WorldWideScience

Sample records for oxide polyacrylamide copolymers

  1. Sulfomethylated graft copolymers of xanthan gum and polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, I.W.; Empey, R.A.; Racciato, J.S.

    1978-08-08

    A water-soluble anionic graft copolymer of xanthan gum and polyacrylamide is described in which at least part of the amide function of the acrylamide portion of the copolymer is sulfomethylated and the xanthan gum portion of the copolymer is unreacted with formaldehyde. The copolymer is sulfomethylated by reaction with formaldehyde and sodium metabisulfite. The formaldehyde does not cause any appreciable cross-linking between hydroxyl groups of the xanthan moieties. The sulfomethylation of the acrylamido group takes place at temperatures from 35 to 70 C. The pH is 10 or higher, typically from 12 to 13. The degree of anionic character may be varied by adjusting the molar ratio of formaldehyde and sodium metabisulfite with respect to the copolymer. 10 claims.

  2. Fabrication and atomic force microscopy/friction force microscopy (AFM/FFM) studies of polyacrylamide-carbon nanotubes (PAM-CNTs) copolymer thin films

    International Nuclear Information System (INIS)

    Li Xuefeng; Guan Wenchao; Yan Haibiao; Huang Lan

    2004-01-01

    A novel polyacrylamide-carbon nanotubes (PAM-CNTs) copolymer has been prepared by ultraviolet radiation initiated polymerization. The PAM-CNTs copolymer was characterized by the instruments of Fourier transform infrared spectroscopy, UV-vis absorbance spectra, fluorescence spectra and transmission electron microscope. The morphology and microtribological properties of PAM-CNTs thin films on mica were investigated by atomic force microscopy/friction force microscopy (AFM/FFM). The friction of the films was stable with the change of applied load and the friction coefficient decreased significantly as the CNTs addition. The results show that the rigid rod-like CNTs in polymer would enhance load-bearing and anti-wear properties of the thin films

  3. Oxidation effect on templating of metal oxide nanoparticles within block copolymers

    International Nuclear Information System (INIS)

    Akcora, Pinar; Briber, Robert M.; Kofinas, Peter

    2009-01-01

    Amphiphilic norbornene-b-(norbornene dicarboxylic acid) diblock copolymers with different block ratios were prepared as templates for the incorporation of iron ions using an ion exchange protocol. The disordered arrangement of iron oxide particles within these copolymers was attributed to the oxidation of the iron ions and the strong interactions between iron oxide nanoparticles, particularly at high iron ion concentrations, which was found to affect the self-assembly of the block copolymer morphologies.

  4. Assessment of Polyacrylamide Based Co-Polymers Enhanced by Functional Group Modifications with Regards to Salinity and Hardness

    Directory of Open Access Journals (Sweden)

    Saeed Akbari

    2017-11-01

    Full Text Available This research aims to test four new polymers for their stability under high salinity/high hardness conditions for their possible use in polymer flooding to improve oil recovery from hydrocarbon reservoirs. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; SUPERPUSHER SAV55; THERMOASSOCIATIF; and AN132 VHM which are basically sulfonated polyacrylamide copolymers of AM (acrylamide with AMPS (2-Acrylamido-2-Methylpropane Sulfonate. AN132 VHM has a molecular weight of 9–11 million Daltons with 32 mol % degree of sulfonation. SUPERPUSHER SAV55 mainly has about 35 mol % sulfonation degree and a molecular weight of 9–11 million Daltons. FLOCOMB C7035, in addition, has undergone post-hydrolysis step to increase polydispersity and molecular weight above 18 million Daltons but it has a sulfonation degree much lower than 32 mol %. THERMOASSOCIATIF has a molecular weight lower than 12 million Daltons and a medium sulfonation degree of around 32 mol %, and also contains LCST (lower critical solution temperature type block, which is responsible for its thermoassociative characteristics. This paper discusses the rheological behavior of these polymers in aqueous solutions (100–4500 ppm with NaCl (0.1–10 wt % measured at 25 °C. The effect of hardness was investigated by preparing a CaCl2-NaCl solution of same ionic strength as the 5 wt % of NaCl. In summary, it can be concluded that the rheological behavior of the newly modified co-polymers was in general agreement to the existing polymers, except that THERMOASSOCIATIF polymers showed unique behavior, which could possibly make them a better candidate for enhanced oil recovery (EOR application in high salinity conditions. The other three polymers, on the other hand, are better candidates for EOR applications in reservoirs containing high divalent ions. These results are expected to be helpful in selecting and screening the polymers for an EOR application.

  5. Evaluation of solution and rheological properties for hydrophobically associated polyacrylamide copolymer as a promised enhanced oil recovery candidate

    Directory of Open Access Journals (Sweden)

    A.N. El-hoshoudy

    2017-09-01

    Full Text Available Crude oil is the most critical energy source in the world, especially for transportation, provision of heat and light as there has not been a sufficient energy source to replace crude oil has broadly integrated, so there is an urgent need to maximize the extraction of the original oil in-place for every reservoir, and accelerating the development of enhanced oil recovery (EOR technologies. Polymer flooding by hydrophobically associated polyacrylamides (HAPAM is a widely used technique through EOR technology. For successful application of these polymers, one should evaluate rheological and solution properties at simulated reservoir conditions as a function of polymer concentration, salinity, temperature and shear rate. The results showed that these copolymers exhibit favorable salt tolerance, temperature resistance, and recoverable viscosity after shearing, reasonable thickening behavior and improved viscosity enhancement properties due to presence of hydrophobic association in the copolymer main chains. Moreover, its capacity for oil production improvement was evaluated during flooding experiments through one dimensional sandstone model at simulated reservoir conditions.

  6. EFFECT OF DEXTRAN-graft-POLYACRYLAMIDE INTERNAL STRUCTURE ON FLOCCULATION PROCESS PARAMETERS

    International Nuclear Information System (INIS)

    Bezugla, T.; Kutsevol, N.; Shyichuk, A.; Ziolkowska, D.

    2008-01-01

    Dextran-graft-Polyacrylamide copolymers (D-g-PAA) of brush-like architecture were tested as flocculation aids in the model kaolin suspensions. Due to expanded conformation the D-g-PAA copolymers are more effective flocculants than individual PAA with close molecular mass. The internal structure of D-g-PAA copolymers which is determined by number and length of grafted PAA chains, the distance between grafts, etc., has the significant influence on flocculation behavior of such polymers

  7. Poly(ethylene oxide)–Poly(propylene oxide)-Based Copolymers for ...

    African Journals Online (AJOL)

    Amphiphilic poly(ethylene oxide)–poly(propylene oxide) (PEO–PPO)-based copolymers are thermoresponsive materials having aggregation properties in aqueous medium. As hydrosolubilizers of poorly water-soluble drugs and improved stability of sensitive agents, these materials have been investigated for improvement ...

  8. Doxorubicin-loaded micelles of reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers as efficient "active" chemotherapeutic agents.

    Science.gov (United States)

    Cambón, A; Rey-Rico, A; Mistry, D; Brea, J; Loza, M I; Attwood, D; Barbosa, S; Alvarez-Lorenzo, C; Concheiro, A; Taboada, P; Mosquera, V

    2013-03-10

    Five reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BOnEOmBOn, with BO ranging from 8 to 21 units and EO from 90 to 411 were synthesized and evaluated as efficient chemotherapeutic drug delivery nanocarriers and inhibitors of the P-glycoprotein (P-gp) efflux pump in a multidrug resistant (MDR) cell line. The copolymers were obtained by reverse polymerization of poly(butylene oxide), which avoids transfer reaction and widening of the EO block distribution, commonly found in commercial poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamers). BOnEOmBOn copolymers formed spherical micelles of 10-40 nm diameter at lower concentrations (one order of magnitude) than those of equivalent poloxamers. The influence of copolymer block lengths and BO/EO ratios on the solubilization capacity and protective environment for doxorubicin (DOXO) was investigated. Micelles showed drug loading capacity ranging from ca. 0.04% to 1.5%, more than 150 times the aqueous solubility of DOXO, and protected the cargo from hydrolysis for more than a month due to their greater colloidal stability in solution. Drug release profiles at various pHs, and the cytocompatibility and cytotoxicity of the DOXO-loaded micelles were assessed in vitro. DOXO loaded in the polymeric micelles accumulated more slowly inside the cells than free DOXO due to its sustained release. All copolymers were found to be cytocompatible, with viability extents larger than 95%. In addition, the cytotoxicity of DOXO-loaded micelles was higher than that observed for free drug solutions in a MDR ovarian NCI-ADR-RES cell line which overexpressed P-gp. The inhibition of the P-gp efflux pump by some BOnEOmBOn copolymers, similar to that measured for the common P-gp inhibitor verapamil, favored the retention of DOXO inside the cell increasing its cytotoxic activity. Therefore, poly(butylene oxide)-poly(ethylene oxide) block copolymers offer interesting features as cell

  9. Effect of Aging, Antioxidant, and Mono- and Divalent Ions at High Temperature on the Rheology of New Polyacrylamide-Based Co-Polymers

    Directory of Open Access Journals (Sweden)

    Saeed Akbari

    2017-10-01

    Full Text Available The viscosity of four new polymers was investigated for the effect of aging at high temperature, with varying degrees of salinity and hardness. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; AN132 VHM; SUPERPUSHER SAV55; and THERMOASSOCIATIF copolymers. All polymer samples were aged at 80 °C for varying times (from zero to at least 90 days with and without isobutyl alcohol (IBA as an antioxidant. To see the effect of divalent ions on the polymer solution viscosity, parallel experiments were performed in a mixture of CaCl2-NaCl of the same ionic strength as 5 wt % NaCl. The polymers without IBA showed severe viscosity reduction after aging for 90 days in both types of preparation (5 wt % NaCl or CaCl2-NaCl. In the presence of IBA, viscosity was increased when aging time was increased for 5 wt % NaCl. In CaCl2-NaCl, on the other hand, a viscosity reduction was observed as aging time was increased. This behavior was observed for all polymers except AN132 VHM.

  10. Synthesis and morphology of hydroxyapatite/polyethylene oxide nanocomposites with block copolymer compatibilized interfaces

    Science.gov (United States)

    Lee, Ji Hoon; Shofner, Meisha

    2012-02-01

    In order to exploit the promise of polymer nanocomposites, special consideration should be given to component interfaces during synthesis and processing. Previous results from this group have shown that nanoparticles clustered into larger structures consistent with their native shape when the polymer matrix crystallinity was high. Therefore in this research, the nanoparticles are disguised from a highly-crystalline polymer matrix by cloaking them with a matrix-compatible block copolymer. Specifically, spherical and needle-shaped hydroxyapatite nanoparticles were synthesized using a block copolymer templating method. The block copolymer used, polyethylene oxide-b-polymethacrylic acid, remained on the nanoparticle surface following synthesis with the polyethylene oxide block exposed. These nanoparticles were subsequently added to a polyethylene oxide matrix using solution processing. Characterization of the nanocomposites indicated that the copolymer coating prevented the nanoparticles from assembling into ordered clusters and that the matrix crystallinity was decreased at a nanoparticle spacing of approximately 100 nm.

  11. Polystyrene-b-polyethylene oxide block copolymer membranes, methods of making, and methods of use

    KAUST Repository

    Peinemann, Klaus-Viktor; Karunakaran, Madhavan

    2015-01-01

    Embodiments of the present disclosure provide for polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer nanoporous membranes, methods of making a PS-b-PEO block copolymer nanoporous membrane, methods of using PS-b-PEO block copolymer nanoporous membranes, and the like.

  12. Polystyrene-b-polyethylene oxide block copolymer membranes, methods of making, and methods of use

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-04-16

    Embodiments of the present disclosure provide for polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer nanoporous membranes, methods of making a PS-b-PEO block copolymer nanoporous membrane, methods of using PS-b-PEO block copolymer nanoporous membranes, and the like.

  13. Gas-permeation properties of poly(ethylene oxide) poly(butylene terephthalate block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; Mulder, M.H.V.; Wessling, Matthias

    2004-01-01

    This paper reports the gas-permeation properties of poly(ethylene oxide) (PEO) poly(butylene terephthalate) (PBT) segmented multiblock copolymers. These block copolymers allow a precise structural modification by the amount of PBT and the PEO segment length, enabling a systematic study of the

  14. Preparation and Characterization of Hybrid Nanocomposite of Polyacrylamide/Silica-Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmad Rabiee

    2013-01-01

    Full Text Available Polyacrylamides are water soluble macromolecules. These polymers are widely used for flocculation, separation and treatment of solid-liquid phase materials. In this research, organic-inorganic hybrid of polyacrylamide/silica nanoparticle is prepared via radical polymerization. First, the silica nanoparticle surfaces were modified by 3-methacryloxypropyltrimethoxysilane as coupling agent using a sol-gel technique in aqueous media in acidic condition. Afterwards, the modified nanoparticles are copolymerized by acrylamide monomer in presence of a peroxide initiator during a free radical polymerization. The chemical structure of the prepared modified nano-silica as well as polyacrylamide nanocomposite was studied and confirmed by FTIR spectroscopy technique. The morphology of nanocomposite was investigated by scanning electron microscopy. The SEM micrograph showed that the surface of the composite did not display any phase separation. Nanoparticles distribution was investigated by SEM-EDX technique. The results showed a uniform distribution of particles throughout the polymer bulk. TEM analysis showed the presence of silica nanoparticles in bulk of polymer which is an indicative of suitable dispersion of nanoparticles. The thermal stability of hybrid nanocomosite with that of polyacrylamide was compared by TGA technique. The higher thermal stability of hybrid nanocomposite with respect to homopolymer is indicative of a reaction between the modified nanoparticles and polyacrylamide chain. The presence of silica particles in copolymer was also confirmed with EDX analysis in ash content of hybrid nanocomposite.

  15. Synthesis and Thermosensitive Behavior of Polyacrylamide Copolymers and Their Applications in Smart Textiles

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-05-01

    Full Text Available We tuned the lower critical solution temperature (LCST of amphiphilic poly(N-isopropylacrylamide (PNIPAAm via copolymerization with a hydrophilic comonomer of N-hydroxymethyl acrylamide (NHMAAm. A series of copolymers P(NIPAAm-co-NHMAAm were synthesized by atom transfer radical polymerization (ATRP using CuBr/(N,N,N',N',N''-Pentamethyldiethylenetriamine (PMDETA as a catalyst system and 2-bromo ethyl isobutyrate (EBiB as an initiator. The copolymers were well characterized by Fourier transform infrared spectroscopy (FT-IR, 1H Nuclear magnetic resonance (NMR, and Thermogravimetric analysis (TGA. The copolymers followed a simple rule in their thermosensitive behaviors and have a linear increase in the LCST as a function of NHMAAm mol%. The thermosensitive properties of the copolymer films were investigated and demonstrated hydrophilic-hydrophobic transitions. Finally, the copolymer was grafted onto cotton fabrics using citric acid (CA as a crosslinking agent and sodium hypophosphite (SHP as a catalyst following a two dipping, two padding process. The large number of hydroxyl groups in the copolymer makes grafting convenient and firm. The grafted cotton fabrics show obvious thermosensitive behaviors. The results demonstrate that the cotton fabrics become more hydrophobic when the temperature is higher than the LCST. This study presents a valuable route towards temperature-responsive smart textiles and their potential applications.

  16. Physico-chemistry characterization of sulfonated polyacrylamide polymers for use in polymer flooding

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, Masoud

    2010-07-01

    Hydrolyzed polyacrylamide polymer (HPAM) as a feasible and effective viscosifier has been fully studied and used for polymer flooding processes in several oil field, e.g. Daqing oil field. It has been shown that Hydrolyzed polyacrylamide polymers (HPAM) may be a good choice for high temperature condition with no oxygen and no divalent ions presence. At high temperature and high salinity conditions, polymer may precipitates and loss their viscosyfing properties. Also adsorption and retention of polymer in porous medium may change rheological properties of polymers. Thus, the viscosyfing property of polymers is influenced by several important parameters, e.g. salinity, hardness, temperature, adsorption, retention, polymer structure, and etc. By replacing some of carboxylate group of HPAM with another monomer, e.g. sodium salt of acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), effect of high salinity/hardness and temperature seems to be reduced specially for the samples with higher percentage of AMPS co-monomer. The ultimate aim of this work is to develop an understanding of the sulfonated polyacrylamide copolymers with a range of different sulfonation and molecular weight at high salinity and high temperature conditions. Most of the work in this thesis deals with viscosity and adsorption/retention measurements of the sulfonated copolymers and HPAM. The factors which may affect the viscosity of the polymers and have been identified in this work as most likely influencing also adsorption and retention of the polymers are shear rate, polymer concentration, sulfonation degree, molecular weight, NaCl concentration, divalent ion concentration, and temperature. (Author)

  17. Synthesis and Functionalization of Poly(ethylene oxide-b-ethyloxazoline) Diblock Copolymers with Phosphonate Ions

    OpenAIRE

    Chen, Alfred Yuen-Wei

    2013-01-01

    Poly(ethylene oxide) (PEO) and poly(2-ethyl-2-oxazoline) (PEOX) are biocompatible polymers that act as hydrophilic "stealth" drug carriers. As block copolymers, the PEOX group offers a wider variety of functionalization. The goal of this project was to synthesize a poly(ethylene oxide)-b-poly(2-ethyl-2-oxazoline) (PEO-b-PEOX) block copolymer and functionalize pendent groups of PEOX with phosphonic acid. This was achieved through cationic ring opening polymerization (CROP) of 2-...

  18. Phase Separation and Elastic Properties of Poly(Trimethylene Terephthalate)-block-poly(Ethylene Oxide) Copolymers

    OpenAIRE

    Elżbieta Piesowicz; Sandra Paszkiewicz; Anna Szymczyk

    2016-01-01

    A series of poly(trimethylene terephthalate)-block-poly(ethylene oxide) (PTT-b-PEOT) copolymers with different compositions of rigid PTT and flexible PEOT segments were synthesized via condensation in the melt. The influence of the block length and the block ratio on the micro-separated phase structure and elastic properties of the synthesized multiblock copolymers was studied. The PEOT segments in these copolymers were kept constant at 1130, 2130 or 3130 g/mol, whereas the PTT content varied...

  19. Adsorption of Poly(ethylene oxide)-Poly(lactide) Copolymers. Effects of Composition and Degradation.

    Science.gov (United States)

    Muller, Dries; Carlsson, Fredrik; Malmsten, Martin

    2001-04-01

    The effect of chemical degradation of two diblock copolymers of poly(ethylene oxide) (E) and poly(lactide) (L), E(39)L(5) and E(39)L(20), on their adsorption at silica and methylated silica was investigated with in situ ellipsometry. Steric stablization of polystyrene dispersions was investigated in relation to degradation. Hydrolysis of the poly(lactide) block of the copolymers was followed at different temperatures and pH by using HPLC to measure the occurrence of lactic acid in solution. The block copolymers were quite stable in pH-unadjusted solution at low temperature, whereas degradation was facilitated by increasing temperature or lowering of the pH. Lower degradation rates of E(39)L(20) where observed at low temperature in comparison with those of E(39)L(5), whereas the degradation rates of the copolymers were quantitatively similar at high temperature. The adsorption of the copolymers at methylated silica substrates decreased with increasing degree of degradation due to the reduction in the ability of hydrophobic block to anchor the copolymer layer at the surface. At silica the adsorption initially increased with increasing degradation, particularly for E(39)L(20) due to deposition of aggregates onto the surface. After extensive degradation the adsorption of the copolymers at both silica and methylated silica resembled that of the corresponding poly(ethylene oxide) homopolymer. Overall, it was found that the eventual reduction in adsorption occurred at a lower degree of degradation for E(39)L(5) than for E(39)L(20). Mean-field calculations showed a reduced anchoring for the block copolymers with decreasing poly(lactide) block length at hydrophobic surfaces. In accordance with this finding, it was observed that polystyrene dispersions were stabilized by E(39)L(20) or E(39)L(5) in a way that depended on both the lactide block length and the degree of degradation. Upon degradation of the hydrophobic block, stabilization of the polystyrene dispersions was

  20. Improved synthesis of polystyrene-poly(ethylene oxide)-heparin block copolymers

    NARCIS (Netherlands)

    Vulic, I.; Loman, A.J.B.; Feijen, Jan; Okano, T.; Kim, S.W.

    1990-01-01

    A novel procedure for the synthesis of block copolymers composed of a hydrophobic block of polystyrene, a hydrophilic block of poly(ethylene oxide) and a bioactive block of nitrous acid-degraded heparin was developed. Amino-semitelechelic polystyrene was prepared by anionic polymerization of styrene

  1. Biodegradable flocculants based on polyacrylamide and poly(N,N-dimethylacrylamide) grafted amylopectin.

    Science.gov (United States)

    Kolya, Haradhan; Tripathy, Tridib

    2014-09-01

    Synthesis of amylopectin grafted polyacrylamide (AP-g-PAM) and poly(N,N-dimethylacrylamide) (AP-g-PDMA) was carried out by Ce4+ in water medium. The reaction conditions for maximum grafting was optimized by varying the reaction variables, including the concentration of monomers, ceric ammonium nitrate (CAN), amylopectin, reaction time and temperature. The graft copolymers were characterized by FTIR spectroscopy, NMR (both 1H and 13C) spectroscopy, molecular weight determination and molecular weight distribution by using size exclusion chromatography (SEC), thermal analysis (TGA), SEM studies. Biodegradation of the graft copolymers was carried out by enzyme hydrolysis. Flocculation performances of the graft copolymers were evaluated in 1.0 wt% coal and 1.0 wt% silica suspensions. A comparative study of the flocculation performances of AP-g-PDMA and AP-g-PAM was also made. It shows that the flocculation performance of AP-g-PDMA was better than that of AP-g-PAM. AP-g-PDMA performed best when compared with other commercial flocculants in the same suspensions. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Poly(alkylene oxide) Copolymers for Nucleic Acid Delivery

    Science.gov (United States)

    2012-07-17

    Poly(alkylene oxide) Copolymers for Nucleic Acid Delivery Swati Mishra1,#, Lavanya Y. Peddada1,#, David I. Devore3,4, and Charles M. Roth1,2...Neil Raju for assistance with figures. Biographies Swati Mishra received her Ph.D. in Biomedical Engineering and Biotechnology from the University of...Kleiman N, Anderson RD, Gottlieb D, Karlsberg R, Snell J, Rocha- Singh K. Results from a phase II multicenter, double-blind placebo-controlled study of Del

  3. Adsorption of polyelectrolytes and charged block copolymers on oxides consequences for colloidal stability

    NARCIS (Netherlands)

    Hoogeveen, N.G.

    1996-01-01


    The aim of the study described in this thesis was to examine the adsorption properties of polyelectrolytes and charged block copolymers on oxides, and the effect of these polymers on the colloidal stability of oxidic dispersions. For this purpose the interaction of some well-characterised

  4. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com [School of Science, Tianjin University, Tianjin 30072 (China); Wu, Tao [School of Science, Tianjin University, Tianjin 30072 (China); Zhang, Sai; Li, Xianxian [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Li, Yi, E-mail: liyi@tju.edu.cn [School of Science, Tianjin University, Tianjin 30072 (China)

    2014-12-15

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.

  5. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    International Nuclear Information System (INIS)

    Tang, Mingyi; Xu, Xiaoyang; Wu, Tao; Zhang, Sai; Li, Xianxian; Li, Yi

    2014-01-01

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide

  6. Synthesis and Characterization of Konjac Glucomannan-Graft-Polyacrylamide via γ-Irradiation

    Directory of Open Access Journals (Sweden)

    Jie Pang

    2008-03-01

    Full Text Available The synthesis of konjac glucomannan-graft-polyacrylamide (KGM-g-PAM wascarried out at 25°C by γ-irradiation under a N2 atmosphere. The effects of absorbedradiation dosage and monomer concentration on grafting yield and water absorbency werestudied. The grafted copolymers were characterized using Fourier Transform Infrared(FTIR spectroscopy, nuclear magnetic resonance (NMR, x-ray diffraction (XRD,thermogravimetric analysis (TGA and gel permeation chromatography (GPC. Thegrafting yield was observed to increase with increasing absorbed dosage and monomerconcentration. Compared with the original KGM, the grafted copolymers exhibited betterthermal stability and water absorbency. The results suggest that γ-irradiation is convenientand efficient for inducing graft copolymerization of KGM and acrylamide (AM.

  7. Micellar copolymerization of poly(acrylamide-g-propylene oxide): rheological evaluation and solution characterization; Copolimerizacao micelar de poli(acrilamida-g-oxido de propileno): avaliacao reologica e caracterizacao de suas solucoes

    Energy Technology Data Exchange (ETDEWEB)

    Sadicoff, Bianca L.; Brandao, Edimir M.; Lucas, Elizabete F. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: elucas@ima.ufrj.br; Amorim, Marcia C.V. [Universidade Estadual, Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    2001-06-01

    Graft copolymers of polyacrylamide and poly(propylene oxide) were synthesized by a micellar copolymerization technique. The rheological properties of the copolymers solutions were evaluated and compared with literature data for solutions of the same copolymers, synthesized by solution polymerization. The effect of hydrophobe content, salt addition and surfactant addition on the rheological properties were also investigated. Increasing hydrophobe content resulted in higher solution viscosities in the semi-dilute regime. Upon addition of salts, the hydrophobic groups associated to minimize their exposure to water. In the semi-dilute region, higher contents of surfactant added resulted in lower reduced viscosities of the polymer solutions. The copolymers were qualitatively characterized by infra-red spectrometry. (author)

  8. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.

    Science.gov (United States)

    Angelopoulou, A; Voulgari, E; Diamanti, E K; Gournis, D; Avgoustakis, K

    2015-06-01

    To investigate the application of water-dispersible poly(lactide)-poly(ethylene glycol) (PLA-PEG) copolymers for the stabilization of graphene oxide (GO) aqueous dispersions and the feasibility of using the PLA-PEG stabilized GO as a delivery system for the potent anticancer agent paclitaxel. A modified Staudenmaier method was applied to synthesize graphene oxide (GO). Diblock PLA-PEG copolymers were synthesized by ring-opening polymerization of dl-lactide in the presence of monomethoxy-poly(ethylene glycol) (mPEG). Probe sonication in the presence of PLA-PEG copolymers was applied in order to reduce the hydrodynamic diameter of GO to the nano-size range according to dynamic light scattering (DLS) and obtain nano-graphene oxide (NGO) composites with PLA-PEG. The composites were characterized by atomic force microscopy (AFM), thermogravimetric analysis (TGA), and DLS. The colloidal stability of the composites was evaluated by recording the size of the composite particles with time and the resistance of composites to aggregation induced by increasing concentrations of NaCl. The composites were loaded with paclitaxel and the in vitro release profile was determined. The cytotoxicity of composites against A549 human lung cancer cells in culture was evaluated by flow cytometry. The uptake of FITC-labeled NGO/PLA-PEG by A549 cells was also estimated with flow cytometry and visualized with fluorescence microscopy. The average hydrodynamic diameter of NGO/PLA-PEG according to DLS ranged between 455 and 534 nm, depending on the molecular weight and proportion of PLA-PEG in the composites. NGO/PLA-PEG exhibited high colloidal stability on storage and in the presence of high concentrations of NaCl (far exceeding physiological concentrations). Paclitaxel was effectively loaded in the composites and released by a highly sustained fashion. Drug release could be regulated by the molecular weight of the PLA-PEG copolymer and its proportion in the composite. The paclitaxel

  9. Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers: the effect of copolymer composition on physical properties and degradation behavior

    NARCIS (Netherlands)

    Deschamps, A.A.; Grijpma, Dirk W.; Feijen, Jan

    2001-01-01

    In this study, the influence of copolymer composition on the physical properties and the degradation behavior of thermoplastic elastomers based on poly(ethylene oxide) (PEO) and poly(butylene terephthalate) (PBT) segments is investigated. These materials are intended to be used in medical

  10. Synthesis and characterization of polystyrene-poly(ethylene oxide)-heparin block copolymers

    NARCIS (Netherlands)

    Vulić, I.; Okano, T.; Kim, S.W.; Feijen, Jan

    1988-01-01

    A procedure for the preparation of new block copolymers composed of a hydrophobic block of polystyrene, a hydrophilic spacer-block of poly(ethylene oxide) and a bioactive block of heparin was investigated. Polystyrene with one amino group per chain was synthesized by free radical oligomerization of

  11. CO2 permeation properties of poly(ethylene oxide)-based segmented block copolymers

    NARCIS (Netherlands)

    Husken, D.; Visser, Tymen; Wessling, Matthias; Gaymans, R.J.

    2010-01-01

    This paper discusses the gas permeation properties of poly(ethylene oxide) (PEO)-based segmented block copolymers containing monodisperse amide segments. These monodisperse segments give rise to a well phase-separated morphology, comprising a continuous PEO phase with dispersed crystallised amide

  12. Thermodynamic characterization of poly(4-hydroxystyrene)-g-[poly(propyleneoxide-b-ethylene oxide)] thermoresponsive brush copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Thanassoulas, Angelos, E-mail: athanas@rrp.demokritos.gr [Biomolecuar Physics Laboratory, National Centre for Scientific Research “Demokritos”, 153 10 Aghia Paraskevi (Greece); Papadopoulos, Athanasios [Biomolecuar Physics Laboratory, National Centre for Scientific Research “Demokritos”, 153 10 Aghia Paraskevi (Greece); Pispas, Stergios [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 11635 Athens (Greece); Zhao, Junpeng; Zhang, Guangzhao [Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Nounesis, George [Biomolecuar Physics Laboratory, National Centre for Scientific Research “Demokritos”, 153 10 Aghia Paraskevi (Greece)

    2016-08-20

    Highlights: • PPO-b-PEO core-shell brush copolymers exhibit thermoresponsive behavior in aqueous solutions. • Their thermal transitions strongly depend on their architecture and chemical composition. • These copolymer transitions follow a coil-to-globule mechanism. • It is possible to fine-tune their thermoresponsiveness to a wide range of temperatures. - Abstract: Thermoresponsive brush copolymers with poly(4-hydroxystyrene) backbones and poly(propyleneoxide-b-ethylene oxide) side chains were synthesized via a “grafting from” technique. The thermoresponsive behavior of four samples with different compositions has been investigated in dilute aqueous solutions by high-accuracy differential scanning calorimetry measurements. Thermal transitions involving both core contraction and intermolecular aggregation have been observed for all the copolymers in this study. The temperature where these thermal transitions occur is strongly associated to the architecture and chemical composition of the copolymers, allowing for fine-tuning of their thermoresponsiveness in a wide range of temperatures.

  13. Responsive copolymers for enhanced petroleum recovery. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1994-08-01

    A coordinated research program involving synthesis, characterization, and rheology has been undertaken to develop advanced polymer system which should be significantly more efficient than polymers presently used for mobility control and conformance. Unlike the relatively inefficient, traditional EOR polymers, these advanced polymer systems possess microstructural features responsive to temperature, electrolyte concentration, and shear conditions. Contents of this report include the following chapters. (1) First annual report responsive copolymers for enhanced oil recovery. (2) Copolymers of acrylamide and sodium 3-acrylamido-3-methylbutanoate. (3) Terpolymers of NaAMB, Am, and n-decylacrylamide. (4) Synthesis and characterization of electrolyte responsive terpolymers of acrylamide, N-(4-butyl)phenylacrylamide, and sodium acrylate, sodium-2-acrylamido-2-methylpropanesulphonate or sodium-3-acrylamido-3-methylbutanoate. (5) Synthesis and solution properties of associative acrylamido copolymers with pyrensulfonamide fluorescence labels. (6) Photophysical studies of the solution behavior of associative pyrenesulfonamide-labeled polyacrylamides. (7) Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with [2-(acrylamido)-2-methypropyl]trimethylammonium chloride. (8) Ampholytic terpolymers of acrylamide with sodium 2-acrylamido-2-methylpropanesulphoante and 2-acrylamido-2-methylpropanetrimethyl-ammonium chloride and (9) Polymer solution extensional behavior in porous media.

  14. Phase Separation and Elastic Properties of Poly(Trimethylene Terephthalate-block-poly(Ethylene Oxide Copolymers

    Directory of Open Access Journals (Sweden)

    Elżbieta Piesowicz

    2016-06-01

    Full Text Available A series of poly(trimethylene terephthalate-block-poly(ethylene oxide (PTT-b-PEOT copolymers with different compositions of rigid PTT and flexible PEOT segments were synthesized via condensation in the melt. The influence of the block length and the block ratio on the micro-separated phase structure and elastic properties of the synthesized multiblock copolymers was studied. The PEOT segments in these copolymers were kept constant at 1130, 2130 or 3130 g/mol, whereas the PTT content varied from 30 up to 50 wt %. The phase separation was assessed using differential scanning calorimetry (DSC and dynamic mechanical thermal analysis (DMTA. The crystal structure of the synthesised block copolymers and their microstructure on the manometer scale was evaluated by using WAXS and SAXS analysis. Depending on the PTT/PEOT ratio, but also on the rigid and flexible segment length in PTT-b-PEO copolymers, four different domains were observed i.e.,: a crystalline PTT phase, a crystalline PEO phase (which exists for the whole series based on three types of PEOT segments, an amorphous PTT phase (only at 50 wt % content of PTT rigid segments and an amorphous PEO phase. Moreover, the elastic deformability and reversibility of PTT-b-PEOT block copolymers were studied during a cyclic tensile test. Determined values of permanent set resultant from maximum attained stain (100% and 200% for copolymers were used to evaluate their elastic properties.

  15. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible block copolymers?are described along with atom transfer radical polymerization (ATRP), a technique utilized to develop well-defined functional thermo reversible block copolymers. The brief also focuses on Polyrotaxanes and their great potential as stimulus-responsive materials which produce poly (dimethyl siloxane) (PDMS) based thermo reversible block copolymers.

  16. Zwitterionic polyacrylamides: synthesis, study of their properties in aqueous solution, study of their adsorption on clay particles; Derives zwitterioniques du polyacrylamide. Synthese et etude des proprietes en solution aqueuse et de l'adsorption sur argile

    Energy Technology Data Exchange (ETDEWEB)

    Carrette, P.L.

    1998-12-10

    Some zwitterionic polyacrylamides have been prepared and studied in aqueous solution. They are neutral polymers, whose charges are on the same lateral group: the positive charge is a quaternary ammonium and the negative charge is a phosphonate or a sulfonate group. Such poly-betaines have a zero net charge on a wide range of pH. They are prepared in salt-free aqueous solution by radical copolymerization of acrylamide with 3-[3-acrylamide-(propyl)dimethyl-ammonio] propane ethyl phosphate or 3-[3-acrylamide-(propyl)dimethyl-ammonio] propane sulfonate. The study has been restricted to copolymers with 1 to 10 % zwitterionic units and weight average molar masses between 1 and 2.10{sup 6} g/mol. The reactivity ratios have been determined. Their properties in solution and their adsorption on clay particles have been compared to the properties of polyacrylamide and partly hydrolyzed polyacrylamide. The use of the later polymers in petroleum industry is limited by the decrease of viscosity in presence of electrolytes, the precipitation with multi-valent cations and an important sensibility to the hydrolysis at basic pH and/or at high temperature. The rheological properties of zwitterionic polymers are controlled by electrostatic attractive forces between charges of opposite signs. Their viscosity increases as a function of ionic strength: the salts screen these attractive forces, increasing in this way the hydrodynamic volume (anti-polyelectrolyte behaviour). At high shear rates, their viscosity decreases less than in the case of usual polyacrylamide. Moreover, their resistance to hydrolysis is better and the precipitation by calcium salts is avoided unlike others charged polymers such as partly hydrolyzed polyacrylamides. Finally, their adsorption on clay particles (montmorillonite) is always twice higher than polyacrylamide adsorption whatever the salinity and the nature of salt (NaCl or KCl). In conclusion, even with small rates the incorporation of zwitterionic units in

  17. Differences in the adsorption behaviour of poly(ethylene oxide) copolymers onto model polystyrene nanoparticles assessed by isothermal titration microcalorimetry correspond to the biological differences.

    Science.gov (United States)

    Stolnik, S; Heald, C R; Garnett, M G; Illum, L; Davis, S S

    2005-01-01

    The adsorption behaviour of a tetrafunctional copolymer of poly (ethylene oxide)-poly (propylene oxide) ethylene diamine (commercially available as Poloxamine 908) and a diblock copolymer of poly (lactic acid)-poly (ethylene oxide) (PLA/PEG 2:5) onto a model colloidal drug carrier (156 nm sized polystyrene latex) is described. The adsorption isotherm, hydrodynamic thickness of the adsorbed layers and enthalpy of the adsorption were assessed. The close similarity in the conformation of the poly (ethylene oxide) (PEO) chains (molecular weight 5,000 Da) in the adsorbed layers of these two copolymers was demonstrated by combining the adsorption data with the adsorbed layer thickness data. In contrast, the results from isothermal titration microcalorimetry indicated a distinct difference in the interaction of the copolymers with the polystyrene colloid surface. Poloxamine 908 adsorption to polystyrene nanoparticles is dominated by an endothermic heat effect, whereas, PLA/PEG 2:5 adsorption is entirely an exothermic process. This difference in adsorption behaviour could provide an explanation for differences in the biodistribution of Poloxamine 908 and PLA/PEG 2:5 coated polystyrene nanoparticles observed in previous studies. A comparison with the interaction enthalpy for several other PEO-containing copolymers onto the same polystyrene colloid was made. The results demonstrate the importance of the nature of the anchoring moiety on the interaction of the adsorbing copolymer with the colloid surface. An endothermic contribution is found when an adsorbing molecule contains a poly (propylene oxide) (PPO) moiety (e.g. Poloxamine 908), whilst the adsorption is exothermic (i.e. enthalpy driven) for PEO copolymers with polylactide (PLA/PEG 2:5) or alkyl moieties.

  18. A Novel Polyacrylamide Magnetic Nanoparticle Contrast Agent for Molecular Imaging using MRI

    Directory of Open Access Journals (Sweden)

    Bradford A. Moffat

    2003-10-01

    Full Text Available A novel Polyacrylamide superparamagnetic iron oxide nanoparticle platform is described which has been synthetically prepared such that multiple crystals of iron oxide are encapsulated within a single Polyacrylamide matrix (PolyAcrylamide Magnetic [PAM] nanoparticles. This formulation provides for an extremely large T2 and T2* relaxivity of between 620 and 1140 sec−1 mM−1. Administration of PAM nanoparticles into rats bearing orthotopic 9L gliomas allowed quantitative pharmacokinetic analysis of the uptake of nanoparticles in the vasculature, brain, and glioma. Addition of polyethylene glycol of varying sizes (0.6, 2, and 10 kDa to the surface of the PAM nanoparticles resulted in an increase in plasma half-life and affected tumor uptake and retention of the nanoparticles as quantified by changes in tissue contrast using MRI. The flexible formulation of these nanoparticles suggests that future modifications could be accomplished allowing for their use as a targeted molecular imaging contrast agent and/or therapeutic platform for multiple indications.

  19. Study of crystalline morphology and phase structure in poly(styrene-b-ethylene oxide-b-styrene) triblock copolymers bu solid state RMN spin diffusion

    International Nuclear Information System (INIS)

    Mantovani, Gerson L.; Phan, Trang; Bertin, Denis; Azevedo, Eduardo R. de; Bonagamba, Tito J.

    2009-01-01

    The phase structure and crystalline morphology of a series of polystyrene-b-polyethylene oxide-b-polystyrene (PS-b- PEO-b-PS) triblock copolymers, with different compositions and molecular weights, has been studied by solid-state NMR. WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethylene oxide (PEO) blocks at room temperature as a function of the copolymer composition. 1 H NMR spin diffusion analyses provided an estimation of the size of the dispersed phases of the nano structured copolymers. (author)

  20. Hydrophilic segmented block copolymers based on poly(ethylene oxide) and monodisperse amide segments

    NARCIS (Netherlands)

    Husken, D.; Feijen, Jan; Gaymans, R.J.

    2007-01-01

    Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra-amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra-amide segment (T6T6T)

  1. Effect of block composition on thermal properties and melt viscosity of poly[2-(dimethylaminoethyl methacrylate], poly(ethylene oxide and poly(propylene oxide block co-polymers

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available To modify the rheological properties of certain commercial polymers, a set of block copolymers were synthesized through oxyanionic polymerization of 2-(dimethylaminoethyl methacrylate to the chain ends of commercial prepolymers, namely poly(ethylene oxide (PEO, poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-PPO-PEO, and poly(propylene oxide (PPO. The formed block copolymers were analysed with size exclusion chromatography and nuclear magnetic resonance spectroscopy in order to confirm block formation. Thermal characterization of the resulting polymers was done with differential scanning calorimetry. Thermal transition points were also confirmed with rotational rheometry, which was primarily used to measure melt strength properties of the resulting block co-polymers. It was observed that the synthesised poly[2-(dimethylaminoethyl methacrylate]-block (PDM affected slightly the thermal transition points of crystalline PEO-block but the influence was stronger on amorphous PPO-blocks. Frequency sweeps measured above the melting temperatures for the materials confirmed that the pre-polymers (PEO and PEO-PPO-PEO behave as Newtonian fluids whereas polymers with a PDM block structure exhibit clear shear thinning behaviour. In addition, the PDM block increased the melt viscosity when compared with that one of the pre-polymer. As a final result, it became obvious that pre-polymers modified with PDM were in entangled form, in the melted state as well in the solidified form.

  2. Star block-copolymers: Enzyme-inspired catalysts for oxidation of alcohols in water

    KAUST Repository

    Mugemana, Clement

    2014-01-01

    A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. This journal is © the Partner Organisations 2014.

  3. Interaction between poly(vinyl pyridine) and poly(2,6-dimethyl-1,4-phenylene oxide) : A copolymer blend miscibility study

    NARCIS (Netherlands)

    de Wit, Joost; van Ekenstein, Gert Alberda; ten Brinke, Gerrit

    2007-01-01

    The phase behavior of blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) with random copolymers of styrene and 2-vinyl pyridine, Poly(S-co-2VP), as well as with random copolymers of styrene and 4-vinyl pyridine, Poly(S-co-4VP), has been investigated in order to estimate the values of the

  4. Polyether-polyester graft copolymer

    Science.gov (United States)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  5. Conducting Polymeric Hydrogel Electrolyte Based on Carboxymethylcellulose and Polyacrylamide/Polyaniline for Supercapacitor Applications

    Science.gov (United States)

    Suganya, N.; Jaisankar, V.; Sivakumar, E. K. T.

    Conducting polymer hydrogels represent a unique class of materials that possess enormous application in flexible electronic devices. In the present work, conducting carboxymethylcellulose (CMC)-co-polyacrylamide (PAAm)/polyaniline was synthesized by a two-step interpenetrating network solution polymerization technique. The synthesized CMC-co-PAAm/polyaniline with interpenetrating network structure was prepared by in situ polymerization of aniline to enhance conductivity. The molecular structure and morphology of the copolymer hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The novel conducting polymer hydrogels show good electrical and electrochemical behavior, which makes them potentially useful in electronic devices such as supercapacitors, biosensors, bioelectronics, solar cells and memory devices.

  6. Polyether/Polyester Graft Copolymers

    Science.gov (United States)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  7. The effects of ethylene oxide containing lipopolymers and tri-block copolymers on lipid bilayers of dipalmitoylphosphatidylcholine

    DEFF Research Database (Denmark)

    Baekmark, T. R.; Pedersen, S.; Jorgensen, K.

    1997-01-01

    oxide moity, anchored to the bilayer by a 1,2-dioctadecanoyl-s,n-glycero-3-phosphoethanolamine (DC18PE) lipid. The second type, which is a novel type of membrane-spanning object, is an amphiphilic tri-block copolymer composed of two hydrophilic stretches of polyethylene oxide separated by a hydrophobic...... stretch of polystyrene. Hence the tri-block copolymer may act as a membrane-spanning macromolecule mimicking an amphiphilic protein or polypeptide. Differential scanning calorimetry is used to determine a partial phase diagram for the lipopolymer systems and to assess the amount of lipopolymer that can...... be loaded into DC16PC lipid bilayers before micellization takes place. Unilamellar and micellar phase structures are investigated by fluorescence quenching using bilayer permeating dithionite. The chain length-dependent critical lipopolymer concentration, denoting the lamellar-to-micellar phase transition...

  8. Turbidimetric determination of polyacrylamide in aqueous solutions with the use of oxidizing agents

    International Nuclear Information System (INIS)

    Karpyuk, A.D.; Kolyada, N.S.; Pshenichnikova, E.Yu.

    1992-01-01

    Polyacrylamide is widely used in industry. For example, one of the methods for obtaining microspheres of metal oxides, particularly a mixed nuclear fuel, is based on a process involving the ammoniacal precipitation of hydroxides from aqueous solutions of metal nitrates in the presence of polyacrylamide (PAA), which promotes the formation of spheres in the initial stages of the process. Monitoring the industrial process, the course of the treatment of the production waste products, and the composition of the waste water calls for determination of the content of PAA in industrial solutions. The existing methods for determining PAA are based on its chemical properties, which are specified by the presence of amide groupings in its molecule. The use of the classical methods of analysis, which are based on the reactions of PAA with formaldehyde, sulfuric acid, etc. and the hydrolysis of PAA, do not provide reliable results, since PAA is partially or completely hydrolyzed in industrial solutions. In addition, industrial solutions contain various modifiers, including urea and urotropin, and the method of determining PAA from the amount of ammonia evolved is consequently unacceptable. Turbidimetric methods of analysis, in which the content of PAA is evaluated from the turbidity caused by the formation of suspension during hydrolysis or upon the introduction of NaClO 4 or diisotubylphenoxyethoxyethyldimethylbenzyl chloride, are known. The purpose of the present work was to develop a simple quick method for determining polymers in solutions, including solutions from the production and treatment of nuclear fuel. The following reagents were proposed for the turbidimetric determination of PAA: cerium(IV) sulfate, potassium dichromate, and potassium permanganate. 5 refs., 3 figs., 1 tab

  9. Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers.

    Science.gov (United States)

    Guillemet, Baptiste; Faatz, Michael; Gröhn, Franziska; Wegner, Gerhard; Gnanou, Yves

    2006-02-14

    Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.

  10. Controlling block copolymer phase behavior using ionic surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D.; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India E-mail: debes.phys@gmail.com (India)

    2016-05-23

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  11. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite

    Science.gov (United States)

    Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H.

    2016-01-01

    We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases. PMID:27539298

  12. Phase behavior of poly(dimethylsiloxane)-poly(ethylene oxide) amphiphilic block and graft copolymers in compressed carbon dioxide

    International Nuclear Information System (INIS)

    Stoychev, Ivan; Peters, Felix; Kleiner, Matthias; Sadowski, Gabriele; Clerc, Sebastien; Ganachaud, Francois; Chirat, Mathieu; Lacroix-Desmazes, Patrick; Fournel, Bruno

    2012-01-01

    The phase behavior of triblock and graft-type poly(dimethylsiloxane) (PDMS)-poly(ethylene oxide) (PEO) copolymer surfactants has been investigated in compressed carbon dioxide (CO 2 ). For this purpose, cloud-point pressures have been measured in the pressure and temperature range from P=10 to 40 MPa and from T= 293 to 338 K. The Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state (EoS) has been applied to model the experimental data in order to better understand the influence of the structure of the copolymers on the phase behavior of the system. The pure-component parameters for PDMS have been fitted originally to PDMS/n-pentane system. These parameters are successfully applied for PDMS in CO 2 by adjusting a temperature-dependent binary interaction parameter. The phase behavior of the triblock copolymers was successfully predicted by PC-SAFT. In contrast, the phase behavior of the graft copolymers was difficult to predict accurately at this stage. (authors)

  13. Synthesis and Characterization of Novel Magnetite Nanoparticle Block Copolymer Complexes

    OpenAIRE

    Zhang, Qian

    2007-01-01

    Superparamagnetic Magnetite (Fe3O4) nanoparticles were synthesized and complexed with carboxylate-functionalized block copolymers, and aqueous dispersions of the complexes were investigated as functions of their chemical and morphological structures. The block copolymer dispersants possessed either poly(ethylene oxide), poly(ethylene oxide-co-propylene oxide), or poly(ethylene oxide-b-propylene oxide) outer blocks, and all contained a polyurethane center block with pendant carboxylate functi...

  14. Three-dimensional block copolymer nanostructures by the solvent-annealing-induced wetting in anodic aluminum oxide templates.

    Science.gov (United States)

    Chu, Chiang-Jui; Chung, Pei-Yun; Chi, Mu-Huan; Kao, Yi-Huei; Chen, Jiun-Tai

    2014-09-01

    Block copolymers have been extensively studied over the last few decades because they can self-assemble into well-ordered nanoscale structures. The morphologies of block copolymers in confined geometries, however, are still not fully understood. In this work, the fabrication and morphologies of three-dimensional polystyrene-block-polydimethylsiloxane (PS-b-PDMS) nanostructures confined in the nanopores of anodic aluminum oxide (AAO) templates are studied. It is discovered that the block copolymers can wet the nanopores using a novel solvent-annealing-induced nanowetting in templates (SAINT) method. The unique advantage of this method is that the problem of thermal degradation can be avoided. In addition, the morphologies of PS-b-PDMS nanostructures can be controlled by changing the wetting conditions. Different solvents are used as the annealing solvent, including toluene, hexane, and a co-solvent of toluene and hexane. When the block copolymer wets the nanopores in toluene vapors, a perpendicular morphology is observed. When the block copolymer wets the nanopores in co-solvent vapors (toluene/hexane = 3:2), unusual circular and helical morphologies are obtained. These three-dimensional nanostructures can serve as naontemplates for refilling with other functional materials, such as Au, Ag, ZnO, and TiO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Self-assembling of poly(ε-caprolactone)-b-poly(ethylene oxide) diblock copolymers in aqueous solution and at the silica-water interface

    International Nuclear Information System (INIS)

    Leyh, B.; Vangeyte, P.; Heinrich, M.; Auvray, L.; De Clercq, C.; Jerome, R.

    2004-01-01

    Small-angle neutron scattering is used to investigate the self-assembling behaviour of poly(ε-caprolactone)-b-poly(ethylene oxide) diblock copolymers with various block lengths (i) in aqueous solution, (ii) in aqueous solution with the addition of sodium dodecyl sulphate (SDS) and (iii) at the silica-water interface. Micelles are observed under our experimental conditions due to the very small critical micellar concentration of these copolymers (0.01 g/l). The poly(ε-caprolactone) core is surrounded by a poly(ethylene oxide) corona. The micellar form factors have been measured at low copolymer concentrations (0.2 wt%) under selected contrast matching conditions. The data have been fitted to various analytical models to extract the micellar core and corona sizes. SDS is shown to induce partial micelle disruption together with an increase of the poly(ethylene oxide) corona extension from 25% (without SDS) to 70% (with SDS) of a completely extended PEO 114 chain. Our data at the silica-water interface are compatible with the adsorption of micelles

  16. PEO-related block copolymer surfactants

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Non-ionic block copolymer systems based on hydrophilic poly(ethylene oxide) and more hydrophobic co-polymer blocks are used intensively in a variety of industrial and personal applications. A brief description on the applications is presented. The physical properties of more simple model systems...... of such PEG-based block copolymers in aqueous suspensions are reviewed. Based on scattering experiments using either X-ray or neutrons, the phase behavior is characterized, showing that the thermo-reversible gelation is a result of micellar ordering into mesoscopic crystalline phases of cubic, hexagonal...

  17. Amphiphilic block copolymers for biomedical applications

    Science.gov (United States)

    Zupancich, John Andrew

    Amphiphilic block copolymer self-assembly provides a versatile means to prepare nanoscale objects in solution. Control over aggregate shape is granted through manipulation of amphiphile composition and the synthesis of well-defined polymers offers the potential to produce micelles with geometries optimized for specific applications. Currently, polymer micelles are being investigated as vehicles for the delivery of therapeutics and attempts to increase efficacy has motivated efforts to incorporate bioactive ligands and stimuli-responsive character into these structures. This thesis reports the synthesis and self-assembly of biocompatible, degradable polymeric amphiphiles. Spherical, cylindrical, and bilayered vesicle structures were generated spontaneously by the direct dispersion of poly(ethylene oxide)-b-poly(gamma-methyl-ε-caprolactone) block copolymers in water and solutions were characterized with cryogenic transmission electron microscopy (cryo-TEM). The dependence of micelle structure on diblock copolymer composition was examined through the systematic variation of the hydrophobic block molecular weight. A continuous evolution of morphology was observed with coexistence of aggregate structures occurring in windows of composition intermediate to that of pure spheres, cylinders and vesicles. A number of heterobifunctional poly(ethylene oxide) polymers were synthesized for the preparation of ligand-functionalized amphiphilic diblock copolymers. The effect of ligand conjugation on block copolymer self-assembly and micelle morphology was also examined. An RGD-containing peptide sequence was efficiently conjugated to a set of well characterized poly(ethylene oxide)-b-poly(butadiene) copolymers. The reported aggregate morphologies of peptide-functionalized polymeric amphiphiles deviated from canonical structures and the micelle clustering, cylinder fragmentation, network formation, and multilayer vesicle generation documented with cryo-TEM was attributed to

  18. Synthesis of Diblock copolymer poly-3-hydroxybutyrate -block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442.

    Science.gov (United States)

    Tripathi, Lakshmi; Wu, Lin-Ping; Chen, Jinchun; Chen, Guo-Qiang

    2012-04-05

    Block polyhydroxyalkanoates (PHA) were reported to be resistant against polymer aging that negatively affects polymer properties. Recently, more and more attempts have been directed to make PHA block copolymers. Diblock copolymers PHB-b-PHHx consisting of poly-3-hydroxybutyrate (PHB) block covalently bonded with poly-3-hydroxyhexanoate (PHHx) block were for the first time produced successfully by a recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. The chloroform extracted polymers were characterized by nuclear magnetic resonance (NMR), thermo- and mechanical analysis. NMR confirmed the existence of diblock copolymers consisting of 58 mol% PHB as the short chain length block with 42 mol% PHHx as the medium chain length block. The block copolymers had two glass transition temperatures (Tg) at 2.7°C and -16.4°C, one melting temperature (Tm) at 172.1°C and one cool crystallization temperature (Tc) at 69.1°C as revealed by differential scanning calorimetry (DSC), respectively. This is the first microbial short-chain-length (scl) and medium-chain-length (mcl) PHA block copolymer reported. It is possible to produce PHA block copolymers of various kinds using the recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. In comparison to a random copolymer poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (P(HB-co-HHx)) and a blend sample of PHB and PHHx, the PHB-b-PHHx showed improved structural related mechanical properties.

  19. Hydrophilic block copolymer-directed growth of lanthanum hydroxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, F.; Sanson, N.; Gerardin, C. [Laboratoire de Materiaux Catalytiques et Catalyse en Chimie Organique, UMR 5618 CNRS-ENSCM-UM1, FR 1878, Institut Gerhardt, 34 - Montpellier (France); Destarac, M. [Centre de Recherches Rhodia Aubervilliers, 93 - Aubervilliers (France)

    2006-03-15

    Stable hairy lanthanum hydroxide nano-particles were synthesized in water by performing hydrolysis and condensation reactions of lanthanum cations in the presence of double hydrophilic poly-acrylic acid-b-polyacrylamide block copolymers (PAA-b-PAM). In the first step, the addition of asymmetric PAA-b-PAM copolymers (M{sub w,PAA} {<=} M{sub w,PAM}) to lanthanum salt solutions, both at pH = 5.5, induces the formation of monodispersed micellar aggregates, which are predominantly isotropic. The core of the hybrid aggregates is constituted of a lanthanum polyacrylate complex whose formation is due to bidentate coordination bonding between La{sup 3+} and acrylate groups, as shown by ATR-FTIR experiments and pH measurements. The size of the micellar aggregates depends on the molecular weight of the copolymer but is independent of the copolymer to metal ratio in solution. In the second step, the hydrolysis of lanthanum ions is induced by addition of a strong base such as sodium hydroxide. Either flocculated suspensions or stable anisotropic or spherical nano-particles of lanthanum hydrolysis products were obtained depending on the metal complexation ratio [acrylate]/[La]. The variation of that parameter also enables the control of the size of the core-corona nano-particles obtained by lanthanum hydroxylation. The asymmetry degree of the copolymer was shown to influence both the size and the shape of the particles. Elongated particles with a high aspect ratio, up to 10, were obtained with very asymmetric copolymers (M{sub w,PAM}/M{sub w,PAA}{>=}10) while shorter rice grain-like particles were obtained with a less asymmetric copolymer. The asymmetry degree also influences the value of the critical metal complexation degree required to obtain stable colloidal suspensions of polymer-stabilized lanthanum hydroxide. (authors)

  20. Poly(ortho-phenylenediamine-co-aniline) based copolymer with improved capacitance

    Science.gov (United States)

    Olmedo-Martínez, Jorge L.; Farías-Mancilla, Bárbara I.; Vega-Rios, Alejandro; Zaragoza-Contreras, E. Armando

    2017-10-01

    A poly(ortho-phenylenediamine-co-aniline) copolymer is synthesized via the oxidative route, using a 1:1 M ratio of aniline to ortho-phenylenediamine (oPDA) and ammonium persulfate as the oxidizing agent. Infrared spectroscopy indicates that the copolymer contains the functional groups typically present in polyaniline and poly(ortho-phenylenediamine); whereas UV-vis-NIR spectroscopy shows that the copolymer adopts a phenazine-type structure. Cyclic voltammetry evidences the copolymer synthesis, as a redox peak at -65 mV, different from those exhibited by polyaniline (160 mV and 600 mV) or poly(o-phenylenediamine) (-240 mV) is observed. Finally, electrochemical impedance spectroscopy and the charge/discharge test provide support to propose the copolymer application in electrodes for supercapacitors.

  1. A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors.

    Science.gov (United States)

    Zhang, Guangzhao; Chen, Yunhua; Deng, Yonghong; Wang, Chaoyang

    2017-10-18

    We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly(ethylene oxide) block (A) and terminal poly(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device.

  2. Biointerfacial impedance characterization of reduced graphene oxide supported carboxyl pendant conducting copolymer based electrode

    International Nuclear Information System (INIS)

    Puri, Nidhi; Niazi, Asad; Srivastava, Avanish Kumar; Rajesh

    2014-01-01

    We report, a comprehensive physical and biointerfacial electrochemical characteristics of electrodeposited poly(pyrrole-co-pyrrolepropylic acid) (PPy-PPa) copolymer film on the reduced graphene oxide (RGO) sheets attached over a silane modified indium-tin-oxide coated glass, for biosensing applications. The highly specific cardiac myoglobin protein antibody, Ab-cMb, has been covalently immobilized on the copolymer film through its pendent carboxyl group by carbodiimide coupling reaction. The factor ‘n’ describing divergence of the system from ideal capacitor characteristics exhibits a low value (n = 0.59) in a constant phase element of the impedance. This low value of ‘n’ showing a porous rough microstructure of PPy-PPa film on RGO exhibiting a diffusive characteristic that has been replaced by dominant charge transfer characteristic (R et ) with n = 0.78 on biomolecular immobilization and subsequent immunoreaction. The bioelectrode exhibits a linear impedance response to human cardiac cMb marker in the range of 10 ng mL −1 to 1 μg mL −1 in phosphate buffer solution (PBS; pH 7.4) at a low frequency region of et sensitivity of 70.30 Ω cm 2 per decade

  3. Poly(ester amide-Poly(ethylene oxide Graft Copolymers: Towards Micellar Drug Delivery Vehicles

    Directory of Open Access Journals (Sweden)

    Gregory J. Zilinskas

    2012-01-01

    Full Text Available Micelles formed from amphiphilic copolymers are promising materials for the delivery of drug molecules, potentially leading to enhanced biological properties and efficacy. In this work, new poly(ester amide-poly(ethylene oxide (PEA-PEO graft copolymers were synthesized and their assembly into micelles in aqueous solution was investigated. It was possible to tune the sizes of the micelles by varying the PEO content of the polymers and the method of micelle preparation. Under optimized conditions, it was possible to obtain micelles with diameters less than 100 nm as measured by dynamic light scattering and transmission electron microscopy. These micelles were demonstrated to encapsulate and release a model drug, Nile Red, and were nontoxic to HeLa cells as measured by an MTT assay. Overall, the properties of these micelles suggest that they are promising new materials for drug delivery systems.

  4. Amphiphilic brushes from metallo-supramolecular block copolymers

    NARCIS (Netherlands)

    Guillet, P.; Fustin, C.A.; Wouters, D.; Höppener, S.; Schubert, U.S.; Gohy, J.M.W.

    2009-01-01

    A novel strategy to control the formation of amphiphilic brushes from metallo-supramol. block copolymers is described. The investigated copolymer consists of a polystyrene block linked to a poly(ethylene oxide) one via a charged bis-terpyridine ruthenium(ii) complex (PS-[Ru]-PEO). The initial

  5. Effect of acid on the aggregation of poly(ethylene xide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers.

    Science.gov (United States)

    Yang, Bin; Guo, Chen; Chen, Shu; Ma, Junhe; Wang, Jing; Liang, Xiangfeng; Zheng, Lily; Liu, Huizhou

    2006-11-23

    The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.

  6. Immunotheranostic Polymersomes Modularly Assembled from Tetrablock and Diblock Copolymers with Oxidation-Responsive Fluorescence.

    Science.gov (United States)

    Du, Fanfan; Liu, Yu-Gang; Scott, Evan Alexander

    2017-10-01

    Intracellular delivery is a key step for many applications in medicine and for investigations into cellular function. This is particularly true for immunotherapy, which often requires controlled delivery of antigen and adjuvants to the cytoplasm of immune cells. Due to the complex responses generated by the stimulation of diverse immune cell populations, it is critical to monitor which cells are targeted during treatment. To address this issue, we have engineered an immunotheranostic polymersome delivery system that fluorescently marks immune cells following intracellular delivery. N -(3-bromopropyl)phthalimide end-capped poly(ethylene glycol)-bl-poly(propylene sulfide) (PEG-PPS-PI) was synthesized by anionic ring opening polymerization and linked with PEG-PPS-NH 2 via a perylene bisimide (PBI) bridge to form a tetrablock copolymer (PEG-PPS-PBI-PPS-PEG). Block copolymers were assembled into polymersomes by thin film hydration in phosphate buffered saline and characterized by dynamic light scattering, cryogenic electron microscopy and fluorescence spectroscopy. Polymersomes were injected subcutaneously into the backs of mice, and draining lymph nodes were extracted for flow cytometric analysis of cellular uptake and disassembly. Modular self-assembly of tetrablock / diblock copolymers in aqueous solutions induced π-π stacking of the PBI linker that both red-shifted and quenched the PBI fluorescence. Reactive oxygen species within the endosomes of phagocytic immune cell populations oxidized the PPS blocks, which disassembled the polymersomes for dequenching and shifting of the PBI fluorescence from 640 nm to 550 nm emission. Lymph node resident macrophages and dendritic cells were found to increase in 550 nm emission over the course of 3 days by flow cytometry. Immunotheranostic polymersomes present a versatile platform to probe the contributions of specific cell populations during the elicitation of controlled immune responses. Flanking PBI with two oxidation

  7. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.

    Science.gov (United States)

    Patel, Shrayesh N; Javier, Anna E; Balsara, Nitash P

    2013-07-23

    Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (σe,ox) increases from 10(-7) S/cm to 10(-4) S/cm. At high oxidation levels, σe,ox approaches 10(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10(-4) to 10(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries.

  8. Raman spectroscopy of 2-hydroxyethyl methacrylate-acrylamide copolymer using gamma irradiation for crosslinking

    International Nuclear Information System (INIS)

    Goheen, Steven C.; Saunders, Rachel M.; Davis, Rachel M.; Harvey, Scott D.; Olsen, Peter C.

    2006-01-01

    A copolymer hydrogel was made by mixing acrylamide and 2-hydroxyethyl methacrylate monomers in water and polymerizing with gamma irradiation. The progress of polymerization and the vibrational structure of the hydrogel was examined using Raman spectroscopy. Raman spectra indicated that the co-polymer has a molecular structure different from polyacrylamide or the individual monomers. The Raman data also indicate the presence of crosslinking at the C=O, NH2 and OH side chains. The spectra further suggest the continuous lengthening of the backbone of the polymers with increasing gamma dose. This is shown as the increase in C-C modes as C=C vibrations decrease. Raman spectra changed most dramatically as the monomer mixture became a gel at a dose of approximately 320 Gy. Spectral differences were subtler with doses exceeding 640 Gy, although chain lengthening continued beyond 1500 Gy. Potential applications of the copolymer hydrogel include reconstructive tissue as well as a standard material for radiation protection dosimetry. Results are discussed in relation to other potential applications of this polymer and dose-dependent changes in the Raman spectrum

  9. Rheological Properties in Aqueous Solution for Hydrophobically Modified Polyacrylamides Prepared in Inverse Emulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Shirley Carro

    2017-01-01

    Full Text Available Inverse emulsion polymerization technique was employed to synthesize hydrophobically modified polyacrylamide polymers with hydrophobe contents near to feed composition. Three different structures were obtained: multisticker, telechelic, and combined. N-Dimethyl-acrylamide (DMAM, n-dodecylacrylamide (DAM, and n-hexadecylacrylamide (HDAM were used as hydrophobic comonomers. The effect of the hydrophobe length of comonomer, the initial monomer, and surfactant concentrations on shear viscosity was studied. Results show that the molecular weight of copolymer increases with initial monomer concentration and by increasing emulsifier concentration it remained almost constant. Shear viscosity measurements results show that the length of the hydrophobic comonomer augments the hydrophobic interactions causing an increase in viscosity and that the polymer thickening ability is higher for combined polymers.

  10. Nanostructures and surface hydrophobicity of self-assembled thermosets involving epoxy resin and poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) amphiphilic diblock copolymer.

    Science.gov (United States)

    Yi, Fangping; Zheng, Sixun; Liu, Tianxi

    2009-02-19

    Poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) (PTFEA-b-PEO) amphiphilic diblock copolymer was synthesized via the reversible addition-fragmentation transfer polymerization of 2,2,2-triffluroethyl acrylate with dithiobenzoyl-terminated poly(ethylene oxide) as a chain-transfer agent. The amphiphilic diblock copolymer was incorporated into epoxy resin to prepare the nanostructured epoxy thermosets. The nanostructures were investigated by means of atomic force microscopy, small-angle X-ray scattering, and dynamic mechanical analysis. In terms of the miscibility of the subchains of the block copolymer with epoxy after and before curing reaction, it is judged that the formation of the nanostructures follows the mechanism of self-assembly. The static contact angle measurements indicate that the nanostructured thermosets containing PTFEA-b-PEO diblock copolymer displayed a significant enhancement in surface hydrophobicity as well as a reduction in surface free energy. The improvement in surface properties was ascribed to the enrichment of the fluorine-containing subchain (i.e., PTFEA block) of the amphiphilic diblock copolymer on the surface of the nanostructured thermosets, which was evidenced by surface atomic force microscopy and energy-dispersive X-ray spectroscopy.

  11. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots

    Science.gov (United States)

    Yoo, Hana; Park, Soojin

    2010-06-01

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm × 5 cm.

  12. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hana; Park, Soojin, E-mail: spark@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Banyeon-ri 100, Ulsan 689-798 (Korea, Republic of)

    2010-06-18

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm x 5 cm.

  13. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    Directory of Open Access Journals (Sweden)

    Yunqi Li

    2016-04-01

    Full Text Available This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially polystyrene-block-poly(2-vinylpyridine-block-poly(ethylene oxide (abbreviated as PS-b-P2VP-b-PEO.

  14. Polyacrylamide polymers derived from acrylonitrile without intermediate isolation

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1977-04-05

    Hydrolyzed and neutralized acrylonitrile is polymerized in solution without isolation to produce a high molecular weight polyacrylamide useful for mobility control in secondary recovery of petroleum. The polyacrylamide optionally may be hydrolyzed, methylolated, and sulfomethylated to further enhance its water-thickening properties. This procedure reduces the cost of making polyacrylamide. (5 claims)

  15. Development of Graft Copolymer Flocculant Based on Acrylamide and Acrylic Acid for the dewatering of coal

    International Nuclear Information System (INIS)

    Mahmoud, G.A.; Abdel Khalek, M.A

    2012-01-01

    Most coal preparation processes were carried out in water medium. The water content of coal product has a negative impact on handling and specific energy value. The moisture content may be attributed to the proportion of fine coal, which presents the greatest dewatering problem. A novel polymeric flocculant has been developed by graft copolymerization of acrylamide (AAm) with acrylic acid (AAc) using gamma irradiation technique. The grafted copol621621ymer P(AAm/AAc) was characterized by Fourier-transform infrared spectroscopy (FTIR), and thermo-gravimetric analysis (TGA). The effects of reaction parameters, such as total absorbed dose, and monomer concentration on grafting yield were investigated. The flocculation performance of the graft copolymer P(AAm/AAc) was investigated in coal suspension. It was observed that the grafting ratio was one of the key factors for the flocculating effects. The copolymers with various grafting ratios showed different flocculating properties. It was found that as the grafting ratio increased, the flocculating effect also increased. The flocculation performance of the grafted copolymer was better than that of the commercial flocculant, poly-acrylamide (Magnafloc 1011).

  16. Incipient microphase separation in short chain perfluoropolyether-block-poly(ethylene oxide) copolymers.

    Science.gov (United States)

    Chintapalli, Mahati; Timachova, Ksenia; Olson, Kevin R; Banaszak, Michał; Thelen, Jacob L; Mecham, Sue J; DeSimone, Joseph M; Balsara, Nitash P

    2017-06-07

    Incipient microphase separation is observed by wide angle X-ray scattering (WAXS) in short chain multiblock copolymers consisting of perfluoropolyether (PFPE) and poly(ethylene oxide) (PEO) segments. Two PFPE-PEO block copolymers were studied; one with dihydroxyl end groups and one with dimethyl carbonate end groups. Despite having a low degree of polymerization (N ∼ 10), these materials exhibited significant scattering intensity, due to disordered concentration fluctuations between their PFPE-rich and PEO-rich domains. The disordered scattering intensity was fit to a model based on a multicomponent random phase approximation to determine the value of the interaction parameter, χ, and the radius of gyration, R g . Over the temperature range 30-90 °C, the values of χ were determined to be very large (∼2-2.5), indicating a high degree of immiscibility between the PFPE and PEO blocks. In PFPE-PEO, due to the large electron density contrast between the fluorinated and non-fluorinated block and the high value of χ, disordered scattering was detected at intermediate scattering angles, (q ∼ 2 nm -1 ) for relatively small polymer chains. Our ability to detect concentration fluctuations was enabled by both a relatively large value of χ and significant scattering contrast.

  17. Structure and Properties of Nanocomposites based on PTT-block-PTMO Copolymer and Graphene Oxide prepared by in Situ Polymerization

    OpenAIRE

    Paszkiewicz, Sandra; Szymczyk, Anna; Špitalský, Zdenko; Mosnáček, Jaroslav; Kwiatkowski, Konrad; Rosłaniec, Zbigniew

    2014-01-01

    Poly(trimethylene terephthalate-block-tetramethylene oxide) (PTT-PTMO) copolymer/graphene oxide nanocomposites were prepared by in situ polymerization. From the SEM and TEM images of PTT-PTMO/GO nanocomposite, it can be seen that GO sheets are clearly well-dispersed in the PTT-PTMO matrix. TEM images also showed that graphene was well exfoliated into individual sheets, suggesting that in situ polymerization is a highly efficient method for preparing nanocomposites. The influence of GO on the ...

  18. Melt-processable, radiation cross-linkable E--CTFE copolymer compositions

    International Nuclear Information System (INIS)

    Robertson, A.B.; Schaffhauser, R.J.

    1976-01-01

    Melt-processable, radiation cross-linkable ethylene/chlorotrifluoroethylene copolymer compositions are provided which contain about 0.1 to 5 percent by weight of the copolymer of a radiation cross-linking promoter, about 0.01 to 5 percent by weight of an anti-oxidant and about 0.1 to 30 precent by weight of an acid scavenger. Such compositions do not give off odors when irradiated to cross-link the copolymer and do not develop bubbles after irradiation. 15 claims, no drawings

  19. New thiol-responsive mono-cleavable block copolymer micelles labeled with single disulfides.

    Science.gov (United States)

    Sourkohi, Behnoush Khorsand; Schmidt, Rolf; Oh, Jung Kwon

    2011-10-18

    Thiol-responsive symmetric triblock copolymers having single disulfide linkages in the middle blocks (called mono-cleavable block copolymers, ss-ABP(2)) were synthesized by atom transfer radical polymerization in the presence of a disulfide-labeled difunctional Br-initiator. These brush-like triblock copolymers consist of a hydrophobic polyacrylate block having pendent oligo(propylene oxide) and a hydrophilic polymethacrylate block having pendent oligo(ethylene oxide). Gel permeation chromatography and (1)H NMR results confirmed the synthesis of well-defined mono-cleavable block copolymers and revealed that polymerizations were well controlled. Because of amphiphilic nature, these copolymers self-assembled to form colloidally stable micelles above critical micellar concentration of 0.032 mg · mL(-1). In response to reductive reactions, disulfides in thiol-responsive micelles were cleaved. Atomic force microscopy and dynamic light scattering analysis suggested that the cleavage of disulfides caused dissociation of micelles to smaller-sized assembled structures in water. Moreover, in a biomedical perspective, the mono-cleavable block copolymer micelles are not cytotoxic and thus biocompatible. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electroblotting from Polyacrylamide Gels.

    Science.gov (United States)

    Goldman, Aaron; Ursitti, Jeanine A; Mozdzanowski, Jacek; Speicher, David W

    2015-11-02

    Transferring proteins from polyacrylamide gels onto retentive membranes is now primarily used for immunoblotting. A second application that was quite common up to about a decade ago was electroblotting of proteins for N-terminal and internal sequencing using Edman chemistry. This unit contains procedures for electroblotting proteins from polyacrylamide gels onto a variety of membranes, including polyvinylidene difluoride (PVDF) and nitrocellulose. In addition to the commonly used tank or wet transfer system, protocols are provided for electroblotting using semidry and dry systems. This unit also describes procedures for eluting proteins from membranes using detergents or acidic extraction with organic solvents for specialized applications. Copyright © 2015 John Wiley & Sons, Inc.

  1. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide

    International Nuclear Information System (INIS)

    Li Jinhuan; Yang Xia; Yu Xiaodan; Xu, Leilei; Kang Wanli; Yan Wenhua; Gao Hongfeng; Liu Zhonghe; Guo Yihang

    2009-01-01

    Rare-earth oxide-doped titania nanocomposites (RE 3+ /TiO 2 , where RE = Eu 3+ , Pr 3+ , Gd 3+ , Nd 3+ , and Y 3+ ) were prepared by a one-step sol-gel-solvothermal method. The products exhibited anatase phase structure, mesoporosity, and interesting surface compositions with three oxygen species and two titanium species. The products were used as the photocatalysts to degrade a partially hydrolysis polyacrylamide (HPAM) under UV-light irradiation, a very useful polymer in oil recovery. For comparison, Degussa P25 and as-prepared pure TiO 2 were also tested under the same conditions. The enhanced photocatalytic activity was obtained on as-prepared Eu 3+ (Gd 3+ , Pr 3+ )/TiO 2 composites, and the reasons were explained. Finally, the degradation pathway of HPAM over the RE 3+ /TiO 2 composite was put forward based on the intermediates produced during the photocatalysis procedure.

  2. Anomalous Micellization of Pluronic Block Copolymers

    Science.gov (United States)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  3. Novel pH-sensitive IPNs of polyacrylamide-g-gum ghatti and sodium alginate for gastro-protective drug delivery.

    Science.gov (United States)

    Boppana, Rashmi; Krishna Mohan, G; Nayak, Usha; Mutalik, Srinivas; Sa, Biswanath; Kulkarni, Raghavendra V

    2015-04-01

    This article reports the development of pH-sensitive interpenetrating polymer network (IPN) microbeads using polyacrylamide-grafted-gum ghatti (PAAm-g-GG) and sodium alginate (SA) for gastro-protective controlled delivery of ketoprofen. We have synthesized PAAm-grafted-GG copolymer under microwave irradiation using cerric ammonium nitrate as reaction initiator; further, the PAAm-g-GG was converted to pH-sensitive copolymer through alkaline hydrolysis. Sophisticated instrumentation techniques were used to characterize PAAm-g-GG. The IPN microbeads of PAAm-g-GG and SA, pre-loaded with ketoprofen were prepared by dual crosslinking using Ca(2+) ions and glutaraldehyde (GA). The IPN microbeads demonstrated excellent pH-sensitive behavior as noted in the pulsatile swelling test and scanning electron microscopy. IPN microbeads also showed larger amount of drug release in buffer solution of pH 7.4 as compared to drug release in solution of pH 1.2. The in vivo pharmacokinetic, pharmacodynamic and stomach histopathology studies conducted on wistar rats confirmed the pH-sensitive controlled release of ketoprofen; IPN microbeads retarded the drug release in stomach resulting in reduced adverse effects of ketoprofen. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Biodegradable copolymers carrying cell-adhesion peptide sequences.

    Science.gov (United States)

    Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek

    2003-01-01

    Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus.

  5. Preparation of gold microparticles using halide ions in bulk block copolymer phases via photoreduction

    International Nuclear Information System (INIS)

    Cha, Sang-Ho; Kim, Ki-Hyun; Lee, Won-Ki; Lee, Jong-Chan

    2009-01-01

    Gold microparticles were prepared from the gold salt in the solid bulk phase of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer via a photoreduction process in the presence of halide ions. The shapes and sizes of the gold microparticles were found to be dependent on the types and amount of halide ions as well as the types of cations used due to the combined effects of the adsorption power and oxidative dissolution ability of the additives on gold surfaces. Gold nanorods were obtained when poly(ethylene oxide) was used instead of the block copolymer. This suggests that the poly(propylene oxide) (PPO) parts in the block copolymer are essential for the formation of gold microparticles, even though the degree of the direct interaction between the PPO blocks and gold salt is not significant. - Graphical abstract: Gold microparticles were successfully prepared using halide ions as additives in the polymeric bulk phase via photoreduction with the glow lamp irradiation.

  6. Synthesis and characterization of sulfonated bromo-poly(2,6-dimethyl-1,4-phenylene oxide)-co-(2,6-diphenyl-1,4-phenylene oxide) copolymer as proton exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Gi; Seo, Dong-Wan; Lim, Young-Don; Jin, Hyun-Mi; Islam Mollah, M.S. [Department of Applied Chemistry, Konkuk University/RIC-ReSEM Chungju, 322 Danwol-dong, Chungbuk 380-701 (Korea, Republic of); Ur, Soon-Chul [Department of Materials Science and Engineering/RIC-ReSEM, Chungju National University, Chungju, Chungbuk 380-702 (Korea, Republic of); Pyun, Sang-Yong [Department of Chemistry, Pukyong National University, Pusan 608-737 (Korea, Republic of); Kim, Whan-Gi, E-mail: wgkim@kku.ac.k [Department of Applied Chemistry, Konkuk University/RIC-ReSEM Chungju, 322 Danwol-dong, Chungbuk 380-701 (Korea, Republic of)

    2010-01-25

    Novel polymer electrolyte membranes containing the sulfonic acid groups attached on polymer backbone and side group simultaneously were synthesized. The bromo-poly(2,6-dimethyl-1,4-phenylene oxide)-co-(2,6-diphenyl-1,4-phenylene oxide) copolymer (BrcoPPO) was prepared by oxidative coupling polymerization with 2,6-dimethyl phenol, 2,6-diphenyl phenol, CuCl(I) and pyridine, and followed by bromination with bromine. Copolymer was maintained in 2,6-diphenyl phenol 10 mol% and 2,6-dimethyl phenol 90 mol%. Sulfonation of BrcoPPO (S-BrcoPPO) was carried out in a chlorobenzene solvent using chlorosulfonic acid. The polymeric membranes were cast from dimethylsulfoxide solution. The membranes were studied by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. S-BrcoPPO membranes exhibited proton conductivities from 2.3 x 10{sup -3} to 1.4 x 10{sup -2} S/cm, water uptake from 7.00 to 49.43%, IEC from 0.58 to 1.38 mequiv./g, methanol permeability from 1.9 x 10{sup -7} to 3.5 x 10{sup -7} cm{sup 2}/S.

  7. Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs.

    Science.gov (United States)

    Worm, Matthias; Kang, Biao; Dingels, Carsten; Wurm, Frederik R; Frey, Holger

    2016-05-01

    Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand." © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effects of nanoparticles on the compatibility of PEO-PMMA block copolymers.

    Science.gov (United States)

    Mu, Dan; Li, Jian-Quan; Li, Wei-Dong; Wang, Song

    2011-12-01

    The compatibility of six kinds of designed poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) copolymers was studied at 270, 298 and 400 K via mesoscopic modeling. The values of the order parameters depended on both the structures of the block copolymers and the simulation temperature, while the values of the order parameters of the long chains were higher than those of the short ones; temperature had a more obvious effect on long chains than on the short ones. Plain copolymers doped with poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA) homopolymer showed different order parameter values. When a triblock copolymer had the same component at both ends and was doped with one of its component polymers as a homopolymer (such as A5B6A5 doped with B6 or A5 homopolymer), the value of its order parameter depended on the simulation temperature. The highest order parameter values were observed for A5B6A5 doped with B6 at 400 K and for A5B6A5 doped with A5 at 270 K. A study of copolymers doped with nanoparticles showed that the mesoscopic phase was influenced by not only the properties of the nanoparticles, such as the size and density, but also the compositions of the copolymers. Increasing the size of the nanoparticles used as a dopant had the most significant effect on the phase morphologies of the copolymers.

  9. Synthesis and characterization of a novel water-soluble cationic diblock copolymer with star conformation by ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuzhao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Miaomiao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); Zheng, Anna [School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Huining, E-mail: hxiao@unb.ca [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada)

    2014-10-01

    A water-soluble cationic diblock copolymer, CD-PAM-b-PMeDMA, was synthesized through atom transfer radical polymerization (ATRP) from a β-cyclodextrin (CD) macroinitiator with 10-active sites (10Br-β-CD). In order to reduce the cytotoxicity of the CD-PAM-b-PMeDMA, biocompatible polyacrylamide (PAM) was first introduced onto the surface of β-CD as a scaffold structure by ATRP using the 10Br-β-CD as a macroinitiator. The reaction conditions of AM were explored and optimized. The ATRP of [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (MeDMA) was also performed to synthesize the second cationic block using the resulting CD-PAM as a macroinitiator. The resulting diblock copolymer shows an increased hydrodynamic radius in aqueous solution with a pretty low concentration compared with β-CD. In addition, it appears a near-uniform coniform after being deposited on mica ascribed to the presence of an asymmetric 10-arm structure. - Highlights: • A 10-arm diblock polymer was prepared by ATRP for the potential use as a non-viral gene delivery. • PAM was first synthesized in a controlled manner considering its biocompatibility. • The hydrodynamic radius of the copolymer in aqueous solution increase to 130 nm from 7.5 nm of CD. • The copolymer appears coniform after deposited on mica surface due to the charge attraction.

  10. CAVITATION PROPERTIES OF BLOCK COPOLYMER STABILIZED PHASE-SHIFT NANOEMULSIONS USED AS DRUG CARRIERS

    OpenAIRE

    RAPOPORT, NATALYA; CHRISTENSEN, DOUGLAS A.; KENNEDY, ANNE M.; NAM, KWEONHO

    2010-01-01

    Cavitation properties of block copolymer stabilized perfluoropentane nanoemulsions have been investigated. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers differing in the structure of the hydrophobic block, poly(ethylene oxide)-co-poly(L-lactide) (PEG-PLLA) and poly(ethylene oxide)-co-polycaprolactone (PEG-PCL). Cavitation parameters were measured in liquid emulsions and gels as a function of ultrasound pressure for unfocused or focused 1-MHz ultrasound. A...

  11. Synthesis and shape control of uniform polymer microparticles by tailored adsorption of poly(ethylene oxide)-b-Poly(ε-caprolactone) copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Acter, Shahinur; Cho, Jang Woo; Kim, Jeong Won; Byun, Aram; Park, Kyoung Ho; Kim, Jin Woong [Hanyang University, Ahnsan (Korea, Republic of)

    2015-05-15

    This paper introduces a straightforward and robust polymerization method for the synthesis of uniform polymer microparticles having controlled surface chemistry as well as tailored particle shapes. Uniform polystyrene (PS) microparticles are produced by dispersion polymerization, in which amphiphilic poly(ethylene oxide)-b-poly(ε-caprolactone) (PEO-b-PCL) copolymers anchor on to the growing polymer particles and stabilize them by steric repulsion. We have observed that, when PEO-b-PCL copolymers are incorporated at the proper concentration range, the total number of particles remains unchanged after the formation of primary particles, which is essential for maintaining size uniformity. Otherwise, nonuniform PS microparticles are produced mainly as a result of the coagulation or secondary formation of particles. To show the diversity of our particle synthesis technology, shape-controlled microparticles, such as dimples and Janus particles, are also produced by using temperature-mediated swelling and phase separation. Finally, we show that PEO-b-PCL copolymers play a key role in regulating the surface wettability of the seed particles, thereby facilitating the formation of anisotropic microparticles.

  12. Lithium-Assisted Copolymerization of CO 2 /Cyclohexene Oxide: A Novel and Straightforward Route to Polycarbonates and Related Block Copolymers

    KAUST Repository

    Zhang, Dongyue

    2016-03-23

    A facile route toward alternating polycarbonates by anionic copolymerization of carbon dioxide (CO2) and cyclohexene oxide (CHO), using lithium halide or alkoxide as initiators and triisobutylaluminum (TiBA) as activator, is reported. α,ω-Heterobifunctional and α,ω-dihydroxypoly(cyclohexene carbonate)s (PCHC) as well as poly(CHC-co-CHO) copolymers with different carbonate composition could also be easily synthesized by adjusting the amount of TiBA or by adding inert lithium salts. The value of this initiating system also resides in the easy access to PSt-b-PCHC (PSt: polystyrene) and PI-b-PCHC (PI: polyisoprene) block copolymers which can be derived by mere one-pot sequential addition of styrene or dienes first and then of CO2 and CHO under the same experimental conditions. © 2016 American Chemical Society.

  13. QbD based synthesis and characterization of polyacrylamide grafted corn fibre gum.

    Science.gov (United States)

    Singh, Akashdeep; Mangla, Bhumika; Sethi, Sheshank; Kamboj, Sunil; Sharma, Radhika; Rana, Vikas

    2017-01-20

    The aim of present investigation was to utilize quality by design approach for the synthesis of polyacrylamide corn fibre gum (PAAm-g-CFG) from corn fibre gum (CFG) by varying concentration of acrylamide and initiator. The spectral analysis (ATR-FTIR, 1 H NMR, DSC, X-ray and Mass spectroscopy) was conducted to assure grafting copolymerization of CFG with acrylamide. The powder flow properties confirm the porous nature of PAAm-g-CFG. The grafted copolymer dispersion showed shear thinning behaviour that follows Herschel Bulkley model. The viscoelastic analysis suggested viscous liquid like nature of PAAm-g-CFG and its viscosity increases with increase in concentration of PAAm-g-CFG. The mucoadhesive strength of synthesized PAAm-g-CFG was found to be higher than moringa oleifera gum, karaya gum, guar gum, xanthan gum, chitosan and gelatin. Further, the results pointed toward enhanced thermal stability of PAAm-g-CFG. Thus, PAAm-g-CFG has a great potential to be used in food and pharmaceutical industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Investigation of Optimum Polymerization Conditions for Synthesis of Cross-Linked Polyacrylamide-Amphoteric Surfmer Nanocomposites for Polymer Flooding in Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    A. N. El-hoshoudy

    2015-01-01

    Full Text Available Currently enhanced oil recovery (EOR technology is getting more attention by many countries since energy crises are getting worse and frightening. Polymer flooding by hydrophobically associated polyacrylamides (HAPAM and its modified silica nanocomposite are a widely implemented technique through enhanced oil recovery (EOR technology. This polymers class can be synthesized by copolymerization of acrylamide (AM, reactive surfmer, functionalized silica nanoparticles, and a hydrophobic cross-linker moiety in the presence of water soluble initiator via heterogeneous emulsion polymerization technique, to form latexes that can be applied during polymer flooding. Chemical structure of the prepared copolymers was proven through different techniques such as Fourier transform infrared spectroscopy (FTIR, and nuclear magnetic spectroscopy (1H&13C-NMR, and molecular weight was measured by gel permeation chromatography. Study of the effects of monomer, surfmer, cross-linker, silica, and initiator concentrations as well as reaction temperature was investigated to determine optimum polymerization conditions through single factor and orthogonal experiments. Evaluation of the prepared copolymers for enhancing recovered oil amount was evaluated by carrying out flooding experiments on one-dimensional sandstone model to determine recovery factor.

  15. Amphiphilic block copolymers for drug delivery.

    Science.gov (United States)

    Adams, Monica L; Lavasanifar, Afsaneh; Kwon, Glen S

    2003-07-01

    Amphiphilic block copolymers (ABCs) have been used extensively in pharmaceutical applications ranging from sustained-release technologies to gene delivery. The utility of ABCs for delivery of therapeutic agents results from their unique chemical composition, which is characterized by a hydrophilic block that is chemically tethered to a hydrophobic block. In aqueous solution, polymeric micelles are formed via the association of ABCs into nanoscopic core/shell structures at or above the critical micelle concentration. Upon micellization, the hydrophobic core regions serve as reservoirs for hydrophobic drugs, which may be loaded by chemical, physical, or electrostatic means, depending on the specific functionalities of the core-forming block and the solubilizate. Although the Pluronics, composed of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), are the most widely studied ABC system, copolymers containing poly(L-amino acid) and poly(ester) hydrophobic blocks have also shown great promise in delivery applications. Because each ABC has unique advantages with respect to drug delivery, it may be possible to choose appropriate block copolymers for specific purposes, such as prolonging circulation time, introduction of targeting moieties, and modification of the drug-release profile. ABCs have been used for numerous pharmaceutical applications including drug solubilization/stabilization, alteration of the pharmacokinetic profile of encapsulated substances, and suppression of multidrug resistance. The purpose of this minireview is to provide a concise, yet detailed, introduction to the use of ABCs and polymeric micelles as delivery agents as well as to highlight current and past work in this area. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association

  16. Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Junfang [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia); Rivero, Mayela [CSIRO Petroleum, PO Box 1130, Bentley, Western Australia, 6102 (Australia); Choi, S K [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia)

    2007-02-14

    We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 A. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added.

  17. Preparations, Properties, and Applications of Periodic Nano Arrays using Anodized Aluminum Oxide and Di-block Copolymer

    Science.gov (United States)

    Noh, Kunbae

    2011-12-01

    Self-ordered arrangements observed in various materials systems such as anodic aluminum oxide, polystyrene nanoparticles, and block copolymer are of great interest in terms of providing new opportunities in nanofabrication field where lithographic techniques are broadly used in general. Investigations on self-assembled nano arrays to understand how to obtain periodic nano arrays in an efficient yet inexpensive way, and how to realize advanced material and device systems thereof, can lead to significant impacts on science and technology for many forefront device applications. In this thesis, various aspects of periodic nano-arrays have been discussed including novel preparations, properties and applications of anodized aluminum oxide (AAO) and PS-b-P4VP (S4VP) di-block copolymer self-assembly. First, long-range ordered AAO arrays have been demonstrated. Nanoimprint lithography (NIL) process allowed a faithful pattern transfer of the imprint mold pattern onto Al thin film, and interesting self-healing and pattern tripling phenomena were observed, which could be applicable towards fabrication of the NIL master mold having highly dense pattern over large area, useful for fabrication of a large-area substrate for predictable positioning of arrayed devices. Second, S4VP diblock copolymer self-assembly and S4VP directed AAO self-assembly have been demonstrated in the Al thin film on Si substrate. Such a novel combination of two dissimilar self-assembly techniques demonstrated a potential as a versatile tool for nanopatterning formation on a Si substrate, capable of being integrated into Si process technology. As exemplary applications, vertically aligned Ni nanowires have been synthesized into an S4VP-guided AAO membrane on a Si substrate in addition to anti-dot structured [Co/Pd]n magnetic multilayer using S4VP self assembly. Third, a highly hexagonally ordered, vertically parallel aluminum oxide nanotube array was successfully fabricated via hard anodization technique

  18. Redox-Stability of Alkoxy-BDT Copolymers and their Use for Organic Bioelectronic Devices

    KAUST Repository

    Giovannitti, Alexander

    2018-02-23

    Organic semiconductors can be employed as the active layer in accumulation mode organic electrochemical transistors (OECTs), where redox stability in aqueous electrolytes is important for long-term recordings of biological events. It is observed that alkoxy-benzo[1,2-b:4,5-b′]dithiophene (BDT) copolymers can be extremely unstable when they are oxidized in aqueous solutions. The redox stability of these copolymers can be improved by molecular design of the copolymer where it is observed that the electron rich comonomer 3,3′-dimethoxy-2,2′-bithiophene (MeOT2) lowers the oxidation potential and also stabilizes positive charges through delocalization and resonance effects. For copolymers where the comonomers do not have the same ability to stabilize positive charges, irreversible redox reactions are observed with the formation of quinone structures, being detrimental to performance of the materials in OECTs. Charge distribution along the copolymer from density functional theory calculations is seen to be an important factor in the stability of the charged copolymer. As a result of the stabilizing effect of the comonomer, a highly stable OECT performance is observed with transconductances in the mS range. The analysis of the decomposition pathway also raises questions about the general stability of the alkoxy-BDT unit, which is heavily used in donor-acceptor copolymers in the field of photovoltaics.

  19. Redox-Stability of Alkoxy-BDT Copolymers and their Use for Organic Bioelectronic Devices

    KAUST Repository

    Giovannitti, Alexander; Thorley, Karl J.; Nielsen, Christian B.; Li, Jun; Donahue, Mary J.; Malliaras, George G.; Rivnay, Jonathan; McCulloch, Iain

    2018-01-01

    Organic semiconductors can be employed as the active layer in accumulation mode organic electrochemical transistors (OECTs), where redox stability in aqueous electrolytes is important for long-term recordings of biological events. It is observed that alkoxy-benzo[1,2-b:4,5-b′]dithiophene (BDT) copolymers can be extremely unstable when they are oxidized in aqueous solutions. The redox stability of these copolymers can be improved by molecular design of the copolymer where it is observed that the electron rich comonomer 3,3′-dimethoxy-2,2′-bithiophene (MeOT2) lowers the oxidation potential and also stabilizes positive charges through delocalization and resonance effects. For copolymers where the comonomers do not have the same ability to stabilize positive charges, irreversible redox reactions are observed with the formation of quinone structures, being detrimental to performance of the materials in OECTs. Charge distribution along the copolymer from density functional theory calculations is seen to be an important factor in the stability of the charged copolymer. As a result of the stabilizing effect of the comonomer, a highly stable OECT performance is observed with transconductances in the mS range. The analysis of the decomposition pathway also raises questions about the general stability of the alkoxy-BDT unit, which is heavily used in donor-acceptor copolymers in the field of photovoltaics.

  20. Morphology and electrical properties of electrochemically synthesized pyrrole–formyl pyrrole copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Gholami, Mehrdad, E-mail: mehrdad897@um.edu.my [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Marvdasht Branch, Islamic Azad University, P.O. Box 465, Marvdasht (Iran, Islamic Republic of); Nia, Pooria Moozarm, E-mail: pooriamn@yahoo.com [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Alias, Yatimah, E-mail: yatimah70@um.edu.my [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2015-12-01

    Graphical abstract: - Highlights: • The (Py–co-FPy) copolymer was synthesized electrochemically. • This copolymer has 1.6 times higher surface coverage compared to polypyrrole. • This copolymer showed 2.5 times lower resistance compared to polypyrrole. • The conjugated structure between Py and FPy causes enhancement of conductivity. • This conducting copolymer has a strong potential to be used in various applications. - Abstract: A direct electrochemical copolymerization of pyrrole–formyl pyrrole (Py–co-FPy) was carried out by oxidative copolymerization of formyl pyrrole and pyrrole in LiClO{sub 4} aqueous solution through galvanostatic method. The (Py–co-FPy) copolymer was characterized using Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FESEM), energy-filtering transmission electron microscope (EFTEM), thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FESEM images showed that the synthesized copolymer had a hollow whelk-like helixes structure, which justifies the enhancement of charge transportation through the copolymer film. Cyclic voltammetry studies revealed that the electrocatalytic activity of synthesized copolymer has improved and the surface coverage in copolymer enhanced 1.6 times compared to polypyrrole alone. Besides, (Py–co-FPy) copolymer showed 2.5 times lower electrochemical charge transfer resistance (R{sub ct}) value in impedance spectroscopy. Therefore, this copolymer has a strong potential to be used in several applications such as sensor applications.

  1. Self-oscillating AB diblock copolymer developed by post modification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Takeshi, E-mail: ueki@cross.t.u-tokyo.ac.jp, E-mail: ryo@cross.t.u-tokyo.ac.jp; Onoda, Michika; Tamate, Ryota; Yoshida, Ryo, E-mail: ueki@cross.t.u-tokyo.ac.jp, E-mail: ryo@cross.t.u-tokyo.ac.jp [Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shibayama, Mitsuhiro [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa, Chiba 277-8581 (Japan)

    2015-06-15

    We prepared AB diblock copolymer composed of hydrophilic poly(ethylene oxide) segment and self-oscillating polymer segment. In the latter segment, ruthenium tris(2,2′-bipyridine) (Ru(bpy){sub 3}), a catalyst of the Belousov-Zhabotinsky reaction, is introduced into the polymer architecture based on N-isopropylacrylamide (NIPAAm). The Ru(bpy){sub 3} was introduced into the polymer segment by two methods; (i) direct random copolymerization (DP) of NIPAAm and Ru(bpy){sub 3} vinyl monomer and (ii) post modification (PM) of Ru(bpy){sub 3} with random copolymer of NIPAAm and N-3-aminopropylmethacrylamide. For both the diblock copolymers, a bistable temperature region (the temperature range; ΔT{sub m}), where the block copolymer self-assembles into micelle at reduced Ru(bpy){sub 3}{sup 2+} state whereas it breaks-up into individual polymer chain at oxidized Ru(bpy){sub 3}{sup 3+} state, monotonically extends as the composition of the Ru(bpy){sub 3} increases. The ΔT{sub m} of the block copolymer prepared by PM is larger than that by DP. The difference in ΔT{sub m} is rationalized from the statistical analysis of the arrangement of the Ru(bpy){sub 3} moiety along the self-oscillating segments. By using the PM method, the well-defined AB diblock copolymer having ΔT{sub m} (ca. 25 °C) large enough to cause stable self-oscillation can be prepared. The periodic structural transition of the diblock copolymer in a dilute solution ([Polymer] = 0.1 wt. %) is closely investigated in terms of the time-resolved dynamic light scattering technique at constant temperature in the bistable region. A macroscopic viscosity oscillation of a concentrated polymer solution (15 wt. %) coupled with the periodic microphase separation is also demonstrated.

  2. Effects of ethylene oxide sterilization on 82: 18 PLLA/PGA copolymer craniofacial fixation plates.

    Science.gov (United States)

    Pietrzak, William S

    2010-01-01

    Bioabsorbable devices are generally susceptible to some form of degradation or alteration of material properties in response to exposure to the terminal sterilization cycle. In addition to affecting the material strength, sterilization can also increase the rate of hydrolysis, both of which can impact clinical performance. The impact of sterilization on the material/device is unpredictable and must be empirically determined. This study examined the effects of ethylene oxide treatment on the material properties of LactoSorb 82:18 poly(L-lactic acid)-poly(glycolic acid) craniofacial plates. Compared with untreated control plates, there was no effect on the initial inherent viscosity (1.3 dL/g), the glass transition temperature (58 degrees C), or on the flexural mechanical properties. Furthermore, there was no effect on the in vitro rate of hydrolysis and mechanical strength loss profile. This provides evidence that the ethylene oxide sterilization cycle is compatible with these copolymer plates and that such treatment should not affect the clinical performance.

  3. ABC triblock copolymer vesicles with mesh-like morphology.

    Science.gov (United States)

    Zhao, Wei; Chen, Dian; Hu, Yunxia; Grason, Gregory M; Russell, Thomas P

    2011-01-25

    Polymer vesicles made from poly(isoprene-b-styrene-b-2-vinyl pyridine) (PI-b-PS-b-P2VP) triblock copolymer confined within the nanopores of an anodic aluminum oxide (AAO) membrane are studied. It was found that these vesicles have well-defined, nanoscopic size, and complex microphase-separated hydrophobic membranes, comprised of the PS and PI blocks, while the coronas are formed by the P2VP block. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the membrane at a well-defined composition of the three blocks that can be tuned by changing the copolymer composition. The nanoscale confinement, copolymer composition, and subtle molecular interactions contribute to the generation of these vesicles with such unusual morphologies.

  4. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2012-10-01

    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  5. Study of the role of β-adrenoceptors in the mechanisms of hemodynamic action and radioprotective activity of 2-methyl-5-vinylpyridine copolymer with 2-methyl-5-vinylpyridinium-N-oxide

    International Nuclear Information System (INIS)

    Korovkina, Eh.P.; Mikhajlov, P.P.; Tsorin, I.B.

    2000-01-01

    The effect of the new water soluble copolymer 2-methyl-5-vinylpyridine with 2-methyl-5-vinylpyridinium-N-oxide on the arterial pressure in dogs and cats is studied; the possibility of modifying the polymer hemodynamical activity under the impact of the β-propranolol blocking is investigated; the effect of the latter one on the copolymer in dogs is evaluated. The therapeutic antiradiation efficiency of the copolymer was judged by the irradiated dogs survival during 45 days. The dogs were subjected to the 137 Cs γ-radiation impact with the dose rate of 153 cGy in the 330 cGy. It is shown that the copolymer causes depression reaction in the anesthetized dogs and cats characteristic for the β-adrenomimetics This effect is leveled by the nonselective β-adrenoblocking - propranolol. The preliminary introduction of propranolol in dogs decreased the therapeutic antiradiation-efficiency of the given copolymer from 68.4 up to 8.3 % [ru

  6. Characterization of Lithium Polysulfide Salts in Homopolymers and Block Copolymers

    Science.gov (United States)

    Wang, Dunyang; Wujcik, Kevin; Balsara, Nitash

    Ion-conducting polymers are important for solid-state batteries due to the promise of better safety and the potential to produce higher energy density batteries. Nanostructured block copolymer electrolytes can provide high ionic conductivity and mechanical strength through microphase separation. One of the potential use of block copolymer electrolytes is in lithium-sulfur batteries, a system that has high theoretical energy density wherein the reduction of sulfur leads to the formation of lithium polysulfide intermediates. In this study we investigate the effect of block copolymer morphology on the speciation and transport properties of the polysulfides. The morphology and conductivities of polystyrene-b-poly(ethylene oxide) (SEO) containing lithium polysulfides were studies using small-angle X-ray scattering and ac impedance spectroscopy. UV-vis spectroscopy is being used to determine nature of the polysulfide species in poly(ethylene oxide) and SEO. Department of Energy, Soft Matter Electron Microscopy Program and Battery Materials Research Program.

  7. Thermal and radiochemical degradation of some PAN copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Jipa, S. [INCDIE, ICPE CA, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); ' Valachia' University of Targoviste, 18-22 Unirii Av., Targoviste 130082 (Romania); Zaharescu, T. [' Valachia' University of Targoviste, 18-22 Unirii Av., Targoviste 130082 (Romania)], E-mail: traian_zaharescu@yahoo.com; Setnescu, R. [INCDIE, ICPE CA, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); ' Valachia' University of Targoviste, 18-22 Unirii Av., Targoviste 130082 (Romania); Dragan, E.S.; Dinu, M.V. [' Petru Poni' Institute of Macromolecular Chemistry, Iasi 700487 (Romania)

    2008-12-01

    Polyacrylonitrile (PAN) and some copolymers of acrylonitrile with divinylbenzene (AN-DVB) were investigated by the characterization of their thermal and radiation stabilities. The contribution of DVB to the thermal stability of PAN by the modification in the amount of unsaturated hydrocarbon between 6 and 20% was revealed by the evaluation of oxidation induction periods and required activation energies. The exposure of these materials to the action of {gamma}-radiation points out the higher stability of copolymers (AN-DVB) in comparison to the relative stability of PAN.

  8. Capacitance properties and structure of electroconducting hydrogels based on copoly(aniline - p-phenylenediamine) and polyacrylamide

    Science.gov (United States)

    Smirnov, Michael A.; Sokolova, Maria P.; Bobrova, Natalya V.; Kasatkin, Igor A.; Lahderanta, Erkki; Elyashevich, Galina K.

    2016-02-01

    Electroconducting hydrogels (EH) based on copoly(aniline - p-phenylenediamine) grafted to the polyacrylamide for the application as pseudo-supercapacitor's electrodes have been prepared. The influence of preparation conditions on the structure and capacitance properties of the systems were investigated: we determined the optimal amount of p-phenylenediamine to obtain the network of swollen interconnected nanofibrils inside the hydrogel which provides the formation of continuous conducting phase. Structure and morphology of the prepared samples were investigated with UV-VIS spectroscopy, scanning electron microscopy (SEM) and wide-angle X-ray diffraction (WAXD). The maximal value of capacitance was 364 F g-1 at 0.2 A g-1. It was shown that the EH samples demonstrate the retention of 50% of their capacity at high current density 16 A g-1. Cycle-life measurements show evidence that capacitance of EH electrodes after 1000 cycles is higher than its initial value for all prepared samples. Changes of the copolymer structure during swelling in water have been studied with WAXD.

  9. Design of block copolymer membranes using segregation strength trend lines

    KAUST Repository

    Sutisna, Burhannudin

    2016-05-18

    Block copolymer self-assembly and non-solvent induced phase separation are now being combined to fabricate membranes with narrow pore size distribution and high porosity. The method has the potential to be used with a broad range of tailor-made block copolymers to control functionality and selectivity for specific separations. However, the extension of this process to any new copolymer is challenging and time consuming, due to the complex interplay of influencing parameters, such as solvent composition, polymer molecular weights, casting solution concentration, and evaporation time. We propose here an effective method for designing new block copolymer membranes. The method consists of predetermining a trend line for the preparation of isoporous membranes, obtained by computing solvent properties, interactions and copolymer block sizes for a set of successful systems and using it as a guide to select the preparation conditions for new membranes. We applied the method to membranes based on poly(styrene-b-ethylene oxide) diblocks and extended it to newly synthesized poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) terpolymers. The trend line method can be generally applied to other new systems and is expected to dramatically shorten the path of isoporous membrane manufacture. The PS-b-P2VP-b-PEO membrane formation was investigated by in situ Grazing Incident Small Angle X-ray Scattering (GISAXS), which revealed a hexagonal micelle order with domain spacing clearly correlated to the membrane interpore distances.

  10. Single-molecule tracking studies of flow-induced microdomain alignment in cylinder-forming polystyrene-poly(ethylene oxide) diblock copolymer films.

    Science.gov (United States)

    Tran-Ba, Khanh-Hoa; Higgins, Daniel A; Ito, Takashi

    2014-09-25

    Flow-based approaches are promising routes to preparation of aligned block copolymer microdomains within confined spaces. An in-depth characterization of such nanoscale morphologies within macroscopically nonuniform materials under ambient conditions is, however, often challenging. In this study, single-molecule tracking (SMT) methods were employed to probe the flow-induced alignment of cylindrical microdomains (ca. 22 nm in diameter) in polystyrene-poly(ethylene oxide) diblock copolymer (PS-b-PEO) films. Films of micrometer-scale thicknesses were prepared by overlaying a benzene solution droplet on a glass coverslip with a rectangular glass plate, followed by solvent evaporation under a nitrogen atmosphere. The microdomain alignment was quantitatively assessed from SMT data exhibiting the diffusional motions of individual sulforhodamine B fluorescent probes that preferentially partitioned into cylindrical PEO microdomains. Better overall microdomain orientation along the flow direction was observed near the substrate interface in films prepared at a higher flow rate, suggesting that the microdomain alignment was primarily induced by shear flow. The SMT data also revealed the presence of micrometer-scale grains consisting of highly ordered microdomains with coherent orientation. The results of this study provide insights into shear-based preparation of aligned cylindrical microdomains in block copolymer films from solutions within confined spaces.

  11. High-concentration graphene dispersion stabilized by block copolymers in ethanol.

    Science.gov (United States)

    Perumal, Suguna; Lee, Hyang Moo; Cheong, In Woo

    2017-07-01

    This article describes a comprehensive study for the preparation of graphene dispersions by liquid-phase exfoliation using amphiphilic diblock copolymers; poly(ethylene oxide)-block-poly(styrene) (PEO-b-PS), poly(ethylene oxide)-block-poly(4-vinylpyridine) (PEO-b-PVP), and poly(ethylene oxide)-block-poly(pyrenemethyl methacrylate) (PEO-b-PPy) with similar block lengths. Block copolymers were prepared from PEO using the Steglich coupling reaction followed by reversible addition-fragmentation chain transfer (RAFT) polymerization. Graphite platelets (G) and reduced graphene oxide (rGO) were used as graphene sources. The dispersion stability of graphene in ethanol was comparatively investigated by on-line turbidity, and the graphene concentration in the dispersions was determined gravimetrically. Our results revealed that the graphene dispersions with PEO-b-PVP were much more stable and included graphene with fewer defects than that with PEO-b-PS or PEO-b-PPy, as confirmed by turbidity and Raman analyses. Gravimetry confirmed that graphene concentrations up to 1.7 and 1.8mg/mL could be obtained from G and rGO dispersions, respectively, using PEO-b-PVP after one week. Distinctions in adhesion forces of PS, VP, PPy block units with graphene surface and the variation in solubility of the block copolymers in ethanol medium significantly affected the stability of the graphene dispersion. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Thin Films of Novel Linear-Dendritic Diblock Copolymers

    Science.gov (United States)

    Iyer, Jyotsna; Hammond, Paula

    1998-03-01

    A series of diblock copolymers with one linear block and one dendrimeric block have been synthesized with the objective of forming ultrathin film nanoporous membranes. Polyethyleneoxide serves as the linear hydrophilic portion of the diblock copolymer. The hyperbranched dendrimeric block consists of polyamidoamine with functional end groups. Thin films of these materials made by spin casting and the Langmuir-Blodgett techniques are being studied. The effect of the polyethylene oxide block size and the number and chemical nature of the dendrimer end group on the nature and stability of the films formed willbe discussed.

  13. S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries

    Science.gov (United States)

    Gracia, Ismael; Ben Youcef, Hicham; Judez, Xabier; Oteo, Uxue; Zhang, Heng; Li, Chunmei; Rodriguez-Martinez, Lide M.; Armand, Michel

    2018-06-01

    Inverse vulcanization copolymers (p(S-DVB)) from the radical polymerization of elemental sulfur and divinylbenzene (DVB) have been studied as cathode active materials in poly(ethylene oxide) (PEO)-based all-solid-state Li-S cells. The Li-S cell comprising the optimized p(S-DVB) cathode (80:20 w/w S/DVB ratio) and lithium bis(fluorosulfonyl)imide/PEO (LiFSI/PEO) electrolyte shows high specific capacity (ca. 800 mAh g-1) and high Coulombic efficiency for 50 cycles. Most importantly, polysulfide (PS) shuttle is highly mitigated due to the strong interactions of PS species with polymer backbone in p(S-DVB). This is demonstrated by the stable cycling of the p(S-DVB)-based cell using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/PEO electrolyte, where successful charging cannot be achieved even at the first cycle with plain elemental S-based cathode material due to the severe PS shuttle phenomenon. These results suggest that inverse vulcanization copolymers are promising alternatives to elemental sulfur for enhancing the electrochemical performance of PEO-based all-solid-state Li-S cells.

  14. Highly CO2-Selective Gas Separation Membranes Based on Segmented Copolymers of Poly(Ethylene oxide) Reinforced with Pentiptycene-Containing Polyimide Hard Segments.

    Science.gov (United States)

    Luo, Shuangjiang; Stevens, Kevin A; Park, Jae Sung; Moon, Joshua D; Liu, Qiang; Freeman, Benny D; Guo, Ruilan

    2016-01-27

    Poly(ethylene oxide) (PEO)-containing polymer membranes are attractive for CO2-related gas separations due to their high selectivity toward CO2. However, the development of PEO-rich membranes is frequently challenged by weak mechanical properties and a high crystallization tendency of PEO that hinders gas transport. Here we report a new series of highly CO2-selective, amorphous PEO-containing segmented copolymers prepared from commercial Jeffamine polyetheramines and pentiptycene-based polyimide. The copolymers are much more mechanically robust than the nonpentiptycene containing counterparts due to the molecular reinforcement mechanism of supramolecular chain threading and interlocking interactions induced by the pentiptycene structures, which also effectively suppresses PEO crystallization leading to a completely amorphous structure even at 60% PEO weight content. Membrane transport properties are sensitively affected by both PEO weight content and PEO chain length. A nonlinear correlation between CO2 permeability with PEO weight content was observed due to the competition between solubility and diffusivity contributions, whereby the copolymers change from being size-selective to solubility-selective when PEO content reaches 40%. CO2 selectivities over H2 and N2 increase monotonically with both PEO content and chain length, indicating strong CO2-philicity of the copolymers. The copolymer film with the longest PEO sequence (PEO2000) and highest PEO weight content (60%) showed a measured CO2 pure gas permeability of 39 Barrer, and ideal CO2/H2 and CO2/N2 selectivities of 4.1 and 46, respectively, at 35 °C and 3 atm, making them attractive for hydrogen purification and carbon capture.

  15. In situ grouting of buried transuranic waste with polyacrylamide

    International Nuclear Information System (INIS)

    Spalding, B.P.; Lee, S.Y.; Farmer, C.D.; Hyder, L.K.; Supaokit, P.

    1987-01-01

    This project is a demonstration and evaluation of the in situ hydrologic stabilization of buried transuranic waste at a humid site via grout injection. Two small trenches, containing buried transuranic waste, were filled with 34.000 L of polyacrylamide grout. Initial field results have indicated that voids within the trenches were totally filled by the grout and that the intratrench hydraulic conductivity was reduced to below field-measurable values. No evidence of grout constituents were observed in twelve perimeter groundwater monitoring wells indicating that grout was contained completely within the two trenches. Polyacrylamide grout was selected for field demonstration over the polyacrylate grout due to its superior performance in laboratory degradation studies. Also supporting the selection of polyacrylamide was the difficulty in controlling the set time of the acrylate polymerization. Based on preliminary degradation monitoring, the polyacrylamide was estimated to have a microbiological half-life of 362 years in the test soil. 15 refs., 9 figs., 12 tabs

  16. In situ grouting of buried transuranic waste with polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, B.P.; Lee, S.Y.; Farmer, C.D.; Hyder, L.K.; Supaokit, P.

    1987-01-01

    This project is a demonstration and evaluation of the in situ hydrologic stabilization of buried transuranic waste at a humid site via grout injection. Two small trenches, containing buried transuranic waste, were filled with 34.000 L of polyacrylamide grout. Initial field results have indicated that voids within the trenches were totally filled by the grout and that the intratrench hydraulic conductivity was reduced to below field-measurable values. No evidence of grout constituents were observed in twelve perimeter groundwater monitoring wells indicating that grout was contained completely within the two trenches. Polyacrylamide grout was selected for field demonstration over the polyacrylate grout due to its superior performance in laboratory degradation studies. Also supporting the selection of polyacrylamide was the difficulty in controlling the set time of the acrylate polymerization. Based on preliminary degradation monitoring, the polyacrylamide was estimated to have a microbiological half-life of 362 years in the test soil. 15 refs., 9 figs., 12 tabs.

  17. A smart pH responsive graphene/polyacrylamide complex via noncovalent interaction

    International Nuclear Information System (INIS)

    Ren Lulu; Liu Tianxi; Guo Juan; Guo Shuzhong; Wang Xiaoyan; Wang Weizhi

    2010-01-01

    We report that the graphene sheets can be stably dispersed in water by hydrophobic interaction with polyacrylamide. Most interestingly, the resultant graphene-polyacrylamide complexes show a reversible pH responsive property although polyacrylamide itself does not possess such characteristics. This method opens up novel opportunities for the potential applications of graphene in intelligent sensors, biology, medicine, nanoelectronics and other relevant areas.

  18. Influence of chemical crosslinks on the elastic behavior of segmented block copolymers

    NARCIS (Netherlands)

    van der Schuur, J.M.; Gaymans, R.J.

    2005-01-01

    Polyether(ester–amide)s (PEEA) segmented block copolymers with di- and tri-functional poly(propylene oxide)s and amide segments were synthesized and the elastic properties studied. The difunctional polyether used had a molecular weight of 2300 g/mol end capped with 20 wt% ethylene oxide. The

  19. Petroleum recovery process utilizing formaldehyde-sulfite-reacted polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-09-25

    Micellar slugs followed by thickened water floods were injected into Berea cores (20.4 percent porosity, 398.4 md permeability, see Patent 3,692,113 for pretreatment) for enhanced oil recovery. About 61.1 percent residual oil was produced when the polymer in the thickened water was sulfomethylated hydrolyzed polyacrylamide. However, use of the conventional unhydrolyzed polyacrylamide recovered only 27.7 percent residual oil.

  20. Preparation and Properties of Triethoxyvinylsilane-Modified Styrene - Butyl Acrylate Emulsion Copolymers

    OpenAIRE

    NAGHASH, Hamid Javaherian; KARIMZADEH, Akram; MOMENI, Ahmad Reza; MASSAH, Ahmad Reza; ALIAN, Hamid

    2014-01-01

    The copolymers of triethoxyvinylsilane (TEVS) with styrene (St), butyl acrylate (BA), and methacrylic acid (MAA) were prepared by emulsion polymerization. The copolymerization was carried out by using auxiliary agents at 90 °C in the presence of potassium peroxodisulfate (KPS) as the initiator. Nonylphenol ethylene oxide -- 40 units (NP-40) and sodium lauryl sulfoacetate (SLSA) were used as nonionic and anionic emulsifiers, respectively. The resulting copolymers were characterized b...

  1. Effect of poly(ethylene oxide) homopolymer and two different poly(ethylene oxide-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers on morphological, optical, and mechanical properties of nanostructured unsaturated polyester.

    Science.gov (United States)

    Builes, Daniel H; Hernández-Ortiz, Juan P; Corcuera, Ma Angeles; Mondragon, Iñaki; Tercjak, Agnieszka

    2014-01-22

    Novel nanostructured unsaturated polyester resin-based thermosets, modified with poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and two poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymers (BCP), were developed and analyzed. The effects of molecular weights, blocks ratio, and curing temperatures on the final morphological, optical, and mechanical properties were reported. The block influence on the BCP miscibility was studied through uncured and cured mixtures of unsaturated polyester (UP) resins with PEO and PPO homopolymers having molecular weights similar to molecular weights of the blocks of BCP. The final morphology of the nanostructured thermosetting systems, containing BCP or homopolymers, was investigated, and multiple mechanisms of nanostructuration were listed and explained. By considering the miscibility of each block before and after curing, it was determined that the formation of the nanostructured matrices followed a self-assembly mechanism or a polymerization-induced phase separation mechanism. The miscibility between PEO or PPO blocks with one of two phases of UP matrix was highlighted due to its importance in the final thermoset properties. Relationships between the final morphology and thermoset optical and mechanical properties were examined. The mechanisms and physics behind the morphologies lead toward the design of highly transparent, nanostructured, and toughened thermosetting UP systems.

  2. Controlled Synthesis of AB2 amphiphilic triarm star-shaped block copolymers by ring-opening polymerization

    OpenAIRE

    Petrova, Svetla; Riva, Raphaël; Jérôme, Christine; Lecomte, Philippe; Mateva, Rosa

    2009-01-01

    This paper describes the synthesis of a novel amphiphilic AB2 triarm star-shaped copolymer with A = non-toxic and biocompatible hydrophilic poly(ethylene oxide) (PEO) and B = biodegradable and hydrophobic poly(ε-caprolactone) (PCL). A series of AB2 triarm star-shaped copolymers with different molecular weights for the PCL block were successfully synthesized by a three-step procedure. α-methoxy-ω-epoxy-poly(ethylene oxide) (PEO-epoxide) was first synthesized by the nucleophilic substitution of...

  3. Encapsulation and release by star-shaped block copolymers as unimolecular nanocontainers

    NARCIS (Netherlands)

    Kul, D.; Renterghem, van L.M.; Meier, M.A.R.; Strandman, S.; Tenhu, H.; Yilmaz, S.S.; Schubert, U.S.; Du Prez, F.E.

    2008-01-01

    Five-arm star-shaped poly(ethylene oxide) (PEO) with terminal bromide groups was used as a macroinitiator for the atom transfer radical polymerization of tert-butyl acrylate (tBA), resulting in five-arm star-shaped poly(ethylene oxide)-block-poly(tert-butyl acrylate) block copolymers. The

  4. Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene

    International Nuclear Information System (INIS)

    Nie Guangming; Qu Liangyan; Xu Jingkun; Zhang Shusheng

    2008-01-01

    The copolymerization of 5-cyanoindole (CNIn) and 3,4-ethylenedioxythiophene (EDOT) was successfully performed electrochemically in acetonitrile containing tetrabutylammonium tetrafluoroborate by direct oxidation of monomer mixtures. The electrochemical properties of the copolymers were studied by cyclic voltammetry. The influence of applied polymerization potential on the synthesis of copolymer was investigated. This novel copolymer owns the advantages of poly(5-cyanoindole) (PCNIn) and poly(3,4-ethylenedioxythiophene) (PEDOT), i.e., good redox activity, good thermal stability and high conductivity. The copolymer was soluble in dimethyl sulfoxide. The fluorescence spectra indicate that the copolymer is a good blue-light emitter. The structure and morphology of the copolymers were investigated by UV-vis, infrared spectroscopy, 1 H NMR spectra and scanning electron microscopy (SEM), respectively

  5. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    Science.gov (United States)

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due primarily to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 ± 0.01) × 10-4 cm2/Vs in 40 mM Tris-acetate-EDTA buffer at 20°C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration. PMID:19517510

  6. Block Copolymers: Synthesis and Applications in Nanotechnology

    Science.gov (United States)

    Lou, Qin

    ring-opening crosslinking and can act as a negative-tone photoresist. The PGMA-b-PS thin films were also studied for phase separation with ˜25 nm patterns using transmission electron microscopy (TEM). Poly(styrene-block-4-vinyl pyridine) (PS-b-P4VP) block copolymer thin films are shown to form perpendicular cylinder phase separated structures, and these may be used to template the formation of ordered titania nanostructures with sub-50 nm diameters on either silicon or indium tin oxide (ITO) substrates. A study of the mechanism of TiO2 formation within the P4VP cylinder phase was developed and tested. It was found that the titania nanostructure morphology is affected by pH and deposition temperatures, and successful deposition required the cross-linking of the P4VP phase in order to obtain individual nanostructures.

  7. Investigating self-assembly and metal nanoclusters in aqueous di-block copolymers solutions

    CERN Document Server

    Lo Celso, F; Triolo, R; Triolo, A; Strunz, P; Bronstein, L; Zwanziger, J; Lin, J S

    2002-01-01

    Self-assembling properties of di-block copolymers/ surfactant hybrids in aqueous solution can be exploited to obtain metal nanoparticles stable dispersion. Results will be presented here for polystyrene-block-poly(ethylene oxide) solutions. A SANS structural investigation has been performed over different molecular weights of both hydrophilic and hydrophobic block, by varying temperature and concentration of the copolymer. A SAXS characterization of micellar systems containing Pt nanoparticles is reported. (orig.)

  8. Substrate tolerant direct block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars

    2016-01-01

    Block copolymer (BC) self-assembly constitutes a powerful platform for nanolithography. However, there is a need for a general approach to BC lithography that critically considers all the steps from substrate preparation to the final pattern transfer. We present a procedure that significantly sim...... plasma treatment enables formation of the oxidized PDMS hard mask, PS block removal and polymer or graphene substrate patterning....

  9. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles.

    Science.gov (United States)

    Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying

    2015-04-14

    Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.

  10. Structural characterization of Poly aniline blended with polyacrylamide

    International Nuclear Information System (INIS)

    Fayek, S.A.; El-Sayed, S.M.; Sayed, W.M.

    2007-01-01

    Poly aniline / polyacrylamide blends in presence of different catalysts were prepared. X-ray diffraction studies reveal that the samples produced are crystalline. Optical gap of the blend in the presence of NaCIO 4 used as a catalyst is greater than that in the presence of (NH 4 ) 2 S 2 O 8 as a catalyst. The structure of polyacrylamide (PAM) blended with poly aniline (PANI) were investigated by infrared spectroscopy, Grain size was identified using scanning electron microscopy [SEM

  11. Synthesis and self-assembling of responsive polysaccharide-based copolymers in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Nivia do N.; Balaban, Rosangela de C. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Halila, Sami; Borsali, Redouane, E-mail: borsali@cermav.cnrs.fr, E-mail: halila@cermav.cnrs.fr [Centre de Recherche sur les Macromolecules Vegetales (CERMAV), Grenoble (France)

    2015-07-01

    This work reports the synthesis and the thermoresponsive self-assembly behavior of carboxymethylcellulose-g-JeffamineM2070 and carboxymethylcellulose-g-JeffamineM600 copolymers in aqueous media. They were prepared through the grafting of two different types of amino-terminated poly(ethylene oxide-co-propylene oxide) chains onto the carboxylate groups of carboxymethylcellulose, by using water-soluble carbodiimide derivative and N-hydroxysuccinimide as coupling reagents. The grafting efficiency was confirmed by infrared and the degree of substitution by {sup 1}H NMR integrations. The salt effect on cloud point temperature was evaluated into different solvents (Milli-Q water, 0.5M NaCl, synthetic sea water (SSW) and 0.5M K{sub 2}CO{sub 3}) by UV-Vis and dynamic light scattering (DLS) measurements. Both copolymers showed lower cloud point temperature in 0.5M K2CO3 than in 0.5M NaCl and in SSW, which was attributed to the higher ionic strength for K{sub 2}CO{sub 3} combined to the ability of CO{sub 3}{sup 2-} to decrease polymer-water interactions. Copolymers chains displayed higher hydrodynamic radii than CMC precursor at 25 and 60 °C in saline solutions, and self-associations changed as a function of the environment and copolymer composition. (author)

  12. Synthesis and self-assembling of responsive polysaccharide-based copolymers in aqueous media

    International Nuclear Information System (INIS)

    Marques, Nivia do N.; Balaban, Rosangela de C.; Halila, Sami; Borsali, Redouane

    2015-01-01

    This work reports the synthesis and the thermoresponsive self-assembly behavior of carboxymethylcellulose-g-JeffamineM2070 and carboxymethylcellulose-g-JeffamineM600 copolymers in aqueous media. They were prepared through the grafting of two different types of amino-terminated poly(ethylene oxide-co-propylene oxide) chains onto the carboxylate groups of carboxymethylcellulose, by using water-soluble carbodiimide derivative and N-hydroxysuccinimide as coupling reagents. The grafting efficiency was confirmed by infrared and the degree of substitution by "1H NMR integrations. The salt effect on cloud point temperature was evaluated into different solvents (Milli-Q water, 0.5M NaCl, synthetic sea water (SSW) and 0.5M K_2CO_3) by UV-Vis and dynamic light scattering (DLS) measurements. Both copolymers showed lower cloud point temperature in 0.5M K2CO3 than in 0.5M NaCl and in SSW, which was attributed to the higher ionic strength for K_2CO_3 combined to the ability of CO_3"2"- to decrease polymer-water interactions. Copolymers chains displayed higher hydrodynamic radii than CMC precursor at 25 and 60 °C in saline solutions, and self-associations changed as a function of the environment and copolymer composition. (author)

  13. Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging.

    Science.gov (United States)

    Tähkä, Sari; Laiho, Ari; Kostiainen, Mauri A

    2014-03-03

    Superparamagnetic iron oxide nanoparticles (SPIONs) can be used as efficient transverse relaxivity (T2 ) contrast agents in magnetic resonance imaging (MRI). Organizing small (Doxide) diblock copolymer (P2QVP-b-PEO) to mediate the self-assembly of protein-cage-encapsulated iron oxide (γ-Fe2 O3 ) nanoparticles (magnetoferritin) into stable PEO-coated clusters. This approach relies on electrostatic interactions between the cationic N-methyl-2-vinylpyridinium iodide block and magnetoferritin protein cage surface (pI≈4.5) to form a dense core, whereas the neutral ethylene oxide block provides a stabilizing biocompatible shell. Formation of the complexes was studied in aqueous solvent medium with dynamic light scattering (DLS) and cryogenic transmission electron microcopy (cryo-TEM). DLS results indicated that the hydrodynamic diameter (Dh ) of the clusters is approximately 200 nm, and cryo-TEM showed that the clusters have an anisotropic stringlike morphology. MRI studies showed that in the clusters the longitudinal relaxivity (r1 ) is decreased and the transverse relaxivity (r2 ) is increased relative to free magnetoferritin (MF), thus indicating that clusters can provide considerable contrast enhancement. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Acute toxicity of polyacrylamide flocculants to early life stages of freshwater mussels

    Science.gov (United States)

    Buczek, Sean B.; Cope, W. Gregory; McLaughlin, Richard A.; Kwak, Thomas J.

    2017-01-01

    Polyacrylamide has become an effective tool for reducing construction-related suspended sediment and turbidity, which are considered to have significant adverse impacts on aquatic ecosystems and are a leading cause of the degradation of North American streams and rivers. However, little is known about the effects of polyacrylamide on many freshwater organisms, and prior to the present study, no information existed on the toxicity of polyacrylamide compounds to native freshwater mussels (family Unionidae), one of the most imperiled faunal groups globally. Following standard test guidelines, we exposed juvenile mussels (test duration 96 h) and glochidia larvae (test duration 24 h) to 5 different anionic polyacrylamide compounds and 1 non-ionic compound. Species tested included the yellow lampmussel (Lampsilis cariosa), an Atlantic Slope species that is listed as endangered in North Carolina; the Appalachian elktoe (Alasmidonta raveneliana), a federally endangered Interior Basin species; and the washboard (Megalonaias nervosa), a common Interior Basin species. We found that median lethal concentrations (LC50s) of polyacrylamide ranged from 411.7 to >1000 mg/L for glochidia and from 126.8 to >1000 mg/L for juveniles. All LC50s were orders of magnitude greater (2–3) than concentrations typically recommended for turbidity control (1–5 mg/L), regardless of their molecular weight or charge density. The results demonstrate that the polyacrylamide compounds tested were not acutely toxic to the mussel species and life stages tested, indicating minimal risk of short-term exposure from polyacrylamide applications in the environment. However, other potential uses of polyacrylamide in the environment (e.g., wastewater treatment, paper processing, mining, algae removal) and their chronic or sublethal effects remain uncertain and warrant additional investigation.

  15. Copolymer adsorption and the effect on colloidal stability

    NARCIS (Netherlands)

    Bijsterbosch, H.D.

    1998-01-01

    The main aim of the work described in this thesis is to study the effect of different types of copolymers on the stability of aqueous oxide dispersions. Such dispersions are a major component in water-borne paints. In order to obtain a better insight in steric stabilisation we first investigated the

  16. Synthesis and characterization of high molecular weight hydrophobically modified polyacrylamide nanolatexes using novel nonionic polymerizable surfactants

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2013-12-01

    Full Text Available In this article, nine hydrophobically modified polyacrylamides (HM-PAM nanolatexes, were synthesized by copolymerizing the acrylamide monomer and novel polymerizable surfactants (surfmers. The reaction was carried out by inverse microemulsion copolymerization technique. The copolymerization was initiated by redox initiators composed of potassium peroxodisulphate and sodium bisulfite. The emulsion was stabilized using mixed tween 85 and span 80 as nonionic emulsifiers. The prepared HM-PAMs were classified into three groups according to the surfmers used in the copolymerization. The chemical structures of the prepared HM-PAMs were confirmed by FT-IR, 1H NMR and 13C NMR. The thermal properties were estimated with the thermal gravimetric analysis (TGA. The size and morphology of the prepared latexes were investigated by the dynamic light scattering (DLS and the High Resolution Transmission Electron Microscope (HRTEM. Finally, the molecular weights of the prepared copolymers were determined by the GPC and the viscosity average molecular weight method. They were situated between 1.58 × 106 and 0.89 × 106.

  17. Effects of supported metallocene catalyst active center multiplicity on antioxidant-stabilized ethylene homo- and copolymers

    KAUST Repository

    Atiqullah, Muhammad

    2014-10-09

    © 2014 Akadémiai Kiadó, Budapest, Hungary. A silica-supported bis(n-butylcyclopentadienyl) zirconium dichloride [( n BuCp)2ZrCl2] catalyst was synthesized. This was used to prepare an ethylene homopolymer and an ethylene-1-hexene copolymer. The active center multiplicity of this catalyst was modeled by deconvoluting the copolymer molecular mass distribution and chemical composition distribution. Five different active site types were predicted, which matched the successive self-nucleation and annealing temperature peaks. The thermo-oxidative melt stability, with and without Irganox 1010 and Irgafos 168, of the above polyethylenes was investigated using nonisothermal differential scanning calorimetric (DSC) experiments at 150 °C. This is a temperature that ensures complete melting of the samples and avoids the diffusivity of oxygen to interfere into polyethylene crystallinity and its thermo-oxidative melt degradation. The oxidation parameters such as onset oxidation temperature, induction period, protection factor, and S-factor were determined by combining theoretical modeling with the DSC experiments. Subsequently, these findings were discussed considering catalyst active center multiplicity and polymer microstructure, particularly average ethylene sequence length. Several insightful results, which have not been reported earlier in the literature, were obtained. The antioxidant effect, for each polymer, varied as (Irganox + Irgafos) ≈ Irganox > Irgafos > Neat polymer. The as-synthesized homopolymer turned out to be almost twice as stable as the corresponding copolymer. The antioxidant(s) in the copolymer showed higher antioxidant effectiveness (AEX) than those in the homopolymer. Irganox exhibited more AEX than Irgafos. To the best of our knowledge, such findings have not been reported earlier in the literature. However, mixed with Irganox or Irgafos, their melt oxidation stability was comparable. The homopolymer, as per the calculated S-factor, showed Irganox

  18. Phase behavior in blends of ethylene oxide-propylene oxide copolymer and poly(ether sulfone) studied by modulated-temperature DSC and NMR relaxometry.

    Science.gov (United States)

    Van Lokeren, Luk; Gotzen, Nicolaas-Alexander; Pieters, Ronny; Van Assche, Guy; Biesemans, Monique; Willem, Rudolph; Van Mele, Bruno

    2009-01-01

    The state diagram of a blend consisting of a copolymer containing ethylene oxide and propylene oxide, P(EO-ran-PO), and poly(ether sulfone), PES, is constructed by using modulated-temperature differential scanning calorimetry (MTDSC), T(2) NMR relaxometry, and light scattering. The apparent heat capacity signal in MTDSC is used for the characterization of polymer miscibility and morphology development. T(2) NMR relaxometry is used to detect the onset of phase separation, which is in good agreement with the onset of phase separation in the apparent heat capacity from MTDSC and the cloud-point temperature as determined from light scattering. The coexistence curve can be constructed from T(2) values at various temperatures by using a few blends with well-chosen compositions. These T(2) values also allow the detection of the boundary between the demixing zones with and without interference of partial vitrification and are in good agreement with stepwise quasi-isothermal MTDSC heat capacity measurements. Important interphases are detected in the heterogeneous P(EO-ran-PO)/PES blends.

  19. Synthesis and characterization of novel organotin carboxylate maleimide monomers and copolymers

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Two novel tributyltin carboxylate maleimide monomers, tributyltin(maleimidoacetate and tributyltin(4-maleimidobenzoate, were synthesized by condensation reaction of maleimidoacetic acid or 4-maleimidobenzoic acid with bis(tributyltin oxide. Copolymerization of these monomers with styrene was carried in dioxane at 70°C using asobisisobutyronitrile as free radical initiator. The structures of monomers and copolymers were confirmed by FT-IR (Fourier Transform Infrared, 1H and 13C NMR (nuclear magnetic resonance spectroscopy and elemental analysis. The copolymers were characterized by solubility and thermal analysis.

  20. [Discrimination of types of polyacrylamide based on near infrared spectroscopy coupled with least square support vector machine].

    Science.gov (United States)

    Zhang, Hong-Guang; Yang, Qin-Min; Lu, Jian-Gang

    2014-04-01

    In this paper, a novel discriminant methodology based on near infrared spectroscopic analysis technique and least square support vector machine was proposed for rapid and nondestructive discrimination of different types of Polyacrylamide. The diffuse reflectance spectra of samples of Non-ionic Polyacrylamide, Anionic Polyacrylamide and Cationic Polyacrylamide were measured. Then principal component analysis method was applied to reduce the dimension of the spectral data and extract of the principal compnents. The first three principal components were used for cluster analysis of the three different types of Polyacrylamide. Then those principal components were also used as inputs of least square support vector machine model. The optimization of the parameters and the number of principal components used as inputs of least square support vector machine model was performed through cross validation based on grid search. 60 samples of each type of Polyacrylamide were collected. Thus a total of 180 samples were obtained. 135 samples, 45 samples for each type of Polyacrylamide, were randomly split into a training set to build calibration model and the rest 45 samples were used as test set to evaluate the performance of the developed model. In addition, 5 Cationic Polyacrylamide samples and 5 Anionic Polyacrylamide samples adulterated with different proportion of Non-ionic Polyacrylamide were also prepared to show the feasibilty of the proposed method to discriminate the adulterated Polyacrylamide samples. The prediction error threshold for each type of Polyacrylamide was determined by F statistical significance test method based on the prediction error of the training set of corresponding type of Polyacrylamide in cross validation. The discrimination accuracy of the built model was 100% for prediction of the test set. The prediction of the model for the 10 mixing samples was also presented, and all mixing samples were accurately discriminated as adulterated samples. The

  1. One step electrosynthesis of polyacrylamide crosslinked by reduced graphene oxide and its application in the simultaneous determination of dopamine and uric acid

    International Nuclear Information System (INIS)

    Yang, Yu Jun

    2014-01-01

    Polyacrylamide (PAM)/reduced graphene oxide (rGO) nanocomposite (PAM/rGO) with rGO nanosheets as cross-linkers were synthesized via electropolymerizing acrylamide in an aqueous suspension of GO containing sodium nitrate and potassium persulfate. The PAM/rGO was characterized with X-ray diffraction (XRD), Fourier transfer infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). XRD patterns of the PAM/rGO indicated that rGO was fully exfoliated into individual sheets in the polymer matrix. SEM study exhibits the highly uniform coverage of PAM/rGO membrane on the GCE and its fibrous nanostructure. The electrochemical characteristics of the PAM/rGO modified glassy carbon electrode (GCE) were investigated with cyclic voltammetry (CV), suggesting the extraordinary electrocatalytic effect of PAM/rGO/GCE towards the electro-oxidation of UA and DA. The PAM/rGO/GCE behaved linearly to DA and UA in the concentration range of 3 × 10 −7 to 5 × 10 −5 M and 1 × 10 −6 to 5 × 10 −5 M with a detection limit of 1 × 10 −7 M and 5 × 10 −7 M, respectively. The proposed method was successfully utilized for simultaneous determination of UA and DA in real samples

  2. Self-assembly in poly(dimethylsiloxane)-poly(ethylene oxide) block copolymer template directed synthesis of Linde type A zeolite.

    Science.gov (United States)

    Bonaccorsi, Lucio; Calandra, Pietro; Kiselev, Mikhail A; Amenitsch, Heinz; Proverbio, Edoardo; Lombardo, Domenico

    2013-06-11

    We describe the hydrothermal synthesis of zeolite Linde type A (LTA) submicrometer particles using a water-soluble amphiphilic block copolymer of poly(dimethylsiloxane)-b-poly(ethylene oxide) as a template. The formation and growth of the intermediate aggregates in the presence of the diblock copolymer have been monitored by small-angle X-ray scattering (SAXS) above the critical micellar concentration at a constant temperature of 45 °C. The early stage of the growth process was characterized by the incorporation of the zeolite LTA components into the surface of the block copolymer micellar aggregates with the formation of primary units of 4.8 nm with a core-shell morphology. During this period, restricted to an initial time of 1-3 h, the core-shell structure of the particles does not show significant changes, while a subsequent aggregation process among these primary units takes place. A shape transition of the SAXS profile at the late stage of the synthesis has been connected with an aggregation process among primary units that leads to the formation of large clusters with fractal characteristics. The formation of large supramolecular assemblies was finally verified by scanning electron microscopy, which evidenced the presence of submicrometer aggregates with size ranging between 100 and 300 nm, while X-ray diffraction confirmed the presence of crystalline zeolite LTA. The main finding of our results gives novel insight into the mechanism of formation of organic-inorganic mesoporous materials based on the use of a soft interacting nanotemplate as well as stimulates the investigation of alternative protocols for the synthesis of novel hybrid materials with new characteristics and properties.

  3. The effect of salt on the morphologies of compositionally asymmetric block copolymer electrolytes

    Science.gov (United States)

    Loo, Whitney; Maslyn, Jacqueline; Oh, Hee Jeung; Balsara, Nitash

    Block copolymer electrolytes are promising for applications in lithium metal solid-state batteries. Due to their ability to microphase separate into distinct morphologies, their ion transport and mechanical properties can be decoupled. The addition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt to poly(styrene)-block-poly(ethylene oxide) (SEO) has been shown to increase microphase separation in symmetric block copolymer systems due to an increase in the effective interaction parameter (χeff) ; however the effect of block copolymer compositional asymmetry is not well-understood. The effect of compositional asymmetry on polymer morphology was investigated through small and wide angle X-ray scattering (SAXS/WAXS). The effective Flory-Huggins interaction parameter was extracted from the scattering profiles in order to construct a phase diagram to demonstrate the effect of salt and compositional asymmetry on block copolymer morphology.

  4. Structural investigation on gamma-irradiated polyacrylamide ...

    Indian Academy of Sciences (India)

    Small-angle neutron scattering (SANS) and ultraviolet (UV)–visible spectroscopictechniques are used to investigate the microstructural changes in polyacrylamide (PAAm) hydrogels on gamma irradiation. SANS measurements have revealed the presence of inhomogeneities in nanometre scale and reduction of their size ...

  5. Hollow carbon nanospheres using an asymmetric triblock copolymer structure directing agent.

    Science.gov (United States)

    Li, Yunqi; Tan, Haibo; Salunkhe, Rahul R; Tang, Jing; Shrestha, Lok Kumar; Bastakoti, Bishnu Prasad; Rong, Hongpan; Takei, Toshiaki; Henzie, Joel; Yamauchi, Yusuke; Ariga, Katsuhiko

    2016-12-20

    We introduce a simple method to prepare hollow carbon nanospheres (HCNs) by using triblock copolymer poly(styrene-b-2-vinylpyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) micelles as a new class of soft-templates. Simply by changing the solvent we can prepare ultra-small sized micelles of the triblock copolymer PS-b-P2VP-b-PEO soft template to obtain HCNs with ultra-small diameters (43 nm) and hollow cores (19 nm). Furthermore, we use these HCNs to make electric double-layer capacitors (EDLCs) that exhibit superior performance.

  6. Living cationic polymerization and polyhomologation: an ideal combination to synthesize functionalized polyethylene–polyisobutylene block copolymers

    KAUST Repository

    Zhang, Hefeng

    2015-12-17

    A series of hydroxyl-terminated polyisobutylene-b-polyethylene (PIB-b-PE-OH) copolymers were synthesized by combining living cationic polymerization and polyhomologation. Allyl-terminated PIBs, synthesized by living cationic polymerization, were hydroborated with BH3·THF to produce 3-arm boron-linked stars, PIB3B, which served as macroinitiators for the in situ polyhomologation of dimethylsulfoxonium methylide. The resulting 3-arm star block copolymers, (PIB-b-PE)3B, were oxidized/hydrolysed to afford PIB-b-PE-OH. Characterization of all intermediates and final products by high temperature gel permeation chromatography (HT-GPC) and proton nuclear magnetic resonance spectroscopy (1H NMR) revealed the well-defined character of the copolymers. The thermal properties of the copolymers were studied by differential scanning calorimetry (DSC).

  7. Metallic nickel nanorod arrays embedded into ordered block copolymer templates

    International Nuclear Information System (INIS)

    Seifarth, O.; Krenek, R.; Tokarev, I.; Burkov, Y.; Sidorenko, A.; Minko, S.; Stamm, M.; Schmeisser, D.

    2007-01-01

    We report on metallic Nickel nanorods prepared by utilizing a mask of ordered nanostructured hollow channels in a block copolymer matrix. These polymeric templates were formed by a self organized process in block copolymer supramolecular assemblies. Nickel was filled into with two different techniques, electrodeposition and washing in. We monitor the formation process of these nanorods by means of atomic force microscopy and synchrotron radiation soft X-ray based photoelectron emission microscopy. The oxidation state of the nickelrods is evaluated with X-ray absorption spectroscopy and X-ray photoelectron spectroscopy at the Ni L edges and lateral distributions of the Ni nanorods were detected with micrometer resolved X-ray absorption spectroscopy. The finding is that the Ni rods were metallic despite their preparation under ambient conditions, inside the particles no hints for NiO complexes were found. This indicates that the polymer protects Ni nanoparticles against oxidation

  8. Phase behavior of model ABC triblock copolymers

    Science.gov (United States)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

  9. White emission from liquid-crystalline copolymers containing oxadiazole moieties in the side chain

    Science.gov (United States)

    Kawamoto, Masuki; Tsukamoto, Takuji; Kinoshita, Motoi; Ikeda, Tomiki

    2006-09-01

    A liquid-crystalline polymer in the side chain was synthesized through copolymerization of a bipolar carrier-transporting monomer with a liquid-crystalline monomer containing oxadiazole moieties substituted with trifluoromethyl groups. A single-layer light-emitting diode of indium tin oxide (ITO)/copolymer/MgAg emitted white light with a maximum luminous efficiency of 0.1cd/A. The origin of the white emission in the copolymer is the electroplex between bipolar carrier-transporting moieties and strong electron-withdrawing moieties. Furthermore, a simple multilayer device with configuration of ITO/poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid)/copolymer/MgAg device showed white emission with CIE 1931 chromaticity coordinates (x,y): (0.30, 0.33).

  10. Polyacrylamide+Al2(SO4)3 and polyacrylamide+CaO remove coliform bacteria and nutrients from swine wastewater

    International Nuclear Information System (INIS)

    Entry, J.A.; Phillips, Ian; Stratton, Helen; Sojka, R.E.

    2003-01-01

    Polyacrylamide mixture may be able to reduce run-off of enteric bacteria from animal wastes. - Animal wastes are a major contributor of nutrients and enteric microorganisms to surface water and ground water. Polyacrylamide (PAM) mixtures are an effective flocculent, and we hypothesized that they would reduce transport of microorganisms in flowing water. After waste water running at 60.0 l min -1 flowed over PAM+Al 2 (SO 4 ) 3 , or PAM+CaO in furrows, total coliform bacteria (TC) and fecal coliform bacteria (FC) were reduced by 30-50% at 1 and 50 m downstream of the treatments compared to the control. In a column study, PAM+Al 2 (SO 4 ) 3 , and PAM+CaO applied to sandy, sandy loam, loam, and clay soils reduced NH 4 + and ortho-P concentrations in leachate compared to the source waste water and the control. PAM+Al 2 (SO 4 ) 3 and PAM+CaO applied to sandy, sandy loam and loam soils reduced both total and ortho-P, concentrations in leachate compared to the source wastewater and control treatment. In a field study, PAM+Al 2 (SO 4 ) 3 , or PAM+CaO treatments did not consistently reduce NH 4 + , NO 3 - , ortho-P, and total P concentrations in wastewater flowing over any soil compared to inflow wastewater or the control treatment. With proper application PAM+ Al 2 (SO 4 ) 3 and PAM+CaO may be able to reduce the numbers of enteric bacteria in slowly flowing wastewater running off animal confinement areas, reducing the amount of pollutants entering surface water and groundwater

  11. Study of biodegradation of partially hydrolyzed polyacrylamide in an oil reservoir after polymer flooding

    International Nuclear Information System (INIS)

    Bao, M.; Chen, Q.; Li, Y.; Jiang, G.

    2009-01-01

    Studies have demonstrated that the amide group of polyacrylamides can provide a nitrogen source for microorganisms. However, the carbon backbone of the polymers cannot be cleaved by microbial activity. This study examined the biodegradability of partially hydrolyzed polyacrylamide (HPAM) in an aerobic environment both before and after bacterial biodegradation. Results of the infrared spectrum study indicated that the amide group of HPAM in the products was converted to a carboxyl group. High performance liquid chromatography analyses did not demonstrate the presence of acrylamide monomers. A scanning electron microscopy (SEM) study showed that the surfaces of HPAM particles had been altered by the biodegradation process. Results of the study indicated that the HPAM carbon backbone was metabolized by the bacteria during the course of its growth. It was hypothesized that the HPAM was initially utilized by the bacteria as a nitrogen source by the hydrolysis of the HPAM amide groups using an amidase enzyme. Oxidation of the carbon backbone chain then occurred by monooxygenase catalysis. It was concluded that the HPAM carbon backbone then served as a source for further bacterial growth and metabolism. 13 refs., 5 figs

  12. In-situ Polymerization of Polyaniline/Polypyrrole Copolymer using Different Techniques

    Science.gov (United States)

    Hammad, A. S.; Noby, H.; Elkady, M. F.; El-Shazly, A. H.

    2018-01-01

    The morphology and surface area of the poly(aniline-co-pyrrole) copolymer (PANPY) are important properties which improve the efficiency of the copolymer in various applications. In this investigation, different techniques were employed to produce PANPY in different morphologies. Aniline and pyrrole were used as monomers, and ammonium peroxydisulfate (APS) was used as an oxidizer with uniform molar ratio. Rapid mixing, drop-wise mixing, and supercritical carbon dioxide (ScCO2) polymerization techniques were appointed. The chemical structure, crystallinity, porosity, and morphology of the composite were distinguished by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET) analysis, and transmission electron microscopy (TEM) respectively. The characterization tests indicated that the polyaniline/polypyrrole copolymer was successfully prepared with different morphologies. Based on the obtained TEM, hollow nanospheres were formed using rapid mixing technique with acetic acid that have a diameter of 75 nm and thickness 26 nm approximately. Also, according to the XRD, the produced structures have a semi- crystalline structure. The synthesized copolymer with ScCO2-assisted polymerization technique showed improved surface area (38.1 m2/g) with HCl as dopant.

  13. Adsorption of copolymers at polymer/air and polymer/solid interfaces

    Science.gov (United States)

    Oslanec, Robert

    Using mainly low-energy forward recoil spectrometry (LE-FRES) and neutron reflectivity (NR), copolymer behavior at polymer/air and polymer/solid interfaces is investigated. For a miscible blend of poly(styrene-ran-acrylonitrile) copolymers, the volume fraction profile of the copolymer with lower acrylonitrile content is flat near the surface in contrast to mean field predictions. Including copolymer polydispersity into a self consistent mean field (SCMF) model does not account for this profile shape. LE-FRES and NR is also used to study poly(deuterated styrene-block-methyl-methacrylate) (dPS-b-PMMA) adsorption from a polymer matrix to a silicon oxide substrate. The interfacial excess, zsp*, layer thickness, L, and layer-matrix width, w, depend strongly on the number of matrix segments, P, for P 2N, the matrix chains are repelled from the adsorbed layer and the layer characteristics become independent of P. An SCMF model of block copolymer adsorption is developed. SCMF predictions are in qualitative agreement with the experimental behavior of zsp*, L, and w as a function of P. Using this model, the interaction energy of the MMA block with the oxide substrate is found to be -8ksb{B}T. In a subsequent experiment, the matrix/dPS interaction is made increasingly unfavorable by increasing the 4-bromostyrene mole fraction, x, in a poly(styrene-ran-4-bromostyrene) (PBrsbxS) matrix. Whereas experiments show that zsp* slightly decreases as x increases, the SCMF model predicts that zsp* should increase as the matrix becomes more unfavorable. Upon including a small matrix attraction for the substrate, the SCMF model shows that zsp* decreases with x because of competition between PBrsbxS and dPS-b-PMMA for adsorbing sites. In thin film dewetting experiments on silicon oxide, the addition of dPS-b-PMMA to PS coatings acts to slow hole growth and prevent holes from impinging. Dewetting studies show that longer dPS-b-PMMA chains are more effective stabilizing agents than shorter

  14. Enhanced oil recovery using novel polyacrylamides

    NARCIS (Netherlands)

    Broekhuis, Antonius Augustinus; Picchionni, Francesco; Zacarias, Diego Armando

    2013-01-01

    The invention relates to a polymer comprising a central structure to which n branches are covalently attached, wherein n is an integer from 1 to 50, wherein the branches comprise polyacrylamide moieties, wherein the theoretical number average molecular weight of the polymer is at least 100,000g/mol.

  15. Structural investigation on gamma-irradiated polyacrylamide ...

    Indian Academy of Sciences (India)

    Polyacrylamide hydrogels; small-angle neutron scattering; UV–visible spectra; gamma ... dynamic light scattering and electron microscopy techniques and also by equilibrium swelling theory [10,11]. Here, for the first time, we report the effect of γ-irradiation on inhomogeneities and cor- ... The solid lines are guides to the eye.

  16. Olefin–Styrene Copolymers

    OpenAIRE

    Nunzia Galdi; Antonio Buonerba; Leone Oliva

    2016-01-01

    In this review are reported some of the most relevant achievements in the chemistry of the ethylene–styrene copolymerization and in the characterization of the copolymer materials. Focus is put on the relationship between the structure of the catalyst and that of the obtained copolymer. On the other hand, the wide variety of copolymer architecture is related to the properties of the material and to the potential utility.

  17. Effets néfastes sur la stabilité des solutions polyacrylamides utilisées dans la récupération assistée du pétrole Harmful Effects of Formaldehyde on the Stability of Polyacrylamide Solutions Used in Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Catherin G.

    2006-11-01

    Full Text Available L'étude de la dégradation oxydante des polyacrylamides (PAA et HPAA en solution aqueuse nous a permis de trouver que du formaldéhyde est produit par l'oxydation de l'acrylamide résiduel. Du formaldéhyde est aussi produit par l'oxydation du méthanol résiduel quand ce non-solvant a été utilisé pour purifier les PAA et HPAA par précipitation de leurs solutions aqueuses. Ce formaldéhyde est responsable de la formation de dérivés insolubles nuisibles pour les propriétés rhéologiques utiles des solutions. Ce résultat rejoint ceux d'études antérieures où un effet comparable a été observé après addition de formaldéhyde aux solutions de PAA et HPAA. Mais l'examen de la littérature relative à la chimie du formaldéhyde montre que les réactions d'oxydation et d'addition qui ont été suggérées pour rendre compte de cet effet sont inadéquates dans le milieu considéré. Le schéma que nous proposons explique mieux les phénomènes observés. Nous avons aussi montré que l'oxydo-réduction du formaldéhyde est responsable de la formation de radicaux libres sur les polyacrylamides. II était alors possible de conclure, sans avoir recours à d'autres expériences, que le formaldéhyde ne doit pas être utilisé dans la récupération assistée du pétrole pour protéger les solutions des polyacrylamides contre la biodégradation. In a study of the oxidation of aqueous solutions of the polyacrylamides PAA and HPAA, we have found that formaldehyde is an oxidation product both of acrylamide residual in the commercial polymers and of the methanol residual in polymers purified by methanol precipitation from aqueous solutions. The presence of formaldehyde in turn causes the production of insoluble derivatives which spoil the rheological properties of polymer solutions. This result reinforces those of previous studies where a similar effect was observed after formaldehyde was added to solutions of PAA and HPAA. Examination of the

  18. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  19. Amphiphilic block co-polymers: preparation and application in nanodrug and gene delivery.

    Science.gov (United States)

    Xiong, Xiao-Bing; Binkhathlan, Ziyad; Molavi, Ommoleila; Lavasanifar, Afsaneh

    2012-07-01

    Self-assembly of amphiphilic block co-polymers composed of poly(ethylene oxide) (PEO) as the hydrophilic block and poly(ether)s, poly(amino acid)s, poly(ester)s and polypropyleneoxide (PPO) as the hydrophobic block can lead to the formation of nanoscopic structures of different morphologies. These structures have been the subject of extensive research in the past decade as artificial mimics of lipoproteins and viral vectors for drug and gene delivery. The aim of this review is to provide an overview of the synthesis of commonly used amphiphilic block co-polymers. It will also briefly go over some pharmaceutical applications of amphiphilic block co-polymers as "nanodelivery systems" for small molecules and gene therapeutics. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Improved recovery of DNA from polyacrylamide gels after in situ DNA footprinting

    NARCIS (Netherlands)

    van Keulen, G; Meijer, WG

    Methods used to date for the isolation of DNA from polyacrylamide gels are elution based, time-consuming and with low yield in DNA. This paper describes an improved system employing polyacrylamide gels made of a meltable matrix. The new system was successfully applied to in situ DNA footprinting

  1. High-frequency ultrasound-responsive block copolymer micelle.

    Science.gov (United States)

    Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue

    2009-11-17

    Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.

  2. Blends of Styrene-Butadiene-Styrene Triblock Copolymer with Random Styrene-Maleic Anhydride Copolymers

    NARCIS (Netherlands)

    Piccini, Maria Teresa; Ruggeri, Giacomo; Passaglia, Elisa; Picchioni, Francesco; Aglietto, Mauro

    2002-01-01

    Blends of styrene-butadiene-styrene triblock copolymer (SBS) with random styrene-maleic anhydride copolymers (PS-co-MA), having different MA content, were prepared in a Brabender Plastigraph mixer. The presence of polystyrene (PS) blocks in the SBS copolymer and the high styrene content (93 and 86

  3. Polyacrylamide gel polymerization with adjustable gelation rate

    Czech Academy of Sciences Publication Activity Database

    Wiesner, Ivo; Wiesnerová, Dana

    2002-01-01

    Roč. 32, - (2002), s. 740-742 ISSN 0736-6205 R&D Projects: GA AV ČR KSK5052113; GA ČR GA521/00/0075 Keywords : polyacrylamide gel Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.173, year: 2002

  4. Crystallization in diblock copolymer thin films at different degrees of supercooling

    DEFF Research Database (Denmark)

    Darko, C.; Botiz, I.; Reiter, G.

    2009-01-01

    The crystalline structures in thin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers were studied in dependence on the degree of supercooling. Atomic force microscopy showed that the crystalline domains (lamellae) consist of grains, which are macroscopic at low and interme...

  5. Photodegradable neutral-cationic brush block copolymers for nonviral gene delivery.

    Science.gov (United States)

    Hu, Xianglong; Li, Yang; Liu, Tao; Zhang, Guoying; Liu, Shiyong

    2014-08-01

    We report on the fabrication of a photodegradable gene-delivery vector based on PEO-b-P(GMA-g-PDMAEMA) neutral-cationic brush block copolymers that possess cationic poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) brushes for DNA compaction, poly(ethylene oxide) (PEO) as a hydrophilic block, and poly(glycidyl methacrylate) (PGMA) as the backbone. The PEO-b-P(GMA-g-PDMAEMA) copolymers were synthesized through the combination of reversible addition-fragmentation transfer (RAFT) polymerization and postmodification. A photocleavable PEO-based macroRAFT agent was first synthesized; next, the PEO-b-PGMA block copolymer was prepared by RAFT polymerization of GMA; this was followed by a click reaction to introduce the RAFT initiators on the side chains of the PGMA block; then, RAFT polymerization of DMAEMA afforded the PEO-b-P(GMA-g-PDMAEMA) copolymer. The obtained neutral-cationic brush block copolymer could effectively complex plasmid DNA (pDNA) into nanoparticles at an N/P ratio (i.e., the number of nitrogen residues per DNA phosphate) of 4. Upon UV irradiation, pDNA could be released owing to cleavage of the pDNA-binding cationic PDMAEMA side chains as well as the nitrobenzyl ester linkages at the diblock junction point. In addition, in vitro gene transfection results demonstrated that the polyplexes could be effectively internalized by cells with good transfection efficiency, and the UV irradiation protocol could considerably enhance the efficiency of gene transfection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Intra-Articular Polyacrylamide Hydrogel Injections Are Not Innocent

    Directory of Open Access Journals (Sweden)

    Murat Tonbul

    2014-01-01

    Full Text Available Osteoarthritis is a chronic disorder characterized by joint cartilage degeneration with concomitant changes in the synovium and subchondral bone metabolism. Many conservative treatment modalities, one of which is intra-articular injections, have been described for the treatment of this disorder. Traditionally, hyaluranic acid and corticosteroids are the agents that have been used for this purpose. Recently, polyacrylamide hydrogels are being used widely. Biocompatibility, nonbioabsorbability, and anti-infectious effect obtained by silver addition made polyacrylamide hydrogels more popular. In this paper, we present a case and the method of our management, in whom host tissue reaction (foreign body granuloma, edema, inflammation, and redness induration has been observed, as the first and unique adverse effect reported in the literature.

  7. Poly(ether amide) segmented block copolymers with adipicacid based tetra amide segments

    NARCIS (Netherlands)

    Biemond, G.J.E.; Feijen, Jan; Gaymans, R.J.

    2007-01-01

    Poly(tetramethylene oxide)-based poly(ether ester amide)s with monodisperse tetraamide segments were synthesized. The tetraamide segment was based on adipic acid, terephthalic acid, and hexamethylenediamine. The synthesis method of the copolymers and the influence of the tetraamide concentration,

  8. Phosphate sensing by fluorecent reporter proteins embedded in poly-acrylamide nanoparticles

    DEFF Research Database (Denmark)

    Sun, Honghao; Scharff-Poulsen, Anne Marie; Gu, Hong

    2008-01-01

    Phosphate sensors were developed by embedding fluorescent reporter proteins (FLIPPi) in polyacrylamide nanoparticles; with diameters from 40 to 120 nm. The sensor activity and protein loading efficiency varied according to nanoparticle composition, that is, the total monomer content (% T) and the......, in nanoparticles for, for example, sensing, biological catalysis, and gene delivery.......Phosphate sensors were developed by embedding fluorescent reporter proteins (FLIPPi) in polyacrylamide nanoparticles; with diameters from 40 to 120 nm. The sensor activity and protein loading efficiency varied according to nanoparticle composition, that is, the total monomer content (% T......) and the cross-linker content (% C). Nanoparticles with 28% T and 20% C were considered optimal as a result of relatively high loading efficiency (50.6%) as well as high protein activity (50%). The experimental results prove that the cross-linked polyacrylamide matrix could protect FLIPPi from degradation...

  9. Synthesis of Inorganic Nanocomposites by Selective Introduction of Metal Complexes into a Self-Assembled Block Copolymer Template

    Directory of Open Access Journals (Sweden)

    Hiroaki Wakayama

    2015-01-01

    Full Text Available Inorganic nanocomposites have characteristic structures that feature expanded interfaces, quantum effects, and resistance to crack propagation. These structures are promising for the improvement of many materials including thermoelectric materials, photocatalysts, and structural materials. Precise control of the inorganic nanocomposites’ morphology, size, and chemical composition is very important for these applications. Here, we present a novel fabrication method to control the structures of inorganic nanocomposites by means of a self-assembled block copolymer template. Different metal complexes were selectively introduced into specific polymer blocks of the block copolymer, and subsequent removal of the block copolymer template by oxygen plasma treatment produced hexagonally packed porous structures. In contrast, calcination removal of the block copolymer template yielded nanocomposites consisting of metallic spheres in a matrix of a metal oxide. These results demonstrate that different nanostructures can be created by selective use of processes to remove the block copolymer templates. The simple process of first mixing block copolymers and magnetic nanomaterial precursors and then subsequently removing the block copolymer template enables structural control of magnetic nanomaterials, which will facilitate their applicability in patterned media, including next-generation perpendicular magnetic recording media.

  10. Main-chain supramolecular block copolymers.

    Science.gov (United States)

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  11. Improved detection of calcium-binding proteins in polyacrylamide gels

    International Nuclear Information System (INIS)

    Anthony, F.A.; Babitch, J.A.

    1984-01-01

    The authors refined the method of Schibeci and Martonosi (1980) to enhance detection of calcium-binding proteins in polyacrylamide gels using 45 Ca 2+ . Their efforts have produced a method which is shorter, has 40-fold greater sensitivity over the previous method, and will detect 'EF hand'-containing calcium-binding proteins in polyacrylamide gels below the 0.5 μg level. In addition this method will detect at least one example from every described class of calcium-binding protein, including lectins and γ-carboxyglutamic acid containing calcium-binding proteins. The method should be useful for detecting calcium-binding proteins which may trigger neurotransmitter release. (Auth.)

  12. Polystyrene-block-Poly(ionic liquid) Copolymers as Work Function Modifiers in Inverted Organic Photovoltaic Cells.

    Science.gov (United States)

    Park, Jong Baek; Isik, Mehmet; Park, Hea Jung; Jung, In Hwan; Mecerreyes, David; Hwang, Do-Hoon

    2018-02-07

    Interfacial layers play a critical role in building up the Ohmic contact between electrodes and functional layers in organic photovoltaic (OPV) solar cells. These layers are based on either inorganic oxides (ZnO and TiO 2 ) or water-soluble organic polymers such as poly[(9,9-dioctyl-2,7-fluorene)-alt-(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)] and polyethylenimine ethoxylated (PEIE). In this work, we have developed a series of novel poly(ionic liquid) nonconjugated block copolymers for improving the performance of inverted OPV cells by using them as work function modifiers of the indium tin oxide (ITO) cathode. Four nonconjugated polyelectrolytes (n-CPEs) based on polystyrene and imidazolium poly(ionic liquid) (PSImCl) were synthesized by reversible addition-fragmentation chain transfer polymerization. The ratio of hydrophobic/hydrophilic block copolymers was varied depending on the ratio of polystyrene to the PSImCl block. The ionic density, which controls the work function of the electrode by forming an interfacial dipole between the electrode and the block copolymers, was easily tuned by simply changing the PSImCl molar ratio. The inverted OPV device with the ITO/PS 29 -b-PSImCl 60 cathode achieved the best power conversion efficiency (PCE) of 7.55% among the synthesized block copolymers, exhibiting an even higher PCE than that of the reference OPV device with PEIE (7.30%). Furthermore, the surface properties of the block copolymers films were investigated by contact angle measurements to explore the influence of the controlled hydrophobic/hydrophilic characters on the device performances.

  13. Molecular interactions in a surfactant-water-polyacrylamide system, according to densimetry, viscometry, conductometry, and spectroscopy data

    Science.gov (United States)

    Harutyunyan, R. S.

    2013-08-01

    Molecular interactions in a surfactant-polyacrylamide-water system are investigated. It is established that the interactions affect such physicochemical parameters of the system as viscosity, density, surface tension, conductivity, and critical micelle concentration. It is shown that in a polyacrylamide-water system, raising the polyacrylamide concentration to 0.02% causes conformational changes in its macromolecule.

  14. Influence of solvent and salt concentration on the alignment properties of acrylamide copolymer gels for the measurement of RDC.

    Science.gov (United States)

    Trigo-Mouriño, Pablo; Navarro-Vázquez, Armando; Sánchez-Pedregal, Víctor M

    2012-12-01

    The dependence of molecular alignment with solvent nature and salt concentration has been investigated for mechanically stretched polyacrylamide copolymer gels. Residual dipolar couplings (RDCs) were recorded for D(2)O, DMSO-d(6), and DMSO-d(6)/D(2)O solutions containing different proportions of the solvents and different sodium chloride concentrations. Alignment tensors were determined by fitting the experimental RDCs to the DFT-computed structure of N-methylcodeinium ion. Analysis of the tensors shows that the degree of alignment decreases with the proportion of DMSO-d(6) as well as with the concentration of sodium chloride, most likely due to enhanced ion-pair aggregation. Furthermore, rotation of the alignment tensor is observed when increasing the salt concentration. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Disc electrophoresis and related techniques of polyacrylamide gel electrophoresis

    National Research Council Canada - National Science Library

    Maurer, H. R

    1971-01-01

    ..., enzymes, antingens and radioactively labelled materials, and detailed treatments of micro disc electrophoresis, preparative polyacrylamide gel electrophoresis and many other techniques for special problems...

  16. [Complex formation between alpha-chymotrypsin and block copolymers based on ethylene and propylene oxide, induced by high pressure].

    Science.gov (United States)

    Topchieva, I N; Sorokina, E M; Kurganov, B I; Zhulin, V M; Makarova, Z G

    1996-06-01

    A new method of formation of non-covalent adducts based on an amphiphilic diblock copolymer of ethylene and propylene oxides with molecular mass of 2 kDa and alpha-chymotrypsin (ChT) under high pressure, has been developed. The composition of the complexes corresponds to seven polymer molecules per one ChT molecule in the pressure range of 1.1 to 400 MPa. The complexes fully retain the catalytic activity. Kinetic constants (Km and kcat) for enzymatic hydrolysis of N-benzoyl-L-tyrosine ethyl ester catalyzed by the complexes are identical with the corresponding values for native ChT. Analysis of kinetics of thermal inactivation of the complexes revealed that the constant of the rate of the slow inactivation step is markedly lower than for ChT.

  17. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS ...

    African Journals Online (AJOL)

    Four strains of eri, Samia cynthia ricini Lepidoptera: Saturniidae that can be identified morphologically and maintained at North East Institute of Science and Technology, Jorhat were characterized based on their protein profile by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and DNA by random ...

  18. Study of electrical properties of polyvinylpyrrolidone/polyacrylamide ...

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/boms/037/02/0273-0279. Keywords. PVP; PAM; conductivity; activation energy; relaxation time; electric modulus. Abstract. Electrical properties of polyvinylpyrrolidone, polyacrylamide and their blend thin films have been investigated as a function of temperature and frequency. The films ...

  19. Block copolymer lithography of rhodium nanoparticles for high temperature electrocatalysis.

    Science.gov (United States)

    Boyd, David A; Hao, Yong; Li, Changyi; Goodwin, David G; Haile, Sossina M

    2013-06-25

    We present a method for forming ordered rhodium nanostructures on a solid support. The approach makes use of a block copolymer to create and assemble rhodium chloride nanoparticles from solution onto a surface; subsequent plasma and thermal processing are employed to remove the polymer and fully convert the nanostructures to metallic rhodium. Films cast from a solution of the triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) dissolved in toluene with rhodium(III) chloride hydrate were capable of producing a monolayer of rhodium nanoparticles of uniform size and interparticle spacing. The nanostructures were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The electrocatalytic performance of the nanoparticles was investigated with AC impedance spectroscopy. We observed that the addition of the particles to a model solid oxide fuel cell anode provided up to a 14-fold improvement in the anode activity as evidenced by a decrease in the AC impedance resistance. Examination of the anode after electrochemical measurement revealed that the basic morphology and distribution of the particles were preserved.

  20. Metallo-supramolecular block copolymer micelles

    NARCIS (Netherlands)

    Gohy, J.M.W.

    2009-01-01

    Supramolecular copolymers have become of increasing interest in recent years in the search for new materials with tunable properties. In particular, metallo-supramolecular block copolymers in which metal-ligand complexes are introduced in block copolymer architectures, have known important progress,

  1. Effects of turbidity, sediment, and polyacrylamide on native freshwater mussels

    Science.gov (United States)

    Buczek, Sean B.; Cope, W. Gregory; McLaughlin, Richard A.; Kwak, Thomas J.

    2018-01-01

    Turbidity is a ubiquitous pollutant adversely affecting water quality and aquatic life in waterways globally. Anionic polyacrylamide (PAM) is widely used as an effective chemical flocculent to reduce suspended sediment (SS) and turbidity. However, no information exists on the toxicity of PAM‐flocculated sediments to imperiled, but ecologically important, freshwater mussels (Unionidae). Thus, we conducted acute (96 h) and chronic (24 day) laboratory tests with juvenile fatmucket (Lampsilis siliquoidea) and three exposure conditions (nonflocculated settled sediment, SS, and PAM‐flocculated settled sediment) over a range of turbidity levels (50, 250, 1,250, and 3,500 nephelometric turbidity units). Survival and sublethal endpoints of protein oxidation, adenosine triphosphate (ATP) production, and protein concentration were used as measures of toxicity. We found no effect of turbidity levels or exposure condition on mussel survival in acute or chronic tests. However, we found significant reductions in protein concentration, ATP production, and oxidized proteins in mussels acutely exposed to the SS condition, which required water movement to maintain sediment in suspension, indicating responses that are symptoms of physiological stress. Our results suggest anionic PAM applied to reduce SS may minimize adverse effects of short‐term turbidity exposure on juvenile freshwater mussels without eliciting additional lethal or sublethal toxicity.

  2. Study on Magnetic Responsibility of Rare Earth Ferrite/Polyacrylamide Magnetic Microsphere

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Wang Zhifeng; Zhang Hong; Dai Shaojun; Qiu Guanming; Okamoto Hiroshi

    2005-01-01

    In inverse microemulsion, rare earth ferrite/polyacrylamide magnetic microsphere were prepared and their magnetic responsibility were studied by magnetic balance. Results indicate that the magnetic responsibility of microsphere relates to magnetic moment of rare earth ion, and it can be improved by the addition of dysprosium ion of high magnetic moment. Dysprosium content has an effect on magnetic responsibility of dysprosium ferrite/polyacrylamide magnetic microsphere. The microsphere displays strong magnetic responsibility when the molar ratio of Dy3+/iron is 0.20.

  3. Distribution of short block copolymer chains in Binary Blends of Block Copolymers Having Hydrogen Bonding

    Science.gov (United States)

    Kwak, Jongheon; Han, Sunghyun; Kim, Jin Kon

    2014-03-01

    A binary mixture of two block copolymers whose blocks are capable of forming the hydrogen bonding allows one to obtain various microdomains that could not be expected for neat block copolymer. For instance, the binary blend of symmetric polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) and polystyrene-block-polyhydroxystyrene copolymer (PS-b-PHS) blends where the hydrogen bonding occurred between P2VP and PHS showed hexagonally packed (HEX) cylindrical and body centered cubic (BCC) spherical microdomains. To know the exact location of short block copolymer chains at the interface, we synthesized deuterated polystyrene-block-polyhydroxystyrene copolymer (dPS-b-PHS) and prepared a binary mixture with PS-b-P2VP. We investigate, via small angle X-ray scattering (SAXS) and neutron reflectivity (NR), the exact location of shorter dPS block chain near the interface of the microdomains.

  4. Synthesis of an amphiphilic dendrimer-like block copolymer and its application on drug delivery

    KAUST Repository

    Wang, Shuaipeng

    2014-10-27

    Dendrimer-like amphiphilic copolymer is a kind of three-dimensional spherical structure polymer. An amphiphilic dendrimer-like diblock copolymer, PEEGE-G2-b-PEO(OH)12, constituted of a hydrophobic poly(ethoxyethyl glycidol ether) inner core and a hydrophilic poly(ethylene oxide) outer layer, has been successfully synthesized by the living anionic ring-opening polymerization method. The intermediates and targeted products were characterized with 1H NMR spectroscopy and gel permeation chromatography. The application on drug delivery of dendrimer-like diblock copolymer PEEGE-G2-b-PEO(OH)12 using DOX as a model drug was also studied. The drug loading content and encapsulation efficiency were found at 13.07% and 45.75%, respectively. In vitro release experiment results indicated that the drug-loaded micelles exhibited a sustained release behavior under acidic media.

  5. Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials.

    Science.gov (United States)

    Chen, Hong; Zhao, Chao; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Zheng, Jie

    2016-04-12

    Design and synthesis of highly bioinert and biocompatible antifouling materials are crucial for a broad range of biomedical and engineering applications. Among antifouling materials, polyacrylamides and polyacrylates have proved so promising because of cheap raw materials, ease of synthesis and applicability, and abundant functional groups. The strong surface hydration and the high surface packing density of polyacrylamides and polyacrylates are considered to be the key contributors to their antifouling property. In this article, we review our studies on the design and synthesis of a series of polyacrylamides and polyacrylates with different molecular structures. These polymers can be fabricated into different architectural forms (brushes, nanoparticles, nanogels, and hydrogels), all of which are highly resistant to the attachment of proteins, cells, and bacteria. We find that small structural changes in the polymers can lead to large enhancement in surface hydration and antifouling performance, both showing a positive correlation. This reveals a general design rule for effective antifouling materials. Furthermore, polyacrylamides and polyacrylates are readily functionalized with other bioactive compounds to achieve different new multifunctionalities.

  6. Electrochromic properties of a novel low band gap conductive copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Yigitsoy, Basak; Varis, Serhat; Tanyeli, Cihangir; Akhmedov, Idris M.; Toppare, Levent [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)

    2007-07-10

    A copolymer of 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole (DTTP) with 3,4-ethylene dioxythiophene (EDOT) was electrochemically synthesized. The resultant copolymer P(DTTP-co-EDOT) was characterized via cyclic voltammetry, FTIR, SEM, conductivity measurements and spectroelectrochemistry. Copolymer film has distinct electrochromic properties. It has four different colors (chestnut, khaki, camouflage green, and blue). At the neutral state {lambda}{sub max} due to the {pi}-{pi}{sup *} transition was found to be 487 nm and E{sub g} was calculated as 1.65 eV. Double potential step chronoamperometry experiment shows that copolymer film has good stability, fast switching time (less than 1 s) and good optical contrast (20%). An electrochromic device based on P(DTTP-co-EDOT) and poly(3,4-ethylenedioxythiophene) (PEDOT) was constructed and characterized. The device showed reddish brown color at -0.6 V when the P(DTTP-co-EDOT) layer was in its reduced state; whereas blue color at 2.0 V when PEDOT was in its reduced state and P(DTTP-co-EDOT) layer was in its oxidized state. At 0.2 V intermediate green state was observed. Maximum contrast (%{delta}T) and switching time of the device were measured as 18% and 1 s at 615 nm. ECD has good environmental and redox stability. (author)

  7. Study of the therapeutic benefit of cationic copolymer administration to vascular endothelium under mechanical stress

    Science.gov (United States)

    Giantsos-Adams, Kristina; Lopez-Quintero, Veronica; Kopeckova, Pavla; Kopecek, Jindrich; Tarbell, John M.; Dull, Randal

    2015-01-01

    Pulmonary edema and the associated increases in vascular permeability continue to represent a significant clinical problem in the intensive care setting, with no current treatment modality other than supportive care and mechanical ventilation. Therapeutic compound(s) capable of attenuating changes in vascular barrier function would represent a significant advance in critical care medicine. We have previously reported the development of HPMA-based copolymers, targeted to endothelial glycocalyx that are able to enhance barrier function. In this work, we report the refinement of copolymer design and extend our physiological studies todemonstrate that the polymers: 1) reduce both shear stress and pressure-mediated increase in hydraulic conductivity, 2) reduce nitric oxide production in response to elevated hydrostatic pressure and, 3) reduce the capillary filtration coefficient (Kfc) in an isolated perfused mouse lung model. These copolymers represent an important tool for use in mechanotransduction research and a novel strategy for developing clinically useful copolymers for the treatment of vascular permeability. PMID:20932573

  8. MesoDyn simulation study on the phase morphologies of Miktoarm PEO-b-PMMA copolymer doped by nanoparticles

    Science.gov (United States)

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2013-03-01

    The compatibility of six groups of 12 miktoarm poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) copolymers is studied at 270, 298 and 400 K via mesoscopic modeling. The values of the order parameters depend on both the architectures of the block copolymers and the simulation temperature, while the tendency to change of the order parameters at low temperature, such as 270 and 298 K, is nearly the same. However, the values of order parameters of the copolymer in the same group are the same at high temperature, i.e. 400 K. Obviously, temperature has a more obvious effect on long and PEO-rich chains. A study of plain copolymers doped with nanoparticles shows that the microscopic phase is influenced by not only the properties of the nanoparticles, such as the size, number and density, but also the composition and architecture of copolymers. Increasing the size and the number of the nanoparticles used as a dopant plays the most significant role on determining the phase morphologies of the copolymers at lower and higher temperature, respectively. In paricular, the 23141 and 23241-type copolymers, which are both of PEO-rich composition, presents microscopic phase separation as perforated lamallae phase morphologies at 400 K, alternated with PEO and PMMA components.

  9. Micellization of symmetric PEP-PEO block copolymers in water molecular weight dependence

    CERN Document Server

    Kaya, H; Allgaier, J; Stellbrink, J; Richter, D

    2002-01-01

    The micellar behaviour of the amphiphilic block copolymer poly-(ethylene-propylene)-poly-(ethylene oxide) (PEP-PEO) in aqueous solution has been studied with small-angle neutron scattering. The polymer was studied over a wide range of molecular weights, always keeping the volume of the blocks equal. The scattering behaviour of the solutions showed that a morphological transition takes place upon lowering the molecular weight. The high molecular weight block copolymers all build spherical, monodisperse micelles with large aggregation numbers. At low molecular weights, however, cylindrical micelles are formed. An interesting intermediate case is represented by the PEP2-PEO2 system, in which a morphological transition occurs upon dilution. (orig.)

  10. Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO-PPO-PEO

    International Nuclear Information System (INIS)

    Bois, L.; Chassagneux, F.; Parola, S.; Bessueille, F.; Battie, Y.; Destouches, N.; Boukenter, A.; Moncoffre, N.; Toulhoat, N.

    2009-01-01

    Elaboration of mesostructured silica films with a triblock copolymer polyethylene oxide-polypropylene oxide-polyethylene oxide, (PEO-PPO-PEO) and controlled growth of silver nanoparticles in the mesostructure are described. The films are characterized using UV-visible optical absorption spectroscopy, TEM, AFM, SEM, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Organized arrays of spherical silver nanoparticles with diameter between 5 and 8 nm have been obtained by NaBH 4 reduction. The size and the repartition of silver nanoparticles are controlled by the film mesostructure. The localization of silver nanoparticles exclusively in the upper-side part of the silica-block copolymer film is evidenced by RBS experiment. On the other hand, by using a thermal method, 40 nm long silver sticks can be obtained, by diffusion and coalescence of spherical particles in the silica-block copolymer layer. In this case, migration of silver particles toward the glass substrate-film interface is shown by the RBS experiment. - Graphical abstract: Growth of silver nanoparticles in a mesostructured block copolymer F127-silica film is performed either by a chemical route involving NaBH 4 reduction or by a thermal method. An array of spherical silver nanoparticles with 10 nm diameter on the upper-side of the mesostructured film or silver sticks long of 40 nm with a preferential orientation are obtained according to the method used. a: TEM image of the Fag5SiNB sample illustrating the silver nanoparticles array obtained by the chemical process; b: HR-TEM image of the Fag20Sid2 sample illustrating the silver nanosticks obtained by the thermal process.

  11. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    Science.gov (United States)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  12. Effect of carbon fiber addition on the electromagnetic shielding properties of carbon fiber/polyacrylamide/wood based fiberboards

    Science.gov (United States)

    Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng

    2018-05-01

    Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).

  13. The radiation crosslinking of ethylene copolymers

    International Nuclear Information System (INIS)

    Burns, N.M.

    1979-01-01

    The enhanced radiation crosslinking tendency of ethylene-vinyl acetate and ethylene-ethyl acrylate copolymers over ethylene homopolymer is proportional to the comonomer content. This is caused by an increase in the amorphous polymer content and by structure-related factors. The copolymers crosslink by a random process that for ethylene-vinyl acetate copolymer involves some crosslinking through the acetoxy group of the comonomer. While knowledge of the process for the crosslinking of ethylene-ethyl acrylate copolymer is less certain, it is currently believed to occur primarily at the branch point on the polymer backbone. Data relating comonomer content and the molecular weight of the copolymers to the radiation crosslinking levels realized were developed to aid in resin selection by the formulator. Triallyl cyanurate cure accelerator was found to be less effective in ethylene-vinyl acetate copolymer than in homopolymer and to have no effect on gel development in ethylene-ethyl acrylate copolymer. (author)

  14. Structure and ionic conductivity of block copolymer electrolytes over a wide salt concentration range

    Science.gov (United States)

    Chintapalli, Mahati; Le, Thao; Venkatesan, Naveen; Thelen, Jacob; Rojas, Adriana; Balsara, Nitash

    Block copolymer electrolytes are promising materials for safe, long-lasting lithium batteries because of their favorable mechanical and ion transport properties. The morphology, phase behavior, and ionic conductivity of a block copolymer electrolyte, SEO mixed with LiTFSI was studied over a wide, previously unexplored salt concentration range using small angle X-ray scattering, differential scanning calorimetry and ac impedance spectroscopy, respectively. SEO exhibits a maximum in ionic conductivity at twice the salt concentration that PEO, the homopolymer analog of the ion-containing block, does. This finding is contrary to prior studies that examined a more limited range of salt concentrations. In SEO, the phase behavior of the PEO block and LiTFSI closely resembles the phase behavior of homopolymer PEO and LiTFSI. The grain size of the block copolymer morphology was found to decrease with increasing salt concentration, and the ionic conductivity of SEO correlates with decreasing grain size. Structural effects impact the ionic conductivity-salt concentration relationship in block copolymer electrolytes. SEO: polystyrene-block-poly(ethylene oxide); also PS-PEO LiTFSI: lithium bis(trifluoromethanesulfonyl imide

  15. Nanostructured synthetic carbons obtained by pyrolysis of spherical acrylonitrile/divinylbenzene copolymers.

    Directory of Open Access Journals (Sweden)

    Danish J Malik

    Full Text Available Novel carbon materials have been prepared by the carbonization of acrylonitrile (AN/divinylbenzene (DVB suspension porous copolymers having nominal crosslinking degrees in the range of 30-70% and obtained in the presence of various amounts of porogens. The carbons were obtained by pre-oxidation of AN/DVB copolymers at 250-350°C in air followed by pyrolysis at 850°C in an N(2 atmosphere. Both processes were carried out in one furnace and the resulting material needed no further activation. Resulting materials were characterized by XPS and low temperature nitrogen adsorption/desorption. It was found that maximum pyrolysis yield was ca. 50% depending on the oxidation conditions but almost independent of the crosslinking degree of the polymers. Porous structure of the carbons was characterized for the presence of micropores and macropores, when obtained from highly crosslinked polymers or polymers oxidized at 350°C and meso- and macropores in all other cases. The latter pores are prevailing in the structure of carbons obtained from less porous AN/DVB resins. Specific surface area (BET of polymer derived carbons can vary between 440 m(2/g and 250 m(2/g depending on the amount of porogen used in the synthesis of the AN/DVB polymeric precursors.

  16. A facile synthesis of poly(aniline-co-o-bromoaniline) copolymer: Characterization and application as semiconducting material

    Science.gov (United States)

    Mahudeswaran, A.; Vivekanandan, J.; Vijayanand, P. S.; Kojima, T.; Kato, S.

    2016-01-01

    Poly(aniline-co-o-bromoaniline) (p(an-co-o-BrAn)) copolymer has been synthesized using chemical oxidation method in the hydrochloric acid medium. Copolymerization of aniline with o-bromoaniline of different compositions, such as 1:1, 1:2, 2:1, 1:3 and 3:1 molar ratios were prepared. The synthesized copolymer is soluble in polar solvents like dimethyl sulphoxide (DMSO), dimethyl formamide (DMF), Tetrahydrofuran (THF) and 1-methyl 2-pyrrolidone (NMP). The copolymer is analyzed by various characterization techniques, such as FTIR, UV-Visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), conductivity, Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). FTIR spectrum confirms the characteristic peaks of the copolymer containing benzenoid and quinoid ring stretching. UV spectrum reveals the formation of π-π∗ transition and n-π∗ transition between the energy levels. XRD peaks reveal that the copolymer possesses amorphous nature. Morphological study reveals that the agglomerated particles form globular structure and size of the each particle is about 100 nm. The electrical conductivity of the copolymers is found in the range of 10-5Scm-1. These organic semiconductor materials can be used to fabricate thinner and cheaper environmental friendly optoelectronic devices that will replace the conventional inorganic semiconductors.

  17. Preparations and characterizations of tunable and multicolored electrochromic copolymers derived from a novel star-shaped monomer and BEDOT-V

    International Nuclear Information System (INIS)

    Wang, Kai; Yang, Wenge; Hu, Yonghong; Kai, Yumei; Shi, Ying

    2014-01-01

    A novel star-shaped monomer 1,3,5-Tri[2-(3,4-ethylenedioxythien-2-yl)vin-1-yl]benzene (TEDOT-V-B) was synthesized by Wittig coupling reaction. The copolymers with BEDOT-V at different feed ratios were prepared onto the ITO-coated glass by cyclic voltammetry (CV) method and the electrochromic properties were reported. The influences of different feed ratios on the spectroelectrochemical and kinetic properties were investigated. Spectroelectrochemical studies indicated that the maximum absorption wavelengths of the copolymer films bathochromically shifted with feed ratios. In addition, the copolymers had tunable and low band gaps. When the feed ratio of BEDOT-V-B/BEDOT-V was 1:3, the copolymer film showed the fastest oxidation switching time of 0.9s (567 nm) and 0.9s (967 nm) and the fastest reduction switching time of 0.8s (567 nm) and 0.9s (967 nm). Compared with PBEDOT-V, the copolymers showed tunable and multicolored electrochromism through feed ratios and the RGB colors were achieved. Additionally, the surface morphology of the copolymer film was investigated by scanning electron microscope (SEM)

  18. N-containing carbons from styrene-divinylbenzene copolymer by urea treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravsky, Sergey V.; Kartel, Mykola T.; Tarasenko, Yuriy O. [Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Street, Kiev, 03164 (Ukraine); Villar-Rodil, Silvia [Instituto Nacional del Carbon, INCAR-CSIC, Apartado 73, 33080 Oviedo (Spain); Dobos, Gabor [Department of Atomic Physics, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Toth, Ajna [Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, PO Box 92 (Hungary); Tascon, Juan M.D. [Instituto Nacional del Carbon, INCAR-CSIC, Apartado 73, 33080 Oviedo (Spain); Laszlo, Krisztina, E-mail: klaszlo@mail.bme.hu [Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, PO Box 92 (Hungary)

    2012-01-15

    N-containing synthetic carbons with narrow porosity were prepared from a chlorinated styrene and divinylbenzene copolymer by a multistep method with a yield of 34 wt%. Surface chemical treatment and thermal carbonization of the starting copolymer was monitored by urea impregnation. Steam activation, oxidation and an additional heat treatment gave the final product. The synthesis route was designed in a cost-effective way. The porosity and the concentration of the introduced nitrogen atoms were determined at each step. The final product has a surface area of 1135 m{sup 2}/g. More than 70% of the pore volume comes from micropores with an average width of 0.7 nm. The 2.3 at.% surface nitrogen atoms are distributed among five detectable species, of which about 44% is quaternary nitrogen.

  19. Highly Efficient One-Pot Synthesis of COS-Based Block Copolymers by Using Organic Lewis Pairs.

    Science.gov (United States)

    Yang, Jia-Liang; Cao, Xiao-Han; Zhang, Cheng-Jian; Wu, Hai-Lin; Zhang, Xing-Hong

    2018-01-31

    A one-pot synthesis of block copolymer with regioregular poly(monothiocarbonate) block is described via metal-free catalysis. Lewis bases such as guanidine, quaternary onium salts, and Lewis acid triethyl borane (TEB) were equivalently combined and used as the catalysts. By using polyethylene glycol (PEG) as the macromolecular chain transfer agent (CTA), narrow polydispersity block copolymers were obtained from the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO). The block copolymers had a poly(monothiocarbonate) block with perfect alternating degree and regioregularity. Unexpectedly, the addition of CTA to COS/PO copolymerization system could dramatically improve the turnover frequency (TOF) of PO (up to 240 h -1 ), higher than that of the copolymerization without CTA. In addition, the conversion of CTA could be up to 100% in most cases, as revealed by ¹H NMR spectra. Of consequence, the number-average molecular weights ( M n s) of the resultant block copolymers could be regulated by varying the feed ratio of CTA to PO. Oxygen-sulfur exchange reaction (O/S ER), which can generate randomly distributed thiocarbonate and carbonate units, was effectively suppressed in all of the cases in the presence of CTA, even at 80 °C. This work presents a versatile method for synthesizing sulfur-containing block copolymers through a metal-free route, providing an array of new block copolymers.

  20. Complications 15 years after breast augmentation with polyacrylamide

    DEFF Research Database (Denmark)

    Ghasemi, Habib; Damsgaard, Tine Engberg; Stolle, Lars Bjørn

    2015-01-01

    Polyacrylamide hydrogel (PAAG) has been used as an injectable, permanent filler for soft-tissue augmentation for more than two decades. Several complications have been reported worldwide. In this case report, we present a woman with long-term complications 15 years after bilateral breast augmenta...

  1. In situ preparation of magnetic nanocomposites of goethite in a styrene-maleimide copolymer template

    International Nuclear Information System (INIS)

    Sepulveda-Guzman, S.; Perez-Camacho, O.; Rodriguez-Fernandez, O.; Garcia-Zamora, M.

    2005-01-01

    Magnetic composites were prepared by in situ precipitation of α-FeOOH (goethite) using a new styrene-co-N-4 carboxybutylmaleimide cross-linked copolymer as template. Thermogravimetric analysis showed iron oxide content in the composites up to 45%. The iron oxide phase was identified as goethite by X-ray diffraction analysis. Transmission electron microscopy revealed that the crosslinking extent of polymeric templates affected both the shape and dimension of the goethite particles, and consequently, the magnetic behavior of the polymer/iron oxide composites

  2. The influence of chain rigidity and the degree of sulfonation on the morphology of block copolymers as nano reactor

    Science.gov (United States)

    Hong, K.; Zhang, X.

    2005-03-01

    Polyelectrolyte block copolymer was used to form an ordered domain of ionic block as a ``nanoreactor'' due to its ability to bind oppositely charged metal ion, Zn^2+, Fe^2+ etc. The purpose of our research is to investigate the controllability of the size and morphology of domains (inorganic nano particles) by changing backbone stiffness, the charge density and the volume fraction of ionic block. Poly(styrene sulfonate) (PSS), which backbone is flexible, and poly(cyclohexadiene sulfonate) (PCHDS), which backbone is ``semiflexible'', were used as ionic blocks. We synthesized PtBS-PSS and PS-PCHDS with various degree of sulfonation and the volume fraction. Zinc oxide (ZnO) nano particles successfully formed in the ionic domain of microphase separated block copolymers. We used SANS to characterize the morphology of block copolymers and TEM for block copolymer containing ZnO nano particles. Our experimental results show that the chemistry of ``sulfonation'' of block copolymers can be successfully used to synthesize nano composite materials.

  3. Synthesis of Medium-Chain-Length Polyhydroxyalkanoate Homopolymers, Random Copolymers, and Block Copolymers by an Engineered Strain of Pseudomonas entomophila.

    Science.gov (United States)

    Wang, Ying; Chung, Ahleum; Chen, Guo-Qiang

    2017-04-01

    Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), widely used in medical area, are commonly synthesized by Pseudomonas spp. This study tries to use β-oxidation pathways engineered P. entomophila to achieve single source of a series of mcl-monomers for microbial production of PHA homopolymers. The effort is proven successful for the first time to obtain a wide range of mcl-PHA homopolymers from engineered P. entomophila LAC23 grown on various fatty acids, respectively, ranging from poly(3-hydroxyheptanoate) to poly(3-hydroxytetradecanoate). Effects of a PHA monomer chain length on thermal and crystallization properties including the changes of T m , T g , and T d5% are investigated. Additionally, strain LAC23 is used to synthesize random copolymers of 3-hydroxyoctanoate (3HO) and 3-hydroxydodecanoate (3HDD) or 3-hydroxytetradecanoates, their compositions could be controlled by adjusting the ratios of two related fatty acids. Meanwhile, block copolymer P(3HO)-b-P(3HDD) is synthesized by the same strain. It is found for the first time that even- and odd number mcl-PHA homopolymers have different physical properties. When the gene of the PHA synthase in the engineered P. entomophila is replaced by phaC from Aeromonas hydrophila 4AK4, poly(3-hydroxybutyrate-co-30 mol%-3-hydroxyhexanoate) is synthesized. Therefore, P. entomophila can be used to synthesize the whole range of PHA (C7-C14) homopolymers, random- and block copolymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecular Mobility in Phase Segregated Bottlebrush Block Copolymer Melts

    Science.gov (United States)

    Yavitt, Benjamin; Gai, Yue; Song, Dongpo; Winter, H. Henning; Watkins, James

    We investigate the linear viscoelastic behavior of poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO) brush block copolymer (BBCP) materials over a range of vol. fractions and with side chain lengths below the entanglement molecular weights. The high chain mobility of the brush architecture results in rapid micro-phase segregation of the brush copolymer segments, which occurs during thermal annealing at mild temperatures. Master curves of the dynamic moduli were obtained by time-temperature superposition. The reduced degree of chain entanglements leads to a unique liquid-like rheology similar to that of bottlebrush homopolymers, even in the phase segregated state. We also explore the alignment of phase segregated domains at exceptionally low strain amplitudes (γ = 0.01) and mild processing temperatures using small angle X-ray scattering (SAXS). Domain orientation occurred readily at strains within the linear viscoelastic regime without noticeable effect on the moduli. This interplay of high molecular mobility and rapid phase segregation that are exhibited simultaneously in BBCPs is in contrast to the behavior of conventional linear block copolymer (LBCP) analogs and opens up new possibilities for processing BBCP materials for a wide range of nanotechnology applications. NSF Center for Hierarchical Manufacturing at the University of Massachusetts, Amherst (CMMI-1025020).

  5. Non-Classical Order in Sphere Forming ABAC Tetrablock Copolymers

    Science.gov (United States)

    Zhang, Jingwen; Sides, Scott; Bates, Frank

    2013-03-01

    AB diblock and ABC triblock copolymers have been studied thoroughly. ABAC tetrablock copolymers, representing the simplest variation from ABC triblock by breaking the molecular symmetry via inserting some of the A block in between B and C blocks, have been studied systematically in this research. The model system is poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) (SISO) tetrablock terpolymers and the resulting morphologies were characterized by nuclear magnetic resonance, gel permeation chromatography, small-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry and dynamic mechanical spectroscopy. Two novel phases are first discovered in a single component block copolymers: hexagonally ordered spherical phase and tentatively identified dodecagonal quasicrystalline (QC) phase. In particular, the discovery of QC phase bridges the world of soft matters to that of metals. These unusual sets of morphologies will be discussed in the context of segregation under the constraints associated with the tetrablock molecular architecture. Theoretical calculations based on the assumption of Gaussian chain statistics provide valuable insights into the molecular configurations associated with these morphologies. the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, under contract number DEAC05-00OR22725 with UT-Battelle LLC at Oak Ridge National Lab.

  6. A neutron scattering study of triblock copolymer micelles

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberg, M.C.

    1997-11-01

    The thesis describes the neutron scattering experiments performed on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer micelles in aqueous solution. The studies concern the non-ionic triblock copolymer P85 which consists of two outer segments of 25 monomers of ethylene oxide attached to a central part of 40 monomers of propylene oxide. The amphiphilic character of P85 leads to formation of various structures in aqueous solution such as spherical micelles, rod-like structures, and a BCC liquid-crystal mesophase of spherical micelles. The present investigations are centered around the micellar structures. In the first part of this thesis a model for the micelle is developed for which an analytical scattering form factor can be calculated. The micelle is modeled as a solid sphere with tethered Gaussian chains. Good agreement was found between small-angle neutron scattering experiments and the form factor of the spherical P85 micelles. Above 60 deg. C some discrepancies were found between the model and the data which is possibly due to an elongation of the micelles. The second part focuses on the surface-induced ordering of the various micellar aggregates in the P85 concentration-temperature phase diagram. In the spherical micellar phase, neutron reflection measurements indicated a micellar ordering at the hydrophilic surface of quartz. Extensive modeling was performed based on a hard sphere description of the micellar interaction. By convolution of the distribution of hard spheres at a hard wall, obtained from Monte Carlo simulations, and the projected scattering length density of the micelle, a numerical expression was obtained which made it possible to fit the data. The hard-sphere-hard-wall model gave an excellent agreement in the bulk micellar phase. However, for higher concentrations (25 wt % P85) close to the transition from the micellar liquid into a micellar cubic phase, a discrepancy was found between the model and the

  7. A neutron scattering study of triblock copolymer micelles

    International Nuclear Information System (INIS)

    Gerstenberg, M.C.

    1997-11-01

    The thesis describes the neutron scattering experiments performed on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer micelles in aqueous solution. The studies concern the non-ionic triblock copolymer P85 which consists of two outer segments of 25 monomers of ethylene oxide attached to a central part of 40 monomers of propylene oxide. The amphiphilic character of P85 leads to formation of various structures in aqueous solution such as spherical micelles, rod-like structures, and a BCC liquid-crystal mesophase of spherical micelles. The present investigations are centered around the micellar structures. In the first part of this thesis a model for the micelle is developed for which an analytical scattering form factor can be calculated. The micelle is modeled as a solid sphere with tethered Gaussian chains. Good agreement was found between small-angle neutron scattering experiments and the form factor of the spherical P85 micelles. Above 60 deg. C some discrepancies were found between the model and the data which is possibly due to an elongation of the micelles. The second part focuses on the surface-induced ordering of the various micellar aggregates in the P85 concentration-temperature phase diagram. In the spherical micellar phase, neutron reflection measurements indicated a micellar ordering at the hydrophilic surface of quartz. Extensive modeling was performed based on a hard sphere description of the micellar interaction. By convolution of the distribution of hard spheres at a hard wall, obtained from Monte Carlo simulations, and the projected scattering length density of the micelle, a numerical expression was obtained which made it possible to fit the data. The hard-sphere-hard-wall model gave an excellent agreement in the bulk micellar phase. However, for higher concentrations (25 wt % P85) close to the transition from the micellar liquid into a micellar cubic phase, a discrepancy was found between the model and the

  8. Adsorption of non-ionic ABC triblock copolymers: Surface modification of TiO2 suspensions in aqueous and non-aqueous medium

    Science.gov (United States)

    Lerch, Jean-Philippe; Atanase, Leonard Ionut; Riess, Gérard

    2017-10-01

    A series of non-ionic ABC triblock copolymers, such as poly(butadiene)-b-poly(2-vinylpyrridine)-b-poly(ethylene oxide) (PB-P2VP-PEO) were synthesized by sequential anionic polymerizations. For these copolymers comprising an organo-soluble PB and a water-soluble PEO block, their P2VP middle block has been selected for its anchoring capacity on solid surfaces. The adsorption isotherms on TiO2 were obtained in heptane and in aqueous medium, as selective solvents. In both of these cases, the P2VP middle block provides the surface anchoring, whereas PB and PEO sequences are acting as stabilizing moieties in heptane and water respectively. By extension to ABC triblock copolymers of the scaling theory developed for diblock copolymers, the density of adsorbed chains could be correlated with the molecular characteristics of the PB-P2VP-PEO triblock copolymers. From a practical point a view, it could be demonstrated that these copolymers are efficient dispersing agents for the TiO2 pigments in both aqueous and non-aqueous medium.

  9. Radiation resistance of ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Matsumoto, Kaoru; Ikeda, Masaaki; Ohki, Yoshimichi; Kusama, Yasuo; Harashige, Masahiro; Yazaki, Fumihiko.

    1988-01-01

    In this paper, the radiation resistance of ethylene-styrene copolymer, a polymeric resin developed newly by the authors, is reported. Resin examined were five kinds of ethylene-styrene copolymers: three random and two graft copolymers with different styrene contents. Low-density polyethylene was used as a reference. The samples were irradiated by 60 Co γ-rays to total absorbed doses up to 10 MGy. The mechanical properties of the smaples were examined. Infrared spectroscopy, differential scanning calorimetry and X-ray scattering techniques were used to examine the morphology of the samples. The random copolymers are soft and easy to extend, because benzene rings which exisist highly at random hinder the crystallization. As for the radiation resistance, they are highly resistant to γ-rays in the aspects of carbonyl group formation, gel formation, and elongation. Further, they show even better radiation resistance when proper additives were compounded in. The graft copolymers are hard to extend, because they consist of segregated polystyrene and polyethylene regions which are connected with each other. The tensile strength of irradiated graft copolymers does not decrease below that of unirradiated copolymers, up to a total dose of 10 MGy. As a consequence, it can be said that ethylene-styrene copolymers have good radiation resistance owing to the so-called 'sponge' effect of benzene rings. (author)

  10. Photopatterned free-standing polyacrylamide gels for microfluidic protein electrophoresis.

    Science.gov (United States)

    Duncombe, Todd A; Herr, Amy E

    2013-06-07

    Designed for compatibility with slab-gel polyacrylamide gel electrophoresis (PAGE) reagents and instruments, we detail development of free-standing polyacrylamide gel (fsPAG) microstructures supporting electrophoretic performance rivalling that of microfluidic platforms. For the protein electrophoresis study described here, fsPAGE lanes are comprised of a sample reservoir and contiguous separation gel. No enclosed microfluidic channels are employed. The fsPAG devices (120 μm tall) are directly photopatterned atop of and covalently attached to planar polymer or glass surfaces. Leveraging the fast prototype-test cycle - significantly faster than mold based fabrication techniques - we optimize the fsPAG architecture to minimize injection dispersion for rapid (prototyping of the fsPAGE provides researchers a powerful tool for developing custom analytical assays. We highlight the utility of assay customization by fabricating a polyacrylamide gel with a spatial pore-size distribution and demonstrate the resulting enhancement in separation performance over a uniform gel. Further, we up-scale from a unit separation to an array of 96 concurrent fsPAGE assays in 10 min run time driven by one electrode pair. The fsPAG array layout matches that of a 96-well plate to facilitate integration of the planar free standing gel array with multi-channel pipettes while remaining compatible with conventional slab-gel PAGE reagents, such as staining for label-free protein detection. Notably, the entire fsPAGE workflow from fabrication, to operation, and readout uses readily available materials and instruments - making this technique highly accessible.

  11. The effect of polyacrylamide (PAM) applications on infiltration, runoff ...

    African Journals Online (AJOL)

    . Anionic polyacrylamide (PAM) application to soils is an effective soil conservation practice for reducing runoff and soil losses caused by erosion. It also increases the infiltration rate of soils. The objective of this study was conducted to ...

  12. Complications 15 years after breast augmentation with polyacrylamide

    Directory of Open Access Journals (Sweden)

    Habib M. Ghasemi

    2015-06-01

    Full Text Available Polyacrylamide hydrogel (PAAG has been used as an injectable, permanent filler for soft-tissue augmentation for more than two decades. Several complications have been reported worldwide. In this case report, we present a woman with long-term complications 15 years after bilateral breast augmentation with PAAG injections.

  13. Evaluation of wheat by polyacrylamide gel electrophoresis | Shuaib ...

    African Journals Online (AJOL)

    ... polyacrylamide gel electrophoresis (SDS-PAGE). Electrophorogram for each variety were scored and presence or absence of each band noted and was entered in a binary data matrix. Based on the data of SDS-PAGE gels cluster analysis was performed to check the variations among varieties. The overall result shows ...

  14. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    Science.gov (United States)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  15. Fabrication and Transport Properties of Manganite-Polyacrylamide-Based Composites

    Directory of Open Access Journals (Sweden)

    Viorel Sandu

    2009-01-01

    Full Text Available We present the fabrication and transport properties of a series of composites made of La2/3Sr1/3MnO3 and acrylamide-based copolymers. The most important result is the very narrow transition, of only 27 K, displayed by the peak that appears around the metal-insulator transition of the composites made with poly(acrylamide-vinylacetate. Although the amount of polymer is rather low, different copolymers change drastically the electric transport characteristics.

  16. A Novel Method for Detection of Glycoproteins on Sodium Dodecyl Sulphate Polyacrylamide Gel Using Radio-Iodinated Tyrosine

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Draz, Hossam M.; Dole, Anita

    2009-01-01

    The aim of this study is to develop a novel method for detection of glycoproteins on polyacrylamide gel. In this method, radio-iodinated-tyrosine (125I-tyrosine) was conjugated to glycoprotein by schiff's base mechanism on the sodium dodecyl sulfate- polyacrylamide gel. Ovalbumin and Concanavalin...... of glycoproteins using 125I-tyrosine selectively detected ovalbumin. Present results showed that MPD enhanced glycoprotein detection method can be used as a sensitive tool for the detection of glycoproteins on polyacrylamide gel...

  17. Block copolymer libraries: modular versatility of the macromolecular Lego system.

    Science.gov (United States)

    Lohmeijer, Bas G G; Wouters, Daan; Yin, Zhihui; Schubert, Ulrich S

    2004-12-21

    The synthesis and characterization of a new 4 x 4 library of block copolymers based on polystyrene and poly(ethylene oxide) connected by an asymmetrical octahedral bis(terpyridine) ruthenium complex at the block junction are described, while initial studies on the thin film morphology of the components of the library are presented by the use of Atomic Force Microscopy, demonstrating the impact of a library approach to derive structure-property relationships.

  18. Tri-block copolymers with mono-disperse crystallizable diamide segments: synthesis, analysis and rheological properties

    NARCIS (Netherlands)

    Araichimani, A.; Gaymans, R.J.

    2008-01-01

    Tri-block copolymers with polyether mid-segments and mono-disperse amide end segments were synthesized, analyzed and some properties studied. The end segment was an aromatic diamide (diaramide, TΦB). The polyether mid-segment was a difunctional poly(tetramethylene oxide) (PTMO, 1000 and 2900 g/mol).

  19. Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release.

    Science.gov (United States)

    Zuo, Cai; Peng, Jinlei; Cong, Yong; Dai, Xianyin; Zhang, Xiaolong; Zhao, Sijie; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Wei, Hua

    2018-03-15

    release from the doxorubicin (DOX)-loaded supramolecular star-shaped micelles due to the oxidation-induced dissociation of β-CD/Fc pair and the consequent loss of the colloidal stability of the star-shaped micelles. Studies of the delivery efficacy by an in vitro cytotoxicity study further indicated that higher DBs and longer hydrophilic arm compromised the therapeutic efficacy of the DOX-loaded supramolecular star-shaped micelles, resulting in significantly reduced cytotoxicity, as measured by increased IC 50 value. Overall, our results revealed that the screening of hydrophilic block by DB and MW for an optimized star-shaped copolymer should balance the stability versus therapeutic efficacy tradeoff for a comprehensive consideration. Therefore, the 12-arm star-shaped copolymer with POEGMA 30 is the best formulation tested. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces.

    Science.gov (United States)

    Zou, Shan; Hong, Rui; Emrick, Todd; Walker, Gilbert C

    2007-02-13

    Hierarchical, high-density, ordered patterns were fabricated on Si substrates by self-assembly of CdSe nanoparticles within approximately 20-nm-thick diblock copolymer films in a controlled manner. Surface-modified CdSe nanoparticles formed well-defined structures within microphase-separated polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) domains. Trioctylphosphine oxide (TOPO)-coated CdSe nanoparticles were incorporated into PS domains and polyethylene glycol-coated CdSe nanoparticles were located primarily in the P2VP domains. Nearly close-packed CdSe nanoparticles were clearly identified within the highly ordered patterns on Si substrates by scanning electron microscopy (SEM). Contact angle measurements together with SEM results indicate that TOPO-CdSe nanoparticles were partially placed at the air/copolymer interface.

  1. Microwave assisted polymer stabilized synthesis of silver nanoparticles and its application in the degradation of environmental pollutants

    International Nuclear Information System (INIS)

    Rastogi, Pankaj Kumar; Ganesan, Vellaichamy; Krishnamoorthi, S.

    2012-01-01

    Highlights: ► Graft copolymers of polyacrylamide and dextran are synthesized by grafting PAM chains onto a Dx backbone. ► Silver nanoparticles dispersed copolymer nano-composite (Ag-HDx-g-PAM) is synthesized by microwave heating. ► The environmentally benign and biodegradable copolymer, HDx-g-PAM acts as stabilizing and reducing agent. ► Ag-HDx-g-PAM nano-composite shows efficient catalytic activity for the reduction of environmental pollutants. - Abstract: Graft copolymers of polyacrylamide (PAM) and dextran (Dx) are synthesized by grafting PAM chains onto a Dx backbone (Dx-g-PAM) with ceric ion induced solution polymerization technique. Partial hydrolysis of Dx-g-PAM is carried out with sodium hydroxide solution to obtain HDx-g-PAM. To synthesize silver nanoparticles dispersed copolymer nano-composite (Ag-HDx-g-PAM), reduction of silver ions with HDx-g-PAM is carried out using microwave heating. The environmentally benign and biodegradable copolymer, HDx-g-PAM acts as both stabilizer and reducing agent. The copolymer nano-composite, Ag-HDx-g-PAM is characterized by FT-IR, transmission electron microscopy, scanning electron microscopy and optical spectroscopy. Further, the catalytic activity of Ag-HDx-g-PAM nano-composite towards the reduction of environmental pollutants like phenosafranine dye and aromatic nitro compounds are studied.

  2. Copolimerização micelar de poli(acrilamida-g-óxido de propileno: avaliação reológica e caracterização de suas soluções Micellar copolymerization of poly(acrylamide-g-propylene oxide: rheologic evaluation and solution characterization

    Directory of Open Access Journals (Sweden)

    Bianca L. Sadicoff

    2001-06-01

    Full Text Available Copolímeros graftizados de poliacrilamida e poli(óxido de propileno (PPO foram sintetizados via técnica de polimerização micelar. Foram investigadas as mudanças de viscosidade das suas soluções frente à variação do teor de monômero hidrófobo incorporado ao copolímero, adição de sal e de tensoativo. O maior teor de grupos hidrófobos resultou em aumento da viscosidade aparente das soluções poliméricas. A adição de sal provocou maior interação entre os grupos hidrófobos verificada pela desestabilização do sistema polimérico. A adição de tensoativos gerou decréscimo das viscosidades reduzidas das soluções poliméricas. Os copolímeros obtidos foram caracterizados, qualitativamente, por espectrometria de absorção na região do infravermelho (FTIR.Graft copolymers of polyacrylamide and poly(propylene oxide (PPO were synthesized by a micellar copolymerization technique. The rheological properties of the copolymers solutions were evaluated and compared with literature data for solutions of the same copolymers, synthesized by solution polymerization. The effect of hydrophobe content, salt addition and surfactant addition on the rheological properties were also investigated. Increasing hydrophobe content resulted in higher solution viscosities in the semi-dilute regime. Upon addition of salts, the hydrophobic groups associated to minimize their exposure to water. In the semi-dilute region, higher contents of surfactant added resulted in lower reduced viscosities of the polymer solutions. The copolymers were qualitatively characterized by infra-red spectrometry (IR.

  3. Comblike Polyacrylamides as Flooding Agent in Enhanced Oil Recovery

    NARCIS (Netherlands)

    Wever, Diego A. Z.; Picchioni, Francesco; Broekhuis, Antonius A.

    2013-01-01

    The oil recovery from core material and a specifically designed flow cell using novel branched (comblike) polyacrylamides (PAM) has been investigated. The injectivity characteristics of the different branched PAMs were evaluated by filtration tests and core-flow experiments. The number of arms of

  4. Rapid self-assembly of block copolymers to photonic crystals

    Science.gov (United States)

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  5. Two-dimensional polyacrylamide gel analysis of Plodia interpunctella granulosis virus

    International Nuclear Information System (INIS)

    Russell, D.L.; Consigli, R.A.

    1986-01-01

    The structural polypeptides of purified Plodia interpunctella granulosis virus were analyzed by three different two-dimensional gel systems. Isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of 53 acidic polypeptides in the enveloped nucleocapsid of the virus ranging in molecular weight from 97,300 to 8000. Nine of these polypeptides were shown to be glycoproteins by the technique of radiolabeled lectin blotting. Separation of the granulin in this system allowed resolution of five species, all of which have identical tryptic peptide maps. This matrix protein was demonstrated to be a phosphoglycoprotein by radiolabeled lectin blotting and acid phosphatase dephosphorylation. Nonequilibrium pH gel electrophoresis followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of the major basic protein of the virus, VP12, from a more acidic protein of the same molecular weight. Tryptic peptide analysis demonstrated that these two proteins were indeed different and acid urea gels followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed localization of the acidic protein to the envelope and the basic protein to the nucleocapsid of the virus. Finally, probing of the separated envelope nucleocapsid proteins in both the isoelectric focusing and nonequilibrium pH gel electrophoresis two-dimensional systems after transfer to nitrocellulose with iodinated, purified viral proteins allowed further insight into reactions which may be important in the maintenance of the virion structure

  6. Organization of Gold Nanorods in Cylinder-Forming Block Copolymer Films

    Science.gov (United States)

    Jian, Guoquian; Riggleman, Robert; Composto, Russell

    2012-02-01

    The addition of gold nanorods (AuNRs) to copolymer films can impart unique optical and electrical properties. To take full advantage of this system, the AuNRs must be dispersed in a self-organizing copolymer that directs the orientation of the anisotropic particle. In the present work, AuNRs with aspect ratio 3.6 (8 nm x 29 nm) are grafted with poly(2-vinyl pyridine) (P2VP) brushes and dispersed in a cylindrical forming diblock copolymer of polystyrene-b-P2VP (180K-b-77K, 29.6 wt% P2VP). Films are spun cast and solvent annealed in chloroform to produce a perpendicular cylindrical morphology at the surface. Using TEM and UV-ozone etching combined with AFM, the AuNRs are well dispersed and co-locate (top down view) with the P2VP cylinders, ˜50nm diameter. However, the AuNRs mainly lie parallel to the surface indicating that they likely locate at the junction created at the intersection between P2VP cylinders and P2VP brush layer adjacent to the silicon oxide surface. Self-consistent field calculations of the Au:PS-b-P2VP morphology as well as the effect of adding P2VP homopolymer to the nanocomposite will be discussed.

  7. Swelling/deswelling of polyacrylamide gels in aqueous NaCl solution

    Indian Academy of Sciences (India)

    Swelling kinetics of water-swollen polyacrylamide (PAAm) hydrogels (WSG) was investigated in various ... parameter, χ, were calculated and found to decrease with increase in [NaCl]. Collective ..... in other words, increase in hydrophilicity.

  8. Ultrasonic flotational separation of syrup with polyacrylamide

    International Nuclear Information System (INIS)

    Zeng SiXian; Qiu TaiQiu; Xie XiongFei; Hu SongQing

    1998-01-01

    A 60 degrees Bx solution of Australian raw sugar was treated at 80 degrees C with 300 ppm phosphoric acid and neutralized to pH 7 with Ca(OH)2. The resulting syrup (as model cane syrup rather than phosphatated liquor?) was subjected to flotational separation with and without ultrasonic vibration (16.5-33 kHz, 20-300 W) and/or addition of polyacrylamide (PAM; dose not stated)

  9. Lignin poly(lactic acid) copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  10. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  11. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-01-01

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  12. Theoretical consideration on phase behaviors of poly(ethylene oxide-block-propylene oxide)/LiCF3SO3 systems in lithium battery

    International Nuclear Information System (INIS)

    Ko, Sung Jin; Kim, Sun Joon; Kong, Sung Ho; Bae, Young Chan

    2004-01-01

    A new thermodynamic model is developed based on the extended perturbed hard sphere chain (PHSC) model and melting point depression theory to describe the phase behaviors of copolymer electrolyte/salt systems. The phase behaviors of poly(ethylene oxide-block-propylene oxide)/LiCF 3 SO 3 systems are investigated by thermo-optical analysis (TOA) technique. Quantitative descriptions according to the proposed model are in good agreement with experimental data. The obtained results show that monomer ratio and sequence type of copolymers play a great role in determining eutectic points of the given systems

  13. Comparison of polyacrylamide and agarose gel thin-layer isoelectric focusing for the characterization of beta-lactamases.

    Science.gov (United States)

    Vecoli, C; Prevost, F E; Ververis, J J; Medeiros, A A; O'Leary, G P

    1983-08-01

    Plasmid-mediated beta-lactamases from strains of Escherichia coli and Pseudomonas aeruginosa were separated by isoelectric focusing on a 0.8-mm thin-layer agarose gel with a pH gradient of 3.5 to 9.5. Their banding patterns and isoelectric points were compared with those obtained with a 2.0-mm polyacrylamide gel as the support medium. The agarose method produced banding patterns and isoelectric points which corresponded to the polyacrylamide gel data for most samples. Differences were observed for HMS-1 and PSE-1 beta-lactamases. The HMS-1 sample produced two highly resolvable enzyme bands in agarose gels rather than the single faint enzyme band observed on polyacrylamide gels. The PSE-1 sample showed an isoelectric point shift of 0.2 pH unit between polyacrylamide and agarose gel (pI 5.7 and 5.5, respectively). The short focusing time, lack of toxic hazard, and ease of formulation make agarose a practical medium for the characterization of beta-lactamases.

  14. Nanoparticle packing within block copolymer micelles prepared by the interfacial instability method.

    Science.gov (United States)

    Nabar, Gauri M; Winter, Jessica O; Wyslouzil, Barbara E

    2018-05-02

    The interfacial instability method has emerged as a viable approach for encapsulating high concentrations of nanoparticles (NPs) within morphologically diverse micelles. In this method, transient interfacial instabilities at the surface of an emulsion droplet guide self-assembly of block co-polymers and NP encapsulants. Although used by many groups, there are no systematic investigations exploring the relationship between NP properties and micelle morphology. Here, the effect of quantum dot (QD) and superparamagnetic iron oxide NP (SPION) concentration on the shape, size, and surface deformation of initially spherical poly(styrene-b-ethylene oxide) (PS-b-PEO) micelles was examined. Multi-NP encapsulation and uniform dispersion within micelles was obtained even at low NP concentrations. Increasing NP concentration initially resulted in larger numbers of elongated micelles and cylinders with tightly-controlled diameters smaller than those of spherical micelles. Beyond a critical NP concentration, micelle formation was suppressed; the dominant morphology became densely-loaded NP structures that were coated with polymer and exhibited increased polydispersity. Transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) revealed that NPs in densely-loaded structures can be well-ordered, with packing volume fractions of up to 24%. These effects were enhanced in magnetic composites, possibly by dipole interactions. Mechanisms governing phase transitions triggered by NP loading in the interfacial instability process were proposed. The current study helps establish and elucidate the active role played by NPs in directing block copolymer assembly in the interfacial instability process, and provides important guiding principles for the use of this approach in generating NP-loaded block copolymer composites.

  15. Reduced graphene oxide/hydroxylated styrene-butadiene-styrene tri-block copolymer electroconductive nanocomposites: Preparation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yuanqin; Xie, Yanyan [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Fan [College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000 (China); Ou, Encai; Jiang, Zhuojuan; Ke, Lili; Hu, Ding [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Xu, Weijian, E-mail: weijianxu59@gmail.com [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2012-08-20

    Highlights: Black-Right-Pointing-Pointer RGO/HO-SBS nanocomposites are prepared successfully. Black-Right-Pointing-Pointer The introduction of -OH improves the compatibility between RGO and HO-SBS. Black-Right-Pointing-Pointer RGO disperse homogeneously and form a compact continuous network in matrix (HO-SBS). Black-Right-Pointing-Pointer The percolation threshold of the nanocomposites is of 0.2-0.5 wt% (0.09-0.23 vol%) and its conductivity is up to 1.3 S/m. - Abstract: Flexible and electroconductive nanocomposites based on reduced graphene oxide (RGO) and hydroxylated styrene-butadiene-styrene tri-block copolymer (HO-SBS) were prepared by solution blending method. By the introduction of the groups of -OH and >C=O onto SBS, the compatibility between RGO and SBS was enhanced. Field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) showed that RGO dispersed homogeneously and formed a compact continuous network in matrix (HO-SBS). The addition of RGO improved the thermal stability of the RGO/HO-SBS nanocomposites while slightly lowered the mechanical property. Moreover, RGO gave the nanocomposites a maximum electrical conductivity up to 1.3 S/m.

  16. Synthesis of block copolymers with well-defined alternating chromophore and flexible spacer for electroluminescence application

    Energy Technology Data Exchange (ETDEWEB)

    Wang Haiqiao; Sun Qingjiang; Li Yongfang; Li Xiaoyu

    2003-02-24

    Two novel light-emitting block copolymers, poly[1,4,7,10-tetraoxadecane-1,10-diyl-1,4-naphthalene-1,2-ethenediyl-1,4- phenylene-1,2-ethenediyl-1,4-naphthalene] (TEO-DNVB) and poly[1,4,7,10-tetraoxadecane-1,10-diyl-1,4-naphthalene-1,2-ethenediyl- (2,5-dimethoxy-1,4-phenylene)-1,2-ethenediyl-1,4-naphthalene] (TEO-MDNVB), were synthesized by using the Wittig reaction. The block copolymers are composed of the fluorescent segments, 1,4-di[2-(1-naphthyl) vinyl] benzene (DNVB) or 2,5-dimethyloxy-1,4-di[2-(1-naphthyl) vinyl] benzene (MDNVB) and the flexible segments, tri(ethylene oxide) (TEO). The copolymers were characterized by Fourier transform infrared (FT-IR), {sup 1}H-nuclear magnetic resonance ({sup 1}H-NMR), ultraviolet-visible (UV-Vis), gel permeation chromatography (GPC) and cyclic voltammograms (CV). Thermal properties were investigated with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) under nitrogen atmosphere. Cyclic voltammetric measurement reveals a reversible p-doping process. Efficient blue-green polymer light-emitting diodes (PLEDs) and polymer light-emitting electrochemical cells (PLECs) were successfully fabricated. The synthesis, characterization and the electroluminescent properties of the copolymers are reported in this paper.

  17. ABC Triblock Copolymer Vesicles with Mesh-like Morphology

    Science.gov (United States)

    Zhao, Wei; Russell, Thomas; Grason, Gregory

    2010-03-01

    Polymer vesicles can be made from poly(isoprene-b-styrene-b-2-vinylpyridene) (PI-b-PS-b-P2VP) triblock copolymer under the confinement of anodic aluminum oxide (AAO) membrane. It was found that these vesicles have well-defined, nanoscopic size and a microphase-separated hydrophobic core, comprised of PS and PI blocks. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the core at a well-defined composition of three blocks. Confinement played an important role in generating these vesicles with such an unusual morphology.

  18. Functional materials derived from block copolymer self-assembly

    DEFF Research Database (Denmark)

    Li, Tao

    deposition methods, namely nanocasting and atomic layer deposition (ALD) will be applied to fabricate compact, inter-connected, and continuous metal oxide films. In this way, the structure integrity will be preserved after template removal during the annealing procedure. Another objective of this project......-casting, the block copolymer self-organizes into monolayer packed sphere pattern, without any surface treatment of the substrate and annealing process. Arrays of nano-pillars and nanowells of various materials are fabricated in dry etch processes over wafer scale without defects. We also show an in situ Al2O3 hard...

  19. Long-term follow-up after urethral injection with polyacrylamide hydrogel for female stress incontinence

    DEFF Research Database (Denmark)

    Mouritsen, Lone; Lose, Gunnar; Møller-Bek, Karl

    2014-01-01

    Urethral injection therapy for treatment of stress urinary incontinence has been in use for years, but only a few long-term follow-up studies have been published. Twenty-five women, injected with polyacrylamide hydrogel 8 years earlier, were invited for follow-up. Twenty-four could be contacted; 15...... had had no further treatment, seven had been re-operated with placement of mid-urethral slings, and two had been re-injected with polyacrylamide hydrogel. Eleven women attended for objective examination; all non-attenders were interviewed by telephone. Subjectively, in 44% the stress incontinence...... was cured or much improved, with a positive outcome according to the King's Health Questionnaire. Objectively, all patients had visible polyacrylamide hydrogel deposits on vaginal ultrasonography. No local adverse reactions were seen in the vaginal mucosa. The results of a later mid-urethral sling were...

  20. Water activity of aqueous solutions of ethylene oxide-propylene oxide block copolymers and maltodextrins

    Directory of Open Access Journals (Sweden)

    N. D. D. Carareto

    2010-03-01

    Full Text Available The water activity of aqueous solutions of EO-PO block copolymers of six different molar masses and EO/PO ratios and of maltodextrins of three different molar masses was determined at 298.15 K. The results showed that these aqueous solutions present a negative deviation from Raoult's law. The Flory-Huggins and UNIFAC excess Gibbs energy models were employed to model the experimental data. While a good agreement was obtained with the Flory-Huggins equation, discrepancies were observed when predicting the experimental behavior with the UNIFAC model. The water activities of ternary systems formed by a synthetic polymer, maltodextrin and water were also measured and used to test the predictive capability of both models.

  1. Penis invalidating cicatricial outcomes in an enlargement phalloplasty case with polyacrylamide gel (Formacryl).

    Science.gov (United States)

    Parodi, P C; Dominici, M; Moro, U

    2006-01-01

    The present article reports the case of a patient subjected to polyacrylamide polymers-composed gel cutaneous infiltration in the penis for cosmetic purposes, resulting in severe invalidating outcomes. A significant tissue reaction to the subcutaneous injection of polyacrylamide gel for the penis enlargement purpose resulted in permanent and invalidating scars both on the esthetic and functional levels. Such a result must be simply taken into account both singly and in the light of the international literature to exclude this method as standard uro-andrologic activity.

  2. Hybrid titanium dioxide/PS-b-PEO block copolymer nanocomposites based on sol-gel synthesis

    International Nuclear Information System (INIS)

    Gutierrez, J; Tercjak, A; Garcia, I; Peponi, L; Mondragon, I

    2008-01-01

    The poly(styrene)-b-poly(ethylene oxide) (SEO) amphiphilic block copolymer, with two different molecular weights, has been used as a structure directing agent for generating nanocomposites of TiO 2 /SEO via the sol-gel process. SEO amphiphilic block copolymers are designed with a hydrophilic PEO-block which can interact with inorganic molecules, as well as a hydrophobic PS-block which builds the matrix. The addition of different amounts of sol-gel provokes strong variations in the self-assembled morphology of TiO 2 /SEO nanocomposites with respect to the neat block copolymer. As confirmed by atomic force microscopy (AFM), TiO 2 /PEO-block micelles get closer, forming well-ordered spherical domains, in which TiO 2 nanoparticles constitute the core surrounded by a corona of PEO-blocks. Moreover, for 20 vol% sol-gel the generated morphology changes to a hexagonally ordered structure for both block copolymers. The cylindrical structure of these nanocomposites has been confirmed by the two-dimensional Fourier transform power spectrum of the corresponding AFM height images. Affinity between titanium dioxide precursor and PEO-block of SEO allows us to generate hybrid inorganic/organic nanocomposites, which retain the optical properties of TiO 2 , as evaluated by UV-vis spectroscopy

  3. Synthesis of Diblock copolymer poly-3-hydroxybutyrate -block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442

    DEFF Research Database (Denmark)

    Tripathi, Lakshmi; Wu, Lin-Ping; Chen, Jinchun

    2012-01-01

    ), thermo- and mechanical analysis. NMR confirmed the existence of diblock copolymers consisting of 58 mol% PHB as the short chain length block with 42 mol% PHHx as the medium chain length block. The block copolymers had two glass transition temperatures (Tg) at 2.7°C and -16.4°C, one melting temperature...... (Tm) at 172.1°C and one cool crystallization temperature (Tc) at 69.1°C as revealed by differential scanning calorimetry (DSC), respectively. This is the first microbial short-chain-length (scl) and medium-chain-length (mcl) PHA block copolymer reported. CONCLUSIONS: It is possible to produce PHA......BACKGROUND: Block polyhydroxyalkanoates (PHA) were reported to be resistant against polymer aging that negatively affects polymer properties. Recently, more and more attempts have been directed to make PHA block copolymers. Diblock copolymers PHB-b-PHHx consisting of poly-3-hydroxybutyrate (PHB...

  4. Studies of P(VDF-HFP) copolymer applied to gamma dosimetry

    International Nuclear Information System (INIS)

    Liz, Otavio S.R.; Medeiros, Adriana S.

    2011-01-01

    When polymeric materials are irradiated by ionizing radiation, the effects are roughly divided into two types, degradation (chain scission) and chain link (crosslinking). These effects are normally identified by spectroscopic analysis in the UV-Vis and Infrared region. Recently, the intensities of optical absorption in the ultraviolet visible region (273 nm) due to radio-induction of conjugated C = C bonds in P(VDF-TrFE) copolymers have been successfully used for high dose gamma dosimetry, for doses ranging from 0.1 to 200 kGy. In this context, there is now an interest to conduct a similar systematic investigation of another fluorinated copolymer of PVDF, the poly(fluorovinylidene-co-hexafluoropropylene) [P(VDF-HFP)], not only in the UV-VIS region but also in the near and mid-infrared region. The copolymer used was obtained by randomly adding 10% molar of [CF2- CF-CF3] monomers in the [CH2-CF2]n main chain of PVDF homopolymer. Preliminary results have shown that the irradiated copolymer has characteristic absorption bands originated by irradiation in the FTIR spectrum. It was found that the 1852 cm -1 band, associated with C = O bonds, have a linear correlation with the absorbed dose for doses ranging from 10 to 750 kGy. The absorption band at 1729 cm -1 , associated to chain oxidation (C = O), has shown a similar behavior and can be used to measure doses from 100 to 1000 kGy. These results indicate that the FTIR absorption bands of gamma irradiated P (VDF-HFP) have great potential to be used in high dose dosimetry, without the addition of dyes. (author)

  5. Studies of P(VDF-HFP) copolymer applied to gamma dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Liz, Otavio S.R.; Medeiros, Adriana S. [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Faria, Luiz O., E-mail: farialo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    When polymeric materials are irradiated by ionizing radiation, the effects are roughly divided into two types, degradation (chain scission) and chain link (crosslinking). These effects are normally identified by spectroscopic analysis in the UV-Vis and Infrared region. Recently, the intensities of optical absorption in the ultraviolet visible region (273 nm) due to radio-induction of conjugated C = C bonds in P(VDF-TrFE) copolymers have been successfully used for high dose gamma dosimetry, for doses ranging from 0.1 to 200 kGy. In this context, there is now an interest to conduct a similar systematic investigation of another fluorinated copolymer of PVDF, the poly(fluorovinylidene-co-hexafluoropropylene) [P(VDF-HFP)], not only in the UV-VIS region but also in the near and mid-infrared region. The copolymer used was obtained by randomly adding 10% molar of [CF2- CF-CF3] monomers in the [CH2-CF2]n main chain of PVDF homopolymer. Preliminary results have shown that the irradiated copolymer has characteristic absorption bands originated by irradiation in the FTIR spectrum. It was found that the 1852 cm{sup -1} band, associated with C = O bonds, have a linear correlation with the absorbed dose for doses ranging from 10 to 750 kGy. The absorption band at 1729 cm{sup -1}, associated to chain oxidation (C = O), has shown a similar behavior and can be used to measure doses from 100 to 1000 kGy. These results indicate that the FTIR absorption bands of gamma irradiated P (VDF-HFP) have great potential to be used in high dose dosimetry, without the addition of dyes. (author)

  6. Block Copolymer Electrolytes: Thermodynamics, Ion Transport, and Use in Solid- State Lithium/Sulfur Cells

    Science.gov (United States)

    Teran, Alexander Andrew

    Nanostructured block copolymer electrolytes containing an ion-conducting block and a modulus-strengthening block are of interest for applications in solid-state lithium metal batteries. These materials can self-assemble into well-defined microstructures, creating conducting channels that facilitate ion transport. The overall objective of this dissertation is to gain a better understanding of the behavior of salt-containing block copolymers, and evaluate their potential for use in solid-state lithium/sulfur batteries. Anionically synthesized polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were used as a model system. This thesis investigates the model system on several levels: from fundamental thermodynamic studies to bulk characterization and finally device assembly and testing. First, the thermodynamics of neat and salt-containing block copolymers was studied. The addition of salt to these materials is necessary to make them conductive, however even small amounts of salt can have significant effects on their phase behavior, and consequently their iontransport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the last decade. A comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations and temperatures was conducted. Next, the effect of molecular weight on ion transport in both homopolymer and copolymer electrolytes were studied over a wide range of chain lengths. Homopolymer electrolytes show an inverse relationship between conductivity and chain length, with a plateau in the infinite molecular weight limit. This is due to the presence of two mechanisms of ion conduction in homopolymers; the first mechanism is a result of the segmental motion of the chains surrounding the salt ions, 2 creating a liquid

  7. Lactosylated poly(ethylene oxide)-poly(propylene oxide) block copolymers for potential active targeting: synthesis and physicochemical and self-aggregation characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cuestas, Maria L.; Glisoni, Romina J. [University of Buenos Aires, Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry (Argentina); Mathet, Veronica L. [National Science Research Council (CONICET) (Argentina); Sosnik, Alejandro, E-mail: alesosnik@gmail.com [University of Buenos Aires, The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry (Argentina)

    2013-01-15

    Aiming to develop polymeric self-assembly nanocarriers with potential applications in active drug targeting to the liver, linear and branched poly(ethylene oxide)-poly(propylene oxide) amphiphiles were conjugated to lactobionic acid (LA), a disaccharide of galactose and gluconic acid, by the conventional Steglich esterification reaction. The conjugation was confirmed by ATR/FT-IR, {sup 1}H-NMR, and {sup 13}C-NMR spectroscopy. Elemental analysis and MALDI-TOF mass spectrometry were employed to elucidate the conjugation extent and the final molecular weight, respectively. The critical micellar concentration (CMC), the size and size distribution and zeta potential of the pristine and modified polymeric micelles under different conditions of pH and temperature were characterized by dynamic light scattering (DLS). Conjugation with LA favored the micellization process, leading to a decrease of the CMC with respect to the pristine counterpart, this phenomenon being independent of the pH and the temperature. At 37 Degree-Sign C, micelles made of pristine copolymers showed a monomodal size distribution between 12.8 and 24.4 nm. Conversely, LA-conjugated micelles showed a bimodal size pattern that comprised a main fraction of relatively small size (11.6-22.2 nm) and a second one with remarkably larger sizes of up to 941.4 nm. The former corresponded to single micelles, while the latter would indicate a secondary aggregation phenomenon. The spherical morphology of LA-micelles was visualized by transmission electron microscopy (TEM). Finally, to assess the ability of the LA-conjugated micelles to interact with lectin-like receptors, samples were incubated with concanavalin A at 37 Degree-Sign C and the size and size distribution were monitored by DLS. Findings indicated that regardless of the relatively weak affinity of this vegetal lectin for galactose, micelles underwent agglutination probably through the interaction of a secondary site in the lectin with the gluconic acid

  8. Tunable Mesoporous Bragg Reflectors Based on Block-Copolymer Self-Assembly

    KAUST Repository

    Guldin, Stefan; Kolle, Mathias; Stefik, Morgan; Langford, Richard; Eder, Dominik; Wiesner, Ulrich; Steiner, Ullrich

    2011-01-01

    Mesoporous Bragg reflectors are a promising materials platform for photovoltaics, light emission, and sensing. A fast and versatile fabrication route that relies on the self-assembly of the block copolymer poly(isoprene-b-ethylene oxide) in combination with simple sol-gel chemistry is reported. The method allows extended control over porosity and pore size in the resulting inorganic material and results in high-quality optical elements. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Tunable Mesoporous Bragg Reflectors Based on Block-Copolymer Self-Assembly

    KAUST Repository

    Guldin, Stefan

    2011-07-06

    Mesoporous Bragg reflectors are a promising materials platform for photovoltaics, light emission, and sensing. A fast and versatile fabrication route that relies on the self-assembly of the block copolymer poly(isoprene-b-ethylene oxide) in combination with simple sol-gel chemistry is reported. The method allows extended control over porosity and pore size in the resulting inorganic material and results in high-quality optical elements. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites

    International Nuclear Information System (INIS)

    Saravanan, P.; Padmanabha Raju, M.; Alam, Sarfaraz

    2007-01-01

    Synthesis of Ag nanoparticles containing polyacrylamide (PAm) hydrogel composites was performed by free-radical cross-linking polymerization of acrylamide monomer in an aqueous medium containing Ag + ions. The Ag nanoparticle/PAm composites exhibit faint yellow colour and are found to stable under ambient conditions, without undergoing oxidation. TEM micrographs reveal the presence of nearly spherical and well-separated Ag nanoparticles with diameters in the range of 4-7 nm. UV-vis studies apparently show the characteristic surface plasmon band at ∼415 nm, for the existence of Ag nanoparticles within the hydrogel matrix. The effect of varying Ag + ion concentration within the PAm hydrogels on the amount of formation of Ag nanoparticles, as well as on the bulk properties of hydrogel nanocomposites such as equilibrium swelling, optical and electrical properties are studied. The Ag/PAm hydrogel nanocomposites have higher swelling ratio and lower electron transfer resistance than its corresponding conventional hydrogel

  11. Heating of polyacrylamide ferrogel by alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Safronov, A.P., E-mail: Safronov@iep.uran.ru [Ural Federal University, Yekaterinburg (Russian Federation); Institute of Elecrophysics, UB RAS, Yekaterinburg (Russian Federation); Samatov, O.M. [Institute of Elecrophysics, UB RAS, Yekaterinburg (Russian Federation); Tyukova, I.S.; Mikhnevich, E.A. [Ural Federal University, Yekaterinburg (Russian Federation); Beketov, I.V. [Ural Federal University, Yekaterinburg (Russian Federation); Institute of Elecrophysics, UB RAS, Yekaterinburg (Russian Federation)

    2016-10-01

    Ferrogel based on polacryamide network with embedded maghemite nanoparticles with mean number average particle diameter 12 nm was synthesized by radical polymerization in water-based ferrofluid. The network structure of ferrogel was characterized by Flory–Rehner theory and it was shown that the embedded particles were substantially larger than the mesh size. It prevented the translational movement of particles in the ferrogel. The immobilization of particles was confirmed by dynamic light scattering. The adhesion of macromolecular chains to the particles was determined by calorimetry using thermochemical cycle. The enthalpy of interfacial adhesion was found several orders of magnitude higher than the energy of dipoles in typically applied magnetic fields. Despite the differenve in the mobility of particles in ferrofluid and ferrogel the comparative study of their heating in alternating magnetic field, however, revealed their close similarity. In both cases it was goverened by superposing of Neel and Brownian relaxation mechanisms. - Highlights: • We synthesized polyacrylamide ferrogel with maghemite nanoparticles. • Nanoparticles are entrapped into gel network. • Polyacrylamide chains are strongly linked to the particles. • Brownian relaxation contributes to heating of ferrogel in alternating field.

  12. Copolymerization of Phenylselenide-Substituted Maleimide with Styrene and Its Oxidative Elimination Behavior

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2018-03-01

    Full Text Available Selenium-containing monomer monophenyl maleimide selenide (MSM was synthesized and copolymerized with styrene (St using reversible addition-fragmentation chain transfer (RAFT polymerization. Copolymers with controlled molecular weight and narrow molecular weight distribution were obtained. The structure of the copolymer was characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrum, Fourier transform infrared spectroscopy (FT-IR and Ultraviolet–visible spectroscopy (UV-vis spectroscopy. The copolymer can be oxidized by H2O2 to form carbon-carbon double bonds within the main chain due to the unique sensitivity of selenide groups in the presence of oxidants. Such structure changing resulted in an interesting concentration-related photoluminescence emission enhancement.

  13. Immunochemical characterization of Mycobacterium leprae antigens by the SDS-polyacrylamide gel electrophoresis immunoperoxidase technique (SGIP) using patients' sera

    NARCIS (Netherlands)

    Klatser, P. R.; van Rens, M. M.; Eggelte, T. A.

    1984-01-01

    In this study the SDS-polyacrylamide gel electrophoresis immunoperoxidase (SGIP) assay was used for characterizing the antigenic components of Mycobacterium leprae using patients' sera. This technique involved the separation of mycobacterial sonicates on SDS-polyacrylamide gels, longitudinal

  14. Microwave assisted polymer stabilized synthesis of silver nanoparticles and its application in the degradation of environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Pankaj Kumar [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, UP (India); Ganesan, Vellaichamy, E-mail: velganesh@yahoo.com [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, UP (India); Krishnamoorthi, S., E-mail: dr.skmoorthi@gmail.com [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, UP (India)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Graft copolymers of polyacrylamide and dextran are synthesized by grafting PAM chains onto a Dx backbone. Black-Right-Pointing-Pointer Silver nanoparticles dispersed copolymer nano-composite (Ag-HDx-g-PAM) is synthesized by microwave heating. Black-Right-Pointing-Pointer The environmentally benign and biodegradable copolymer, HDx-g-PAM acts as stabilizing and reducing agent. Black-Right-Pointing-Pointer Ag-HDx-g-PAM nano-composite shows efficient catalytic activity for the reduction of environmental pollutants. - Abstract: Graft copolymers of polyacrylamide (PAM) and dextran (Dx) are synthesized by grafting PAM chains onto a Dx backbone (Dx-g-PAM) with ceric ion induced solution polymerization technique. Partial hydrolysis of Dx-g-PAM is carried out with sodium hydroxide solution to obtain HDx-g-PAM. To synthesize silver nanoparticles dispersed copolymer nano-composite (Ag-HDx-g-PAM), reduction of silver ions with HDx-g-PAM is carried out using microwave heating. The environmentally benign and biodegradable copolymer, HDx-g-PAM acts as both stabilizer and reducing agent. The copolymer nano-composite, Ag-HDx-g-PAM is characterized by FT-IR, transmission electron microscopy, scanning electron microscopy and optical spectroscopy. Further, the catalytic activity of Ag-HDx-g-PAM nano-composite towards the reduction of environmental pollutants like phenosafranine dye and aromatic nitro compounds are studied.

  15. Synthesis of a Cationic Polyacrylamide under UV Initiation and Its Flocculation in Estrone Removal

    Directory of Open Access Journals (Sweden)

    Jiaoxia Sun

    2018-01-01

    Full Text Available A ternary cationic polyacrylamide (CPAM with the hydrophobic characteristic was prepared through ultraviolet- (UV- initiated polymerization technique for the estrone (E1 environmental estrogen separation and removal. The monomers of acrylamide (AM, acryloyloxyethyl-trimethyl ammonium chloride (DAC, and acryloyloxyethyl dimethylbenzyl ammonium chloride (AODBAC were used to synthesize the ternary copolymer (PADA. Fourier transform infrared spectroscopy (FT-IR, 1H nuclear magnetic resonance spectroscopy (1H NMR, thermogravimetry/differential scanning calorimetry (TG/DSC, and scanning electron microscopy (SEM were employed to characterize the structure, thermal decomposition property, and morphology of the polymers, respectively. FT-IR and 1H NMR results indicated the successful formation of the polymers. Besides, with the introduction of hydrophobic groups (phenyl group, an irregular and porous surface morphology and a favorable thermal stability of the PADA were observed by SEM and TG/DSC analyses, respectively. At the optimal condition (pH = 7, flocculant dosage = 4.0 mg/L and E1 concentration = 0.75 mg/L, an excellent E1 flocculation performance (E1 removal rate: 90.1%, floc size: 18.3 μm, and flocculation kinetics: 22.69×10-4 s−1 was acquired by using the efficient flocculant PADA-3 (cationic degree = 40%, and intrinsic viscosity = 6.30 dL·g−1. The zeta potential and floc size analyses were used to analyze the possible flocculation mechanism for the E1 removal. Results indicated that the charge neutralization, adsorption, and birding effects were dominant in the E1 removal progress.

  16. Mechanical properties of weakly segregated block copolymers : 1. Synergism on tensile properties of poly(styrene-b-n-butylmethacrylate) diblock copolymers

    NARCIS (Netherlands)

    Weidisch, R.; Michler, G.H.; Fischer, H.; Arnold, M.; Hofmann, S.; Stamm, M.

    1999-01-01

    Mechanical properties of poly(styrene-b-n-butylmethacrylate) diblock copolymers, PS-b-PBMA, with different lengths of the polystyrene block were investigated. The copolymers display a composition range where the tensile strength of the block copolymers exceeds the values of the corresponding

  17. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  18. Synthesis of non-siliceous mesoporous oxides.

    Science.gov (United States)

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  19. The One-Pot Directed Assembly of Cylinder-Forming Block Copolymer on Adjacent Chemical Patterns for Bimodal Patterning.

    Science.gov (United States)

    Chang, Tzu-Hsuan; Xiong, Shisheng; Liu, Chi-Chun; Liu, Dong; Nealey, Paul F; Ma, Zhenqiang

    2017-09-01

    The direct self-assembly of cylinder-forming poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) block copolymer is successfully assembled into two orientations, according to the underlying guiding pattern in different areas. Lying-down and perpendicular cylinders are formed, respectively, depending on the design of chemical pattern: sparse line/space pattern or hexagonal dot array. The first chemical pattern composed of prepatterned cross-linked polystyrene (XPS) line/space structure has a period (L S ) equal to twice the intercylinder period of the block copolymer (L 0 ). The PS-b-PMMA thin film on the prepared chemical template after thermal annealing forms a lying-down cylinder morphology when the width of the PS strips is less than the width of PS block in the PS-b-PMMA block copolymer. The morphology is only applicable at the discrete thickness of the PS-b-PMMA film. In addition to forming the lying-down cylinders directly on the XPS guiding pattern, the cylinder-forming block copolymer can also be assembled in a perpendicular way on the second guiding pattern (the hexagonal dot array). The block copolymer films are registered into two orientations in a single directed self-assembly process. The features of the assembled patterns are successfully transferred down to the silicon oxide substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Study of the interface solid/solutions containing PEO-PPO block copolymers and asphaltenes by FTIR/ATR; Estudo de solucoes de copolimeros em bloco de PEO-PPO contendo asfaltenos por FTIR/DTA

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Janaina I.S.; Neto, Jessica S.G.; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)], E-mails: janaina_333@hotmail.com, kinha_dac_dm@hotmail.com; celias@ima.ufrj.br

    2011-07-01

    The formation of water/oil emulsions can cause problems in various stages of production, processing and refining of petroleum. In this study, the technique of Fourier transform infrared spectroscopy (FTIR) using the method of attenuated total reflectance (ATR) was applied to study the solid-solutions of block copolymers based on poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) interface and its interaction in this interface with asphaltenic fractions of petroleum. The solid is the crystal of the ATR. Initially, we determined the critical micelle concentration values of the copolymers, which were consistent those obtained by a tensiometer. Bottle Test was also performed to correlate the efficiency of PEO-PPO copolymers in the breaking of water/oil emulsions with its adsorption at the interfaces solutions. (author)

  1. Kinetic modelling of radiochemical ageing of ethylene-propylene copolymers

    International Nuclear Information System (INIS)

    Colin, Xavier; Richaud, Emmanuel; Verdu, Jacques; Monchy-Leroy, Carole

    2010-01-01

    A non-empirical kinetic model has been built for describing the general trends of radiooxidation kinetics of ethylene-propylene copolymers (EPR) at low γ dose rate and low temperature. It is derived from a radical chain oxidation mechanism composed of 30 elementary reactions: 19 relative to oxidation of methylene and methyne units plus 11 relative to their eventual cooxidation. The validity of this model has been already checked successfully elsewhere for one homopolymer: polyethylene (PE) (; ). In the present study, it is now checked for polypropylene (PP) and a series of three EPR differing essentially by their mole fraction of ethylene (37%, 73% and 86%) and their crystallinity degree (0%, 5% and 26%). Predicted values of radiation-chemical yields are in good agreement with experimental ones published in the last half past century.

  2. An open multicenter study of polyacrylamide hydrogel (Bulkamid®) for female stress and mixed urinary incontinence

    DEFF Research Database (Denmark)

    Lose, Gunnar; Sørensen, Helle Christina; Axelsen, Susanne Maigaard

    2010-01-01

    Polyacrylamide hydrogel (PAHG, Bulkamid®) is a promising urethral bulking agent. This multicenter study was carried out to evaluate safety and efficacy of Bulkamid® for female stress and mixed urinary incontinence.......Polyacrylamide hydrogel (PAHG, Bulkamid®) is a promising urethral bulking agent. This multicenter study was carried out to evaluate safety and efficacy of Bulkamid® for female stress and mixed urinary incontinence....

  3. Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films.

    Science.gov (United States)

    Mandal, Arup; Chakrabarty, Debabrata

    2015-12-10

    Semi-interpenetrating polymer network (semi-IPN) of poly(vinyl alcohol)/polyacrylamide was reinforced with various doses of nanocellulose. The different composite films thus prepared were characterized with respect to their mechanical, thermal, morphological and barrier properties. The composite film containing 5 wt.% of nanocellulose showed the highest tensile strength. The semi-interpenetrating polymer network of poly(vinyl alcohol)/polyacrylamide; and its various composites with nanocellulose were almost identical in their thermal stability. Each of the composites however exhibited much superior stability with respect to the linear poly(vinyl alcohol) and crosslinked polyacrylamide. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited phase separated morphology where agglomerates of nanocellulose were found to be dispersed in the matrix of the semi-IPN. The moisture vapor transmission rate (MVTR) was the lowest for the film containing 5 wt.% of nanocellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Algal biomass harvesting by graft copolymer of polyacrylamide on guar gum (GGg-PAM: a sustainable method for alternative source of energy

    Directory of Open Access Journals (Sweden)

    Pinki Pal

    2016-09-01

    Full Text Available Microalgal cells has been utilized as a rich source of food, feed and fuel. The process of concentrating algal cells from water suspension is called harvesting. This article deals with the algal biomass harvesting by flocculation process using acrylamide grafted guar gum. Acrylamide has been successfully grafted onto the backbone of guar gum by microwave initiated method in which microwave radiation alone (without chemical free radical initiator is used to initiate the grafting reaction. Simultaneously with the synthesis of graft copolymer, water removal capability of various grades of GGg-PAM have also been studied as a flocculant for algal biomass harvesting through standard jar test procedure for collection of algal biomass. The collected biomass can be hand carried. The collected biomass has been characterized in terms of crude fat content and elemental composition. Calorific value of this collected biomass has also been theoretically calculated.

  5. Unusual kinetics of poly(ethylene glycol) oxidation with cerium(IV) ions in sulfuric acid medium and implications for copolymer synthesis.

    Science.gov (United States)

    Szymański, Jan K; Temprano-Coleto, Fernando; Pérez-Mercader, Juan

    2015-03-14

    The cerium(IV)-alcohol couple in an acidic medium is an example of a redox system capable of initiating free radical polymerization. When the alcohol has a polymeric nature, the outcome of such a process is a block copolymer, a member of a class of compounds possessing many useful properties. The most common polymer with a terminal -OH group is poly(ethylene glycol) (PEG); however, the detailed mechanism of its reaction with cerium(IV) remains underexplored. In this paper, we report our findings for this reaction based on spectrophotometric measurements and kinetic modeling. We find that both the reaction order and the net rate constant for the oxidation process depend strongly on the nature of the acidic medium used. In order to account for the experimental observations, we postulate that protonation of PEG decreases its affinity for some of the cerium(IV)-sulfate complexes formed in the system.

  6. High-throughput preparation of complex multi-scale patterns from block copolymer/homopolymer blend films

    Science.gov (United States)

    Park, Hyungmin; Kim, Jae-Up; Park, Soojin

    2012-02-01

    A simple, straightforward process for fabricating multi-scale micro- and nanostructured patterns from polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)/poly(methyl methacrylate) (PMMA) homopolymer in a preferential solvent for PS and PMMA is demonstrated. When the PS-b-P2VP/PMMA blend films were spin-coated onto a silicon wafer, PS-b-P2VP micellar arrays consisting of a PS corona and a P2VP core were formed, while the PMMA macrodomains were isolated, due to the macrophase separation caused by the incompatibility between block copolymer micelles and PMMA homopolymer during the spin-coating process. With an increase of PMMA composition, the size of PMMA macrodomains increased. Moreover, the P2VP blocks have a strong interaction with a native oxide of the surface of the silicon wafer, so that the P2VP wetting layer was first formed during spin-coating, and PS nanoclusters were observed on the PMMA macrodomains beneath. Whereas when a silicon surface was modified with a PS brush layer, the PS nanoclusters underlying PMMA domains were not formed. The multi-scale patterns prepared from copolymer micelle/homopolymer blend films are used as templates for the fabrication of gold nanoparticle arrays by incorporating the gold precursor into the P2VP chains. The combination of nanostructures prepared from block copolymer micellar arrays and macrostructures induced by incompatibility between the copolymer and the homopolymer leads to the formation of complex, multi-scale surface patterns by a simple casting process.A simple, straightforward process for fabricating multi-scale micro- and nanostructured patterns from polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)/poly(methyl methacrylate) (PMMA) homopolymer in a preferential solvent for PS and PMMA is demonstrated. When the PS-b-P2VP/PMMA blend films were spin-coated onto a silicon wafer, PS-b-P2VP micellar arrays consisting of a PS corona and a P2VP core were formed, while the PMMA macrodomains were isolated, due to the

  7. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials, containers...

  8. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be safely...

  9. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be safely...

  10. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...

  11. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be safely...

  12. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  13. Antimicrobial activity of poly(acrylic acid) block copolymers

    International Nuclear Information System (INIS)

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P.; Lackner, Maximilian

    2014-01-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed

  14. Critical Conditions for Liquid Chromatography of Statistical Copolymers: Functionality Type and Composition Distribution Characterization by UP-LCCC/ESI-MS.

    Science.gov (United States)

    Epping, Ruben; Panne, Ulrich; Falkenhagen, Jana

    2017-02-07

    Statistical ethylene oxide (EO) and propylene oxide (PO) copolymers of different monomer compositions and different average molar masses additionally containing two kinds of end groups (FTD) were investigated by ultra high pressure liquid chromatography under critical conditions (UP-LCCC) combined with electrospray ionization time-of flight mass spectrometry (ESI-TOF-MS). Theoretical predictions of the existence of a critical adsorption point (CPA) for statistical copolymers with a given chemical and sequence distribution1 could be studied and confirmed. A fundamentally new approach to determine these critical conditions in a copolymer, alongside the inevitable chemical composition distribution (CCD), with mass spectrometric detection, is described. The shift of the critical eluent composition with the monomer composition of the polymers was determined. Due to the broad molar mass distribution (MMD) and the presumed existence of different end group functionalities as well as monomer sequence distribution (MSD), gradient separation only by CCD was not possible. Therefore, isocratic separation conditions at the CPA of definite CCD fractions were developed. Although the various present distributions partly superimposed the separation process, the goal of separation by end group functionality was still achieved on the basis of the additional dimension of ESI-TOF-MS. The existence of HO-H besides the desired allylO-H end group functionalities was confirmed and their amount estimated. Furthermore, indications for a MSD were found by UPLC/MS/MS measurements. This approach offers for the first time the possibility to obtain a fingerprint of a broad distributed statistical copolymer including MMD, FTD, CCD, and MSD.

  15. Copolymers at the solid - liquid interface

    NARCIS (Netherlands)

    Wijmans, C.M.

    1994-01-01

    Copolymers consisting of both adsorbing and nonadsorbing segments can show an adsorption behaviour which is very different from that of homopolymers. We have mainly investigated the adsorption of AB diblock copolymers, which have one adsorbing block (anchor) and one nonadsorbing block

  16. The Influence of Conditioning Agent on Phosphate Diffusion Coefficient through Polyacrylamide and Agarose Gel

    Directory of Open Access Journals (Sweden)

    Layta Dinira

    2013-03-01

    Full Text Available Excess phosphate in natural water can cause algae grow rapidly, to the extent causing many fish deaths that led to the extinction of certain species. Therefore, an analysis or periodic observations of phosphate levels in the water is needed. The commonly used method is diffusive gradient in thin films (DGT technique. The DGT technique is based on the ability of analyte to diffuse through a gel, which have a value named diffusion coefficient. This research was conducted in order to study the effect of different storage solution to the phosphate diffusion coefficient through polyacrylamide and agarose gels. Initial research performed with making the polyacrylamide and agarose gels. To observe the effect of different storage solutions, the gels partly stored in distilled water gel while the others are stored in a NaCl solution of 0.01 M. Phosphate diffusion coefficient was determined using Fick's Law after analyze the phosphate concentration using UV-Visible spectrophotometer. The results showed that phosphate diffusion coefficient was highest when polyacrylamide and agarose gels stored in NaCl solution of 0.01 M.

  17. An electrokinetic characterization of low charge density cross-linked polyacrylamide gels

    NARCIS (Netherlands)

    Yezek, L.P.; Leeuwen, van H.P.

    2004-01-01

    Hydrogels of polyacrylamide have found wide application in separation science and, more recently, in speciation techniques. These applications ideally require an uncharged, inert polymer matrix to act as a conduit for either diffusion or electrically driven migration. However, the electrical effects

  18. Synthesis and characterization of waterborne polyurethane acrylate copolymers

    International Nuclear Information System (INIS)

    Sultan, Misbah; Bhatti, Haq Nawaz; Zuber, Mohammad; Barikani, Mehdi

    2013-01-01

    Polyurethane acrylate copolymers were synthesized by emulsion polymerization process. To reduce the environmental hazards, organic solvents were replaced by eco-friendly aqueous system. Concentration of polyurethane and acrylate monomer was varied to investigate the effect of chemical composition on performance properties of copolymers. FTIR spectroscopy was used as a key tool to record the chemical synthesis route. The synthesized copolymer emulsions were characterized by evaluating their particle size, viscosity, dry weight content, chemical and water resistance. Thermal decomposition was studied by thermogravimetric analysis. Scanning electron microscope was used to visualize the morphological structure of copolymers. The experimental results indicate better polyurethane acrylate compatibility till the ratio of 30/70. However, these copolymers exhibited synergistic effects between the two polymers and revealed a remarkable improvement in numerous coating properties

  19. SYNTHESIS OF pH-RESPONSIVE AMPHIPHILIC DIBLOCK COPOLYMERS CONTAINING POLYISOBUTYLENE via OXYANION-INITIATED POLYMERIZATION AND THEIR MULTIPLE SELF-ASSEMBLY MORPHOLOGIES

    Institute of Scientific and Technical Information of China (English)

    Huai-chao Wang; Ming-zu Zhang; Pei-hong Ni; Jin-lin He; Ying Hao; Yi-xian Wu

    2013-01-01

    Two pH-responsive amphiphilic diblock copolymers,namely polyisobutylene-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (PIB-b-PDMAEMA) and polyisobutylene-block-poly(metharylic acid) (PIB-b-PMAA),were synthesized via oxyanion-initiated polymerization,and their multiple self-assembly behaviors have been studied.An exo-o1efin-terminated highly reactive polyisobutylene (HRPIB) was first changed to hydroxyl-terminated PIB (PIB-OH) via hydroboration-oxidation of C=C double bond in the chain end,and then reacted with KH to yield a potassium alcoholate of PIB (PIB-O-K+).PIB-O-K+ was immediately used as a macroinitiator to polymerize DMAEMA monomer,resulting in a cationic diblock copolymer PIB-b-PDMAEMA.With the similar synthesis procedure,the anionic diblock copolymer PIB-b-PMAA could be prepared via a combination of oxyanion-initiated polymerization of tert-butyl methacrylate (tBMA) and subsequent hydrolysis of tert-butyl ester groups in PtBMA block.The functional PIB and block copolymers have been fully characterized by 1H-NMR,FT-IR spectroscopy,and gel permeation chromatography (GPC).These samples allowed us to systematically investigate the effects of block composition on the pH responsivity and various self-assembled morphologies of the copolymers in THF/water mixed solvent.Transmission electron microscopy (TEM) images revealed that these diblock copolymers containing small amount of original PIB without exo-olefin-terminated group are able to self-assemble into micelles,vesicles with different particle sizes and cylindrical aggregates,depending on various factors including block copolymer composition,solvent polarity and pH value.

  20. The influence of chain stretching on the phase behavior of multiblock copolymer and comb copolymer melts

    NARCIS (Netherlands)

    Angerman, HJ; ten Brinke, G

    The subject of this paper is inspired by microphase-separated copolymer melts in which a small-scale structure is present inside one of the phases of a large-scale structure. Such a situation can arise in a diblock copolymer melt, if one of the blocks of the diblock is in itself a multiblock

  1. Polyketones as alternating copolymers of carbon monoxide

    International Nuclear Information System (INIS)

    Belov, Gennady P; Novikova, Elena V

    2004-01-01

    Characteristic features of the catalytic synthesis of alternating copolymers of carbon monoxide with various olefins, dienes, styrene and its derivatives are considered. The diversity of catalyst systems used for the copolymerisation of carbon monoxide is demonstrated and their influence on the structure and the molecular mass of the resulting copolymers is analysed. The data on the structure and physicochemical and mechanical properties of this new generation of functional copolymers are generalised and described systematically for the first time.

  2. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Science.gov (United States)

    2010-04-01

    ... Components of Articles Intended for Repeated Use § 177.2470 Polyoxymethylene copolymer. Polyoxymethylene copolymer identified in this section may be safely used as an article or component of articles intended for... are available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and Drug...

  3. Evaluation of a polyacrylamide hydrogel in the treatment of induced osteoarthritis in a goat model

    DEFF Research Database (Denmark)

    Tnibar, Aziz; Persson, Ann; Jensen, Henrik Elvang

    2014-01-01

    Polyacrylamide hydrogel (PAAG) is an inert, non-degradable, non-immunogenic polymer gel with high viscoelasticity consisting of 97.5% sterile water and 2.5% cross-linked polyacrylamide. Its biocompatibility in soft tissues has been demonstrated. PAAG has recently been tested for the treatment of ...... of osteoarthritis (OA) in horses with highly encouraging results; however no standardized experimental studies have been done to explore its efficacy. The purpose of this study was to evaluate PAAG in the treatment of induced OA in a goat model...

  4. Nanoparticles based on novel amphiphilic polyaspartamide copolymers

    International Nuclear Information System (INIS)

    Craparo, Emanuela Fabiola; Teresi, Girolamo; Ognibene, Maria Chiara; Casaletto, Maria Pia; Bondi, Maria Luisa; Cavallaro, Gennara

    2010-01-01

    In this article, the synthesis of two amphiphilic polyaspartamide copolymers, useful to obtain polymeric nanoparticles without using surfactants or stabilizing agents, is described. These copolymers were obtained starting from α,β-poly-(N-2-hydroxyethyl)-dl-aspartamide (PHEA) by following a novel synthetic strategy. In particular, PHEA and its pegylated derivative (PHEA-PEG 2000 ) were functionalized with poly(lactic acid) (PLA) through 1,1'-carbonyldiimidazole (CDI) activation to obtain PHEA-PLA and PHEA-PEG 2000 -PLA graft copolymers, respectively. These copolymers were properly purified and characterized by 1 H-NMR, FT-IR, and Size Exclusion Chromatography (SEC) analyses, which confirmed that derivatization reactions occurred. Nanoparticles were obtained from PHEA-PLA and PHEA-PEG 2000 -PLA graft copolymers by using the high pressure homogenization-solvent evaporation method, avoiding the use of surfactants or stabilizing agents. Polymeric nanoparticles were characterized by dimensional analysis, before and after freeze-drying process, and Scanning Electron Microscopy (SEM). Zeta potential measurements and X-ray Photoelectron Spectroscopy (XPS) analysis demonstrated the presence of PEG and/or PHEA onto the PHEA-PEG 2000 -PLA and PHEA-PLA nanoparticle surface, respectively.

  5. Horseradish peroxidase embedded in polyacrylamide nanoparticles enables optical detection of reactive oxygen species

    DEFF Research Database (Denmark)

    Poulsen, A.K.; Scharff-Poulsen, Anne Marie; Olsen, L.F.

    2007-01-01

    We have synthesized and characterized new nanometer-sized polyacrylamide particles containing horseradish peroxidase and fluorescent dyes. Proteins and dyes are encapsulated by radical polymerization in inverse microemulsion. The activity of the encapsulated enzyme has been examined and it mainta......We have synthesized and characterized new nanometer-sized polyacrylamide particles containing horseradish peroxidase and fluorescent dyes. Proteins and dyes are encapsulated by radical polymerization in inverse microemulsion. The activity of the encapsulated enzyme has been examined...... for quantification of hydrogen peroxide and other reactive oxygen species in microenvironments, and we propose that the particles may find use as nanosensors for use in, e.g., living cells. (C) 2007 Elsevier Inc. All rights reserved....

  6. Amphiphilic copolymers for fouling-release coatings

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, Stefan Møller; Hvilsted, Søren

    of the coatings [9,10,11]. This work shows the effect of an amphiphilic copolymer that induces hydrophilicity on the surface of the silicone-based fouling release coatings. The behaviour of these copolymers within the coating upon immersion and the interaction of these surface-active additives with other...

  7. Poly(ferrocenylsilane)-block-Polylactide Block Copolymers

    NARCIS (Netherlands)

    Roerdink, M.; van Zanten, Thomas S.; Hempenius, Mark A.; Zhong, Zhiyuan; Feijen, Jan; Vancso, Gyula J.

    2007-01-01

    A PFS/PLA block copolymer was studied to probe the effect of strong surface interactions on pattern formation in PFS block copolymer thin films. Successful synthesis of PFS-b-PLA was demonstrated. Thin films of these polymers show phase separation to form PFS microdomains in a PLA matrix, and

  8. Transport of Water in Semicrystalline Block Copolymer Membranes

    Science.gov (United States)

    Hallinan, Daniel; Oparaji, Onyekachi

    Poly(styrene)-block-poly(ethylene oxide) (PS- b-PEO) is a semicrystalline block copolymer (BCP) with interesting properties. It is mechanically tough, amphiphilic, and has a polar phase. The mechanical toughness is due to the crystallinity of PEO and the high glass transition temperature of PS, as well as the morphological structure of the BCP. The polymer has high CO2, water, and salt solubility that derive from the polar PEO component. Potential applications include CO2 separation, water purification, and lithium air batteries. In all of the aforementioned applications, water transport is an important parameter. The presence of water can also affect thermal and mechanical properties. Water transport and thermal and mechanical properties of a lamellar PS- b-PEO copolymer have been measured as a function of water activity. Water transport can be affected by the heterogeneous nature of a semicrystalline BCP. Therefore, Fourier transform infrared - attenuated total reflectance (FTIR-ATR) spectroscopy has been employed, because water transport and polymer swelling can be measured simultaneously. The effect of BCP structure on transport has been investigated by comparing water transport in PS- b-PEO to a PEO homopolymer. The crystalline content of the PEO and the presence of glassy PS lamellae will be used to explain the transport results.

  9. Chemical states and electronic properties of the interface between aluminium and a photoluminescent conjugated copolymer containing europium complex

    International Nuclear Information System (INIS)

    Cai, Q.J.; Ling, Q.D.; Li, S.; Zhu, F.R.; Huang, Wei; Kang, E.T.; Neoh, K.G.

    2004-01-01

    The chemical states and electronic properties of the interface between thermally evaporated aluminium and a photoluminescent conjugated copolymer containing 9,9'-dihexylfluorene and europium complex-chelated benzoate units in the main chain (PF6-Eu(dbm) 2 phen) were studied in situ by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). The changes in C 1s, Eu 3d, N 1s, and Al 2p core-level lineshapes with progressive deposition of aluminium atoms were carefully monitored. Aluminium was found to interact with the conjugated backbone of the copolymer to form the Al carbide, Al-O-C complex, and Al(III)-N chelate at the interface. In addition, the europium ions were reduced to the metallic state by the deposited aluminium atoms, which were oxidized and chelated by the 1,10-phenanthroline ligands (phen). The changes in chemical states at the interface suggest that the intramolecular energy transfer process in this copolymer had been affected. Moreover, aluminium also interacted with the bulk-adsorbed oxygen, which migrates to the surface in response to the deposition of aluminium atoms, to form a layer of metal oxides. On the other hand, the evolution of the UPS spectra suggests that the π-states of the conjugated system were affected and an unfavorable dipole layer was induced by the deposited aluminium atoms

  10. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    OpenAIRE

    Yunqi Li; Bishnu Prasad Bastakoti; Yusuke Yamauchi

    2016-01-01

    This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially p...

  11. Micellization and Dynamics of a Block Copolymer

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2006-01-01

    and copolymer mixtures, and evidence in favor of a multi-equilibria unimer-micelle model will be presented. Results obtained by liquid chromatographic methods will be shown and it will be demonstrated that commercial EPE copolymers are inhomogeneous at several levels and many of their unusual properties reflect...... ratios and temperature. The micellization process with increasing temperature has been followed by a number of techniques including differential scanning calorimetry, liquid chromatography, and surface tension measurements. Different micellization models have been tested for purified copolymers...

  12. Acrylonitrile-methyl Methacrylate Copolymer Films Containing Microencapsulated n-Octadecane

    Institute of Scientific and Technical Information of China (English)

    LI Jun; HAN Na; ZHANG Xing-xiang

    2006-01-01

    Acrylonitrile-methyl methacrylate copolymer was synthesized in aqueous solution by Redox. The copolymer was mixed with 10 - 40 wt% of microencapsulated n-octadecane (MicroPCMs) in water. Copolymer films containing MicroPCMs were cast at room temperature in N, N-Dimethylformamide solution. The copolymer of acrylonitrile-methyl methacrylate and the copolymer films containing MicroPCMs were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analyzer (TG), X-ray Diffrac tion (XRD) and Scanning Electron Microscopy (SEM), etc.The microcapsules in the films are evenly distributed in the copolymer matrix. The heat-absorbing temperatures and heat-evolving temperatures of the films are almost the same as that of the MicroPCMs, respectively, and fluctuate in a slight range. In addition, the enthalpy efficiency of MicroPCMs rises with the contents of MicroPCMs increasing.The crystallinity of the film increases with the contents of MicroPCMs increasing.

  13. Branched polyacrylamides : Synthesis and effect of molecular architecture on solution rheology

    NARCIS (Netherlands)

    Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A.

    2013-01-01

    Linear, star and comb-like polyacrylamides (PAM) have been prepared by atomic transfer radical polymerization (ATRP) in aqueous media at room temperature. The influence of the molecular architecture of PAM on the rheological properties in aqueous solution has been investigated. The well-known theory

  14. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential...... functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed......, where living anionic polymerization and atom transfer radical polymerization (ATRP) are combined to synthesize a polydimethylsiloxane-b-poly(tert-butyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer precursor. By using either anhydrous hydrogen fluoride or trifluoroacetic acid, PtBA block...

  15. Morphological studies on block copolymer modified PA 6 blends

    Energy Technology Data Exchange (ETDEWEB)

    Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  16. Photo-Induced Micellization of Block Copolymers

    Directory of Open Access Journals (Sweden)

    Satoshi Kuwayama

    2010-11-01

    Full Text Available We found novel photo-induced micellizations through photolysis, photoelectron transfer, and photo-Claisen rearrangement. The photolysis-induced micellization was attained using poly(4-tert-butoxystyrene-block-polystyrene diblock copolymer (PBSt-b-PSt. BSt-b-PSt showed no self-assembly in dichloromethane and existed as isolated copolymers. Dynamic light scattering demonstrated that the copolymer produced spherical micelles in this solvent due to irradiation with a high-pressure mercury lamp in the presence of photo-acid generators, such as bis(alkylphenyliodonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, and triphenylsulfonium triflate. The 1H NMR analysis confirmed that PBSt-b-PSt was converted into poly(4-vinylphenol-block-PSt by the irradiation, resulting in self-assembly into micelles. The irradiation in the presence of the photo-acid generator also induced the micellization of poly(4-pyridinemethoxymethylstyrene-block-polystyrene diblock copolymer (PPySt-b-PSt. Micellization occurred by electron transfer from the pyridine to the photo-acid generator in their excited states and provided monodispersed spherical micelles with cores of PPySt blocks. Further, the photo-Claisen rearrangement caused the micellization of poly(4-allyloxystyrene-block-polystyrene diblock copolymer (PASt-b-PSt. Micellization was promoted in cyclohexane at room temperature without a catalyst. During micellization, the elimination of the allyl groups competitively occurred along with the photorearrangement of the 4-allyloxystyrene units into the 3-allyl-4-hydroxystyrene units.

  17. Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics.

    Science.gov (United States)

    2005-01-01

    Polyacrylamide is a polymer of controllable molecular weight formed by the polymerization of acrylamide monomers available in one of three forms: solid (powder or micro beads), aqueous solution, or inverse emulsions (in water droplets coated with surfactant and suspended in mineral oil). Residual acrylamide monomer is likely an impurity in most Polyacrylamide preparations, ranging from cosmetic formulations, at concentrations ranging from 0.05% to 2.8%. Residual levels of acrylamide in Polyacrylamide can range from dogs treated with Polyacrylamide at doses up to 464 mg/kg body weight showed no signs of toxicity. Several 2-year chronic oral toxicity studies in rats and dogs fed diets containing up to 5% Polyacrylamide had no significant adverse effects. Polyacrylamide was not an ocular irritant in animal tests. No compound-related lesions were noted in a three-generation reproductive study in which rats were fed 500 or 2000 ppm Polyacrylamide in their diet. Polyacrylamide was not carcinogenic in several chronic animal studies. Human cutaneous tolerance tests performed to evaluate the irritation of 5% (w/w) Polyacrylamide indicated that the compound was well tolerated. Acrylamide monomer residues do penetrate the skin. Acrylamide tested in a two-generation reproductive study at concentrations up to 5 mg/kg day(- 1) in drinking water, was associated with prenatal lethality at the highest dose, with evidence of parental toxicity. The no adverse effects level was close to the 0.5 mg/kg day(- 1) dose. Acrylamide tested in a National Toxicology Program (NTP) reproductive and neurotoxicity study at 3, 10, and 30 ppm produced no developmental or female reproductive toxicity. However, impaired fertility in males was observed, as well as minimal neurotoxic effects. Acrylamide neurotoxicity occurs in both the central and peripheral nervous systems, likely through microtubule disruption, which has been suggested as a possible mechanism for genotoxic effects of acrylamide in

  18. Fast & scalable pattern transfer via block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars

    2015-01-01

    A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin-casting of s......A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin...... on long range lateral order, including fabrication of substrates for catalysis, solar cells, sensors, ultrafiltration membranes and templating of semiconductors or metals....

  19. Investigation of a new thermosensitive block copolymer micelle: hydrolysis, disruption, and release.

    Science.gov (United States)

    Pelletier, Maxime; Babin, Jérôme; Tremblay, Luc; Zhao, Yue

    2008-11-04

    Thermosensitive polymer micelles are generally obtained with block copolymers in which one block exhibits a lower critical solution temperature in aqueous solution. We investigate a different design that is based on the use of one block bearing a thermally labile side group, whose hydrolysis upon heating shifts the hydrophilic-hydrophobic balance toward the destabilization of block copolymer micelles. Atom transfer radical polymerization was utilized to synthesize a series of diblock copolymers composed of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(2-tetrahydropyranyl methacrylate) (PTHPMA). We show that micelles of PEO-b-PTHPMA in aqueous solution can be destabilized as a result of the thermosensitive hydrolytic cleavage of tetrahydropyranyl (THP) groups that transforms PTHPMA into hydrophilic poly(methacrylic acid). The three related processes occurring in aqueous solution, namely, hydrolytic cleavage of THP, destabilization of micelles, and release of loaded Nile Red (NR), were investigated simultaneously using 1H NMR, dynamic light scattering, and fluorescence spectroscopy, respectively. At 80 degrees C, the results suggest that the three events proceed with a similar kinetics. Although slower than at elevated temperatures, the disruption of PEO-b-PTHPMA micelles can take place at the body temperature (approximately 37 degrees C), and the release kinetics of NR can be adjusted by changing the relative lengths of the two blocks or the pH of the solution.

  20. A new polymer electrolyte based on a discotic liquid crystal triblock copolymer

    International Nuclear Information System (INIS)

    Stoeva, Zlatka; Lu, Zhibao; Ingram, Malcolm D.; Imrie, Corrie T.

    2013-01-01

    A discotic liquid crystal triblock copolymer consisting of a central main chain triphenylene-based liquid crystal block capped at both ends by blocks of poly(ethylene oxide) (PEO) (M W = 2000 g mol −1 ) has been doped with lithium perchlorate in an EO:Li 6:1 ratio. The polymer electrolyte exhibits a phase separated morphology consisting of a columnar hexagonal liquid crystal phase and PEO-rich regions. The polymer electrolyte forms self-supporting, solid-like films. The ionic conductivity on initial heating of the sample is very low below ca. 60 °C but increases rapidly above this temperature. This is attributed to the melting of crystalline PEO-rich regions. Crystallisation is suppressed on cooling, and subsequent heating cycles exhibit higher conductivities but still less than those measured for the corresponding lithium perchlorate complex in poly(ethylene glycol) (M W = 2000 g mol −1 ). Instead the triblock copolymer mimics the behaviour of high molecular weight poly(ethylene oxide) (M W = 300,000 g mol −1 ). This is attributed, in part, to the anchoring of the short PEG chains to the liquid crystal block which prevents their diffusion through the sample. Temperature and pressure variations in ion mobility indicate that the ion transport mechanism in the new material is closely related to that in the conventional PEO-based electrolyte, opening up the possibility of engineering enhanced conductivities in future

  1. An Electrochemical Study of Two Self-Dopable Water-Soluble Aniline Derivatives: Electrochemical Deposition of Copolymers

    Directory of Open Access Journals (Sweden)

    Loredana Vacareanu

    2012-01-01

    Full Text Available An electrochemical study of two water-soluble aniline derivatives, N-(3-sulfopropyl aniline (AnPS and N-(3-sulfopropyl p-aminodiphenylamine (DAnPS, in aqueous acidic electrolytic solutions containing different kinds of doping anions (Cl −, SO4 2−, and ClO4 − was carried out. At sufficiently high anodic potential, the sulfonated aniline derivatives undergo oxidation processes yielding cation-radical and dimer intermediates, but no polymer deposition was observed on the working electrode surface. Experimental results showed that both aniline derivatives are electroactive compounds exhibiting redox behaviour in the range of potential of −0.2 V–1.6 V. Due to the self-doping effect induced by sulfonic groups, AnPS and DAnPS compounds have good electroactivity even in neat water solution. By adding a small amount of aniline into electrolytic system, thin layers of copolymers were deposited on the working electrode surface. The copolymer layers formed on the electrodes show a highly orientational and positional order, confirmed by AFM and XRD spectroscopic techniques. During the anodic oxidation processes some distinct colour changes were observed.

  2. Strong adsorbability of mercury ions on aniline/sulfoanisidine copolymer nanosorbents.

    Science.gov (United States)

    Li, Xin-Gui; Feng, Hao; Huang, Mei-Rong

    2009-01-01

    The highest Hg-ion adsorbance so far, namely up to 2063 mg g(-1), has been achieved by poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Sorption of Hg ions occurs mainly by redox and chelation mechanisms (see scheme), but also by ion exchange and physisorption.Poly(aniline (AN)-co-5-sulfo-2-anisidine (SA)) nanoparticles were synthesized by chemical oxidative copolymerization of AN and SA monomers, and their extremely strong adsorption of mercury ions in aqueous solution was demonstrated. The reactivity ratios of AN and SA comonomers were found to be 2.05 and 0.02, respectively. While AN monomer tends to homopolymerize, SA monomer tends to copolymerize with AN monomer because of the great steric hindrance and electron-attracting effect of the sulfo groups, despite the effect of conjugation of the methoxyl group with the benzene ring. The effects of initial mercury(II) concentration, sorption time, sorption temperature, ultrasonic treatment, and sorbent dosage on mercury-ion sorption onto AN/SA (50/50) copolymer nanoparticles with a number-average diameter of around 120 nm were significantly optimized. The results show that the maximum Hg-ion sorption capacity on the particulate nanosorbents can even reach 2063 mg of Hg per gram of sorbent, which would be the highest Hg-ion adsorbance so far. The sorption data fit to the Langmuir isotherm, and the process obeys pseudo-second-order kinetics. The IR and UV/Vis spectral data of the Hg-loaded copolymer particles suggest that some mercury(II) was directly reduced by the copolymer to mercury(I) and even mercury(0). A mechanism of sorption between the particles and Hg ions in aqueous solution is proposed, and a physical/ion exchange/chelation/redox sorption ratio of around 2/3/45/50 was found. Copolymer nanoparticles may be one of the most powerful and cost-effective sorbents of mercury ions, with a wide range of potential applications for the efficient removal and even recovery of the mercury ions from aqueous solution.

  3. Characterization of polyacrylamide-stabilized Pf1 phage liquid crystals for protein NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trempe, Jean-Francois; Morin, Frederick G.; Xia Zhicheng; Marchessault, Robert H.; Gehring, Kalle [McGill University, Department of Biochemistry and Department of Chemistry (Canada)], E-mail: kalle@bri.nrc.ca

    2002-01-15

    A new polymer-stabilized nematic liquid crystal has been characterized for the measurement of biomolecular residual dipolar couplings. Filamentous Pf1 phage were embedded in a polyacrylamide matrix that fixes the orientation of the particles. The alignment was characterized by the quadrupolar splitting of the {sup 2}H NMR water signal and by the measurement of {sup 1}H-{sup 15}N residual dipolar couplings (RDC) in the archeal translation elongation factor 1{beta}. Protein dissolved in the polymer-stabilized medium orients quantitatively as in media without polyacrylamide. We show that the quadrupolar splitting and RDCs are zero in media in which the Pf1 phage particles are aligned at the magic angle. This allows measurement of J and dipolar couplings in a single sample.

  4. Characterization of polyacrylamide-stabilized Pf1 phage liquid crystals for protein NMR spectroscopy

    International Nuclear Information System (INIS)

    Trempe, Jean-Francois; Morin, Frederick G.; Xia Zhicheng; Marchessault, Robert H.; Gehring, Kalle

    2002-01-01

    A new polymer-stabilized nematic liquid crystal has been characterized for the measurement of biomolecular residual dipolar couplings. Filamentous Pf1 phage were embedded in a polyacrylamide matrix that fixes the orientation of the particles. The alignment was characterized by the quadrupolar splitting of the 2 H NMR water signal and by the measurement of 1 H- 15 N residual dipolar couplings (RDC) in the archeal translation elongation factor 1β. Protein dissolved in the polymer-stabilized medium orients quantitatively as in media without polyacrylamide. We show that the quadrupolar splitting and RDCs are zero in media in which the Pf1 phage particles are aligned at the magic angle. This allows measurement of J and dipolar couplings in a single sample

  5. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used as articles or components of...

  6. POLYCAPROLACTONE-POLY (ETHYLENE GLYCOL) BLOCK COPOLYMER Ⅲ DRUG RELEASE BEHAVIOR

    Institute of Scientific and Technical Information of China (English)

    BEI Jianzhong; WANG Zhifeng; WANG Shenguo

    1995-01-01

    The drug release behavior of degradable polymer - polycaprolactone-poly (ethylene glycol)block copolymer(PCE) in vitro was investigated by using 5-Fluoro-uracil (5-Fu) as a model drug under a condition of pH 7.4 at 37℃. It is found that the release rate of 5-Fu from PCE increased with increasing polyether content of the copolymer. The results show that the increasing polyether content of the copolymer caused increasing hydrophilicity and decreasing crystallinity of the PCE copolymer. Thus, the drug release behavior and the degradable property of the PCE can be controlled by adjusting the composition of the copolymer.

  7. Tailored Design of Bicontinuous Gyroid Mesoporous Carbon and Nitrogen-Doped Carbon from Poly(ethylene oxide-b-caprolactone) Diblock Copolymers.

    Science.gov (United States)

    Chu, Wei-Cheng; Bastakoti, Bishnu Prasad; Kaneti, Yusuf Valentino; Li, Jheng-Guang; Alamri, Hatem R; Alothman, Zeid A; Yamauchi, Yusuke; Kuo, Shiao-Wei

    2017-10-04

    Highly ordered mesoporous resol-type phenolic resin and the corresponding mesoporous carbon materials were synthesized by using poly(ethylene oxide-b-caprolactone) (PEO-b-PCL) diblock copolymer as a soft template. The self-assembled mesoporous phenolic resin was found to form only in a specific resol concentration range of 40-70 wt % due to an intriguing balance of hydrogen-bonding interactions in the resol/PEO-b-PCL mixtures. Furthermore, morphological transitions of the mesostructures from disordered to gyroid to cylindrical and finally to disordered micelle structure were observed with increasing resol concentration. By calcination under nitrogen atmosphere at 800 °C, the bicontinuous mesostructured gyroid phenolic resin could be converted to mesoporous carbon with large pore size without collapse of the original mesostructure. Furthermore, post-treatment of the mesoporous gyroid phenolic resin with melamine gave rise to N-doped mesoporous carbon with unique electronic properties for realizing high CO 2 adsorption capacity (6.72 mmol g -1 at 0 °C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    Science.gov (United States)

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  9. Polyacrylamide-based inorganic hybrid flocculants with self-degradable property

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xinfang [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Tao, Junshi; Li, Mingzhi; Zhu, Bishan; Li, Xuan; Ma, Zhiyu; Zhao, Tingjie; Wang, Bingzhu; Suo, Biao [Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Wang, Haiwang, E-mail: whwdbdx@126.com [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Yang, Jun, E-mail: jyang@ipe.ac.cn [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Ye, Li, E-mail: yeli@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190 (China); Qi, Xiwei, E-mail: qxw@mail.neuq.edu.cn [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2017-05-01

    Polyacrylamide (PAM)-based inorganic hybrid materials are of great potential as flocculants in soil-liquid separation. Herein, we reported the design of inorganic soil-TiO{sub 2}-PAM hybrid materials using a unique process, which involved coating of titanium dioxide (TiO{sub 2}) nanoparticles on the surface of inorganic soils and subsequent polymerization of acrylamide (AM) on these nanoparticles under visible light. Inorganic soils including kaolin, bentonite, montmorillonite and diatomaceous earth were used to control the volume and to reduce the cost, and the TiO{sub 2} nanoparticles accelerated PAM degradation. The nanoparticles initiated AM polymerization directly under visible light, thus providing a facile strategy for the synthesis of new organic-inorganic hybrid flocculants. The obtained hybrid materials were characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. The degradation of PAM initiated by UV irradiation exceeded 24% in 2 h, depending on its initial concentration. - Highlights: • A new polyacrylamide (PAM)-based inorganic hybrid flocculants with self-degradable property was developed. • TiO{sub 2} nanoparticles show a unique surface-initiated property under the condition of visible light. • We designed a facile strategy for the synthesis of inorganic soil@TiO{sub 2}@PAM hybrid materials.

  10. Silver and Cyanine Staining of Oligonucleotides in Polyacrylamide Gel.

    Science.gov (United States)

    Tang, Weizhong; Zhou, Huafu; Li, Wei

    2015-01-01

    To explore why some oligonucleotides in denaturing polyacrylamide gel could not be silver-stained, 134 different oligonucleotides were analyzed using denaturing polyacrylamide gel electrophoresis stained with silver and asymmetric cyanine. As a result, we found that the sensitivity of oligos (dA), (dC), (dG) and (dT) to silver staining could be ranged as (dA) > (dG) > (dC) > (dT) from high to low. It was unexpected that oligo (dT) was hard to be silver-stained. Moreover, the silver staining of an oligonucleotide containing base T could be partially or completely inhibited by base T. The inhibition of silver staining by base T was a competitive inhibition which could be affected by the amounts of the argyrophil nucleobase and base T, the cis-distance between the argyrophil nucleobase and base T, and the gel concentration. The changes of the intensity of an oligonucleotide band caused by the changes of DNA base composition were diverse and interesting. The intensity of some oligonucleotide bands would significantly change when the changes of DNA base composition accumulated to a certain extent (usually ≥ 4 nt). The sensitivity of cyanine staining of ≤ 11-nt long oligonucleotides could be enhanced about 250-fold by fixing the gels with methanol fixing solution.

  11. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  12. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin; Lee, Jyh-Fu; Wu, Nae-Lih

    2009-01-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  13. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin

    2009-11-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  14. Porous polyacrylamide monoliths in hydrophilic interaction capillary electrochromatography of oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Guryča, Vilém; Mechref, Y.; Palm, A. K.; Michálek, Jiří; Pacáková, V.; Novotny, M. V.

    2007-01-01

    Roč. 70, č. 1 (2007), s. 3-13 ISSN 0165-022X R&D Projects: GA MŠk 1M0538 Grant - others:U.S. Department of Health and Human Services(US) GM24349 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyacrylamide monoliths * analytical glycobiology * capillary electrochromatography Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.338, year: 2007

  15. A new method to analyze copolymer based superplasticizer traces in cement leachates.

    Science.gov (United States)

    Guérandel, Cyril; Vernex-Loset, Lionel; Krier, Gabriel; De Lanève, Michel; Guillot, Xavier; Pierre, Christian; Muller, Jean François

    2011-03-15

    Enhancing the flowing properties of fresh concrete is a crucial step for cement based materials users. This is done by adding polymeric admixtures. Such additives have enabled to improve final mechanicals properties and the development of new materials like high performance or self compacting concrete. Like this, the superplasticizers are used in almost cement based materials, in particular for concrete structures that can have a potential interaction with drinking water. It is then essential to have suitable detection techniques to assess whether these organic compounds are dissolved in water after a leaching process or not. The main constituent of the last generation superplasticizer is a PolyCarboxylate-Ester copolymer (PCE), in addition this organic admixture contains polyethylene oxide (free PEO) which constitutes a synthesis residue. Numerous analytical methods are available to characterize superplasticizer content. Although these techniques work well, they do not bring suitable detection threshold to analyze superplasticizer traces in solution with high mineral content such as leachates of hardened cement based materials formulated with superplasticizers. Moreover those techniques do not enable to distinguish free PEO from PCE in the superplasticizer. Here we discuss two highly sensitive analytical methods based on mass spectrometry suitable to perform a rapid detection of superplasticizer compounds traces in CEM I cement paste leachates: MALDI-TOF mass spectrometry, is used to determine the free PEO content in the leachate. However, industrial copolymers (such as PCE) are characterized by high molecular weight and polymolecular index. These two parameters lead to limitation concerning analysis of copolymers by MALDI-TOFMS. In this study, we demonstrate how pyrolysis and a Thermally assisted Hydrolysis/Methylation coupled with a triple-quadrupole mass spectrometer, provides good results for the detection of PCE copolymer traces in CEM I cement paste

  16. Polystyrene-poly(vinylphenol) copolymers as compatibilzers for organic-inorganic composites

    International Nuclear Information System (INIS)

    Landry, C.J.T.; Coltrain, B.K.; Teegarden, D.M.

    1996-01-01

    Random, graft, and block copolymers of polystyrene (PS) and poly(4-vinylphenol) (PVPh), and PVPh homopolymer are shown to act as compatibilizers for incompatible organic-inorganic composite materials. The VPh component reacts, or interacts strongly with the polymerizing inorganic (titanium or zirconium) alkoxide. The organic components studied were PS, poly(vinyl methyl ether), and poly(styrene-co-acrylonitrile). The use of such compatibilizers provides a means of combining in situ polymerized inorganic oxides and hydrophobic polymers. This is seen as a reduction in the size of the dispersed inorganic phase and results in improved optical and mechanical properties

  17. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    Science.gov (United States)

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.

  18. Self-assembled nanoformulation of methylprednisolone succinate with carboxylated block copolymer for local glucocorticoid therapy.

    Science.gov (United States)

    Kamalov, Marat I; Đặng, Trinh; Petrova, Natalia V; Laikov, Alexander V; Luong, Duong; Akhmadishina, Rezeda A; Lukashkin, Andrei N; Abdullin, Timur I

    2018-04-01

    A new self-assembled formulation of methylprednisolone succinate (MPS) based on a carboxylated trifunctional block copolymer of ethylene oxide and propylene oxide (TBC-COOH) was developed. TBC-COOH and MPS associated spontaneously at increased concentrations in aqueous solutions to form almost monodisperse mixed micelles (TBC-COOH/MPS) with a hydrodynamic diameter of 19.6 nm, zeta potential of -27.8 mV and optimal weight ratio ∼1:6.3. Conditions for the effective formation of TBC-COOH/MPS were elucidated by comparing copolymers and glucocorticoids with different structure. The micellar structure of TBC-COOH/MPS persisted upon dilution, temperature fluctuations and interaction with blood serum components. TBC-COOH increased antiradical activity of MPS and promoted its intrinsic cytotoxicity in vitro attributed to enhanced cellular availability of the mixed micelles. Intracellular transportation and hydrolysis of MPS were analyzed using optimized liquid chromatography tandem mass spectrometry with multiple reaction monitoring which showed increased level of both MPS and methylprednisolone in neuronal cells treated with the formulated glucocorticoid. Our results identify TBC-COOH/MPS as an advanced in situ prepared nanoformulation and encourage its further investigation for a potential local glucocorticoid therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Iodinated glycidyl methacrylate copolymer as a radiopaque material for biomedical applications.

    Science.gov (United States)

    Dawlee, S; Jayabalan, M

    2013-07-01

    Polymeric biomaterial was synthesized by copolymerizing 50:50 mol% of monomers, glycidyl methacrylate and methyl methacrylate. Iodine atoms were then grafted to the epoxide groups of glycidyl methacrylate units, rendering the copolymer radiopaque. The percentage weight of iodine in the present copolymer was found to be as high as 23%. The iodinated copolymer showed higher glass transition temperature and thermal stability in comparison with unmodified polymer. Radiographic analysis showed that the copolymer possessed excellent radiopacity. The iodinated copolymer was cytocompatible to L929 mouse fibroblast cells. The in vivo toxicological evaluation by intracutaneous reactivity test of the copolymer extracts has revealed that the material was nontoxic. Subcutaneous implantation of iodinated copolymer in rats has shown that the material was well tolerated. Upon explantation and histological examination, no hemorrhage, infection or necrosis was observed. The samples were found to be surrounded by a vascularized capsule consisting of connective tissue cells. The results indicate that the iodinated copolymer is biocompatible and may have suitable applications as implantable materials.

  20. H3PO4 imbibed polyacrylamide-graft-chitosan frameworks for high-temperature proton exchange membranes

    Science.gov (United States)

    Yuan, Shuangshuang; Tang, Qunwei; He, Benlin; Chen, Haiyan; Li, Qinghua; Ma, Chunqing; Jin, Suyue; Liu, Zhichao

    2014-03-01

    Proton exchange membrane (PEM), transferring protons from anode to cathode, is a key component in a PEM fuel cell. In the current work, a new class of PEMs are synthesized benefiting from the imbibition behavior of three-dimensional (3D) polyacrylamide-graft-chitosan (PAAm-graft-chitosan) frameworks to H3PO4 aqueous solution. Interconnected 3D framework of PAAm-graft-chitosan provides tremendous space for holding proton-conducting H3PO4. The highest anhydrous proton conductivity of 0.13 S cm-1 at 165 °C is obtained. A fuel cell using a thick membrane as a PEM showed a peak power density of 405 mW cm-2 with O2 and H2 as the oxidant and fuel, respectively. Results indicate that the interconnected 3D framework provides superhighway for proton conduction. The valued merits on anhydrous proton conductivity, huge H3PO4 loading, and easy synthesis promise the new membranes to be good alternatives as high-temperature PEMs.

  1. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    Science.gov (United States)

    Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  2. Bacterial infection as a likely cause of adverse reactions to polyacrylamide hydrogel fillers in cosmetic surgery

    DEFF Research Database (Denmark)

    Christensen, Lise; Breiting, Vibeke; Bjarnsholt, Thomas

    2013-01-01

    patients and 24 controls were systematically examined for the presence of bacteria by culture, 16S rRNA gene sequencing, Gram stain, and fluorescence in situ hybridization. Results. Bacteria, mostly normal skin bacteria such as Staphylococcus epidermidis and Propionibacterium acnes, were identified...... in the presence of polyacrylamide filler in cosmetic surgery, possibly due to a biofilm mode of growth. Adequate skin preparation and use of sterile technique in these procedures are mandatory, but antibiotic prophylaxis prior to injection of nondegradable gels like polyacrylamide should be explored as well....

  3. Formation of integral asymmetric membranes of AB diblock and ABC triblock copolymers by phase inversion.

    Science.gov (United States)

    Jung, Adina; Filiz, Volkan; Rangou, Sofia; Buhr, Kristian; Merten, Petra; Hahn, Janina; Clodt, Juliana; Abetz, Clarissa; Abetz, Volker

    2013-04-12

    The formation of integral asymmetric membranes from ABC triblock terpolymers by non-solvent-induced phase separation is shown. They are compared with the AB diblock copolymer precursors. Triblock terpolymers of polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO) with two compositions are investigated. The third block supports the formation of a membrane in a case, where the corresponding diblock copolymer does not form a good membrane. In addition, the hydrophilicity is increased by the third block and due to the hydroxyl group the possibility of post-functionalization is given. The morphologies are imaged by scanning electron microscopy. The influence of the PEO on the membrane properties is analyzed by water flux, retention, and dynamic contact angle measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. preparation and properties of immobilized naringinase in polyvinyl alcohol copolymer carrier for debittering of citrus juices

    International Nuclear Information System (INIS)

    ElBatal, A.L.; Swailam, H.M.H.

    2003-01-01

    Naringin a bitter compound in citrus can be converted to a nonbiter fom by enzyme hydrolysis. Naringinase from gamma irradiated enhanced Aspergillus nigro-AH3. γ 20 isolate was partoally purified by various methods and the specificacitivty of 6.1 units per mg protein was obtained. The enzyme was immobilized by entrapment in polyvinyl alcohol / polyacrylamide (PVA/PAAm) copolymer hydrogel carrier produced by gamma radiation polymerization. The activity of the immobilized enzyme was elevated with increasing PVA content in the copolymer carrier to reach its maximum value at PVA/PAAm composition ratio of (60.40, v/v%). The yield of immobilization was highest 95% and yield of activity was 91.1%, when 1 mg naringinase enzyme was immobilized in 1 ml of hydrogel matrix. Some enzymatic and compared with those of the solube free enzyme. The optimal pH of the immobilized enzyme was shifted 0.5 pH units to the alkaline side of that of the soluble free enzyme. Also the optimum temperature was shifted from 50 C degree to 60 c degree and the activation energy of reaction (EA) was markedly decreased from 21.52 to 10.74kcal/mol by immobilization. The influence of the diffusion is reflected in the kinetic parameters Km and Vmax. The application of kinetic parameter of the immobilized enzyme optimized with pure naringin solution and bitter orange juice resuled in about 83.2% and 72.0% debittering after 8 h and 12 h incubation during batcheise operation, respectively. The process has operational versatility from the broad pH and temperature optima and affords highest efficiency and stability during application in debittering of bitter orange juice because it is recycled consecutively 14 times before retaining only about 50 % efficiency. These data can be used for future improvements in debittering of citrus fruits products

  5. 78 FR 20032 - Styrene-Ethylene-Propylene Block Copolymer; Tolerance Exemption

    Science.gov (United States)

    2013-04-03

    ...-Ethylene-Propylene Block Copolymer; Tolerance Exemption AGENCY: Environmental Protection Agency (EPA... for residues of styrene-ethylene-propylene block copolymer (CAS Reg. No. 108388-87-0) when used as an...-ethylene-propylene block copolymer on food or feed commodities. DATES: This regulation is effective April 3...

  6. Polyethylene-Based Tadpole Copolymers

    KAUST Repository

    Alkayal, Nazeeha

    2017-02-15

    Novel well-defined polyethylene-based tadpole copolymers ((c-PE)-b-PS, PE: polyethylene, PS: polystyrene) with ring PE head and linear PS tail are synthesized by combining polyhomologation, atom transfer radical polymerization (ATRP), and Glaser coupling reaction. The -OH groups of the 3-miktoarm star copolymers (PE-OH)-b-PS, synthesized by polyhomologation and ATRP, are transformed to alkyne groups by esterification with propiolic acid, followed by Glaser cyclization and removal of the unreacted linear with Merrifield\\'s resin-azide. The characterization results of intermediates and final products by high-temperature size exclusion chromatography, H NMR spectroscopy, and differential scanning calorimetry confirm the tadpole topology.

  7. Fabrication of periodic arrays of metallic nanoparticles by block copolymer templates on HfO_2 substrates

    International Nuclear Information System (INIS)

    Frascaroli, Jacopo; Seguini, Gabriele; Spiga, Sabina; Perego, Michele; Boarino, Luca

    2015-01-01

    Block copolymer-based templates can be exploited for the fabrication of ordered arrays of metal nanoparticles (NPs) with a diameter down to a few nanometers. In order to develop this technique on metal oxide substrates, we studied the self-assembly of polymeric templates directly on the HfO_2 surface. Using a random copolymer neutralization layer, we obtained an effective HfO_2 surface neutralization, while the effects of surface cleaning and annealing temperature were carefully examined. Varying the block copolymer molecular weight, we produced regular nanoporous templates with feature size variable between 10 and 30 nm and a density up to 1.5 × 10"1"1 cm"−"2. With the adoption of a pattern transfer process, we produced ordered arrays of Pt and Pt/Ti NPs with diameters of 12, 21 and 29 nm and a constant size dispersion (σ) of 2.5 nm. For the smallest template adopted, the NP diameter is significantly lower than the original template dimension. In this specific configuration, the granularity of the deposited film probably influences the pattern transfer process and very small NPs of 12 nm were achieved without a significant broadening of the size distribution. (paper)

  8. Polyamide copolymers having 2,5-furan dicarboxamide units

    Science.gov (United States)

    Chisholm, Bret Ja; Samanta, Satyabrata

    2017-09-19

    Polyamide copolymers, and methods of making and using polyamide copolymers, having 2,5-furan dicarboxamide units are disclosed herein. Such polymers can be useful for engineering thermoplastics having advantageous physical and/or chemical properties.

  9. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture.

    Science.gov (United States)

    Sano, Masami; Shan, Feng; Hara, Mitsuo; Nagano, Shusaku; Shinohara, Yuya; Amemiya, Yoshiyuki; Seki, Takahiro

    2015-08-07

    A series of block copolymers composed of an amorphous poly(butyl methacrylate) (PBMA) block connected with an azobenzene (Az)-containing liquid crystalline (PAz) block were synthesized by changing the chain length and polymer architecture. With these block copolymer films, the dynamic realignment process of microphase separated (MPS) cylinder arrays of PBMA in the PAz matrix induced by irradiation with linearly polarized light was studied by UV-visible absorption spectroscopy, and time-resolved grazing incidence small angle X-ray scattering (GI-SAXS) measurements using a synchrotron beam. Unexpectedly, the change in the chain length hardly affected the realignment rate. In contrast, the architecture of the AB-type diblock or the ABA-type triblock essentially altered the realignment feature. The strongly cooperative motion with an induction period before realignment was characteristic only for the diblock copolymer series, and the LPL-induced alignment change immediately started for triblock copolymers and the PAz homopolymer. Additionally, a marked acceleration in the photoinduced dynamic motions was unveiled in comparison with a thermal randomization process.

  10. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...

  11. Renewable Pentablock Copolymers Containing Bulky Natural Rosin for Tough Bioplastics

    Science.gov (United States)

    Rahman, Md Anisur; Ganewatta, Mitra S.; Lokupitiya, Hasala N.; Liang, Yuan; Stefik, Morgan; Tang, Chuanbing

    Renewable polymers have received significant attention due to environmental concerns on petrochemical counterparts. One of the most abundant natural biomass is resin acids. However, most polymers derived from resin acids are low molecular weight and brittle because of the high chain entanglement molecular weight resulted from the bulky hydrophenanthrene pendant group. It is well established that the brittleness can be overcome by synthesizing multi-block copolymers with low entanglement molecular weight components. We investigated the effects of chain architecture and microdomain orientation on mechanical properties of both tri and pentablock copolymers. We synthesized rosin-containing A-B-A-B-A type pentablock and A-B-A type triblock copolymers to improve their mechanical properties. Pentablock copolymers showed higher strength and better toughness as compared to triblock copolymers, both superior to homopolymers. The greater toughness of pentablock copolymers is due to the presence of the rosin based midblock chains that act as bridging chains between two polynorbornene blocks.

  12. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    OpenAIRE

    Hoarfrost, Megan Lane

    2012-01-01

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the additio...

  13. Bactericidal and Hemocompatible Coating via the Mixed-Charged Copolymer.

    Science.gov (United States)

    Fan, Xiao-Li; Hu, Mi; Qin, Zhi-Hui; Wang, Jing; Chen, Xia-Chao; Lei, Wen-Xi; Ye, Wan-Ying; Jin, Qiao; Ren, Ke-Feng; Ji, Jian

    2018-03-28

    Cationic antibacterial coating based on quaternary ammonium compounds, with an efficient and broad spectrum bactericidal property, has been widely used in various fields. However, the high density of positive charges tends to induce weak hemocompatibility, which hinders the application of the cationic antibacterial coating in blood-contacting devices and implants. It has been reported that a negatively charged surface can reduce blood coagulation, showing improved hemocompatibility. Here, we describe a strategy to combine the cationic and anionic groups by using mixed-charged copolymers. The copolymers of poly (quaternized vinyl pyridine- co- n-butyl methacrylate- co-methacrylate acid) [P(QVP- co- nBMA- co-MAA)] were synthesized through free radical copolymerization. The cationic group of QVP, the anionic group of MAA, and the hydrophobic group of nBMA were designed to provide bactericidal capability, hemocompatibility, and coating stability, respectively. Our findings show that the hydrophilicity of the copolymer coating increased, and its zeta potential decreased from positive charge to negative charge with the increase of the anionic/cationic ratio. Meanwhile, the bactericidal property of the copolymer coating was kept around a similar level compared with the pure quaternary ammonium copolymer coating. Furthermore, the coagulation time, platelet adhesion, and hemolysis tests revealed that the hemocompatibility of the copolymer coating improved with the addition of the anionic group. The mixed-charged copolymer combined both bactericidal property and hemocompatibility and has a promising potential in blood-contacting antibacterial devices and implants.

  14. High Aspect Ratio Sub-15 nm Silicon Trenches From Block Copolymer Templates

    Science.gov (United States)

    Gu, Xiaodan; Liu, Zuwei; Gunkel, Ilja; Olynick, Deirdre; Russell, Thomas; University of Massachusetts Amherst Collaboration; Oxford Instrument Collaboration; Lawrence Berkeley National Lab Collaboration

    2013-03-01

    High-aspect-ratio sub-15 nm silicon trenches are fabricated directly from plasma etching of a block copolymer (BCP) mask. Polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) 40k-b-18k was spin coated and solvent annealed to form cylindrical structures parallel to the silicon substrate. The BCP thin film was reconstructed by immersion in ethanol and then subjected to an oxygen and argon reactive ion etching to fabricate the polymer mask. A low temperature ion coupled plasma with sulfur hexafluoride and oxygen was used to pattern transfer block copolymer structure to silicon with high selectivity (8:1) and fidelity. The silicon pattern was characterized by scanning electron microscopy and grazing incidence x-ray scattering. We also demonstrated fabrication of silicon nano-holes using polystyrene-b-polyethylene oxide (PS-b-PEO) using same methodology described above for PS-b-P2VP. Finally, we show such silicon nano-strucutre serves as excellent nano-imprint master template to pattern various functional materials like poly 3-hexylthiophene (P3HT).

  15. Immobilization of Acidithiobacillus ferrooxidans on sulfonated microporous poly(styrene-divinylbenzene) copolymer with granulated activated carbon and its use in bio-oxidation of ferrous iron.

    Science.gov (United States)

    Koseoglu-Imer, Derya Yuksel; Keskinler, Bulent

    2013-01-01

    The immobilization efficiencies of Acidithiobacillus ferrooxidans cells on different immobilization matrices were investigated for biooxidation of ferrous iron (Fe(2+)) to ferric iron (Fe(3+)). Six different matrices were used such as the polyurethane foam (PUF), granular activated carbon (GAC), raw poly(styrene-divinylbenzene) copolymer (rawSDVB), raw poly(styrene-divinylbenzene) copolymer with granular activated carbon (rawSDVB-GAC), sulfonated poly(styrene-divinylbenzene) copolymer (sulfSDVB) and sulfonated poly(styrene-divinylbenzene) copolymer with granular activated carbon (sulfSDVB-GAC). The sulfSDVB-GAC polymer showed the best performance for Fe(2+) biooxidation. It was used at packed-bed bioreactor and the kinetic parameters were obtained. The highest Fe(2+) biooxidation rate (R) was found to be 4.02 g/L h at the true dilution rate (Dt) of 2.47 1/h and hydraulic retention time (τ) of 0.4 h. The sulfSDVB-GAC polymer was used for the first time as immobilization material for A. ferrooxidans for Fe(2+) biooxidation. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. SYNTHESIS OF STYRENE-METHYL METHACRYLATE BLOCK COPOLYMER BY POLYAZOAMIDE AS INITIATOR

    Institute of Scientific and Technical Information of China (English)

    WANG Zhongyi; WEI Jeqing

    1996-01-01

    Polyazoamide(PAA) was used as initiator to prepare block copolymer P(MMA-b-St) by free radical polymerization. The fraction of block copolymer was about 50%. The structure of the block-copolymer was characterized by IR and the results of 1H-NMR and GPC showed that the content of the block and the molecular weight (-Mw) of the prepolymer and block copolymer could be controlled by varying the mol ratio of styrene/PAA and MMA/prepolymer. DSC and TEM results revealed that the block copolymer has two separated glass transition temperatures and phase separation within the domain structure.

  17. Laboratory and Field Evaluations of Polyacrylamide Hydrogel Baits Against Argentine Ants (Hymenoptera: Formicidae).

    Science.gov (United States)

    Rust, Michael K; Soeprono, Andrew; Wright, Sarajean; Greenberg, Les; Choe, Dong-Hwan; Boser, Christina L; Cory, Coleen; Hanna, Cause

    2015-06-01

    The development of effective baits to control the Argentine ant, Linepithema humile (Mayr), has been problematic because foragers prefer sweet liquids, while many toxicants are insoluble in water and liquid baits are generally difficult to deliver. The incorporation of thiamethoxam and sucrose solutions into a water-absorbing polyacrylamide hydrogel provides a unique and novel carrier and method of application for liquid baits. Formulations of thiamethoxam affected the size of the hydrogels, and sucrose solutions containing 0.0003% technical thiamethoxam provided hydrogels as large as those made with 25% sucrose solution or deionized water. Concentrations of thiamethoxam as low as 0.000075% in the hydrogels provided 50% kill of workers within 3 d in a laboratory setting. In small colony studies, baiting with 0.00015 and 0.000075% thiamethoxam hydrogels provided 100% mortality of workers and queens within 8 d. An enzyme-linked immunosorbent assay indicated that thiamethoxam was absorbed into the interior of the polyacrylamide matrix. The water loss rates of the hydrogels were dependent upon the relative humidity. Polyacrylamide hydrogels with >50% water loss were less attractive to ants. Field studies in highly infested areas indicated that concentrations of 0.0006 or 0.0018% thiamethoxam were more effective than 0.00015%. Hydrogels may provide a cost-effective alternative to providing aqueous baits to control Argentine ants. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Microtome Sliced Block Copolymers and Nanoporous Polymers as Masks for Nanolithography

    DEFF Research Database (Denmark)

    Shvets, Violetta; Schulte, Lars; Ndoni, Sokol

    2014-01-01

    Introduction. Block copolymers self-assembling properties are commonly used for creation of very fine nanostructures [1]. Goal of our project is to test new methods of the block-copolymer lithography mask preparation: macroscopic pieces of block-copolymers or nanoporous polymers with cross...... PDMS can be chemically etched from the PB matrix by tetrabutylammonium fluoride in tetrahydrofuran and macroscopic nanoporous PB piece is obtained. Both block-copolymer piece and nanoporous polymer piece were sliced with cryomicrotome perpendicular to the axis of cylinder alignment and flakes...... of etching patterns appear only under the certain parts of thick flakes and are not continuous. Although flakes from block copolymer are thinner and more uniform in thickness than flakes from nanoporous polymer, quality of patterns under nanoporous flakes appeared to be better than under block copolymer...

  19. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Poly-1-butene resins and butene/ethylene copolymers... resins and butene/ethylene copolymers. The poly-1-butene resins and butene/ethylene copolymers identified... the catalytic polymerization of 1-butene liquid monomer. Butene/ethylene copolymers are produced by...

  20. Co-polymer Films for Sensors

    Science.gov (United States)

    Ryan, Margaret A. (Inventor); Jewell, April D. (Inventor); Taylor, Charles (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Manatt, Kenneth S. (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor); Homer, Margie L. (Inventor); Shevade, Abhijit V. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  1. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2...

  2. HPMA and HEMA copolymer bead interactions with eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Cristina D. Vianna-Soares

    2004-09-01

    Full Text Available Two different hydrophilic acrylate beads were prepared via aqueous suspension polymerization. Beads produced of a hydroxypropyl methacrylate (HPMA and ethyleneglycol methacrylate (EDMA copolymer were obtained using a polyvinyl alcohol suspending medium. Copolymers of 2hydroxyethyl methacrylate (HEMA, methyl methacrylate (MMA and ethyleneglycol methacrylate (EDMA beads were obtained using magnesium hydroxide as the suspending agent. Following characterization by scanning electron microscopy (SEM, nitrogen sorption analysis (NSA and mercury intrusion porosimetry (MIP, the beads were cultured with monkey fibroblasts (COS7 to evaluate their ability to support cell growth, attachment and adhesion. Cell growth behavior onto small HPMA/EDMA copolymer beads and large HEMA/MMA/EDMA copolymer beads is evaluated regarding their hidrophilicity/hidrophobicity and surface roughness.

  3. Progress in two-dimensional polyacrylamide gel electrophoresis and application in radiation research

    International Nuclear Information System (INIS)

    Wang Zhidong; Chen Xiaohua

    2003-01-01

    Two-dimensional polyacrylamide gel electrophoresis is the key separation technique in proteomics research, which is designed by protein character: molecular weight and PI. Some progress has been made in disease mechanism detection, tumor indicator research and drug development. This technique also has some potential application in radiation research

  4. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  5. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Lee D. Wilson

    2011-08-01

    Full Text Available Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid have been evaluated. The sorption properties of granular activated carbon (GAC were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 101 m2/g, CDI-X copolymers (< 101 m2/g, and granular activated carbon (GAC ~103 m2/g. The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i surface area of the sorbent; (ii CD content and accessibility; and (iii and the chemical nature of the sorbent material.

  6. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation.

    Science.gov (United States)

    Han, Dehui; Tong, Xia; Zhao, Yue

    2012-02-07

    We report the design and demonstration of a dual-stimuli-responsive block copolymer (BCP) micelle with increased complexity and control. We have synthesized and studied a new amphiphilic ABA-type triblock copolymer whose hydrophobic middle block contains two types of stimuli-sensitive functionalities regularly and repeatedly positioned in the main chain. Using a two-step click chemistry approach, disulfide and o-nitrobenzyle methyl ester groups are inserted into the main chain, which react to reducing agents and light, respectively. With the end blocks being poly(ethylene oxide), micelles formed by this BCP possess a core that can be disintegrated either rapidly via photocleavage of o-nitrobenzyl methyl esters or slowly through cleavage of disulfide groups by a reducing agent in the micellar solution. This feature makes possible either burst release of an encapsulated hydrophobic species from disintegrated micelles by UV light, or slow release by the action of a reducing agent, or release with combined fast-slow rate profiles using the two stimuli.

  7. Self-assembled Block Copolymer Membranes with Bioinspired Artificial Channels

    KAUST Repository

    Sutisna, Burhannudin

    2018-04-01

    Nature is an excellent design that inspires scientists to develop smart systems. In the realm of separation technology, biological membranes have been an ideal model for synthetic membranes due to their ultrahigh permeability, sharp selectivity, and stimuliresponse. In this research, fabrications of bioinspired membranes from block copolymers were studied. Membranes with isoporous morphology were mainly prepared using selfassembly and non-solvent induced phase separation (SNIPS). An effective method that can dramatically shorten the path for designing new isoporous membranes from block copolymers via SNIPS was first proposed by predetermining a trend line computed from the solvent properties, interactions and copolymer block sizes of previously-obtained successful systems. Application of the method to new copolymer systems and fundamental studies on the block copolymer self-assembly were performed. Furthermore, the manufacture of bioinspired membranes was explored using (1) poly(styrene-b-4-hydroxystyrene-b-styrene) (PS-b-PHS-b-PS), (2) poly(styrene-bbutadiene- b-styrene) (PS-b-PB-b-PS) and (3) poly(styrene-b-γ-benzyl-L-glutamate) (PSb- PBLG) copolymers via SNIPS. The structure formation was investigated using smallangle X-ray scattering (SAXS) and time-resolved grazing-Incidence SAXS. The PS-b- PHS-b-PS membranes showed preferential transport for proteins, presumably due to the hydrogen bond interactions within the channels, electrostatic attraction, and suitable pore dimension. Well-defined nanochannels with pore sizes of around 4 nm based on PS-b- PB-b-PS copolymers could serve as an excellent platform to fabricate bioinspired channels due to the modifiable butadiene blocks. Photolytic addition of thioglycolic acid was demonstrated without sacrificing the self-assembled morphology, which led to a five-fold increase in water permeance compared to that of the unmodified. Membranes with a unique feather-like structure and a lamellar morphology for dialysis and

  8. Process of irradiating an ethylene-vinyl acetate copolymer to produce low melt index copolymers, and products of said process

    International Nuclear Information System (INIS)

    Potts, J.E.

    1976-01-01

    Application of ionizing radiation in a dose between 0.5 and 1.5 megareps to copolymers of ethylene and vinyl acetate lowers the melt index and increases the toughness and flexibility of the copolymers without substantially decreasing solubility or thermoplasticity. The increased toughness and flexibility carries over into blends with wax or polyethylene. (author)

  9. Migration of fresh and cryopreserved human spermatozoa in polyacrylamide gel.

    Science.gov (United States)

    Goldstein, M C; Wix, L S; Foote, R H; Feldschuh, R; Feldschuh, J

    1982-05-01

    The ability of freshly collected and frozen human spermatozoa to migrate in round capillary tubes containing specially formulated polyacrylamide gel was investigated, using 33 ejaculates from 27 donors. Each semen sample was divided; one portion was left undiluted, and the other portion was diluted to 50 x 10(6) sperm/ml. Glycerol was used as the cryoprotectant. The percentage of motile sperm cells was determined before and after freezing. Fresh semen contained a higher percentage of motile cells, which migrated farther than those of cryopreserved-thawed semen. Various correlations between the percentage of motile sperm and migration distance ranged from 0.57 to 0.62. There was a low positive correlation of migration distance with sperm cell concentration per milliliter, r = 0.25 to 0.34; and thus adjusting semen samples to a standard sperm concentration improved the accuracy of the test only slightly. The regression coefficient of migration distance on the percentage of motile sperm in fresh semen was 0.65, indicating that for each 10% increase in sperm motility, migration distance is predicted to increase 6.5 mm. Five batches of polyacrylamide gel gave uniform results, and the application of this stable gel to fertility investigations is discussed.

  10. Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida.

    Science.gov (United States)

    Li, Shi Yan; Dong, Cui Ling; Wang, Shen Yu; Ye, Hai Mu; Chen, Guo-Qiang

    2011-04-01

    Polyhydroxyalkanoate (PHA) synthesis genes phaPCJ(Ac) cloned from Aeromonas caviae were transformed into Pseudomonas putida KTOY06ΔC, a mutant of P. putida KT2442, resulting in the ability of the recombinant P. putida KTOY06ΔC (phaPCJ(A.c)) to produce a short-chain-length and medium-chain-length PHA block copolymer consisting of poly-3-hydroxybutyrate (PHB) as one block and random copolymer of 3-hydroxyvalerate (3HV) and 3-hydroxyheptanoate (3HHp) as another block. The novel block polymer was studied by differential scanning calorimetry (DSC), nuclear magnetic resonance, and rheology measurements. DSC studies showed the polymer to possess two glass transition temperatures (T(g)), one melting temperature (T(m)) and one cool crystallization temperature (T(c)). Rheology studies clearly indicated a polymer chain re-arrangement in the copolymer; these studies confirmed the polymer to be a block copolymer, with over 70 mol% homopolymer (PHB) of 3-hydroxybutyrate (3HB) as one block and around 30 mol% random copolymers of 3HV and 3HHp as the second block. The block copolymer was shown to have the highest tensile strength and Young's modulus compared with a random copolymer with similar ratio and a blend of homopolymers PHB and PHVHHp with similar ratio. Compared with other commercially available PHA including PHB, PHBV, PHBHHx, and P3HB4HB, the short-chain- and medium-chain-length block copolymer PHB-b-PHVHHp showed differences in terms of mechanical properties and should draw more attentions from the PHA research community. © Springer-Verlag 2010

  11. Polyether based segmented copolymers with uniform aramid units

    NARCIS (Netherlands)

    Niesten, M.C.E.J.

    2000-01-01

    Segmented copolymers with short, glassy or crystalline hard segments and long, amorphous soft segments (multi-block copolymers) are thermoplastic elastomers (TPE’s). The hard segments form physical crosslinks for the amorphous (rubbery) soft segments. As a result, this type of materials combines

  12. Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template.

    Science.gov (United States)

    Aizawa, Masato; Buriak, Jillian M

    2006-05-03

    Patterning technologically important semiconductor interfaces with nanoscale metal films is important for applications such as metallic interconnects and sensing applications. Self-assembling block copolymer templates are utilized to pattern an aqueous metal reduction reaction, galvanic displacement, on silicon surfaces. Utilization of a triblock copolymer monolayer film, polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO), with two blocks capable of selective transport of different metal complexes to the surface (PEO and P2VP), allows for chemical discrimination and nanoscale patterning. Different regions of the self-assembled structure discriminate between metal complexes at the silicon surface, at which time they undergo the spontaneous reaction at the interface. Gold deposition from gold(III) compounds such as HAuCl4(aq) in the presence of hydrofluoric acid mirrors the parent block copolymer core structure, whereas silver deposition from Ag(I) salts such as AgNO3(aq) does the opposite, localizing exclusively under the corona. By carrying out gold deposition first and silver second, sub-100-nm gold features surrounded by silver films can be produced. The chemical selectivity was extended to other metals, including copper, palladium, and platinum. The interfaces were characterized by a variety of methods, including scanning electron microscopy, scanning Auger microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy.

  13. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Determan, Michael Duane [Iowa State Univ., Ames, IA (United States)

    2005-12-17

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi

  14. Chain-like nanostructures from anisotropic self-assembly of semiconducting metal oxide nanoparticles with a block copolymer.

    Science.gov (United States)

    Wang, Junzheng; Winardi, Suminto; Sugawara-Narutaki, Ayae; Kumamoto, Akihito; Tohei, Tetsuya; Shimojima, Atsushi; Okubo, Tatsuya

    2012-11-21

    A facile method is reported for the preparation of chain-like nanostructures by anisotropic self-assembly of TiO(2) and SnO(2) nanoparticles with the aid of a block copolymer in an aqueous medium. Well-defined crystallographic orientations between neighbouring nanoparticles are observed in TiO(2) nanochains, which is important for tailoring the grain boundaries and thus enhancing charge transport.

  15. Inhomogeneity of block copolymers at the interface of an immiscible polymer blend

    Science.gov (United States)

    Ryu, Ji Ho; Kim, YongJoo; Lee, Won Bo

    2018-04-01

    We present the effects of structure and stiffness of block copolymers on the interfacial properties of an immiscible homopolymer blend. Diblock and two-arm grafted copolymers with variation in stiffness are modeled using coarse-grained molecular dynamics to compare the compatibilization efficiency, i.e., reduction of interfacial tension. Overall, grafted copolymers are located more compactly at the interface and show better compatibilization efficiency than diblock copolymers. In addition, an increase in the stiffness for one of the blocks of the diblock copolymers causes unusual inhomogeneous interfacial coverage due to bundle formation. However, an increase in the stiffness for one of blocks of the grafted copolymers prevents the bundle formation due to the branched chain. As a result, homogeneous interfacial coverage of homopolymer blends is realized with significant reduction of interfacial tension which makes grafted copolymer a better candidate for the compatibilizer of immiscible homopolymer blend.

  16. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, A.; Valle, L.; Franco, L. del [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Sarasua, J.R. [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain); Estrany, F. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, J., E-mail: Jordi.Puiggali@upc.es [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain)

    2014-09-01

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N′-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. - Highlights: • Pegylated copolymers of lactide and trimethylene carbonate have been synthesized. • Grafting with polyethylene glycol was able via maleic anhydride functionalization. • Drug-loaded microspheres could be prepared from new pegylated copolymers. • Hydrophilicity of lactide/trimethylene carbonate copolymers increased by pegylation. • New pegylated copolymers supported cell adhesion and proliferation.

  17. Fabrication of Ordered Nanopattern by using ABC Triblock Copolymer with Salt in Toluene

    OpenAIRE

    Huang, Hailiang; Zhong, Benbin; Zu, Xihong; Luo, Hongsheng; Lin, Wenjing; Zhang, Minghai; Zhong, Yazhou; Yi, Guobin

    2017-01-01

    Ordered nanopatterns of triblock copolymer polystyrene-block-poly(2-vinylpyridine)-block- poly (ethylene oxide)(PS-b-P2VP-b-PEO) have been achieved by the addition of lithium chloride (LiCl). The morphological and structural evolution of PS-b-P2VP-b-PEO/LiCl thin films were systematically investigated by varying different experimental parameters, including the treatment for polymer solution after the addition of LiCl, the time scale of ultrasonic treatment and the molar ratio of Li+ ions to t...

  18. Surface morphology of PS-PDMS diblock copolymer films

    DEFF Research Database (Denmark)

    Andersen, T.H.; Tougaard, S.; Larsen, N.B.

    2001-01-01

    Spin coated thin films (∼400 Å) of poly(styrene)–poly(dimethylsiloxane) (PS–PDMS) diblock copolymers have been investigated using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Surface segregation of the poly(dimethylsiloxane) blocks was studied for five diblock copolymers which ra...

  19. Reactivity Ratios for Organotin Copolymer Systems

    Directory of Open Access Journals (Sweden)

    Mohamed H. El-Newehy

    2010-04-01

    Full Text Available Di(tri-n-butyltin itaconate (DTBTI and monoethyl tributyltin fumarate (METBTF were synthesized as organotin monomers. The organotin monomers were copolymerized with styrene (ST and methyl methacrylate (MMA via a free radical polymerization technique. The overall conversion was kept low (£15% wt/wt for all studied samples and the copolymer composition was determined from tin analysis. The synthesized monomers and copolymers were characterized by elemental analysis, 1H- and 13C-NMR, and FTIR spectroscopy.

  20. SANS and SAXS study of block copolymer/homopolymer mixtures

    International Nuclear Information System (INIS)

    Hasegawa, Hirokazu; Tanaka, Hideaki; Hashimoto, Takeji; Han, C.C.

    1991-01-01

    The lateral and vertical components of the radius of gyration for a single block copolymer chain and those of a single homopolymer chain in the lamellar microdomain space formed by a mixture of diblock copolymers and homopolymers were investigated by means of small-angle neutron scattering (SANS) and the microdomain structures by small-angle X-ray scattering (SAXS). The homopolymers whose molecular weights are much smaller than that of the corresponding chains of the block copolymers were used so that the homopolymers were uniformly solubilized in the corresponding microdomains. The SANS result suggests that the homopolymer chains in the microdomain space as well as the block copolymer chains are more compressed in the direction parallel to the interface and more stretched in the direction perpendicular to the interface than the corresponding unperturbed polymer chains with the same molecular weight. On increasing the volume fraction of the homopolymers the thickness of the lamellar microdomains increases. The block copolymer chains were found to undergo an isochoric affine deformation on addition of the homopolymers or with the change of the thickness of the lamellar microdomains. (orig.)

  1. Slip-spring model of entangled rod-coil block copolymers

    Science.gov (United States)

    Wang, Muzhou; Likhtman, Alexei E.; Olsen, Bradley D.

    2015-03-01

    Understanding the dynamics of rod-coil block copolymers is important for optimal design of functional nanostructured materials for organic electronics and biomaterials. Recently, we proposed a reptation theory of entangled rod-coil block copolymers, predicting the relaxation mechanisms of activated reptation and arm retraction that slow rod-coil dynamics relative to coil and rod homopolymers, respectively. In this work, we introduce a coarse-grained slip-spring model of rod-coil block copolymers to further explore these mechanisms. First, parameters of the coarse-grained model are tuned to match previous molecular dynamics simulation results for coils, rods, and block copolymers. For activated reptation, rod-coil copolymers are shown to disfavor configurations where the rod occupies curved portions of the entanglement tube of randomly varying curvature created by the coil ends. The effect of these barriers on diffusion is quantitatively captured by considering one-dimensional motion along an entanglement tube with a rough free energy potential. Finally, we analyze the crossover between the two mechanisms. The resulting dynamics from both mechanisms acting in combination is faster than from each one individually.

  2. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin.

    Science.gov (United States)

    Wilson, Lee D; Mohamed, Mohamed H; Berhaut, Christopher L

    2011-08-29

    Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (granular activated carbon (GAC ~10³ m²/g). The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i) surface area of the sorbent; (ii) CD content and accessibility; and (iii) and the chemical nature of the sorbent material.

  3. Diblock Copolymer/Layered Silicate Nanocomposite Thin Film Stability

    Science.gov (United States)

    Limary, Ratchana; Green, Peter

    2000-03-01

    The stability of thin film symmetric diblock copolymers blended with layered silicate nanocomposites were examined using a combination of optical microscopy, atomic force microscopy (AFM), and X-ray diffraction (XRD). Two cases were examined PS-b-PMMA (polystyrene-b-polymethylacrylate) blended with montmorillonite stoichiometrically loaded with alkyl ammonium ions, OLS(S), and PS-b-PMMA blended with montmorillonite loaded with excess alkyl ammonium ions, OLS(E). XRD spectra show an increase in the gallery spacing of the OLSs, indicating that the copolymer chains have intercalated the layered silicates. AFM images reveal a distinct difference between the two nanocomposite thin films: regions in the vicinity of OLS(S) aggregates were depleted of material, while in the vicinity of OLS(E) aggregates, dewetting of the substrate occurred. We show that the stability of the copolymer/OLS nanocomposite films is determined by the enthalpic driving force associated with intercalation of the copolymer chains into the galleries of the modified OLS layers and by the substrate/organic modifier interactions.

  4. Influence of Chirality in Ordered Block Copolymer Phases

    Science.gov (United States)

    Prasad, Ishan; Grason, Gregory

    2015-03-01

    Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.

  5. Block copolymer-nanoparticle hybrid self-assembly

    KAUST Repository

    Hoheisel, Tobias N.; Hur, Kahyun; Wiesner, Ulrich B.

    2015-01-01

    © 2014 Published by Elsevier Ltd. Polymer-inorganic hybrid materials provide exciting opportunities as they may display favorable properties from both constituents that are desired in applications including catalysis and energy conversion and storage. For the preparation of hybrid materials with well-defined morphologies, block copolymer-directed nanoparticle hybrids present a particularly promising approach. As will be described in this review, once the fundamental characteristics for successful nanostructure formation at or close to the thermodynamic equilibrium of these nanocomposites are identified, the approach can be generalized to various materials classes. In addition to the discussion of recent materials developments based on the use of AB diblock copolymers as well as ABC triblock terpolymers, this review will therefore emphasize progress in the fundamental understanding of the underlying formation mechanisms of such hybrid materials. To this end, critical experiments for, as well as theoretical progress in the description of these nanostructured block copolymer-based hybrid materials will be discussed. Rather than providing a comprehensive overview, the review will emphasize work by the Wiesner group at Cornell University, US, on block copolymer-directed nanoparticle assemblies as well as their use in first potential application areas. The results provide powerful design criteria for wet-chemical synthesis methodologies for the generation of functional nanomaterials for applications ranging from microelectronics to catalysis to energy conversion and storage.

  6. Position transitions of polymer-grafted nanoparticles in diblock-copolymer nanocomposites

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Self-assembly of block copolymer/nanoparticle blends has promising applications in the design and fabrication of novel functional nanomaterials. Precise control of the spatial positions of nanoparticles within block copolymer-based nanomaterials is crucial to achieve some special physical properties and functions. Here, we employ the self-consistent field method to theoretically investigate the self-assembly of polymer grafted-nanoparticles in a diblock copolymer. It is found that by varying the size and selectivity of nanoparticles, one can not only produce various self-assembled nanostructures but also modulate the spatial positions of the nanoparticles, either at the copolymer interfaces or in the center of one copolymer phase, within the nanostructures. A denser grafted polymer brush plays a role of shielding effect on nanoparticles and can position them into the center of one copolymer phase. The nanostructural transition we observed is dictated by the competition between entropy and enthalpy. On the basis of a number of simulations, two phase diagrams of self-assembled nanostructures are constructed. This study may be helpful for optimal design of advanced materials with desired nanostructures and enhanced performance.

  7. Controlling sub-microdomain structure in microphase-ordered block copolymers and their nanocomposites

    Science.gov (United States)

    Bowman, Michelle Kathleen

    Block copolymers exhibit a wealth of morphologies that continue to find ubiquitous use in a diverse variety of mature and emergent (nano)technologies, such as photonic crystals, integrated circuits, pharmaceutical encapsulents, fuel cells and separation membranes. While numerous studies have explored the effects of molecular confinement on such copolymers, relatively few have examined the sub-microdomain structure that develops upon modification of copolymer molecular architecture or physical incorporation of nanoscale objects. This work will address two relevant topics in this vein: (i) bidisperse brushes formed by single block copolymer molecules and (ii) copolymer nanocomposites formed by addition of molecular or nanoscale additives. In the first case, an isomorphic series of asymmetric poly(styrene-b -isoprene-b-styrene) (S1IS2) triblock copolymers of systematically varied chain length has been synthesized from a parent SI diblock copolymer. Small-angle x-ray scattering, coupled with dynamic rheology and self-consistent field theory (SCFT), reveals that the progressively grown S2 block initially resides in the I-rich matrix and effectively reduces the copolymer incompatibility until a critical length is reached. At this length, the S2 block co-locates with the S1 block so that the two blocks generate a bidisperse brush (insofar as the S1 and S2 lengths differ). This single-molecule analog to binary block copolymer blends affords unique opportunities for materials design at sub-microdomain length scales and provides insight into the transition from diblock to triblock copolymer (and thermoplastic elastomeric nature). In the second case, I explore the distribution of molecular and nanoscale additives in microphase-ordered block copolymers and demonstrate via SCFT that an interfacial excess, which depends strongly on additive concentration, selectivity and relative size, develops. These predictions are in agreement with experimental findings. Moreover, using a

  8. Responsive Copolymers for Enhanced Petroleum Recovery

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    2001-02-27

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  9. Polyacrylamide-hydroxyapatite composite: Preparation, characterization and adsorptive features for uranium and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Baybas, Demet, E-mail: dbaybas@cumhuriyet.edu.tr [Cumhuriyet University, Faculty of Science, Department of Chemistry, Kayseri, Sivas 58140 (Turkey); Ulusoy, Ulvi, E-mail: ulusoy@cumhuriyet.edu.tr [Cumhuriyet University, Faculty of Science, Department of Chemistry, Kayseri, Sivas 58140 (Turkey)

    2012-10-15

    The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm-HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm-HAP were compared for UO{sub 2}{sup 2+} and Th{sup 4+}. The entrapment of HAP into PAAm-HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm-HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo second order model. The values of enthalpy and entropy changes were positive. Th{sup 4+} adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm-HAP for this ion. In consequence, PAAm-HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements. - Graphical abstract: SEM images of hydroxyapatite (HAP) and polyacrylamide-hydroxyapatite (PAAm-HAP), and the adsorption isotherms for Uranium and Thorium. Highlights: Black-Right-Pointing-Pointer Composite of PAAm-HAP was synthesized from hydroxyapatite and polyacrylamide. Black-Right-Pointing-Pointer The materials were characterized by BET, FT-IR, XRD, SEM, TGA and PZC analysis. Black-Right-Pointing-Pointer HAP and PAAm-HAP had high sorption capacity and very rapid uptake for UO{sub 2}{sup 2+} and Th{sup 4+}. Black-Right-Pointing-Pointer Super porous PAAm was obtained from PAAm-HAP after its removal of HAP content. Black-Right-Pointing-Pointer The composite is potential for deposition of U, Th and its associate radionuclides.

  10. Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release.

    Science.gov (United States)

    Qiao, Zeng-Ying; Ji, Ran; Huang, Xiao-Nan; Du, Fu-Sheng; Zhang, Rui; Liang, De-Hai; Li, Zi-Chen

    2013-05-13

    A series of well-defined thermoresponsive diblock copolymers (PEO45-b-PtNEAn, n=22, 44, 63, 91, 172) were prepared by the atom transfer radical polymerization of trans-N-(2-ethoxy-1,3-dioxan-5-yl) acrylamide (tNEA) using a poly(ethylene oxide) (PEO45) macroinitiator. All copolymers are water-soluble at low temperature, but upon quickly heating to 37 °C, laser light scattering (LLS) and transmission electron microscopy (TEM) characterizations indicate that these copolymers self-assemble into aggregates with different morphologies depending on the chain length of PtNEA and the polymer concentration; the morphologies gradually evolved from spherical solid nanoparticles to a polymersome as the degree of polymerization ("n") of PtNEA block increased from 22 to 172, with the formation of clusters with rod-like structure at the intermediate PtNEA length. Both the spherical nanoparticle and the polymersome are stable at physiological pH but susceptible to the mildly acidic medium. Acid-triggered hydrolysis behaviors of the aggregates were investigated by LLS, Nile red fluorescence, TEM, and (1)H NMR spectroscopy. The results revealed that the spherical nanoparticles formed from PEO45-b-PtNEA44 dissociated faster than the polymersomes of PEO45-b-PtNEA172, and both aggregates showed an enhanced hydrolysis under acidic conditions. Both the spherical nanoparticle and polymersome are able to efficiently load the hydrophobic doxorubicin (DOX), and water-soluble fluorescein isothiocyanate-lysozyme (FITC-Lys) can be conveniently encapsulated into the polymersome without using any organic solvent. Moreover, FITC-Lys and DOX could be coloaded in the polymersome. The drugs loaded either in the polymersome or in the spherical nanoparticle could be released by acid triggering. Finally, the DOX-loaded assemblies display concentration-dependent cytotoxicity to HepG2 cells, while the copolymers themselves are nontoxic.

  11. Post-Electrophoretic Identification of Oxidized Proteins

    Science.gov (United States)

    Conrad, Craig C; Talent, John M; Malakowsky, Christina A

    1999-01-01

    The oxidative modification of proteins has been shown to play a major role in a number of human diseases. However, the ability to identify specific proteins that are most susceptible to oxidative modifications is difficult. Separation of proteins using polyacrylamide gel electrophoresis (PAGE) offers the analytical potential for the recovery, amino acid sequencing, and identification of thousands of individual proteins from cells and tissues. We have developed a method to allow underivatized proteins to be electroblotted onto PVDF membranes before derivatization and staining. Since both the protein and oxidation proteins are quantifiable, the specific oxidation index of each protein can be determined. The optimal sequence and conditions for the staining process are (a) electrophoresis, (b) electroblotting onto PVDF membranes, (c) derivatization of carbonyls with 2,4-DNP, (d) immunostaining with anti DNP antibody, and (e) protein staining with colloidal gold. PMID:12734585

  12. Non-immunogenic, hydrophilic/cationic block copolymers and uses thereof

    Science.gov (United States)

    Scales, Charles W.; Huang, Faqing; McCormick, Charles L.

    2010-05-18

    The present invention provides novel non-immunogenic, hydrophilic/cationic block copolymers comprising a neutral-hydrophilic polymer and a cationic polymer, wherein both polymers have well-defined chain-end functionality. A representative example of such a block copolymer comprises poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and poly(N-[3-(dimethylamino)propyl]methacrylamide) (PDMAPMA). Also provided is a synthesis method thereof in aqueous media via reversible addition fragmentation chain transfer (RAFT) polymerization. Further provided are uses of these block copolymers as drug delivery vehicles and protection agents.

  13. Block copolymer morphologies confined by square-shaped particle: Hard and soft confinement

    International Nuclear Information System (INIS)

    Zhang Qiyi; Yang Wenyan; Hu Kaiyan

    2016-01-01

    The self-assembly of diblock copolymers confined around one square-shaped particle is studied systematically within two-dimensional self-consistent field theory (SCFT). In this model, we assume that the thin block copolymer film is confined in the vicinity of a square-shaped particle by a homopolymer melt, which is equivalent to the poor solvents. Multiple sequences of square-shaped particle-induced copolymer aggregates with different shapes and self-assembled internal morphologies are predicted as functions of the particle size, the structural portion of the copolymer, and the volume fraction of the copolymer. A rich variety of aggregates are found with complex internal self-assembled morphologies including complex structures of the vesicle, with one or several inverted micelle surrounded by the outer monolayer with the particle confined in the core. These results demonstrate that the assemblies of diblock copolymers formed around the square-shaped particle in poor solvents are of immediate interest to the assembly of copolymer and the morphology of biomembrane in the confined environment, as well as to the transitions of vesicles to micelles. (paper)

  14. Melt-processable hydrophobic acrylonitrile-based copolymer systems with adjustable elastic properties designed for biomedical applications.

    Science.gov (United States)

    Cui, J; Trescher, K; Kratz, K; Jung, F; Hiebl, B; Lendlein, A

    2010-01-01

    (AN-co-nBA) biomaterials were sterilized with ethylene oxide and tested for cytotoxicity in direct contact tests with L929 cells according to the EN DIN ISO standard 10993-5. All tested samples exhibited non-toxic effects on the functional integrity of the cell membrane and the mitochondrial activity. However, the morphology of the cells on the samples was different from that observed on polystyrene as control, indicating slightly cytotoxic effects according to the evaluation guide of the US Pharmacopeial Convention. Thus, the melt-processable, hydrophobic P(AN-co-nBA) copolymers with adjustable mechanical properties are promising candidates for in vitro investigations of tissue growth kinetics.

  15. Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries

    Science.gov (United States)

    Porcarelli, Luca; Aboudzadeh, M. Ali; Rubatat, Laurent; Nair, Jijeesh R.; Shaplov, Alexander S.; Gerbaldi, Claudio; Mecerreyes, David

    2017-10-01

    Single-ion conducting polymer electrolytes represent the ideal solution to reduce concentration polarization in lithium metal batteries (LMBs). This paper reports on the synthesis and characterization of single-ion ABA triblock copolymer electrolytes comprising PEO and poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) blocks, poly(LiMTFSI). Block copolymers are prepared by reversible addition-fragmentation chain transfer polymerization, showing low glass transition temperature (-55 to 7 °C) and degree of crystallinity (51-0%). Comparatively high values of ionic conductivity are obtained (up to ≈ 10-4 S cm-1 at 70 °C), combined with a lithium-ion transference number close to unity (tLi+ ≈ 0.91) and a 4 V electrochemical stability window. In addition to these promising features, solid polymer electrolytes are successfully tested in lithium metal cells at 70 °C providing long lifetime up to 300 cycles, and stable charge/discharge cycling at C/2 (≈100 mAh g-1).

  16. Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution

    KAUST Repository

    Moreno Chaparro, Nicolas; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor; Calo, Victor M.

    2015-01-01

    We study binary blends of asymmetric diblock copolymers (AB/AC) in selective solvents with a mesoscale model. We investigate the morphological transitions induced by the concentration of the AC block copolymer and the difference in molecular weight between the AB and AC copolymers, when segments B and C exhibit hydrogen-bonding interactions. To the best of our knowledge, this is the first work modeling mixtures of block copolymers with large differences in molecular weight. The coassembly mechanism localizes the AC molecules at the interface of A and B domains and induces the swelling of the B-rich domains. The coil size of the large molecular weight block copolymer depends only on the concentration of the short block copolymer (AC or AB), regardless of the B–C interactions. However, the B–C interactions control the morphological transitions that occur in these blends.

  17. Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution

    KAUST Repository

    Moreno Chaparro, Nicolas

    2015-10-27

    We study binary blends of asymmetric diblock copolymers (AB/AC) in selective solvents with a mesoscale model. We investigate the morphological transitions induced by the concentration of the AC block copolymer and the difference in molecular weight between the AB and AC copolymers, when segments B and C exhibit hydrogen-bonding interactions. To the best of our knowledge, this is the first work modeling mixtures of block copolymers with large differences in molecular weight. The coassembly mechanism localizes the AC molecules at the interface of A and B domains and induces the swelling of the B-rich domains. The coil size of the large molecular weight block copolymer depends only on the concentration of the short block copolymer (AC or AB), regardless of the B–C interactions. However, the B–C interactions control the morphological transitions that occur in these blends.

  18. Physical properties of metallocenes propene-higher α-olefins copolymers

    International Nuclear Information System (INIS)

    Lovisi, Humberto; Santa Maria, Luiz Claudio de; Coutinho, Fernanda M.B.

    2001-01-01

    In this work, new copolymers of propene/1-hexene (PHC) and propene/1-octene (POC) were synthesized by using a highly iso specific metallocenes catalyst system based on rac-Me 2 Si(2-ethyl,4-phenyl,1-indenyl) 2 ZrCl 2 , in the homogeneous and heterogeneous forms, methylaluminoxane (MAO) activated. An investigation about the copolymerization of propene with 1-hexene and 1-octene using this catalyst system illustrates the potential for the tailoring of propene/higher α-olefin copolymers with controlled thermal and mechanical properties by varying the comonomer concentration in the polymerization feed. Both catalyst systems showed high activity and produced random copolymers with very low or no detectable crystallinity. It was observed that properties such as enthalpy of crystallization (ΔHc), crystallization temperature (Tc), melting temperature (Tm), glass transition temperature (Tg) and elastic modulus (E') decreased in a linear pattern with increasing comonomer content in the copolymer. The effect of the short chain branch length was also investigated and it was observed that, compared to 1-hexene, much less 1-octene was necessary to disrupt the crystalline structure and impart rubbery behaviour to the copolymers. (author)

  19. Synthetic lubricants based on copolymers of n-butyl methacrylate and α-olefins

    Directory of Open Access Journals (Sweden)

    Đakov Tatjana A.

    2002-01-01

    Full Text Available Synthetic fluids obtained by the copolymerization of α -olefins with alkyl esters of unsaturated carboxylic acids have a unique combination of properties of non-polar poly-a-olefins (PAOs and polar esters in a single molecule. These compounds are characterized by superior thermal, oxidative and hydrolytic stability, miscibility with mineral and synthetic base oils solubility of additives and neutral elastomer behavior. Depending on the molar masses and comonomer ratios in the copolymer molecule, synthetic fluids with a wide range of properties are obtained. These compounds are valuable components in lubricating oil formulations for different applications.

  20. Incorporation of fluconazole in copolymer PMMA-g-PEG derivatives

    International Nuclear Information System (INIS)

    Silveira, B.M.; Santos, V.M.R. dos; Novack, K.M.; Lopes, S.A.

    2014-01-01

    The graft copolymer PMMA-g-PEG went through chemical transformations in its chain through acetylation, halogenation, methylation and esterification followed by hydrolysis reactions. Subsequently, the copolymer PMMA-g-PEG derivatives passed through the process of emulsification and incorporation of the drug fluconazole. Derivatives copolymers were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) after incorporation in order to evaluate their effectiveness. The efficiency of incorporation was observed and it was also verified that the complexity of polymer chain influence in the incorporated fluconazole content. (author)

  1. Polyethylene-Based Tadpole Copolymers

    KAUST Repository

    Alkayal, Nazeeha; Zhang, Zhen; Bilalis, Panayiotis; Gnanou, Yves; Hadjichristidis, Nikolaos

    2017-01-01

    Novel well-defined polyethylene-based tadpole copolymers ((c-PE)-b-PS, PE: polyethylene, PS: polystyrene) with ring PE head and linear PS tail are synthesized by combining polyhomologation, atom transfer radical polymerization (ATRP), and Glaser

  2. Electrochemical Synthesis of Polyaniline/Poly-O-Aminophenol Copolymers in Chloride Medium

    Directory of Open Access Journals (Sweden)

    Lucia H. Mascaro

    2011-01-01

    Full Text Available The copolymerization of o-aminophenol (OAP and aniline (ANI on Pt and ITO electrodes was studied using cyclic voltammetry in 0.1 M HCl/0.4 M NaCl solution. The films were characterized by SEM, cyclic voltammetry, and UV-Vis spectroscopy. The properties of the copolymer were compared with PANI and POAP films. The results strongly suggest that the growth of PANI-POAP films does not consist of the simple buildup of layers of homopolymers on the electrode surface as a result of OAP or ANI oxidation products in the monomer mixture, but that a new conducting polymer is formed by copolymerization.

  3. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan; Shevate, Rahul; Kumar, Mahendra; Peinemann, Klaus-Viktor

    2015-01-01

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  4. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan

    2015-07-31

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  5. Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically Catalyst Clay Called Maghnite-H+ (Algerian MMT Under Microwave Irradiation.

    Directory of Open Access Journals (Sweden)

    Rahmouni Abdelkader

    2016-08-01

    Full Text Available In this study, a novel green cationic hydrogel of cationic polyacrylamide composite have been prepared and investigated. The synthesis of green cationic polyacrylamide composite was evaluated for its solubility in water. The reactions were performed using acrylamide monomer, solvent, catalyst (clay fin called maghnite and solution of  H2SO4 (0.25 M, with the system under microwave irradiation (160 ºC for 4 min. Major factors affecting the polymerization reaction were studied with a view to discover appropriate conditions for preparation of the composite. The cationic polyacrylamide obtained is the subject of future studies of modification and transformation. The resulting polymer has been characterized by a variety of characterization techniques, such as: Fourier Transform Infrared Spectra and 1H NMR spectra.  Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th June 2015; Revised: 2nd September 2015; Accepted: 5th January 2016 How to Cite: Abdelkader, R., Mohammed, B. (2016. Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically  Catalyst Clay Called Maghnite-H+ (Algerian MMT Under Microwave Irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 170-175 (doi:10.9767/bcrec.11.2.543.170-175 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.543.170-175

  6. Morphologies of precise polyethylene-based acid copolymers and ionomers

    Science.gov (United States)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been

  7. Block coordination copolymers

    Science.gov (United States)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  8. First detection of lamella-gyroid-cylinder phase transition of neat polyethylene-poly(ethylene oxide) diblock copolymers on the basis of synchrotron WAXD/SAXS and infrared/Raman spectral measurements

    International Nuclear Information System (INIS)

    Weiyu, Cao; Tashiro, Kohji; Hanesaka, Makoto; Takeda, Shinichi; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki

    2009-01-01

    The phase transition behaviour of polyethylene-b-poly(ethylene oxide) (PE-b-PEO) diblock copolymer with relatively short chain lengths has been studied on the basis of temperature dependent infrared and Raman spectral measurements and synchrotron WAXD/SAXS simultaneous measurements, from which the concrete structural changes were deduced successfully from the various levels of molecular chain conformation, chain packing mode and higher-order structure. The higher-order structure has been found to transform between lamella, perforated lamella, gyroid, cylinder and sphere structures. The inner structural changes occurring in the polyethylene and poly(ethylene oxide) parts have been related with these morphological changes. The morphological transition from lamella to gyroid occurs with keeping the crystalline state of polyethylene parts. This apparently curious transition can be interpreted reasonably by assuming the thermally-activated chain motion in the crystal lattice, which may play an important role as a trigger to induce the morphological change from lamella to gyroid. This idea was supported by the measurement of half-width of Raman anti-symmetric CH 2 stretching band sensitive to the thermal mobility of alkyl chains.

  9. About morphology in ethylene-propylene(-diene) copolymers-based latexes

    NARCIS (Netherlands)

    Tillier, D.L.; Meuldijk, J.; Hoehne, G.W.H.; Frederik, P.M.; Regev, O.; Koning, C.E.

    2005-01-01

    Coatings and engineering plastics often require high impact strength. This property can be achieved with tougheners. For the present paper, core-shell impact modifiers were synthesized using ethylene–propylene copolymers (EPM), ethylene–propylene-diene copolymers (EPDM) or a mixture of both types

  10. Adsorption of charged diblock copolymers : effect on colloidal stability

    NARCIS (Netherlands)

    Israels, R.

    1994-01-01

    In this thesis we present Scheutjens-Fleer (SF) calculations on the adsorption of diblock copolymers. More specifically, we restrict ourselves to adsorption at uncharged surfaces, while the specific type of block copolymers we consider have one uncharged adsorbing "anchor" block and one

  11. Monte Carlo simulations of the phase separation of a copolymer blend in a thin film

    KAUST Repository

    Wang, Zhexiao

    2014-12-11

    Monte Carlo simulations were carried out to study the phase separation of a copolymer blend comprising an alternating copolymer and/or block copolymer in a thin film, and a phase diagram was constructed with a series of composed recipes. The effects of composition and segregation strength on phase separation were discussed in detail. The chain conformation of the block copolymer and alternating copolymer were investigated with changes of the segregation strength. Our simulations revealed that the segment distribution along the copolymer chain and the segregation strength between coarse-grained beads are two important parameters controlling phase separation and chain conformation in thin films of a copolymer blend. A well-controlled phase separation in the copolymer blend can be used to fabricate novel nanostructures.

  12. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity.

    Directory of Open Access Journals (Sweden)

    James B Johnston

    Full Text Available In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.

  13. Electrokinetics of diffuse soft interfaces. III. Interpretation of data on the polyacrylamide/water interface

    NARCIS (Netherlands)

    Yezek, L.P.; Duval, J.F.L.; Leeuwen, van H.P.

    2005-01-01

    Streaming potential measurements were carried out on a family of polyacrylamide-co-sodium acrylate gels cross-linked with N,N¿- methylenebisacrylamide in a homemade electrokinetic cell. Measurements of the ionic conductivity within thin films of these gels allowed the equilibrium Donnan potential

  14. Mechanically compliant electrodes and dielectric elastomers from PEG-PDMS copolymers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    2016-01-01

    Soft conducting elastomers have been prepared from polydimethylsiloxane-polyethyleneglycol (PDMS-PEG) copolymer and surfactant-stabilized multi-walled carbon nanotubes (MWCNTs). The copolymer was chain-extended with PDMS of molecular weight 17.2 kg mol-1 in order to obtain a crosslinkable PDMS...... showed high conductivity combined with inherent softness. The high conductivity and softness, PDMS-PEG copolymers with incorporated MWCNTs hold great promises as compliant and highly stretchable electrodes for stretchable devices such as electro-mechanical transducers....

  15. A Study on Copolymer Systems of Styrene with Diethanolamine Side Group and Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Aslisah Acikses

    2018-01-01

    Full Text Available 4-Diethanolaminomethyl styrene (DEAMSt monomer was prepared by the modification of 4-chloromethyl styrene with diethanolamine. The copolymers in different combinations (0.11, 0.19, and 0.30 by mole of DEAMSt and methyl methacrylate (MMA were prepared by free radical polymerization method at 60°C in the presence of 1,4-dioxane and AIBN as initiator. The structures of DEAMSt and DEAMSt-MMA copolymer were characterized by FT-IR and 1H-NMR. The glass transition temperature (Tg of the copolymers was measured by DSC. Thermal decomposition behavior of the copolymers was investigated by TGA. The average molecular weights of the copolymers were determined by GPC. The dye uptaking properties of the copolymers were investigated using bromocresol green. Then, the dielectric constant, dielectric loss factor, and conductivity of copolymers were investigated as a function of temperature and frequency. The activation energies (Ea of the copolymers were determined by impedance analyzer.

  16. Responsive copolymers for enhanced petroleum recovery. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1995-05-01

    The authors describe second year efforts in synthesis, characterization, and rheology to develop polymers with significantly improved efficiency in mobility control and conformance. These advanced polymer systems would maintain high viscosities or behave as virtual gels under low shear conditions and at elevated electrolyte concentrations. At high fluid shear rates, associates would deaggregate yielding low viscosity solutions, reducing problems of shear degradation or face plugging during injection. Polymeric surfactants were also developed with potential for use in higher salt, higher temperature reservoirs for mobilization of entrapped oil. Chapters include: Ampholytic terpolymers of acrylamide with sodium 3-acrylamido-3-methylbutanoate and 2-acrylamido-2-methylpropanetrimethylammonium chloride; Hydrophilic sulfobetaine copolymers of acrylamide and 3-(2-acrylamido-methylpropane-dimethylammonio)-1-propanesulfonate; Copolymerization of maleic anhydride and N-vinylformamide; Reactivity ratio of N-vinylformamide with acrylamide, sodium acrylate, and n-butyl acrylate; Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl(2-acrylamidoethyl)ammonium bromide on the solution behavior of associating acrylamide copolymers; Effect of surfactants on the solution properties of amphipathic copolymers of acrylamide and N,N-dimethyl-N-dodecyl-N-(2-acrylamidoethyl)ammonium bromide; Associative interactions and photophysical behavior of amphiphilic terpolymers prepared by modification of maleic anhydride/ethyl vinyl ether copolymers; Copolymer compositions of high-molecular-weight functional acrylamido water-soluble polymers using direct-polarization magic-angle spinning {sup 13}C NMR; Use of factorial experimental design in static and dynamic light scattering characterization of water soluble polymers; and Porous medium elongational rheometer studies of NaAMB/AM copolymer solutions.

  17. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane–polyacrylate block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohui; Zhao, Yunhui [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Li, Hui [School of Chemistry and Chemical Engineering, Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022 (China); Yuan, Xiaoyan, E-mail: xyuan28@yahoo.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2014-10-15

    Highlights: • PMTFPS–b-polyacrylate copolymers in five different compositions were synthesized. • Enrichment of PMTFPS amounts at the surface made high F/Si value. • Icing delay time was related to the surface roughness. • Ice shear strength was decreased by the synergistic effect of silicone and fluorine. - Abstract: Five polymethyltrifluoropropylsiloxane (PMTFPS)–polyacrylate block copolymers (PMTFPS–b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10–50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at −15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS–b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  18. Radiation Modification of Some Natural Polymers and Their Potential Applications

    International Nuclear Information System (INIS)

    Refaee, A.M.E.A.

    2012-01-01

    In recent years, antioxidants received remarkable attention due to the ability to preserve foodstuffs by retarding deterioration, rancidity and/or discoloration caused by oxidation of fats and oils in foods. In addition, they have the ability to protect against detrimental change of oxidizable nutrients and extend shelf life of foods. Nowadays, polysaccharides have been demonstrated to scavenge free radicals in vitro and to be used as antioxidants for the prevention of oxidative damage in foods. The antioxidant activity of polysaccharides depends upon several structural parameters, such as the molecular weight, amount, type and position of functional groups. For these applications, specific molecular weights are required. Thus, modification and preparation of low molecular weight fractions or oligosaccharides from chitosan, Na-alginate and carrageenan using ionizing radiation will be carried out and their antioxidant properties will be determined. The molecular weights and structure changes upon the radiation degradation process of these natural polymers in solid and solution form will be investigated using GPC, FT-IR, UV-Vis spectrophotometers. In an attempt to improve the functionality and water solubility of chitosan, chemical modifications will be done to introduce hydrophilic groups and enhance its antioxidant activity. Radical mediated lipid peroxidation inhibition, scavenging effect on DPPH radicals, reducing power and the ferrous ion chelating activity assays will be used to evaluate the antioxidant activity of oligosaccharides. Effectiveness of irradiated chitosan derivatives in reducing the lipid peroxidation in minced chicken will be investigated for improving the oxidative deterioration of minced chicken during refrigerated storage. On the other hand, there is a strong need for new plant growth media with increased water and nutrient holding capacity. Hydrogels have the ability to absorb large quantities of water. Among of these hydrogels polyacrylamide

  19. Adhesion of and to soil in runoff as influenced by polyacrylamide.

    Science.gov (United States)

    Bech, Tina B; Sbodio, Adrian; Jacobsen, Carsten S; Suslow, Trevor

    2014-11-01

    Polyacrylamide (PAM) is used in agriculture to reduce soil erosion and has been reported to reduce turbidity, nutrients, and pollutants in surface runoff water. The objective of this work was to determine the effect of PAM on the concentration of enteric bacteria in surface runoff by comparing four enteric bacteria representing phenotypically different motility and hydrophobicity from three soils. Results demonstrated that bacterial surface runoff was differentially influenced by the PAM treatment. Polyacrylamide treatment increased surface runoff for adhered and planktonic cells from a clay soil; significantly decreased surface runoff of adhered bacteria, while no difference was observed for planktonic bacteria from the sandy loam; and significantly decreased the surface runoff of planktonic cells, while no difference was observed for adhered bacteria from the clay loam. Comparing strains from a final water sample collected after 48 h showed a greater loss of while serovar Poona was almost not detected. Thus, (i) the PAM efficiency in reducing the concentration of enteric bacteria in surface runoff was influenced by soil type and (ii) variation in the loss of enteric bacteria highlights the importance of strain-specific properties that may not be captured with general fecal indicator bacteria. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Realization of an integrated VDF/TrFE copolymer-on-silicon pyroelectric sensor

    NARCIS (Netherlands)

    Setiadi, D.; Setiadi, D.; Regtien, Paulus P.L.; Sarro, P.M.

    1995-01-01

    An integrated pyroelectric sensor based on a vinylidene fluoride trifluoroethylene (VDF/TrFE) copolymer is presented. A silicon substrate that contains FET readout electronics is coated with the VDF/TrFE copolymer film using a spin-coating technique. On-chip poling of the copolymer has been applied

  1. Polyacrylamide+Al{sub 2}(SO{sub 4}){sub 3} and polyacrylamide+CaO remove coliform bacteria and nutrients from swine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Entry, J.A.; Phillips, Ian; Stratton, Helen; Sojka, R.E

    2003-03-01

    Polyacrylamide mixture may be able to reduce run-off of enteric bacteria from animal wastes. - Animal wastes are a major contributor of nutrients and enteric microorganisms to surface water and ground water. Polyacrylamide (PAM) mixtures are an effective flocculent, and we hypothesized that they would reduce transport of microorganisms in flowing water. After waste water running at 60.0 l min{sup -1} flowed over PAM+Al{sub 2}(SO{sub 4}){sub 3}, or PAM+CaO in furrows, total coliform bacteria (TC) and fecal coliform bacteria (FC) were reduced by 30-50% at 1 and 50 m downstream of the treatments compared to the control. In a column study, PAM+Al{sub 2}(SO{sub 4}){sub 3}, and PAM+CaO applied to sandy, sandy loam, loam, and clay soils reduced NH{sub 4}{sup +} and ortho-P concentrations in leachate compared to the source waste water and the control. PAM+Al{sub 2}(SO{sub 4}){sub 3} and PAM+CaO applied to sandy, sandy loam and loam soils reduced both total and ortho-P, concentrations in leachate compared to the source wastewater and control treatment. In a field study, PAM+Al{sub 2}(SO{sub 4}){sub 3}, or PAM+CaO treatments did not consistently reduce NH{sub 4}{sup +}, NO{sub 3}{sup -}, ortho-P, and total P concentrations in wastewater flowing over any soil compared to inflow wastewater or the control treatment. With proper application PAM+ Al{sub 2}(SO{sub 4}){sub 3} and PAM+CaO may be able to reduce the numbers of enteric bacteria in slowly flowing wastewater running off animal confinement areas, reducing the amount of pollutants entering surface water and groundwater.

  2. Rheological Behavior of Entangled Polystyrene-Polyhedral Oligosilsesquioxane (POSS) Copolymer

    National Research Council Canada - National Science Library

    Wu, Jian; Mather, Patrick T; Haddad, Timothy S; Kim, Gyeong-Man

    2006-01-01

    ...: random copolymers of polystyrene (PS) and styryl-based polyhedral oligosilsesquioxane (POSS), R7(Si8O12)(C6H4CH=CH2), with R = isobutyl (iBu). A series of styrene-styryl POSS random copolymers with 0, 6, 15, 30, 50 wt...

  3. Radiation crosslinked block copolymer blends with improved impact resistance

    International Nuclear Information System (INIS)

    Saunders, F.L.; Pelletier, R.R.

    1976-01-01

    Polymer blends having high impact resistance after mechanical working are produced by blending together a non-elastomeric monovinylidene aromatic polymer such as polystyrene with an elastomeric copolymer, such as a block copolymer of styrene and butadiene, in the form of crosslinked, colloidal size particles

  4. Block copolymer battery separator

    Science.gov (United States)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  5. Field demonstration of in situ grouting of radioactive solid waste burial trenches with polyacrylamide

    International Nuclear Information System (INIS)

    Spalding, B.P.; Fontaine, T.A.

    1990-01-01

    Demonstrations of in situ grouting with polyacrylamide were carried out on two undisturbed burial trenches and one dynamically compacted burial trench in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL). The injection of polyacrylamide was achieved quite facilely for the two undisturbed burial trenches which were filled with grout, at typical pumping rates of 95 L/min, in several batches injected over several days. The compacted burial trench, however, failed to accept grout at more than 1.9 L/min even when pressure was applied. Thus, it appears that burial trenches, stabilized by dynamic compaction, have a permeability too low to be considered groutable. The water table beneath the burial trenches did not respond to grout injections indicating a lack of hydrologic connection between fluid grout and the water table which would have been observed if the grout failed to set. Because grout set times were adjusted to less than 60 min, the lack of hydrologic connection was not surprising. Postgrouting penetration testing revealed that the stability of the burial trenches was increased from 26% to 79% that measured in the undisturbed soil surrounding the trenches. In situ permeation tests on the grouted trenches indicated a significant reduction in hydraulic conductivity of the trench contents from a mean of 2.1 x 10 -3 to 1.85 x 10 -5 cm/s. Preliminary observations indicated that grouting with polyacrylamide is an excellent method for both improved stability and hydrologic isolation of radioactive waste and its incidental hazardous constituents

  6. A direct method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels

    Directory of Open Access Journals (Sweden)

    Boopathy Rathanam

    2000-12-01

    Full Text Available Abstract Background In vertebrates, two types of cholinesterases exist, acetylcholinesterase and butyrylcholinesterase. The function of acetylcholinesterase is to hydrolyse acetylcholine, thereby terminating the neurotransmission at cholinergic synapse, while the precise physiological function of butyrylcholinesterase has not been identified. The presence of cholinesterases in tissues that are not cholinergically innervated indicate that cholinesterases may have functions unrelated to neurotransmission. Furthermore, cholinesterases display a genuine aryl acylamidase activity apart from their predominant acylcholine hydrolase activity. The physiological significance of this aryl acylamidase activity is also not known. The study on the aryl acylamidase has been, in part hampered by the lack of a specific method to visualise this activity. We have developed a method to visualise the aryl acylamidase activity on cholinesterase in polyacrylamide gels. Results The o-nitroaniline liberated from o-nitroacetanilide by the action of aryl acylamidase activity on cholinesterases, in the presence of nitrous acid formed a diazonium compound. This compound gave an azo dye complex with N-(1-napthyl-ethylenediamine, which appeared as purple bands in polyacrylamide gels. Treating the stained gels with trichloroacetic acid followed by Tris-HCl buffer helped in fixation of the stain in the gels. By using specific inhibitors for acetylcholinesterase and butyrylcholinesterase, respectively, differential staining for the aryl acylamidase activities on butyrylcholinesterase and acetylcholinesterase in a sample containing both these enzymes has been demonstrated. A linear relationship between the intensity of colour developed and activity of the enzyme was obtained. Conclusions A novel method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels has been developed.

  7. Highly conductive side chain block copolymer anion exchange membranes.

    Science.gov (United States)

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.

  8. Dithienylpyrrole- and Tris[4-(2-thienylphenyl]amine-Containing Copolymers as Promising Anodic Layers in High-Contrast Electrochromic Devices

    Directory of Open Access Journals (Sweden)

    Tzi-Yi Wu

    2018-04-01

    Full Text Available Three dithienylpyrrole- and tris[4-(2-thienylphenyl]amine-containing copolymers (P(MPS-co-TTPA, P(MPO-co-TTPA, and P(ANIL-co-TTPA were deposited on indium tin oxide (ITO surfaces using electrochemical polymerization. Spectroelectrochemical characterizations of polymer films revealed that P(MPS-co-TTPA film was light olive green, greyish-green, bluish grey, and grey in neutral state, intermediate state, oxidized state, and highly oxidized state, respectively, whereas P(MPO-co-TTPA film was green moss, foliage green, dark greyish-green, and bluish-grey in neutral state, intermediate state, oxidized state, and highly oxidized state, respectively. The ΔTmax of P(MPS-co-TTPA film at 964 nm, P(MPO-co-TTPA film at 914 nm, and P(ANIL-co-TTPA film at 960 nm were 67.2%, 60.7%, and 67.1%, respectively, and the coloration efficiency (η of P(MPS-co-TTPA film at 964 nm, P(MPO-co-TTPA film at 914 nm, and P(ANIL-co-TTPA film at 960 nm were calculated to be 260.3, 176.6, and 230.8 cm2 C−1, respectively. Dual type complementary colored electrochromic devices (ECDs were constructed using P(MPS-co-TTPA, P(MPO-co-TTPA, or P(ANIL-co-TTPA as anodic copolymer layer and PProDOT-Et2 as cathodic polymer layer. P(MPO-co-TTPA/PProDOT-Et2 ECD revealed high ΔT (55.1% and high η (766.5 cm2 C−1 at 580 nm. Moreover, P(MPS-co-TTPA/PProDOT-Et2, P(MPO-co-TTPA/PProDOT-Et2, and P(ANIL-co-TTPA/PProDOT-Et2 ECDs showed satisfactory long-term cycling stability and optical memory.

  9. Poly(methacrylic acid-ran-2-vinylpyridine Statistical Copolymer and Derived Dual pH-Temperature Responsive Block Copolymers by Nitroxide-Mediated Polymerization

    Directory of Open Access Journals (Sweden)

    Milan Marić

    2017-02-01

    Full Text Available Nitroxide-mediated polymerization using the succinimidyl ester functional unimolecular alkoxyamine initiator (NHS-BlocBuilder was used to first copolymerize tert-butyl methacrylate/2-vinylpyridine (tBMA/2VP with low dispersity (Đ = 1.30–1.41 and controlled growth (linear number average molecular Mn versus conversion, Mn = 3.8–10.4 kg·mol−1 across a wide composition of ranges (initial mol fraction 2VP, f2VP,0 = 0.10–0.90. The resulting statistical copolymers were first de-protected to give statistical polyampholytic copolymers comprised of methacrylic acid/2VP (MAA/2VP units. These copolymers exhibited tunable water-solubility due to the different pKas of the acidic MAA and basic 2VP units; being soluble at very low pH < 3 and high pH > 8. One of the tBMA/2VP copolymers was used as a macroinitiator for a 4-acryloylmorpholine/4-acryloylpiperidine (4AM/4AP mixture, to provide a second block with thermo-responsive behavior with tunable cloud point temperature (CPT, depending on the ratio of 4AM:4AP. Dynamic light scattering of the block copolymer at various pHs (3, 7 and 10 as a function of temperature indicated a rapid increase in particle size >2000 nm at 22–27 °C, corresponding to the 4AM/4AP segment’s thermos-responsiveness followed by a leveling in particle size to about 500 nm at higher temperatures.

  10. Fluorosilicone multi-block copolymers tethering quaternary ammonium salt groups for antimicrobial purpose

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fang; Qin, Xiaoshuai; Li, Yancai; Ren, Lixia; Zhao, Yunhui, E-mail: zhaoyunhui@tju.edu.cn; Yuan, Xiaoyan

    2015-08-30

    Highlights: • QAS-containing fluorosilicone multi-block copolymers were synthesized. • The block length of PHFBMA in the copolymers was tailored via RAFT polymerization. • Surface roughness of the copolymers decreased with the increased PHFBMA content. • A certain length of PHFBMA block enhanced C−N{sup +} percentage on the surface. - Abstract: Symmetrically structured fluorosilicone multi-block copolymers containing poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(hexafluorobutyl methacrylate) (PHFBMA) were sequentially synthesized via reversible addition–fragmentation chain transfer polymerization, using a polydimethylsiloxane (PDMS) chain transfer agent with dithiocarbonate groups at both ends. Then, the CBABC-type block copolymers were quaternized with n-octyliodide to tether quaternary ammonium salt (QAS) groups in the PDMAEMA blocks for the antimicrobial use. The obtained fluorosilicone copolymers showed clear variations in the C-N{sup +} composition and surface morphology on their films depending on the content of the PHFBMA blocks, which were characterized by X-ray photoelectron spectroscopy and atomic force microscopy, respectively. The results indicated that the symmetrical CBABC structure favored PDMS and QAS tethered blocks migrating to the film surface. With the mass percentage of the PHFBMA increased from 0 to 32.5%, the surface roughness of the copolymer film decreased gradually with a tendency to form a smooth surface. Owing to the surface properties, fluorosilicone multi-block copolymers containing a certain amount of PHFBMA with higher C-N{sup +} content and relatively smooth morphology demonstrated obvious antimicrobial activity against Gram-positive bacteria, Bacillus subtilis and Gram-negative bacteria, Escherichia coli. The functionalized multi-block copolymers based on fluorosilicone and QAS groups would have potential applications in antimicrobial coatings.

  11. Fluorosilicone multi-block copolymers tethering quaternary ammonium salt groups for antimicrobial purpose

    International Nuclear Information System (INIS)

    Zhou, Fang; Qin, Xiaoshuai; Li, Yancai; Ren, Lixia; Zhao, Yunhui; Yuan, Xiaoyan

    2015-01-01

    Highlights: • QAS-containing fluorosilicone multi-block copolymers were synthesized. • The block length of PHFBMA in the copolymers was tailored via RAFT polymerization. • Surface roughness of the copolymers decreased with the increased PHFBMA content. • A certain length of PHFBMA block enhanced C−N + percentage on the surface. - Abstract: Symmetrically structured fluorosilicone multi-block copolymers containing poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(hexafluorobutyl methacrylate) (PHFBMA) were sequentially synthesized via reversible addition–fragmentation chain transfer polymerization, using a polydimethylsiloxane (PDMS) chain transfer agent with dithiocarbonate groups at both ends. Then, the CBABC-type block copolymers were quaternized with n-octyliodide to tether quaternary ammonium salt (QAS) groups in the PDMAEMA blocks for the antimicrobial use. The obtained fluorosilicone copolymers showed clear variations in the C-N + composition and surface morphology on their films depending on the content of the PHFBMA blocks, which were characterized by X-ray photoelectron spectroscopy and atomic force microscopy, respectively. The results indicated that the symmetrical CBABC structure favored PDMS and QAS tethered blocks migrating to the film surface. With the mass percentage of the PHFBMA increased from 0 to 32.5%, the surface roughness of the copolymer film decreased gradually with a tendency to form a smooth surface. Owing to the surface properties, fluorosilicone multi-block copolymers containing a certain amount of PHFBMA with higher C-N + content and relatively smooth morphology demonstrated obvious antimicrobial activity against Gram-positive bacteria, Bacillus subtilis and Gram-negative bacteria, Escherichia coli. The functionalized multi-block copolymers based on fluorosilicone and QAS groups would have potential applications in antimicrobial coatings

  12. Polyacrylamide molecular weight and phosphogypsum effects on infiltration and erosion in semi-arid soils

    Science.gov (United States)

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  13. Radiation stabilization effects in an ethylene-propylene copolymer and in epoxy resin particulate composites

    International Nuclear Information System (INIS)

    Baccaro, S.; Bianchilli, B.; Casadio, C.; Rinaldi, G.

    1999-01-01

    The aim of this work was to investigate the post-g-irradiation behavior of an ethylene-propylene copolymer loaded with an antioxidant containing the -NH functional group. The oxidative degradation of the polymer was studied using Infrared Absorption Spectroscopy. The shape of the oxidation profiles, and the dependence on thickness and on dose rate were in good agreement with the Gillen and Clough model. The interaction of polymeric free radicals with the antioxidant led to the formation of R-NO . stable radicals. These species are easily detectable using Electron Spin Resonance Spectroscopy. We used this technique to study the influence of the total absorbed dose, of dose rate and of oxygen and the time evolution of the oxidation products. High Performance Liquid Chromatography allowed us to determine the amount of antioxidant not involved in the oxidation reaction as a function of the total absorbed dose. The stabilization toward gamma radiation effects, of different types of curing agents for epoxide resins, and of fly ash as filler, were also investigated through monitoring the mechanical properties of such composite materials. (author)

  14. Preparation of Water-Soluble Homo and Copolymers of Bithiophene with 3,4-Ethylene Dioxythiophene and 3-Dodecylthiophene in Presence of Polystyrene Sulfonic Acid: Structure, Morphology, Thermal Stability

    Directory of Open Access Journals (Sweden)

    Bakhshali Massoumi

    2015-04-01

    Full Text Available Conductive polymers based on water-soluble polythiophenes were prepared. In this respect, alkylation reaction was carried out to synthesize the monomer 3-dodecylthiophene using 3-bromothiophene, bromododecane and magnesium. The monomer 2,2′-bithiophene was also prepared from 2-bromothiophene. Then, poly(2,2′-bithiophene, poly(3,4-ethylenedioxythiophene and poly(3-dodecylthiophene homopolymers were prepared at room temperature by successive chemical oxidation in the presence of polystyrene sulfonic acid and ammonium persulfate and water, as dopant, oxidant and solvent, respectively, under vigorous stirring. Under similar conditions, 2,2′-bithiophene copolymers with 3-dodecylthiophene and 3,4-ethylenedioxythiophene, copolymers with 3-dodecylthiophene were prepared at different molar ratios. To purify and dry the prepared polymers, dialysis tubs and freezing dry processes were applied. Structure of homo and copolymers were investigated by Fourier transform infrared (FTIR. Conjugated and planar structures of polymers were studied by Ultravoilet (UV-vis spectroscopy. The electrical conductivity of synthesized polymers was measured by four probe technique. The morphology and thermal stability of the products were studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA. Finally, solubility of homo and copolymers were tested in some organic solvents and water. Electro- activity of the prepared polymers was studied by cyclic voltammetry (CV on the glassy carbon (GC in LiClO4/CH3CN electrolyte solution and their electro-activity was confirmed. Electro-conductivity and electro-activity of homo and co polymers were low due topresence of polystyrene sulfonic acid which reduced the immobility of the polymers.

  15. Oriented Structure of Pentablock Copolymers Induced by Solution Extrusion

    Science.gov (United States)

    Harada, Tamotsu; Bates, Frank S.; Lodge, Timothy P.

    2002-03-01

    Highly oriented structure of a poly(styrene-co-butadiene) pentablock copolymer (Mw; 104,700 g/mol, weight percentage of polybutadiene blocks; 29 wt of concentrated solutions. The pentablock copolymer was dissolved into mixtures of toluene and heptane, and the polymer concentration ranged from 40 wt extrusion, the pentablock copolymer was solidified either by coagulation in methanol or by evaporation of the solvent. Interestingly, a highly oriented lamellar structure was confirmed through the small angle X-ray scattering over a specific range of heptane composition, which is a good solvent for polybutadiene, although the hexagonal cylinder morphology was identified for the melt sample. The transition from the oriented lamellar to highly oriented cylinder structure was observed by annealing the samples at temperatures above the glass transition temperature of polystyrene. Moreover, a transition from parallel to perpendicular orientation in the lamellar state was observed with an increase of the extrusion shear rate. A comparison between pentablock and triblock copolymers will be also discussed.

  16. Resonant soft x-ray GISAXS on block copolymer films

    Science.gov (United States)

    Wang, Cheng; Araki, T.; Watts, B.; Ade, H.; Hexemer, A.; Park, S.; Russell, T. P.; Schlotter, W. F.; Stein, G. E.; Tang, C.; Kramer, E. J.

    2008-03-01

    Ordered block copolymer thin films may have important applications in modern device fabrication. Current characterization methods such as conventional GISAXS have fixed electron density contrast that can be overwhelmed by surface scattering. However, soft x-rays have longer wavelength, energy dependent contrast and tunable penetration, making resonant GISAXS a very promising tool for probing nanostructured polymer thin films. Our preliminary investigation was performed using PS-b-P2VP block copolymer films on beam-line 5-2 SSRL, and beam-line 6.3.2 at ALS, LBNL. The contrast/sensitivity of the scattering pattern varies significantly with photon energy close to the C K-edge (˜290 eV). Also, higher order peaks are readily observed, indicating hexagonal packing structure in the sample. Comparing to the hard x-ray GISAXS data of the same system, it is clear that resonant GISAXS has richer data and better resolution. Beyond the results on the A-B diblock copolymers, results on ABC block copolymers are especially interesting.

  17. Modification of ethylene-norbornene copolymer by Gamma irradiation

    Directory of Open Access Journals (Sweden)

    Kačarević-Popović Zorica M.

    2006-01-01

    Full Text Available The possibility of modifying polyethylene and many other polymers with high energy radiation has led to many useful applications. Due to their new combination of properties and the shortage of experimental data, the radiolysis of a new class of materials, cyclo-olefin copolymers (COC, polymerised from norbornene and ethylene using metallocene catalysts, is of great interest to the study of radiation chemistry and the physics of polymeric systems. Ethylenenorbornene copolymer, pristine and containing an antioxidant were subjected to gamma irradiation in the presence of air and in water. The irradiated copolymer was studied using IR and UV-vis spectrophotometric analysis. The radiation-induced changes in the molecular structure were correlated to changes in the glass transition temperature measured by the DSC method.

  18. Investigation of the degradation and stability of acrylamide-based polymers in acid solution: Functional monomer modified polyacrylamide

    Directory of Open Access Journals (Sweden)

    Yuxin Pei

    2016-12-01

    Full Text Available Acrylamide copolymers are often used as acidizing diverting and thickening agents for their advantageous thickening, flocculation, adhesion and resistance reduction properties. Experimental results indicate that the acid concentration greatly affects the properties of acrylamide polymers, which varies from results reported by other researchers. Considering the theoretical and field application value of the present study, four comparable acrylamide-based polymers were synthesized, and their macro- and micro-changes as well as the related changes in viscosity and molecular weight were studied in high-concentration hydrochloric acid. A proposed mechanism of acrylamide copolymer stability and degradation is provided, and further suggestions are made for the modification of acrylamide copolymers.

  19. Synthesis, characterization and flocculation activity of novel Fe(OH)3-polyacrylamide hybrid polymer

    International Nuclear Information System (INIS)

    Wang Huilong; Cui Jinyan; Jiang Wenfeng

    2011-01-01

    Highlights: → The preparation of a novel Fe(OH) 3 -PAM hybrid polymer flocculant is achieved via free radical solution polymerization. → Flocculation of kaolin suspensions using this novel Fe(OH) 3 -PAM hybrid polymer flocculant is revealed in this study. → The statistical model was first applied for calculating the thermodynamic parameters for the kaolin flocculating process. - Abstract: A novel Fe(OH) 3 -polyacrylamide inorganic-organic hybrid polymer (FHPAM) was synthesized via free radical solution polymerization initiated by a redox initiation system ((NH 4 ) 2 S 2 O 8 -NaHSO 3 ) in an aqueous medium. Reaction parameters influencing the intrinsic viscosity and the yield of the hybrid polymer, such as initiator concentration, monomer mass fraction, temperature and reaction time were investigated and optimized. The results show that the maximum intrinsic viscosity and up to 94% yields of the hybrid polymer can be achieved using initiator concentration of 0.3% with acrylamide monomer mass fraction of 20% under solution polymerization at 40 deg. C for 7 h. The physicochemical properties of this hybrid flocculant were characterized with TEM, FTIR spectra, TGA, and conductivity. It was found that a chemical bond exists between Fe(OH) 3 colloid and polyacrylamide chains in the FHPAM. The application of the hybrid polymer for the treatment of 2.5 g L -1 kaolin suspension indicates that it had an excellent flocculation capacity and its flocculation efficiency was much better than that of commercial available polyacrylamide (PAM) and polymeric ferric sulfate (PFS). The optimal conditions for the flocculation treatment of kaolin suspension were the FHPAM dosage of 40 mg L -1 at pH 7.0. The thermodynamic parameters for the flocculation process were calculated based on a statistical model. Interpretation of the results was given.

  20. Fourier transform Raman spectroscopy of polyacrylamide gels for radiation dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.; Murry, P.; Pope, J.; Rintoul, L.; George, G.

    1998-01-01

    Polyacrylamide (PAG) gels are used in magnetic resonance imaging radiation dosimetry. The PAG dosimeter is based on the radiation-induced co-polymerisation and cross-linking of acrylic monomers infused in a gel matrix. PAG was manufactured with a composition of 5% gelatine, 3% acrylamide and 3% N,N'methylene-bis-acrylamide by mass, with distilled water as the remaining constituent [Baldock, 1998]. FT-Raman spectroscopy studies were undertaken to investigate cross-linking changes during the co-polymerisation of PAG in the spectral range of 200 - 3500 cm -1 . Vibrational bands of 1285 cm -1 and 1256 cm -1 were assigned to the acrylamide and bis-acrylamide single CH 2 δ CH2 binding modes. These bands were found to decrease in amplitude with increasing absorbed radiation dose, as a result of co-polymerisation. Principal Component Regression was performed on FT-Raman spectra of PAG samples irradiated to 50 Gy and two components were found to be sufficient to account for 98.7% of variance in the data. Cross validation was used to establish the absorbed radiation dose of an unknown PAG sample from the FT-Raman spectra. The calculated correlation coefficient between measured and predictive samples was 0.997 with a standard error of estimate of 0.976 and a standard error of prediction of 1.140. These results demonstrate the potential of FT-Raman spectroscopy for ionising radiation dosimetry using polyacrylamide gels

  1. Anomalous Behaviors of Block Copolymers at the Interface of an Immiscible Polymer Blend

    Science.gov (United States)

    Ryu, Ji Ho; Lee, Won Bo

    We investigate the effects of structure and stiffness of block copolymers on the interface of an immiscible polymer blend using coarse-grained molecular dynamics (CGMD) simulation. The diblock and grafted copolymers, which are described by Kremer and Grest bead spring model, are used to compare the compatibilization efficiency, that is, reduction of the interfacial tension. It is found that, overall, the grafted copolymers are located more compactly at the interface and show better compatibilization efficiency than diblock copolymers. In addition, it is noted that an increase in the stiffness of one block of diblock copolymer causes inhomogeneous interfacial coverage due to bundle formation among the stiff blocks and orientational constraint on bundled structures near the interface, which makes copolymers poor compatibilizers. The dependence of anomalous orientational constraint on the chain length of homopolymers is also investigated. Theoretical and Computational Soft Matters Lab.

  2. Surface Self-Assembly and Properties of Monolayers Formed by Reverse Poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) Triblock Copolymers with Lengthy Hydrophilic Blocks

    DEFF Research Database (Denmark)

    Villar-Alvarez, Eva; Freire, Adriana Cambón; Blanco, Mateo

    2017-01-01

    for the former at low surface transfer pressures, evolving to continent-like structures first and then dewetted structures as the transfer pressure increases. Conversely, for BO20EO411BO20 and BO21EO385BO21 copolymers micelle formation is noted at lower transfer pressures than the shortest counterparts......, and the formed micelles appear to be elongated, interconnected and with larger thickness. As the transfer pressure increases, attractive micellar interactions are enhanced and then-lead to formation of a dense network of interconnected micelles, first followed by an evolvement to continent-like and dewetted...

  3. Structure–Conductivity Relationships in Ordered and Disordered Salt-Doped Diblock Copolymer/Homopolymer Blends

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, Matthew T.; Hickey, Robert J.; Xie, Shuyi; So, Soonyong; Bates, Frank S.; Lodge, Timothy P. (UMM)

    2016-11-21

    We examine the relationship between structure and ionic conductivity in salt-containing ternary polymer blends that exhibit various microstructured morphologies, including lamellae, a hexagonal phase, and a bicontinuous microemulsion, as well as the disordered phase. These blends consist of polystyrene (PS, Mn ≈ 600 g/mol) and poly(ethylene oxide) (PEO, Mn ≈ 400 g/mol) homopolymers, a nearly symmetric PS–PEO block copolymer (Mn ≈ 4700 g/mol), and lithium bis(trifluoromethane)sulfonamide (LiTFSI). These pseudoternary blends exhibit phase behavior that parallels that of well-studied ternary polymer blends consisting of A and B homopolymers compatibilized by an AB diblock copolymer. The utility of this framework is that all blends have nominally the same number of ethylene oxide, styrene, Li+, and TFSI– units, yet can exhibit a variety of microstructures depending on the relative ratio of the homopolymers to the block copolymer. For the systems studied, the ratio r = [Li+]/[EO] is maintained at 0.06, and the volume fraction of PS homopolymer is kept equal to that of PEO homopolymer plus salt. The total volume fraction of homopolymer is varied from 0 to 0.70. When heated through the order–disorder transition, all blends exhibit an abrupt increase in conductivity. However, analysis of small-angle X-ray scattering data indicates significant structure even in the disordered state for several blend compositions. By comparing the nature and structure of the disordered states with their corresponding ordered states, we find that this increase in conductivity through the order–disorder transition is most likely due to the elimination of grain boundaries. In either disordered or ordered states, the conductivity decreases as the total amount of homopolymer is increased, an unanticipated observation. This trend with increasing homopolymer loading is hypothesized to result from an increased density of

  4. Preservation of beech and spruce wood by allyl alcohol-based copolymers

    International Nuclear Information System (INIS)

    Solpan, Dilek; Gueven, Olgun

    1999-01-01

    Allyl alcohol (AA), acrylonitrile (AN), methyl methacrylate (MMA), monomers and monomer mixtures AA+AN, AA+MMA were used to conserve and consolidate Beech and Spruce. After impregnation, copolymerisation and polymerisation were accomplished by gamma irradiation. The fine structure of wood+polymer(copolymer) composites was investigated by Scanning Electron Microscopy (SEM). It was observed that copolymer obtained from AA+MMA monomer mixture showed the optimum compatibility. The compressional strength and Brinell Hardness Numbers determined for untreated and treated wood samples indicated that the mechanical strength of wood+copolymer composites was increased. It was found that the mechanical strength of the wood samples containing the AA+MMA copolymer was higher than the others. In the presence of P(AA/MMA), at highest conversion, the compressive strength perpendicular to the fibres in Beech and Spruce increased approximately 100 times. The water uptake capacity of wood+copolymer composites was observed to decrease by more than 50% relative to the original samples, and biodegradation did not take place

  5. Thermo-responsive block copolymers

    NARCIS (Netherlands)

    Mocan Cetintas, Merve

    2017-01-01

    Block copolymers (BCPs) are remarkable materials because of their self-assembly behavior into nano-sized regular structures and high tunable properties. BCPs are in used various applications such as surfactants, nanolithography, biomedicine and nanoporous membranes. In these thesis, we aimed to

  6. A Comparative Study on Micellar and Solubilizing Behavior of Three EO-PO Based Star Block Copolymers Varying in Hydrophobicity and Their Application for the In Vitro Release of Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Bijal Vyas

    2018-01-01

    Full Text Available The temperature and pH dependent self-assembly of three star shaped ethylene oxide-propylene oxide (EO-PO block copolymers (Tetronics® 304, 904 and 908 with widely different hydrophobicity was examined in aqueous solutions. Physico-chemical methods viz. viscosity, cloud point, solubilization along with thermal, scattering and spectral techniques shows strongly temperature and salt dependent solution behavior. T304 possessing low molecular weight did not form micelles; moderately hydrophilic T904 remained as micelles at ambient temperature and showed micellar growth while very hydrophilic T908 formed micelles at elevated temperatures. The surface activity/micellization/solubilization power was favored in the presence of salt. The copolymers turn more hydrophilic in acidic pH due to protonation of central ethylene diamine moiety that hinders micelle formation. The solubilization of a model insoluble azo dye 1-(o-Tolylazo-2-naphthol (Orange OT and hydrophobic drugs (quercetin and curcumin for copolymer solutions in aqueous and salt solutions are also reported. Among the three copolymers, T904 showed maximum solubility of dye and drugs, hence the in vitro release of drugs from T904 micelles was estimated and the effect on cytotoxicity of loading the drugs in T904 micelles was compared with the cytotoxicity of free drugs on the CHO-K1 cells. The results from the present work provide a better insight in selection of Tetronics® for their application in different therapeutic applications.

  7. Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer.

    Science.gov (United States)

    Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2010-04-12

    Two-, four-, and six-armed branched copolymers with electroactive and biodegradable properties were synthesized by coupling reactions between poly(l-lactides) (PLLAs) with different architecture and carboxyl-capped aniline trimer (CCAT). The aniline oligomer CCAT was prepared from amino-capped aniline trimer and succinic anhydride. FT-IR, NMR, and SEC analyses confirmed the structure of the branched copolymers. UV-vis spectra and cyclic voltammetry of CCAT and copolymer solution showed good electroactive properties, similar to those of polyaniline. The water contact angle of the PLLAs was the highest, followed by the undoped copolymer and the doped copolymers. The values of doped four-armed copolymers were 54-63 degrees . Thermal properties of the polymers were studied by DSC and TGA. The copolymers had better thermal stability than the pure PLLAs, and the T(g) between 48-58 degrees C and T(m) between 146-177 degrees C of the copolymers were lower than those of the pure PLLA counterparts. This kind of electroactive and biodegradable copolymer has a great potential for applications in cardiovascular or neuronal tissue engineering.

  8. Direct detection of rutin-degrading isozymes with polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Li, Yuping; Deng, Dandan; Zhang, Xuebin; Zhang, Haina; Wang, Cong; Chen, Peng

    2013-12-15

    Rutin-degrading enzymes (RDEs) specifically hydrolyze the glycosidic linkages of rutin, producing quercetin and rutinose. Here we report a reliable and sensitive polyacrylamide gel electrophoresis and staining method for the detection of RDE isozymes, which is based on the aqueous solubility difference between rutin and quercetin, as well as the ultraviolet absorbance of quercetin. With this novel method, we achieved a detection limit of 12 ng with 107 U of RDE activity, enabling us to detect at least five RDE isozymes in tartary buckwheat seeds. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Time-resolved GISAXS and cryo-microscopy characterization of block copolymer membrane formation

    KAUST Repository

    Marques, Debora S.; Dorin, Rachel Mika; Wiesner, Ulrich B.; Smilgies, Detlef Matthias; Behzad, Ali Reza; Vainio, Ulla; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2014-01-01

    Time-resolved grazing-incidence small-angle X-ray scattering (GISAXS) and cryo-microscopy were used for the first time to understand the pore evolution by copolymer assembly, leading to the formation of isoporous membranes with exceptional porosity and regularity. The formation of copolymer micelle strings in solution (in DMF/DOX/THF and DMF/DOX) was confirmed by cryo field emission scanning electron microscopy (cryo-FESEM) with a distance of 72 nm between centers of micelles placed in different strings. SAXS measurement of block copolymer solutions in DMF/DOX indicated hexagonal assembly with micelle-to-micelle distance of 84-87 nm for 14-20 wt% copolymer solutions. GISAXS in-plane peaks were detected, revealing order close to hexagonal. The d-spacing corresponding to the first peak in this case was 100-130 nm (lattice constant 115-150 nm) for 17 wt% copolymer solutions evaporating up to 100 s. Time-resolved cryo-FESEM showed the formation of incipient pores on the film surface after 4 s copolymer solution casting with distances between void centers of 125 nm. © 2014 Elsevier Ltd. All rights reserved.

  10. Time-resolved GISAXS and cryo-microscopy characterization of block copolymer membrane formation

    KAUST Repository

    Marques, Debora S.

    2014-03-01

    Time-resolved grazing-incidence small-angle X-ray scattering (GISAXS) and cryo-microscopy were used for the first time to understand the pore evolution by copolymer assembly, leading to the formation of isoporous membranes with exceptional porosity and regularity. The formation of copolymer micelle strings in solution (in DMF/DOX/THF and DMF/DOX) was confirmed by cryo field emission scanning electron microscopy (cryo-FESEM) with a distance of 72 nm between centers of micelles placed in different strings. SAXS measurement of block copolymer solutions in DMF/DOX indicated hexagonal assembly with micelle-to-micelle distance of 84-87 nm for 14-20 wt% copolymer solutions. GISAXS in-plane peaks were detected, revealing order close to hexagonal. The d-spacing corresponding to the first peak in this case was 100-130 nm (lattice constant 115-150 nm) for 17 wt% copolymer solutions evaporating up to 100 s. Time-resolved cryo-FESEM showed the formation of incipient pores on the film surface after 4 s copolymer solution casting with distances between void centers of 125 nm. © 2014 Elsevier Ltd. All rights reserved.

  11. Investigation of Removal Possibilities of Colloidal Alumina from Aqueous Solution by the Use of Anionic Polyacrylamide

    International Nuclear Information System (INIS)

    Wisniewska, M.; Chibowski, S.; Urban, T.

    2016-01-01

    Purification of drinking and industrial water required usage of high molecular weight polymer to cause flocculation process of dispersed suspension of contaminants. Poly electrolytes, including ionic polyacrylamide are especially appropriate for these purposes, because in this case the suspension stability can be controlled by both steric and electrostatic forces. Thus the influence of solution p H and hydrolysis degree (carboxyl groups content) of anionic polyacrylamide (PAM) on the alumina (Al_2O_3) suspension stability were studied. The turbidimetry was applied for determination of the examined systems stability. The mechanism of suspension stabilization or destabilization in the polymer presence was proposed on the basis of determined parameters: adsorbed amount of PAM, its adsorption layer thickness, linear dimensions of macromolecules in the solution and zeta potential of alumina particles covered with the polyacrylamide layer. The greatest decrease of the alumina suspension stability in the polymer presence in comparison to that without the polymer was obtained at p H 6 after the addition of PAMs with higher molecular weight (i.e. 14 000 0000) and hydrolysis degrees 20 and 30% (efficient neutralization of solid surface charge). In turn, the most unstable alumina system proved to be that prepared at p H 9 containing PAM with the highest molecular weight and the greatest hydrolysis degree (causing the most effective bridging flocculation).

  12. Temperature-Responsive Biocompatible Copolymers Incorporating Hyperbranched Polyglycerols for Adjustable Functionality

    Directory of Open Access Journals (Sweden)

    Alan J. House

    2011-08-01

    Full Text Available Temperature-triggered copolymers are proposed for a number of bio-applications but there is no ideal material platform, especially for injectable drug delivery. Options are needed for degradable biomaterials that not only respond to temperature but also easily accommodate linkage of active molecules. A first step toward realizing this goal is the design and synthesis of the novel materials reported herein. A multifunctional macromer, methacrylated hyperbranched polyglycerol (HPG-MA with an average of one acrylate unit per copolymer, was synthesized and copolymerized with N-isopropylacrylamide (NIPAAm, hydroxyethyl methacrylate-polylactide (HEMAPLA and acrylic acid (AAc. The potential to fully exploit the copolymers by modification of the multiple HPG hydroxyl groups will not be discussed here. Instead, this report focuses on the thermoresponsive, biocompatible, and degradation properties of the material. Poly(NIPAAm-co-HEMAPLA-co-AAc-co-HPG-MA displayed increasing lower critical solution temperatures (LCST as the HPG content increased over a range of macromer ratios. For the copolymer with the maximum HPG incorporation (17%, the LCST was ~30 °C. In addition, this sample showed no toxicity when human uterine fibroid cells were co-cultured with the copolymer for up to 72 h. This copolymer lost approximately 92% of its mass after 17 hours at 37 °C. Thus, the reported biomaterials offer attractive properties for the design of drug delivery systems where orthogonally triggered mechanisms of therapeutic release in relatively short time periods would be attractive.

  13. Multiblock copolymers synthesized in aqueous dispersions using multifunctional RAFT agents

    NARCIS (Netherlands)

    Bussels, R.; Bergman-Göttgens, C.M.; Meuldijk, J.; Koning, C.E.

    2005-01-01

    Triblock copolymers were synthesized in aqueous dispersions in two polymerization steps using a low molar mass difunctional dithiocarbamate-based RAFT agent, and in merely one polymerization step using a macromolecular difunctional dithiocarbamate-based RAFT agent. Segmented block copolymers

  14. Rapid Ordering in "Wet Brush" Block Copolymer/Homopolymer Ternary Blends.

    Science.gov (United States)

    Doerk, Gregory S; Yager, Kevin G

    2017-12-26

    The ubiquitous presence of thermodynamically unfavored but kinetically trapped topological defects in nanopatterns formed via self-assembly of block copolymer thin films may prevent their use for many envisioned applications. Here, we demonstrate that lamellae patterns formed by symmetric polystyrene-block-poly(methyl methacrylate) diblock copolymers self-assemble and order extremely rapidly when the diblock copolymers are blended with low molecular weight homopolymers of the constituent blocks. Being in the "wet brush" regime, the homopolymers uniformly distribute within their respective self-assembled microdomains, preventing increases in domain widths. An order-of-magnitude increase in topological grain size in blends over the neat (unblended) diblock copolymer is achieved within minutes of thermal annealing as a result of the significantly higher power law exponent for ordering kinetics in the blends. Moreover, the blends are demonstrated to be capable of rapid and robust domain alignment within micrometer-scale trenches, in contrast to the corresponding neat diblock copolymer. These results can be attributed to the lowering of energy barriers associated with domain boundaries by bringing the system closer to an order-disorder transition through low molecular weight homopolymer blending.

  15. Purification of Peptide Components including Melittin from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Young Chon Choi

    2006-06-01

    Full Text Available Objectives : This study was conducted to carry out Purification of Melittin and other peptide components from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis Methods : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. Results : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. The fractions obtained from gel filtration chromatography was analyzed by using SDS-PAGE and propionic acid/urea polyacrylamide gel electrophoresis. The melittin obtained from the gel filtration contained residual amount of phospholipase A2 and a protein with molecular weight of 6,000. The contaminating proteins were removed by the second gel filtration chromatography. Conclusion : Gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis are useful to separate peptide components including melittin from bee venom.

  16. Shear Resistance Properties of Modified Nano-SiO2/AA/AM Copolymer Oil Displacement Agent

    Directory of Open Access Journals (Sweden)

    Nanjun Lai

    2016-12-01

    Full Text Available To address the problem regarding poor shear resistance of commonly employed polymers for oil displacement, modified nano-SiO2/AA/AM copolymer (HPMNS oil displacement agents were synthesized using acrylic acid (AA, acrylamide (AM, and modified nano-SiO2 of different modification degrees as raw materials. HPMNS was characterized by means of infrared spectroscopy (IR, nuclear magnetic resonance (1H-NMR, 13C-NMR, dynamic/static light scattering, and scanning electron microscope. A comparative study of the shear resistance properties for partially hydrolyzed polyacrylamide (HPAM and HPMNS was conducted. Compared to HPAM, the introduced hyperbranched structure endowed HPMNS with good shear resistance, which was quantified from the viscosity retention ratio of the polymer solutions. From the perspective of rheological property, HPMNS also showed great shear stability after shearing by a Mixing Speed Governor and porous media shear model. Furthermore, with a higher degree of modification, HPMNS-2 had better shear stability in terms of viscosity and rheological property than HPMNS-1. The phenomena were due to its lower hydrodynamic radius, weight-average molecular weight, and better flexibility of its molecular chains. In addition, upon the indoor displacement test, the resistance factor and residual resistance factor values of HPMNS-2 were higher than those of HPAM. This behavior is beneficial for increasing oil recovery.

  17. Lithium-Assisted Copolymerization of CO 2 /Cyclohexene Oxide: A Novel and Straightforward Route to Polycarbonates and Related Block Copolymers

    KAUST Repository

    Zhang, Dongyue; Zhang, Hefeng; Hadjichristidis, Nikolaos; Gnanou, Yves; Feng, Xiaoshuang

    2016-01-01

    of this initiating system also resides in the easy access to PSt-b-PCHC (PSt: polystyrene) and PI-b-PCHC (PI: polyisoprene) block copolymers which can be derived by mere one-pot sequential addition of styrene or dienes first and then of CO2 and CHO under the same

  18. The Preparation and Characterization of Tourmaline-Containing Functional Copolymer p (VST/MMA/BA

    Directory of Open Access Journals (Sweden)

    Yingmo Hu

    2018-01-01

    Full Text Available Tourmaline was modified with vinyl triethoxysilane containing double bond to prepare the polymerizable organic vinylsiliconoxyl tourmaline (VST and then copolymerized with methyl methacrylate (MMA and butyl acrylate (BA to produce the tourmaline-containing functional copolymer p (VST/MMA/BA. The structures and morphologies of VST and p (VST/MMA/BA copolymer were characterized by IR, SEM, and EDX. The experimental results indicated that tourmaline was introduced into the copolymer via surface modification and the tourmaline-containing functional copolymer was obtained by a copolymerization process with MMA and BA. The prepared p (VST/MMA/BA copolymer displayed excellent storage stabilities, high far-infrared radiation and negative ion releasing performances, and good mechanical properties.

  19. Order quantification of hexagonal periodic arrays fabricated by in situ solvent-assisted nanoimprint lithography of block copolymers

    International Nuclear Information System (INIS)

    Simão, Claudia; Khunsin, Worawut; Kehagias, Nikolaos; Sotomayor Torres, Clivia M; Salaun, Mathieu; Zelsmann, Marc; Morris, Michael A

    2014-01-01

    Directed self-assembly of block copolymer polystyrene-b-polyethylene oxide (PS-b-PEO) thin film was achieved by a one-pot methodology of solvent vapor assisted nanoimprint lithography (SAIL). Simultaneous solvent-anneal and imprinting of a PS-b-PEO thin film on silicon without surface pre-treatments yielded a 250 nm line grating decorated with 20 nm diameter nanodots array over a large surface area of up to 4′ wafer scale. The grazing-incidence small-angle x-ray scattering diffraction pattern showed the fidelity of the NIL stamp pattern replication and confirmed the periodicity of the BCP of 40 nm. The order of the hexagonally arranged nanodot lattice was quantified by SEM image analysis using the opposite partner method and compared to conventionally solvent-annealed block copolymer films. The imprint-based SAIL methodology thus demonstrated an improvement in ordering of the nanodot lattice of up to 50%, and allows significant time and cost reduction in the processing of these structures. (papers)

  20. Drag reduction behavior of hydrolyzed polyacrylamide/xanthan gum mixed polymer solutions

    Institute of Scientific and Technical Information of China (English)

    Mehdi Habibpour; Peter E.Clark

    2017-01-01

    Partially hydrolyzed polyacrylamide (HPAM) as the main component of slickwater fracturing fluid is a shear-sensitive polymer,which suffers from mechanical degradation at turbulent flow rates.Five different concentrations of HPAM as well as mixtures of polyacrylamide/xanthan gum were prepared to investigate the possibility of improving shear stability of HPAM.Drag reduction (DR)measurements were performed in a closed flow loop.For HPAM solutions,the extent of DR increased from 30% to 67% with increasing HPAM concentration from 100 to 1000 wppm.All the HPAM solutions suffered from mechanical degradation and loss of DR efficiency over the shearing period.Results indicated that the resistance to shear degradation increased with increasing polymer concentration.DR efficiency of 600 wppm xanthan gum (XG)was 38%,indicating that XG was not as good a drag reducer as HPAM.But with only 6% DR decline,XG solution exhibited a better shear stability compared to HPAM solutions.Mixed HPAM/XG solutions initially exhibited greater DR (40% and 55%) compared to XG,but due to shear degradation,DR% dropped for HPAM/XG solutions.Compared to 200 wppm HPAM solution,addition of XG did not improve the drag reduction efficiency of HPAM/XG mixed solutions though XG slightly improved the resistance against mechanical degradation in HPAM/XG mixed polymer solutions.

  1. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

    OpenAIRE

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-01-01

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affiniti...

  2. Distributions of chain ends and junction points in ordered block copolymers

    International Nuclear Information System (INIS)

    Mayes, A.M.; Johnson, R.D.; Russell, T.P.; Smith, S.D.; Satija, S.K.; Majkrzak, C.F.

    1993-01-01

    Chain configurations in ordered symmetric poly(styrene-b-methyl methacrylate) diblock copolymers were examined by neutron reflectively. In a thin-film geometry the copolymers organize into lamellar microdomains oriented parallel to the substrate surface. The copolymers organize into lamellar microdomains oriented parallel to the substrate surface. The copolymers were synthesized with small fractions of deuterated segments at either the chain ends or centers. This selective labeling permitted characterization of the spatial distribution of chain ends and junction points normal to the plane of the film. From the reflectivity analysis, the junction points are found to be confined to the PS/PMMA interfacial regions. The chain ends, however, are well distributed through their respective domains, exhibiting only a weak maximum in concentration at the center of the domains

  3. Protein resistance of dextran and dextran-PEG copolymer films

    Science.gov (United States)

    Kozak, Darby; Chen, Annie; Bax, Jacinda; Trau, Matt

    2011-01-01

    The protein resistance of dextran and dextran-poly(ethylene glycol) (PEG) copolymer films was examined on an organosilica particle-based assay support. Comb-branched dextran-PEG copolymer films were synthesized in a two step process using the organosilica particle as a solid synthetic support. Particles modified with increasing amounts (0.1-1.2 mg m−2) of three molecular weights (10 000, 66 900, 400 000 g mol−1) of dextran were found to form relatively poor protein-resistant films compared to dextran-PEG copolymers and previously studied PEG films. The efficacy of the antifouling polymer films was found to be dependent on the grafted amount and its composition, with PEG layers being the most efficient, followed by dextran-PEG copolymers, and dextran alone being the least efficient. Immunoglobulin gamma (IgG) adsorption decreased from ~ 5 to 0.5 mg m−2 with increasing amounts of grafted dextran, but bovine serum albumin (BSA) adsorption increased above monolayer coverage (to ~2 mg m−2) indicating ternary adsorption of the smaller protein within the dextran layer. PMID:21614699

  4. Features of radiation chemical processes in ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Leshchenko, S.S.; Mal'tseva, A.P.; Iskakov, L.I.; Karpov, V.L.

    1976-01-01

    A study was made of statistical copolymers of ethylene with styrene to determine their structure and properties and radio-chemical transformations. The styrene content of the copolymers ranged from 1 to 85 mole%. The investigation covered non-irradiated copolymers and those irradiated with doses of 1-1000Mrad at room temperature and at liquid nitrogen temperature. It is shown that styrene units present in the CES inhibited all radio-chemical processes compared with PE irradiated under similar conditions. It is suggested that the radiation resistance of CES with styrene contents up to 10 mole % increases in the course of irradiation as a result of the formation of structures with a high degree of conjugation which are more capable of scattering absorbed energy than in the case of phenyl rings by themselves. The most promising of the CES examined is the one with a styrene content of 5 mole %. The mechanical properties of this copolymer are similar to those of PE, and its radiation resistance rises under service conditions in the presence of ionizing radiation

  5. STUDIES ON POLY (ETHYLENE TEREPHTHALATE)- POLY ( TETRAMETHYLENE ETHER ) MULTIBLOCK COPOLYMER.Ⅰ. COM POSITIONAL HOMOGENEITY

    Institute of Scientific and Technical Information of China (English)

    ZHAN Yongjian; YING Qicong; WU Meiyan; QIAN Renyuan

    1991-01-01

    The compositional homogeneity of a poly (ethylene terephthalate )-poly (tetramethylene ether)multiblock copolymer sample with low content of hard segment was examined by GPC, TLC, and solubility method. The copolymer sample was found to have a uniform composition as a function of elution volume over the major portion of sample from GPC method. However within one elution fraction, the copolymer chains, although having the same hydrodynamic volume, may have some difference in composition. Two fractions with different composition were obtained by precipitation in ethanol. Some low molar mass copolymers were also separated by a TLC technique from the copolymer sample.

  6. Spectrophotometric determination of substrate-borne polyacrylamide.

    Science.gov (United States)

    Lu, Jianhang; Wu, Laosheng

    2002-08-28

    Polyacrylamides (PAMs) have wide application in many industries and in agriculture. Scientific research and industrial applications manifested a need for a method that can quantify substrate-borne PAM. The N-bromination method (a PAM analytical technique based on N-bromination of amide groups and spectrophotometric determination of the formed starch-triiodide complex), which was originally developed for determining PAM in aqueous solutions, was modified to quantify substrate-borne PAM. In the modified method, the quantity of substrate-borne PAM was converted to a concentration of starch-triiodide complex in aqueous solution that was then measured by spectrophotometry. The method sensitivity varied with substrates due to sorption of reagents and reaction intermediates on the substrates. Therefore, separate calibration for each substrate was required. Results from PAM samples in sand, cellulose, organic matter burnt soils, and clay minerals showed that this method had good accuracy and reproducibility. The PAM recoveries ranged from 95.8% to 103.7%, and the relative standard deviations (n = 4) were application and facilitating PAM-related research.

  7. Carboxylic Terminated Thermo-Responsive Copolymer Hydrogel and Improvement in Peptide Release Profile

    Directory of Open Access Journals (Sweden)

    Zi-Kun Rao

    2018-02-01

    Full Text Available To improve the release profile of peptide drugs, thermos-responsive triblock copolymer poly (ε-caprolactone-co-p-dioxanone-b-poly (ethylene glycol-b-poly (ε-caprolactone-co-p-dioxanone (PECP was prepared and end capped by succinic anhydride to give its carboxylic terminated derivative. Both PCEP block copolymer and its end group modified derivative showed temperature-dependent reversible sol-gel transition in water. The carboxylic end group could significantly decrease the sol-gel transition temperature by nearly 10 °C and strengthen the gel due to enhanced intermolecular force among triblock copolymer chains. Furthermore, compared with the original PECP triblock copolymer, HOOC–PECP–COOH copolymer displayed a retarded and sustained release profile for leuprorelin acetate over one month while effectively avoiding the initial burst. The controlled release was believed to be related to the formation of conjugated copolymer-peptide pair by ionic interaction and enhanced solubility of drug molecules into the hydrophobic domains of the hydrogel. Therefore, carboxyl terminated HOOC–PECP–COOH hydrogel was a promising and well-exhibited sustained release carrier for peptide drugs with the advantage of being able to develop injectable formulation by simple mixing.

  8. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland

    2014-12-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene and the selective layer with isopores was formed by micelle assembly of polystyrene-. b-poly-4-vinyl pyridine. The dual layers had an excellent interfacial adhesion and pore interconnectivity. The dual membranes showed pH response behavior like single layer block copolymer membranes with a low flux for pH values less than 3, a fast increase between pH4 and pH6 and a constant high flux level for pH values above 7. The dry/wet spinning process was optimized to produce dual layer hollow fiber membranes with polystyrene internal support layer and a shell block copolymer selective layer.

  9. Rheological Behavior of Entangled Polystyrene-Polyhedral Oligosilsesquioxane (POSS) Copolymer (Postprint)

    National Research Council Canada - National Science Library

    Wu, Jian; Mather, Patrick T; Haddad, Timothy S; Kim, Gyeong-Man

    2006-01-01

    ...: random copolymers of polystyrene (PS) and styryl-based polyhedral oligosilsesquioxane (POSS), R7(Si8O12)(C6H4CH=CH2), with R = isobutyl (iBu). A series of styrene-styryl POSS random copolymers with 0, 6, 15, 30, 50 wt...

  10. Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors

    KAUST Repository

    Kanimozhi, Catherine K.

    2012-10-10

    In this communication, we report the synthesis of a novel diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP)-based conjugated copolymer and its application in high-mobility organic field-effect transistors. Copolymerization of DPP with DPP yields a copolymer with exceptional properties such as extended absorption characteristics (up to ∼1100 nm) and field-effect electron mobility values of >1 cm 2 V -1 s -1. The synthesis of this novel DPP-DPP copolymer in combination with the demonstration of transistors with extremely high electron mobility makes this work an important step toward a new family of DPP-DPP copolymers for application in the general area of organic optoelectronics. © 2012 American Chemical Society.

  11. Study of the mechanical behavior of thermo reversible gels of PS-b-poly(ethylene/butylene)-b-PS triblock copolymers in a selective solvent for the middle block of the copolymer

    International Nuclear Information System (INIS)

    Hernaez, E.; Inchausti, I.; Quintana, J. R.; Katime, I.

    2001-01-01

    The thermo reversible gelation of three triblock copolymers polystyrene-b-poly(ethylene/butylene)-b-polystyrene, with different molar mass and a similar chemical composition, in n-octane was studied. The solvent is selective for the middle poly(ethylene/butylene) block of the copolymers. the influence of the molar mass of the three copolymers on the gelation and on the mechanical properties of the gels was analysed. The sol-gel transition temperatures. T g el have been determined and they increase with the copolymer concentration and the copolymer molar mass. On the other land, the mechanical properties of the different gels were examined through oscillatory shear and compressive stress relaxation measurements. The concentration dependence of the elastic storage modules, G' for the three copolymer studied fit a sole straight line in a double-logarithmic scale and its slope (2.22) is close to that expected for systems in good solvents (2.25). As the temperature is near to the sol-gel transition temperate, the elastic modulus are smaller and the relaxation rates are higher. (Author) 12 refs

  12. Evaluation of new polymers for enhanced oil recovery; Avaliacao de novos polimeros para recuperacao aumentada de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Maia, Ana M.S.; Chagas, Emanuel F.; Costa, Marta; Garcia, Rosangela B. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    The main polymers used nowadays for enhanced oil recovery, partially hydrolysed polyacrylamides and xanthan gum, show some limitations, such as low tolerance to salt presence and biological degradation. Therefore, it is necessary the improvement of the polymeric properties. With this goal, a new class of polymers, named 'water-soluble polymers hydrophobically modified' or simply 'amphiphilic polymers', has been developed. In this work, it was obtained a water-soluble acrylamide polymer hydrophobically modified with N,N-dihexyl acrylamide, using the micellar copolymerization technique. After the structural and rheological characterization of the copolymer, its performance in porous medium was evaluated through core flood tests in Botucatu sandstone. In the presence of sodium chloride, the amphiphilic copolymer presented a great increase of viscosity, besides values of resistance factor and of residual resistance factor higher than for the commercial polyacrylamide. This behavior can favor the oil recovery, mainly in high salinity and permeability reservoirs, by improving the water flooding sweep efficiency. (author)

  13. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  14. Direct fabrication of ordered mesoporous carbons with super-micropore/small mesopore using mixed triblock copolymers.

    Science.gov (United States)

    Li, Peng; Song, Yan; Tang, Zhihong; Yang, Guangzhi; Yang, Junhe

    2014-01-01

    Ordered mesoporous carbons (OMCs) have been prepared by the strategy of evaporation-induced organic-organic self-assembly method by employing a mixture of amphiphilic triblock copolymers poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) and reverse PPO-PEO-PPO as templates, with soluble in ethanol, low-molecular-weight phenolic resin as precursor, followed by carbonization. It has been found that the as prepared OMCs with porosity that combines super-micropore and small mesopore size distributed from 0.8 to 4 nm, which bridges the pore size from 2 to 3 nm and also for the diversification of the soft-templating synthesis of OMCs. Furthermore, the results showed that the OMCs obtained have mesophase transition from cylindrical p6 mm to centered rectangular c2 mm structure by simply tuning the ratio of PPO-PEO-PPO/PEO-PPO-PEO. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Tetronic Star Block Copolymer Micelles: Photophysical Characterisation of Microenvironments and Applicability for Tuning Electron Transfer Reactions.

    Science.gov (United States)

    Samanta, Papu; Rane, Sonal; Bahadur, Pratap; Dutta Choudhury, Sharmistha; Pal, Haridas

    2018-05-10

    Detailed photophysical investigations have been carried out using a probe dye, Coumarin-153 (C153), to understand the microenvironments of micelles formed by the newly introduced Tetronic star block copolymers, T1304 and T1307, having the same polypropylene oxide (PPO) block size but different polyethylene oxide (PEO) block sizes. Ground state absorption, steady-state fluorescence and time-resolved fluorescence measurements have been used to estimate the micropolarity, microviscosity and solvation dynamics within the two micelles. To the best of our knowledge this is the first report on these important physicochemical parameters for this new class of the star block copolymer micelles. Our results indicate that T1307 micelle offers a relatively more polar and less viscous microenvironment in the corona region, compared to T1304. The effect of the two micellar systems has subsequently been investigated on the bimolecular photoinduced electron transfer (ET) reactions between coumarin dyes (electron acceptors) and aromatic amines (electron donors). On correlating the energetics and kinetics of the ET reactions, clear Marcus Inversion (MI) behavior is observed in both the micellar media. Interestingly, the ET rates for all the donor-acceptor pairs are much higher in T1307 than in T1304, and the onset of MI also appears at a relatively higher exergenocity (-Δ G 0 ) in the former micelle (~0.45 eV for T1307) than the latter (~0.37 eV for T1304). Effect of added NaCl salt studied selectively in T1307 micelle, shows that the ET rate decreases significantly along with a shift in the onset of MI toward lower exergenocity region, so that in the presence of 2 M NaCl the system becomes quite comparable to T1304. Based on the observed results, it is realized that the micropolarity and hence the dynamics of ET process can be tuned very effectively either by changing the constitution of the star block copolymer or by using a suitable additive as a modifier of the micellar

  16. Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin

    International Nuclear Information System (INIS)

    Flynn, Nicholas; Topal, Ç. Özge; Hikkaduwa Koralege, Rangika S.; Hartson, Steve; Ranjan, Ashish; Liu, Jing; Pope, Carey; Ramsey, Joshua D.

    2016-01-01

    The aim of the present study was to evaluate a library of poly-L-lysine (PLL)-graft (g)-polyethylene glycol (PEG) copolymers for the ability to encapsulate effectively a model protein, bovine serum albumin (BSA), and to characterize the stability and protein function of the resulting nanoparticle. A library of nine grafted copolymers was produced by varying PLL molecular weight and PEG grafting ratio. Electrostatic self-assembly of the protein and the grafted copolymer drove encapsulation. The formation of protein/polymer nanoparticles with a core/shell structure was confirmed using PAGE, dynamic light scattering, and electron microscopy. Encapsulation of the BSA into nanoparticles was strongly dependent on the copolymer-to-protein mass ratio, PEG grafting ratio, and PLL molecular weight. A copolymer-to-protein mass ratio of 7:1 and higher was generally required for high levels of encapsulation, and under these conditions, no loss of protein activity was observed. Copolymer characteristics also influenced nanoparticle resistance to polyanions and protease degradation. The results indicate that a copolymer of 15–30 kDa PLL, with a PEG grafting ratio of 10:1, is most promising for protein delivery. - Highlights: • A 4–70 kDa range of PLL-g-PEG copolymers was able to encapsulate BSA into NPs. • Encapsulation of BSA by PLL-g-PEG not only retained but increased esterolytic activity. • NPs were stable against protease degradation and polyanion dissociation.

  17. Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Nicholas [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Topal, Ç. Özge [School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Hikkaduwa Koralege, Rangika S. [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Hartson, Steve [Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 (United States); Ranjan, Ashish; Liu, Jing; Pope, Carey [Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Ramsey, Joshua D., E-mail: josh.ramsey@okstate.edu [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2016-05-01

    The aim of the present study was to evaluate a library of poly-L-lysine (PLL)-graft (g)-polyethylene glycol (PEG) copolymers for the ability to encapsulate effectively a model protein, bovine serum albumin (BSA), and to characterize the stability and protein function of the resulting nanoparticle. A library of nine grafted copolymers was produced by varying PLL molecular weight and PEG grafting ratio. Electrostatic self-assembly of the protein and the grafted copolymer drove encapsulation. The formation of protein/polymer nanoparticles with a core/shell structure was confirmed using PAGE, dynamic light scattering, and electron microscopy. Encapsulation of the BSA into nanoparticles was strongly dependent on the copolymer-to-protein mass ratio, PEG grafting ratio, and PLL molecular weight. A copolymer-to-protein mass ratio of 7:1 and higher was generally required for high levels of encapsulation, and under these conditions, no loss of protein activity was observed. Copolymer characteristics also influenced nanoparticle resistance to polyanions and protease degradation. The results indicate that a copolymer of 15–30 kDa PLL, with a PEG grafting ratio of 10:1, is most promising for protein delivery. - Highlights: • A 4–70 kDa range of PLL-g-PEG copolymers was able to encapsulate BSA into NPs. • Encapsulation of BSA by PLL-g-PEG not only retained but increased esterolytic activity. • NPs were stable against protease degradation and polyanion dissociation.

  18. Preparation and dielectric properties of novel composites based on oxidized styrene-butadienestyrene copolymer and polyaniline modified exfoliated graphite nanoplates

    Science.gov (United States)

    Lv, Qun-Chen; Li, Ying; Zhong, Zhi-Kui; Wu, Hui-Jun; He, Fu-An; Lam, Kwok-Ho

    2018-05-01

    To improve the dielectric performance of high-dielectric-constant conductive filler/polymer composites, polyaniline was deposited on exfoliated graphite nanoplates (xGNPs) by in-situ polymerization method to form polyaniline (PANI) coated xGNPs (xGNPs@PANI) as the conductive filler for the oxidized styrene-butadienestyrene copolymer (SBS-FH) containing both hydroxyl and formyloxy groups. The results of TEM, SEM, FTIR, TGA, Raman spectrum, XPS, and WAXD showed that PANI had been coated onto the surface of xGNPs successfully. The xGNPs@PANI/SBS-FH composites were prepared by a simple solution-blending method and the homogenous distribution of xGNPs@PANI in the SBS-FH matrix was confirmed by SEM. The presence of xGNPs@PANI was found to significantly improve the dielectric properties of resultant composite compared to the unmodified xGNPs. For example, the xGNPs@PANI/SBS-FH composite near percolation threshold filled with 9.38 vol.% xGNPs@PANI showed a dielectric constant of 56.8 and a dielectric loss factor of 0.51 at 1000 Hz, while the corresponding values of xGNPs (1.19 vol.%)/SBS composite were 15.96 and 2.91 at 1000 Hz, respectively. In addition, the incorporation of xGNPs@PANI into SBS-FH could effectively enhance the thermal conductivity of resultant xGNPs@PANI/SBS-FH composite.

  19. Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction.

    Science.gov (United States)

    Kundu, Banani; Kundu, Subhas C

    2012-10-01

    In situ forming tissue sealants are advantageous due to ease in application, complete coverage of defect site and assured comfort levels to patients. The interconnected three-dimensional hydrophilic networks perfectly manage typical dermal wounds by suitably scaffolding skin fibroblast, diffusing the nutrients, therapeutics and exudates while still maintaining an adequately moist environment. We evaluate the cell homing ability of semi-interpenetrating non-mulberry tropical tasar silk sericin/polyacrylamide hydrophilic network with a keen understanding of its network characteristics and correlation of protein concentration with the performance as cell scaffold. Interconnectivity of porous networks observed through scanning electron micrograph revealed pore sizes ranging from 23 to 52 μm. The enhanced β-sheet content with the increasing sericin concentration in far red spectroscopy study supported their corresponding improved compressive strength. These semi-interpenetrating networks were found to possess a maximum fluid uptake of 112% of its weight, hence preventing the accumulation of exudates at the wound area. The present systems appear to possess characteristics like rapid gelation (~5min) at 37 °C, 98% porosity enabling the migration of fibroblasts during healing (observed through confocal and scanning electron micrographs), cell adhesion together with the absence of any cyto-toxic effect suggesting its potential as in situ tissue sealants. The compressive strength up to 61 kPa ensured ease in handling even when wet. The results prove the suitability to use non-mulberry tasar cocoon silk sericin/polyacrylamide semi-interpenetrating network as a reconstructive dermal sealant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Ellipsometry measurements of glass transition breadth in bulk films of random, block, and gradient copolymers.

    Science.gov (United States)

    Mok, M M; Kim, J; Marrou, S R; Torkelson, J M

    2010-03-01

    Bulk films of random, block and gradient copolymer systems were studied using ellipsometry to demonstrate the applicability of the numerical differentiation technique pioneered by Kawana and Jones for studying the glass transition temperature (T (g)) behavior and thermal expansivities of copolymers possessing different architectures and different levels of nanoheterogeneity. In a series of styrene/n -butyl methacrylate (S/nBMA) random copolymers, T (g) breadths were observed to increase from approximately 17( degrees ) C in styrene-rich cases to almost 30( degrees ) C in nBMA-rich cases, reflecting previous observations of significant nanoheterogeneity in PnBMA homopolymers. The derivative technique also revealed for the first time a substantial increase in glassy-state expansivity with increasing nBMA content in S/nBMA random copolymers, from 1.4x10(-4) K-1 in PS to 3.5x10(-4) K-1 in PnBMA. The first characterization of block copolymer T (g) 's and T (g) breadths by ellipsometry is given, examining the impact of nanophase-segregated copolymer structure on ellipsometric measurements of glass transition. The results show that, while the technique is effective in detecting the two T (g) 's expected in certain block copolymer systems, the details of the glass transition can become suppressed in ellipsometry measurements of a rubbery minor phase under conditions where the matrix is glassy; meanwhile, both transitions are easily discernible by differential scanning calorimetry. Finally, broad glass transition regions were measured in gradient copolymers, yielding in some cases extraordinary T (g) breadths of 69- 71( degrees ) C , factors of 4-5 larger than the T (g) breadths of related homopolymers and random copolymers. Surprisingly, one gradient copolymer demonstrated a slightly narrower T (g) breadth than the S/nBMA random copolymers with the highest nBMA content. This highlights the fact that nanoheterogeneity relevant to the glass transition response in selected

  1. Infrared and ultraviolet spectroscopic studies of low-temperature radiolysis of ethylene - styrene copolymers

    International Nuclear Information System (INIS)

    Mal'tseva, A.P.; Golikov, V.P.; Leshchenko, S.S.; Karpov, V.L.

    1977-01-01

    Certain features of low-temperature radiolysis of statistic ethylene-styrene copolymers have been studied by infrared and ultraviolet spectroscopy. It is shown that the nature of the accumulation and decay of trans-vinylene, vinyl and vinylidene double bonds in an ethylene-styrene copolymer is essentially influenced by both the dose absorbed and copolymer composition. A suggestion is made that the ethylene-styrene copolymer is formed when structures are irradiated containing double bonds conjugated with the phenyl rings of styrene groups - which more effectively dissipate the absorbed energy than solitary phenyl rings

  2. PREPARATION AND PROPERTIES OF MMA/1-PROPYLMETHACRYLATE-POSS COPOLYMER WITH ATOM TRANSFER RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    He-xin Zhang; Ho-young Lee; Young-jun Shin; Dong-ho Lee; Seok Kyun Noh

    2008-01-01

    The methyl methacrylate(MMA)/1-propylmethacrylate-polyhedral oligomeric silsesquioxane(PM-POSS) copolymers were synthesized via atom transfer radical polymerization with CuBr as catalyst.The unreacted PM-POSS monomer could be removed completely by washing the copolymerization product with n-hexane.The copolymers were characterized with 1H-NMR,X-ray diffraction,difierential scanning calorimetry,thermogravimetric analysis and gel permeatlon chromatography.With increasing PM-POSS feed ratio.the total conversion increased while the glass transition temperatures of copolymer decreased.The thermogravimetric analysis demonstrated that the thermal stability of copolymer improved slightly with PM-POSS addition.The molecular weight of copolymers increased with incorporation of PM-POSS.

  3. Fabrication of Pt/Au concentric spheres from triblock copolymer.

    Science.gov (United States)

    Koh, Haeng-Deog; Park, Soojin; Russell, Thomas P

    2010-02-23

    Dispersion of an aqueous H(2)PtCl(6) solution into a trifluorotoluene (TFT) solution of a polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO) triblock copolymer produced an emulsion-induced hollow micelle (EIHM), comprising a water nanodroplet stabilized by PEO, H(2)PtCl(6)/P2VP, and PS, sequentially. The following addition of an aqueous LiAuCl(4) solution into the dispersion led to a coordination of LiAuCl(4) and PEO. The resulting spherical EIHM structure was transformed to a hollow cylindrical micelle by the fusion of spherical EIHM with the addition of methanol. This structural transition was reversible by the alternative addition of methanol and TFT. Oxygen plasma was used to generate Pt/Au concentric spheres and hollow cylindrical Pt/Au nano-objects.

  4. The Influence of Charged Species on the Phase Behavior, Self-Assembly, and Electrochemical Performance of Block Copolymer Electrolytes

    Science.gov (United States)

    Thelen, Jacob Lloyd

    One of the major barriers to expanding the capacity of large-scale electrochemical energy storage within batteries is the threat of a catastrophic failure. Catastrophic battery pack failure can be initiated by a defect within a single battery cell. If the failure of a defective battery cell is not contained, the damage can spread and subsequently compromise the integrity of the entire battery back, as well as the safety of those in its surroundings. Replacing the volatile, flammable liquid electrolyte components found in most current lithium ion batteries with a solid polymer electrolyte (SPE) would significantly improve the cell-level safety of batteries; however, poor ionic conductivity and restricted operating temperatures compared to liquid electrolytes have plagued the practical application of SPEs. Rather than competing with the performance of liquid electrolytes directly, our approach to developing SPEs relies on increasing electrolyte functionality through the use of block copolymer architectures. Block copolymers, wherein two or more chemically dissimilar polymer chains are covalently bound, have a propensity to microphase separate into nanoscale domains that have physical properties similar to those of each of the different polymer chains. For instance, the block copolymer, polystyrene-b-poly(ethylene oxide) (SEO), has often been employed as a solid polymer electrolyte because the nanoscale domains of polystyrene (PS) can provide mechanical reinforcement, while the poly(ethylene oxide) microphases can solvate and conduct lithium ions. Block copolymer electrolytes (BCEs) formed from SEO/salt mixtures result in a material with the bulk mechanical properties of a solid, but with the ion conducting properties of a viscoelastic fluid. The efficacy SEO-based BCEs has been demonstrated; the enhanced mechanical functionality provided by the PS domains resist the propagation of dendritic lithium structures during battery operation, thus enabling the use of a

  5. A semiflexible alternating copolymer chain adsorption on a flat and a fluctuating surface

    International Nuclear Information System (INIS)

    Mishra, Pramod Kumar

    2010-01-01

    A lattice model of a directed self-avoiding walk is used to investigate adsorption properties of a semiflexible alternating copolymer chain on an impenetrable flat and fluctuating surface in two (square, hexagonal and rectangular lattice) and three dimensions (cubic lattice). In the cubic lattice case the surface is two-dimensional impenetrable flat and in two dimensions the surface is a fluctuating impenetrable line (hexagonal lattice) and also flat impenetrable line (square and rectangular lattice). Walks of the copolymer chains are directed perpendicular to the plane of the surface and at a suitable value of monomer surface attraction, the copolymer chain gets adsorbed on the surface. To calculate the exact value of the monomer surface attraction, the directed walk model has been solved analytically using the generating function method to discuss results when one type of monomer of the copolymer chain has attractive, repulsive or no interaction with the surface. Results obtained in the flat surface case show that, for a stiffer copolymer chain, adsorption transition occurs at a smaller value of monomer surface attraction than a flexible copolymer chain while in the case of a fluctuating surface, the adsorption transition point is independent of bending energy of the copolymer chain. These features are similar to that of a semiflexible homopolymer chain adsorption.

  6. A semiflexible alternating copolymer chain adsorption on a flat and a fluctuating surface.

    Science.gov (United States)

    Mishra, Pramod Kumar

    2010-04-21

    A lattice model of a directed self-avoiding walk is used to investigate adsorption properties of a semiflexible alternating copolymer chain on an impenetrable flat and fluctuating surface in two (square, hexagonal and rectangular lattice) and three dimensions (cubic lattice). In the cubic lattice case the surface is two-dimensional impenetrable flat and in two dimensions the surface is a fluctuating impenetrable line (hexagonal lattice) and also flat impenetrable line (square and rectangular lattice). Walks of the copolymer chains are directed perpendicular to the plane of the surface and at a suitable value of monomer surface attraction, the copolymer chain gets adsorbed on the surface. To calculate the exact value of the monomer surface attraction, the directed walk model has been solved analytically using the generating function method to discuss results when one type of monomer of the copolymer chain has attractive, repulsive or no interaction with the surface. Results obtained in the flat surface case show that, for a stiffer copolymer chain, adsorption transition occurs at a smaller value of monomer surface attraction than a flexible copolymer chain while in the case of a fluctuating surface, the adsorption transition point is independent of bending energy of the copolymer chain. These features are similar to that of a semiflexible homopolymer chain adsorption.

  7. Proteomic detection of oxidized and reduced thiol proteins in cultured cells.

    Science.gov (United States)

    Cuddihy, Sarah L; Baty, James W; Brown, Kristin K; Winterbourn, Christine C; Hampton, Mark B

    2009-01-01

    The oxidation and reduction of cysteine residues is emerging as an important post-translational control of protein function. We describe a method for fluorescent labelling of either reduced or oxidized thiols in combination with two-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (2DE) to detect changes in the redox proteome of cultured cells. Reduced thiols are labelled with the fluorescent compound 5-iodoacetamidofluorescein. To monitor oxidized thiols, the reduced thiols are first blocked with N-ethyl-maleimide, then the oxidized thiols reduced with dithiothreitol and labelled with 5-iodoacetamidofluorescein. The method is illustrated by treating Jurkat T-lymphoma cells with hydrogen peroxide and monitoring increased labelling of oxidized thiol proteins. A decrease in labelling can also be detected, and this is attributed to the formation of higher oxidation states of cysteine that are not reduced by dithiothreitol.

  8. Two-Dimensional Liquid Chromatography Analysis of Polystyrene/Polybutadiene Block Copolymers.

    Science.gov (United States)

    Lee, Sanghoon; Choi, Heejae; Chang, Taihyun; Staal, Bastiaan

    2018-05-15

    A detailed characterization of a commercial polystyrene/polybutadiene block copolymer material (Styrolux) was carried out using two-dimensional liquid chromatography (2D-LC). The Styrolux is prepared by statistical linking reaction of two different polystyrene- block-polybutadienyl anion precursors with a multivalent linking agent. Therefore, it is a mixture of a number of branched block copolymers different in molecular weight, composition, and chain architecture. While individual LC analysis, including size exclusion chromatography, interaction chromatography, or liquid chromatography at critical condition, is not good enough to resolve all the polymer species, 2D-LC separations coupling two chromatography methods were able to resolve all polymer species present in the sample; at least 13 block copolymer species and a homopolystyrene blended. Four different 2D-LC analyses combining a different pair of two LC methods provide their characteristic separation results. The separation characteristics of the 2D-LC separations are compared to elucidate the elution characteristics of the block copolymer species.

  9. Synthesis of graft copolymers onto starch and its semiconducting properties

    Directory of Open Access Journals (Sweden)

    Nevin Çankaya

    Full Text Available Literature review has revealed that, although there are studies about grafting on natural polymers, especially on starch, few of them are about electrical properties of graft polymers. Starch methacrylate (St.met was obtained by esterification of OH groups on natural starch polymer for this purpose. Grafting of synthesized N-cyclohexyl acrylamide (NCA and commercial methyl methacrylate (MMA monomers with St.met was done by free radical polymerization method. The graft copolymers were characterized with FT-IR spectra, thermal and elemental analysis. Thermal stabilities of the graft copolymers were determined by TGA (thermo gravimetric analysis method and thermal stability of the copolymers is decreased via grafting. The electrical conductivity of the polymers was measured as a function of temperature and it has been observed that electrical conductivity increases with increasing temperature. The absorbance and transmittance versus wavelength of the polymers have been measured. Keywords: Starch, Graft copolymer, Semiconducting, Thermal stability, Starch methacrylate

  10. Fast assembly of ordered block copolymer nanostructures through microwave annealing.

    Science.gov (United States)

    Zhang, Xiaojiang; Harris, Kenneth D; Wu, Nathanael L Y; Murphy, Jeffrey N; Buriak, Jillian M

    2010-11-23

    Block copolymer self-assembly is an innovative technology capable of patterning technologically relevant substrates with nanoscale precision for a range of applications from integrated circuit fabrication to tissue interfacing, for example. In this article, we demonstrate a microwave-based method of rapidly inducing order in block copolymer structures. The technique involves the usage of a commercial microwave reactor to anneal block copolymer films in the presence of appropriate solvents, and we explore the effect of various parameters over the polymer assembly speed and defect density. The approach is applied to the commonly used poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) and poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) families of block copolymers, and it is found that the substrate resistivity, solvent environment, and anneal temperature all critically influence the self-assembly process. For selected systems, highly ordered patterns were achieved in less than 3 min. In addition, we establish the compatibility of the technique with directed assembly by graphoepitaxy.

  11. Molecular weight and its distribution of tetrafluoroethylene and propylene copolymer

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Okamoto, Jiro; Yamaguchi, Koichi.

    1978-04-01

    In comparison of molecular structure of tetrafluoroethylene and propylene copolymer produced by radiation and chemical initiators respectively, both were fractionated by elution method and fine structure was examined. For the fractionated sample by radiation, the relation between molecular weight anti Mn and intrinsic viscosity ( eta] is ( eta] = 3.97 x 10 -4 anti Mnsup(0.630) The result is not in agreement with that of the unfractionated sample by radiation, and similar to those of samples by chemical initiators. There is no difference, however, in the elution method of GPC between both these copolymers; the elution behavior agrees with that of standard polystyrene. Long chain branching thus exists little in the copolymer of tetrafluoroethylene and propylene. To reveal the relations between reaction conditions and molecular weight and its distribution of the copolymer produced by flow apparatus, the molecular weight distribution was measured by GPC. The method of analysis could evaluate molecular weight distribution changing constantly. (auth.)

  12. Synthesis, characterization and flocculation activity of novel Fe(OH){sub 3}-polyacrylamide hybrid polymer

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huilong; Cui Jinyan [Department of Chemistry, Dalian University of Technology, Dalian 116023 (China); Jiang Wenfeng, E-mail: dlutjiangwf@yahoo.com.cn [Department of Chemistry, Dalian University of Technology, Dalian 116023 (China)

    2011-11-01

    Highlights: {yields} The preparation of a novel Fe(OH){sub 3}-PAM hybrid polymer flocculant is achieved via free radical solution polymerization. {yields} Flocculation of kaolin suspensions using this novel Fe(OH){sub 3}-PAM hybrid polymer flocculant is revealed in this study. {yields} The statistical model was first applied for calculating the thermodynamic parameters for the kaolin flocculating process. - Abstract: A novel Fe(OH){sub 3}-polyacrylamide inorganic-organic hybrid polymer (FHPAM) was synthesized via free radical solution polymerization initiated by a redox initiation system ((NH{sub 4}){sub 2}S{sub 2}O{sub 8}-NaHSO{sub 3}) in an aqueous medium. Reaction parameters influencing the intrinsic viscosity and the yield of the hybrid polymer, such as initiator concentration, monomer mass fraction, temperature and reaction time were investigated and optimized. The results show that the maximum intrinsic viscosity and up to 94% yields of the hybrid polymer can be achieved using initiator concentration of 0.3% with acrylamide monomer mass fraction of 20% under solution polymerization at 40 deg. C for 7 h. The physicochemical properties of this hybrid flocculant were characterized with TEM, FTIR spectra, TGA, and conductivity. It was found that a chemical bond exists between Fe(OH){sub 3} colloid and polyacrylamide chains in the FHPAM. The application of the hybrid polymer for the treatment of 2.5 g L{sup -1} kaolin suspension indicates that it had an excellent flocculation capacity and its flocculation efficiency was much better than that of commercial available polyacrylamide (PAM) and polymeric ferric sulfate (PFS). The optimal conditions for the flocculation treatment of kaolin suspension were the FHPAM dosage of 40 mg L{sup -1} at pH 7.0. The thermodynamic parameters for the flocculation process were calculated based on a statistical model. Interpretation of the results was given.

  13. Gamma radiation effects on an amine antioxidant added in an ethylene-propylene copolymer

    International Nuclear Information System (INIS)

    Anelli, P.; Baccaro, S.; Casadio, C.

    1998-01-01

    The aim of this work was to compare the gamma radiation induced effects on samples of an ethylene-propylene copolymer antioxidant free with samples loaded with an antioxidant characterised by the presence of an -NH functional group. The employed techniques were Electron Spin Resonance spectroscopy (ESR) and High Performance Liquid Chromatography (HPLC). Stable radicals R-NO degree sign due to the interaction of free radicals produced in the irradiated polymer with the antioxidant have been observed by ESR at room temperature. The time evolution of the ESR signals following the irradiation was examined at different doses. The amount of antioxidant not involved in the oxidation reactions has been determined using HPLC

  14. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo, E-mail: zghu@htu.cn

    2014-10-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b–poly(3,3-bis(Hydroxymethyl–triazolylmethyl) oxetane)-b–polylactide (PLA-b–PHMTYO-b–PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b–poly(3,3-Diazidomethyloxetane)-b–polylactide (PLA-b–PBAMO-b–PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following “Click” reaction of PLA-b–PBAMO-b–PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b–PHMTYO-b–PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b–PHMTYO-b–PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10{sup −4} mg/mL and 3.9 × 10{sup −5} mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b–PHMTYO-b–PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. - Highlights: • The method to synthesize PLA-b–PHMTYO-b–PLA is relatively facile and efficient. • PLA-b–PHMTYO-b–PLA self-assembles into spherical micelles with low CMC in water. • PLA-b–PHMTYO-b–PLA exhibits better biocompatibility and biodegradability.

  15. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups

    International Nuclear Information System (INIS)

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo

    2014-01-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b–poly(3,3-bis(Hydroxymethyl–triazolylmethyl) oxetane)-b–polylactide (PLA-b–PHMTYO-b–PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b–poly(3,3-Diazidomethyloxetane)-b–polylactide (PLA-b–PBAMO-b–PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following “Click” reaction of PLA-b–PBAMO-b–PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b–PHMTYO-b–PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by 1 H nuclear magnetic resonance ( 1 H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b–PHMTYO-b–PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10 −4 mg/mL and 3.9 × 10 −5 mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b–PHMTYO-b–PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. - Highlights: • The method to synthesize PLA-b–PHMTYO-b–PLA is relatively facile and efficient. • PLA-b–PHMTYO-b–PLA self-assembles into spherical micelles with low CMC in water. • PLA-b–PHMTYO-b–PLA exhibits better biocompatibility and biodegradability

  16. Well-defined triblock copolymers of polyethylene with polycaprolactone or polystyrene using a novel difunctional polyhomologation initiator

    KAUST Repository

    Hadjichristidis, Nikolaos

    2017-08-04

    α,ω-Dihydroxy polyethylene was synthesized by polyhomologation of dimethylsulfoxonium methylide with 9-thexyl-9-BBN (9-BNN: 9-Borabicyclo[3.3.1]nonane), a novel difunctional initiator produced from 9-BBN and 2,3-dimethylbut-2-ene, with two active and one blocked sites, followed by hydrolysis/oxidation. The terminal hydroxy groups were either used directly as initiators, in the presence of 1-tert-butyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-catenadi(phosphazene) (t-BuP2), for the ring opening polymerization of ɛ-caprolactone to afford polycaprolactone-b-polyethylene-b-polycaprolactone (PCL-b-PE-b-PCL) or after transformation to atom transfer radical polymerization initiating sites, for the polymerization of styrene to produce polystyrene-b-polyethylene-b-polystyrene (PSt-b-PE-b-PSt) triblock copolymers. Molecular characterization by 11B, 13C and 1H NMR as well as FTIR, and high temperature GPC (HT-GPC) confirmed the well-defined nature of the synthesized new difunctional initiator and triblock copolymers. Differential scanning calorimetry was used to determine the melting points of PE and PCL.

  17. Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications.

    Science.gov (United States)

    Huang, Lihong; Zhuang, Xiuli; Hu, Jun; Lang, Le; Zhang, Peibiao; Wang, Yu; Chen, Xuesi; Wei, Yen; Jing, Xiabin

    2008-03-01

    To obtain one biodegradable and electroactive polymer as the scaffold for tissue engineering, the multiblock copolymer PLAAP was designed and synthesized with the condensation polymerization of hydroxyl-capped poly( l-lactide) (PLA) and carboxyl-capped aniline pentamer (AP). The PLAAP copolymer exhibited excellent electroactivity, solubility, and biodegradability. At the same time, as one scaffold material, PLAAP copolymer possesses certain mechanical properties with the tensile strength of 3 MPa, tensile Young 's modulus of 32 MPa, and breaking elongation rate of 95%. We systematically studied the compatibility of PLAAP copolymer in vitro and proved that the electroactive PLAAP copolymer was innocuous, biocompatible, and helpful for the adhesion and proliferation of rat C6 cells. Moreover, the PLAAP copolymer stimulated by electrical signals was demonstrated as accelerating the differentiation of rat neuronal pheochromocytoma PC-12 cells. This biodegradable and electroactive PLAAP copolymer thus possessed the properties in favor of the long-time application in vivo as nerve repair scaffold materials in tissue engineering.

  18. Pipeline Drag Reducers

    International Nuclear Information System (INIS)

    Marawan, H.

    2004-01-01

    Pipeline drag reducers have proven to be an extremely powerful tool in fluid transportation. High molecular weight polymers are used to reduce the frictional pressure loss ratio in crude oil pipelines, refined fuel and aqueous pipelines. Chemical structure of the main used pipeline drag reducers is one of the following polymers and copolymers classified according to the type of fluid to ; low density polyethylene, copolymer of I-hexane cross linked with divinyl benzene, polyacrylamide, polyalkylene oxide polymers and their copolymers, fluorocarbons, polyalkyl methacrylates and terpolymer of styrene, alkyl acrylate and acrylic acid. Drag reduction is the increase in pump ability of a fluid caused by the addition of small amounts of an additive to the fluid. The effectiveness of a drag reducer is normally expressed in terms of percent drag reduction. Frictional pressure loss in a pipeline system is a waste of energy and it costly. The drag reducing additive minimizes the flow turbulence, increases throughput and reduces the energy costs. The Flow can be increased by more than 80 % with existing assets. The effectiveness of the injected drag reducer in Mostorod to Tanta crude oil pipeline achieved 35.4 % drag reduction and 23.2 % flow increase of the actual performance The experimental application of DRA on Arab Petroleum Pipeline Company (Summed) achieved a flow increase ranging from 9-32 %

  19. High-Tg Polynorbornene-Based Block and Random Copolymers for Butanol Pervaporation Membranes

    Science.gov (United States)

    Register, Richard A.; Kim, Dong-Gyun; Takigawa, Tamami; Kashino, Tomomasa; Burtovyy, Oleksandr; Bell, Andrew

    Vinyl addition polymers of substituted norbornene (NB) monomers possess desirably high glass transition temperatures (Tg); however, until very recently, the lack of an applicable living polymerization chemistry has precluded the synthesis of such polymers with controlled architecture, or copolymers with controlled sequence distribution. We have recently synthesized block and random copolymers of NB monomers bearing hydroxyhexafluoroisopropyl and n-butyl substituents (HFANB and BuNB) via living vinyl addition polymerization with Pd-based catalysts. Both series of polymers were cast into the selective skin layers of thin film composite (TFC) membranes, and these organophilic membranes investigated for the isolation of n-butanol from dilute aqueous solution (model fermentation broth) via pervaporation. The block copolymers show well-defined microphase-separated morphologies, both in bulk and as the selective skin layers on TFC membranes, while the random copolymers are homogeneous. Both block and random vinyl addition copolymers are effective as n-butanol pervaporation membranes, with the block copolymers showing a better flux-selectivity balance. While polyHFANB has much higher permeability and n-butanol selectivity than polyBuNB, incorporating BuNB units into the polymer (in either a block or random sequence) limits the swelling of the polyHFANB and thereby improves the n-butanol pervaporation selectivity.

  20. Novel Pentablock Copolymers as Thermosensitive Self-Assembling Micelles for Ocular Drug Delivery

    Directory of Open Access Journals (Sweden)

    Mitra Alami-Milani

    2017-04-01

    Full Text Available Many studies have focused on how drugs are formulated in the sol state at room temperature leading to the formation of in situ gel at eye temperature to provide a controlled drug release. Stimuli-responsive block copolymer hydrogels possess several advantages including uncomplicated drug formulation and ease of application, no organic solvent, protective environment for drugs, site-specificity, prolonged and localized drug delivery, lower systemic toxicity, and capability to deliver both hydrophobic and hydrophilic drugs. Self-assembling block copolymers (such as diblock, triblock, and pentablock copolymers with large solubility variation between hydrophilic and hydrophobic segments are capable of making temperature-dependent micellar assembles, and with further increase in the temperature, of jellifying due to micellar aggregation. In general, molecular weight, hydrophobicity, and block arrangement have a significant effect on polymer crystallinity, micelle size, and in vitro drug release profile. The limitations of creature triblock copolymers as initial burst release can be largely avoided using micelles made of pentablock copolymers. Moreover, formulations based on pentablock copolymers can sustain drug release for a longer time. The present study aims to provide a concise overview of the initial and recent progresses in the design of hydrogel-based ocular drug delivery systems.

  1. Hydrophilization of poly(caprolactone copolymers through introduction of oligo(ethylene glycol moieties.

    Directory of Open Access Journals (Sweden)

    Jonathan J Wurth

    Full Text Available In this study, a new family of poly(ε-caprolactone (PCL copolymers that bear oligo(ethylene glycol (OEG moieties is described. The synthesis of three different oligo(ethylene glycol functionalized epoxide monomers derived from 2-methyl-4-pentenoic acid, and their copolymerization with ε-caprolactone (CL to poly(CL-co-OEG-MPO copolymers is presented. The statistical copolymerization initiated with SnOct2/BnOH yielded the copolymers with varying OEG content and composition. The linear relationship between feed ratio and incorporation of the OEG co-monomer enables control over backbone functional group density. The introduction of OEG moieties influenced both the thermal and the hydrophilic characteristics of the copolymers. Both increasing OEG length and backbone content resulted in a decrease in static water contact angle. The introduction of OEG side chains in the PCL copolymers had no adverse influence on MC-3TE3-E1 cell interaction. However, changes to cell form factor (Φ were observed. While unmodified PCL promoted elongated (anisotropic morphologies (Φ = 0.094, PCL copolymer with tri-ethylene glycol side chains at or above seven percent backbone incorporation induced more isotropic cell morphologies (Φ = 0.184 similar to those observed on glass controls (Φ = 0.151.

  2. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Science.gov (United States)

    2010-04-01

    ... methacrylate copolymer identified in this section may be safely used as an article or component of articles... monomer content of the finished copolymer articles is not more than 11 parts per million as determined by... available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and Drug Administration...

  3. Investigation of some copolymers based on acrylic salts as circulation loss control agents

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed Alsabagh

    2013-12-01

    The prepared copolymers were investigated as loss circulation control materials by measuring different filtration parameters such as; spurt loss, fluid loss and permeability plugging tester value according to the American Petroleum Institute (API standard. From the obtained data, it was found that the 0.6% from the poly[PA-co-AM](0.4:0.6 exhibited the best results of the filtration parameters among the other copolymers. At the same time all the studied copolymers enhanced the rheological properties of the drilling mud. These results were discussed on the light of the swelling capacity of the copolymers.

  4. Styrene-spaced copolymers including anthraquinone and β-O-4 lignin model units: synthesis, characterization and reactivity under alkaline pulping conditions.

    Science.gov (United States)

    Megiatto, Jackson D; Cazeils, Emmanuel; Ham-Pichavant, Frédérique; Grelier, Stéphane; Gardrat, Christian; Castellan, Alain

    2012-05-14

    A series of random copoly(styrene)s has been synthesized via radical polymerization of functionalized anthraquinone (AQ) and β-O-4 lignin model monomers. The copolymers were designed to have a different number of styrene spacer groups between the AQ and β-O-4 lignin side chains aiming at investigating the distance effects on AQ/β-O-4 electron transfer mechanisms. A detailed molecular characterization, including techniques such as size exclusion chromatography, MALDI-TOF mass spectrometry, and (1)H, (13)C, (31)P NMR and UV-vis spectroscopies, afforded quantitative information about the composition of the copolymers as well as the average distribution of the AQ and β-O-4 groups in the macromolecular structures. TGA and DSC thermal analysis have indicated that the copolymers were thermally stable under regular pulping conditions, revealing the inertness of the styrene polymer backbone in the investigation of electron transfer mechanisms. Alkaline pulping experiments showed that close contact between the redox active side chains in the copolymers was fundamental for an efficient degradation of the β-O-4 lignin model units, highlighting the importance of electron transfer reactions in the lignin degradation mechanisms catalyzed by AQ. In the absence of glucose, AQ units oxidized phenolic β-O-4 lignin model parts, mainly by electron transfer leading to vanillin as major product. By contrast, in presence of glucose, anthrahydroquinone units (formed by reduction of AQ) reduced the quinone-methide units (issued by dehydration of phenolic β-O-4 lignin model part) mainly by electron transfer leading to guaiacol as major product. Both processes were distance dependent.

  5. Synthesis, characterization and antimicrobial activity of important heterocyclic acrylic copolymers

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The acrylate monomer, 7-acryloyloxy-4-methyl coumarin (AMC has been synthesized by reacting 7-hydroxy-4-methyl coumarin, with acryloyl chloride in the presence of NaOH at 0–5°C. Copolymers of 7-acryloyloxy-4-methyl coumarin (AMC with vinyl acetate (VAc were synthesized in DMF (dimethyl formamide solution at 70±1°C using 2,2′-azobisisobutyronitrile (AIBN as an initiator with different monomer-to-monomer ratios in the feed. The copolymers were characterized by Fourier transform infra red (FTIR spectroscopy. The copolymer composition was evaluated by 1H-NMR (proton nuclear magnetic resonance and was further used to determine reactivity ratios. The monomer reactivity ratios for AMC (M1-VAc (M2 pair were determined by the application of conventional linearization methods such as Fineman-Ross (r1 = 0.6924; r2 = 0.6431, Kelen-Tüdõs (r1 = 0.6776; r2 = 0.6374 and extended Kelen-Tüdõs (r1 = 0.6657; r2 = 0.6256. Thermo gravimetric analysis showed that thermal decomposition of the copolymers occurred in single stage in the temperature range of 263–458°C. The molecular weights of the polymers were determined using gel permeation chromatography. The homo and copolymers were tested for their antimicrobial properties against selected microorganisms.

  6. Selective and Orthogonal Post-Polymerization Modification using Sulfur(VI) Fluoride Exchange (SuFEx) and Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) Reactions

    International Nuclear Information System (INIS)

    Oakdale, James S.; Kwisnek, Luke; Fokin, Valery V.

    2016-01-01

    Functional polystyrenes and polyacrylamides, containing combinations of fluorosulfate, aromatic silyl ether, and azide side chains, were used as scaffolds to demonstrate the postpolymerization modification capabilities of sulfur(VI) fluoride exchange (SuFEx) and CuAAC chemistries. Fluorescent dyes bearing appropriate functional groups were sequentially attached to the backbone of the copolymers, quantitatively and selectively addressing their reactive partners. Furthermore, this combined SuFEx and CuAAC approach proved to be robust and versatile, allowing for a rare accomplishment: triple orthogonal functionalization of a copolymer under essentially ambient conditions without protecting groups.

  7. Highly fluorinated comb-shaped copolymer as proton exchange membranes (PEMs): Fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Sik; Guiver, Michael D.; Ding, Jianfu [Institute for Chemical Process and Environmental Technology, National Research Council, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Kim, Yu.Seung; Pivovar, Bryan S. [Materials Physics and Applications, Sensors and Electrochemical Devices Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2008-07-15

    The fuel cell performance (DMFC and H{sub 2}/air) of highly fluorinated comb-shaped copolymer is reported. The initial performance of membrane electrode assemblies (MEAs) fabricated from comb-shaped copolymer containing a side-chain weight fraction of 22% are compared with those derived from Nafion and sulfonated polysulfone (BPSH-35) under DMFC conditions. The low water uptake of comb copolymer enabled an increase in proton exchange site concentrations in the hydrated polymer, which is a desirable membrane property for DMFC application. The comb-shaped copolymer architecture induces phase separated morphology between the hydrophobic fluoroaromatic backbone and the polysulfonic acid side chains. The initial performance of the MEAs using BPSH-35 and Comb 22 copolymer were comparable and higher than that of the Nafion MEA at all methanol concentrations. For example, the power density of the MEA using Comb 22 copolymer at 350 mA cm{sup -2} and 0.5 M methanol was 145 mW cm{sup -2}, whereas the power densities of MEAs using BPSH-35 were 136 mW cm{sup -2}. The power density of the MEA using Comb 22 copolymer at 350 mA cm{sup -2} and 2.0 M methanol was 144.5 mW cm{sup -2}, whereas the power densities of MEAs using BPSH-35 were 143 mW cm{sup -2}. (author)

  8. Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star-like topologies.

    Science.gov (United States)

    Wang, Lei; Zhang, Chongyin; Cong, Houluo; Li, Lei; Zheng, Sixun; Li, Xiuhong; Wang, Jie

    2013-07-11

    In this work, we investigated the effect of topological structures of block copolymers on the formation of the nanophase in epoxy thermosets containing amphiphilic block copolymers. Two block copolymers composed of poly(ε-caprolactone) (PCL) and poly(2,2,2-trifluoroethyl acrylate) (PTFEA) blocks were synthesized to possess linear and star-shaped topologies. The star-shaped block copolymer composed a polyhedral oligomeric silsesquioxane (POSS) core and eight poly(ε-caprolactone)-block-poly(2,2,2-trifluoroethyl acrylate) (PCL-b-PTFEA) diblock copolymer arms. Both block copolymers were synthesized via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process; they were controlled to have identical compositions of copolymerization and lengths of blocks. Upon incorporating both block copolymers into epoxy thermosets, the spherical PTFEA nanophases were formed in all the cases. However, the sizes of PTFEA nanophases from the star-like block copolymer were significantly lower than those from the linear diblock copolymer. The difference in the nanostructures gave rise to the different glass transition behavior of the nanostructured thermosets. The dependence of PTFEA nanophases on the topologies of block copolymers is interpreted in terms of the conformation of the miscible subchain (viz. PCL) at the surface of PTFEA microdomains and the restriction of POSS cages on the demixing of the thermoset-philic block (viz. PCL).

  9. Ionic Liquids As Self-Assembly Guide for the Formation of Nanostructured Block Copolymer Membranes

    KAUST Repository

    Madhavan, Poornima

    2015-04-30

    Nanostructured block copolymer membranes were manufactured by water induced phase inversion, using ionic liquids (ILs) as cosolvents. The effect of ionic liquids on the morphology was investigated, by using polystyrene-b-poly(4-vinyl pyridine) (PS-b-PV4P) diblock as membrane copolymer matrix and imidazolium and pyridinium based ILs. The effect of IL concentration and chemical composition was evident with particular interaction with P4VP blocks. The order of block copolymer/ILs solutions previous to the membrane casting was confirmed by cryo scanning electron microscopy and the morphologies of the manufactured nanostructured membranes were characterized by transmission and scanning electron microscopy. Non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ILs led to a lamella-structured membrane. The rheology of the IL/block copolymer solutions was investigated, evaluating the storage and loss moduli. Most membranes prepared with ionic liquid had higher water flux than pure block copolymer membranes without additives.

  10. Nanoporous Crosslinked Polyisoprene from Polyisoprene-Polydimethylsiloxane Block Copolymer

    DEFF Research Database (Denmark)

    Hansen, Michael Steffen; Vigild, Martin Etchells; Berg, Rolf Henrik

    2004-01-01

    The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride or tetrabut......The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride...

  11. Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes

    KAUST Repository

    Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat

    2017-01-01

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene–polyethylene oxide (PS–PEO) block copolymer (BCP) electrolytes doped with LiPF6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  12. Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes

    KAUST Repository

    Sethuraman, Vaidyanathan

    2017-10-23

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene–polyethylene oxide (PS–PEO) block copolymer (BCP) electrolytes doped with LiPF6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  13. Morphology evolution of PS-b-PDMS block copolymer and its hierarchical directed self-assembly on block copolymer templates

    DEFF Research Database (Denmark)

    Rasappa, Sozaraj; Schulte, Lars; Borah, Dipu

    2018-01-01

    Cylinder-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS, 27.2k-b-11.7k, SD39) block copolymer having a total molecular weight of 39 kg mol−1 was exploited to achieve in-plane morphologies of lines, dots and antidots. Brush-free self-assembly of the SD39 on silicon substrates was invest...... substrates provides a simplified method for surface nanopatterning, templated growth of nanomaterials and nanofabrication....... the pattern into the underlying substrate. Directed self-assembly and hierarchical directed self-assembly on block copolymer templates for confinement of dots was successfully demonstrated. The strategy for achieving multiple morphologies using one BCP by mere choice of the annealing solvents on unmodified...

  14. An improved silver staining procedure for schizodeme analysis in polyacrylamide gradient gels

    Directory of Open Access Journals (Sweden)

    Antonio M. Gonçalves

    1990-03-01

    Full Text Available A simple protocol is described for the silver staining of polyacrylamide gradient gels used for the separation of restriction fragments of kinetoplast DNA [schizodeme analysis of trypanosomatids (Morel et al., 1980]. The method overcomes the problems of non-uniform staining and strong background color which are frequently encountered when conventional protocols for silver staining of linear gels. The method described has proven to be of general applicability for DNA, RNA and protein separations in gradient gels.

  15. Pore-Scale Investigation of Micron-Size Polyacrylamide Elastic Microspheres (MPEMs) Transport and Retention in Saturated Porous Media

    KAUST Repository

    Yao, Chuanjin; Lei, Guanglun; Cathles, Lawrence M.; Steenhuis, Tammo S.

    2014-01-01

    Knowledge of micrometer-size polyacrylamide elastic microsphere (MPEM) transport and retention mechanisms in porous media is essential for the application of MPEMs as a smart sweep improvement and profile modification agent in improving oil recovery

  16. Overview on the Preparation and Characterization of some Itaconic Acid Chelating Copolymers

    International Nuclear Information System (INIS)

    Abd El-Ghaffar, M.A.; Youssef, E.A.; El-Halawany, N.R.

    2005-01-01

    Itaconic acid (IA) was copolymerised by an emulsion process with butyl acrylate (BuA), butyl methacrylate (BuMA) and styrene (St) using potassium persulphate/sodium meta bisulphite as a redox initiation system and sodium dodecyl benzene sulfonate as an emulsifier. The rate of copolymerization was found to decrease with increasing (IA) content . The prepared copolymers were characterized by spectrophotometric analysis (IR and lINMR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) . The monomer reactivity ratios (r1and r2) for the prepared copolymers were determined and discussed . The copolymers having the best properties were incorporated in latex paint formulations. The Ac.. conductivity of the binary itaconic copolymers have been investigated and studied at room temperature and showed semiconducting properties

  17. Tuning of Block Copolymer Membrane Morphology through Water Induced Phase Inversion Technique

    KAUST Repository

    Madhavan, Poornima

    2016-06-01

    Isoporous membranes are attractive for the regulation and detection of transport at the molecular level. A well-defined asymmetric membranes from diblock copolymers with an ordered nanoporous membrane morphologies were fabricated by the combination of block copolymer self-assembly and non-solvent-induced phase separation (NIPS) technique. This is a straightforward and fast one step procedure to develop integrally anisotropic (“asymmetric”) membranes having isoporous top selective layer. Membranes prepared via this method exhibit an anisotropic cross section with a thin separation layer supported from underneath a macroporous support. These membrane poses cylindrical pore structure with ordered nanopores across the entire membrane surfaces with pore size in the range from 20 to 40 nm. Tuning the pore morphology of the block copolymer membranes before and after fabrication are of great interest. In this thesis, we first investigated the pore morphology tuning of asymmetric block copolymer membrane by complexing with small organic molecules. We found that the occurrence of hydrogen-bond formation between PS-b-P4VP block copolymer and –OH/ –COOH functionalized organic molecules significantly tunes the pore morphology of asymmetric nanoporous membranes. In addition, we studied the complexation behavior of ionic liquids with PS-b-P4VP block copolymer in solutions and investigated their effect on final membrane morphology during the non-solvent induced phase separation process. We found that non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ionic liquids led to a lamella-structured membrane. Secondly, we demonstrated the catalytic activity of the gold nanoparticle-enhanced hollow fiber membranes by the reduction of nitrophenol. Also, we systematically investigated the pore morphology of isoporous PS-b-P4VP using 3D imaging technique. Thirdly, we developed well-distributed silver nanoparticles on the

  18. Application of Bottlebrush Block Copolymers as Photonic Crystals.

    Science.gov (United States)

    Liberman-Martin, Allegra L; Chu, Crystal K; Grubbs, Robert H

    2017-07-01

    Brush block copolymers are a class of comb polymers that feature polymeric side chains densely grafted to a linear backbone. These polymers display interesting properties due to their dense functionality, low entanglement, and ability to rapidly self-assemble to highly ordered nanostructures. The ability to prepare brush polymers with precise structures has been enabled by advancements in controlled polymerization techniques. This Feature Article highlights the development of brush block copolymers as photonic crystals that can reflect visible to near-infrared wavelengths of light. Fabrication of these materials relies on polymer self-assembly processes to achieve nanoscale ordering, which allows for the rapid preparation of photonic crystals from common organic chemical feedstocks. The characteristic physical properties of brush block copolymers are discussed, along with methods for their preparation. Strategies to induce self-assembly at ambient temperatures and the use of blending techniques to tune photonic properties are emphasized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-1, 4-cyclohexylene dimethylene... Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers. Ethylene-1, 4-cyclohexylene dimethylene... purposes of this section, ethylene-1,4-cyclohexylene dimethylene terephthalate copolymers (1,4-benzene...

  20. Novel fluorinated block copolymer architectures fuelled by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Jankova, Katja; Hvilsted, Søren

    2005-01-01

    Block copolymers based on poly(pentafluorostyrene), PFS, in various numbers and of different lengths, and polystyrene are prepared by atom transfer radical polymerization (ATRP). Di- and triblock copolymers with varying amounts of PFS were synthesized employing either I phenylethylbromide or 1,4-...