth, polycrystalline modification and expected phase according to thermal budget is formed. Information about the nature of silicide growth on typical solar cell surfaces could be obtained from silicide phase and geometric observations, which were supported by FIB tomography. The theory of isotropic NiSi growth and orientation dependent NiSi2 growth was derived. By this, a very well performing low-cost metallization for silicon solar cells has been brought an important step closer to industrial introduction.

  16. Nickel/Yttria-stabilised zirconia cermet anodes for solid oxide fuel cells

    NARCIS (Netherlands)

    Primdahl, Søren

    1999-01-01

    This thesis deals with the porous Ni/yttria-stabilized zirconia (YSZ) cermet anode on a YSZ electrolyte for solid oxide fuel cells (SOFC). Such anodes are predominantly operated in moist hydrogen at 700°C to 1000°C, and the most important technological parameters are the polarization resistance and

  17. The hydrogen evolution and oxidation kinetics during overdischarging of sealed nickel-metal hydride batteries

    NARCIS (Netherlands)

    Ayeb, A.; Otten, W.M.; Mank, A.J.G.; Notten, P.H.L.

    2006-01-01

    The hydrogen evolution and oxidation kinetics in NiMH batteries have been investigated under temperature-controlled, steady-state, overdischarging conditions within a temperature range of 10 and 50°C and at discharging currents of 1–330 mA (0.0009 to 0.3 C rate). In situ Raman spectroscopic analyses

  18. Facile One-Pot Synthesis of Flower Like Cobalt Oxide Nanostructures on Nickel Plate and Its Supercapacitance Properties.

    Science.gov (United States)

    Kandasamy, N; Venugopal, T; Kannan, K

    2018-06-01

    A flower like cobalt oxide nanostructured thin film (Co2O3) on Nickel (Ni) plate as have been successfully developed via alcoholic Seed Layer assisted chemical bath Deposition (SLD) process. Through the controlled alkaline electrolytes, the flower and paddles like Co2O3 nanoarchitectures were formed. The prepared thin film was characterized by X-ray diffraction (XRD), scanning electron microscope with energy dispersive X-ray (SEM and EDX), Atomic Force Microscope (AFM), Raman spectroscopy techniques. Electron micrograph reveals the flower and paddles like nanostructured Co2O3 thin film deposited on Ni plates. The electrochemical characteristics were investigated using cyclic voltammetry (CV), charge-discharge and AC impedance spectroscopy in different aqueous electrolytes such as NaOH, KOH, and LiOH. The maximum specific capacitance of 856 Fg-1 was attained with 2 M KOH electrolyte with 2 mVs-1 of the Co2O3 thin film coated Ni plate at 80 °C using SLD method. The capacitance values obtained with various electrolytes are in the order of KOH > NaOH > LiOH. The results indicate that the present method is economical and the material is ecofriendly with enhanced capacitance property.

  19. Nickel oxide crystalline nano flakes: synthesis, characterization and their use as anode in lithium-ion batteries

    Science.gov (United States)

    Ahmadi, Majid; Younesi, Reza; Vegge, Tejs; J-F Guinel, Maxime

    2014-04-01

    Nickel oxide crystalline nano flakes (NONFs)—only about 10 nm wide—were produced using a simple and inexpensive chemistry method followed by a short annealing in ambient air. In a first step, Ni(OH)2 sheets were synthesized by adding sodium hydroxide (NaOH) drop-wise in a Ni(NO3)2 aqueous solution that was then sonicated for up to 60 min, washed and vigorously stirred overnight in deionized water. In a second step, the products of this reaction were annealed in ambient air in the temperature range 285-450 °C producing the desired NONFs. The products were characterized using x-ray diffraction, scanning electron microscopy and high resolution transmission electron microscopy including electron diffraction and electron energy-loss spectroscopy. Electrochemical investigations showed that anodes made of these NONFs provided significantly higher discharge capacities (70 to 100% higher) compared to commercial nanometric NiO nanopowder used under the same conditions. Moreover, these NONFs had higher initial capacity retentions at both low and high current densities compared to the same NiO nanopowder.

  20. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    Science.gov (United States)

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  1. Structural and magnetic properties of nickel nanowires grown in porous anodic aluminium oxide template by electrochemical deposition technique

    Science.gov (United States)

    Nugraha Pratama, Sendi; Kurniawan, Yudhi; Muhammady, Shibghatullah; Takase, Kouichi; Darma, Yudi

    2018-03-01

    We study the formation of nickel nanowires (Ni NWs) grown in porous anodic aluminium oxide (AAO) template by the electrochemical deposition technique. Here, the initial AAO template was grown by anodization of aluminium substrate in sulphuric acid solution. The cross-section, crystal structure, and magnetic properties of Ni NWs system were characterized by field-emission SEM, XRD, and SQUID. As a result, the highly-ordered Ni NWs are observed with the uniform diameter of 27 nm and the length from 31 to 163 nm. Based on XRD spectra analysis, Ni NWs have the face-centered cubic structure with the lattice parameter of 0.35 nm and average crystallite size of 17.19 nm. From SQUID measurement at room temperature, by maintaining the magnetic field perpendicular to Ni NWs axis, the magnetic hysteresis of Ni NWs system show the strong ferromagnetism with the coercivity and remanence ratio of ∼148 Oe and ∼0.23, respectively. The magnetic properties are also calculated by means of generalized gradient approximation methods. From the calculation result, we show that the ferromagnetism behavior comes from Ni NWs without any contribution from AAO template or the substrate. This study opens the potential application of Ni NWs system for novel functional magnetic devices.

  2. The effects of a nickel oxide precoat on the gas bubble structures and fish-scaling resistance in vitreous enamels

    International Nuclear Information System (INIS)

    Yang, X.; Jha, A.; Brydson, R.; Cochrane, R.C.

    2004-01-01

    The effects of a NiO precoat on the interfacial microchemistry and the structure of gas bubbles at the steel-enamel interface were investigated using scanning electron microscopy (SEM), electron probe microanalysis (EPMA), thermogravimetric analysis (TGA) and image analysis techniques. The experimental evidence demonstrates that nickel oxide applied to the steel substrate as a precoat accelerates the diffusion of Fe from the steel into the enamel and promotes decarburisation of the steel substrate, this latter reaction generating CO and/or CO 2 as gases. The resulting increase in FeO concentration reduces the viscosity of enamel. The apparent decrease in the viscosity of liquid enamel, along with formation of substantial quantities of CO and/or CO 2 gases control the distribution of gas bubbles in the enamel layer. The investigation also explains the reason for the association of large gas bubbles with Fe-Ni metal-rich particles with a dendritic appearance (termed 'dendrites in the following text) at the enamel-steel interface. The role of these Fe-Ni metal-rich 'dendrites' in reducing the tendency for hydrogen flaking or cracking of the enamel layer, generally referred to as fish-scaling, is also elucidated

  3. Long term performance degradation analysis and optimization of anode supported solid oxide fuel cell stacks

    International Nuclear Information System (INIS)

    Parhizkar, Tarannom; Roshandel, Ramin

    2017-01-01

    Highlights: • A degradation based optimization framework is developed. • The cost of electricity based on degradation of solid oxide fuel cells is minimized. • The effects of operating conditions on degradation mechanisms are investigated. • Results show 7.12% lower cost of electricity in comparison with base case. • Degradation based optimization is a beneficial concept for long term analysis. - Abstract: The main objective of this work is minimizing the cost of electricity of solid oxide fuel cell stacks by decelerating degradation mechanisms rate in long term operation for stationary power generation applications. The degradation mechanisms in solid oxide fuel cells are caused by microstructural changes, reactions between lanthanum strontium manganite and electrolyte, poisoning by chromium, carburization on nickel particles, formation of nickel sulfide, nickel coarsening, nickel oxidation, loss of conductivity and crack formation in the electrolyte. The rate of degradation mechanisms depends on the cell operating conditions (cell voltage and fuel utilization). In this study, the degradation based optimization framework is developed which determines optimum operating conditions to achieve a minimum cost of electricity. To show the effectiveness of the developed framework, optimization results are compared with the case that system operates at its design point. Results illustrate optimum operating conditions decrease the cost of electricity by 7.12%. The performed study indicates that degradation based optimization is a beneficial concept for long term performance degradation analysis of energy conversion systems.

  4. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng, E-mail: kswu@stu.edu.cn

    2014-02-01

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed.

  5. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    International Nuclear Information System (INIS)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2014-01-01

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed. • Neonatal lead

  6. Solubilities of iron and nickel oxides under high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Choi, Ke-Chon; Jung, Yong-Ju; Yeon, Jei-Won; Jee, Kwang-Yong

    2007-01-01

    The purposes of primary coolant chemistry are to assure fuel and material integrity and to minimize out of core radiation fields. During the PWR operation, crud deposits are expected on the cladding, leading to cladding failure and raising the radioactivity. Such deposits come from the corrosion products of system surface. To achieve optimal conditions for primary coolant, basic researches on mass transfer, deposition and solubility of corrosion products are needed. The initial stage of crud formation could be the studies on the solubility of a structural material. It has been known that the solubility of metal oxides in boric acid under high temperature and high pressure condition depends on the pH and dissolved hydrogen. Thus, the effect of various pH on the solubility of metal oxide in boric acid solution was investigated in this work

  7. Back-illuminated Si-based photoanode with nickel cobalt oxide catalytic protection layer

    DEFF Research Database (Denmark)

    Bae, Dowon; Mei, Bastian Timo; Frydendal, Rasmus

    2016-01-01

    as a protective catalyst for the water oxidation reaction in 1 m KOH. The sample showed a high photocurrent (21 mA cm−2) under red-light illumination (38.6 mW cm−2). Long-term stability testing showed a gradual decrease of activity in the beginning, and then the activity increased, yielding a cathodic shift...

  8. Metal Phosphate-Supported Pt Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Qian

    2014-12-01

    Full Text Available Oxides (such as SiO2, TiO2, ZrO2, Al2O3, Fe2O3, CeO2 have often been used to prepare supported Pt catalysts for CO oxidation and other reactions, whereas metal phosphate-supported Pt catalysts for CO oxidation were rarely reported. Metal phosphates are a family of metal salts with high thermal stability and acid-base properties. Hydroxyapatite (Ca10(PO46(OH2, denoted as Ca-P-O here also has rich hydroxyls. Here we report a series of metal phosphate-supported Pt (Pt/M-P-O, M = Mg, Al, Ca, Fe, Co, Zn, La catalysts for CO oxidation. Pt/Ca-P-O shows the highest activity. Relevant characterization was conducted using N2 adsorption-desorption, inductively coupled plasma (ICP atomic emission spectroscopy, X-ray diffraction (XRD, transmission electron microscopy (TEM, CO2 temperature-programmed desorption (CO2-TPD, X-ray photoelectron spectroscopy (XPS, and H2 temperature-programmed reduction (H2-TPR. This work furnishes a new catalyst system for CO oxidation and other possible reactions.

  9. Sulfidation of carbon-supported iron oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Oers, van E.M.; Kraan, van der A.M.

    1989-01-01

    The sulfidation of carbon-supported iron oxide catalysts was studied by means of in-situ Mössbauer spectroscopy at temperatures down to 4.2 K. The catalysts were dried in two different ways and then sulfided in a flow of 10% H2S in H2 at temperatures between 293 and 773 K. Thiophene

  10. Hierarchical porous nickel oxide-carbon nanotubes as advanced pseudocapacitor materials for supercapacitors

    Science.gov (United States)

    Su, Aldwin D.; Zhang, Xiang; Rinaldi, Ali; Nguyen, Son T.; Liu, Huihui; Lei, Zhibin; Lu, Li; Duong, Hai M.

    2013-03-01

    Hierarchical porous carbon anode and metal oxide cathode are promising for supercapacitor with both high energy density and high power density. This Letter uses NiO and commercial carbon nanotubes (CNTs) as electrode materials for electrochemical capacitors with high energy storage capacities. Experimental results show that the specific capacitance of the electrode materials for 10%, 30% and 50% CNTs are 279, 242 and 112 F/g, respectively in an aqueous 1 M KOH electrolyte at a charge rate of 0.56 A/g. The maximum specific capacitance is 328 F/g at a charge rate of 0.33 A/g.

  11. Competitive and Cooperative Effects during Nickel Adsorption to Iron Oxides in the Presence of Oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Elaine D. [Department of Earth and Planetary; Catalano, Jeffrey G. [Department of Earth and Planetary

    2017-08-09

    Iron oxides are ubiquitous in soils and sediments and play a critical role in the geochemical distribution of trace elements and heavy metals via adsorption and coprecipitation. The presence of organic acids may potentially alter how metals associate with iron oxide minerals through a series of cooperative or competitive processes: solution complexation, ternary surface complexation, and surface site competition. The macroscopic and molecular-scale effects of these processes were investigated for Ni adsorption to hematite and goethite at pH 7 in the presence of oxalate. The addition of this organic acid suppresses Ni uptake on both minerals. Aqueous speciation suggests that this is dominantly the result of oxalate complexing and solubilizing Ni. Comparison of the Ni surface coverage to the concentration of free (uncomplexed) Ni2+ in solution suggests that the oxalate also alters Ni adsorption affinity. EXAFS and ATR-FTIR spectroscopies indicate that these changes in binding affinity are due to the formation of Ni–oxalate ternary surface complexes. These observations demonstrate that competition between dissolved oxalate and the mineral surface for Ni overwhelms the enhancement in adsorption associated with ternary complexation. Oxalate thus largely enhances Ni mobility, thereby increasing micronutrient bioavailability and inhibiting contaminant sequestration.

  12. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion

    2016-01-01

    Heterogeneous catalysis studies were conducted on two crushed solid oxide fuel cell (SOFC) anodes in fixed-bed reactors. The baseline anode was Ni/ScYSZ (Ni/scandia and yttria stabilized zirconia), the other was Ni/ScYSZ modified with Pd/doped ceria (Ni/ScYSZ/Pd-CGO). Three main types......-programmed oxidation and time-of-flight secondary ion mass spectrometry. Results showed thatNi/ScYSZ/Pd-CGO was more active for catalytic dissociation of CH4 at 750°C and subsequent reactivity of deposited carbonaceous species. Sulfur deactivated most catalytic reactions except CO2 dissociation at 750°C. The presence...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming...

  13. Synthesis and Characterization of Mixed Iron-Manganese Oxide Nanoparticles and Their Application for Efficient Nickel Ion Removal from Aqueous Samples

    Science.gov (United States)

    Serra, Antonio; Monteduro, Anna Grazia; Padmanabhan, Sanosh Kunjalukkal; Licciulli, Antonio; Bonfrate, Valentina; Salvatore, Luca; Calcagnile, Lucio

    2017-01-01

    Mixed iron-manganese oxide nanoparticles, synthesized by a simple procedure, were used to remove nickel ion from aqueous solutions. Nanostructures, prepared by using different weight percents of manganese, were characterized by transmission electron microscopy, selected area diffraction, X-ray diffraction, Raman spectroscopy, and vibrating sample magnetometry. Adsorption/desorption isotherm curves demonstrated that manganese inclusions enhance the specific surface area three times and the pores volume ten times. This feature was crucial to decontaminate both aqueous samples and food extracts from nickel ion. Efficient removal of Ni2+ was highlighted by the well-known dimethylglyoxime test and by ICP-MS analysis and the possibility of regenerating the nanostructure was obtained by a washing treatment in disodium ethylenediaminetetraacetate solution. PMID:28804670

  14. Synthesis and Characterization of Mixed Iron-Manganese Oxide Nanoparticles and Their Application for Efficient Nickel Ion Removal from Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Alessandro Buccolieri

    2017-01-01

    Full Text Available Mixed iron-manganese oxide nanoparticles, synthesized by a simple procedure, were used to remove nickel ion from aqueous solutions. Nanostructures, prepared by using different weight percents of manganese, were characterized by transmission electron microscopy, selected area diffraction, X-ray diffraction, Raman spectroscopy, and vibrating sample magnetometry. Adsorption/desorption isotherm curves demonstrated that manganese inclusions enhance the specific surface area three times and the pores volume ten times. This feature was crucial to decontaminate both aqueous samples and food extracts from nickel ion. Efficient removal of Ni2+ was highlighted by the well-known dimethylglyoxime test and by ICP-MS analysis and the possibility of regenerating the nanostructure was obtained by a washing treatment in disodium ethylenediaminetetraacetate solution.

  15. Sequential application of Fenton and ozone-based oxidation process for the abatement of Ni-EDTA containing nickel plating effluents.

    Science.gov (United States)

    Zhao, Zilong; Liu, Zekun; Wang, Hongjie; Dong, Wenyi; Wang, Wei

    2018-07-01

    Treatment of Ni-EDTA in industrial nickel plating effluents was investigated by integrated application of Fenton and ozone-based oxidation processes. Determination of integrated sequence found that Fenton oxidation presented higher apparent kinetic rate constant of Ni-EDTA oxidation and capacity for contamination load than ozone-based oxidation process, the latter, however, was favorable to guarantee the further mineralization of organic substances, especially at a low concentration. Serial-connection mode of two oxidation processes was appraised, Fenton effluent after treated by hydroxide precipitation and filtration negatively affected the overall performance of the sequential system, as evidenced by the removal efficiencies of Ni 2+ and TOC dropping from 99.8% to 98.7%, and from 74.8% to 66.6%, respectively. As a comparison, O 3 /Fe 2+ oxidation process was proved to be more effective than other processes (e.g. O 3 -Fe 2+ , O 3 /H 2 O 2 /Fe 2+ , O 3 /H 2 O 2 -Fe 2+ ), and the final effluent Ni 2+ concentration could satisfied the discharge standard (Fenton reaction, initial influent pH of 3.0, O 3 dosage of 252 mg L -1 , Fe 2+ of 150 mg L -1 , and reaction time of 30 min for O 3 /Fe 2+ oxidation). Furthermore, pilot-scale test was carried out to study the practical treatability towards the real nickel plating effluent, revealing the effective removal of some other co-existence contaminations. And Fenton reaction has contributed most, with the percentage ranging from 72.41% to 93.76%. The economic cost advantage made it a promising alternative to the continuous Fenton oxidation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting

    KAUST Repository

    Ming, Fangwang

    2016-09-01

    It is of prime importance to develop dual-functional electrocatalysts with good activity for overall water splitting, which remains a great challenge. Herein, we report the synthesis of a Co-doped nickel selenide (a mixture of NiSe and NiSe)/C hybrid nanostructure supported on Ni foam using a metal-organic framework as the precursor. The resulting catalyst exhibits excellent catalytic activity toward the oxygen evolution reaction (OER), which only requires an overpotential of 275 mV to drive a current density of 30 mA cm. This overpotential is much lower than those reported for precious metal free OER catalysts. The hybrid is also capable of catalyzing the hydrogen evolution reaction (HER) efficiently. A current density of -10 mA cm can be achieved at 90 mV. In addition, such a hybrid nanostructure can achieve 10 and 30 mA cm at potentials of 1.6 and 1.71 V, respectively, along with good durability when functioning as both the cathode and the anode for overall water splitting in basic media.

  17. MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting

    KAUST Repository

    Ming, Fangwang; Liang, Hanfeng; Shi, Huanhuan; Xu, Xun; Mei, Gui; Wang, Zhoucheng

    2016-01-01

    It is of prime importance to develop dual-functional electrocatalysts with good activity for overall water splitting, which remains a great challenge. Herein, we report the synthesis of a Co-doped nickel selenide (a mixture of NiSe and NiSe)/C hybrid nanostructure supported on Ni foam using a metal-organic framework as the precursor. The resulting catalyst exhibits excellent catalytic activity toward the oxygen evolution reaction (OER), which only requires an overpotential of 275 mV to drive a current density of 30 mA cm. This overpotential is much lower than those reported for precious metal free OER catalysts. The hybrid is also capable of catalyzing the hydrogen evolution reaction (HER) efficiently. A current density of -10 mA cm can be achieved at 90 mV. In addition, such a hybrid nanostructure can achieve 10 and 30 mA cm at potentials of 1.6 and 1.71 V, respectively, along with good durability when functioning as both the cathode and the anode for overall water splitting in basic media.

  18. Substitution effects of a carbonated hydroxyapatite biomaterial against intoxication chloride nickel-exposed rats.

    Science.gov (United States)

    Boulila, Salha; Elfeki, Abdelfattah; Oudadesse, Hassane; Elfeki, Hafed

    2015-03-01

    This study aimed to investigate the potential effects of a synthetic apatite (carbonated hydroxyapatite) on the detoxification of a group of male "Wistar" rats exposed to nickel chloride. Toxicity was evaluated by rats' bioassay of nickel chloride. Wistar rats received this metal daily by gavage for seven days (4 mg/ml nickel chloride/200 g body weight, BW). To detoxify this organism, a subcutaneous implantation of the apatite is made. The results revealed that exposure to nickel induced oxidative stress, disorders in the balances of ferric phosphocalcic, renal failures, liver toxicity and significant increase in nickel rates in the bones of intoxicated rats. The application of the carbonated hydroxyapatite presented in this study restored those disorders back to normal. The synthetic apatite protected the rats against the toxic effects of nickel by lowering the levels of lipid peroxidation markers and improving the activities of defense enzymes. It also amended ferric and phosphocalcic equilibriums, protected liver and kidney functions and reduced the nickel rate in the bones of the rats. Overall, the results provided strong support for the protective role of carbonated hydroxyapatite in the detoxification of rats exposed to nickel. Those beneficial effects were further confirmed by physico-chemical characterization (X-ray diffraction and infrared spectroscopy), which revealed its property of anionic and cationic substitution, thus supporting its promising candidacy for future biomedical application. The hydroxyapatite is an effective biomaterial to solve health problems, particularly detoxification against metals (nickel).

  19. Oxide-supported metal clusters: models for heterogeneous catalysts

    International Nuclear Information System (INIS)

    Santra, A K; Goodman, D W

    2003-01-01

    Understanding the size-dependent electronic, structural and chemical properties of metal clusters on oxide supports is an important aspect of heterogeneous catalysis. Recently model oxide-supported metal catalysts have been prepared by vapour deposition of catalytically relevant metals onto ultra-thin oxide films grown on a refractory metal substrate. Reactivity and spectroscopic/microscopic studies have shown that these ultra-thin oxide films are excellent models for the corresponding bulk oxides, yet are sufficiently electrically conductive for use with various modern surface probes including scanning tunnelling microscopy (STM). Measurements on metal clusters have revealed a metal to nonmetal transition as well as changes in the crystal and electronic structures (including lattice parameters, band width, band splitting and core-level binding energy shifts) as a function of cluster size. Size-dependent catalytic reactivity studies have been carried out for several important reactions, and time-dependent catalytic deactivation has been shown to arise from sintering of metal particles under elevated gas pressures and/or reactor temperatures. In situ STM methodologies have been developed to follow the growth and sintering kinetics on a cluster-by-cluster basis. Although several critical issues have been addressed by several groups worldwide, much more remains to be done. This article highlights some of these accomplishments and summarizes the challenges that lie ahead. (topical review)

  20. Material properties of oxide dispersion strengthened (ODS) ferritic steels for core materials of FBR. Tensile properties of sodium exposed and nickel diffused materials

    International Nuclear Information System (INIS)

    Kato, Shoichi; Yoshida, Eiichi

    2002-12-01

    An oxide dispersion strengthened (ODS) ferritic steel is candidate for a long-life core materials of future FBR, because of good swelling resistance and high creep strength. In this study, tensile tests were carried out the long-term extrapolation of sodium environmental effects on the mechanical properties of ODS steels. The tested heats of materials are M93, M11 and F95. The specimens were pre-exposed to sodium for 1,000 and 3,000 hours under non-stress conditions. The pre-exposure to sodium was conducted using a sodium test loop constituted by austenitic steels. For the conditions of sodium exposure test, the sodium temperature was 650 and 700degC, the oxygen concentration in sodium was about 1 ppm and sodium flow rate on the surface of specimen was less than 1x10 -4 m/seconds (nearly static). Further the specimen with the nickel diffused was prepared, which is simulate to nickel diffusing through sodium from the surface of structural stainless steels. The main results obtained were as follows; (1) The tensile strength and the fracture elongation after sodium exposure (maximum 3,000 hours) were same as that of as-received materials. If was considered that the sodium environmental effect is negligible under the condition of this study. (2) Tensile properties of nickel diffused specimens were slightly lower than that of the as-received specimens, but it remains equal to that of thermal aging specimens. (3) The change in microstructure such as a degraded layer was observed on the surface of nickel diffused specimen. In the region of the degraded layer, phase transformations from the α-phase to the γ-phase were recognized. But, the microscopic oxide particles were observed same as that of α-phase base metal. (author)

  1. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Cheng-Yang; Hong, Shao-Chyang; Hwang, Fu-Tsai; Lai, Li-Wen; Lin, Tan-Wei; Liu, Day-Shan

    2011-01-01

    The effect of a nickel oxide (NiO x ) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO x ) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO x films, with and without a NiO x seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO x film, deposited on a NiO x seed layer, was found to be lower than that of a pure TiO x film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO x film deposited onto the NiO x seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO x /TiO x system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  2. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  3. Oxidation of CO and Methanol on Pd-Ni Catalysts Supported on Different Chemically-Treated Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    Juan Carlos Calderón

    2016-10-01

    Full Text Available In this work, palladium-nickel nanoparticles supported on carbon nanofibers were synthesized, with metal contents close to 25 wt % and Pd:Ni atomic ratios near to 1:2. These catalysts were previously studied in order to determine their activity toward the oxygen reduction reaction. Before the deposition of metals, the carbon nanofibers were chemically treated in order to generate oxygen and nitrogen groups on their surface. Transmission electron microscopy analysis (TEM images revealed particle diameters between 3 and 4 nm, overcoming the sizes observed for the nanoparticles supported on carbon black (catalyst Pd-Ni CB 1:2. From the CO oxidation at different temperatures, the activation energy Eact for this reaction was determined. These values indicated a high tolerance of the catalysts toward the CO poisoning, especially in the case of the catalysts supported on the non-chemically treated carbon nanofibers. On the other hand, apparent activation energy Eap for the methanol oxidation was also determined finding—as a rate determining step—the COads diffusion to the OHads for the catalysts supported on carbon nanofibers. The results here presented showed that the surface functional groups only play a role in the obtaining of lower particle sizes, which is an important factor in the obtaining of low CO oxidation activation energies.

  4. Highly improved ethanol gas-sensing performance of mesoporous nickel oxides nanowires with the stannum donor doping

    Science.gov (United States)

    Wei, Junqi; Li, Xiaoqing; Han, Yanbing; Xu, Jingcai; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Jing; Yang, Yanting; Ge, Hongliang; Wang, Xinqing

    2018-06-01

    Mesoporous nickel oxides (NiO) and stannum(Sn)-doped NiO nanowires (NWs) were synthesized by using SBA-15 templates with the nanocasting method. X-ray diffraction, transmission electron microscope, energy dispersive spectrometry, nitrogen adsorption/desorption isotherm and UV–vis spectrum were used to characterize the phase structure, components and microstructure of the as-prepared samples. The gas-sensing analysis indicated that the Sn-doping could greatly improve the ethanol sensitivity for mesoporous NiO NWs. With the increasing Sn content, the ethanol sensitivity increased from 2.16 for NiO NWs up to the maximum of 15.60 for Ni0.962Sn0.038O1.038, and then decreased to 12.24 for Ni0.946Sn0.054O1.054 to 100 ppm ethanol gas at 340 °C. The high surface area from the Sn-doping improved the adsorption of oxygen on the surface of NiO NWs, resulting in the smaller surface resistance in air. Furthermore, owing to the recombination of the holes in hole-accumulation lay with the electrons from the donor impurity level and the increasing the body defects for Sn-doping, the total resistance in ethanol gas enhanced greatly. It was concluded that the sensitivity of Sn-doped NiO NWs based sensor could be greatly improved by the higher surface area and high-valence donor substitution from Sn-doping.

  5. Efficient and ultraviolet durable planar perovskite solar cells via a ferrocenecarboxylic acid modified nickel oxide hole transport layer.

    Science.gov (United States)

    Zhang, Jiankai; Luo, Hui; Xie, Weijia; Lin, Xuanhuai; Hou, Xian; Zhou, Jianping; Huang, Sumei; Ou-Yang, Wei; Sun, Zhuo; Chen, Xiaohong

    2018-03-28

    Planar perovskite solar cells (PSCs) that use nickel oxide (NiO x ) as a hole transport layer have recently attracted tremendous attention because of their excellent photovoltaic efficiencies and simple fabrication. However, the electrical conductivity of NiO x and the interface contact properties of the NiO x /perovskite layer are always limited for the NiO x layer fabricated at a relatively low annealing temperature. Ferrocenedicarboxylic acid (FDA) was firstly introduced to modify a p-type NiO x hole transport layer in PSCs, which obviously improves the crystallization of the perovskite layer and hole transport and collection abilities and reduces carrier recombination. PSCs with a FDA modified NiO x layer reached a PCE of 18.20%, which is much higher than the PCE (15.13%) of reference PSCs. Furthermore, PSCs with a FDA interfacial modification layer show better UV durability and a hysteresis-free effect and still maintain the original PCE value of 49.8%after being exposed to UV for 24 h. The enhanced performance of the PSCs is attributed to better crystallization of the perovskite layer, the passivation effect of FDA, superior interface contact at the NiO x /perovskite layers and enhancement of the electrical conductivity of the FDA modified NiO x layer. In addition, PSCs with FDA inserted at the interface of the perovskite/PCBM layers can also improve the PCE to 16.62%, indicating that FDA have dual functions to modify p-type and n-type carrier transporting layers.

  6. Cordierite-supported metal oxide for non-methane hydrocarbon oxidation in cooking oil fumes.

    Science.gov (United States)

    Huang, Yonghai; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Gao, Fengyu; Wang, Jiangen; Yang, Zhongyu

    2018-05-21

    Cooking emission is an important reason for the air quality deterioration in the metropolitan area in China. Transition metal oxide and different loading of manganese oxide supported on cordierite were prepared by incipient wetness impregnation method and were used for non-methane hydrocarbon (NMHC) oxidation in cooking oil fumes (COFs). The effects of different calcination temperature and different Mn content were also studied. The SEM photographs and CO 2 temperature-programmed desorption revealed 5 wt% Mn/cordierite had the best pore structure and the largest number of the weak and moderate basic sites so it showed the best performance for NMHC oxidation. XRD analysis exhibited 5 wt% Mn/cordierite had the best dispersion of active phase and the active phase was MnO 2 when the calcination temperature was 400℃ which were good for the catalytic oxidation of NMHC.

  7. HDS, HDN and HDA activities of nickel-molybdenum catalysts supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Crespo, M.A. [Instituto Mexicano del Petroleo, Programa de Tratamiento de Crudo Maya. Avenida Eje Central Lazaro Cardenas No.152, Col. San Bartolo Atepehuacan, 07730, Mexico D. F. (Mexico); Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (CICATA-Altamira, IPN) Km 14.5 Carretera Tampico-puerto Industrial 89600, Altamira, Tamaulipas (Mexico); Torres-Huerta, A.M.; Ramirez-Meneses, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (CICATA-Altamira, IPN) Km 14.5 Carretera Tampico-puerto Industrial 89600, Altamira, Tamaulipas (Mexico); Diaz-Garcia, L. [Instituto Mexicano del Petroleo, Programa de Tratamiento de Crudo Maya. Avenida Eje Central Lazaro Cardenas No.152, Col. San Bartolo Atepehuacan, 07730, Mexico D. F. (Mexico); Arce-Estrada, E.M. [Instituto Politecnico Nacional, Departamento de Metalurgia y Materiales. A.P. 75-876, 07300 Mexico, D. F. (Mexico)

    2008-08-15

    In this work, NiMo-Al{sub 2}O{sub 3} catalysts were prepared by using different alumina precursors. The supports were impregnated by means of the spray at incipient wetness technique in both basic and acid media. Both the supports and fresh catalysts were characterized by the adsorption-desorption isotherms, Temperature-Programmed Reduction (TPR), Thermal Pyridine Adsorption-Desorption (TPD) and X-Ray Diffraction analyses (XRD). After sulfidation, the NiMoS metallic particles were characterized by Transmission Electron Microscopy (TEM). The initial analyses were performed in a trickle-bed reactor by using a real feedstock (Mexican heavy gas oil) and performing hydrotreating reactions (HDS, HDN and HDA) at three different temperatures: 613, 633 and 653 K; and 54 kg cm{sup -} {sup 2}. The catalytic activities are discussed in relation to the physicochemical properties of the NiMo catalysts, alumina phase and pH of the impregnating solution. The catalytic results show an increase in the conversion profiles with temperature. The sulfur conversion was increased from 89 to 99.25%, 91-99%, 90.8-97%, 83-95% and 78-96% when the crystal size of the support varied from 3 to 20 nm, respectively. The nitrogen and aromatic conversions were also increased in the range of 23-45 wt.%. It was found that the {gamma} phase reached a higher catalytic performance than the {eta} phase. The NiMo catalysts synthesized in a basic medium showed a better catalytic performance than that obtained with those prepared in acid solutions. The significance of the kinetic data to compare the catalysts is discussed. The maximum value of the catalytic activity was reached with the catalysts with the smallest particle sizes. (author)

  8. Reductive deconstruction of organosolv lignin catalyzed by zeolite supported nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kasakov, Stanislav; Shi, Hui; Camaioni, Donald M.; Zhao, Chen; Barath, Eszter; Jentys, Andreas; Lercher, Johannes A.

    2015-11-01

    Mechanistic aspects of deconstruction and hydrodeoxygenation of organosolv lignin using supported Ni catalysts with (Ni/HZSM-5 and Ni/HBEA) and without Brønsted acid sites (Ni/SiO2) are reported. Lignin was deconstructed and converted to saturated cyclic hydrocarbons ranging from C5 to C14. In the one-stage reaction, full conversion with total yield of 70 ± 5 wt.% saturated hydrocarbons was achieved at 593 K and 20 bar H2. The organosolv lignin used consists of seven to eight monolignol subunits and has an average molecular weight of ca. 1200 g mol-1. The monolignols were mainly guaiacyl, syringyl and phenylcoumaran, randomly interconnected through β-O-4, 4-O-5, β-1, 5-5’ and β-β ether bonds. In situ IR spectroscopy was used to follow the changes in lignin constituents during reaction. The proposed reaction pathways for the catalytic transformation of this organosolv lignin to alkanes start with the hydrogenolysis of aryl alkyl ether bonds, followed by hydrogenation of the aromatic compounds on Ni to cyclic alcohols. Oxygen is removed from the alcohols via dehydration on Brønsted acid sites to yield cyclic alkenes that are further hydrogenated to alkanes. Formation of condensation products may occur via intermolecular recombination of aromatic monomers or alkylation of aromatic compounds by alkenes. The financial support from TUM-PNNL cooperation project “Development of new methods for in situ characterization in liquid phase reactions” (CN-177939) is highly appreciated. The work by S.K., H.S., and J.A.L was partially supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  9. Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    Energy Technology Data Exchange (ETDEWEB)

    Manzo-Robledo, A., E-mail: amanzor@ipn.mx [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Costa, Natália J. S. [Universidade de São Paulo, Instituto de Química (Brazil); Philippot, K. [CNRS, LCC, Laboratoire de Chimie de Coordination (France); Rossi, Liane M. [Universidade de São Paulo, Instituto de Química (Brazil); Ramírez-Meneses, E. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico); Guerrero-Ortega, L. P. A. [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Ezquerra-Quiroga, S. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico)

    2015-12-15

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd{sub 90}Ni{sub 10}, Pd{sub 50}Ni{sub 50}, Pd{sub 10}Ni{sub 90}, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd{sub 2}(dba){sub 3}, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod){sub 2}. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i–E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i–E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions’ interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.

  10. The electrocatalytic oxidation of carbohydrates at a nickel/carbon paper electrode fabricated by the filtered cathodic vacuum arc technique

    International Nuclear Information System (INIS)

    Fu, Yingyi; Wang, Tong; Su, Wen; Yu, Yanan; Hu, Jingbo

    2015-01-01

    The direct electrochemical behaviour of carbohydrates at a nickel/carbon paper electrode with a novel fabrication method is investigated. The investigation is used for verification the feasibility of using monosaccharides and disaccharides in the application of fuel cell. The selected monosaccharides are glucose, fructose and galactose; the disaccharides are sucrose, maltose and lactose. The modified nickel/carbon paper electrode was prepared using a filtered cathodic vacuum arc technique. The morphology image of the nickel thin film on the carbon paper surface was characterized by scanning electron microscopy (SEM). The existence of nickel was verified by X-ray photoelectron spectroscopy (XPS). The contact angle measurement was also used to characterize the modified electrode. Cyclic voltammetry (CV) was employed to evaluate the electrochemical behaviour of monosaccharides and disaccharides in an alkaline aqueous solution. The modified electrode exhibits good electrocatalytic activities towards carbohydrates. In addition, the stability of the nickel/carbon paper electrode with six sugars was also investigated. The good catalytic effects of the nickel/carbon paper electrode allow for the use of carbohydrates as fuels in fuel cell applications

  11. Influence of vanadium doping on the electrochemical performance of nickel oxide in supercapacitors.

    Science.gov (United States)

    Park, Hae Woong; Na, Byung-Ki; Cho, Byung Won; Park, Sun-Min; Roh, Kwang Chul

    2013-10-28

    In this study, V-doped NiO materials were prepared by simple coprecipitation and thermal decomposition, and the effect of the vanadium content on the morphology, structural properties, electrochemical behavior, and cycling stability of NiO upon oxidation and reduction was analyzed for supercapacitor applications. The results show an improvement in the capacitive characteristics of the V-doped NiO, including increases in the specific capacitance after the addition of just 1.0, 2.0, and 4.0 at% V. All VxNi1-xO electrodes (x = 0.01, 0.02, 0.04) exhibited higher specific capacitances of 371.2, 365.7, and 386.2 F g(-1) than that of pure NiO (303.2 F g(-1)) at a current density of 2 A g(-1) after 500 cycles, respectively. The V0.01Ni0.99O electrode showed good capacitance retention of 73.5% at a current density of 2 A g(-1) for more than 500 cycles in a cycling test. Importantly, the rate capability of the V0.01Ni0.99O electrode was maintained at about 84.7% as discharge current density was increased from 0.5 A g(-1) to 4 A g(-1).

  12. Dewetting of nickel oxide-films on silicon under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Bolse, Thunu; Elsanousi, Ammar; Paulus, Hartmut; Bolse, Wolfgang

    2006-01-01

    Dewetting, occurring when a thin film on a non-wettable substrate turns into its liquid state, has gained strong interest during the last decade, since it results in nano-scale, large-area covering pattern formation. Recently we found that swift heavy ion (SHI) irradiation of thin NiO films on Si substrates at 80 K results in similar dewetting pattern, although in this case the coating has never reached its melting point. Careful inspection of the SEM images clearly revealed that the same nucleation mechanisms as observed for molten polymer films on Si (heterogeneous and homogeneous nucleation) were active. AFM shows that the circular holes formed in the early stages of the dewetting process exhibit a high and asymmetric rim-structure. RBS analysis was used to measure the coverage of the surface by the oxide films and revealed that the holes grow at constant velocity. This, and the shape of the rims, indicate that the material removed from the substrate surface piles up by plastic deformation, which points at a balance of the capillary driving forces and the hindered material dissipation

  13. Preparation of RHA-silica/graphene oxide nanocomposite for removal of nickel ions from water

    Science.gov (United States)

    Tien, Tran Thi Thuy; Tu, Tran Hoang; Thao, Huynh Nguyen Phuong; Hieu, Nguyen Huu

    2017-09-01

    In this study, silica was synthesized from rice husk ash (RHA-SiO2) by precipitation method. Graphene oxide (GO) was prepared by modified Hummers method. RHA-SiO2/GO nanocomposite was fabricated by in-situ one-step method using 3-Aminopropyltriethoxysilane (APS) as a coupling agent. The nanocomposite was characterized by using X-ray Fluorescence, X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and Brunauer-Emmett-Teller (BET) specific surface area. The adsorption of RHA-SiO2/GO for Ni2+ ions from water was investigated and compared with the precursors. Ultraviolet-visible (UV-Vis) spectroscopy was used to quantify the amount of the initial and the residual Ni2+ concentration. The maximum adsorption capacity of the nanocomposite for Ni2+ calculated from Langmuir isotherm model, which was 256.4 mg/g. In addition, the adsorption data were well-fitted to the pseudo-second-order kinetic equation. Accordingly, this study demonstrated that RHA-SiO2/GO could be used as a highly efficient adsorbent for removal Ni2+ ions from aqueous solution.

  14. Carbon deposition on nickel ferrites and nickel-magnetite surfaces

    International Nuclear Information System (INIS)

    Allen, G.C.; Jutson, J.A.

    1988-06-01

    Carbon deposition on Commercial Advanced Gas-Cooled Reactor (CAGR) fuel cladding and heat exchanger surfaces lowers heat transfer efficiency and increases fuel pin temperatures. Several types of deposit have been identified including both thin dense layers and also low density columnar deposits with filamentary or convoluted laminar structure. The low-density types are often associated with particles containing iron, nickel or manganese. To identify the role of nickel in the deposition process surfaces composed of nickel-iron spinels or metallic nickel/magnetite mixtures have been exposed to γ radiation in a gas environment simulating that in the reactor. Examination of these surfaces by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) have shown that while metallic nickel (Ni(O)) catalyses the formation of filamentary low density carbon deposits, the presence of divalent nickel (Ni(II)) sites in spinel type oxides is associated only with dense deposits. (author)

  15. New Antimony Selenide/Nickel Oxide Photocathode Boosts the Efficiency of Graphene Quantum-Dot Co-Sensitized Solar Cells.

    Science.gov (United States)

    Kolay, Ankita; Kokal, Ramesh K; Kalluri, Ankarao; Macwan, Isaac; Patra, Prabir K; Ghosal, Partha; Deepa, Melepurath

    2017-10-11

    A novel assembly of a photocathode and a photoanode is investigated to explore their complementary effects in enhancing the photovoltaic performance of a quantum-dot solar cell (QDSC). While p-type nickel oxide (NiO) has been used previously, antimony selenide (Sb 2 Se 3 ) has not been used in a QDSC, especially as a component of a counter electrode (CE) architecture that doubles as the photocathode. Here, near-infrared (NIR) light-absorbing Sb 2 Se 3 nanoparticles (NPs) coated over electrodeposited NiO nanofibers on a carbon (C) fabric substrate was employed as the highly efficient photocathode. Quasi-spherical Sb 2 Se 3 NPs, with a band gap of 1.13 eV, upon illumination, release photoexcited electrons in addition to other charge carriers at the CE to further enhance the reduction of the oxidized polysulfide. The p-type conducting behavior of Sb 2 Se 3 , coupled with a work function at 4.63 eV, also facilitates electron injection to polysulfide. The effect of graphene quantum dots (GQDs) as co-sensitizers as well as electron conduits is also investigated in which a TiO 2 /CdS/GQDs photoanode structure in combination with a C-fabric CE delivered a power-conversion efficiency (PCE) of 5.28%, which is a vast improvement over the 4.23% that is obtained by using a TiO 2 /CdS photoanode (without GQDs) with the same CE. GQDs, due to a superior conductance, impact efficiency more than Sb 2 Se 3 NPs do. The best PCE of a TiO 2 /CdS/GQDs-nS 2- /S n 2- -Sb 2 Se 3 /NiO/C-fabric cell is 5.96% (0.11 cm 2 area), which, when replicated on a smaller area of 0.06 cm 2 , is seen to increase dramatically to 7.19%. The cell is also tested for 6 h of continuous irradiance. The rationalization for the channelized photogenerated electron movement, which augments the cell performance, is furnished in detail in these studies.

  16. 3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors.

    Science.gov (United States)

    Zhu, Jianhui; Jiang, Jian; Sun, Zhipeng; Luo, Jingshan; Fan, Zhanxi; Huang, Xintang; Zhang, Hua; Yu, Ting

    2014-07-23

    The electrochemical performance of supercapacitors relies not only on the exploitation of high-capacity active materials, but also on the rational design of superior electrode architectures. Herein, a novel supercapacitor electrode comprising 3D hierarchical mixed-oxide nanostructured arrays (NAs) of C/CoNi3 O4 is reported. The network-like C/CoNi3 O4 NAs exhibit a relatively high specific surface area; it is fabricated from ultra-robust Co-Ni hydroxide carbonate precursors through glucose-coating and calcination processes. Thanks to their interconnected three-dimensionally arrayed architecture and mesoporous nature, the C/CoNi3 O4 NA electrode exhibits a large specific capacitance of 1299 F/g and a superior rate performance, demonstrating 78% capacity retention even when the discharge current jumps by 100 times. An optimized asymmetric supercapacitor with the C/CoNi3 O4 NAs as the positive electrode is fabricated. This asymmetric supercapacitor can reversibly cycle at a high potential of 1.8 V, showing excellent cycling durability and also enabling a remarkable power density of ∼13 kW/kg with a high energy density of ∼19.2 W·h/kg. Two such supercapacitors linked in series can simultaneously power four distinct light-emitting diode indicators; they can also drive the motor of remote-controlled model planes. This work not only presents the potential of C/CoNi3 O4 NAs in thin-film supercapacitor applications, but it also demonstrates the superiority of electrodes with such a 3D hierarchical architecture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting.

    Science.gov (United States)

    Fominykh, Ksenia; Chernev, Petko; Zaharieva, Ivelina; Sicklinger, Johannes; Stefanic, Goran; Döblinger, Markus; Müller, Alexander; Pokharel, Aneil; Böcklein, Sebastian; Scheu, Christina; Bein, Thomas; Fattakhova-Rohlfing, Dina

    2015-05-26

    Efficient electrochemical water splitting to hydrogen and oxygen is considered a promising technology to overcome our dependency on fossil fuels. Searching for novel catalytic materials for electrochemical oxygen generation is essential for improving the total efficiency of water splitting processes. We report the synthesis, structural characterization, and electrochemical performance in the oxygen evolution reaction of Fe-doped NiO nanocrystals. The facile solvothermal synthesis in tert-butanol leads to the formation of ultrasmall crystalline and highly dispersible FexNi1-xO nanoparticles with dopant concentrations of up to 20%. The increase in Fe content is accompanied by a decrease in particle size, resulting in nonagglomerated nanocrystals of 1.5-3.8 nm in size. The Fe content and composition of the nanoparticles are determined by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy measurements, while Mössbauer and extended X-ray absorption fine structure analyses reveal a substitutional incorporation of Fe(III) into the NiO rock salt structure. The excellent dispersibility of the nanoparticles in ethanol allows for the preparation of homogeneous ca. 8 nm thin films with a smooth surface on various substrates. The turnover frequencies (TOF) of these films could be precisely calculated using a quartz crystal microbalance. Fe0.1Ni0.9O was found to have the highest electrocatalytic water oxidation activity in basic media with a TOF of 1.9 s(-1) at the overpotential of 300 mV. The current density of 10 mA cm(-2) is reached at an overpotential of 297 mV with a Tafel slope of 37 mV dec(-1). The extremely high catalytic activity, facile preparation, and low cost of the single crystalline FexNi1-xO nanoparticles make them very promising catalysts for the oxygen evolution reaction.

  18. Biominerals doped nanocrystalline nickel oxide as efficient humidity sensor: A green approach

    International Nuclear Information System (INIS)

    John Kennedy, L.; Magesan, P.; Judith Vijaya, J.; Umapathy, M.J.; Aruldoss, Udaya

    2014-01-01

    Graphical abstract: - Highlights: • A new resistive type of sensor was prepared by green synthesis. • The mineral oxide from seed part of Hygrophila spinosa T. Anders (HST) plant is chosen as a dopant in NiO. • The HST plant is found abundantly and commercially available in many countries. • The band gap of NH2 (Ni:HST of 0.5:0.5 weight ratio) sample is greater than prepared bulk NiO due to quantum effects. • The NH2 sample shows remarkable changes in the humidity sensing properties. - Abstract: The simple and green method is adopted for the preparation of biominerals (derived from the Hygrophila spinosa T. Anders plant seeds) doped nanocrystalline NiO. The prepared samples were subjected to instrumental analysis such as XRD, FT-IR, HR-SEM, EDX, UV–vis–DRS techniques. The surface area of all the samples was calculated from the Williamson–Hall's plot. The humidity sensitivity factor (S f ) of the prepared samples was evaluated by two probe dc electrical resistance method at different relative humidity levels. The change in the resistance was observed for the entire sensor samples except pure NiO (NH0). Compared to all the other composition, HST of 0.5% in NiO (NH2 sample) enhances the sensitivity factor (S f ) of about 90,000. The NH2 sample exhibited good linearity, reproducibility and response and recovery time about 210 ± 5 s and 232 ± 4 s, respectively. It is found that the sensitivity largely depends on composition, crystallite size and surface area

  19. Oxidation-induced phase transformations and lifetime limits of chromia-forming nickel-base alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Chyrkin, Anton

    2011-12-05

    For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of δ-Ni{sub 3}Nb and (Ni,Mo,Si){sub 6}C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900-1000 C in oxidation-induced chromium depletion in the subsurface zone of the alloy. Microstructural analyses of the cross-sectioned specimens revealed that this process results in formation of a wide subsurface zone in which the mentioned strengthening phases are dissolved, in spite of the fact that both phases do not contain substantial amounts of the scale-forming element chromium. The cross-sectional analyses revealed that, in parallel to the formation of a precipitate depleted zone, a thin, continuous layer of niobium-rich intermetallic precipitates formed in the immediate vicinity of the scale/alloy interface. The Subsurface Phase Enrichment (abbreviated as SPE) was shown to be the result of an uphill-diffusion of niobium, i.e. the element stabilizing the strengthening precipitates δ-Ni{sub 3}Nb, in the chromium activity gradient and is thus a natural consequence of the oxidation-induced chromium depletion beneath the chromia scale. The thermodynamic calculations carried out using the Thermo-Calc/DICTRA software packages revealed that in alloy 625 the chemical activity of niobium decreases with decreasing chromium content. As chromium is being continuously removed from the alloy as the result of the chromia scale growth, the zone of lowest Nb-activity is formed in the location with the lowest chromium concentration, i.e. the scale/alloy interface. This creates a driving force for Nb to diffuse towards the scale/alloy interface against its own concentration gradient, which is known

  20. One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors

    International Nuclear Information System (INIS)

    Min, Shudi; Zhao, Chongjun; Chen, Guorong; Qian, Xiuzhen

    2014-01-01

    Reduced graphene oxide (RGO) on nickel hydroxide (Ni(OH) 2 ) film was synthesized via a green and facile hydrothermal approach. In this process, graphene oxide (GO) was reduced by nickel foam (NF) while the nickel metal was oxidized to Ni(OH) 2 film simultaneously, which resulted in RGO on Ni(OH) 2 structure. The RGO/Ni(OH) 2 composite film was characterized using by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscope (FESEM). The electrochemical performances of the supercapacitor with the as-synthesized RGO/Ni(OH) 2 composite films as electrodes were evaluated using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochemical impedance spectrometry (EIS) in 1 M KOH aqueous solution. Results indicated that the RGO/Ni(OH) 2 /NF composite electrodes exhibited superior capacitive performance with high capability (2500 mF cm −2 at a current density of 5 mA cm −2 , or 1667 F g −1 at 3.3 A g −1 ), compared with pure Ni(OH) 2 /NF (450 mF cm −2 at 5 mA cm −2 , 409 F g −1 at 3.3 A g −1 ) prepared under the identical conditions. Our study highlights the importance of anchoring RGO films on Ni(OH) 2 surface for maximizing the optimized utilization of electrochemically active Ni(OH) 2 and graphene for energy storage application in supercapacitors

  1. Contribution to the study of the oxidation reaction of the carbon oxide in contact with catalysts issued from the decomposition of nickel hydro-aluminates at various temperatures; Contribution a l'etude de la reaction d'oxydation de l'oxyde de carbone au contact des catalyseurs issus de la decomposition a diverses temperatures des hydroaluminates de nickel

    Energy Technology Data Exchange (ETDEWEB)

    Samaane, Mikhail

    1966-09-26

    Addressing the study of the oxidation reaction of carbon oxide which produces carbon dioxide, this research thesis reports the study of this reaction in presence of catalysts (2NiO + Al{sub 2}O{sub 3}, NiAl{sub 2}O{sub 4} and NiO + NiAl{sub 2}O{sub 4}) issued from the decomposition of nickel hydro-aluminates at different temperatures. The first part describes experimental techniques and the nature of materials used in this study. The second part reports the study of the catalytic activity of the 2NiO+Al{sub 2}O{sub 3} catalyst during the oxidation of CO. Preliminary studies are also reported: structure and texture of nickel hydro-aluminate which is the raw material used to produce catalysts, activation of this compound to develop the catalytic activity in CO oxidation, chemisorption of CO, O{sub 2} and CO{sub 2} on the 2NiO+Al{sub 2}O{sub 3} solid, interaction of adsorbed gases at the solid surface, and kinetic study of the oxidation reaction. The third part reports the study of the catalytic activity in the oxidation reaction of CO of spinel catalysts (NiAl{sub 2}O{sub 4} and NiO+NiAl{sub 2}O{sub 4}) obtained by calcination of nickel hydro-aluminates at high temperature. The formation of the spinel phase, the chemisorption of CO, O{sub 2} and CO{sub 2} on NiAl{sub 2}O{sub 4}, and the kinetic of the oxidation reaction are herein studied.

  2. Co-exposure to nickel and cobalt chloride enhances cytotoxicity and oxidative stress in human lung epithelial cells.

    Science.gov (United States)

    Patel, Eshan; Lynch, Christine; Ruff, Victoria; Reynolds, Mindy

    2012-02-01

    Nickel and cobalt are heavy metals found in land, water, and air that can enter the body primarily through the respiratory tract and accumulate to toxic levels. Nickel compounds are known to be carcinogenic to humans and animals, while cobalt compounds produce tumors in animals and are probably carcinogenic to humans. People working in industrial and manufacturing settings have an increased risk of exposure to these metals. The cytotoxicity of nickel and cobalt has individually been demonstrated; however, the underlying mechanisms of co-exposure to these heavy metals have not been explored. In this study, we investigated the effect of exposure of H460 human lung epithelial cells to nickel and cobalt, both alone and in combination, on cell survival, apoptotic mechanisms, and the generation of reactive oxygen species and double strand breaks. For simultaneous exposure, cells were exposed to a constant dose of 150 μM cobalt or nickel, which was found to be relatively nontoxic in single exposure experiments. We demonstrated that cells exposed simultaneously to cobalt and nickel exhibit a dose-dependent decrease in survival compared to the cells exposed to a single metal. The decrease in survival was the result of enhanced caspase 3 and 7 activation and cleavage of poly (ADP-ribose) polymerase. Co-exposure increased the production of ROS and the formation of double strand breaks. Pretreatment with N-acetyl cysteine alleviated the toxic responses. Collectively, this study demonstrates that co-exposure to cobalt and nickel is significantly more toxic than single exposure and that toxicity is related to the formation of ROS and DSB. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode

    Science.gov (United States)

    Phuan, Yi Wen; Ibrahim, Elyas; Chong, Meng Nan; Zhu, Tao; Lee, Byeong-Kyu; Ocon, Joey D.; Chan, Eng Seng

    2017-01-01

    Nanostructured nickel oxide-hematite (NiO/α-Fe2O3) p-n junction photoanodes synthesized from in situ doping of nickel (Ni) during cathodic electrodeposition of hematite were successfully demonstrated. A postulation model was proposed to explain the fundamental mechanism of Ni2+ ions involved, and the eventual formation of NiO on the subsurface region of hematite that enhanced the potential photoelectrochemical water oxidation process. Through this study, it was found that the measured photocurrent densities of the Ni-doped hematite photoanodes were highly dependent on the concentrations of Ni dopant used. The optimum Ni dopant at 25 M% demonstrated an excellent photoelectrochemical performance of 7-folds enhancement as compared to bare hematite photoanode. This was attributed to the increased electron donor density through the p-n junction and thus lowering the energetic barrier for water oxidation activity at the optimum Ni dopant concentration. Concurrently, the in situ Ni-doping of hematite has also lowered the photogenerated charge carrier transfer resistance as measured using the electrochemical impedance spectroscopy. It is expected that the fundamental understanding gained through this study is helpful for the rational design and construction of highly efficient photoanodes for application in photoelectrochemical process.

  4. Advanced STEM/EDX investigation on an oxide scale thermally grown on a high-chromium iron–nickel alloy under very low oxygen partial pressure

    International Nuclear Information System (INIS)

    Latu-Romain, L.; Madi, Y.; Mathieu, S.; Robaut, F.; Petit, J.-P.; Wouters, Y.

    2015-01-01

    Highlights: • A scale grown on a high-chromium iron–nickel alloy under low oxygen partial pressure was studied. • STEM-EDX maps at high resolution on a transversal thin lamella have been conducted. • The real complexity of the oxide layer has been highlighted. • These results explain the elevated number of semiconducting contributions. - Abstract: A thermal oxide scale has been grown on a high-chromium iron-nickel alloy under very low oxygen partial pressure (1050 °C, 10"−"1"0 Pa). In this paper, a special attention has been paid to morphological and chemical characterizations of the scale by scanning transmission electron microscopy and energy dispersive X-ray analysis at high resolution on a cross-section thin lamella beforehand prepared by using a combined focused ion beam/scanning electron microscope instrument. The complexity of the oxide layer is highlighted, and the correlation between the present results and the ones of a photoelectrochemical study is discussed.

  5. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town.

    Science.gov (United States)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2014-02-15

    This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both Pnickel (β=0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Gadolinium doped cerium oxide for soot oxidation: Influence of interfacial metal–support interactions

    International Nuclear Information System (INIS)

    Durgasri, D. Naga; Vinodkumar, T.; Lin, Fangjian; Alxneit, Ivo; Reddy, Benjaram M.

    2014-01-01

    Graphical abstract: - Highlights: • Supported Ce-Gd-oxides are applied for soot oxidation for the first time. • Gd 2 O 3 doping facilitates enhanced extrinsic oxygen vacancy concentration in ceria. • The Ce-Gd/TiO 2 exhibited the highest soot oxidation activity. • Key parameters that involved in tuning the activity are discussed. - Abstract: The aim of the present investigation was to ascertain the role of Al 2 O 3 , SiO 2 , and TiO 2 supports in modulating the catalytic performance of ceria-based solid solutions. In this study, we prepared nanosized Ce-Gd/Al 2 O 3 , Ce-Gd/SiO 2 , and Ce-Gd/TiO 2 catalysts by a deposition coprecipitation method and evaluated for soot oxidation. The synthesized catalysts were calcined at two different temperatures to assess their thermal stability and extensively characterized by various techniques, namely, XRD, Raman, BET surface area, TEM, H 2 -TPR, and UV–vis DRS. XRD and TEM results indicate that Ce-Gd-oxide nanoparticles are in highly dispersed form on the surface of the supports. Raman results show a prominent sharp peak and a broad peak corresponding to the F 2g mode of ceria and the presence of oxygen vacancies, respectively. The presence of a significant number of oxygen vacancies in all samples is also confirmed from UV–vis DRS measurements. The H 2 -TPR results suggest that Gd-doping facilitates the reduction of the materials and decreases the onset temperature of reduction. Among the prepared samples, Ce-Gd/TiO 2 catalyst exhibited the highest activity, suggesting the existence of strong interfacial metal support interaction between the active metal oxide and the support

  7. Gadolinium doped cerium oxide for soot oxidation: Influence of interfacial metal–support interactions

    Energy Technology Data Exchange (ETDEWEB)

    Durgasri, D. Naga; Vinodkumar, T. [Inorganic and Physical Chemistry Division, CSIR–Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007 (India); Lin, Fangjian; Alxneit, Ivo [Solar Technology Laboratory, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Reddy, Benjaram M., E-mail: bmreddy@iict.res.in [Inorganic and Physical Chemistry Division, CSIR–Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Supported Ce-Gd-oxides are applied for soot oxidation for the first time. • Gd{sub 2}O{sub 3} doping facilitates enhanced extrinsic oxygen vacancy concentration in ceria. • The Ce-Gd/TiO{sub 2} exhibited the highest soot oxidation activity. • Key parameters that involved in tuning the activity are discussed. - Abstract: The aim of the present investigation was to ascertain the role of Al{sub 2}O{sub 3}, SiO{sub 2}, and TiO{sub 2} supports in modulating the catalytic performance of ceria-based solid solutions. In this study, we prepared nanosized Ce-Gd/Al{sub 2}O{sub 3}, Ce-Gd/SiO{sub 2}, and Ce-Gd/TiO{sub 2} catalysts by a deposition coprecipitation method and evaluated for soot oxidation. The synthesized catalysts were calcined at two different temperatures to assess their thermal stability and extensively characterized by various techniques, namely, XRD, Raman, BET surface area, TEM, H{sub 2}-TPR, and UV–vis DRS. XRD and TEM results indicate that Ce-Gd-oxide nanoparticles are in highly dispersed form on the surface of the supports. Raman results show a prominent sharp peak and a broad peak corresponding to the F{sub 2g} mode of ceria and the presence of oxygen vacancies, respectively. The presence of a significant number of oxygen vacancies in all samples is also confirmed from UV–vis DRS measurements. The H{sub 2}-TPR results suggest that Gd-doping facilitates the reduction of the materials and decreases the onset temperature of reduction. Among the prepared samples, Ce-Gd/TiO{sub 2} catalyst exhibited the highest activity, suggesting the existence of strong interfacial metal support interaction between the active metal oxide and the support.

  8. High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam

    OpenAIRE

    Jiang, Shulan; Shi, Tielin; Long, Hu; Sun, Yongming; Zhou, Wei; Tang, Zirong

    2014-01-01

    A facile approach composed of hydrothermal process and annealing treatment is proposed to directly grow cobalt-manganese composite oxide ((Co,Mn)3O4) nanostructures on three-dimensional (3D) conductive nickel (Ni) foam for a supercapacitor electrode. The as-fabricated porous electrode exhibits excellent rate capability and high specific capacitance of 840.2 F g-1 at the current density of 10 A g-1, and the electrode also shows excellent cycling performance, which retains 102% of its initial d...

  9. High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Long, Hu; Sun, Yongming; Zhou, Wei; Tang, Zirong

    2014-09-01

    A facile approach composed of hydrothermal process and annealing treatment is proposed to directly grow cobalt-manganese composite oxide ((Co,Mn)3O4) nanostructures on three-dimensional (3D) conductive nickel (Ni) foam for a supercapacitor electrode. The as-fabricated porous electrode exhibits excellent rate capability and high specific capacitance of 840.2 F g-1 at the current density of 10 A g-1, and the electrode also shows excellent cycling performance, which retains 102% of its initial discharge capacitance after 7,000 cycles. The fabricated binder-free hierarchical composite electrode with superior electrochemical performance is a promising candidate for high-performance supercapacitors.

  10. Nickel oxide electrode interlayer in CH3 NH3 PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells.

    Science.gov (United States)

    Jeng, Jun-Yuan; Chen, Kuo-Cheng; Chiang, Tsung-Yu; Lin, Pei-Ying; Tsai, Tzung-Da; Chang, Yun-Chorng; Guo, Tzung-Fang; Chen, Peter; Wen, Ten-Chin; Hsu, Yao-Jane

    2014-06-25

    This study successfully demonstrates the application of inorganic p-type nickel oxide (NiOx ) as electrode interlayer for the fabrication of NiOx /CH3 NH3 PbI3 perovskite/PCBM PHJ hybrid solar cells with a respectable solar-to-electrical PCE of 7.8%. The better energy level alignment and improved wetting of the NiOx electrode interlayer significantly enhance the overall photovoltaic performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Templating Routes to Supported Oxide Catalysts by Design

    Energy Technology Data Exchange (ETDEWEB)

    Notestein, Justin M. [Northwestern Univ., Evanston, IL (United States)

    2016-09-08

    The rational design and understanding of supported oxide catalysts requires at least three advancements, in order of increasing complexity: the ability to quantify the number and nature of active sites in a catalytic material, the ability to place external controls on the number and structure of these active sites, and the ability to assemble these active sites so as to carry out more complex functions in tandem. As part of an individual investigator research program that is integrated with the Northwestern University Institute for Catalysis in Energy Processes (ICEP) as of 2015, significant advances were achieved in these three areas. First, phosphonic acids were utilized in the quantitative assessment of the number of active and geometrically-available sites in MOx-SiO2 catalysts, including nanocrystalline composites, co-condensed materials, and grafted structures, for M=Ti, Zr, Hf, Nb, and Ta. That work built off progress in understanding supported Fe, Cu, and Co oxide catalysts from chelating and/or multinuclear precursors to maximize surface reactivity. Secondly, significant progress was made in the new area of using thin oxide overcoats containing ‘nanocavities’ from organic templates as a method to control the dispersion and thermal stability of subsequently deposited metal nanoparticles or other catalytic domains. Similar methods were used to control surface reactivity in SiO2-Al2O3 acid catalysts and to control reactant selectivity in Al2O3-TiO2 photocatalysts. Finally, knowledge gained from the first two areas has been combined to synthesize a tandem catalyst for hydrotreating reactions and an orthogonal tandem catalyst system where two subsequent reactions in a reaction network are independently controlled by light and heat. Overall, work carried out under this project significantly advanced the knowledge of synthesis-structure-function relationships in supported

  12. Long-term Steam Electrolysis with Electrolyte-Supported Solid Oxide Cells

    International Nuclear Information System (INIS)

    Schefold, Josef; Brisse, Annabelle; Poepke, Hendrik

    2015-01-01

    Steam electrolysis over 11000 h with an electrolyte-supported solid oxide cell is discussed. The cell of 45 cm"2 area consists of a scandia/ceria doped zirconia electrolyte (6Sc1CeSZ), CGO diffusion-barrier/adhesion layers, a lanthanum strontium cobaltite ferrite (LSCF) oxygen electrode, and a nickel steam/hydrogen electrode. After initial 2500 h operation with lower current-density magnitude, the current density was set to j = -0.9 A cm"−"2 and the steam conversion rate to 51%. This led to a cell voltage of 1.185 V at 847 °C cell temperature. Average voltage degradation was 7.3 mV/1000 h ( 100% throughout the test (with an external heat source for evaporation). Impedance spectroscopic measurements revealed a degradation almost entirely due to increasing ohmic resistance. The rate of resistance increase was initially faster (up to 40 mΩ cm"2/1000 h) and stabilised after several 1000 h operation. After 9000 h a small (non-ohmic) electrode degradation became detectable (<2 mV/1000 h), superimposed to ohmic degradation. The small electrode degradation is understood as indication for largely reversible (electrolysis cell/fuel cell) behaviour.

  13. Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalysts supported on cationic surfactant-templated mesoporous aluminas

    Science.gov (United States)

    Seo, Jeong Gil; Youn, Min Hye; Park, Sunyoung; Jung, Ji Chul; Kim, Pil; Chung, Jin Suk; Song, In Kyu

    Two types of mesoporous γ-aluminas (denoted as A-A and A-S) are prepared by a hydrothermal method under different basic conditions using cationic surfactant (cetyltrimethylammonium bromide, CTAB) as a templating agent. A-A and A-S are synthesized in a medium of ammonia solution and sodium hydroxide solution, respectively. Ni/γ-Al 2O 3 catalysts (Ni/A-A and Ni/A-S) are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of a mesoporous γ-Al 2O 3 support on the catalytic performance of Ni/γ-Al 2O 3 is investigated. The identity of basic solution strongly affects the physical properties of the A-A and A-S supports. The high surface-area of the mesoporous γ-aluminas and the strong metal-support interaction of supported catalysts greatly enhance the dispersion of nickel species on the catalyst surface. The well-developed mesopores of the Ni/A-A and Ni/A-S catalysts prohibit the polymerization of carbon species on the catalyst surface during the reaction. In the steam reforming of LNG, both Ni/A-A and Ni/A-S catalysts give better catalytic performance than the nickel catalyst supported on commercial γ-Al 2O 3 (Ni/A-C). In addition, the Ni/A-A catalyst is superior to the Ni/A-S catalyst. The relatively strong metal-support interaction of Ni/A-A catalyst effectively suppresses the sintering of metallic nickel and the carbon deposition in the steam reforming of LNG. The large pores of the Ni/A-A catalyst also play an important role in enhancing internal mass transfer during the reaction.

  14. Hydrodesulfurization Activities of NiMo Catalysts Supported on Mechanochemically Prepared Al‐Ce Mixed Oxides.

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Spojakina, A.; Kaluža, Luděk; Palcheva, R.; Balabánová, Jana; Tyuliev, G.

    2016-01-01

    Roč. 37, č. 2 (2016), s. 258-267 ISSN 0253-9837 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : nickel * molybdenum * alumina Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.813, year: 2016

  15. Effects of P/Ni ratio and Ni content on performance of γ-Al_2O_3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    International Nuclear Information System (INIS)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang

    2016-01-01

    Graphical abstract: - Highlights: • The formation of AlPO_4 was unfavorable for that of nickel phosphides. • The phase compositions of nickel phosphide depended on the amount of reduced P. • Catalytic activity was determined by surface Ni site density and catalyst acidity. • HDO pathway was promoted by increasing P/Ni ratio and Ni content. • Nickel phosphide gave much higher carbon yield and lower H_2 consumption than Ni. - Abstract: γ-Al_2O_3-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0–2.5) and Ni content (m = 5–15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al_2O_3 was also studied for comparison. It was found that the formation of AlPO_4 in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni_3P, Ni_1_2P_5 and Ni_2P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al_2O_3, the mNi-Pn catalysts showed much lower activities for decarbonylation, C−C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and acid site. Again, the hydrodeoxygenation pathway of methyl

  16. Respiratory cancer risks associated with low-level nickel exposure: an integrated assessment based on animal, epidemiological, and mechanistic data.

    Science.gov (United States)

    Seilkop, Steven K; Oller, Adriana R

    2003-04-01

    Increased lung and nasal cancer risks have been reported in several cohorts of nickel refinery workers, but in more than 90% of the nickel-exposed workers that have been studied there is little, if any evidence of excess risk. This investigation utilizes human exposure measurements, animal data from cancer bioassays of three nickel compounds, and a mechanistic theory of nickel carcinogenesis to reconcile the disparities in lung cancer risk among nickel-exposed workers. Animal data and mechanistic theory suggest that the apparent absence of risk in workers with low nickel exposures is due to threshold-like responses in lung tumor incidence (oxidic nickel), tumor promotion (soluble nickel), and genetic damage (sulfidic nickel). When animal-based lung cancer dose-response functions for these compounds are extrapolated to humans, taking into account interspecies differences in deposition and clearance, differences in particle size distributions, and human work activity patterns, the predicted risks at occupational exposures are remarkably similar to those observed in nickel-exposed workers. This provides support for using the animal-based dose-response functions to estimate occupational exposure limits, which are found to be comparable to those in current use.

  17. Rational design of Mg-Al mixed oxide-supported bimetallic catalysts for dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganok, Andrey I. [Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, D' Iorio Hall, 10 Marie Curie Street, Ottawa, Ont. (Canada); Inaba, Mieko [Natural Gas Technology Development Team, Teikoku Oil Co., 9-23-30 Kitakarasuyama, Setagaya-ku, Tokyo 157-0061 (Japan); Tsunoda, Tatsuo; Uchida, Kunio; Suzuki, Kunio; Hayakawa, Takashi [Institute for Materials and Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Takehira, Katsuomi [Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan)

    2005-09-18

    A novel synthetic strategy for preparing bimetallic Ru-M (M=Cr, Fe, Co, Ni and Cu) catalysts, supported on Mg-Al mixed oxide, has been introduced. It was based on a 'memory effect', i.e. on the ability of Mg-Al mixed oxide to reconstruct a layered structure upon rehydration with an aqueous solution. By repeated calcinations-rehydration cycles, layered double hydroxide (LDH) precursors of catalysts containing two different metals were synthesized. Bimetallic catalysts were then generated (1) in situ from LDH under methane reforming reaction conditions and (2) from mixed metal oxides obtained by preliminary LDH calcination. Among all the LDH-derived catalysts, a Ru{sup 0.1%}-Ni{sup 5.0%}/MgAlO{sub x} sample revealed the highest activity and selectivity to syngas, a suitable durability and a low coking capacity. A promoting effect of ruthenium on catalytic function of supported nickel was demonstrated. Preliminary LDH calcination was shown to markedly affect the catalytic activity of the derived catalysts and especially their coking properties.

  18. Synthesis of p-type nickel oxide nanosheets on n-type titanium dioxide nanorod arrays for p-n heterojunction-based UV photosensor

    Science.gov (United States)

    Yusoff, M. M.; Mamat, M. H.; Malek, M. F.; Abdullah, M. A. R.; Ismail, A. S.; Saidi, S. A.; Mohamed, R.; Suriani, A. B.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) nanorod arrays (TNAs) were synthesized and deposited on fluorine tin oxide (FTO)-coated glass substrate using a novel and facile immersion method in a glass container. The synthesis and deposition of p-type nickel oxide (NiO) nanosheets (NS) on the n-type TNAs was investigated in the p-n heterojunction photodiode (PD) for the application of ultraviolet (UV) photosensor. The fabricated TNAs/NiO NS based UV photosensor exhibited a highly increased photocurrent of 4.3 µA under UV radiation (365 nm, 750 µW/cm2) at 1.0 V reverse bias. In this study, the fabricated TNAs/NiO NS p-n heterojunction based photodiode showed potential applications for UV photosensor based on the stable photo-generated current attained under UV radiation.

  19. Co-exposure to nickel and cobalt chloride enhances cytotoxicity and oxidative stress in human lung epithelial cells

    International Nuclear Information System (INIS)

    Patel, Eshan; Lynch, Christine; Ruff, Victoria; Reynolds, Mindy

    2012-01-01

    Nickel and cobalt are heavy metals found in land, water, and air that can enter the body primarily through the respiratory tract and accumulate to toxic levels. Nickel compounds are known to be carcinogenic to humans and animals, while cobalt compounds produce tumors in animals and are probably carcinogenic to humans. People working in industrial and manufacturing settings have an increased risk of exposure to these metals. The cytotoxicity of nickel and cobalt has individually been demonstrated; however, the underlying mechanisms of co-exposure to these heavy metals have not been explored. In this study, we investigated the effect of exposure of H460 human lung epithelial cells to nickel and cobalt, both alone and in combination, on cell survival, apoptotic mechanisms, and the generation of reactive oxygen species and double strand breaks. For simultaneous exposure, cells were exposed to a constant dose of 150 μM cobalt or nickel, which was found to be relatively nontoxic in single exposure experiments. We demonstrated that cells exposed simultaneously to cobalt and nickel exhibit a dose-dependent decrease in survival compared to the cells exposed to a single metal. The decrease in survival was the result of enhanced caspase 3 and 7 activation and cleavage of poly (ADP-ribose) polymerase. Co-exposure increased the production of ROS and the formation of double strand breaks. Pretreatment with N-acetyl cysteine alleviated the toxic responses. Collectively, this study demonstrates that co-exposure to cobalt and nickel is significantly more toxic than single exposure and that toxicity is related to the formation of ROS and DSB. -- Highlights: ► Decreased survival following simultaneous exposure to NiCl 2 and CoCl 2 . ► Enhanced caspase and PARP cleavage following co-exposure. ► Increased formation of ROS in dual exposed cells. ► N-acetyl cysteine pretreatment decreases Co and Ni toxicity. ► Co-exposure to Ni and Co enhances the formation of double strand

  20. Evolution of the nickel/zirconia interface

    International Nuclear Information System (INIS)

    Shinde, S.L.; Olson, D.A.; De Jonghe, L.C.; Miller, R.A.

    1986-01-01

    The changes taking place at the nickel zirconia interface during oxidation in air at 900 0 C were studied using analytical electron microscopy (AEM). The nickel oxide layer growing at the interface and the stabilizers used in zirconia interact, giving different interface morphologies

  1. Synthesis and characterization of titanium oxide supported silica materials

    Science.gov (United States)

    Schrijnemakers, Koen

    2002-01-01

    Titania-silica materials are interesting materials for use in catalysis, both as a catalyst support as well as a catalyst itself. Titania-silica materials combine the excellent support and photocatalytic properties of titania with the high thermal and mechanical stability of silica. Moreover, the interaction of titania with silica leads to new active sites, such as acid and redox sites, that are not found on the single oxides. In this Ph.D. two recently developed deposition methods were studied and evaluated for their use to create titanium oxide supported silica materials, the Chemical Surface Coating (CSC) and the Molecular Designed Dispersion (MDD). These methods were applied to two structurally different silica supports, an amorphous silica gel and the highly ordered MCM-48. Both methods are based on the specific interaction between a titanium source and the functional groups on the silica surface. With the CSC method high amounts of titanium can be obtained. However, clustering of the titania phase is observed in most cases. The MDD method allows much lower titanium amounts to be deposited without the formation of crystallites. Only at the highest Ti loading very small crystallites are formed after calcination. MCM-48 and silica gel are both pure SiO2 materials and therefore chemically similar to each other. However, they possess a different morphology and are synthesized in a different way. As such, some authors have reported that the MCM-48 surface would be more reactive than the surface of silica gel. In our experiments however no differences could be observed that confirmed this hypothesis. In the CSC method, the same reactions were observed and similar amounts of Ti and Cl were deposited. In the case of the MDD method, no difference in the reaction mechanism was observed. However, due to the lower thermal and hydrothermal stability of the MCM-48 structure compared to silica gel, partial incorporation of Ti atoms in the pore walls of MCM-48 took place

  2. Mechanisms of nickel toxicity in microorganisms

    Science.gov (United States)

    Macomber, Lee

    2014-01-01

    Summary Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological concern. To date, the mechanisms of nickel toxicity in microorganisms and higher eukaryotes are poorly understood. In this review, we summarize nickel homeostasis processes used by microorganisms and highlight in vivo and in vitro effects of exposure to elevated concentrations of nickel. On the basis of this evidence we propose four mechanisms of nickel toxicity: 1) nickel replaces the essential metal of metalloproteins, 2) nickel binds to catalytic residues of non-metalloenzymes; 3) nickel binds outside the catalytic site of an enzyme to inhibit allosterically, and 4) nickel indirectly causes oxidative stress. PMID:21799955

  3. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H.; Campbell, S. [Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, BC V5J 5J8 (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada)

    2006-10-27

    The oxidation of carbon catalyst supports causes degradation in catalyst performance in proton exchange membrane fuel cells (PEMFCs). Indium tin oxide (ITO) is considered as a candidate for an alternative catalyst support. The electrochemical stability of ITO was studied by use of a rotating disk electrode (RDE). Oxidation cycles between +0.6 and +1.8V were applied to ITO supporting a Pt catalyst. Cyclic voltammograms (CVs) both before and after the oxidation cycles were obtained for Pt on ITO, Hispec 4000 (a commercially available catalyst), and 40wt.% Pt dispersed in-house on Vulcan XC-72R. Pt on ITO showed significantly better electrochemical stability, as determined by the relative change in electrochemically active surface area after cycling. Hydrogen desorption peaks in the CVs existed even after 100 cycles from 0.6 to 1.8V for Pt on ITO. On the other hand, most of the active surface area was lost after 100 cycles of the Hispec 4000 catalyst. The 40wt.% Pt on Vulcan made in-house also lost most of its active area after only 50 cycles. Pt on ITO was significantly more electrochemically stable than both Hispec 4000 and Pt on Vulcan XC-72R. In this study, it was found that the Pt on ITO had average crystallite sizes of 13nm for Pt and 38nm for ITO. Pt on ITO showed extremely high thermal stability, with only {approx}1wt.% loss of material for ITO versus {approx}57wt.% for Hispec 4000 on heating to 1000{sup o}C. The TEM data show Pt clusters dispersed on small crystalline ITO particles. The SEM data show octahedral shaped ITO particles supporting Pt. (author)

  4. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Energy Technology Data Exchange (ETDEWEB)

    Mondon, A., E-mail: andrew.mondon@ise.fraunhofer.de [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany); Wang, D. [Karlsruhe Nano Micro Facility (KNMF), H.-von-Helmholz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Zuschlag, A. [Universität Konstanz FB Physik, Jacob-Burckhardt-Str. 27, D-78464 Konstanz (Germany); Bartsch, J.; Glatthaar, M.; Glunz, S.W. [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany)

    2014-12-30

    Highlights: • Adhesion of metallization of fully plated nickel–copper contacts on silicon solar cells can be achieved by formation of nickel silicide at the cost of degraded cell performance. • Understanding of silicide growth mechanisms and controlled growth may lead to high performance together with excellent adhesion. • Silicide formation is well known from CMOS production from PVD-Ni on flat surfaces. Yet the deposition methods and therefore layer characteristics and the surface topography are different for plated metallization. • TEM analysis is performed for differently processed samples. • A nickel silicide growth model is created for plated Ni on textured silicon solar cells. - Abstract: In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel–silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide

  5. Electrodeposition of zinc--nickel alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J W; Johnson, H R

    1977-10-01

    One possible substitute for cadmium in some applications is a zinc--nickel alloy deposit. Previous work by others showed that electrodeposited zinc--nickel coatings containing about 85 percent zinc and 15 percent nickel provided noticeably better corrosion resistance than pure zinc. Present work which supports this finding also shows that the corrosion resistance of the alloy deposit compares favorably with cadmium.

  6. In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Phuan, Yi Wen, E-mail: phuan.yi.wen@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Ibrahim, Elyas, E-mail: meibr2@student.monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Chong, Meng Nan, E-mail: Chong.Meng.Nan@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Sustainable Water Alliance, Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Zhu, Tao, E-mail: zhu.tao@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia); Lee, Byeong-Kyu, E-mail: bklee@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Nam-gu, Daehakro 93, Ulsan 680-749 (Korea, Republic of); Ocon, Joey D., E-mail: jdocon@up.edu.ph [Laboratory of Electrochemical Engineering (LEE), Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101 (Philippines); Chan, Eng Seng, E-mail: chan.eng.seng@monash.edu [School of Engineering, Chemical Engineering Discipline, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor DE 47500 (Malaysia)

    2017-01-15

    Highlights: • NiO-hematite p-n junction photoanodes were fabricated via an in situ Ni-doping. • The fundamental mechanism of Ni{sup 2+} ions involved was elucidated. • The optimum Ni dopant was 25 M% for the highest photocurrent density. • It exhibited an excellent photoelectrochemical performance of 7-folds enhancement. - Abstract: Nanostructured nickel oxide-hematite (NiO/α-Fe{sub 2}O{sub 3}) p-n junction photoanodes synthesized from in situ doping of nickel (Ni) during cathodic electrodeposition of hematite were successfully demonstrated. A postulation model was proposed to explain the fundamental mechanism of Ni{sup 2+} ions involved, and the eventual formation of NiO on the subsurface region of hematite that enhanced the potential photoelectrochemical water oxidation process. Through this study, it was found that the measured photocurrent densities of the Ni-doped hematite photoanodes were highly dependent on the concentrations of Ni dopant used. The optimum Ni dopant at 25 M% demonstrated an excellent photoelectrochemical performance of 7-folds enhancement as compared to bare hematite photoanode. This was attributed to the increased electron donor density through the p-n junction and thus lowering the energetic barrier for water oxidation activity at the optimum Ni dopant concentration. Concurrently, the in situ Ni-doping of hematite has also lowered the photogenerated charge carrier transfer resistance as measured using the electrochemical impedance spectroscopy. It is expected that the fundamental understanding gained through this study is helpful for the rational design and construction of highly efficient photoanodes for application in photoelectrochemical process.

  7. In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode

    International Nuclear Information System (INIS)

    Phuan, Yi Wen; Ibrahim, Elyas; Chong, Meng Nan; Zhu, Tao; Lee, Byeong-Kyu; Ocon, Joey D.; Chan, Eng Seng

    2017-01-01

    Highlights: • NiO-hematite p-n junction photoanodes were fabricated via an in situ Ni-doping. • The fundamental mechanism of Ni"2"+ ions involved was elucidated. • The optimum Ni dopant was 25 M% for the highest photocurrent density. • It exhibited an excellent photoelectrochemical performance of 7-folds enhancement. - Abstract: Nanostructured nickel oxide-hematite (NiO/α-Fe_2O_3) p-n junction photoanodes synthesized from in situ doping of nickel (Ni) during cathodic electrodeposition of hematite were successfully demonstrated. A postulation model was proposed to explain the fundamental mechanism of Ni"2"+ ions involved, and the eventual formation of NiO on the subsurface region of hematite that enhanced the potential photoelectrochemical water oxidation process. Through this study, it was found that the measured photocurrent densities of the Ni-doped hematite photoanodes were highly dependent on the concentrations of Ni dopant used. The optimum Ni dopant at 25 M% demonstrated an excellent photoelectrochemical performance of 7-folds enhancement as compared to bare hematite photoanode. This was attributed to the increased electron donor density through the p-n junction and thus lowering the energetic barrier for water oxidation activity at the optimum Ni dopant concentration. Concurrently, the in situ Ni-doping of hematite has also lowered the photogenerated charge carrier transfer resistance as measured using the electrochemical impedance spectroscopy. It is expected that the fundamental understanding gained through this study is helpful for the rational design and construction of highly efficient photoanodes for application in photoelectrochemical process.

  8. Application of surface complexation modelling: Nickel sorption on quartz, manganese oxide, kaolinite and goethite, and thorium on silica

    International Nuclear Information System (INIS)

    Olin, M.; Lehikoinen, J.

    1997-12-01

    The study is a follow-up to a previous modelling task on mechanistic sorption. The experimental work has been carried out at the Laboratory of Radiochemistry, University of Helsinki (HYRL), and the sorption modelling was performed using the HYDRAQL code. Parameters taken from the open literature were employed in the modelling phase. The thermodynamic data for aqueous solutions were extracted from the EQ3/6 database and subsequently modified for HYDRAQL where necessary. The experimental data were obtained from five different experiments, four of which concerned the adsorption of nickel. The first experimental system was a mixture of Nilsiae quartz and manganese dioxide. In the second experiment, quartz was equilibrated with a fresh and saline groundwater simulant instead of an electrolyte solution. The third and fourth experiments dealt with nickel adsorption from an electrolyte solution onto goethite and kaolinite surfaces respectively. In the fifth experiment, adsorption of thorium onto a quartz surface was investigated

  9. Study of Supported Nickel Catalysts Prepared by Aqueous Hydrazine Method. Hydrogenating Properties and Hydrogen Storage: Support Effect. Silver Additive Effect; Catalyseurs de nickel supportes prepares par la methode de l'hydrazine aqueuse. Proprietes hydrogenantes et stockage d'hydrogene. Effet du support. Effet de l'ajout d'argent

    Energy Technology Data Exchange (ETDEWEB)

    Wojcieszak, R

    2006-06-15

    We have studied Ni or NiAg nano-particles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports ({gamma}-Al{sub 2}O{sub 3}, amorphous or crystallized SiO{sub 2}, Nb{sub 2}O{sub 5}, CeO{sub 2} and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N{sub 2}, FTIR and FTIR-Pyridine, TEM, STEM, EDS, H{sub 2}-TPR, H{sub 2}-adsorption, H{sub 2}-TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO{sub 2} or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0.53%/30 bars), probably through the hydrogen spillover effect. (author)

  10. On the Properties and Long-Term Stability of Infiltrated Lanthanum Cobalt Nickelates (LCN) in Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Zielke, Philipp; Veltzé, Sune

    2017-01-01

    Infiltration as a fabrication method for solid oxide fuel cells (SOFC) electrodes is offering significant improvements in cell performance at reduced materials and fabrication costs, especially when combined with co-sintering. However, important questions regarding the long-term performance...... and microstructural stability remain unanswered. Here, we present the results of a three-year project, where large footprint anode-supported SOFCs with a co-sintered cathode backbone and infiltrated La0.95Co0.4Ni0.6O3 (LCN) cathodes were developed and thoroughly characterized. The initial long-term performance...... in the electrode properties using SEM, BET area, and in-plane conductivity measurements. Finally, the mechanical properties of co-sintered cathode backbone cells were determined in four-point bending tests carried out both at room temperature and at 800°C in air. Based on these results, degradation mechanisms were...

  11. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide

    KAUST Repository

    Baker, L. Robert; Hervier, Antoine; Seo, Hyungtak; Kennedy, Griffin; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2011-01-01

    -support interaction is electronic activation of surface adsorbates by charge carriers. Motivated by the goal of using electronic activation to drive nonthermal chemistry, we investigated the ability of the oxide support to mediate charge transfer. We report

  12. Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation

    International Nuclear Information System (INIS)

    Yu, Mei; Chen, Jianpeng; Liu, Jianhua; Li, Songmei; Ma, Yuxiao; Zhang, Jingdan; An, Junwei

    2015-01-01

    Mesoporous NiCo 2 O 4 nanoneedles were directly grown on three dimensional (3D) graphene-nickel foam which was prepared by chemical vapor deposition, labeled as NCO/GNF. The structure and morphology of NCO/GNF were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, element mapping and Raman spectroscopy. The NCO/GNF was employed as electrodes for supercapacitor and methanol electro-oxidation. When used for supercapacitor, the NiCo 2 O 4 nanoneedles exhibit hi exhibit high specific capacitance (1588 F g −1 at 1 A g −1 ), high power density and energy density (33.88 Wh kg −1 at 5 kW kg −1 ) as well as long cycling stability. In methanol electro-oxidation, the NiCo 2 O 4 nanoneedles deliver high electro-oxidation activity (93.3 A g −1 at 0.65 V) and electro-oxidation stability. The good electrochemical performance of NiCo 2 O 4 nanoneedles is attributed to the 3D structure with large specific area, high conductivity and fast ions/electrons transport

  13. Three-dimensional hierarchical porous flower-like nickel-cobalt oxide/multi-walled carbon nanotubes nanocomposite for high-capacity supercapacitors

    International Nuclear Information System (INIS)

    Liu, Peipei; Hu, Zhonghua; Liu, Yafei; Yao, Mingming; Zhang, Qiang

    2015-01-01

    Highlights: • 3D hierarchical porous flower-like Ni-Co oxide/MWCNTs was synthesized. • The electrode shows a large specific surface area and desirable mesoporosity. • High specific capacitances and outstanding stability were obtained. • The content of MWCNTs affects the electrochemical properties of the electrode. - Abstract: Three-dimensional (3D) hierarchical porous flower-like nickel-cobalt oxide/multi-walled carbon nanotubes (Ni-Co oxide/MWCNTs) nanocomposites were fabricated by a facile and template-free hydrothermal method as electrodes for high-capacity supercapacitors. The samples were characterized by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption and thermal gravimetric analysis (TGA). The electrochemical performance was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge, and cycle life. It was found that Ni-Co oxide/MWCNTs nanocomposites displayed a high specific capacitance (1703 F g −1 at a discharge current density of 1 A g −1 ) and, additionally, an excellent cycling performance, retaining 97% of the maximum capacitance after 2000 cycles at 10 A g −1 . Even at a high current density (20 A g −1 ), the specific capacitance was still up to 1309 F g −1 . This outstanding capacitive performance may be attributed to the ideal composition of the material and to its unique 3D hierarchical porous flower-like architecture

  14. Investigating the interaction of oxide cathode core of nickel-rhenium lanthanum or nickel-tungsten-lanthanum alloys with its surface coating

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Ignatov, D.V.; Tylkina, M.A.; Lazarev, Eh.M.; Arskaya, E.P.

    1975-01-01

    The reactions at the base-coating interface using a Ni-Re-La alloy containing 10 % Re and 0.1 % La and an analogous Ni-W-La alloy as cathodes were investigated. The cathodes were coated with a fine-grained BaCO 3 -SrCO 3 -CaCO 3 layer 40-50 μ thick. The phase composition of the cathode bases was studied by microscopy, x-ray diffraction and electron diffraction. A new phase was formed at the grain boundaries at the coating-base interface. On the basis of thermodynamic calculations, it is likely that this consists of a mixture of BaO, SrO, CaO, La 2 O 3 , and a Ba-CaC 2 -Sr alloy. The formation of oxides and carbides of alkaline earth elements can be explained by the high thermodynamic activity and affinity for O and C of these elements compared with Ni and Rh

  15. Microwave acid-digestion method for determination of nickel, pro-oxidants and other heavy metals in different brands of banaspati ghee

    International Nuclear Information System (INIS)

    Latif, A.; Khan, F.; Noor, S.; Amin-ur-Rehman

    2009-01-01

    Samples of different brands of banaspati ghee (Hydrogenated vegetable oil) were procured from local market in Peshawar. Nickel, Pro-oxidants and other heavy metals in these samples were determined by microwave acid digestion method and were analyzed by atomic absorption spectrometry to evaluate the value of different brands of banaspati ghee found in the local Peshawar market. Microwave acid digestion program was developed to give reliable estimates for metals in small sample (0.5g) of banaspati ghee. It reduced the external contamination and required small quantities of acid, improving the detection-limits and overall accuracy of the analytical method. Iron and copper concentrations were found in ranges of (0.44-4.64 ppm), (0.072 - 0.38 ppm), respectively. Nickel ranged (0.098 - 0.24 ppm), while the concentrations of chromium, cadmium, lead, manganese and zinc ranged (0. 035 - 0. 15ppm), (0.022 - 0. 16ppm), (0.025 - 0.095ppm), (0.029 - 0.12 ppm) and (0.019 - 0.13 ppm), respectively.(author)

  16. Graphene oxide vs. reduced graphene oxide as carbon support in porphyrin peroxidase biomimetic nanomaterials.

    Science.gov (United States)

    Socaci, C; Pogacean, F; Biris, A R; Coros, M; Rosu, M C; Magerusan, L; Katona, G; Pruneanu, S

    2016-02-01

    The paper describes the preparation of supramolecular assemblies of tetrapyridylporphyrin (TPyP) and its metallic complexes with graphene oxide (GO) and thermally reduced graphene oxide (TRGO). The two carbon supports are introducing different characteristics in the absorption spectra of the investigated nanocomposites. Raman spectroscopy shows that the absorption of iron-tetrapyridylporphyrin is more efficient on GO than TRGO, suggesting that oxygen functionalities are involved in the non-covalent interaction between the iron-porphyrin and graphene. The biomimetic peroxidase activity is investigated and the two iron-containing composites exhibit a better catalytic activity than each component of the assembly, and their cobalt and manganese homologues, respectively. The main advantages of this work include the demonstration of graphene oxide as a very good support for graphene-based nanomaterials with peroxidase-like activity (K(M)=0.292 mM), the catalytic activity being observed even with very small amounts of porphyrins (the TPyP:graphene ratio=1:50). Its potential application in the detection of lipophilic antioxidants (vitamin E can be measured in the 10(-5)-10(-4) M range) is also shown. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Failure analysis of electrolyte-supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob

    2014-07-01

    For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.

  18. Synthesis of CoO/Reduced Graphene Oxide Composite as an Alternative Additive for the Nickel Electrode in Alkaline Secondary Batteries

    International Nuclear Information System (INIS)

    Fu, Gaoliang; Chang, Kun; Shangguan, Enbo; Tang, Hongwei; Li, Bao; Chang, Zhaorong; Yuan, Xiao-Zi; Wang, Haijiang

    2015-01-01

    Highlights: • CoO/RGO nanosheets with sandwiched structures were synthesized by hydrothermal method. • CoO/RGO composite can be as a good additive for Ni-MH battery. • Using CoO/RGO as the additive can greatly reduce the utilization of CoO in the commercial battery. • Particularly, the high rate capability of the electrode was enhanced significantly. - Abstract: A series of CoO/reduced graphene oxide (CoO/RGO) composites with different proportions are successfully synthesized via a hydrothermal method. As an additive for the nickel-based alkaline secondary battery cathode, the electrochemical performances of the proposed CoO/RGO composite are systematically investigated on its cyclic stability, rate capability, capacity recovery performance, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), in comparison with commercial CoO. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) images show that the CoO nanoparticles are in-situ anchored on the surface of soft and flexible graphene sheets. Electrochemical results indicate that the CoO/RGO composites exhibite the highest performance when the weight ratio of CoO and RGO is 5:5. The optimized CoO/RGO composites as an additive for the nickel electrode not only can substantially reduce the CoO additive but also possess good electrochemical performances, especially for the high-rate capability. The discharge capacity of the nickel electrode with 5 wt% of CoO/RGO (5:5) addition deliver a high discharge capacity of 284.3, 264.6,235.4 and 208.6 mAh g"−"1 at 0.2, 1.0, 5.0 and 10.0 C, respectively. The capacity recovery rate at 0.2 C can reach 98.4%. CV and EIS test indicate that the incorporation of RGO can significantly enhance the reversible property, current density of cathodic peak, proton diffusion and conductivity of the nickel electrode.

  19. Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships

    NARCIS (Netherlands)

    Wachs, I.E.; Jehng, J.M.; Deo, G.; Weckhuysen, B.M.; Guliants, V.V.; Benziger, J.B.; Sundaresan, S.

    1997-01-01

    The oxidation of n-butane to maleic anhydride was investigated over a series of model-supported vanadia catalysts where the vanadia phase was present as a two-dimensional metal oxide overlayer on the different oxide supports (TiO2, ZrO2, CeO2, Nb2O5, Al2O3, and SiO2). No correlation was found

  20. Supported graphene oxide hollow fibre membrane for oily wastewater treatment

    Science.gov (United States)

    Othman, Nur Hidayati; Alias, Nur Hashimah; Shahruddin, Munawar Zaman; Hussein, Siti Nurliyana Che Mohamed; Dollah, Aqilah

    2017-12-01

    Oil and gas industry deals with a large amount of undesirable discharges of liquid, solid, and gaseous wastes and the amounts can considerably change during the production phases. Oilfield wastewater or produced water is known to constitute various organic and inorganic components. Discharging the produced water can pollute surface and underground water and therefore the necessity to treat this oily wastewater is an inevitable challenge. The current technologies for the treatment of this metastable oil-in-water are not really effective and very pricey. As a result, there is a great interest from many parties around the world in finding cost-effective technologies. In recent years, membrane processes have been utilized for oily wastewater treatment. In these work, a graphene oxide membrane supported on a highly porous Al2O3 hollow fibre was prepared using vacuum assisted technique and its performance in treating oily wastewater was investigated. Graphene oxide (GO) was prepared using a modified Hummer's method and further characterized using XRD, FTIR, TGA and SEM. The results showed that the GO was successfully synthesized. The GO membrane was deposited on alumina hollow fibre substrates. The membrane performance was then investigated using dead-end filtration setup with synthetic oily wastewater as a feed. The effects of operating times on rejection rate and permeate flux were investigated. The experimental results showed that the oil rejections were over 90%. It was concluded that the supported GO membrane developed in this study may be considered feasible in treating oily wastewater. Detail study on the effects of transmembrane pressure, oil concentration, pH and fouling should be carried out in the future

  1. Nickel aggregates produced by radiolysis

    International Nuclear Information System (INIS)

    Marignier, J.L.; Belloni, J.

    1988-01-01

    Nickel aggregates with subcolloidal size and stable in water have been synthesized by inhibiting the corrosion by the medium. The protective effect of the surfactant is discussed in relation with the characteristics of various types of polyvinyl alcohol studied. The reactivity of aggregates towards oxidizing compounds, nitro blue tetrazolium, methylene blue, silver ions, oxygen, methylviologen, enables an estimation of the redox potential of nickel aggregates (E = - 04 ± 0.05 V). It has been applied to quantitative analysis of the particles in presence of nickel ions. 55 refs [fr

  2. The Difference Se Makes: A Bio-Inspired Dppf-Supported Nickel Selenolate Complex Boosts Dihydrogen Evolution with High Oxygen Tolerance.

    Science.gov (United States)

    Pan, Zhong-Hua; Tao, Yun-Wen; He, Quan-Feng; Wu, Qiao-Yu; Cheng, Li-Ping; Wei, Zhan-Hua; Wu, Ji-Huai; Lin, Jin-Qing; Sun, Di; Zhang, Qi-Chun; Tian, Dan; Luo, Geng-Geng

    2018-06-12

    Inspired by the metal active sites of [NiFeSe]-hydrogenases, a dppf-supported nickel(II) selenolate complex (dppf=1,1'-bis(diphenylphosphino)ferrocene) shows high catalytic activity for electrochemical proton reduction with a remarkable enzyme-like H 2 evolution turnover frequency (TOF) of 7838 s -1 under an Ar atmosphere, which markedly surpasses the activity of a dppf-supported nickel(II) thiolate analogue with a low TOF of 600 s -1 . A combined study of electrochemical experiments and DFT calculations shed light on the catalytic process, suggesting that selenium atom as a bio-inspired proton relay plays a key role in proton exchange and enhancing catalytic activity of H 2 production. For the first time, this type of Ni selenolate-containing electrocatalyst displays a high degree of O 2 and H 2 tolerance. Our results should encourage the development of the design of highly efficient oxygen-tolerant Ni selenolate molecular catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect study of the support in nickel and cobalt catalysts for obtaining hydrogen from ethanol steam reforming; Estudo do efeito do suporte em catalisadores de cobalto e niquel para obtencao de hidrogenio a partir da reforma a vapor do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sirlane Gomes da

    2013-09-01

    A range of oxide-supported metal catalysts have been investigated for the steam reforming of ethanol for the production of hydrogen and subsequent application in fuel cells. The catalysts were synthesized by the co-precipitation and internal gelification methods using cobalt and nickel as active metals supported on aluminum, zirconium, lanthanum and cerium oxides. After prepared and calcined at 550 C Masculine-Ordinal-Indicator the solids were fully characterized by different techniques such as X-rays diffraction(DRX), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy, nitrogen adsorption (B.E.T), temperature-programmed reduction in H2 (TPR-H2) and thermogravimetric analysis. The catalytic tests were performed in a monolithic quartz reactor and submitted to different thermodynamic conditions of steam reforming of ethanol at temperatures varying from 500 Masculine-Ordinal-Indicator C to 800 Masculine-Ordinal-Indicator C. The product gas streams from the reactor were analyzed by an on-line gas chromatograph. The cobalt/nickel catalyst supported on a ceria-lanthania mixture (Co{sub 10%} / Ni{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3}) showed good catalytic performance in hydrogen selectivity reaching a concentration greater than 65%, when compared to other catalytic systems such as: Co{sub 10%} / Ni5% - CeO{sub 2}; Co{sub 10%} / Ni{sub 5%} - CeO{sub 2}ZrO{sub 2}; Co{sub 10%} / Ni{sub 5%} - ZrO{sub 2}; Co{sub 10%} / Ni{sub 5%} - La{sub 2}O{sub 3}; Co{sub 10%} / Ni{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3}/K{sub 2%}; Co{sub 10}% / Ni{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3} / Na{sub 2%}; Ni{sub 10%} / Co{sub 5%} - CeO{sub 2}La{sub 2}O{sub 3}; Co-Al{sub 2}O{sub 3} e Co-Al{sub 2}O{sub 3}CeO{sub 2}. (author)

  4. Modulating Hole Transport in Multilayered Photocathodes with Derivatized p-Type Nickel Oxide and Molecular Assemblies for Solar-Driven Water Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Bing [Department; Sherman, Benjamin D. [Department; Klug, Christina M. [Center; Nayak, Animesh [Department; Marquard, Seth L. [Department; Liu, Qing [Department; Bullock, R. Morris [Center; Meyer, Thomas J. [Department

    2017-08-31

    We report here a new photocathode composed of a bi-layered doped NiO film topped by a macro-mesoporous ITO (ioITO) layer with molecular assemblies attached to the ioITO surface. The NiO film containing a 2% K+ doped NiO inner layer and a 2% Cu2+ doped NiO outer layer provides sufficient driving force for hole transport after injection to NiO by the molecular assembly. The tri-layered oxide, NiK0.02O | NiCu0.02O | ioITO, sensitized by a ruthenium polypyridyl dye and functionalized with a nickel-based hydrogen evolution catalyst, outperforms its counterpart, NiO | NiO | ioITO, in photocatalytic hydrogen evolution from water over a period of several hours with a Faradaic yield of ~90%.

  5. Hydrothermally synthesized reduced graphene oxide/nickel hydroxide (rGO/Ni(OH)2) nanocomposite: A promising material in dye removal

    Science.gov (United States)

    Debata, Suryakanti; Das, Trupti R.; Madhuri, Rashmi; Sharma, Prashant K.

    2017-05-01

    In order to fulfill the unquenchable demand of this expanded human society, a large number of industries have grown up resulting in a severe pollution in air, soil and water as well. Industrial dye is one of the most abundant contaminant in fresh water. Here we have prepared reduced graphene oxide/nickel hydroxide nanocomposite (rGo/Ni(OH)2) by a facile hydrothermal method, aiming for the treatment of water disposed by the textile industries. The characteristic properties of the prepared sample was observed by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR). The effect of rGo/Ni(OH)2 on the adsorption of Rhodamine B (Rh-B) in aqueous solution was investigated, mainly focusing on the removal time. It was found that, at 45 min, the composite shows a complete disappearance of the initial concentration of Rhodamine B (RhB).

  6. Evaluation of Iron Nickel Oxide Nanopowder as Corrosion Inhibitor: Effect of Metallic Cations on Carbon Steel in Aqueous NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, A. U.; Mishra, Brajendra [Colorado School of Mines, Denver (United States); Mittal, Vikas [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2016-01-15

    The aim of this study was to evaluate the use of iron-nickel oxide (Fe{sub 2}O{sub 3}.NiO) nanopowder (FeNi) as an anti-corrosion pigment for a different application. The corrosion protection ability and the mechanism involved was determined using aqueous solution of FeNi prepared in a corrosive solution containing 3.5 wt.% NaCl. Anti-corrosion abilities of aqueous solution were determined using electrochemical impedance spectroscopy (EIS) on line pipe steel (API 5L X-80). The protection mechanism involved the adsorption of metallic cations on the steel surface forming a protective film. Analysis of EIS spectra revealed that corrosion inhibition occurred at low concentration, whereas higher concentration of aqueous solution produced induction behavior.

  7. Facilely scraping Si nanoparticles@reduced graphene oxide sheets onto nickel foam as binder-free electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Suyuan; Xie, Wenhe; Gu, Lili; Liu, Zhengjiao; Hou, Xiaoyi; Liu, Boli; Wang, Qi; He, Deyan

    2016-01-01

    Binder-free electrodes of Si nanoparticles@reducedgrapheneoxidesheets(Si@rGO) for lithium ion batteries were facilely fabricated by scraping the mixture of commercial Si powder, graphene oxide and poly(vinyl pyrrolidone) (PVP) onto nickel foam and following a heat treatment. It was shown that the Si@rGO electrode performs an excellent electrochemical behavior. Even at a current density as high as 4 A/g, a reversible capacity of 792 mAh/g was obtained after 100 cycles. A small amount of PVP additive plays important roles, it not only increases the viscosity of the mixture paint in the coating process, but also improves the conductivity of the overall electrode after carbonization.

  8. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  9. Self-Stacked Reduced Graphene Oxide Nanosheets Coated with Cobalt-Nickel Hydroxide by One-Step Electrochemical Deposition toward Flexible Electrochromic Supercapacitors.

    Science.gov (United States)

    Grote, Fabian; Yu, Zi-You; Wang, Jin-Long; Yu, Shu-Hong; Lei, Yong

    2015-09-01

    The implementation of an optical function into supercapacitors is an innovative approach to make energy storage devices smarter and to meet the requirements of smart electronics. Here, it is reported for the first time that nickel-cobalt hydroxide on reduced graphene oxide can be utilized for flexible electrochromic supercapacitors. A new and straightforward one-step electrochemical deposition process is introduced that is capable of simultaneously reducing GO and depositing amorphous Co(1-x)Ni(x)(OH)2 on the rGO. It is shown that the rGO nanosheets are homogeneously coated with metal hydroxide and are vertically stacked. No high temperature processes are used so that flexible polymer-based substrates can be coated. The synthesized self-stacked rGO-Co(1-x)Ni(x)(OH)2 nanosheet material exhibits pseudocapacitive charge storage behavior with excellent rate capability, high Columbic efficiency, and nondiffusion limited behavior. It is shown that the electrochemical behavior of the Ni(OH)2 can be modulated, by simultaneously depositing nickel and cobalt hydroxide, into broad oxidization and reduction bands. Further, the material exhibits electrochromic property and can switch between a bleached and transparent state. Literature comparison reveals that the performance characteristics of the rGO-Co(1-x)Ni(x)(OH)2 nanosheet material, in terms of gravimetric capacitance, areal capacitance, and long-term cycling stability, are among the highest reported values of supercapacitors with electrochromic property. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nickel oxide/polypyrrole/silver nanocomposites with core/shell/shell structure: Synthesis, characterization and their electrochemical behaviour with antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Das, Dhaneswar; Nath, Bikash C. [Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam (India); Phukon, Pinkee [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Saikia, Bhaskar J.; Kamrupi, Isha R. [Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam (India); Dolui, Swapan K., E-mail: dolui@tezu.ernet.in [Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam (India)

    2013-10-01

    Magnetic and conducting Nickel oxide–polypyrrole (NiO/PPy) nanoparticles with core–shell structure were prepared in the presence of Nickel oxide (NiO) in aqueous solution containing sodium dodecyl benzenesulfonate (SDBS) as a surfactant as well as dopant. A stable dispersion of silver (Ag) nanoparticles was synthesized by chemical (citrate reduction) method. NiO/PPy nanocomposites were added to the Ag colloid under stirring. Ag nanoparticles could be electrostatically attracted on the surface of NiO/PPy nanocomposites, leading to formation of NiO/PPy/Ag nanocomposites with core/shell/shell structure. The morphology, structure, particle size and composition of the products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV) and current–voltage (I–V) analysis. The resultant nanocomposites have the good conductivity and excellent electrochemical and catalytic properties of PPy and Ag nanoparticles. Furthermore, the nanocomposites showed excellent antibacterial behaviour due to the presence of Ag nanoparticles in the composite. The thermal stability of NiO–PPy as well as NiO/PPy/Ag nanocomposites was higher than that of pristine PPy. Studies of IR spectra suggest that the increased thermal stability may be due to interactions between NiO and Ag nanoparticles with the PPy backbone. - Highlights: • NiO nanoparticles were synthesized by two step soft chemical synthesis route. • Ag nanoparticles were prepared by using citrate reduction method. • NiO/PPy nanocomposites are synthesized by chemical oxidative polymerization process. • NiO/PPy/Ag nanocomposites can be used in the water purification technology.

  11. Self-templated Synthesis of Nickel Silicate Hydroxide/Reduced Graphene Oxide Composite Hollow Microspheres as Highly Stable Supercapacitor Electrode Material.

    Science.gov (United States)

    Zhang, Yanhua; Zhou, Wenjie; Yu, Hong; Feng, Tong; Pu, Yong; Liu, Hongdong; Xiao, Wei; Tian, Liangliang

    2017-12-01

    Nickel silicate hydroxide/reduced graphene oxide (Ni 3 Si 2 O 5 (OH) 4 /RGO) composite hollow microspheres were one-pot hydrothermally synthesized by employing graphene oxide (GO)-wrapped SiO 2 microspheres as the template and silicon source, which were prepared through sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO 2 substrate microspheres. The composition, morphology, structure, and phase of Ni 3 Si 2 O 5 (OH) 4 /RGO microspheres as well as their electrochemical properties were carefully studied. It was found that Ni 3 Si 2 O 5 (OH) 4 /RGO microspheres featured distinct hierarchical porous morphology with hollow architecture and a large specific surface area as high as 67.6 m 2  g -1 . When utilized as a supercapacitor electrode material, Ni 3 Si 2 O 5 (OH) 4 /RGO hollow microspheres released a maximum specific capacitance of 178.9 F g -1 at the current density of 1 A g -1 , which was much higher than that of the contrastive bare Ni 3 Si 2 O 5 (OH) 4 hollow microspheres and bare RGO material developed in this work, displaying enhanced supercapacitive behavior. Impressively, the Ni 3 Si 2 O 5 (OH) 4 /RGO microsphere electrode exhibited outstanding rate capability and long-term cycling stability and durability with 97.6% retention of the initial capacitance after continuous charging/discharging for up to 5000 cycles at the current density of 6 A g -1 , which is superior or comparable to that of most of other reported nickel-based electrode materials, hence showing promising application potential in the energy storage area.

  12. Nickel oxide/polypyrrole/silver nanocomposites with core/shell/shell structure: Synthesis, characterization and their electrochemical behaviour with antimicrobial activities

    International Nuclear Information System (INIS)

    Das, Dhaneswar; Nath, Bikash C.; Phukon, Pinkee; Saikia, Bhaskar J.; Kamrupi, Isha R.; Dolui, Swapan K.

    2013-01-01

    Magnetic and conducting Nickel oxide–polypyrrole (NiO/PPy) nanoparticles with core–shell structure were prepared in the presence of Nickel oxide (NiO) in aqueous solution containing sodium dodecyl benzenesulfonate (SDBS) as a surfactant as well as dopant. A stable dispersion of silver (Ag) nanoparticles was synthesized by chemical (citrate reduction) method. NiO/PPy nanocomposites were added to the Ag colloid under stirring. Ag nanoparticles could be electrostatically attracted on the surface of NiO/PPy nanocomposites, leading to formation of NiO/PPy/Ag nanocomposites with core/shell/shell structure. The morphology, structure, particle size and composition of the products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV) and current–voltage (I–V) analysis. The resultant nanocomposites have the good conductivity and excellent electrochemical and catalytic properties of PPy and Ag nanoparticles. Furthermore, the nanocomposites showed excellent antibacterial behaviour due to the presence of Ag nanoparticles in the composite. The thermal stability of NiO–PPy as well as NiO/PPy/Ag nanocomposites was higher than that of pristine PPy. Studies of IR spectra suggest that the increased thermal stability may be due to interactions between NiO and Ag nanoparticles with the PPy backbone. - Highlights: • NiO nanoparticles were synthesized by two step soft chemical synthesis route. • Ag nanoparticles were prepared by using citrate reduction method. • NiO/PPy nanocomposites are synthesized by chemical oxidative polymerization process. • NiO/PPy/Ag nanocomposites can be used in the water purification technology

  13. Optimization of synthesis of the nickel-cobalt oxide based anode electrocatalyst and of the related membrane-electrode assembly for alkaline water electrolysis

    Science.gov (United States)

    Chanda, Debabrata; Hnát, Jaromir; Bystron, Tomas; Paidar, Martin; Bouzek, Karel

    2017-04-01

    In this work, the Ni-Co spinel oxides are synthesized via different methods and using different calcination temperatures. Properties of the prepared materials are compared. The best route is selected and used to prepare a Ni1+xCo2-xO4 (-1 ≤ x ≤ 1) series of materials in order to investigate their catalytic activity towards the oxygen evolution reaction (OER). The results show that hydroxide preparation yields NiCo2O4 oxide with the highest activity. 325 °C is identified as the optimum calcination temperature. Subsequently, the catalysts are tested in an electrolysis cell. To prepare an anode catalyst layer based on NiCo2O4 catalyst on top of a nickel foam substrate for membrane electrode assembly (MEA) construction, following polymer binders are used: anion-selective quaternized polyphenylene oxide (qPPO), inert polytetrafluoroethylene (PTFE®), and cation-selective Nafion®. qPPO ionomer containing MEA exhibited highest OER activity. The current density obtained using a MEA containing qPPO binder attains a value of 135 mA cm-2 at a cell voltage of 1.85 V. After 7 h chronopotentiometric experiment at a constant current density of 225 mA cm-2, the MEA employing PTFE® binder shows higher stability than the other binders in alkaline water electrolysis at 50 °C. Under similar conditions, stability of the PTFE®-binding MEA is examined for 135 h.

  14. Electrochromic nickel oxide films and their compatibility with potassium hydroxide and lithium perchlorate in propylene carbonate: Optical, electrochemical and stress-related properties

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Rui-Tao, E-mail: Ruitao.Wen@angstrom.uu.se; Niklasson, Gunnar A.; Granqvist, Claes G.

    2014-08-28

    Porous nickel oxide films were deposited onto unheated indium tin oxide coated glass substrates by reactive dc magnetron sputtering. These films had a cubic NiO structure. Electrochromic properties were evaluated in 1 M potassium hydroxide (KOH) and in 1 M lithium perchlorate in propylene carbonate (Li–PC). Large optical modulation was obtained for ∼ 500-nm-thick films both in KOH and in Li–PC (∼ 70% and ∼ 50% at 550 nm, respectively). In KOH, tensile and compressive stresses, due to the expansion and contraction of the lattice, were found for films in their bleached and colored state, respectively. In Li–PC, compressive stress was seen both in colored and bleached films. Durability tests with voltage sweeps between − 0.5 and 0.65 V vs Ag/AgCl in KOH showed good durability for 10,000 cycles, whereas voltage sweeps between 2.0 and 4.7 V vs Li/Li{sup +} in Li–PC yielded significant degradation after 1000 cycles. - Highlights: • Ni oxide films were studied in KOH and in LiClO{sub 4} + propylene carbonate (Li–PC). • Good electrochromism was found in both electrolytes. • In KOH, tensile/compressive stresses were seen in bleached/colored films. • In Li–PC, compressive stress was seen both in colored and bleached films.

  15. Electrochromic nickel oxide films and their compatibility with potassium hydroxide and lithium perchlorate in propylene carbonate: Optical, electrochemical and stress-related properties

    International Nuclear Information System (INIS)

    Wen, Rui-Tao; Niklasson, Gunnar A.; Granqvist, Claes G.

    2014-01-01

    Porous nickel oxide films were deposited onto unheated indium tin oxide coated glass substrates by reactive dc magnetron sputtering. These films had a cubic NiO structure. Electrochromic properties were evaluated in 1 M potassium hydroxide (KOH) and in 1 M lithium perchlorate in propylene carbonate (Li–PC). Large optical modulation was obtained for ∼ 500-nm-thick films both in KOH and in Li–PC (∼ 70% and ∼ 50% at 550 nm, respectively). In KOH, tensile and compressive stresses, due to the expansion and contraction of the lattice, were found for films in their bleached and colored state, respectively. In Li–PC, compressive stress was seen both in colored and bleached films. Durability tests with voltage sweeps between − 0.5 and 0.65 V vs Ag/AgCl in KOH showed good durability for 10,000 cycles, whereas voltage sweeps between 2.0 and 4.7 V vs Li/Li + in Li–PC yielded significant degradation after 1000 cycles. - Highlights: • Ni oxide films were studied in KOH and in LiClO 4 + propylene carbonate (Li–PC). • Good electrochromism was found in both electrolytes. • In KOH, tensile/compressive stresses were seen in bleached/colored films. • In Li–PC, compressive stress was seen both in colored and bleached films

  16. Reverse microemulsion synthesis of nickel-cobalt hexacyanoferrate/reduced graphene oxide nanocomposites for high-performance supercapacitors and sodium ion batteries

    Science.gov (United States)

    Qiu, Xiaoming; Liu, Yongchang; Wang, Luning; Fan, Li-Zhen

    2018-03-01

    Prussian blue analogues with tunable open channels are of fundamental and technological importance for energy storage systems. Herein, a novel facile synthesis of nickel-cobalt hexacyanoferrate/reduced graphene oxide (denoted as Ni-CoHCF/rGO) nanocomposite is realized by a reverse microemulsion method. The very fine Ni-CoHCF nanoparticles (10-20 nm) are homogeneously anchored on the surface of reduced graphene oxide by electrostatic adsorption and reduced graphene oxide is well-separated by Ni-CoHCF particles. Benefiting from the combined advantages of this structure, the Ni-. It CoHCF/rGO nanocomposite can be used as electrodes for both supercapacitors and sodium ion batteries exhibits excellent pseudocapacitve performance in terms of high specific capacitance of 466 F g-1 at 0.2 A g-1 and 350 F g-1 at 10 A g-1, along with high cycling stabilities. As a cathode material for sodium ion batteries, it also demonstrates a high reversible capacity of 118 mAh g-1 at 0.1 A g-1, good rate capability, and superior cycling stability. These results suggest its potential as an efficient electrode for high-performance energy storage and renewable delivery devices.

  17. Three-Dimensional Bi-Continuous Nanoporous Gold/Nickel Foam Supported MnO2 for High Performance Supercapacitors.

    Science.gov (United States)

    Zhao, Jie; Zou, Xilai; Sun, Peng; Cui, Guofeng

    2017-12-19

    A three-dimensional bi-continuous nanoporous gold (NPG)/nickel foam is developed though the electrodeposition of a gold-tin alloy on Ni foam and subsequent chemical dealloying of tin. The newly-designed 3D metal structure is used to anchor MnO 2 nanosheets for high-performance supercapacitors. The formed ternary composite electrodes exhibit significantly-enhanced capacitance performance, rate capability, and excellent cycling stability. A specific capacitance of 442 Fg -1 is achieved at a scan rate of 5 mV s -1 and a relatively high mass loading of 865 μg cm -2 . After 2500 cycles, only a 1% decay is found at a scan rate of 50 mV s -1 . A high power density of 3513 W kg -1 and an energy density of 25.73 Wh kg -1 are realized for potential energy storage devices. The results demonstrate that the NPG/nickel foam hybrid structure significantly improves the dispersibility of MnO 2 and makes it promising for practical energy storage applications.

  18. Three-dimensional activated reduced graphene oxide nanocup/nickel aluminum layered double hydroxides composite with super high electrochemical and capacitance performances

    International Nuclear Information System (INIS)

    Lin, Yan; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Yinjun, Fang; Guangli, Wang; Zhiguo, Gu

    2013-01-01

    The paper reported a three-dimensional activated reduced graphene oxide nanocup/nickel aluminum layered double hydroxides composite (3D-ARGON/NiAl-LDH) with super high electrochemical and capacitance performances. Graphene oxide was reduced by hydrazine in ammonia medium to form three-dimensional reduced graphene oxide nanocup using polystyrene colloidal particle as sacrificial template. The nanocup was then activated by the alkali corrosion and thermal annealing. The 3D-ARGON/NiAl-LDH was finally fabricated by the hydrothermal synthesis via in situ growth of ultrathin NiAl-LDH nanoflakes on the 3D-ARGON in an ethanol medium. The study demonstrated that the composite offers special 3D architecture with a macropore on the rim of a cup and large mesoporous structure on the wall of a cup, which will greatly boost the electron transfer and mass transport during the faradaic redox reaction, and displays excellent electrochemical and capactance performances, including high specific capacitance and rate capability, good charge/discharge stability and long-term cycling life. Its maximum specific capacitance was found to be 2712.7 F g −1 at the current density of 1 A g −1 , which is more than 7-fold that of pure NiAl-LDH, 3-fold that of common reduced graphene oxide/NiAl-LDH and 1.8-fold that of two-dimensional activated reduced graphene oxide/NiAl-LDH. The specific capacitance can remain 1174 F g −1 when the current density increases up to 50 A g −1 . After 5000 cycles at the current density of 30 A g −1 , the capacitance can keep at least 98.9%. This study provides a promising approach for the design and synthesis of graphene-based materials with largely enhanced supercapacitor behaviors, which can be potentially applied in energy storage/conversion devices

  19. Two pathways for electrocatalytic oxidation of hydrogen by a nickel bis(diphosphine) complex with pendant amines in the second coordination sphere.

    Science.gov (United States)

    Yang, Jenny Y; Smith, Stuart E; Liu, Tianbiao; Dougherty, William G; Hoffert, Wesley A; Kassel, W Scott; Rakowski DuBois, M; DuBois, Daniel L; Bullock, R Morris

    2013-07-03

    A nickel bis(diphosphine) complex containing pendant amines in the second coordination sphere, [Ni(P(Cy)2N(t-Bu)2)2](BF4)2 (P(Cy)2N(t-Bu)2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. The addition of hydrogen to the Ni(II) complex gives three isomers of the doubly protonated Ni(0) complex [Ni(P(Cy)2N(t-Bu)2H)2](BF4)2. Using the pKa values and Ni(II/I) and Ni(I/0) redox potentials in a thermochemical cycle, the free energy of hydrogen addition to [Ni(P(Cy)2N(t-Bu)2)2](2+) was determined to be -7.9 kcal mol(-1). The catalytic rate observed in dry acetonitrile for the oxidation of H2 depends on base size, with larger bases (NEt3, t-BuNH2) resulting in much slower catalysis than n-BuNH2. The addition of water accelerates the rate of catalysis by facilitating deprotonation of the hydrogen addition product before oxidation, especially for the larger bases NEt3 and t-BuNH2. This catalytic pathway, where deprotonation occurs prior to oxidation, leads to an overpotential that is 0.38 V lower compared to the pathway where oxidation precedes proton movement. Under the optimal conditions of 1.0 atm H2 using n-BuNH2 as a base and with added water, a turnover frequency of 58 s(-1) is observed at 23 °C.

  20. Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation

    Science.gov (United States)

    Shang, Xiao; Yan, Kai-Li; Lu, Shan-Shan; Dong, Bin; Gao, Wen-Kun; Chi, Jing-Qi; Liu, Zi-Zhang; Chai, Yong-Ming; Liu, Chen-Guang

    2017-09-01

    Developing cost-effective electrocatalysts with both high activity and stability remains challenging for oxygen evolution reaction (OER) in water electrolysis. Herein, based on V-doped nickel sulfide nanowire on nickel foam (NiVS/NF), we further conduct controllable electrodeposition of Fe hydroxides film on NiVS/NF (eFe/NiVS/NF) to further improve OER performance and stability. For comparison, ultrafast chemical deposition of Fe hydroxides on NiVS/NF (uFe/NiVS/NF) is also utilized. V-doping of NiVS/NF may introduce more active sites for OER, and nanowire structure can expose abundant active sites and facilitate mass transport. Both of the two depositions generate amorphous Fe hydroxides film covering on the surface of nanowires and lead to enhanced OER activities. Furthermore, electrodeposition strategy realizes uniform Fe hydroxides film on eFe/NiVS/NF confirmed by superior OER activity of eFe/NiVS/NF than uFe/NiVS/NF with relatively enhanced stability. The OER activity of eFe/NiVS/NF depends on various electrodepositon time, and the optimal time (15 s) is obtained with maximum OER activity. Therefore, the controllable electrodeposition of Fe may provide an efficient and simple strategy to enhance the OER properties of electrocatalysts.

  1. Evaluation of nickel and copper catalysts in biogas reforming for hydrogen production in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo Alves; Martins, Andre Rosa; Rangel, Maria do Carmo, E-mail: mcarmov@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Grupo de Estudos em Cinetica e Catalise; Ballarini, Adriana; Maina, Silvia [Instituto de Investigaciones en Catalisis Y Petroquimica Ing. Jose Miguel Parera (INCAPE), Santa Fe (Argentina)

    2017-01-15

    The solid oxide fuel cells (SOFC) enable the efficient generation of clean energy, fitting the current requirements of the growing demand for electricity and for the environment preservation. When powered with biogas (from digesters of municipal wastes), the SOFCs also contribute to reduce the environmental impact of these wastes. The most suitable route to produce hydrogen inside SOFC from biogas is through dry reforming but the catalyst is easily deactivated by coke, because of the high amounts of carbon in the stream. A promising way to overcome this drawback is by adding a second metal to nickel-based catalysts. Aiming to obtain active, selective and stable catalysts for biogas dry reforming, solids based on nickel (15%) and copper (5%) supported on aluminum and magnesium oxide were studied in this work. Samples were prepared by impregnating the support with nickel and copper nitrate, followed by calcination at 500, 600 and 800 deg C. It was noted that all solids were made of nickel oxide, nickel aluminate and magnesium aluminate but no copper compound was found. The specific surface areas did not changed with calcination temperature but the nickel oxide average particles size increased. The solids reducibility decreased with increasing temperature. All catalysts were active in methane dry reforming, leading to similar conversions but different selectivities to hydrogen and different activities in water gas shift reaction (WGSR). This behavior was assigned to different interactions between nickel and copper, at different calcination temperatures. All catalysts were active in WGSR, decreasing the hydrogen to carbon monoxide molar ratio and producing water. The catalyst calcined at 500 deg C was the most promising one, leading to the highest hydrogen yield, besides the advantage of being produced at the lowest calcination temperature, requiring less energy in its preparation. (author)

  2. Evaluation of nickel and copper catalysts in biogas reforming for hydrogen production in SOFC

    International Nuclear Information System (INIS)

    Silva, Leonardo Alves; Martins, Andre Rosa; Rangel, Maria do Carmo

    2017-01-01

    The solid oxide fuel cells (SOFC) enable the efficient generation of clean energy, fitting the current requirements of the growing demand for electricity and for the environment preservation. When powered with biogas (from digesters of municipal wastes), the SOFCs also contribute to reduce the environmental impact of these wastes. The most suitable route to produce hydrogen inside SOFC from biogas is through dry reforming but the catalyst is easily deactivated by coke, because of the high amounts of carbon in the stream. A promising way to overcome this drawback is by adding a second metal to nickel-based catalysts. Aiming to obtain active, selective and stable catalysts for biogas dry reforming, solids based on nickel (15%) and copper (5%) supported on aluminum and magnesium oxide were studied in this work. Samples were prepared by impregnating the support with nickel and copper nitrate, followed by calcination at 500, 600 and 800 deg C. It was noted that all solids were made of nickel oxide, nickel aluminate and magnesium aluminate but no copper compound was found. The specific surface areas did not changed with calcination temperature but the nickel oxide average particles size increased. The solids reducibility decreased with increasing temperature. All catalysts were active in methane dry reforming, leading to similar conversions but different selectivities to hydrogen and different activities in water gas shift reaction (WGSR). This behavior was assigned to different interactions between nickel and copper, at different calcination temperatures. All catalysts were active in WGSR, decreasing the hydrogen to carbon monoxide molar ratio and producing water. The catalyst calcined at 500 deg C was the most promising one, leading to the highest hydrogen yield, besides the advantage of being produced at the lowest calcination temperature, requiring less energy in its preparation. (author)

  3. Reversing Size-Dependent Trends in the Oxidation of Copper Clusters through Support Effects: Reversing Size-Dependent Trends in the Oxidation of Copper Clusters through Support Effects

    Energy Technology Data Exchange (ETDEWEB)

    Mammen, Nisha [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, -560064 Bangalore India; Spanu, Leonardo [Shell Technology Center, Shell India Markets Private Limited, -560048 Bangalore India; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Yang, Bing [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Halder, Avik [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Institute for Molecular Engineering, The University of Chicago, 60637 Chicago IL USA; Narasimhan, Shobhana [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, -560064 Bangalore India

    2017-12-22

    Having the ability to tune the oxidation state of Cu nanoparticles is essential for their utility as catalysts. The degree of oxidation that maximizes product yield and selectivity is known to vary, depending on the particular reaction. Using first principles calculations and XANES measurements, we show that for subnanometer sizes in the gas phase, smaller Cu clusters are more resistant to oxidation. However, this trend is reversed upon deposition on an alumina support. We are able to explain this result in terms of strong cluster-support interactions, which differ significantly for the oxidized and elemental clusters. The stable cluster phases also feature novel oxygen stoichiometries. Our results suggest that one can tune the degree of oxidation of Cu catalysts by optimizing not just their size, but also the support they are deposited on.

  4. Metal oxide coating of carbon supports for supercapacitor applications.

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Tribby, Louis, J (University of New Mexico, Albuquerque, NM); Lakeman, Charles D. E. (TPL, Inc., Albuquerque, NM); Han, Sang M. (University of New Mexico, Albuquerque, NM); Lambert, Timothy N.; Fleig, Patrick F. (TPL, Inc., Albuquerque, NM)

    2008-07-01

    The global market for wireless sensor networks in 2010 will be valued close to $10 B, or 200 M units. TPL, Inc. is a small Albuquerque based business that has positioned itself to be a leader in providing uninterruptible power supplies in this growing market with projected revenues expected to exceed $26 M in 5 years. This project focused on improving TPL, Inc.'s patent-pending EnerPak{trademark} device which converts small amounts of energy from the environment (e.g., vibrations, light or temperature differences) into electrical energy that can be used to charge small energy storage devices. A critical component of the EnerPak{trademark} is the supercapacitor that handles high power delivery for wireless communications; however, optimization and miniaturization of this critical component is required. This proposal aimed to produce prototype microsupercapacitors through the integration of novel materials and fabrication processes developed at New Mexico Technology Research Collaborative (NMTRC) member institutions. In particular, we focused on developing novel ruthenium oxide nanomaterials and placed them into carbon supports to significantly increase the energy density of the supercapacitor. These improvements were expected to reduce maintenance costs and expand the utility of the TPL, Inc.'s device, enabling New Mexico to become the leader in the growing global wireless power supply market. By dominating this niche, new customers were expected to be attracted to TPL, Inc. yielding new technical opportunities and increased job opportunities for New Mexico.

  5. Metal Oxide Supported Vanadium Substituted Keggin Type Polyoxometalates as Catalyst For Oxidation of Dibenzothiophene

    Science.gov (United States)

    Lesbani, Aldes; Novri Meilyana, Sarah; Karim, Nofi; Hidayati, Nurlisa; Said, Muhammad; Mohadi, Risfidian; Miksusanti

    2018-01-01

    Supported polyoxometalatate H4[γ-H2SiV2W10O40]·nH2O with metal oxide i.e. silica, titanium, and tantalum was successfully synthesized via wet impregnation method to form H4[γ-H2SiV2W10O40]·nH2O-Si, H4[γ-H2SiV2W10O40]·nH2O-Ti, and H4[γ-H2SiV2W10O40]·nH2O-Ta. Characterization was performed using FTIR spectroscopy, X-Ray analyses, and morphology analyses using SEM. All compounds were used as the catalyst for desulfurization of dibenzothiophene (DBT). Silica and titanium supported polyoxometalate H4[γ-H2SiV2W10O40]·nH2O better than tantalum due to retaining crystallinity after impregnation process. On the other hand, compound H H4[γ-H2SiV2W10O40]·nH2O-Ta showed high catalytic activity than other supported metal oxides for desulfurization of DBT. Optimization desulfurization process resulted in 99% conversion of DBT under a mild condition at 70 °C, 0.1 g catalyst, and reaction for 3 hours. Regeneration studies showed catalyst H4[γ-H2SiV2W10O40]·nH2O-Ti was remaining catalytic activity for desulfurization of DBT.

  6. Three-dimensional hierarchical porous flower-like nickel-cobalt oxide/multi-walled carbon nanotubes nanocomposite for high-capacity supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peipei; Hu, Zhonghua, E-mail: huzh@tongji.edu.cn; Liu, Yafei; Yao, Mingming; Zhang, Qiang

    2015-02-15

    Highlights: • 3D hierarchical porous flower-like Ni-Co oxide/MWCNTs was synthesized. • The electrode shows a large specific surface area and desirable mesoporosity. • High specific capacitances and outstanding stability were obtained. • The content of MWCNTs affects the electrochemical properties of the electrode. - Abstract: Three-dimensional (3D) hierarchical porous flower-like nickel-cobalt oxide/multi-walled carbon nanotubes (Ni-Co oxide/MWCNTs) nanocomposites were fabricated by a facile and template-free hydrothermal method as electrodes for high-capacity supercapacitors. The samples were characterized by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption and thermal gravimetric analysis (TGA). The electrochemical performance was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge, and cycle life. It was found that Ni-Co oxide/MWCNTs nanocomposites displayed a high specific capacitance (1703 F g{sup −1} at a discharge current density of 1 A g{sup −1}) and, additionally, an excellent cycling performance, retaining 97% of the maximum capacitance after 2000 cycles at 10 A g{sup −1}. Even at a high current density (20 A g{sup −1}), the specific capacitance was still up to 1309 F g{sup −1}. This outstanding capacitive performance may be attributed to the ideal composition of the material and to its unique 3D hierarchical porous flower-like architecture.

  7. Nickel allergy

    DEFF Research Database (Denmark)

    Fischer, L A; Johansen, J D; Menné, T

    2007-01-01

    BACKGROUND: The frequency of nickel allergy varies between different population groups. Exposure regulation has proven effective in decreasing the frequency. Experimental studies with other allergens have shown a significant relation between patch test reactivity and repeated open application test...... in a patch test and a dilution series of three concentrations in a ROAT, with duration of up to 21 days. Eighteen persons with no nickel allergy were included as control group for the ROAT. RESULTS: The predicted dose which will elicit a reaction in 10% of allergic individuals was calculated to be 0......-response; indeed, there was no statistically significant difference. CONCLUSIONS: For elicitation of nickel allergy the elicitation threshold for the patch test is higher than the elicitation threshold (per application) for the ROAT, but is approximately the same as the accumulated elicitation threshold...

  8. CH{sub 4} reforming with CO{sub 2} for syngas production over nickel catalysts supported on mesoporous nanostructured γ-Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Majidian, Nasrollah; Habibi, Narges [Islamic Azad University, Tehran (Iran, Islamic Republic of); Rezaei, Mehran [University of Kashan, Kashan (Iran, Islamic Republic of)

    2014-07-15

    Nanostructured γ-Al{sub 2}O{sub 3} with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, BET, TPR, TPH, SEM and TPO techniques. The BET analysis showed a high surface area of 204m{sup 2}g{sup -1} and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The results revealed that an increase in nickel loading from 5 to 15 wt% decreased the surface area of catalyst from 182 to 160 m{sup 2}g{sup -1}. In addition, the catalytic results showed an increase in methane conversion with increase in nickel content. TPO analysis revealed that the coke deposition increased with increasing in nickel loading, and the catalyst with 15 wt% of nickel showed the highest degree of carbon formation. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Increasing CO{sub 2}/CH{sub 4} ratio increased the methane conversion. The BET analysis of spent catalysts indicated that the mesoporous structure of catalysts still remained after reaction.

  9. High-performance hybrid (electrostatic double-layer and faradaic capacitor-based) polymer actuators incorporating nickel oxide and vapor-grown carbon nanofibers.

    Science.gov (United States)

    Terasawa, Naohiro; Asaka, Kinji

    2014-12-02

    The electrochemical and electromechanical properties of polymeric actuators prepared using nickel peroxide hydrate (NiO2·xH2O) or nickel peroxide anhydride (NiO2)/vapor-grown carbon nanofibers (VGCF)/ionic liquid (IL) electrodes were compared with actuators prepared using solely VGCFs or single-walled carbon nanotubes (SWCNTs) and an IL. The electrode in these actuator systems is equivalent to an electrochemical capacitor (EC) exhibiting both electrostatic double-layer capacitor (EDLC)- and faradaic capacitor (FC)-like behaviors. The capacitance of the metal oxide (NiO2·xH2O or NiO2)/VGCF/IL electrode is primarily attributable to the EDLC mechanism such that, at low frequencies, the strains exhibited by the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators primarily result from the FC mechanism. The VGCFs in the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators strengthen the EDLC mechanism and increase the electroconductivity of the devices. The mechanism underlying the functioning of the NiO2·xH2O/VGCF/IL actuator in which NiO2·xH2O/VGCF = 1.0 was found to be different from that of the devices produced using solely VGCFs or SWCNTs, which exhibited only the EDLC mechanism. In addition, it was found that both NiO2 and VGCFs are essential with regard to producing actuators that are capable of exhibiting strain levels greater than those of SWCNT-based polymer actuators and are thus suitable for practical applications. Furthermore, the frequency dependence of the displacement responses of the NiO2·xH2O/VGCF and NiO2/VGCF polymer actuators were successfully simulated using a double-layer charging kinetic model. This model, which accounted for the oxidization and reduction reactions of the metal oxide, can also be applied to SWCNT-based actuators. The results of electromechanical response simulations for the NiO2·xH2O/VGCF and NiO2/VGCF actuators predicted the strains at low frequencies as well as the time constants of the devices, confirming that the model is applicable

  10. Effect of aging treatment on the in vitro nickel release from porous oxide layers on NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Huan, Z.; Fratila-Apachitei, L.E., E-mail: e.l.fratila-apachitei@tudelft.nl; Apachitei, I.; Duszczyk, J.

    2013-06-01

    Despite the ability of creating porous oxide layers on nickel–titanium alloy (NiTi) surface for biofunctionalization, the use of plasma electrolytic oxidation (PEO) has raised concerns over the possible increased levels of Ni release. Therefore, the primary aim of this study was to investigate the effect of aging in boiling water on Ni release from porous NiTi surfaces that have been formed by the PEO process. Based on different oxidation conditions, e.g. electrolyte composition and electrical parameters, three kinds of oxide layers with various characteristics were prepared on NiTi substrate. The process was followed by aging in boiling water for different durations. The Ni release was assessed by immersion tests in phosphate buffer saline and the Ni concentration was measured using the flame atomic absorption spectrometry. The results showed that aging in boiling water can significantly reduce the Ni release from oxidized porous samples, given that the duration of the treatment is finely adjusted according to the parameters of the as-formed oxide layer. Surface examination of the samples before and after aging in boiling water suggested that such a treatment is non-destructive while improving the corrosion resistance of oxidized samples, as evidenced by potentiodynamic polarization tests. The results of this study indicate that water boiling may be a suitable post-treatment required to minimize Ni release from porous oxides produced on NiTi by PEO for biomedical applications.

  11. Blue-light photoelectrochemical sensor based on nickel tetra-amined phthalocyanine-graphene oxide covalent compound for ultrasensitive detection of erythromycin.

    Science.gov (United States)

    Peng, Jinyun; Huang, Qing; Zhuge, Wenfeng; Liu, Yuxia; Zhang, Cuizong; Yang, Wei; Xiang, Gang

    2018-05-30

    In this study, we developed a novel photoelectrochemical (PEC) sensor for the highly sensitive detection of erythromycin by functionalising graphene oxide (GO) with nickel tetra-amined phthalocyanine (NiTAPc) through covalent bonding, which resulted in the formation of NiTAPc-Gr. The fabricated sensor showed a higher PEC efficiency under blue light, exhibiting a peak wavelength of 456 nm, as compared to that of the monomer. Further, the NiTAPc-Gr/indium tin oxide (ITO) sensor exhibited a photocurrent that was 50-fold higher than that for a GO/ITO sensor under the same conditions. Under optimal conditions, the NiTAPc-Gr PEC sensor showed a linear response for erythromycin concentrations ranging from 0.40 to 120.00 μmol L -1 , with the minimum limit for detection being 0.08 μmol L -1 . Thus, the NiTAPc-Gr sensor exhibited superior performance and excellent PEC characteristics, high stability, and good reproducibility with respect to the sensing of erythromycin. Moreover, it is convenient to use, fast, small, and cheap to produce. Hence, it should find wide use in the analysis of erythromycin in real-world applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Hierarchically assembled 3D nanoflowers and 0D nanoparticles of nickel sulfides on reduced graphene oxide with excellent lithium storage performances

    Science.gov (United States)

    Tronganh, Nguyen; Gao, Yang; Jiang, Wei; Tao, Haihua; Wang, Shanshan; Zhao, Bing; Jiang, Yong; Chen, Zhiwen; Jiao, Zheng

    2018-05-01

    Constructing heterostructure can endow composites with many novel physical and electrochemical properties due to the built-in specific charge transfer dynamics. However, controllable fabrication route to heterostructures is still a great challenge up to now. In this work, a SiO2-assisted hydrothermal method is developed to fabricate heterostructured nickel sulfides/reduced graphene oxide (NiSx/rGO) composite. The SiO2 particles hydrolyzed from tetraethyl orthosilicate could assist the surface controllable co-growth of 3D nanoflowers and 0D nanoparticles of Ni3S2/NiS decorated on reduced graphene oxide, and the possible co-growth mechanism is discussed in detail. In this composite, the heterostructured nanocomposite with different morphologies, chemical compositions and crystal structures, along with varied electronic states and band structure, can promote the interface charge transfer kinetics and lead to excellent lithium storage performances. Electrochemical measurements reveal that the NiSx/rGO composite presents 1187.0 mA h g-1 at 100 mA g-1 and achieves a highly stable capacity of 561.2 mA h g-1 even when the current density is up to 5 A g-1.

  13. The effect of zinc injection into PWR primary coolant on the reduction of radiation buildup and corrosion control. The solubilities of zinc, nickel and cobalt spinel oxides

    International Nuclear Information System (INIS)

    Miyajima, Kaori; Hirano, Hideo

    1999-01-01

    The use of zinc injection into PWR primary coolant to reduce radiation buildup has been widely studied, and te reduction effect has been experimentally confirmed. However, some items, such as the optimal concentration of zinc required to reduce radiation buildup, the corrosion control effect of zinc injection, and the influence of zinc injection on the integrity of fuel cladding, have not been clarified yet. In particular, the corrosion suppression effect of zinc remains unconfirmed. Therefore, it is necessary to measure and calculate the solubilities of zinc and nickel spinel oxides, which are formed on the surface of Ni-based alloys in PWR primary systems. In this study, in order to assess the effectiveness of zinc injection in the reduction of radiation buildup and the corrosion control of Ni-based alloy, the potential-pH diagrams for Zn-Cr-H 2 O, Ni-Cr-H 2 O, and Co-Cr-H 2 O systems at 300degC were constructed and the solubilities of Zn-Cr, Ni-Cr, and Co-Cr spinel oxides were calculated. It is concluded that under pH conditions for which NiCr 2 O 4 is stable, zinc injection is effective in corrosion control as well as in reducing radiation buildup. (author)

  14. Development and characterization of nickel catalysts supported in CeO2-ZrO2-Al2O3, CeO2-La2O3-Al2O3 e ZrO2-La2O3-Al2O3 matrixes evaluated for methane reforming reactions

    International Nuclear Information System (INIS)

    Abreu, Amanda Jordão de

    2012-01-01

    Nowadays, the methane reforming is large interest industrial for the take advantage of these gas in production the hydrogen and synthesis gas (syngas). Among in the reactions of methane stand of the reactions steam reforming and carbon dioxide reforming of methane. The main catalysts uses in the methane reforming is Ni/Al 2 O 3 . However, the supported-nickel catalyst is susceptible to the deactivation or the destruction by coke deposition. The carbon dissolves in the nickel crystallite and its diffuses through the nickel, leading for formation of the carbon whiskers, which results in fragmentation of the catalyst. Modification of such catalysts, like incorporation of suitable promoters, is desirable to achieve reduction of the methane hydrogenolysis and/or promotion of the carbon gasification. Catalysts 5%Ni/Al 2 O 3 supported on solid solutions formed by ZrO 2 -CeO 2 , La 2 O 3 and CeO 2 -ZrO 2 -La 2 O 3 were prepared, characterized and evaluated in reactions steam and carbon dioxide reforming and partial oxidation of methane with objective the value effect loading solution solid in support. The supports were prepared by co-precipitation method and catalysts were prepared by impregnation method and calcined at 500 deg C. The supports and catalysts were characterized by Nitrogen Adsorption, method -rays diffraction (XRD), X-rays dispersive spectroscopy (XDS), spectroscopy in the region of the ultraviolet and the visible (UV-vis NIR) to and temperature programmed reduction (TPR), Raman Spectroscopy, X-ray absorption spectroscopy and Thermogravimetric Analysis. After all the catalytic reactions check which the addition of solid solution is beneficial for Ni/Al 2 O 3 catalysts and the best catalysts are Ni/CeO 2 -La 2 O 3 -Al 2 O 3 . (author)

  15. A study of the composition and microstructure of nanodispersed Cu-Ni alloys obtained by different routes from copper and nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cangiano, Maria de los A; Ojeda, Manuel W., E-mail: mojeda@unsl.edu.ar; Carreras, Alejo C.; Gonzalez, Jorge A.; Ruiz, Maria del C

    2010-11-15

    Mixtures of CuO and NiO were prepared by two different techniques, and then the oxides were reduced with H{sub 2}. Method A involved the preparation of mechanical mixtures of CuO and NiO using different milling and pelletizing processes. Method B involved the chemical synthesis of the mixture of CuO and NiO. The route used to prepare the copper and nickel oxide mixture was found to have great influence on the characteristics of bimetallic Cu-Ni particles obtained. Observations performed using the X-ray diffraction (XRD) technique showed that although both methods led to the Cu-Ni solid solution, the diffractogram of the alloy obtained with method A revealed the presence of NiO together with the alloy. The temperature-programmed reduction (TPR) experiments indicated that the alloy is formed at lower temperatures when using method B. The scanning electron microscopy (SEM) studies revealed notable differences in the morphology and size distribution of the bimetallic particles synthesized by different routes. The results of the electron probe microanalysis (EPMA) studies evidenced the existence of a small amount of oxygen in both cases and demonstrated that the alloy synthesized using method B presented a homogeneous composition with a Cu-Ni ratio close to 1:1. On the contrary, the alloy obtained using method A was not homogeneous in all the volume of the solid. The homogeneity depended on the mechanical treatment undergone by the mixture of the oxides. - Research Highlights: {yields}Study of the properties of Cu-Ni alloys synthesized by two different routes. {yields}Mixtures of Cu and Ni oxides prepared by two techniques were reduced with H{sub 2}. {yields}Mixtures of oxides were obtained by a mechanical process and the citrate-gel route. {yields}The characterizations were carried out by TPR, XRD, SEM and EPMA. {yields}The route used to prepare oxide mixtures influences on the Cu-Ni alloy obtained.

  16. A study of the composition and microstructure of nanodispersed Cu-Ni alloys obtained by different routes from copper and nickel oxides